Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Copyright (c) 2009, Microsoft Corporation.
0004  *
0005  * Authors:
0006  *   Haiyang Zhang <haiyangz@microsoft.com>
0007  *   Hank Janssen  <hjanssen@microsoft.com>
0008  *   K. Y. Srinivasan <kys@microsoft.com>
0009  */
0010 
0011 #include <linux/kernel.h>
0012 #include <linux/wait.h>
0013 #include <linux/sched.h>
0014 #include <linux/completion.h>
0015 #include <linux/string.h>
0016 #include <linux/mm.h>
0017 #include <linux/delay.h>
0018 #include <linux/init.h>
0019 #include <linux/slab.h>
0020 #include <linux/module.h>
0021 #include <linux/device.h>
0022 #include <linux/hyperv.h>
0023 #include <linux/blkdev.h>
0024 #include <linux/dma-mapping.h>
0025 
0026 #include <scsi/scsi.h>
0027 #include <scsi/scsi_cmnd.h>
0028 #include <scsi/scsi_host.h>
0029 #include <scsi/scsi_device.h>
0030 #include <scsi/scsi_tcq.h>
0031 #include <scsi/scsi_eh.h>
0032 #include <scsi/scsi_devinfo.h>
0033 #include <scsi/scsi_dbg.h>
0034 #include <scsi/scsi_transport_fc.h>
0035 #include <scsi/scsi_transport.h>
0036 
0037 /*
0038  * All wire protocol details (storage protocol between the guest and the host)
0039  * are consolidated here.
0040  *
0041  * Begin protocol definitions.
0042  */
0043 
0044 /*
0045  * Version history:
0046  * V1 Beta: 0.1
0047  * V1 RC < 2008/1/31: 1.0
0048  * V1 RC > 2008/1/31:  2.0
0049  * Win7: 4.2
0050  * Win8: 5.1
0051  * Win8.1: 6.0
0052  * Win10: 6.2
0053  */
0054 
0055 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_)    ((((MAJOR_) & 0xff) << 8) | \
0056                         (((MINOR_) & 0xff)))
0057 #define VMSTOR_PROTO_VERSION_WIN6   VMSTOR_PROTO_VERSION(2, 0)
0058 #define VMSTOR_PROTO_VERSION_WIN7   VMSTOR_PROTO_VERSION(4, 2)
0059 #define VMSTOR_PROTO_VERSION_WIN8   VMSTOR_PROTO_VERSION(5, 1)
0060 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0)
0061 #define VMSTOR_PROTO_VERSION_WIN10  VMSTOR_PROTO_VERSION(6, 2)
0062 
0063 /*  Packet structure describing virtual storage requests. */
0064 enum vstor_packet_operation {
0065     VSTOR_OPERATION_COMPLETE_IO     = 1,
0066     VSTOR_OPERATION_REMOVE_DEVICE       = 2,
0067     VSTOR_OPERATION_EXECUTE_SRB     = 3,
0068     VSTOR_OPERATION_RESET_LUN       = 4,
0069     VSTOR_OPERATION_RESET_ADAPTER       = 5,
0070     VSTOR_OPERATION_RESET_BUS       = 6,
0071     VSTOR_OPERATION_BEGIN_INITIALIZATION    = 7,
0072     VSTOR_OPERATION_END_INITIALIZATION  = 8,
0073     VSTOR_OPERATION_QUERY_PROTOCOL_VERSION  = 9,
0074     VSTOR_OPERATION_QUERY_PROPERTIES    = 10,
0075     VSTOR_OPERATION_ENUMERATE_BUS       = 11,
0076     VSTOR_OPERATION_FCHBA_DATA              = 12,
0077     VSTOR_OPERATION_CREATE_SUB_CHANNELS     = 13,
0078     VSTOR_OPERATION_MAXIMUM                 = 13
0079 };
0080 
0081 /*
0082  * WWN packet for Fibre Channel HBA
0083  */
0084 
0085 struct hv_fc_wwn_packet {
0086     u8  primary_active;
0087     u8  reserved1[3];
0088     u8  primary_port_wwn[8];
0089     u8  primary_node_wwn[8];
0090     u8  secondary_port_wwn[8];
0091     u8  secondary_node_wwn[8];
0092 };
0093 
0094 
0095 
0096 /*
0097  * SRB Flag Bits
0098  */
0099 
0100 #define SRB_FLAGS_QUEUE_ACTION_ENABLE       0x00000002
0101 #define SRB_FLAGS_DISABLE_DISCONNECT        0x00000004
0102 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER    0x00000008
0103 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE       0x00000010
0104 #define SRB_FLAGS_DISABLE_AUTOSENSE     0x00000020
0105 #define SRB_FLAGS_DATA_IN           0x00000040
0106 #define SRB_FLAGS_DATA_OUT          0x00000080
0107 #define SRB_FLAGS_NO_DATA_TRANSFER      0x00000000
0108 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT)
0109 #define SRB_FLAGS_NO_QUEUE_FREEZE       0x00000100
0110 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE      0x00000200
0111 #define SRB_FLAGS_FREE_SENSE_BUFFER     0x00000400
0112 
0113 /*
0114  * This flag indicates the request is part of the workflow for processing a D3.
0115  */
0116 #define SRB_FLAGS_D3_PROCESSING         0x00000800
0117 #define SRB_FLAGS_IS_ACTIVE         0x00010000
0118 #define SRB_FLAGS_ALLOCATED_FROM_ZONE       0x00020000
0119 #define SRB_FLAGS_SGLIST_FROM_POOL      0x00040000
0120 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE       0x00080000
0121 #define SRB_FLAGS_NO_KEEP_AWAKE         0x00100000
0122 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE    0x00200000
0123 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT  0x00400000
0124 #define SRB_FLAGS_DONT_START_NEXT_PACKET    0x00800000
0125 #define SRB_FLAGS_PORT_DRIVER_RESERVED      0x0F000000
0126 #define SRB_FLAGS_CLASS_DRIVER_RESERVED     0xF0000000
0127 
0128 #define SP_UNTAGGED         ((unsigned char) ~0)
0129 #define SRB_SIMPLE_TAG_REQUEST      0x20
0130 
0131 /*
0132  * Platform neutral description of a scsi request -
0133  * this remains the same across the write regardless of 32/64 bit
0134  * note: it's patterned off the SCSI_PASS_THROUGH structure
0135  */
0136 #define STORVSC_MAX_CMD_LEN         0x10
0137 
0138 /* Sense buffer size is the same for all versions since Windows 8 */
0139 #define STORVSC_SENSE_BUFFER_SIZE       0x14
0140 #define STORVSC_MAX_BUF_LEN_WITH_PADDING    0x14
0141 
0142 /*
0143  * The storage protocol version is determined during the
0144  * initial exchange with the host.  It will indicate which
0145  * storage functionality is available in the host.
0146 */
0147 static int vmstor_proto_version;
0148 
0149 #define STORVSC_LOGGING_NONE    0
0150 #define STORVSC_LOGGING_ERROR   1
0151 #define STORVSC_LOGGING_WARN    2
0152 
0153 static int logging_level = STORVSC_LOGGING_ERROR;
0154 module_param(logging_level, int, S_IRUGO|S_IWUSR);
0155 MODULE_PARM_DESC(logging_level,
0156     "Logging level, 0 - None, 1 - Error (default), 2 - Warning.");
0157 
0158 static inline bool do_logging(int level)
0159 {
0160     return logging_level >= level;
0161 }
0162 
0163 #define storvsc_log(dev, level, fmt, ...)           \
0164 do {                                \
0165     if (do_logging(level))                  \
0166         dev_warn(&(dev)->device, fmt, ##__VA_ARGS__);   \
0167 } while (0)
0168 
0169 struct vmscsi_request {
0170     u16 length;
0171     u8 srb_status;
0172     u8 scsi_status;
0173 
0174     u8  port_number;
0175     u8  path_id;
0176     u8  target_id;
0177     u8  lun;
0178 
0179     u8  cdb_length;
0180     u8  sense_info_length;
0181     u8  data_in;
0182     u8  reserved;
0183 
0184     u32 data_transfer_length;
0185 
0186     union {
0187         u8 cdb[STORVSC_MAX_CMD_LEN];
0188         u8 sense_data[STORVSC_SENSE_BUFFER_SIZE];
0189         u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING];
0190     };
0191     /*
0192      * The following was added in win8.
0193      */
0194     u16 reserve;
0195     u8  queue_tag;
0196     u8  queue_action;
0197     u32 srb_flags;
0198     u32 time_out_value;
0199     u32 queue_sort_ey;
0200 
0201 } __attribute((packed));
0202 
0203 /*
0204  * The list of windows version in order of preference.
0205  */
0206 
0207 static const int protocol_version[] = {
0208         VMSTOR_PROTO_VERSION_WIN10,
0209         VMSTOR_PROTO_VERSION_WIN8_1,
0210         VMSTOR_PROTO_VERSION_WIN8,
0211 };
0212 
0213 
0214 /*
0215  * This structure is sent during the initialization phase to get the different
0216  * properties of the channel.
0217  */
0218 
0219 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL      0x1
0220 
0221 struct vmstorage_channel_properties {
0222     u32 reserved;
0223     u16 max_channel_cnt;
0224     u16 reserved1;
0225 
0226     u32 flags;
0227     u32   max_transfer_bytes;
0228 
0229     u64  reserved2;
0230 } __packed;
0231 
0232 /*  This structure is sent during the storage protocol negotiations. */
0233 struct vmstorage_protocol_version {
0234     /* Major (MSW) and minor (LSW) version numbers. */
0235     u16 major_minor;
0236 
0237     /*
0238      * Revision number is auto-incremented whenever this file is changed
0239      * (See FILL_VMSTOR_REVISION macro above).  Mismatch does not
0240      * definitely indicate incompatibility--but it does indicate mismatched
0241      * builds.
0242      * This is only used on the windows side. Just set it to 0.
0243      */
0244     u16 revision;
0245 } __packed;
0246 
0247 /* Channel Property Flags */
0248 #define STORAGE_CHANNEL_REMOVABLE_FLAG      0x1
0249 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG   0x2
0250 
0251 struct vstor_packet {
0252     /* Requested operation type */
0253     enum vstor_packet_operation operation;
0254 
0255     /*  Flags - see below for values */
0256     u32 flags;
0257 
0258     /* Status of the request returned from the server side. */
0259     u32 status;
0260 
0261     /* Data payload area */
0262     union {
0263         /*
0264          * Structure used to forward SCSI commands from the
0265          * client to the server.
0266          */
0267         struct vmscsi_request vm_srb;
0268 
0269         /* Structure used to query channel properties. */
0270         struct vmstorage_channel_properties storage_channel_properties;
0271 
0272         /* Used during version negotiations. */
0273         struct vmstorage_protocol_version version;
0274 
0275         /* Fibre channel address packet */
0276         struct hv_fc_wwn_packet wwn_packet;
0277 
0278         /* Number of sub-channels to create */
0279         u16 sub_channel_count;
0280 
0281         /* This will be the maximum of the union members */
0282         u8  buffer[0x34];
0283     };
0284 } __packed;
0285 
0286 /*
0287  * Packet Flags:
0288  *
0289  * This flag indicates that the server should send back a completion for this
0290  * packet.
0291  */
0292 
0293 #define REQUEST_COMPLETION_FLAG 0x1
0294 
0295 /* Matches Windows-end */
0296 enum storvsc_request_type {
0297     WRITE_TYPE = 0,
0298     READ_TYPE,
0299     UNKNOWN_TYPE,
0300 };
0301 
0302 /*
0303  * SRB status codes and masks; a subset of the codes used here.
0304  */
0305 
0306 #define SRB_STATUS_AUTOSENSE_VALID  0x80
0307 #define SRB_STATUS_QUEUE_FROZEN     0x40
0308 #define SRB_STATUS_INVALID_LUN  0x20
0309 #define SRB_STATUS_SUCCESS  0x01
0310 #define SRB_STATUS_ABORTED  0x02
0311 #define SRB_STATUS_ERROR    0x04
0312 #define SRB_STATUS_DATA_OVERRUN 0x12
0313 
0314 #define SRB_STATUS(status) \
0315     (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN))
0316 /*
0317  * This is the end of Protocol specific defines.
0318  */
0319 
0320 static int storvsc_ringbuffer_size = (128 * 1024);
0321 static u32 max_outstanding_req_per_channel;
0322 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth);
0323 
0324 static int storvsc_vcpus_per_sub_channel = 4;
0325 static unsigned int storvsc_max_hw_queues;
0326 
0327 module_param(storvsc_ringbuffer_size, int, S_IRUGO);
0328 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)");
0329 
0330 module_param(storvsc_max_hw_queues, uint, 0644);
0331 MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues");
0332 
0333 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO);
0334 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels");
0335 
0336 static int ring_avail_percent_lowater = 10;
0337 module_param(ring_avail_percent_lowater, int, S_IRUGO);
0338 MODULE_PARM_DESC(ring_avail_percent_lowater,
0339         "Select a channel if available ring size > this in percent");
0340 
0341 /*
0342  * Timeout in seconds for all devices managed by this driver.
0343  */
0344 static int storvsc_timeout = 180;
0345 
0346 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
0347 static struct scsi_transport_template *fc_transport_template;
0348 #endif
0349 
0350 static struct scsi_host_template scsi_driver;
0351 static void storvsc_on_channel_callback(void *context);
0352 
0353 #define STORVSC_MAX_LUNS_PER_TARGET         255
0354 #define STORVSC_MAX_TARGETS             2
0355 #define STORVSC_MAX_CHANNELS                8
0356 
0357 #define STORVSC_FC_MAX_LUNS_PER_TARGET          255
0358 #define STORVSC_FC_MAX_TARGETS              128
0359 #define STORVSC_FC_MAX_CHANNELS             8
0360 
0361 #define STORVSC_IDE_MAX_LUNS_PER_TARGET         64
0362 #define STORVSC_IDE_MAX_TARGETS             1
0363 #define STORVSC_IDE_MAX_CHANNELS            1
0364 
0365 /*
0366  * Upper bound on the size of a storvsc packet.
0367  */
0368 #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\
0369                   sizeof(struct vstor_packet))
0370 
0371 struct storvsc_cmd_request {
0372     struct scsi_cmnd *cmd;
0373 
0374     struct hv_device *device;
0375 
0376     /* Synchronize the request/response if needed */
0377     struct completion wait_event;
0378 
0379     struct vmbus_channel_packet_multipage_buffer mpb;
0380     struct vmbus_packet_mpb_array *payload;
0381     u32 payload_sz;
0382 
0383     struct vstor_packet vstor_packet;
0384 };
0385 
0386 
0387 /* A storvsc device is a device object that contains a vmbus channel */
0388 struct storvsc_device {
0389     struct hv_device *device;
0390 
0391     bool     destroy;
0392     bool     drain_notify;
0393     atomic_t num_outstanding_req;
0394     struct Scsi_Host *host;
0395 
0396     wait_queue_head_t waiting_to_drain;
0397 
0398     /*
0399      * Each unique Port/Path/Target represents 1 channel ie scsi
0400      * controller. In reality, the pathid, targetid is always 0
0401      * and the port is set by us
0402      */
0403     unsigned int port_number;
0404     unsigned char path_id;
0405     unsigned char target_id;
0406 
0407     /*
0408      * Max I/O, the device can support.
0409      */
0410     u32   max_transfer_bytes;
0411     /*
0412      * Number of sub-channels we will open.
0413      */
0414     u16 num_sc;
0415     struct vmbus_channel **stor_chns;
0416     /*
0417      * Mask of CPUs bound to subchannels.
0418      */
0419     struct cpumask alloced_cpus;
0420     /*
0421      * Serializes modifications of stor_chns[] from storvsc_do_io()
0422      * and storvsc_change_target_cpu().
0423      */
0424     spinlock_t lock;
0425     /* Used for vsc/vsp channel reset process */
0426     struct storvsc_cmd_request init_request;
0427     struct storvsc_cmd_request reset_request;
0428     /*
0429      * Currently active port and node names for FC devices.
0430      */
0431     u64 node_name;
0432     u64 port_name;
0433 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
0434     struct fc_rport *rport;
0435 #endif
0436 };
0437 
0438 struct hv_host_device {
0439     struct hv_device *dev;
0440     unsigned int port;
0441     unsigned char path;
0442     unsigned char target;
0443     struct workqueue_struct *handle_error_wq;
0444     struct work_struct host_scan_work;
0445     struct Scsi_Host *host;
0446 };
0447 
0448 struct storvsc_scan_work {
0449     struct work_struct work;
0450     struct Scsi_Host *host;
0451     u8 lun;
0452     u8 tgt_id;
0453 };
0454 
0455 static void storvsc_device_scan(struct work_struct *work)
0456 {
0457     struct storvsc_scan_work *wrk;
0458     struct scsi_device *sdev;
0459 
0460     wrk = container_of(work, struct storvsc_scan_work, work);
0461 
0462     sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
0463     if (!sdev)
0464         goto done;
0465     scsi_rescan_device(&sdev->sdev_gendev);
0466     scsi_device_put(sdev);
0467 
0468 done:
0469     kfree(wrk);
0470 }
0471 
0472 static void storvsc_host_scan(struct work_struct *work)
0473 {
0474     struct Scsi_Host *host;
0475     struct scsi_device *sdev;
0476     struct hv_host_device *host_device =
0477         container_of(work, struct hv_host_device, host_scan_work);
0478 
0479     host = host_device->host;
0480     /*
0481      * Before scanning the host, first check to see if any of the
0482      * currently known devices have been hot removed. We issue a
0483      * "unit ready" command against all currently known devices.
0484      * This I/O will result in an error for devices that have been
0485      * removed. As part of handling the I/O error, we remove the device.
0486      *
0487      * When a LUN is added or removed, the host sends us a signal to
0488      * scan the host. Thus we are forced to discover the LUNs that
0489      * may have been removed this way.
0490      */
0491     mutex_lock(&host->scan_mutex);
0492     shost_for_each_device(sdev, host)
0493         scsi_test_unit_ready(sdev, 1, 1, NULL);
0494     mutex_unlock(&host->scan_mutex);
0495     /*
0496      * Now scan the host to discover LUNs that may have been added.
0497      */
0498     scsi_scan_host(host);
0499 }
0500 
0501 static void storvsc_remove_lun(struct work_struct *work)
0502 {
0503     struct storvsc_scan_work *wrk;
0504     struct scsi_device *sdev;
0505 
0506     wrk = container_of(work, struct storvsc_scan_work, work);
0507     if (!scsi_host_get(wrk->host))
0508         goto done;
0509 
0510     sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
0511 
0512     if (sdev) {
0513         scsi_remove_device(sdev);
0514         scsi_device_put(sdev);
0515     }
0516     scsi_host_put(wrk->host);
0517 
0518 done:
0519     kfree(wrk);
0520 }
0521 
0522 
0523 /*
0524  * We can get incoming messages from the host that are not in response to
0525  * messages that we have sent out. An example of this would be messages
0526  * received by the guest to notify dynamic addition/removal of LUNs. To
0527  * deal with potential race conditions where the driver may be in the
0528  * midst of being unloaded when we might receive an unsolicited message
0529  * from the host, we have implemented a mechanism to gurantee sequential
0530  * consistency:
0531  *
0532  * 1) Once the device is marked as being destroyed, we will fail all
0533  *    outgoing messages.
0534  * 2) We permit incoming messages when the device is being destroyed,
0535  *    only to properly account for messages already sent out.
0536  */
0537 
0538 static inline struct storvsc_device *get_out_stor_device(
0539                     struct hv_device *device)
0540 {
0541     struct storvsc_device *stor_device;
0542 
0543     stor_device = hv_get_drvdata(device);
0544 
0545     if (stor_device && stor_device->destroy)
0546         stor_device = NULL;
0547 
0548     return stor_device;
0549 }
0550 
0551 
0552 static inline void storvsc_wait_to_drain(struct storvsc_device *dev)
0553 {
0554     dev->drain_notify = true;
0555     wait_event(dev->waiting_to_drain,
0556            atomic_read(&dev->num_outstanding_req) == 0);
0557     dev->drain_notify = false;
0558 }
0559 
0560 static inline struct storvsc_device *get_in_stor_device(
0561                     struct hv_device *device)
0562 {
0563     struct storvsc_device *stor_device;
0564 
0565     stor_device = hv_get_drvdata(device);
0566 
0567     if (!stor_device)
0568         goto get_in_err;
0569 
0570     /*
0571      * If the device is being destroyed; allow incoming
0572      * traffic only to cleanup outstanding requests.
0573      */
0574 
0575     if (stor_device->destroy  &&
0576         (atomic_read(&stor_device->num_outstanding_req) == 0))
0577         stor_device = NULL;
0578 
0579 get_in_err:
0580     return stor_device;
0581 
0582 }
0583 
0584 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old,
0585                       u32 new)
0586 {
0587     struct storvsc_device *stor_device;
0588     struct vmbus_channel *cur_chn;
0589     bool old_is_alloced = false;
0590     struct hv_device *device;
0591     unsigned long flags;
0592     int cpu;
0593 
0594     device = channel->primary_channel ?
0595             channel->primary_channel->device_obj
0596                 : channel->device_obj;
0597     stor_device = get_out_stor_device(device);
0598     if (!stor_device)
0599         return;
0600 
0601     /* See storvsc_do_io() -> get_og_chn(). */
0602     spin_lock_irqsave(&stor_device->lock, flags);
0603 
0604     /*
0605      * Determines if the storvsc device has other channels assigned to
0606      * the "old" CPU to update the alloced_cpus mask and the stor_chns
0607      * array.
0608      */
0609     if (device->channel != channel && device->channel->target_cpu == old) {
0610         cur_chn = device->channel;
0611         old_is_alloced = true;
0612         goto old_is_alloced;
0613     }
0614     list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) {
0615         if (cur_chn == channel)
0616             continue;
0617         if (cur_chn->target_cpu == old) {
0618             old_is_alloced = true;
0619             goto old_is_alloced;
0620         }
0621     }
0622 
0623 old_is_alloced:
0624     if (old_is_alloced)
0625         WRITE_ONCE(stor_device->stor_chns[old], cur_chn);
0626     else
0627         cpumask_clear_cpu(old, &stor_device->alloced_cpus);
0628 
0629     /* "Flush" the stor_chns array. */
0630     for_each_possible_cpu(cpu) {
0631         if (stor_device->stor_chns[cpu] && !cpumask_test_cpu(
0632                     cpu, &stor_device->alloced_cpus))
0633             WRITE_ONCE(stor_device->stor_chns[cpu], NULL);
0634     }
0635 
0636     WRITE_ONCE(stor_device->stor_chns[new], channel);
0637     cpumask_set_cpu(new, &stor_device->alloced_cpus);
0638 
0639     spin_unlock_irqrestore(&stor_device->lock, flags);
0640 }
0641 
0642 static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr)
0643 {
0644     struct storvsc_cmd_request *request =
0645         (struct storvsc_cmd_request *)(unsigned long)rqst_addr;
0646 
0647     if (rqst_addr == VMBUS_RQST_INIT)
0648         return VMBUS_RQST_INIT;
0649     if (rqst_addr == VMBUS_RQST_RESET)
0650         return VMBUS_RQST_RESET;
0651 
0652     /*
0653      * Cannot return an ID of 0, which is reserved for an unsolicited
0654      * message from Hyper-V.
0655      */
0656     return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1;
0657 }
0658 
0659 static void handle_sc_creation(struct vmbus_channel *new_sc)
0660 {
0661     struct hv_device *device = new_sc->primary_channel->device_obj;
0662     struct device *dev = &device->device;
0663     struct storvsc_device *stor_device;
0664     struct vmstorage_channel_properties props;
0665     int ret;
0666 
0667     stor_device = get_out_stor_device(device);
0668     if (!stor_device)
0669         return;
0670 
0671     memset(&props, 0, sizeof(struct vmstorage_channel_properties));
0672     new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE;
0673 
0674     new_sc->next_request_id_callback = storvsc_next_request_id;
0675 
0676     ret = vmbus_open(new_sc,
0677              storvsc_ringbuffer_size,
0678              storvsc_ringbuffer_size,
0679              (void *)&props,
0680              sizeof(struct vmstorage_channel_properties),
0681              storvsc_on_channel_callback, new_sc);
0682 
0683     /* In case vmbus_open() fails, we don't use the sub-channel. */
0684     if (ret != 0) {
0685         dev_err(dev, "Failed to open sub-channel: err=%d\n", ret);
0686         return;
0687     }
0688 
0689     new_sc->change_target_cpu_callback = storvsc_change_target_cpu;
0690 
0691     /* Add the sub-channel to the array of available channels. */
0692     stor_device->stor_chns[new_sc->target_cpu] = new_sc;
0693     cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus);
0694 }
0695 
0696 static void  handle_multichannel_storage(struct hv_device *device, int max_chns)
0697 {
0698     struct device *dev = &device->device;
0699     struct storvsc_device *stor_device;
0700     int num_sc;
0701     struct storvsc_cmd_request *request;
0702     struct vstor_packet *vstor_packet;
0703     int ret, t;
0704 
0705     /*
0706      * If the number of CPUs is artificially restricted, such as
0707      * with maxcpus=1 on the kernel boot line, Hyper-V could offer
0708      * sub-channels >= the number of CPUs. These sub-channels
0709      * should not be created. The primary channel is already created
0710      * and assigned to one CPU, so check against # CPUs - 1.
0711      */
0712     num_sc = min((int)(num_online_cpus() - 1), max_chns);
0713     if (!num_sc)
0714         return;
0715 
0716     stor_device = get_out_stor_device(device);
0717     if (!stor_device)
0718         return;
0719 
0720     stor_device->num_sc = num_sc;
0721     request = &stor_device->init_request;
0722     vstor_packet = &request->vstor_packet;
0723 
0724     /*
0725      * Establish a handler for dealing with subchannels.
0726      */
0727     vmbus_set_sc_create_callback(device->channel, handle_sc_creation);
0728 
0729     /*
0730      * Request the host to create sub-channels.
0731      */
0732     memset(request, 0, sizeof(struct storvsc_cmd_request));
0733     init_completion(&request->wait_event);
0734     vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS;
0735     vstor_packet->flags = REQUEST_COMPLETION_FLAG;
0736     vstor_packet->sub_channel_count = num_sc;
0737 
0738     ret = vmbus_sendpacket(device->channel, vstor_packet,
0739                    sizeof(struct vstor_packet),
0740                    VMBUS_RQST_INIT,
0741                    VM_PKT_DATA_INBAND,
0742                    VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
0743 
0744     if (ret != 0) {
0745         dev_err(dev, "Failed to create sub-channel: err=%d\n", ret);
0746         return;
0747     }
0748 
0749     t = wait_for_completion_timeout(&request->wait_event, 10*HZ);
0750     if (t == 0) {
0751         dev_err(dev, "Failed to create sub-channel: timed out\n");
0752         return;
0753     }
0754 
0755     if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
0756         vstor_packet->status != 0) {
0757         dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n",
0758             vstor_packet->operation, vstor_packet->status);
0759         return;
0760     }
0761 
0762     /*
0763      * We need to do nothing here, because vmbus_process_offer()
0764      * invokes channel->sc_creation_callback, which will open and use
0765      * the sub-channel(s).
0766      */
0767 }
0768 
0769 static void cache_wwn(struct storvsc_device *stor_device,
0770               struct vstor_packet *vstor_packet)
0771 {
0772     /*
0773      * Cache the currently active port and node ww names.
0774      */
0775     if (vstor_packet->wwn_packet.primary_active) {
0776         stor_device->node_name =
0777             wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn);
0778         stor_device->port_name =
0779             wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn);
0780     } else {
0781         stor_device->node_name =
0782             wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn);
0783         stor_device->port_name =
0784             wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn);
0785     }
0786 }
0787 
0788 
0789 static int storvsc_execute_vstor_op(struct hv_device *device,
0790                     struct storvsc_cmd_request *request,
0791                     bool status_check)
0792 {
0793     struct storvsc_device *stor_device;
0794     struct vstor_packet *vstor_packet;
0795     int ret, t;
0796 
0797     stor_device = get_out_stor_device(device);
0798     if (!stor_device)
0799         return -ENODEV;
0800 
0801     vstor_packet = &request->vstor_packet;
0802 
0803     init_completion(&request->wait_event);
0804     vstor_packet->flags = REQUEST_COMPLETION_FLAG;
0805 
0806     ret = vmbus_sendpacket(device->channel, vstor_packet,
0807                    sizeof(struct vstor_packet),
0808                    VMBUS_RQST_INIT,
0809                    VM_PKT_DATA_INBAND,
0810                    VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
0811     if (ret != 0)
0812         return ret;
0813 
0814     t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
0815     if (t == 0)
0816         return -ETIMEDOUT;
0817 
0818     if (!status_check)
0819         return ret;
0820 
0821     if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
0822         vstor_packet->status != 0)
0823         return -EINVAL;
0824 
0825     return ret;
0826 }
0827 
0828 static int storvsc_channel_init(struct hv_device *device, bool is_fc)
0829 {
0830     struct storvsc_device *stor_device;
0831     struct storvsc_cmd_request *request;
0832     struct vstor_packet *vstor_packet;
0833     int ret, i;
0834     int max_chns;
0835     bool process_sub_channels = false;
0836 
0837     stor_device = get_out_stor_device(device);
0838     if (!stor_device)
0839         return -ENODEV;
0840 
0841     request = &stor_device->init_request;
0842     vstor_packet = &request->vstor_packet;
0843 
0844     /*
0845      * Now, initiate the vsc/vsp initialization protocol on the open
0846      * channel
0847      */
0848     memset(request, 0, sizeof(struct storvsc_cmd_request));
0849     vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION;
0850     ret = storvsc_execute_vstor_op(device, request, true);
0851     if (ret)
0852         return ret;
0853     /*
0854      * Query host supported protocol version.
0855      */
0856 
0857     for (i = 0; i < ARRAY_SIZE(protocol_version); i++) {
0858         /* reuse the packet for version range supported */
0859         memset(vstor_packet, 0, sizeof(struct vstor_packet));
0860         vstor_packet->operation =
0861             VSTOR_OPERATION_QUERY_PROTOCOL_VERSION;
0862 
0863         vstor_packet->version.major_minor = protocol_version[i];
0864 
0865         /*
0866          * The revision number is only used in Windows; set it to 0.
0867          */
0868         vstor_packet->version.revision = 0;
0869         ret = storvsc_execute_vstor_op(device, request, false);
0870         if (ret != 0)
0871             return ret;
0872 
0873         if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO)
0874             return -EINVAL;
0875 
0876         if (vstor_packet->status == 0) {
0877             vmstor_proto_version = protocol_version[i];
0878 
0879             break;
0880         }
0881     }
0882 
0883     if (vstor_packet->status != 0) {
0884         dev_err(&device->device, "Obsolete Hyper-V version\n");
0885         return -EINVAL;
0886     }
0887 
0888 
0889     memset(vstor_packet, 0, sizeof(struct vstor_packet));
0890     vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES;
0891     ret = storvsc_execute_vstor_op(device, request, true);
0892     if (ret != 0)
0893         return ret;
0894 
0895     /*
0896      * Check to see if multi-channel support is there.
0897      * Hosts that implement protocol version of 5.1 and above
0898      * support multi-channel.
0899      */
0900     max_chns = vstor_packet->storage_channel_properties.max_channel_cnt;
0901 
0902     /*
0903      * Allocate state to manage the sub-channels.
0904      * We allocate an array based on the numbers of possible CPUs
0905      * (Hyper-V does not support cpu online/offline).
0906      * This Array will be sparseley populated with unique
0907      * channels - primary + sub-channels.
0908      * We will however populate all the slots to evenly distribute
0909      * the load.
0910      */
0911     stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *),
0912                      GFP_KERNEL);
0913     if (stor_device->stor_chns == NULL)
0914         return -ENOMEM;
0915 
0916     device->channel->change_target_cpu_callback = storvsc_change_target_cpu;
0917 
0918     stor_device->stor_chns[device->channel->target_cpu] = device->channel;
0919     cpumask_set_cpu(device->channel->target_cpu,
0920             &stor_device->alloced_cpus);
0921 
0922     if (vstor_packet->storage_channel_properties.flags &
0923         STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL)
0924         process_sub_channels = true;
0925 
0926     stor_device->max_transfer_bytes =
0927         vstor_packet->storage_channel_properties.max_transfer_bytes;
0928 
0929     if (!is_fc)
0930         goto done;
0931 
0932     /*
0933      * For FC devices retrieve FC HBA data.
0934      */
0935     memset(vstor_packet, 0, sizeof(struct vstor_packet));
0936     vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA;
0937     ret = storvsc_execute_vstor_op(device, request, true);
0938     if (ret != 0)
0939         return ret;
0940 
0941     /*
0942      * Cache the currently active port and node ww names.
0943      */
0944     cache_wwn(stor_device, vstor_packet);
0945 
0946 done:
0947 
0948     memset(vstor_packet, 0, sizeof(struct vstor_packet));
0949     vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION;
0950     ret = storvsc_execute_vstor_op(device, request, true);
0951     if (ret != 0)
0952         return ret;
0953 
0954     if (process_sub_channels)
0955         handle_multichannel_storage(device, max_chns);
0956 
0957     return ret;
0958 }
0959 
0960 static void storvsc_handle_error(struct vmscsi_request *vm_srb,
0961                 struct scsi_cmnd *scmnd,
0962                 struct Scsi_Host *host,
0963                 u8 asc, u8 ascq)
0964 {
0965     struct storvsc_scan_work *wrk;
0966     void (*process_err_fn)(struct work_struct *work);
0967     struct hv_host_device *host_dev = shost_priv(host);
0968 
0969     /*
0970      * In some situations, Hyper-V sets multiple bits in the
0971      * srb_status, such as ABORTED and ERROR. So process them
0972      * individually, with the most specific bits first.
0973      */
0974 
0975     if (vm_srb->srb_status & SRB_STATUS_INVALID_LUN) {
0976         set_host_byte(scmnd, DID_NO_CONNECT);
0977         process_err_fn = storvsc_remove_lun;
0978         goto do_work;
0979     }
0980 
0981     if (vm_srb->srb_status & SRB_STATUS_ABORTED) {
0982         if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID &&
0983             /* Capacity data has changed */
0984             (asc == 0x2a) && (ascq == 0x9)) {
0985             process_err_fn = storvsc_device_scan;
0986             /*
0987              * Retry the I/O that triggered this.
0988              */
0989             set_host_byte(scmnd, DID_REQUEUE);
0990             goto do_work;
0991         }
0992     }
0993 
0994     if (vm_srb->srb_status & SRB_STATUS_ERROR) {
0995         /*
0996          * Let upper layer deal with error when
0997          * sense message is present.
0998          */
0999         if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID)
1000             return;
1001 
1002         /*
1003          * If there is an error; offline the device since all
1004          * error recovery strategies would have already been
1005          * deployed on the host side. However, if the command
1006          * were a pass-through command deal with it appropriately.
1007          */
1008         switch (scmnd->cmnd[0]) {
1009         case ATA_16:
1010         case ATA_12:
1011             set_host_byte(scmnd, DID_PASSTHROUGH);
1012             break;
1013         /*
1014          * On some Hyper-V hosts TEST_UNIT_READY command can
1015          * return SRB_STATUS_ERROR. Let the upper level code
1016          * deal with it based on the sense information.
1017          */
1018         case TEST_UNIT_READY:
1019             break;
1020         default:
1021             set_host_byte(scmnd, DID_ERROR);
1022         }
1023     }
1024     return;
1025 
1026 do_work:
1027     /*
1028      * We need to schedule work to process this error; schedule it.
1029      */
1030     wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC);
1031     if (!wrk) {
1032         set_host_byte(scmnd, DID_TARGET_FAILURE);
1033         return;
1034     }
1035 
1036     wrk->host = host;
1037     wrk->lun = vm_srb->lun;
1038     wrk->tgt_id = vm_srb->target_id;
1039     INIT_WORK(&wrk->work, process_err_fn);
1040     queue_work(host_dev->handle_error_wq, &wrk->work);
1041 }
1042 
1043 
1044 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request,
1045                        struct storvsc_device *stor_dev)
1046 {
1047     struct scsi_cmnd *scmnd = cmd_request->cmd;
1048     struct scsi_sense_hdr sense_hdr;
1049     struct vmscsi_request *vm_srb;
1050     u32 data_transfer_length;
1051     struct Scsi_Host *host;
1052     u32 payload_sz = cmd_request->payload_sz;
1053     void *payload = cmd_request->payload;
1054     bool sense_ok;
1055 
1056     host = stor_dev->host;
1057 
1058     vm_srb = &cmd_request->vstor_packet.vm_srb;
1059     data_transfer_length = vm_srb->data_transfer_length;
1060 
1061     scmnd->result = vm_srb->scsi_status;
1062 
1063     if (scmnd->result) {
1064         sense_ok = scsi_normalize_sense(scmnd->sense_buffer,
1065                 SCSI_SENSE_BUFFERSIZE, &sense_hdr);
1066 
1067         if (sense_ok && do_logging(STORVSC_LOGGING_WARN))
1068             scsi_print_sense_hdr(scmnd->device, "storvsc",
1069                          &sense_hdr);
1070     }
1071 
1072     if (vm_srb->srb_status != SRB_STATUS_SUCCESS) {
1073         storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc,
1074                      sense_hdr.ascq);
1075         /*
1076          * The Windows driver set data_transfer_length on
1077          * SRB_STATUS_DATA_OVERRUN. On other errors, this value
1078          * is untouched.  In these cases we set it to 0.
1079          */
1080         if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN)
1081             data_transfer_length = 0;
1082     }
1083 
1084     /* Validate data_transfer_length (from Hyper-V) */
1085     if (data_transfer_length > cmd_request->payload->range.len)
1086         data_transfer_length = cmd_request->payload->range.len;
1087 
1088     scsi_set_resid(scmnd,
1089         cmd_request->payload->range.len - data_transfer_length);
1090 
1091     scsi_done(scmnd);
1092 
1093     if (payload_sz >
1094         sizeof(struct vmbus_channel_packet_multipage_buffer))
1095         kfree(payload);
1096 }
1097 
1098 static void storvsc_on_io_completion(struct storvsc_device *stor_device,
1099                   struct vstor_packet *vstor_packet,
1100                   struct storvsc_cmd_request *request)
1101 {
1102     struct vstor_packet *stor_pkt;
1103     struct hv_device *device = stor_device->device;
1104 
1105     stor_pkt = &request->vstor_packet;
1106 
1107     /*
1108      * The current SCSI handling on the host side does
1109      * not correctly handle:
1110      * INQUIRY command with page code parameter set to 0x80
1111      * MODE_SENSE command with cmd[2] == 0x1c
1112      *
1113      * Setup srb and scsi status so this won't be fatal.
1114      * We do this so we can distinguish truly fatal failues
1115      * (srb status == 0x4) and off-line the device in that case.
1116      */
1117 
1118     if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) ||
1119        (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) {
1120         vstor_packet->vm_srb.scsi_status = 0;
1121         vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS;
1122     }
1123 
1124     /* Copy over the status...etc */
1125     stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status;
1126     stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status;
1127 
1128     /*
1129      * Copy over the sense_info_length, but limit to the known max
1130      * size if Hyper-V returns a bad value.
1131      */
1132     stor_pkt->vm_srb.sense_info_length = min_t(u8, STORVSC_SENSE_BUFFER_SIZE,
1133         vstor_packet->vm_srb.sense_info_length);
1134 
1135     if (vstor_packet->vm_srb.scsi_status != 0 ||
1136         vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) {
1137 
1138         /*
1139          * Log TEST_UNIT_READY errors only as warnings. Hyper-V can
1140          * return errors when detecting devices using TEST_UNIT_READY,
1141          * and logging these as errors produces unhelpful noise.
1142          */
1143         int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ?
1144             STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR;
1145 
1146         storvsc_log(device, loglevel,
1147             "tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n",
1148             scsi_cmd_to_rq(request->cmd)->tag,
1149             stor_pkt->vm_srb.cdb[0],
1150             vstor_packet->vm_srb.scsi_status,
1151             vstor_packet->vm_srb.srb_status,
1152             vstor_packet->status);
1153     }
1154 
1155     if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION &&
1156         (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID))
1157         memcpy(request->cmd->sense_buffer,
1158                vstor_packet->vm_srb.sense_data,
1159                stor_pkt->vm_srb.sense_info_length);
1160 
1161     stor_pkt->vm_srb.data_transfer_length =
1162         vstor_packet->vm_srb.data_transfer_length;
1163 
1164     storvsc_command_completion(request, stor_device);
1165 
1166     if (atomic_dec_and_test(&stor_device->num_outstanding_req) &&
1167         stor_device->drain_notify)
1168         wake_up(&stor_device->waiting_to_drain);
1169 }
1170 
1171 static void storvsc_on_receive(struct storvsc_device *stor_device,
1172                  struct vstor_packet *vstor_packet,
1173                  struct storvsc_cmd_request *request)
1174 {
1175     struct hv_host_device *host_dev;
1176     switch (vstor_packet->operation) {
1177     case VSTOR_OPERATION_COMPLETE_IO:
1178         storvsc_on_io_completion(stor_device, vstor_packet, request);
1179         break;
1180 
1181     case VSTOR_OPERATION_REMOVE_DEVICE:
1182     case VSTOR_OPERATION_ENUMERATE_BUS:
1183         host_dev = shost_priv(stor_device->host);
1184         queue_work(
1185             host_dev->handle_error_wq, &host_dev->host_scan_work);
1186         break;
1187 
1188     case VSTOR_OPERATION_FCHBA_DATA:
1189         cache_wwn(stor_device, vstor_packet);
1190 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1191         fc_host_node_name(stor_device->host) = stor_device->node_name;
1192         fc_host_port_name(stor_device->host) = stor_device->port_name;
1193 #endif
1194         break;
1195     default:
1196         break;
1197     }
1198 }
1199 
1200 static void storvsc_on_channel_callback(void *context)
1201 {
1202     struct vmbus_channel *channel = (struct vmbus_channel *)context;
1203     const struct vmpacket_descriptor *desc;
1204     struct hv_device *device;
1205     struct storvsc_device *stor_device;
1206     struct Scsi_Host *shost;
1207 
1208     if (channel->primary_channel != NULL)
1209         device = channel->primary_channel->device_obj;
1210     else
1211         device = channel->device_obj;
1212 
1213     stor_device = get_in_stor_device(device);
1214     if (!stor_device)
1215         return;
1216 
1217     shost = stor_device->host;
1218 
1219     foreach_vmbus_pkt(desc, channel) {
1220         struct vstor_packet *packet = hv_pkt_data(desc);
1221         struct storvsc_cmd_request *request = NULL;
1222         u32 pktlen = hv_pkt_datalen(desc);
1223         u64 rqst_id = desc->trans_id;
1224         u32 minlen = rqst_id ? sizeof(struct vstor_packet) :
1225             sizeof(enum vstor_packet_operation);
1226 
1227         if (pktlen < minlen) {
1228             dev_err(&device->device,
1229                 "Invalid pkt: id=%llu, len=%u, minlen=%u\n",
1230                 rqst_id, pktlen, minlen);
1231             continue;
1232         }
1233 
1234         if (rqst_id == VMBUS_RQST_INIT) {
1235             request = &stor_device->init_request;
1236         } else if (rqst_id == VMBUS_RQST_RESET) {
1237             request = &stor_device->reset_request;
1238         } else {
1239             /* Hyper-V can send an unsolicited message with ID of 0 */
1240             if (rqst_id == 0) {
1241                 /*
1242                  * storvsc_on_receive() looks at the vstor_packet in the message
1243                  * from the ring buffer.
1244                  *
1245                  * - If the operation in the vstor_packet is COMPLETE_IO, then
1246                  *   we call storvsc_on_io_completion(), and dereference the
1247                  *   guest memory address.  Make sure we don't call
1248                  *   storvsc_on_io_completion() with a guest memory address
1249                  *   that is zero if Hyper-V were to construct and send such
1250                  *   a bogus packet.
1251                  *
1252                  * - If the operation in the vstor_packet is FCHBA_DATA, then
1253                  *   we call cache_wwn(), and access the data payload area of
1254                  *   the packet (wwn_packet); however, there is no guarantee
1255                  *   that the packet is big enough to contain such area.
1256                  *   Future-proof the code by rejecting such a bogus packet.
1257                  */
1258                 if (packet->operation == VSTOR_OPERATION_COMPLETE_IO ||
1259                     packet->operation == VSTOR_OPERATION_FCHBA_DATA) {
1260                     dev_err(&device->device, "Invalid packet with ID of 0\n");
1261                     continue;
1262                 }
1263             } else {
1264                 struct scsi_cmnd *scmnd;
1265 
1266                 /* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */
1267                 scmnd = scsi_host_find_tag(shost, rqst_id - 1);
1268                 if (scmnd == NULL) {
1269                     dev_err(&device->device, "Incorrect transaction ID\n");
1270                     continue;
1271                 }
1272                 request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd);
1273                 scsi_dma_unmap(scmnd);
1274             }
1275 
1276             storvsc_on_receive(stor_device, packet, request);
1277             continue;
1278         }
1279 
1280         memcpy(&request->vstor_packet, packet,
1281                sizeof(struct vstor_packet));
1282         complete(&request->wait_event);
1283     }
1284 }
1285 
1286 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size,
1287                   bool is_fc)
1288 {
1289     struct vmstorage_channel_properties props;
1290     int ret;
1291 
1292     memset(&props, 0, sizeof(struct vmstorage_channel_properties));
1293 
1294     device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE;
1295     device->channel->next_request_id_callback = storvsc_next_request_id;
1296 
1297     ret = vmbus_open(device->channel,
1298              ring_size,
1299              ring_size,
1300              (void *)&props,
1301              sizeof(struct vmstorage_channel_properties),
1302              storvsc_on_channel_callback, device->channel);
1303 
1304     if (ret != 0)
1305         return ret;
1306 
1307     ret = storvsc_channel_init(device, is_fc);
1308 
1309     return ret;
1310 }
1311 
1312 static int storvsc_dev_remove(struct hv_device *device)
1313 {
1314     struct storvsc_device *stor_device;
1315 
1316     stor_device = hv_get_drvdata(device);
1317 
1318     stor_device->destroy = true;
1319 
1320     /* Make sure flag is set before waiting */
1321     wmb();
1322 
1323     /*
1324      * At this point, all outbound traffic should be disable. We
1325      * only allow inbound traffic (responses) to proceed so that
1326      * outstanding requests can be completed.
1327      */
1328 
1329     storvsc_wait_to_drain(stor_device);
1330 
1331     /*
1332      * Since we have already drained, we don't need to busy wait
1333      * as was done in final_release_stor_device()
1334      * Note that we cannot set the ext pointer to NULL until
1335      * we have drained - to drain the outgoing packets, we need to
1336      * allow incoming packets.
1337      */
1338     hv_set_drvdata(device, NULL);
1339 
1340     /* Close the channel */
1341     vmbus_close(device->channel);
1342 
1343     kfree(stor_device->stor_chns);
1344     kfree(stor_device);
1345     return 0;
1346 }
1347 
1348 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device,
1349                     u16 q_num)
1350 {
1351     u16 slot = 0;
1352     u16 hash_qnum;
1353     const struct cpumask *node_mask;
1354     int num_channels, tgt_cpu;
1355 
1356     if (stor_device->num_sc == 0) {
1357         stor_device->stor_chns[q_num] = stor_device->device->channel;
1358         return stor_device->device->channel;
1359     }
1360 
1361     /*
1362      * Our channel array is sparsley populated and we
1363      * initiated I/O on a processor/hw-q that does not
1364      * currently have a designated channel. Fix this.
1365      * The strategy is simple:
1366      * I. Ensure NUMA locality
1367      * II. Distribute evenly (best effort)
1368      */
1369 
1370     node_mask = cpumask_of_node(cpu_to_node(q_num));
1371 
1372     num_channels = 0;
1373     for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1374         if (cpumask_test_cpu(tgt_cpu, node_mask))
1375             num_channels++;
1376     }
1377     if (num_channels == 0) {
1378         stor_device->stor_chns[q_num] = stor_device->device->channel;
1379         return stor_device->device->channel;
1380     }
1381 
1382     hash_qnum = q_num;
1383     while (hash_qnum >= num_channels)
1384         hash_qnum -= num_channels;
1385 
1386     for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1387         if (!cpumask_test_cpu(tgt_cpu, node_mask))
1388             continue;
1389         if (slot == hash_qnum)
1390             break;
1391         slot++;
1392     }
1393 
1394     stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu];
1395 
1396     return stor_device->stor_chns[q_num];
1397 }
1398 
1399 
1400 static int storvsc_do_io(struct hv_device *device,
1401              struct storvsc_cmd_request *request, u16 q_num)
1402 {
1403     struct storvsc_device *stor_device;
1404     struct vstor_packet *vstor_packet;
1405     struct vmbus_channel *outgoing_channel, *channel;
1406     unsigned long flags;
1407     int ret = 0;
1408     const struct cpumask *node_mask;
1409     int tgt_cpu;
1410 
1411     vstor_packet = &request->vstor_packet;
1412     stor_device = get_out_stor_device(device);
1413 
1414     if (!stor_device)
1415         return -ENODEV;
1416 
1417 
1418     request->device  = device;
1419     /*
1420      * Select an appropriate channel to send the request out.
1421      */
1422     /* See storvsc_change_target_cpu(). */
1423     outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]);
1424     if (outgoing_channel != NULL) {
1425         if (outgoing_channel->target_cpu == q_num) {
1426             /*
1427              * Ideally, we want to pick a different channel if
1428              * available on the same NUMA node.
1429              */
1430             node_mask = cpumask_of_node(cpu_to_node(q_num));
1431             for_each_cpu_wrap(tgt_cpu,
1432                  &stor_device->alloced_cpus, q_num + 1) {
1433                 if (!cpumask_test_cpu(tgt_cpu, node_mask))
1434                     continue;
1435                 if (tgt_cpu == q_num)
1436                     continue;
1437                 channel = READ_ONCE(
1438                     stor_device->stor_chns[tgt_cpu]);
1439                 if (channel == NULL)
1440                     continue;
1441                 if (hv_get_avail_to_write_percent(
1442                             &channel->outbound)
1443                         > ring_avail_percent_lowater) {
1444                     outgoing_channel = channel;
1445                     goto found_channel;
1446                 }
1447             }
1448 
1449             /*
1450              * All the other channels on the same NUMA node are
1451              * busy. Try to use the channel on the current CPU
1452              */
1453             if (hv_get_avail_to_write_percent(
1454                         &outgoing_channel->outbound)
1455                     > ring_avail_percent_lowater)
1456                 goto found_channel;
1457 
1458             /*
1459              * If we reach here, all the channels on the current
1460              * NUMA node are busy. Try to find a channel in
1461              * other NUMA nodes
1462              */
1463             for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1464                 if (cpumask_test_cpu(tgt_cpu, node_mask))
1465                     continue;
1466                 channel = READ_ONCE(
1467                     stor_device->stor_chns[tgt_cpu]);
1468                 if (channel == NULL)
1469                     continue;
1470                 if (hv_get_avail_to_write_percent(
1471                             &channel->outbound)
1472                         > ring_avail_percent_lowater) {
1473                     outgoing_channel = channel;
1474                     goto found_channel;
1475                 }
1476             }
1477         }
1478     } else {
1479         spin_lock_irqsave(&stor_device->lock, flags);
1480         outgoing_channel = stor_device->stor_chns[q_num];
1481         if (outgoing_channel != NULL) {
1482             spin_unlock_irqrestore(&stor_device->lock, flags);
1483             goto found_channel;
1484         }
1485         outgoing_channel = get_og_chn(stor_device, q_num);
1486         spin_unlock_irqrestore(&stor_device->lock, flags);
1487     }
1488 
1489 found_channel:
1490     vstor_packet->flags |= REQUEST_COMPLETION_FLAG;
1491 
1492     vstor_packet->vm_srb.length = sizeof(struct vmscsi_request);
1493 
1494 
1495     vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE;
1496 
1497 
1498     vstor_packet->vm_srb.data_transfer_length =
1499     request->payload->range.len;
1500 
1501     vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB;
1502 
1503     if (request->payload->range.len) {
1504 
1505         ret = vmbus_sendpacket_mpb_desc(outgoing_channel,
1506                 request->payload, request->payload_sz,
1507                 vstor_packet,
1508                 sizeof(struct vstor_packet),
1509                 (unsigned long)request);
1510     } else {
1511         ret = vmbus_sendpacket(outgoing_channel, vstor_packet,
1512                    sizeof(struct vstor_packet),
1513                    (unsigned long)request,
1514                    VM_PKT_DATA_INBAND,
1515                    VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1516     }
1517 
1518     if (ret != 0)
1519         return ret;
1520 
1521     atomic_inc(&stor_device->num_outstanding_req);
1522 
1523     return ret;
1524 }
1525 
1526 static int storvsc_device_alloc(struct scsi_device *sdevice)
1527 {
1528     /*
1529      * Set blist flag to permit the reading of the VPD pages even when
1530      * the target may claim SPC-2 compliance. MSFT targets currently
1531      * claim SPC-2 compliance while they implement post SPC-2 features.
1532      * With this flag we can correctly handle WRITE_SAME_16 issues.
1533      *
1534      * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but
1535      * still supports REPORT LUN.
1536      */
1537     sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES;
1538 
1539     return 0;
1540 }
1541 
1542 static int storvsc_device_configure(struct scsi_device *sdevice)
1543 {
1544     blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ));
1545 
1546     sdevice->no_write_same = 1;
1547 
1548     /*
1549      * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3
1550      * if the device is a MSFT virtual device.  If the host is
1551      * WIN10 or newer, allow write_same.
1552      */
1553     if (!strncmp(sdevice->vendor, "Msft", 4)) {
1554         switch (vmstor_proto_version) {
1555         case VMSTOR_PROTO_VERSION_WIN8:
1556         case VMSTOR_PROTO_VERSION_WIN8_1:
1557             sdevice->scsi_level = SCSI_SPC_3;
1558             break;
1559         }
1560 
1561         if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10)
1562             sdevice->no_write_same = 0;
1563     }
1564 
1565     return 0;
1566 }
1567 
1568 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev,
1569                sector_t capacity, int *info)
1570 {
1571     sector_t nsect = capacity;
1572     sector_t cylinders = nsect;
1573     int heads, sectors_pt;
1574 
1575     /*
1576      * We are making up these values; let us keep it simple.
1577      */
1578     heads = 0xff;
1579     sectors_pt = 0x3f;      /* Sectors per track */
1580     sector_div(cylinders, heads * sectors_pt);
1581     if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect)
1582         cylinders = 0xffff;
1583 
1584     info[0] = heads;
1585     info[1] = sectors_pt;
1586     info[2] = (int)cylinders;
1587 
1588     return 0;
1589 }
1590 
1591 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd)
1592 {
1593     struct hv_host_device *host_dev = shost_priv(scmnd->device->host);
1594     struct hv_device *device = host_dev->dev;
1595 
1596     struct storvsc_device *stor_device;
1597     struct storvsc_cmd_request *request;
1598     struct vstor_packet *vstor_packet;
1599     int ret, t;
1600 
1601     stor_device = get_out_stor_device(device);
1602     if (!stor_device)
1603         return FAILED;
1604 
1605     request = &stor_device->reset_request;
1606     vstor_packet = &request->vstor_packet;
1607     memset(vstor_packet, 0, sizeof(struct vstor_packet));
1608 
1609     init_completion(&request->wait_event);
1610 
1611     vstor_packet->operation = VSTOR_OPERATION_RESET_BUS;
1612     vstor_packet->flags = REQUEST_COMPLETION_FLAG;
1613     vstor_packet->vm_srb.path_id = stor_device->path_id;
1614 
1615     ret = vmbus_sendpacket(device->channel, vstor_packet,
1616                    sizeof(struct vstor_packet),
1617                    VMBUS_RQST_RESET,
1618                    VM_PKT_DATA_INBAND,
1619                    VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1620     if (ret != 0)
1621         return FAILED;
1622 
1623     t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
1624     if (t == 0)
1625         return TIMEOUT_ERROR;
1626 
1627 
1628     /*
1629      * At this point, all outstanding requests in the adapter
1630      * should have been flushed out and return to us
1631      * There is a potential race here where the host may be in
1632      * the process of responding when we return from here.
1633      * Just wait for all in-transit packets to be accounted for
1634      * before we return from here.
1635      */
1636     storvsc_wait_to_drain(stor_device);
1637 
1638     return SUCCESS;
1639 }
1640 
1641 /*
1642  * The host guarantees to respond to each command, although I/O latencies might
1643  * be unbounded on Azure.  Reset the timer unconditionally to give the host a
1644  * chance to perform EH.
1645  */
1646 static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd)
1647 {
1648 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1649     if (scmnd->device->host->transportt == fc_transport_template)
1650         return fc_eh_timed_out(scmnd);
1651 #endif
1652     return BLK_EH_RESET_TIMER;
1653 }
1654 
1655 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd)
1656 {
1657     bool allowed = true;
1658     u8 scsi_op = scmnd->cmnd[0];
1659 
1660     switch (scsi_op) {
1661     /* the host does not handle WRITE_SAME, log accident usage */
1662     case WRITE_SAME:
1663     /*
1664      * smartd sends this command and the host does not handle
1665      * this. So, don't send it.
1666      */
1667     case SET_WINDOW:
1668         set_host_byte(scmnd, DID_ERROR);
1669         allowed = false;
1670         break;
1671     default:
1672         break;
1673     }
1674     return allowed;
1675 }
1676 
1677 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd)
1678 {
1679     int ret;
1680     struct hv_host_device *host_dev = shost_priv(host);
1681     struct hv_device *dev = host_dev->dev;
1682     struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd);
1683     struct scatterlist *sgl;
1684     struct vmscsi_request *vm_srb;
1685     struct vmbus_packet_mpb_array  *payload;
1686     u32 payload_sz;
1687     u32 length;
1688 
1689     if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) {
1690         /*
1691          * On legacy hosts filter unimplemented commands.
1692          * Future hosts are expected to correctly handle
1693          * unsupported commands. Furthermore, it is
1694          * possible that some of the currently
1695          * unsupported commands maybe supported in
1696          * future versions of the host.
1697          */
1698         if (!storvsc_scsi_cmd_ok(scmnd)) {
1699             scsi_done(scmnd);
1700             return 0;
1701         }
1702     }
1703 
1704     /* Setup the cmd request */
1705     cmd_request->cmd = scmnd;
1706 
1707     memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet));
1708     vm_srb = &cmd_request->vstor_packet.vm_srb;
1709     vm_srb->time_out_value = 60;
1710 
1711     vm_srb->srb_flags |=
1712         SRB_FLAGS_DISABLE_SYNCH_TRANSFER;
1713 
1714     if (scmnd->device->tagged_supported) {
1715         vm_srb->srb_flags |=
1716         (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE);
1717         vm_srb->queue_tag = SP_UNTAGGED;
1718         vm_srb->queue_action = SRB_SIMPLE_TAG_REQUEST;
1719     }
1720 
1721     /* Build the SRB */
1722     switch (scmnd->sc_data_direction) {
1723     case DMA_TO_DEVICE:
1724         vm_srb->data_in = WRITE_TYPE;
1725         vm_srb->srb_flags |= SRB_FLAGS_DATA_OUT;
1726         break;
1727     case DMA_FROM_DEVICE:
1728         vm_srb->data_in = READ_TYPE;
1729         vm_srb->srb_flags |= SRB_FLAGS_DATA_IN;
1730         break;
1731     case DMA_NONE:
1732         vm_srb->data_in = UNKNOWN_TYPE;
1733         vm_srb->srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER;
1734         break;
1735     default:
1736         /*
1737          * This is DMA_BIDIRECTIONAL or something else we are never
1738          * supposed to see here.
1739          */
1740         WARN(1, "Unexpected data direction: %d\n",
1741              scmnd->sc_data_direction);
1742         return -EINVAL;
1743     }
1744 
1745 
1746     vm_srb->port_number = host_dev->port;
1747     vm_srb->path_id = scmnd->device->channel;
1748     vm_srb->target_id = scmnd->device->id;
1749     vm_srb->lun = scmnd->device->lun;
1750 
1751     vm_srb->cdb_length = scmnd->cmd_len;
1752 
1753     memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length);
1754 
1755     sgl = (struct scatterlist *)scsi_sglist(scmnd);
1756 
1757     length = scsi_bufflen(scmnd);
1758     payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb;
1759     payload_sz = sizeof(cmd_request->mpb);
1760 
1761     if (scsi_sg_count(scmnd)) {
1762         unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset);
1763         unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length);
1764         struct scatterlist *sg;
1765         unsigned long hvpfn, hvpfns_to_add;
1766         int j, i = 0, sg_count;
1767 
1768         if (hvpg_count > MAX_PAGE_BUFFER_COUNT) {
1769 
1770             payload_sz = (hvpg_count * sizeof(u64) +
1771                       sizeof(struct vmbus_packet_mpb_array));
1772             payload = kzalloc(payload_sz, GFP_ATOMIC);
1773             if (!payload)
1774                 return SCSI_MLQUEUE_DEVICE_BUSY;
1775         }
1776 
1777         payload->range.len = length;
1778         payload->range.offset = offset_in_hvpg;
1779 
1780         sg_count = scsi_dma_map(scmnd);
1781         if (sg_count < 0) {
1782             ret = SCSI_MLQUEUE_DEVICE_BUSY;
1783             goto err_free_payload;
1784         }
1785 
1786         for_each_sg(sgl, sg, sg_count, j) {
1787             /*
1788              * Init values for the current sgl entry. hvpfns_to_add
1789              * is in units of Hyper-V size pages. Handling the
1790              * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles
1791              * values of sgl->offset that are larger than PAGE_SIZE.
1792              * Such offsets are handled even on other than the first
1793              * sgl entry, provided they are a multiple of PAGE_SIZE.
1794              */
1795             hvpfn = HVPFN_DOWN(sg_dma_address(sg));
1796             hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) +
1797                          sg_dma_len(sg)) - hvpfn;
1798 
1799             /*
1800              * Fill the next portion of the PFN array with
1801              * sequential Hyper-V PFNs for the continguous physical
1802              * memory described by the sgl entry. The end of the
1803              * last sgl should be reached at the same time that
1804              * the PFN array is filled.
1805              */
1806             while (hvpfns_to_add--)
1807                 payload->range.pfn_array[i++] = hvpfn++;
1808         }
1809     }
1810 
1811     cmd_request->payload = payload;
1812     cmd_request->payload_sz = payload_sz;
1813 
1814     /* Invokes the vsc to start an IO */
1815     ret = storvsc_do_io(dev, cmd_request, get_cpu());
1816     put_cpu();
1817 
1818     if (ret == -EAGAIN) {
1819         /* no more space */
1820         ret = SCSI_MLQUEUE_DEVICE_BUSY;
1821         goto err_free_payload;
1822     }
1823 
1824     return 0;
1825 
1826 err_free_payload:
1827     if (payload_sz > sizeof(cmd_request->mpb))
1828         kfree(payload);
1829 
1830     return ret;
1831 }
1832 
1833 static struct scsi_host_template scsi_driver = {
1834     .module =       THIS_MODULE,
1835     .name =         "storvsc_host_t",
1836     .cmd_size =             sizeof(struct storvsc_cmd_request),
1837     .bios_param =       storvsc_get_chs,
1838     .queuecommand =     storvsc_queuecommand,
1839     .eh_host_reset_handler =    storvsc_host_reset_handler,
1840     .proc_name =        "storvsc_host",
1841     .eh_timed_out =     storvsc_eh_timed_out,
1842     .slave_alloc =      storvsc_device_alloc,
1843     .slave_configure =  storvsc_device_configure,
1844     .cmd_per_lun =      2048,
1845     .this_id =      -1,
1846     /* Ensure there are no gaps in presented sgls */
1847     .virt_boundary_mask =   HV_HYP_PAGE_SIZE - 1,
1848     .no_write_same =    1,
1849     .track_queue_depth =    1,
1850     .change_queue_depth =   storvsc_change_queue_depth,
1851 };
1852 
1853 enum {
1854     SCSI_GUID,
1855     IDE_GUID,
1856     SFC_GUID,
1857 };
1858 
1859 static const struct hv_vmbus_device_id id_table[] = {
1860     /* SCSI guid */
1861     { HV_SCSI_GUID,
1862       .driver_data = SCSI_GUID
1863     },
1864     /* IDE guid */
1865     { HV_IDE_GUID,
1866       .driver_data = IDE_GUID
1867     },
1868     /* Fibre Channel GUID */
1869     {
1870       HV_SYNTHFC_GUID,
1871       .driver_data = SFC_GUID
1872     },
1873     { },
1874 };
1875 
1876 MODULE_DEVICE_TABLE(vmbus, id_table);
1877 
1878 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID };
1879 
1880 static bool hv_dev_is_fc(struct hv_device *hv_dev)
1881 {
1882     return guid_equal(&fc_guid.guid, &hv_dev->dev_type);
1883 }
1884 
1885 static int storvsc_probe(struct hv_device *device,
1886             const struct hv_vmbus_device_id *dev_id)
1887 {
1888     int ret;
1889     int num_cpus = num_online_cpus();
1890     int num_present_cpus = num_present_cpus();
1891     struct Scsi_Host *host;
1892     struct hv_host_device *host_dev;
1893     bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false);
1894     bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false);
1895     int target = 0;
1896     struct storvsc_device *stor_device;
1897     int max_sub_channels = 0;
1898     u32 max_xfer_bytes;
1899 
1900     /*
1901      * We support sub-channels for storage on SCSI and FC controllers.
1902      * The number of sub-channels offerred is based on the number of
1903      * VCPUs in the guest.
1904      */
1905     if (!dev_is_ide)
1906         max_sub_channels =
1907             (num_cpus - 1) / storvsc_vcpus_per_sub_channel;
1908 
1909     scsi_driver.can_queue = max_outstanding_req_per_channel *
1910                 (max_sub_channels + 1) *
1911                 (100 - ring_avail_percent_lowater) / 100;
1912 
1913     host = scsi_host_alloc(&scsi_driver,
1914                    sizeof(struct hv_host_device));
1915     if (!host)
1916         return -ENOMEM;
1917 
1918     host_dev = shost_priv(host);
1919     memset(host_dev, 0, sizeof(struct hv_host_device));
1920 
1921     host_dev->port = host->host_no;
1922     host_dev->dev = device;
1923     host_dev->host = host;
1924 
1925 
1926     stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL);
1927     if (!stor_device) {
1928         ret = -ENOMEM;
1929         goto err_out0;
1930     }
1931 
1932     stor_device->destroy = false;
1933     init_waitqueue_head(&stor_device->waiting_to_drain);
1934     stor_device->device = device;
1935     stor_device->host = host;
1936     spin_lock_init(&stor_device->lock);
1937     hv_set_drvdata(device, stor_device);
1938     dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1);
1939 
1940     stor_device->port_number = host->host_no;
1941     ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc);
1942     if (ret)
1943         goto err_out1;
1944 
1945     host_dev->path = stor_device->path_id;
1946     host_dev->target = stor_device->target_id;
1947 
1948     switch (dev_id->driver_data) {
1949     case SFC_GUID:
1950         host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET;
1951         host->max_id = STORVSC_FC_MAX_TARGETS;
1952         host->max_channel = STORVSC_FC_MAX_CHANNELS - 1;
1953 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1954         host->transportt = fc_transport_template;
1955 #endif
1956         break;
1957 
1958     case SCSI_GUID:
1959         host->max_lun = STORVSC_MAX_LUNS_PER_TARGET;
1960         host->max_id = STORVSC_MAX_TARGETS;
1961         host->max_channel = STORVSC_MAX_CHANNELS - 1;
1962         break;
1963 
1964     default:
1965         host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1966         host->max_id = STORVSC_IDE_MAX_TARGETS;
1967         host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1;
1968         break;
1969     }
1970     /* max cmd length */
1971     host->max_cmd_len = STORVSC_MAX_CMD_LEN;
1972     /*
1973      * Any reasonable Hyper-V configuration should provide
1974      * max_transfer_bytes value aligning to HV_HYP_PAGE_SIZE,
1975      * protecting it from any weird value.
1976      */
1977     max_xfer_bytes = round_down(stor_device->max_transfer_bytes, HV_HYP_PAGE_SIZE);
1978     /* max_hw_sectors_kb */
1979     host->max_sectors = max_xfer_bytes >> 9;
1980     /*
1981      * There are 2 requirements for Hyper-V storvsc sgl segments,
1982      * based on which the below calculation for max segments is
1983      * done:
1984      *
1985      * 1. Except for the first and last sgl segment, all sgl segments
1986      *    should be align to HV_HYP_PAGE_SIZE, that also means the
1987      *    maximum number of segments in a sgl can be calculated by
1988      *    dividing the total max transfer length by HV_HYP_PAGE_SIZE.
1989      *
1990      * 2. Except for the first and last, each entry in the SGL must
1991      *    have an offset that is a multiple of HV_HYP_PAGE_SIZE.
1992      */
1993     host->sg_tablesize = (max_xfer_bytes >> HV_HYP_PAGE_SHIFT) + 1;
1994     /*
1995      * For non-IDE disks, the host supports multiple channels.
1996      * Set the number of HW queues we are supporting.
1997      */
1998     if (!dev_is_ide) {
1999         if (storvsc_max_hw_queues > num_present_cpus) {
2000             storvsc_max_hw_queues = 0;
2001             storvsc_log(device, STORVSC_LOGGING_WARN,
2002                 "Resetting invalid storvsc_max_hw_queues value to default.\n");
2003         }
2004         if (storvsc_max_hw_queues)
2005             host->nr_hw_queues = storvsc_max_hw_queues;
2006         else
2007             host->nr_hw_queues = num_present_cpus;
2008     }
2009 
2010     /*
2011      * Set the error handler work queue.
2012      */
2013     host_dev->handle_error_wq =
2014             alloc_ordered_workqueue("storvsc_error_wq_%d",
2015                         0,
2016                         host->host_no);
2017     if (!host_dev->handle_error_wq) {
2018         ret = -ENOMEM;
2019         goto err_out2;
2020     }
2021     INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan);
2022     /* Register the HBA and start the scsi bus scan */
2023     ret = scsi_add_host(host, &device->device);
2024     if (ret != 0)
2025         goto err_out3;
2026 
2027     if (!dev_is_ide) {
2028         scsi_scan_host(host);
2029     } else {
2030         target = (device->dev_instance.b[5] << 8 |
2031              device->dev_instance.b[4]);
2032         ret = scsi_add_device(host, 0, target, 0);
2033         if (ret)
2034             goto err_out4;
2035     }
2036 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2037     if (host->transportt == fc_transport_template) {
2038         struct fc_rport_identifiers ids = {
2039             .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR,
2040         };
2041 
2042         fc_host_node_name(host) = stor_device->node_name;
2043         fc_host_port_name(host) = stor_device->port_name;
2044         stor_device->rport = fc_remote_port_add(host, 0, &ids);
2045         if (!stor_device->rport) {
2046             ret = -ENOMEM;
2047             goto err_out4;
2048         }
2049     }
2050 #endif
2051     return 0;
2052 
2053 err_out4:
2054     scsi_remove_host(host);
2055 
2056 err_out3:
2057     destroy_workqueue(host_dev->handle_error_wq);
2058 
2059 err_out2:
2060     /*
2061      * Once we have connected with the host, we would need to
2062      * to invoke storvsc_dev_remove() to rollback this state and
2063      * this call also frees up the stor_device; hence the jump around
2064      * err_out1 label.
2065      */
2066     storvsc_dev_remove(device);
2067     goto err_out0;
2068 
2069 err_out1:
2070     kfree(stor_device->stor_chns);
2071     kfree(stor_device);
2072 
2073 err_out0:
2074     scsi_host_put(host);
2075     return ret;
2076 }
2077 
2078 /* Change a scsi target's queue depth */
2079 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth)
2080 {
2081     if (queue_depth > scsi_driver.can_queue)
2082         queue_depth = scsi_driver.can_queue;
2083 
2084     return scsi_change_queue_depth(sdev, queue_depth);
2085 }
2086 
2087 static int storvsc_remove(struct hv_device *dev)
2088 {
2089     struct storvsc_device *stor_device = hv_get_drvdata(dev);
2090     struct Scsi_Host *host = stor_device->host;
2091     struct hv_host_device *host_dev = shost_priv(host);
2092 
2093 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2094     if (host->transportt == fc_transport_template) {
2095         fc_remote_port_delete(stor_device->rport);
2096         fc_remove_host(host);
2097     }
2098 #endif
2099     destroy_workqueue(host_dev->handle_error_wq);
2100     scsi_remove_host(host);
2101     storvsc_dev_remove(dev);
2102     scsi_host_put(host);
2103 
2104     return 0;
2105 }
2106 
2107 static int storvsc_suspend(struct hv_device *hv_dev)
2108 {
2109     struct storvsc_device *stor_device = hv_get_drvdata(hv_dev);
2110     struct Scsi_Host *host = stor_device->host;
2111     struct hv_host_device *host_dev = shost_priv(host);
2112 
2113     storvsc_wait_to_drain(stor_device);
2114 
2115     drain_workqueue(host_dev->handle_error_wq);
2116 
2117     vmbus_close(hv_dev->channel);
2118 
2119     kfree(stor_device->stor_chns);
2120     stor_device->stor_chns = NULL;
2121 
2122     cpumask_clear(&stor_device->alloced_cpus);
2123 
2124     return 0;
2125 }
2126 
2127 static int storvsc_resume(struct hv_device *hv_dev)
2128 {
2129     int ret;
2130 
2131     ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size,
2132                      hv_dev_is_fc(hv_dev));
2133     return ret;
2134 }
2135 
2136 static struct hv_driver storvsc_drv = {
2137     .name = KBUILD_MODNAME,
2138     .id_table = id_table,
2139     .probe = storvsc_probe,
2140     .remove = storvsc_remove,
2141     .suspend = storvsc_suspend,
2142     .resume = storvsc_resume,
2143     .driver = {
2144         .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2145     },
2146 };
2147 
2148 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2149 static struct fc_function_template fc_transport_functions = {
2150     .show_host_node_name = 1,
2151     .show_host_port_name = 1,
2152 };
2153 #endif
2154 
2155 static int __init storvsc_drv_init(void)
2156 {
2157     int ret;
2158 
2159     /*
2160      * Divide the ring buffer data size (which is 1 page less
2161      * than the ring buffer size since that page is reserved for
2162      * the ring buffer indices) by the max request size (which is
2163      * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64)
2164      */
2165     max_outstanding_req_per_channel =
2166         ((storvsc_ringbuffer_size - PAGE_SIZE) /
2167         ALIGN(MAX_MULTIPAGE_BUFFER_PACKET +
2168         sizeof(struct vstor_packet) + sizeof(u64),
2169         sizeof(u64)));
2170 
2171 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2172     fc_transport_template = fc_attach_transport(&fc_transport_functions);
2173     if (!fc_transport_template)
2174         return -ENODEV;
2175 #endif
2176 
2177     ret = vmbus_driver_register(&storvsc_drv);
2178 
2179 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2180     if (ret)
2181         fc_release_transport(fc_transport_template);
2182 #endif
2183 
2184     return ret;
2185 }
2186 
2187 static void __exit storvsc_drv_exit(void)
2188 {
2189     vmbus_driver_unregister(&storvsc_drv);
2190 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2191     fc_release_transport(fc_transport_template);
2192 #endif
2193 }
2194 
2195 MODULE_LICENSE("GPL");
2196 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver");
2197 module_init(storvsc_drv_init);
2198 module_exit(storvsc_drv_exit);