Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
0002 // Copyright(c) 2015-17 Intel Corporation.
0003 
0004 #include <linux/acpi.h>
0005 #include <linux/delay.h>
0006 #include <linux/mod_devicetable.h>
0007 #include <linux/pm_runtime.h>
0008 #include <linux/soundwire/sdw_registers.h>
0009 #include <linux/soundwire/sdw.h>
0010 #include <linux/soundwire/sdw_type.h>
0011 #include "bus.h"
0012 #include "sysfs_local.h"
0013 
0014 static DEFINE_IDA(sdw_ida);
0015 
0016 static int sdw_get_id(struct sdw_bus *bus)
0017 {
0018     int rc = ida_alloc(&sdw_ida, GFP_KERNEL);
0019 
0020     if (rc < 0)
0021         return rc;
0022 
0023     bus->id = rc;
0024     return 0;
0025 }
0026 
0027 /**
0028  * sdw_bus_master_add() - add a bus Master instance
0029  * @bus: bus instance
0030  * @parent: parent device
0031  * @fwnode: firmware node handle
0032  *
0033  * Initializes the bus instance, read properties and create child
0034  * devices.
0035  */
0036 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
0037                struct fwnode_handle *fwnode)
0038 {
0039     struct sdw_master_prop *prop = NULL;
0040     int ret;
0041 
0042     if (!parent) {
0043         pr_err("SoundWire parent device is not set\n");
0044         return -ENODEV;
0045     }
0046 
0047     ret = sdw_get_id(bus);
0048     if (ret < 0) {
0049         dev_err(parent, "Failed to get bus id\n");
0050         return ret;
0051     }
0052 
0053     ret = sdw_master_device_add(bus, parent, fwnode);
0054     if (ret < 0) {
0055         dev_err(parent, "Failed to add master device at link %d\n",
0056             bus->link_id);
0057         return ret;
0058     }
0059 
0060     if (!bus->ops) {
0061         dev_err(bus->dev, "SoundWire Bus ops are not set\n");
0062         return -EINVAL;
0063     }
0064 
0065     if (!bus->compute_params) {
0066         dev_err(bus->dev,
0067             "Bandwidth allocation not configured, compute_params no set\n");
0068         return -EINVAL;
0069     }
0070 
0071     mutex_init(&bus->msg_lock);
0072     mutex_init(&bus->bus_lock);
0073     INIT_LIST_HEAD(&bus->slaves);
0074     INIT_LIST_HEAD(&bus->m_rt_list);
0075 
0076     /*
0077      * Initialize multi_link flag
0078      * TODO: populate this flag by reading property from FW node
0079      */
0080     bus->multi_link = false;
0081     if (bus->ops->read_prop) {
0082         ret = bus->ops->read_prop(bus);
0083         if (ret < 0) {
0084             dev_err(bus->dev,
0085                 "Bus read properties failed:%d\n", ret);
0086             return ret;
0087         }
0088     }
0089 
0090     sdw_bus_debugfs_init(bus);
0091 
0092     /*
0093      * Device numbers in SoundWire are 0 through 15. Enumeration device
0094      * number (0), Broadcast device number (15), Group numbers (12 and
0095      * 13) and Master device number (14) are not used for assignment so
0096      * mask these and other higher bits.
0097      */
0098 
0099     /* Set higher order bits */
0100     *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
0101 
0102     /* Set enumuration device number and broadcast device number */
0103     set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
0104     set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
0105 
0106     /* Set group device numbers and master device number */
0107     set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
0108     set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
0109     set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
0110 
0111     /*
0112      * SDW is an enumerable bus, but devices can be powered off. So,
0113      * they won't be able to report as present.
0114      *
0115      * Create Slave devices based on Slaves described in
0116      * the respective firmware (ACPI/DT)
0117      */
0118     if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
0119         ret = sdw_acpi_find_slaves(bus);
0120     else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
0121         ret = sdw_of_find_slaves(bus);
0122     else
0123         ret = -ENOTSUPP; /* No ACPI/DT so error out */
0124 
0125     if (ret < 0) {
0126         dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
0127         return ret;
0128     }
0129 
0130     /*
0131      * Initialize clock values based on Master properties. The max
0132      * frequency is read from max_clk_freq property. Current assumption
0133      * is that the bus will start at highest clock frequency when
0134      * powered on.
0135      *
0136      * Default active bank will be 0 as out of reset the Slaves have
0137      * to start with bank 0 (Table 40 of Spec)
0138      */
0139     prop = &bus->prop;
0140     bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
0141     bus->params.curr_dr_freq = bus->params.max_dr_freq;
0142     bus->params.curr_bank = SDW_BANK0;
0143     bus->params.next_bank = SDW_BANK1;
0144 
0145     return 0;
0146 }
0147 EXPORT_SYMBOL(sdw_bus_master_add);
0148 
0149 static int sdw_delete_slave(struct device *dev, void *data)
0150 {
0151     struct sdw_slave *slave = dev_to_sdw_dev(dev);
0152     struct sdw_bus *bus = slave->bus;
0153 
0154     pm_runtime_disable(dev);
0155 
0156     sdw_slave_debugfs_exit(slave);
0157 
0158     mutex_lock(&bus->bus_lock);
0159 
0160     if (slave->dev_num) /* clear dev_num if assigned */
0161         clear_bit(slave->dev_num, bus->assigned);
0162 
0163     list_del_init(&slave->node);
0164     mutex_unlock(&bus->bus_lock);
0165 
0166     device_unregister(dev);
0167     return 0;
0168 }
0169 
0170 /**
0171  * sdw_bus_master_delete() - delete the bus master instance
0172  * @bus: bus to be deleted
0173  *
0174  * Remove the instance, delete the child devices.
0175  */
0176 void sdw_bus_master_delete(struct sdw_bus *bus)
0177 {
0178     device_for_each_child(bus->dev, NULL, sdw_delete_slave);
0179     sdw_master_device_del(bus);
0180 
0181     sdw_bus_debugfs_exit(bus);
0182     ida_free(&sdw_ida, bus->id);
0183 }
0184 EXPORT_SYMBOL(sdw_bus_master_delete);
0185 
0186 /*
0187  * SDW IO Calls
0188  */
0189 
0190 static inline int find_response_code(enum sdw_command_response resp)
0191 {
0192     switch (resp) {
0193     case SDW_CMD_OK:
0194         return 0;
0195 
0196     case SDW_CMD_IGNORED:
0197         return -ENODATA;
0198 
0199     case SDW_CMD_TIMEOUT:
0200         return -ETIMEDOUT;
0201 
0202     default:
0203         return -EIO;
0204     }
0205 }
0206 
0207 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
0208 {
0209     int retry = bus->prop.err_threshold;
0210     enum sdw_command_response resp;
0211     int ret = 0, i;
0212 
0213     for (i = 0; i <= retry; i++) {
0214         resp = bus->ops->xfer_msg(bus, msg);
0215         ret = find_response_code(resp);
0216 
0217         /* if cmd is ok or ignored return */
0218         if (ret == 0 || ret == -ENODATA)
0219             return ret;
0220     }
0221 
0222     return ret;
0223 }
0224 
0225 static inline int do_transfer_defer(struct sdw_bus *bus,
0226                     struct sdw_msg *msg,
0227                     struct sdw_defer *defer)
0228 {
0229     int retry = bus->prop.err_threshold;
0230     enum sdw_command_response resp;
0231     int ret = 0, i;
0232 
0233     defer->msg = msg;
0234     defer->length = msg->len;
0235     init_completion(&defer->complete);
0236 
0237     for (i = 0; i <= retry; i++) {
0238         resp = bus->ops->xfer_msg_defer(bus, msg, defer);
0239         ret = find_response_code(resp);
0240         /* if cmd is ok or ignored return */
0241         if (ret == 0 || ret == -ENODATA)
0242             return ret;
0243     }
0244 
0245     return ret;
0246 }
0247 
0248 static int sdw_reset_page(struct sdw_bus *bus, u16 dev_num)
0249 {
0250     int retry = bus->prop.err_threshold;
0251     enum sdw_command_response resp;
0252     int ret = 0, i;
0253 
0254     for (i = 0; i <= retry; i++) {
0255         resp = bus->ops->reset_page_addr(bus, dev_num);
0256         ret = find_response_code(resp);
0257         /* if cmd is ok or ignored return */
0258         if (ret == 0 || ret == -ENODATA)
0259             return ret;
0260     }
0261 
0262     return ret;
0263 }
0264 
0265 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
0266 {
0267     int ret;
0268 
0269     ret = do_transfer(bus, msg);
0270     if (ret != 0 && ret != -ENODATA)
0271         dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
0272             msg->dev_num, ret,
0273             (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
0274             msg->addr, msg->len);
0275 
0276     if (msg->page)
0277         sdw_reset_page(bus, msg->dev_num);
0278 
0279     return ret;
0280 }
0281 
0282 /**
0283  * sdw_transfer() - Synchronous transfer message to a SDW Slave device
0284  * @bus: SDW bus
0285  * @msg: SDW message to be xfered
0286  */
0287 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
0288 {
0289     int ret;
0290 
0291     mutex_lock(&bus->msg_lock);
0292 
0293     ret = sdw_transfer_unlocked(bus, msg);
0294 
0295     mutex_unlock(&bus->msg_lock);
0296 
0297     return ret;
0298 }
0299 
0300 /**
0301  * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
0302  * @bus: SDW bus
0303  * @msg: SDW message to be xfered
0304  * @defer: Defer block for signal completion
0305  *
0306  * Caller needs to hold the msg_lock lock while calling this
0307  */
0308 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg,
0309                struct sdw_defer *defer)
0310 {
0311     int ret;
0312 
0313     if (!bus->ops->xfer_msg_defer)
0314         return -ENOTSUPP;
0315 
0316     ret = do_transfer_defer(bus, msg, defer);
0317     if (ret != 0 && ret != -ENODATA)
0318         dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
0319             msg->dev_num, ret);
0320 
0321     if (msg->page)
0322         sdw_reset_page(bus, msg->dev_num);
0323 
0324     return ret;
0325 }
0326 
0327 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
0328          u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
0329 {
0330     memset(msg, 0, sizeof(*msg));
0331     msg->addr = addr; /* addr is 16 bit and truncated here */
0332     msg->len = count;
0333     msg->dev_num = dev_num;
0334     msg->flags = flags;
0335     msg->buf = buf;
0336 
0337     if (addr < SDW_REG_NO_PAGE) /* no paging area */
0338         return 0;
0339 
0340     if (addr >= SDW_REG_MAX) { /* illegal addr */
0341         pr_err("SDW: Invalid address %x passed\n", addr);
0342         return -EINVAL;
0343     }
0344 
0345     if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
0346         if (slave && !slave->prop.paging_support)
0347             return 0;
0348         /* no need for else as that will fall-through to paging */
0349     }
0350 
0351     /* paging mandatory */
0352     if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
0353         pr_err("SDW: Invalid device for paging :%d\n", dev_num);
0354         return -EINVAL;
0355     }
0356 
0357     if (!slave) {
0358         pr_err("SDW: No slave for paging addr\n");
0359         return -EINVAL;
0360     }
0361 
0362     if (!slave->prop.paging_support) {
0363         dev_err(&slave->dev,
0364             "address %x needs paging but no support\n", addr);
0365         return -EINVAL;
0366     }
0367 
0368     msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
0369     msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
0370     msg->addr |= BIT(15);
0371     msg->page = true;
0372 
0373     return 0;
0374 }
0375 
0376 /*
0377  * Read/Write IO functions.
0378  * no_pm versions can only be called by the bus, e.g. while enumerating or
0379  * handling suspend-resume sequences.
0380  * all clients need to use the pm versions
0381  */
0382 
0383 static int
0384 sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
0385 {
0386     struct sdw_msg msg;
0387     int ret;
0388 
0389     ret = sdw_fill_msg(&msg, slave, addr, count,
0390                slave->dev_num, SDW_MSG_FLAG_READ, val);
0391     if (ret < 0)
0392         return ret;
0393 
0394     ret = sdw_transfer(slave->bus, &msg);
0395     if (slave->is_mockup_device)
0396         ret = 0;
0397     return ret;
0398 }
0399 
0400 static int
0401 sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
0402 {
0403     struct sdw_msg msg;
0404     int ret;
0405 
0406     ret = sdw_fill_msg(&msg, slave, addr, count,
0407                slave->dev_num, SDW_MSG_FLAG_WRITE, (u8 *)val);
0408     if (ret < 0)
0409         return ret;
0410 
0411     ret = sdw_transfer(slave->bus, &msg);
0412     if (slave->is_mockup_device)
0413         ret = 0;
0414     return ret;
0415 }
0416 
0417 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
0418 {
0419     return sdw_nwrite_no_pm(slave, addr, 1, &value);
0420 }
0421 EXPORT_SYMBOL(sdw_write_no_pm);
0422 
0423 static int
0424 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
0425 {
0426     struct sdw_msg msg;
0427     u8 buf;
0428     int ret;
0429 
0430     ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
0431                SDW_MSG_FLAG_READ, &buf);
0432     if (ret < 0)
0433         return ret;
0434 
0435     ret = sdw_transfer(bus, &msg);
0436     if (ret < 0)
0437         return ret;
0438 
0439     return buf;
0440 }
0441 
0442 static int
0443 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
0444 {
0445     struct sdw_msg msg;
0446     int ret;
0447 
0448     ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
0449                SDW_MSG_FLAG_WRITE, &value);
0450     if (ret < 0)
0451         return ret;
0452 
0453     return sdw_transfer(bus, &msg);
0454 }
0455 
0456 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
0457 {
0458     struct sdw_msg msg;
0459     u8 buf;
0460     int ret;
0461 
0462     ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
0463                SDW_MSG_FLAG_READ, &buf);
0464     if (ret < 0)
0465         return ret;
0466 
0467     ret = sdw_transfer_unlocked(bus, &msg);
0468     if (ret < 0)
0469         return ret;
0470 
0471     return buf;
0472 }
0473 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
0474 
0475 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
0476 {
0477     struct sdw_msg msg;
0478     int ret;
0479 
0480     ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
0481                SDW_MSG_FLAG_WRITE, &value);
0482     if (ret < 0)
0483         return ret;
0484 
0485     return sdw_transfer_unlocked(bus, &msg);
0486 }
0487 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
0488 
0489 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
0490 {
0491     u8 buf;
0492     int ret;
0493 
0494     ret = sdw_nread_no_pm(slave, addr, 1, &buf);
0495     if (ret < 0)
0496         return ret;
0497     else
0498         return buf;
0499 }
0500 EXPORT_SYMBOL(sdw_read_no_pm);
0501 
0502 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
0503 {
0504     int tmp;
0505 
0506     tmp = sdw_read_no_pm(slave, addr);
0507     if (tmp < 0)
0508         return tmp;
0509 
0510     tmp = (tmp & ~mask) | val;
0511     return sdw_write_no_pm(slave, addr, tmp);
0512 }
0513 EXPORT_SYMBOL(sdw_update_no_pm);
0514 
0515 /* Read-Modify-Write Slave register */
0516 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
0517 {
0518     int tmp;
0519 
0520     tmp = sdw_read(slave, addr);
0521     if (tmp < 0)
0522         return tmp;
0523 
0524     tmp = (tmp & ~mask) | val;
0525     return sdw_write(slave, addr, tmp);
0526 }
0527 EXPORT_SYMBOL(sdw_update);
0528 
0529 /**
0530  * sdw_nread() - Read "n" contiguous SDW Slave registers
0531  * @slave: SDW Slave
0532  * @addr: Register address
0533  * @count: length
0534  * @val: Buffer for values to be read
0535  */
0536 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
0537 {
0538     int ret;
0539 
0540     ret = pm_runtime_resume_and_get(&slave->dev);
0541     if (ret < 0 && ret != -EACCES)
0542         return ret;
0543 
0544     ret = sdw_nread_no_pm(slave, addr, count, val);
0545 
0546     pm_runtime_mark_last_busy(&slave->dev);
0547     pm_runtime_put(&slave->dev);
0548 
0549     return ret;
0550 }
0551 EXPORT_SYMBOL(sdw_nread);
0552 
0553 /**
0554  * sdw_nwrite() - Write "n" contiguous SDW Slave registers
0555  * @slave: SDW Slave
0556  * @addr: Register address
0557  * @count: length
0558  * @val: Buffer for values to be written
0559  */
0560 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
0561 {
0562     int ret;
0563 
0564     ret = pm_runtime_resume_and_get(&slave->dev);
0565     if (ret < 0 && ret != -EACCES)
0566         return ret;
0567 
0568     ret = sdw_nwrite_no_pm(slave, addr, count, val);
0569 
0570     pm_runtime_mark_last_busy(&slave->dev);
0571     pm_runtime_put(&slave->dev);
0572 
0573     return ret;
0574 }
0575 EXPORT_SYMBOL(sdw_nwrite);
0576 
0577 /**
0578  * sdw_read() - Read a SDW Slave register
0579  * @slave: SDW Slave
0580  * @addr: Register address
0581  */
0582 int sdw_read(struct sdw_slave *slave, u32 addr)
0583 {
0584     u8 buf;
0585     int ret;
0586 
0587     ret = sdw_nread(slave, addr, 1, &buf);
0588     if (ret < 0)
0589         return ret;
0590 
0591     return buf;
0592 }
0593 EXPORT_SYMBOL(sdw_read);
0594 
0595 /**
0596  * sdw_write() - Write a SDW Slave register
0597  * @slave: SDW Slave
0598  * @addr: Register address
0599  * @value: Register value
0600  */
0601 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
0602 {
0603     return sdw_nwrite(slave, addr, 1, &value);
0604 }
0605 EXPORT_SYMBOL(sdw_write);
0606 
0607 /*
0608  * SDW alert handling
0609  */
0610 
0611 /* called with bus_lock held */
0612 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
0613 {
0614     struct sdw_slave *slave;
0615 
0616     list_for_each_entry(slave, &bus->slaves, node) {
0617         if (slave->dev_num == i)
0618             return slave;
0619     }
0620 
0621     return NULL;
0622 }
0623 
0624 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
0625 {
0626     if (slave->id.mfg_id != id.mfg_id ||
0627         slave->id.part_id != id.part_id ||
0628         slave->id.class_id != id.class_id ||
0629         (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
0630          slave->id.unique_id != id.unique_id))
0631         return -ENODEV;
0632 
0633     return 0;
0634 }
0635 EXPORT_SYMBOL(sdw_compare_devid);
0636 
0637 /* called with bus_lock held */
0638 static int sdw_get_device_num(struct sdw_slave *slave)
0639 {
0640     int bit;
0641 
0642     bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES);
0643     if (bit == SDW_MAX_DEVICES) {
0644         bit = -ENODEV;
0645         goto err;
0646     }
0647 
0648     /*
0649      * Do not update dev_num in Slave data structure here,
0650      * Update once program dev_num is successful
0651      */
0652     set_bit(bit, slave->bus->assigned);
0653 
0654 err:
0655     return bit;
0656 }
0657 
0658 static int sdw_assign_device_num(struct sdw_slave *slave)
0659 {
0660     struct sdw_bus *bus = slave->bus;
0661     int ret, dev_num;
0662     bool new_device = false;
0663 
0664     /* check first if device number is assigned, if so reuse that */
0665     if (!slave->dev_num) {
0666         if (!slave->dev_num_sticky) {
0667             mutex_lock(&slave->bus->bus_lock);
0668             dev_num = sdw_get_device_num(slave);
0669             mutex_unlock(&slave->bus->bus_lock);
0670             if (dev_num < 0) {
0671                 dev_err(bus->dev, "Get dev_num failed: %d\n",
0672                     dev_num);
0673                 return dev_num;
0674             }
0675             slave->dev_num = dev_num;
0676             slave->dev_num_sticky = dev_num;
0677             new_device = true;
0678         } else {
0679             slave->dev_num = slave->dev_num_sticky;
0680         }
0681     }
0682 
0683     if (!new_device)
0684         dev_dbg(bus->dev,
0685             "Slave already registered, reusing dev_num:%d\n",
0686             slave->dev_num);
0687 
0688     /* Clear the slave->dev_num to transfer message on device 0 */
0689     dev_num = slave->dev_num;
0690     slave->dev_num = 0;
0691 
0692     ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
0693     if (ret < 0) {
0694         dev_err(bus->dev, "Program device_num %d failed: %d\n",
0695             dev_num, ret);
0696         return ret;
0697     }
0698 
0699     /* After xfer of msg, restore dev_num */
0700     slave->dev_num = slave->dev_num_sticky;
0701 
0702     return 0;
0703 }
0704 
0705 void sdw_extract_slave_id(struct sdw_bus *bus,
0706               u64 addr, struct sdw_slave_id *id)
0707 {
0708     dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
0709 
0710     id->sdw_version = SDW_VERSION(addr);
0711     id->unique_id = SDW_UNIQUE_ID(addr);
0712     id->mfg_id = SDW_MFG_ID(addr);
0713     id->part_id = SDW_PART_ID(addr);
0714     id->class_id = SDW_CLASS_ID(addr);
0715 
0716     dev_dbg(bus->dev,
0717         "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
0718         id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
0719 }
0720 EXPORT_SYMBOL(sdw_extract_slave_id);
0721 
0722 static int sdw_program_device_num(struct sdw_bus *bus)
0723 {
0724     u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
0725     struct sdw_slave *slave, *_s;
0726     struct sdw_slave_id id;
0727     struct sdw_msg msg;
0728     bool found;
0729     int count = 0, ret;
0730     u64 addr;
0731 
0732     /* No Slave, so use raw xfer api */
0733     ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
0734                SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
0735     if (ret < 0)
0736         return ret;
0737 
0738     do {
0739         ret = sdw_transfer(bus, &msg);
0740         if (ret == -ENODATA) { /* end of device id reads */
0741             dev_dbg(bus->dev, "No more devices to enumerate\n");
0742             ret = 0;
0743             break;
0744         }
0745         if (ret < 0) {
0746             dev_err(bus->dev, "DEVID read fail:%d\n", ret);
0747             break;
0748         }
0749 
0750         /*
0751          * Construct the addr and extract. Cast the higher shift
0752          * bits to avoid truncation due to size limit.
0753          */
0754         addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
0755             ((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
0756             ((u64)buf[0] << 40);
0757 
0758         sdw_extract_slave_id(bus, addr, &id);
0759 
0760         found = false;
0761         /* Now compare with entries */
0762         list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
0763             if (sdw_compare_devid(slave, id) == 0) {
0764                 found = true;
0765 
0766                 /*
0767                  * Assign a new dev_num to this Slave and
0768                  * not mark it present. It will be marked
0769                  * present after it reports ATTACHED on new
0770                  * dev_num
0771                  */
0772                 ret = sdw_assign_device_num(slave);
0773                 if (ret < 0) {
0774                     dev_err(bus->dev,
0775                         "Assign dev_num failed:%d\n",
0776                         ret);
0777                     return ret;
0778                 }
0779 
0780                 break;
0781             }
0782         }
0783 
0784         if (!found) {
0785             /* TODO: Park this device in Group 13 */
0786 
0787             /*
0788              * add Slave device even if there is no platform
0789              * firmware description. There will be no driver probe
0790              * but the user/integration will be able to see the
0791              * device, enumeration status and device number in sysfs
0792              */
0793             sdw_slave_add(bus, &id, NULL);
0794 
0795             dev_err(bus->dev, "Slave Entry not found\n");
0796         }
0797 
0798         count++;
0799 
0800         /*
0801          * Check till error out or retry (count) exhausts.
0802          * Device can drop off and rejoin during enumeration
0803          * so count till twice the bound.
0804          */
0805 
0806     } while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
0807 
0808     return ret;
0809 }
0810 
0811 static void sdw_modify_slave_status(struct sdw_slave *slave,
0812                     enum sdw_slave_status status)
0813 {
0814     struct sdw_bus *bus = slave->bus;
0815 
0816     mutex_lock(&bus->bus_lock);
0817 
0818     dev_vdbg(bus->dev,
0819          "%s: changing status slave %d status %d new status %d\n",
0820          __func__, slave->dev_num, slave->status, status);
0821 
0822     if (status == SDW_SLAVE_UNATTACHED) {
0823         dev_dbg(&slave->dev,
0824             "%s: initializing enumeration and init completion for Slave %d\n",
0825             __func__, slave->dev_num);
0826 
0827         init_completion(&slave->enumeration_complete);
0828         init_completion(&slave->initialization_complete);
0829 
0830     } else if ((status == SDW_SLAVE_ATTACHED) &&
0831            (slave->status == SDW_SLAVE_UNATTACHED)) {
0832         dev_dbg(&slave->dev,
0833             "%s: signaling enumeration completion for Slave %d\n",
0834             __func__, slave->dev_num);
0835 
0836         complete(&slave->enumeration_complete);
0837     }
0838     slave->status = status;
0839     mutex_unlock(&bus->bus_lock);
0840 }
0841 
0842 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
0843                        enum sdw_clk_stop_mode mode,
0844                        enum sdw_clk_stop_type type)
0845 {
0846     int ret = 0;
0847 
0848     mutex_lock(&slave->sdw_dev_lock);
0849 
0850     if (slave->probed)  {
0851         struct device *dev = &slave->dev;
0852         struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
0853 
0854         if (drv->ops && drv->ops->clk_stop)
0855             ret = drv->ops->clk_stop(slave, mode, type);
0856     }
0857 
0858     mutex_unlock(&slave->sdw_dev_lock);
0859 
0860     return ret;
0861 }
0862 
0863 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
0864                       enum sdw_clk_stop_mode mode,
0865                       bool prepare)
0866 {
0867     bool wake_en;
0868     u32 val = 0;
0869     int ret;
0870 
0871     wake_en = slave->prop.wake_capable;
0872 
0873     if (prepare) {
0874         val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
0875 
0876         if (mode == SDW_CLK_STOP_MODE1)
0877             val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
0878 
0879         if (wake_en)
0880             val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
0881     } else {
0882         ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
0883         if (ret < 0) {
0884             if (ret != -ENODATA)
0885                 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
0886             return ret;
0887         }
0888         val = ret;
0889         val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
0890     }
0891 
0892     ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
0893 
0894     if (ret < 0 && ret != -ENODATA)
0895         dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
0896 
0897     return ret;
0898 }
0899 
0900 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
0901 {
0902     int retry = bus->clk_stop_timeout;
0903     int val;
0904 
0905     do {
0906         val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
0907         if (val < 0) {
0908             if (val != -ENODATA)
0909                 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
0910             return val;
0911         }
0912         val &= SDW_SCP_STAT_CLK_STP_NF;
0913         if (!val) {
0914             dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
0915                 dev_num);
0916             return 0;
0917         }
0918 
0919         usleep_range(1000, 1500);
0920         retry--;
0921     } while (retry);
0922 
0923     dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
0924         dev_num);
0925 
0926     return -ETIMEDOUT;
0927 }
0928 
0929 /**
0930  * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
0931  *
0932  * @bus: SDW bus instance
0933  *
0934  * Query Slave for clock stop mode and prepare for that mode.
0935  */
0936 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
0937 {
0938     bool simple_clk_stop = true;
0939     struct sdw_slave *slave;
0940     bool is_slave = false;
0941     int ret = 0;
0942 
0943     /*
0944      * In order to save on transition time, prepare
0945      * each Slave and then wait for all Slave(s) to be
0946      * prepared for clock stop.
0947      * If one of the Slave devices has lost sync and
0948      * replies with Command Ignored/-ENODATA, we continue
0949      * the loop
0950      */
0951     list_for_each_entry(slave, &bus->slaves, node) {
0952         if (!slave->dev_num)
0953             continue;
0954 
0955         if (slave->status != SDW_SLAVE_ATTACHED &&
0956             slave->status != SDW_SLAVE_ALERT)
0957             continue;
0958 
0959         /* Identify if Slave(s) are available on Bus */
0960         is_slave = true;
0961 
0962         ret = sdw_slave_clk_stop_callback(slave,
0963                           SDW_CLK_STOP_MODE0,
0964                           SDW_CLK_PRE_PREPARE);
0965         if (ret < 0 && ret != -ENODATA) {
0966             dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
0967             return ret;
0968         }
0969 
0970         /* Only prepare a Slave device if needed */
0971         if (!slave->prop.simple_clk_stop_capable) {
0972             simple_clk_stop = false;
0973 
0974             ret = sdw_slave_clk_stop_prepare(slave,
0975                              SDW_CLK_STOP_MODE0,
0976                              true);
0977             if (ret < 0 && ret != -ENODATA) {
0978                 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
0979                 return ret;
0980             }
0981         }
0982     }
0983 
0984     /* Skip remaining clock stop preparation if no Slave is attached */
0985     if (!is_slave)
0986         return 0;
0987 
0988     /*
0989      * Don't wait for all Slaves to be ready if they follow the simple
0990      * state machine
0991      */
0992     if (!simple_clk_stop) {
0993         ret = sdw_bus_wait_for_clk_prep_deprep(bus,
0994                                SDW_BROADCAST_DEV_NUM);
0995         /*
0996          * if there are no Slave devices present and the reply is
0997          * Command_Ignored/-ENODATA, we don't need to continue with the
0998          * flow and can just return here. The error code is not modified
0999          * and its handling left as an exercise for the caller.
1000          */
1001         if (ret < 0)
1002             return ret;
1003     }
1004 
1005     /* Inform slaves that prep is done */
1006     list_for_each_entry(slave, &bus->slaves, node) {
1007         if (!slave->dev_num)
1008             continue;
1009 
1010         if (slave->status != SDW_SLAVE_ATTACHED &&
1011             slave->status != SDW_SLAVE_ALERT)
1012             continue;
1013 
1014         ret = sdw_slave_clk_stop_callback(slave,
1015                           SDW_CLK_STOP_MODE0,
1016                           SDW_CLK_POST_PREPARE);
1017 
1018         if (ret < 0 && ret != -ENODATA) {
1019             dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1020             return ret;
1021         }
1022     }
1023 
1024     return 0;
1025 }
1026 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1027 
1028 /**
1029  * sdw_bus_clk_stop: stop bus clock
1030  *
1031  * @bus: SDW bus instance
1032  *
1033  * After preparing the Slaves for clock stop, stop the clock by broadcasting
1034  * write to SCP_CTRL register.
1035  */
1036 int sdw_bus_clk_stop(struct sdw_bus *bus)
1037 {
1038     int ret;
1039 
1040     /*
1041      * broadcast clock stop now, attached Slaves will ACK this,
1042      * unattached will ignore
1043      */
1044     ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1045                    SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1046     if (ret < 0) {
1047         if (ret != -ENODATA)
1048             dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1049         return ret;
1050     }
1051 
1052     return 0;
1053 }
1054 EXPORT_SYMBOL(sdw_bus_clk_stop);
1055 
1056 /**
1057  * sdw_bus_exit_clk_stop: Exit clock stop mode
1058  *
1059  * @bus: SDW bus instance
1060  *
1061  * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1062  * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1063  * back.
1064  */
1065 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1066 {
1067     bool simple_clk_stop = true;
1068     struct sdw_slave *slave;
1069     bool is_slave = false;
1070     int ret;
1071 
1072     /*
1073      * In order to save on transition time, de-prepare
1074      * each Slave and then wait for all Slave(s) to be
1075      * de-prepared after clock resume.
1076      */
1077     list_for_each_entry(slave, &bus->slaves, node) {
1078         if (!slave->dev_num)
1079             continue;
1080 
1081         if (slave->status != SDW_SLAVE_ATTACHED &&
1082             slave->status != SDW_SLAVE_ALERT)
1083             continue;
1084 
1085         /* Identify if Slave(s) are available on Bus */
1086         is_slave = true;
1087 
1088         ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1089                           SDW_CLK_PRE_DEPREPARE);
1090         if (ret < 0)
1091             dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1092 
1093         /* Only de-prepare a Slave device if needed */
1094         if (!slave->prop.simple_clk_stop_capable) {
1095             simple_clk_stop = false;
1096 
1097             ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1098                              false);
1099 
1100             if (ret < 0)
1101                 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1102         }
1103     }
1104 
1105     /* Skip remaining clock stop de-preparation if no Slave is attached */
1106     if (!is_slave)
1107         return 0;
1108 
1109     /*
1110      * Don't wait for all Slaves to be ready if they follow the simple
1111      * state machine
1112      */
1113     if (!simple_clk_stop) {
1114         ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1115         if (ret < 0)
1116             dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1117     }
1118 
1119     list_for_each_entry(slave, &bus->slaves, node) {
1120         if (!slave->dev_num)
1121             continue;
1122 
1123         if (slave->status != SDW_SLAVE_ATTACHED &&
1124             slave->status != SDW_SLAVE_ALERT)
1125             continue;
1126 
1127         ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1128                           SDW_CLK_POST_DEPREPARE);
1129         if (ret < 0)
1130             dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1131     }
1132 
1133     return 0;
1134 }
1135 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1136 
1137 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1138                int port, bool enable, int mask)
1139 {
1140     u32 addr;
1141     int ret;
1142     u8 val = 0;
1143 
1144     if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1145         dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1146             enable ? "on" : "off");
1147         mask |= SDW_DPN_INT_TEST_FAIL;
1148     }
1149 
1150     addr = SDW_DPN_INTMASK(port);
1151 
1152     /* Set/Clear port ready interrupt mask */
1153     if (enable) {
1154         val |= mask;
1155         val |= SDW_DPN_INT_PORT_READY;
1156     } else {
1157         val &= ~(mask);
1158         val &= ~SDW_DPN_INT_PORT_READY;
1159     }
1160 
1161     ret = sdw_update(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1162     if (ret < 0)
1163         dev_err(&slave->dev,
1164             "SDW_DPN_INTMASK write failed:%d\n", val);
1165 
1166     return ret;
1167 }
1168 
1169 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1170 {
1171     u32 mclk_freq = slave->bus->prop.mclk_freq;
1172     u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1173     unsigned int scale;
1174     u8 scale_index;
1175     u8 base;
1176     int ret;
1177 
1178     /*
1179      * frequency base and scale registers are required for SDCA
1180      * devices. They may also be used for 1.2+/non-SDCA devices,
1181      * but we will need a DisCo property to cover this case
1182      */
1183     if (!slave->id.class_id)
1184         return 0;
1185 
1186     if (!mclk_freq) {
1187         dev_err(&slave->dev,
1188             "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1189         return -EINVAL;
1190     }
1191 
1192     /*
1193      * map base frequency using Table 89 of SoundWire 1.2 spec.
1194      * The order of the tests just follows the specification, this
1195      * is not a selection between possible values or a search for
1196      * the best value but just a mapping.  Only one case per platform
1197      * is relevant.
1198      * Some BIOS have inconsistent values for mclk_freq but a
1199      * correct root so we force the mclk_freq to avoid variations.
1200      */
1201     if (!(19200000 % mclk_freq)) {
1202         mclk_freq = 19200000;
1203         base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1204     } else if (!(24000000 % mclk_freq)) {
1205         mclk_freq = 24000000;
1206         base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1207     } else if (!(24576000 % mclk_freq)) {
1208         mclk_freq = 24576000;
1209         base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1210     } else if (!(22579200 % mclk_freq)) {
1211         mclk_freq = 22579200;
1212         base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1213     } else if (!(32000000 % mclk_freq)) {
1214         mclk_freq = 32000000;
1215         base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1216     } else {
1217         dev_err(&slave->dev,
1218             "Unsupported clock base, mclk %d\n",
1219             mclk_freq);
1220         return -EINVAL;
1221     }
1222 
1223     if (mclk_freq % curr_freq) {
1224         dev_err(&slave->dev,
1225             "mclk %d is not multiple of bus curr_freq %d\n",
1226             mclk_freq, curr_freq);
1227         return -EINVAL;
1228     }
1229 
1230     scale = mclk_freq / curr_freq;
1231 
1232     /*
1233      * map scale to Table 90 of SoundWire 1.2 spec - and check
1234      * that the scale is a power of two and maximum 64
1235      */
1236     scale_index = ilog2(scale);
1237 
1238     if (BIT(scale_index) != scale || scale_index > 6) {
1239         dev_err(&slave->dev,
1240             "No match found for scale %d, bus mclk %d curr_freq %d\n",
1241             scale, mclk_freq, curr_freq);
1242         return -EINVAL;
1243     }
1244     scale_index++;
1245 
1246     ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1247     if (ret < 0) {
1248         dev_err(&slave->dev,
1249             "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1250         return ret;
1251     }
1252 
1253     /* initialize scale for both banks */
1254     ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1255     if (ret < 0) {
1256         dev_err(&slave->dev,
1257             "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1258         return ret;
1259     }
1260     ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1261     if (ret < 0)
1262         dev_err(&slave->dev,
1263             "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1264 
1265     dev_dbg(&slave->dev,
1266         "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1267         base, scale_index, mclk_freq, curr_freq);
1268 
1269     return ret;
1270 }
1271 
1272 static int sdw_initialize_slave(struct sdw_slave *slave)
1273 {
1274     struct sdw_slave_prop *prop = &slave->prop;
1275     int status;
1276     int ret;
1277     u8 val;
1278 
1279     ret = sdw_slave_set_frequency(slave);
1280     if (ret < 0)
1281         return ret;
1282 
1283     if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1284         /* Clear bus clash interrupt before enabling interrupt mask */
1285         status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1286         if (status < 0) {
1287             dev_err(&slave->dev,
1288                 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1289             return status;
1290         }
1291         if (status & SDW_SCP_INT1_BUS_CLASH) {
1292             dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1293             ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1294             if (ret < 0) {
1295                 dev_err(&slave->dev,
1296                     "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1297                 return ret;
1298             }
1299         }
1300     }
1301     if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1302         !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1303         /* Clear parity interrupt before enabling interrupt mask */
1304         status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1305         if (status < 0) {
1306             dev_err(&slave->dev,
1307                 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1308             return status;
1309         }
1310         if (status & SDW_SCP_INT1_PARITY) {
1311             dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1312             ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1313             if (ret < 0) {
1314                 dev_err(&slave->dev,
1315                     "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1316                 return ret;
1317             }
1318         }
1319     }
1320 
1321     /*
1322      * Set SCP_INT1_MASK register, typically bus clash and
1323      * implementation-defined interrupt mask. The Parity detection
1324      * may not always be correct on startup so its use is
1325      * device-dependent, it might e.g. only be enabled in
1326      * steady-state after a couple of frames.
1327      */
1328     val = slave->prop.scp_int1_mask;
1329 
1330     /* Enable SCP interrupts */
1331     ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1332     if (ret < 0) {
1333         dev_err(&slave->dev,
1334             "SDW_SCP_INTMASK1 write failed:%d\n", ret);
1335         return ret;
1336     }
1337 
1338     /* No need to continue if DP0 is not present */
1339     if (!slave->prop.dp0_prop)
1340         return 0;
1341 
1342     /* Enable DP0 interrupts */
1343     val = prop->dp0_prop->imp_def_interrupts;
1344     val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1345 
1346     ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1347     if (ret < 0)
1348         dev_err(&slave->dev,
1349             "SDW_DP0_INTMASK read failed:%d\n", ret);
1350     return ret;
1351 }
1352 
1353 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1354 {
1355     u8 clear, impl_int_mask;
1356     int status, status2, ret, count = 0;
1357 
1358     status = sdw_read_no_pm(slave, SDW_DP0_INT);
1359     if (status < 0) {
1360         dev_err(&slave->dev,
1361             "SDW_DP0_INT read failed:%d\n", status);
1362         return status;
1363     }
1364 
1365     do {
1366         clear = status & ~SDW_DP0_INTERRUPTS;
1367 
1368         if (status & SDW_DP0_INT_TEST_FAIL) {
1369             dev_err(&slave->dev, "Test fail for port 0\n");
1370             clear |= SDW_DP0_INT_TEST_FAIL;
1371         }
1372 
1373         /*
1374          * Assumption: PORT_READY interrupt will be received only for
1375          * ports implementing Channel Prepare state machine (CP_SM)
1376          */
1377 
1378         if (status & SDW_DP0_INT_PORT_READY) {
1379             complete(&slave->port_ready[0]);
1380             clear |= SDW_DP0_INT_PORT_READY;
1381         }
1382 
1383         if (status & SDW_DP0_INT_BRA_FAILURE) {
1384             dev_err(&slave->dev, "BRA failed\n");
1385             clear |= SDW_DP0_INT_BRA_FAILURE;
1386         }
1387 
1388         impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1389             SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1390 
1391         if (status & impl_int_mask) {
1392             clear |= impl_int_mask;
1393             *slave_status = clear;
1394         }
1395 
1396         /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1397         ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1398         if (ret < 0) {
1399             dev_err(&slave->dev,
1400                 "SDW_DP0_INT write failed:%d\n", ret);
1401             return ret;
1402         }
1403 
1404         /* Read DP0 interrupt again */
1405         status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1406         if (status2 < 0) {
1407             dev_err(&slave->dev,
1408                 "SDW_DP0_INT read failed:%d\n", status2);
1409             return status2;
1410         }
1411         /* filter to limit loop to interrupts identified in the first status read */
1412         status &= status2;
1413 
1414         count++;
1415 
1416         /* we can get alerts while processing so keep retrying */
1417     } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1418 
1419     if (count == SDW_READ_INTR_CLEAR_RETRY)
1420         dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1421 
1422     return ret;
1423 }
1424 
1425 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1426                      int port, u8 *slave_status)
1427 {
1428     u8 clear, impl_int_mask;
1429     int status, status2, ret, count = 0;
1430     u32 addr;
1431 
1432     if (port == 0)
1433         return sdw_handle_dp0_interrupt(slave, slave_status);
1434 
1435     addr = SDW_DPN_INT(port);
1436     status = sdw_read_no_pm(slave, addr);
1437     if (status < 0) {
1438         dev_err(&slave->dev,
1439             "SDW_DPN_INT read failed:%d\n", status);
1440 
1441         return status;
1442     }
1443 
1444     do {
1445         clear = status & ~SDW_DPN_INTERRUPTS;
1446 
1447         if (status & SDW_DPN_INT_TEST_FAIL) {
1448             dev_err(&slave->dev, "Test fail for port:%d\n", port);
1449             clear |= SDW_DPN_INT_TEST_FAIL;
1450         }
1451 
1452         /*
1453          * Assumption: PORT_READY interrupt will be received only
1454          * for ports implementing CP_SM.
1455          */
1456         if (status & SDW_DPN_INT_PORT_READY) {
1457             complete(&slave->port_ready[port]);
1458             clear |= SDW_DPN_INT_PORT_READY;
1459         }
1460 
1461         impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1462             SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1463 
1464         if (status & impl_int_mask) {
1465             clear |= impl_int_mask;
1466             *slave_status = clear;
1467         }
1468 
1469         /* clear the interrupt but don't touch reserved fields */
1470         ret = sdw_write_no_pm(slave, addr, clear);
1471         if (ret < 0) {
1472             dev_err(&slave->dev,
1473                 "SDW_DPN_INT write failed:%d\n", ret);
1474             return ret;
1475         }
1476 
1477         /* Read DPN interrupt again */
1478         status2 = sdw_read_no_pm(slave, addr);
1479         if (status2 < 0) {
1480             dev_err(&slave->dev,
1481                 "SDW_DPN_INT read failed:%d\n", status2);
1482             return status2;
1483         }
1484         /* filter to limit loop to interrupts identified in the first status read */
1485         status &= status2;
1486 
1487         count++;
1488 
1489         /* we can get alerts while processing so keep retrying */
1490     } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1491 
1492     if (count == SDW_READ_INTR_CLEAR_RETRY)
1493         dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1494 
1495     return ret;
1496 }
1497 
1498 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1499 {
1500     struct sdw_slave_intr_status slave_intr;
1501     u8 clear = 0, bit, port_status[15] = {0};
1502     int port_num, stat, ret, count = 0;
1503     unsigned long port;
1504     bool slave_notify;
1505     u8 sdca_cascade = 0;
1506     u8 buf, buf2[2], _buf, _buf2[2];
1507     bool parity_check;
1508     bool parity_quirk;
1509 
1510     sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1511 
1512     ret = pm_runtime_resume_and_get(&slave->dev);
1513     if (ret < 0 && ret != -EACCES) {
1514         dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1515         return ret;
1516     }
1517 
1518     /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1519     ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1520     if (ret < 0) {
1521         dev_err(&slave->dev,
1522             "SDW_SCP_INT1 read failed:%d\n", ret);
1523         goto io_err;
1524     }
1525     buf = ret;
1526 
1527     ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1528     if (ret < 0) {
1529         dev_err(&slave->dev,
1530             "SDW_SCP_INT2/3 read failed:%d\n", ret);
1531         goto io_err;
1532     }
1533 
1534     if (slave->prop.is_sdca) {
1535         ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1536         if (ret < 0) {
1537             dev_err(&slave->dev,
1538                 "SDW_DP0_INT read failed:%d\n", ret);
1539             goto io_err;
1540         }
1541         sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1542     }
1543 
1544     do {
1545         slave_notify = false;
1546 
1547         /*
1548          * Check parity, bus clash and Slave (impl defined)
1549          * interrupt
1550          */
1551         if (buf & SDW_SCP_INT1_PARITY) {
1552             parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1553             parity_quirk = !slave->first_interrupt_done &&
1554                 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1555 
1556             if (parity_check && !parity_quirk)
1557                 dev_err(&slave->dev, "Parity error detected\n");
1558             clear |= SDW_SCP_INT1_PARITY;
1559         }
1560 
1561         if (buf & SDW_SCP_INT1_BUS_CLASH) {
1562             if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1563                 dev_err(&slave->dev, "Bus clash detected\n");
1564             clear |= SDW_SCP_INT1_BUS_CLASH;
1565         }
1566 
1567         /*
1568          * When bus clash or parity errors are detected, such errors
1569          * are unlikely to be recoverable errors.
1570          * TODO: In such scenario, reset bus. Make this configurable
1571          * via sysfs property with bus reset being the default.
1572          */
1573 
1574         if (buf & SDW_SCP_INT1_IMPL_DEF) {
1575             if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1576                 dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1577                 slave_notify = true;
1578             }
1579             clear |= SDW_SCP_INT1_IMPL_DEF;
1580         }
1581 
1582         /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1583         if (sdca_cascade)
1584             slave_notify = true;
1585 
1586         /* Check port 0 - 3 interrupts */
1587         port = buf & SDW_SCP_INT1_PORT0_3;
1588 
1589         /* To get port number corresponding to bits, shift it */
1590         port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1591         for_each_set_bit(bit, &port, 8) {
1592             sdw_handle_port_interrupt(slave, bit,
1593                           &port_status[bit]);
1594         }
1595 
1596         /* Check if cascade 2 interrupt is present */
1597         if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1598             port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1599             for_each_set_bit(bit, &port, 8) {
1600                 /* scp2 ports start from 4 */
1601                 port_num = bit + 3;
1602                 sdw_handle_port_interrupt(slave,
1603                         port_num,
1604                         &port_status[port_num]);
1605             }
1606         }
1607 
1608         /* now check last cascade */
1609         if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1610             port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1611             for_each_set_bit(bit, &port, 8) {
1612                 /* scp3 ports start from 11 */
1613                 port_num = bit + 10;
1614                 sdw_handle_port_interrupt(slave,
1615                         port_num,
1616                         &port_status[port_num]);
1617             }
1618         }
1619 
1620         /* Update the Slave driver */
1621         if (slave_notify) {
1622             mutex_lock(&slave->sdw_dev_lock);
1623 
1624             if (slave->probed) {
1625                 struct device *dev = &slave->dev;
1626                 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1627 
1628                 if (drv->ops && drv->ops->interrupt_callback) {
1629                     slave_intr.sdca_cascade = sdca_cascade;
1630                     slave_intr.control_port = clear;
1631                     memcpy(slave_intr.port, &port_status,
1632                            sizeof(slave_intr.port));
1633 
1634                     drv->ops->interrupt_callback(slave, &slave_intr);
1635                 }
1636             }
1637 
1638             mutex_unlock(&slave->sdw_dev_lock);
1639         }
1640 
1641         /* Ack interrupt */
1642         ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1643         if (ret < 0) {
1644             dev_err(&slave->dev,
1645                 "SDW_SCP_INT1 write failed:%d\n", ret);
1646             goto io_err;
1647         }
1648 
1649         /* at this point all initial interrupt sources were handled */
1650         slave->first_interrupt_done = true;
1651 
1652         /*
1653          * Read status again to ensure no new interrupts arrived
1654          * while servicing interrupts.
1655          */
1656         ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1657         if (ret < 0) {
1658             dev_err(&slave->dev,
1659                 "SDW_SCP_INT1 recheck read failed:%d\n", ret);
1660             goto io_err;
1661         }
1662         _buf = ret;
1663 
1664         ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, _buf2);
1665         if (ret < 0) {
1666             dev_err(&slave->dev,
1667                 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1668             goto io_err;
1669         }
1670 
1671         if (slave->prop.is_sdca) {
1672             ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1673             if (ret < 0) {
1674                 dev_err(&slave->dev,
1675                     "SDW_DP0_INT recheck read failed:%d\n", ret);
1676                 goto io_err;
1677             }
1678             sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1679         }
1680 
1681         /*
1682          * Make sure no interrupts are pending, but filter to limit loop
1683          * to interrupts identified in the first status read
1684          */
1685         buf &= _buf;
1686         buf2[0] &= _buf2[0];
1687         buf2[1] &= _buf2[1];
1688         stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1689 
1690         /*
1691          * Exit loop if Slave is continuously in ALERT state even
1692          * after servicing the interrupt multiple times.
1693          */
1694         count++;
1695 
1696         /* we can get alerts while processing so keep retrying */
1697     } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1698 
1699     if (count == SDW_READ_INTR_CLEAR_RETRY)
1700         dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1701 
1702 io_err:
1703     pm_runtime_mark_last_busy(&slave->dev);
1704     pm_runtime_put_autosuspend(&slave->dev);
1705 
1706     return ret;
1707 }
1708 
1709 static int sdw_update_slave_status(struct sdw_slave *slave,
1710                    enum sdw_slave_status status)
1711 {
1712     int ret = 0;
1713 
1714     mutex_lock(&slave->sdw_dev_lock);
1715 
1716     if (slave->probed) {
1717         struct device *dev = &slave->dev;
1718         struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1719 
1720         if (drv->ops && drv->ops->update_status)
1721             ret = drv->ops->update_status(slave, status);
1722     }
1723 
1724     mutex_unlock(&slave->sdw_dev_lock);
1725 
1726     return ret;
1727 }
1728 
1729 /**
1730  * sdw_handle_slave_status() - Handle Slave status
1731  * @bus: SDW bus instance
1732  * @status: Status for all Slave(s)
1733  */
1734 int sdw_handle_slave_status(struct sdw_bus *bus,
1735                 enum sdw_slave_status status[])
1736 {
1737     enum sdw_slave_status prev_status;
1738     struct sdw_slave *slave;
1739     bool attached_initializing;
1740     int i, ret = 0;
1741 
1742     /* first check if any Slaves fell off the bus */
1743     for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1744         mutex_lock(&bus->bus_lock);
1745         if (test_bit(i, bus->assigned) == false) {
1746             mutex_unlock(&bus->bus_lock);
1747             continue;
1748         }
1749         mutex_unlock(&bus->bus_lock);
1750 
1751         slave = sdw_get_slave(bus, i);
1752         if (!slave)
1753             continue;
1754 
1755         if (status[i] == SDW_SLAVE_UNATTACHED &&
1756             slave->status != SDW_SLAVE_UNATTACHED) {
1757             dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1758                  i, slave->status);
1759             sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1760         }
1761     }
1762 
1763     if (status[0] == SDW_SLAVE_ATTACHED) {
1764         dev_dbg(bus->dev, "Slave attached, programming device number\n");
1765         ret = sdw_program_device_num(bus);
1766         if (ret < 0)
1767             dev_err(bus->dev, "Slave attach failed: %d\n", ret);
1768         /*
1769          * programming a device number will have side effects,
1770          * so we deal with other devices at a later time
1771          */
1772         return ret;
1773     }
1774 
1775     /* Continue to check other slave statuses */
1776     for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1777         mutex_lock(&bus->bus_lock);
1778         if (test_bit(i, bus->assigned) == false) {
1779             mutex_unlock(&bus->bus_lock);
1780             continue;
1781         }
1782         mutex_unlock(&bus->bus_lock);
1783 
1784         slave = sdw_get_slave(bus, i);
1785         if (!slave)
1786             continue;
1787 
1788         attached_initializing = false;
1789 
1790         switch (status[i]) {
1791         case SDW_SLAVE_UNATTACHED:
1792             if (slave->status == SDW_SLAVE_UNATTACHED)
1793                 break;
1794 
1795             dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1796                  i, slave->status);
1797 
1798             sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1799             break;
1800 
1801         case SDW_SLAVE_ALERT:
1802             ret = sdw_handle_slave_alerts(slave);
1803             if (ret < 0)
1804                 dev_err(&slave->dev,
1805                     "Slave %d alert handling failed: %d\n",
1806                     i, ret);
1807             break;
1808 
1809         case SDW_SLAVE_ATTACHED:
1810             if (slave->status == SDW_SLAVE_ATTACHED)
1811                 break;
1812 
1813             prev_status = slave->status;
1814             sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1815 
1816             if (prev_status == SDW_SLAVE_ALERT)
1817                 break;
1818 
1819             attached_initializing = true;
1820 
1821             ret = sdw_initialize_slave(slave);
1822             if (ret < 0)
1823                 dev_err(&slave->dev,
1824                     "Slave %d initialization failed: %d\n",
1825                     i, ret);
1826 
1827             break;
1828 
1829         default:
1830             dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1831                 i, status[i]);
1832             break;
1833         }
1834 
1835         ret = sdw_update_slave_status(slave, status[i]);
1836         if (ret < 0)
1837             dev_err(&slave->dev,
1838                 "Update Slave status failed:%d\n", ret);
1839         if (attached_initializing) {
1840             dev_dbg(&slave->dev,
1841                 "%s: signaling initialization completion for Slave %d\n",
1842                 __func__, slave->dev_num);
1843 
1844             complete(&slave->initialization_complete);
1845 
1846             /*
1847              * If the manager became pm_runtime active, the peripherals will be
1848              * restarted and attach, but their pm_runtime status may remain
1849              * suspended. If the 'update_slave_status' callback initiates
1850              * any sort of deferred processing, this processing would not be
1851              * cancelled on pm_runtime suspend.
1852              * To avoid such zombie states, we queue a request to resume.
1853              * This would be a no-op in case the peripheral was being resumed
1854              * by e.g. the ALSA/ASoC framework.
1855              */
1856             pm_request_resume(&slave->dev);
1857         }
1858     }
1859 
1860     return ret;
1861 }
1862 EXPORT_SYMBOL(sdw_handle_slave_status);
1863 
1864 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1865 {
1866     struct sdw_slave *slave;
1867     int i;
1868 
1869     /* Check all non-zero devices */
1870     for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1871         mutex_lock(&bus->bus_lock);
1872         if (test_bit(i, bus->assigned) == false) {
1873             mutex_unlock(&bus->bus_lock);
1874             continue;
1875         }
1876         mutex_unlock(&bus->bus_lock);
1877 
1878         slave = sdw_get_slave(bus, i);
1879         if (!slave)
1880             continue;
1881 
1882         if (slave->status != SDW_SLAVE_UNATTACHED) {
1883             sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1884             slave->first_interrupt_done = false;
1885             sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
1886         }
1887 
1888         /* keep track of request, used in pm_runtime resume */
1889         slave->unattach_request = request;
1890     }
1891 }
1892 EXPORT_SYMBOL(sdw_clear_slave_status);