Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *      sd.c Copyright (C) 1992 Drew Eckhardt
0004  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
0005  *
0006  *      Linux scsi disk driver
0007  *              Initial versions: Drew Eckhardt
0008  *              Subsequent revisions: Eric Youngdale
0009  *  Modification history:
0010  *       - Drew Eckhardt <drew@colorado.edu> original
0011  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
0012  *         outstanding request, and other enhancements.
0013  *         Support loadable low-level scsi drivers.
0014  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
0015  *         eight major numbers.
0016  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
0017  *   - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
0018  *     sd_init and cleanups.
0019  *   - Alex Davis <letmein@erols.com> Fix problem where partition info
0020  *     not being read in sd_open. Fix problem where removable media 
0021  *     could be ejected after sd_open.
0022  *   - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
0023  *   - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
0024  *     <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
0025  *     Support 32k/1M disks.
0026  *
0027  *  Logging policy (needs CONFIG_SCSI_LOGGING defined):
0028  *   - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
0029  *   - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
0030  *   - entering sd_ioctl: SCSI_LOG_IOCTL level 1
0031  *   - entering other commands: SCSI_LOG_HLQUEUE level 3
0032  *  Note: when the logging level is set by the user, it must be greater
0033  *  than the level indicated above to trigger output.   
0034  */
0035 
0036 #include <linux/module.h>
0037 #include <linux/fs.h>
0038 #include <linux/kernel.h>
0039 #include <linux/mm.h>
0040 #include <linux/bio.h>
0041 #include <linux/hdreg.h>
0042 #include <linux/errno.h>
0043 #include <linux/idr.h>
0044 #include <linux/interrupt.h>
0045 #include <linux/init.h>
0046 #include <linux/blkdev.h>
0047 #include <linux/blkpg.h>
0048 #include <linux/blk-pm.h>
0049 #include <linux/delay.h>
0050 #include <linux/major.h>
0051 #include <linux/mutex.h>
0052 #include <linux/string_helpers.h>
0053 #include <linux/slab.h>
0054 #include <linux/sed-opal.h>
0055 #include <linux/pm_runtime.h>
0056 #include <linux/pr.h>
0057 #include <linux/t10-pi.h>
0058 #include <linux/uaccess.h>
0059 #include <asm/unaligned.h>
0060 
0061 #include <scsi/scsi.h>
0062 #include <scsi/scsi_cmnd.h>
0063 #include <scsi/scsi_dbg.h>
0064 #include <scsi/scsi_device.h>
0065 #include <scsi/scsi_driver.h>
0066 #include <scsi/scsi_eh.h>
0067 #include <scsi/scsi_host.h>
0068 #include <scsi/scsi_ioctl.h>
0069 #include <scsi/scsicam.h>
0070 
0071 #include "sd.h"
0072 #include "scsi_priv.h"
0073 #include "scsi_logging.h"
0074 
0075 MODULE_AUTHOR("Eric Youngdale");
0076 MODULE_DESCRIPTION("SCSI disk (sd) driver");
0077 MODULE_LICENSE("GPL");
0078 
0079 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
0080 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
0081 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
0082 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
0083 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
0084 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
0085 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
0086 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
0087 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
0088 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
0089 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
0090 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
0091 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
0092 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
0093 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
0094 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
0095 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
0096 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
0097 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
0098 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
0099 
0100 #define SD_MINORS   16
0101 
0102 static void sd_config_discard(struct scsi_disk *, unsigned int);
0103 static void sd_config_write_same(struct scsi_disk *);
0104 static int  sd_revalidate_disk(struct gendisk *);
0105 static void sd_unlock_native_capacity(struct gendisk *disk);
0106 static int  sd_probe(struct device *);
0107 static int  sd_remove(struct device *);
0108 static void sd_shutdown(struct device *);
0109 static int sd_suspend_system(struct device *);
0110 static int sd_suspend_runtime(struct device *);
0111 static int sd_resume_system(struct device *);
0112 static int sd_resume_runtime(struct device *);
0113 static void sd_rescan(struct device *);
0114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
0115 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
0116 static int sd_done(struct scsi_cmnd *);
0117 static void sd_eh_reset(struct scsi_cmnd *);
0118 static int sd_eh_action(struct scsi_cmnd *, int);
0119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
0120 static void scsi_disk_release(struct device *cdev);
0121 
0122 static DEFINE_IDA(sd_index_ida);
0123 
0124 static struct kmem_cache *sd_cdb_cache;
0125 static mempool_t *sd_page_pool;
0126 static struct lock_class_key sd_bio_compl_lkclass;
0127 
0128 static const char *sd_cache_types[] = {
0129     "write through", "none", "write back",
0130     "write back, no read (daft)"
0131 };
0132 
0133 static void sd_set_flush_flag(struct scsi_disk *sdkp)
0134 {
0135     bool wc = false, fua = false;
0136 
0137     if (sdkp->WCE) {
0138         wc = true;
0139         if (sdkp->DPOFUA)
0140             fua = true;
0141     }
0142 
0143     blk_queue_write_cache(sdkp->disk->queue, wc, fua);
0144 }
0145 
0146 static ssize_t
0147 cache_type_store(struct device *dev, struct device_attribute *attr,
0148          const char *buf, size_t count)
0149 {
0150     int ct, rcd, wce, sp;
0151     struct scsi_disk *sdkp = to_scsi_disk(dev);
0152     struct scsi_device *sdp = sdkp->device;
0153     char buffer[64];
0154     char *buffer_data;
0155     struct scsi_mode_data data;
0156     struct scsi_sense_hdr sshdr;
0157     static const char temp[] = "temporary ";
0158     int len;
0159 
0160     if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
0161         /* no cache control on RBC devices; theoretically they
0162          * can do it, but there's probably so many exceptions
0163          * it's not worth the risk */
0164         return -EINVAL;
0165 
0166     if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
0167         buf += sizeof(temp) - 1;
0168         sdkp->cache_override = 1;
0169     } else {
0170         sdkp->cache_override = 0;
0171     }
0172 
0173     ct = sysfs_match_string(sd_cache_types, buf);
0174     if (ct < 0)
0175         return -EINVAL;
0176 
0177     rcd = ct & 0x01 ? 1 : 0;
0178     wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
0179 
0180     if (sdkp->cache_override) {
0181         sdkp->WCE = wce;
0182         sdkp->RCD = rcd;
0183         sd_set_flush_flag(sdkp);
0184         return count;
0185     }
0186 
0187     if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
0188                 sdkp->max_retries, &data, NULL))
0189         return -EINVAL;
0190     len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
0191           data.block_descriptor_length);
0192     buffer_data = buffer + data.header_length +
0193         data.block_descriptor_length;
0194     buffer_data[2] &= ~0x05;
0195     buffer_data[2] |= wce << 2 | rcd;
0196     sp = buffer_data[0] & 0x80 ? 1 : 0;
0197     buffer_data[0] &= ~0x80;
0198 
0199     /*
0200      * Ensure WP, DPOFUA, and RESERVED fields are cleared in
0201      * received mode parameter buffer before doing MODE SELECT.
0202      */
0203     data.device_specific = 0;
0204 
0205     if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
0206                  sdkp->max_retries, &data, &sshdr)) {
0207         if (scsi_sense_valid(&sshdr))
0208             sd_print_sense_hdr(sdkp, &sshdr);
0209         return -EINVAL;
0210     }
0211     sd_revalidate_disk(sdkp->disk);
0212     return count;
0213 }
0214 
0215 static ssize_t
0216 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
0217                char *buf)
0218 {
0219     struct scsi_disk *sdkp = to_scsi_disk(dev);
0220     struct scsi_device *sdp = sdkp->device;
0221 
0222     return sprintf(buf, "%u\n", sdp->manage_start_stop);
0223 }
0224 
0225 static ssize_t
0226 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
0227             const char *buf, size_t count)
0228 {
0229     struct scsi_disk *sdkp = to_scsi_disk(dev);
0230     struct scsi_device *sdp = sdkp->device;
0231     bool v;
0232 
0233     if (!capable(CAP_SYS_ADMIN))
0234         return -EACCES;
0235 
0236     if (kstrtobool(buf, &v))
0237         return -EINVAL;
0238 
0239     sdp->manage_start_stop = v;
0240 
0241     return count;
0242 }
0243 static DEVICE_ATTR_RW(manage_start_stop);
0244 
0245 static ssize_t
0246 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
0247 {
0248     struct scsi_disk *sdkp = to_scsi_disk(dev);
0249 
0250     return sprintf(buf, "%u\n", sdkp->device->allow_restart);
0251 }
0252 
0253 static ssize_t
0254 allow_restart_store(struct device *dev, struct device_attribute *attr,
0255             const char *buf, size_t count)
0256 {
0257     bool v;
0258     struct scsi_disk *sdkp = to_scsi_disk(dev);
0259     struct scsi_device *sdp = sdkp->device;
0260 
0261     if (!capable(CAP_SYS_ADMIN))
0262         return -EACCES;
0263 
0264     if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
0265         return -EINVAL;
0266 
0267     if (kstrtobool(buf, &v))
0268         return -EINVAL;
0269 
0270     sdp->allow_restart = v;
0271 
0272     return count;
0273 }
0274 static DEVICE_ATTR_RW(allow_restart);
0275 
0276 static ssize_t
0277 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
0278 {
0279     struct scsi_disk *sdkp = to_scsi_disk(dev);
0280     int ct = sdkp->RCD + 2*sdkp->WCE;
0281 
0282     return sprintf(buf, "%s\n", sd_cache_types[ct]);
0283 }
0284 static DEVICE_ATTR_RW(cache_type);
0285 
0286 static ssize_t
0287 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
0288 {
0289     struct scsi_disk *sdkp = to_scsi_disk(dev);
0290 
0291     return sprintf(buf, "%u\n", sdkp->DPOFUA);
0292 }
0293 static DEVICE_ATTR_RO(FUA);
0294 
0295 static ssize_t
0296 protection_type_show(struct device *dev, struct device_attribute *attr,
0297              char *buf)
0298 {
0299     struct scsi_disk *sdkp = to_scsi_disk(dev);
0300 
0301     return sprintf(buf, "%u\n", sdkp->protection_type);
0302 }
0303 
0304 static ssize_t
0305 protection_type_store(struct device *dev, struct device_attribute *attr,
0306               const char *buf, size_t count)
0307 {
0308     struct scsi_disk *sdkp = to_scsi_disk(dev);
0309     unsigned int val;
0310     int err;
0311 
0312     if (!capable(CAP_SYS_ADMIN))
0313         return -EACCES;
0314 
0315     err = kstrtouint(buf, 10, &val);
0316 
0317     if (err)
0318         return err;
0319 
0320     if (val <= T10_PI_TYPE3_PROTECTION)
0321         sdkp->protection_type = val;
0322 
0323     return count;
0324 }
0325 static DEVICE_ATTR_RW(protection_type);
0326 
0327 static ssize_t
0328 protection_mode_show(struct device *dev, struct device_attribute *attr,
0329              char *buf)
0330 {
0331     struct scsi_disk *sdkp = to_scsi_disk(dev);
0332     struct scsi_device *sdp = sdkp->device;
0333     unsigned int dif, dix;
0334 
0335     dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
0336     dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
0337 
0338     if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
0339         dif = 0;
0340         dix = 1;
0341     }
0342 
0343     if (!dif && !dix)
0344         return sprintf(buf, "none\n");
0345 
0346     return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
0347 }
0348 static DEVICE_ATTR_RO(protection_mode);
0349 
0350 static ssize_t
0351 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
0352 {
0353     struct scsi_disk *sdkp = to_scsi_disk(dev);
0354 
0355     return sprintf(buf, "%u\n", sdkp->ATO);
0356 }
0357 static DEVICE_ATTR_RO(app_tag_own);
0358 
0359 static ssize_t
0360 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
0361                char *buf)
0362 {
0363     struct scsi_disk *sdkp = to_scsi_disk(dev);
0364 
0365     return sprintf(buf, "%u\n", sdkp->lbpme);
0366 }
0367 static DEVICE_ATTR_RO(thin_provisioning);
0368 
0369 /* sysfs_match_string() requires dense arrays */
0370 static const char *lbp_mode[] = {
0371     [SD_LBP_FULL]       = "full",
0372     [SD_LBP_UNMAP]      = "unmap",
0373     [SD_LBP_WS16]       = "writesame_16",
0374     [SD_LBP_WS10]       = "writesame_10",
0375     [SD_LBP_ZERO]       = "writesame_zero",
0376     [SD_LBP_DISABLE]    = "disabled",
0377 };
0378 
0379 static ssize_t
0380 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
0381                char *buf)
0382 {
0383     struct scsi_disk *sdkp = to_scsi_disk(dev);
0384 
0385     return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
0386 }
0387 
0388 static ssize_t
0389 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
0390             const char *buf, size_t count)
0391 {
0392     struct scsi_disk *sdkp = to_scsi_disk(dev);
0393     struct scsi_device *sdp = sdkp->device;
0394     int mode;
0395 
0396     if (!capable(CAP_SYS_ADMIN))
0397         return -EACCES;
0398 
0399     if (sd_is_zoned(sdkp)) {
0400         sd_config_discard(sdkp, SD_LBP_DISABLE);
0401         return count;
0402     }
0403 
0404     if (sdp->type != TYPE_DISK)
0405         return -EINVAL;
0406 
0407     mode = sysfs_match_string(lbp_mode, buf);
0408     if (mode < 0)
0409         return -EINVAL;
0410 
0411     sd_config_discard(sdkp, mode);
0412 
0413     return count;
0414 }
0415 static DEVICE_ATTR_RW(provisioning_mode);
0416 
0417 /* sysfs_match_string() requires dense arrays */
0418 static const char *zeroing_mode[] = {
0419     [SD_ZERO_WRITE]     = "write",
0420     [SD_ZERO_WS]        = "writesame",
0421     [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
0422     [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
0423 };
0424 
0425 static ssize_t
0426 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
0427           char *buf)
0428 {
0429     struct scsi_disk *sdkp = to_scsi_disk(dev);
0430 
0431     return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
0432 }
0433 
0434 static ssize_t
0435 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
0436            const char *buf, size_t count)
0437 {
0438     struct scsi_disk *sdkp = to_scsi_disk(dev);
0439     int mode;
0440 
0441     if (!capable(CAP_SYS_ADMIN))
0442         return -EACCES;
0443 
0444     mode = sysfs_match_string(zeroing_mode, buf);
0445     if (mode < 0)
0446         return -EINVAL;
0447 
0448     sdkp->zeroing_mode = mode;
0449 
0450     return count;
0451 }
0452 static DEVICE_ATTR_RW(zeroing_mode);
0453 
0454 static ssize_t
0455 max_medium_access_timeouts_show(struct device *dev,
0456                 struct device_attribute *attr, char *buf)
0457 {
0458     struct scsi_disk *sdkp = to_scsi_disk(dev);
0459 
0460     return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
0461 }
0462 
0463 static ssize_t
0464 max_medium_access_timeouts_store(struct device *dev,
0465                  struct device_attribute *attr, const char *buf,
0466                  size_t count)
0467 {
0468     struct scsi_disk *sdkp = to_scsi_disk(dev);
0469     int err;
0470 
0471     if (!capable(CAP_SYS_ADMIN))
0472         return -EACCES;
0473 
0474     err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
0475 
0476     return err ? err : count;
0477 }
0478 static DEVICE_ATTR_RW(max_medium_access_timeouts);
0479 
0480 static ssize_t
0481 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
0482                char *buf)
0483 {
0484     struct scsi_disk *sdkp = to_scsi_disk(dev);
0485 
0486     return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
0487 }
0488 
0489 static ssize_t
0490 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
0491                 const char *buf, size_t count)
0492 {
0493     struct scsi_disk *sdkp = to_scsi_disk(dev);
0494     struct scsi_device *sdp = sdkp->device;
0495     unsigned long max;
0496     int err;
0497 
0498     if (!capable(CAP_SYS_ADMIN))
0499         return -EACCES;
0500 
0501     if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
0502         return -EINVAL;
0503 
0504     err = kstrtoul(buf, 10, &max);
0505 
0506     if (err)
0507         return err;
0508 
0509     if (max == 0)
0510         sdp->no_write_same = 1;
0511     else if (max <= SD_MAX_WS16_BLOCKS) {
0512         sdp->no_write_same = 0;
0513         sdkp->max_ws_blocks = max;
0514     }
0515 
0516     sd_config_write_same(sdkp);
0517 
0518     return count;
0519 }
0520 static DEVICE_ATTR_RW(max_write_same_blocks);
0521 
0522 static ssize_t
0523 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
0524 {
0525     struct scsi_disk *sdkp = to_scsi_disk(dev);
0526 
0527     if (sdkp->device->type == TYPE_ZBC)
0528         return sprintf(buf, "host-managed\n");
0529     if (sdkp->zoned == 1)
0530         return sprintf(buf, "host-aware\n");
0531     if (sdkp->zoned == 2)
0532         return sprintf(buf, "drive-managed\n");
0533     return sprintf(buf, "none\n");
0534 }
0535 static DEVICE_ATTR_RO(zoned_cap);
0536 
0537 static ssize_t
0538 max_retries_store(struct device *dev, struct device_attribute *attr,
0539           const char *buf, size_t count)
0540 {
0541     struct scsi_disk *sdkp = to_scsi_disk(dev);
0542     struct scsi_device *sdev = sdkp->device;
0543     int retries, err;
0544 
0545     err = kstrtoint(buf, 10, &retries);
0546     if (err)
0547         return err;
0548 
0549     if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
0550         sdkp->max_retries = retries;
0551         return count;
0552     }
0553 
0554     sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
0555             SD_MAX_RETRIES);
0556     return -EINVAL;
0557 }
0558 
0559 static ssize_t
0560 max_retries_show(struct device *dev, struct device_attribute *attr,
0561          char *buf)
0562 {
0563     struct scsi_disk *sdkp = to_scsi_disk(dev);
0564 
0565     return sprintf(buf, "%d\n", sdkp->max_retries);
0566 }
0567 
0568 static DEVICE_ATTR_RW(max_retries);
0569 
0570 static struct attribute *sd_disk_attrs[] = {
0571     &dev_attr_cache_type.attr,
0572     &dev_attr_FUA.attr,
0573     &dev_attr_allow_restart.attr,
0574     &dev_attr_manage_start_stop.attr,
0575     &dev_attr_protection_type.attr,
0576     &dev_attr_protection_mode.attr,
0577     &dev_attr_app_tag_own.attr,
0578     &dev_attr_thin_provisioning.attr,
0579     &dev_attr_provisioning_mode.attr,
0580     &dev_attr_zeroing_mode.attr,
0581     &dev_attr_max_write_same_blocks.attr,
0582     &dev_attr_max_medium_access_timeouts.attr,
0583     &dev_attr_zoned_cap.attr,
0584     &dev_attr_max_retries.attr,
0585     NULL,
0586 };
0587 ATTRIBUTE_GROUPS(sd_disk);
0588 
0589 static struct class sd_disk_class = {
0590     .name       = "scsi_disk",
0591     .owner      = THIS_MODULE,
0592     .dev_release    = scsi_disk_release,
0593     .dev_groups = sd_disk_groups,
0594 };
0595 
0596 static const struct dev_pm_ops sd_pm_ops = {
0597     .suspend        = sd_suspend_system,
0598     .resume         = sd_resume_system,
0599     .poweroff       = sd_suspend_system,
0600     .restore        = sd_resume_system,
0601     .runtime_suspend    = sd_suspend_runtime,
0602     .runtime_resume     = sd_resume_runtime,
0603 };
0604 
0605 static struct scsi_driver sd_template = {
0606     .gendrv = {
0607         .name       = "sd",
0608         .owner      = THIS_MODULE,
0609         .probe      = sd_probe,
0610         .probe_type = PROBE_PREFER_ASYNCHRONOUS,
0611         .remove     = sd_remove,
0612         .shutdown   = sd_shutdown,
0613         .pm     = &sd_pm_ops,
0614     },
0615     .rescan         = sd_rescan,
0616     .init_command       = sd_init_command,
0617     .uninit_command     = sd_uninit_command,
0618     .done           = sd_done,
0619     .eh_action      = sd_eh_action,
0620     .eh_reset       = sd_eh_reset,
0621 };
0622 
0623 /*
0624  * Don't request a new module, as that could deadlock in multipath
0625  * environment.
0626  */
0627 static void sd_default_probe(dev_t devt)
0628 {
0629 }
0630 
0631 /*
0632  * Device no to disk mapping:
0633  * 
0634  *       major         disc2     disc  p1
0635  *   |............|.............|....|....| <- dev_t
0636  *    31        20 19          8 7  4 3  0
0637  * 
0638  * Inside a major, we have 16k disks, however mapped non-
0639  * contiguously. The first 16 disks are for major0, the next
0640  * ones with major1, ... Disk 256 is for major0 again, disk 272 
0641  * for major1, ... 
0642  * As we stay compatible with our numbering scheme, we can reuse 
0643  * the well-know SCSI majors 8, 65--71, 136--143.
0644  */
0645 static int sd_major(int major_idx)
0646 {
0647     switch (major_idx) {
0648     case 0:
0649         return SCSI_DISK0_MAJOR;
0650     case 1 ... 7:
0651         return SCSI_DISK1_MAJOR + major_idx - 1;
0652     case 8 ... 15:
0653         return SCSI_DISK8_MAJOR + major_idx - 8;
0654     default:
0655         BUG();
0656         return 0;   /* shut up gcc */
0657     }
0658 }
0659 
0660 #ifdef CONFIG_BLK_SED_OPAL
0661 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
0662         size_t len, bool send)
0663 {
0664     struct scsi_disk *sdkp = data;
0665     struct scsi_device *sdev = sdkp->device;
0666     u8 cdb[12] = { 0, };
0667     int ret;
0668 
0669     cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
0670     cdb[1] = secp;
0671     put_unaligned_be16(spsp, &cdb[2]);
0672     put_unaligned_be32(len, &cdb[6]);
0673 
0674     ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
0675         buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
0676         RQF_PM, NULL);
0677     return ret <= 0 ? ret : -EIO;
0678 }
0679 #endif /* CONFIG_BLK_SED_OPAL */
0680 
0681 /*
0682  * Look up the DIX operation based on whether the command is read or
0683  * write and whether dix and dif are enabled.
0684  */
0685 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
0686 {
0687     /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
0688     static const unsigned int ops[] = { /* wrt dix dif */
0689         SCSI_PROT_NORMAL,       /*  0   0   0  */
0690         SCSI_PROT_READ_STRIP,       /*  0   0   1  */
0691         SCSI_PROT_READ_INSERT,      /*  0   1   0  */
0692         SCSI_PROT_READ_PASS,        /*  0   1   1  */
0693         SCSI_PROT_NORMAL,       /*  1   0   0  */
0694         SCSI_PROT_WRITE_INSERT,     /*  1   0   1  */
0695         SCSI_PROT_WRITE_STRIP,      /*  1   1   0  */
0696         SCSI_PROT_WRITE_PASS,       /*  1   1   1  */
0697     };
0698 
0699     return ops[write << 2 | dix << 1 | dif];
0700 }
0701 
0702 /*
0703  * Returns a mask of the protection flags that are valid for a given DIX
0704  * operation.
0705  */
0706 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
0707 {
0708     static const unsigned int flag_mask[] = {
0709         [SCSI_PROT_NORMAL]      = 0,
0710 
0711         [SCSI_PROT_READ_STRIP]      = SCSI_PROT_TRANSFER_PI |
0712                           SCSI_PROT_GUARD_CHECK |
0713                           SCSI_PROT_REF_CHECK |
0714                           SCSI_PROT_REF_INCREMENT,
0715 
0716         [SCSI_PROT_READ_INSERT]     = SCSI_PROT_REF_INCREMENT |
0717                           SCSI_PROT_IP_CHECKSUM,
0718 
0719         [SCSI_PROT_READ_PASS]       = SCSI_PROT_TRANSFER_PI |
0720                           SCSI_PROT_GUARD_CHECK |
0721                           SCSI_PROT_REF_CHECK |
0722                           SCSI_PROT_REF_INCREMENT |
0723                           SCSI_PROT_IP_CHECKSUM,
0724 
0725         [SCSI_PROT_WRITE_INSERT]    = SCSI_PROT_TRANSFER_PI |
0726                           SCSI_PROT_REF_INCREMENT,
0727 
0728         [SCSI_PROT_WRITE_STRIP]     = SCSI_PROT_GUARD_CHECK |
0729                           SCSI_PROT_REF_CHECK |
0730                           SCSI_PROT_REF_INCREMENT |
0731                           SCSI_PROT_IP_CHECKSUM,
0732 
0733         [SCSI_PROT_WRITE_PASS]      = SCSI_PROT_TRANSFER_PI |
0734                           SCSI_PROT_GUARD_CHECK |
0735                           SCSI_PROT_REF_CHECK |
0736                           SCSI_PROT_REF_INCREMENT |
0737                           SCSI_PROT_IP_CHECKSUM,
0738     };
0739 
0740     return flag_mask[prot_op];
0741 }
0742 
0743 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
0744                        unsigned int dix, unsigned int dif)
0745 {
0746     struct request *rq = scsi_cmd_to_rq(scmd);
0747     struct bio *bio = rq->bio;
0748     unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
0749     unsigned int protect = 0;
0750 
0751     if (dix) {              /* DIX Type 0, 1, 2, 3 */
0752         if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
0753             scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
0754 
0755         if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
0756             scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
0757     }
0758 
0759     if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
0760         scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
0761 
0762         if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
0763             scmd->prot_flags |= SCSI_PROT_REF_CHECK;
0764     }
0765 
0766     if (dif) {              /* DIX/DIF Type 1, 2, 3 */
0767         scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
0768 
0769         if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
0770             protect = 3 << 5;   /* Disable target PI checking */
0771         else
0772             protect = 1 << 5;   /* Enable target PI checking */
0773     }
0774 
0775     scsi_set_prot_op(scmd, prot_op);
0776     scsi_set_prot_type(scmd, dif);
0777     scmd->prot_flags &= sd_prot_flag_mask(prot_op);
0778 
0779     return protect;
0780 }
0781 
0782 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
0783 {
0784     struct request_queue *q = sdkp->disk->queue;
0785     unsigned int logical_block_size = sdkp->device->sector_size;
0786     unsigned int max_blocks = 0;
0787 
0788     q->limits.discard_alignment =
0789         sdkp->unmap_alignment * logical_block_size;
0790     q->limits.discard_granularity =
0791         max(sdkp->physical_block_size,
0792             sdkp->unmap_granularity * logical_block_size);
0793     sdkp->provisioning_mode = mode;
0794 
0795     switch (mode) {
0796 
0797     case SD_LBP_FULL:
0798     case SD_LBP_DISABLE:
0799         blk_queue_max_discard_sectors(q, 0);
0800         return;
0801 
0802     case SD_LBP_UNMAP:
0803         max_blocks = min_not_zero(sdkp->max_unmap_blocks,
0804                       (u32)SD_MAX_WS16_BLOCKS);
0805         break;
0806 
0807     case SD_LBP_WS16:
0808         if (sdkp->device->unmap_limit_for_ws)
0809             max_blocks = sdkp->max_unmap_blocks;
0810         else
0811             max_blocks = sdkp->max_ws_blocks;
0812 
0813         max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
0814         break;
0815 
0816     case SD_LBP_WS10:
0817         if (sdkp->device->unmap_limit_for_ws)
0818             max_blocks = sdkp->max_unmap_blocks;
0819         else
0820             max_blocks = sdkp->max_ws_blocks;
0821 
0822         max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
0823         break;
0824 
0825     case SD_LBP_ZERO:
0826         max_blocks = min_not_zero(sdkp->max_ws_blocks,
0827                       (u32)SD_MAX_WS10_BLOCKS);
0828         break;
0829     }
0830 
0831     blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
0832 }
0833 
0834 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
0835 {
0836     struct scsi_device *sdp = cmd->device;
0837     struct request *rq = scsi_cmd_to_rq(cmd);
0838     struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
0839     u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
0840     u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
0841     unsigned int data_len = 24;
0842     char *buf;
0843 
0844     rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
0845     if (!rq->special_vec.bv_page)
0846         return BLK_STS_RESOURCE;
0847     clear_highpage(rq->special_vec.bv_page);
0848     rq->special_vec.bv_offset = 0;
0849     rq->special_vec.bv_len = data_len;
0850     rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
0851 
0852     cmd->cmd_len = 10;
0853     cmd->cmnd[0] = UNMAP;
0854     cmd->cmnd[8] = 24;
0855 
0856     buf = bvec_virt(&rq->special_vec);
0857     put_unaligned_be16(6 + 16, &buf[0]);
0858     put_unaligned_be16(16, &buf[2]);
0859     put_unaligned_be64(lba, &buf[8]);
0860     put_unaligned_be32(nr_blocks, &buf[16]);
0861 
0862     cmd->allowed = sdkp->max_retries;
0863     cmd->transfersize = data_len;
0864     rq->timeout = SD_TIMEOUT;
0865 
0866     return scsi_alloc_sgtables(cmd);
0867 }
0868 
0869 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
0870         bool unmap)
0871 {
0872     struct scsi_device *sdp = cmd->device;
0873     struct request *rq = scsi_cmd_to_rq(cmd);
0874     struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
0875     u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
0876     u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
0877     u32 data_len = sdp->sector_size;
0878 
0879     rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
0880     if (!rq->special_vec.bv_page)
0881         return BLK_STS_RESOURCE;
0882     clear_highpage(rq->special_vec.bv_page);
0883     rq->special_vec.bv_offset = 0;
0884     rq->special_vec.bv_len = data_len;
0885     rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
0886 
0887     cmd->cmd_len = 16;
0888     cmd->cmnd[0] = WRITE_SAME_16;
0889     if (unmap)
0890         cmd->cmnd[1] = 0x8; /* UNMAP */
0891     put_unaligned_be64(lba, &cmd->cmnd[2]);
0892     put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
0893 
0894     cmd->allowed = sdkp->max_retries;
0895     cmd->transfersize = data_len;
0896     rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
0897 
0898     return scsi_alloc_sgtables(cmd);
0899 }
0900 
0901 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
0902         bool unmap)
0903 {
0904     struct scsi_device *sdp = cmd->device;
0905     struct request *rq = scsi_cmd_to_rq(cmd);
0906     struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
0907     u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
0908     u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
0909     u32 data_len = sdp->sector_size;
0910 
0911     rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
0912     if (!rq->special_vec.bv_page)
0913         return BLK_STS_RESOURCE;
0914     clear_highpage(rq->special_vec.bv_page);
0915     rq->special_vec.bv_offset = 0;
0916     rq->special_vec.bv_len = data_len;
0917     rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
0918 
0919     cmd->cmd_len = 10;
0920     cmd->cmnd[0] = WRITE_SAME;
0921     if (unmap)
0922         cmd->cmnd[1] = 0x8; /* UNMAP */
0923     put_unaligned_be32(lba, &cmd->cmnd[2]);
0924     put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
0925 
0926     cmd->allowed = sdkp->max_retries;
0927     cmd->transfersize = data_len;
0928     rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
0929 
0930     return scsi_alloc_sgtables(cmd);
0931 }
0932 
0933 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
0934 {
0935     struct request *rq = scsi_cmd_to_rq(cmd);
0936     struct scsi_device *sdp = cmd->device;
0937     struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
0938     u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
0939     u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
0940 
0941     if (!(rq->cmd_flags & REQ_NOUNMAP)) {
0942         switch (sdkp->zeroing_mode) {
0943         case SD_ZERO_WS16_UNMAP:
0944             return sd_setup_write_same16_cmnd(cmd, true);
0945         case SD_ZERO_WS10_UNMAP:
0946             return sd_setup_write_same10_cmnd(cmd, true);
0947         }
0948     }
0949 
0950     if (sdp->no_write_same) {
0951         rq->rq_flags |= RQF_QUIET;
0952         return BLK_STS_TARGET;
0953     }
0954 
0955     if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
0956         return sd_setup_write_same16_cmnd(cmd, false);
0957 
0958     return sd_setup_write_same10_cmnd(cmd, false);
0959 }
0960 
0961 static void sd_config_write_same(struct scsi_disk *sdkp)
0962 {
0963     struct request_queue *q = sdkp->disk->queue;
0964     unsigned int logical_block_size = sdkp->device->sector_size;
0965 
0966     if (sdkp->device->no_write_same) {
0967         sdkp->max_ws_blocks = 0;
0968         goto out;
0969     }
0970 
0971     /* Some devices can not handle block counts above 0xffff despite
0972      * supporting WRITE SAME(16). Consequently we default to 64k
0973      * blocks per I/O unless the device explicitly advertises a
0974      * bigger limit.
0975      */
0976     if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
0977         sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
0978                            (u32)SD_MAX_WS16_BLOCKS);
0979     else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
0980         sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
0981                            (u32)SD_MAX_WS10_BLOCKS);
0982     else {
0983         sdkp->device->no_write_same = 1;
0984         sdkp->max_ws_blocks = 0;
0985     }
0986 
0987     if (sdkp->lbprz && sdkp->lbpws)
0988         sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
0989     else if (sdkp->lbprz && sdkp->lbpws10)
0990         sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
0991     else if (sdkp->max_ws_blocks)
0992         sdkp->zeroing_mode = SD_ZERO_WS;
0993     else
0994         sdkp->zeroing_mode = SD_ZERO_WRITE;
0995 
0996     if (sdkp->max_ws_blocks &&
0997         sdkp->physical_block_size > logical_block_size) {
0998         /*
0999          * Reporting a maximum number of blocks that is not aligned
1000          * on the device physical size would cause a large write same
1001          * request to be split into physically unaligned chunks by
1002          * __blkdev_issue_write_zeroes() even if the caller of this
1003          * functions took care to align the large request. So make sure
1004          * the maximum reported is aligned to the device physical block
1005          * size. This is only an optional optimization for regular
1006          * disks, but this is mandatory to avoid failure of large write
1007          * same requests directed at sequential write required zones of
1008          * host-managed ZBC disks.
1009          */
1010         sdkp->max_ws_blocks =
1011             round_down(sdkp->max_ws_blocks,
1012                    bytes_to_logical(sdkp->device,
1013                             sdkp->physical_block_size));
1014     }
1015 
1016 out:
1017     blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1018                      (logical_block_size >> 9));
1019 }
1020 
1021 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1022 {
1023     struct request *rq = scsi_cmd_to_rq(cmd);
1024     struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1025 
1026     /* flush requests don't perform I/O, zero the S/G table */
1027     memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1028 
1029     cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1030     cmd->cmd_len = 10;
1031     cmd->transfersize = 0;
1032     cmd->allowed = sdkp->max_retries;
1033 
1034     rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1035     return BLK_STS_OK;
1036 }
1037 
1038 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1039                        sector_t lba, unsigned int nr_blocks,
1040                        unsigned char flags)
1041 {
1042     cmd->cmd_len = SD_EXT_CDB_SIZE;
1043     cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1044     cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1045     cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1046     cmd->cmnd[10] = flags;
1047     put_unaligned_be64(lba, &cmd->cmnd[12]);
1048     put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1049     put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1050 
1051     return BLK_STS_OK;
1052 }
1053 
1054 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1055                        sector_t lba, unsigned int nr_blocks,
1056                        unsigned char flags)
1057 {
1058     cmd->cmd_len  = 16;
1059     cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1060     cmd->cmnd[1]  = flags;
1061     cmd->cmnd[14] = 0;
1062     cmd->cmnd[15] = 0;
1063     put_unaligned_be64(lba, &cmd->cmnd[2]);
1064     put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1065 
1066     return BLK_STS_OK;
1067 }
1068 
1069 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1070                        sector_t lba, unsigned int nr_blocks,
1071                        unsigned char flags)
1072 {
1073     cmd->cmd_len = 10;
1074     cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1075     cmd->cmnd[1] = flags;
1076     cmd->cmnd[6] = 0;
1077     cmd->cmnd[9] = 0;
1078     put_unaligned_be32(lba, &cmd->cmnd[2]);
1079     put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1080 
1081     return BLK_STS_OK;
1082 }
1083 
1084 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1085                       sector_t lba, unsigned int nr_blocks,
1086                       unsigned char flags)
1087 {
1088     /* Avoid that 0 blocks gets translated into 256 blocks. */
1089     if (WARN_ON_ONCE(nr_blocks == 0))
1090         return BLK_STS_IOERR;
1091 
1092     if (unlikely(flags & 0x8)) {
1093         /*
1094          * This happens only if this drive failed 10byte rw
1095          * command with ILLEGAL_REQUEST during operation and
1096          * thus turned off use_10_for_rw.
1097          */
1098         scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1099         return BLK_STS_IOERR;
1100     }
1101 
1102     cmd->cmd_len = 6;
1103     cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1104     cmd->cmnd[1] = (lba >> 16) & 0x1f;
1105     cmd->cmnd[2] = (lba >> 8) & 0xff;
1106     cmd->cmnd[3] = lba & 0xff;
1107     cmd->cmnd[4] = nr_blocks;
1108     cmd->cmnd[5] = 0;
1109 
1110     return BLK_STS_OK;
1111 }
1112 
1113 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1114 {
1115     struct request *rq = scsi_cmd_to_rq(cmd);
1116     struct scsi_device *sdp = cmd->device;
1117     struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1118     sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1119     sector_t threshold;
1120     unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1121     unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1122     bool write = rq_data_dir(rq) == WRITE;
1123     unsigned char protect, fua;
1124     blk_status_t ret;
1125     unsigned int dif;
1126     bool dix;
1127 
1128     ret = scsi_alloc_sgtables(cmd);
1129     if (ret != BLK_STS_OK)
1130         return ret;
1131 
1132     ret = BLK_STS_IOERR;
1133     if (!scsi_device_online(sdp) || sdp->changed) {
1134         scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1135         goto fail;
1136     }
1137 
1138     if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1139         scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1140         goto fail;
1141     }
1142 
1143     if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1144         scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1145         goto fail;
1146     }
1147 
1148     /*
1149      * Some SD card readers can't handle accesses which touch the
1150      * last one or two logical blocks. Split accesses as needed.
1151      */
1152     threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1153 
1154     if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1155         if (lba < threshold) {
1156             /* Access up to the threshold but not beyond */
1157             nr_blocks = threshold - lba;
1158         } else {
1159             /* Access only a single logical block */
1160             nr_blocks = 1;
1161         }
1162     }
1163 
1164     if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1165         ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1166         if (ret)
1167             goto fail;
1168     }
1169 
1170     fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1171     dix = scsi_prot_sg_count(cmd);
1172     dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1173 
1174     if (dif || dix)
1175         protect = sd_setup_protect_cmnd(cmd, dix, dif);
1176     else
1177         protect = 0;
1178 
1179     if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1180         ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1181                      protect | fua);
1182     } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1183         ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1184                      protect | fua);
1185     } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1186            sdp->use_10_for_rw || protect) {
1187         ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1188                      protect | fua);
1189     } else {
1190         ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1191                     protect | fua);
1192     }
1193 
1194     if (unlikely(ret != BLK_STS_OK))
1195         goto fail;
1196 
1197     /*
1198      * We shouldn't disconnect in the middle of a sector, so with a dumb
1199      * host adapter, it's safe to assume that we can at least transfer
1200      * this many bytes between each connect / disconnect.
1201      */
1202     cmd->transfersize = sdp->sector_size;
1203     cmd->underflow = nr_blocks << 9;
1204     cmd->allowed = sdkp->max_retries;
1205     cmd->sdb.length = nr_blocks * sdp->sector_size;
1206 
1207     SCSI_LOG_HLQUEUE(1,
1208              scmd_printk(KERN_INFO, cmd,
1209                      "%s: block=%llu, count=%d\n", __func__,
1210                      (unsigned long long)blk_rq_pos(rq),
1211                      blk_rq_sectors(rq)));
1212     SCSI_LOG_HLQUEUE(2,
1213              scmd_printk(KERN_INFO, cmd,
1214                      "%s %d/%u 512 byte blocks.\n",
1215                      write ? "writing" : "reading", nr_blocks,
1216                      blk_rq_sectors(rq)));
1217 
1218     /*
1219      * This indicates that the command is ready from our end to be queued.
1220      */
1221     return BLK_STS_OK;
1222 fail:
1223     scsi_free_sgtables(cmd);
1224     return ret;
1225 }
1226 
1227 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1228 {
1229     struct request *rq = scsi_cmd_to_rq(cmd);
1230 
1231     switch (req_op(rq)) {
1232     case REQ_OP_DISCARD:
1233         switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1234         case SD_LBP_UNMAP:
1235             return sd_setup_unmap_cmnd(cmd);
1236         case SD_LBP_WS16:
1237             return sd_setup_write_same16_cmnd(cmd, true);
1238         case SD_LBP_WS10:
1239             return sd_setup_write_same10_cmnd(cmd, true);
1240         case SD_LBP_ZERO:
1241             return sd_setup_write_same10_cmnd(cmd, false);
1242         default:
1243             return BLK_STS_TARGET;
1244         }
1245     case REQ_OP_WRITE_ZEROES:
1246         return sd_setup_write_zeroes_cmnd(cmd);
1247     case REQ_OP_FLUSH:
1248         return sd_setup_flush_cmnd(cmd);
1249     case REQ_OP_READ:
1250     case REQ_OP_WRITE:
1251     case REQ_OP_ZONE_APPEND:
1252         return sd_setup_read_write_cmnd(cmd);
1253     case REQ_OP_ZONE_RESET:
1254         return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1255                            false);
1256     case REQ_OP_ZONE_RESET_ALL:
1257         return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1258                            true);
1259     case REQ_OP_ZONE_OPEN:
1260         return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1261     case REQ_OP_ZONE_CLOSE:
1262         return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1263     case REQ_OP_ZONE_FINISH:
1264         return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1265     default:
1266         WARN_ON_ONCE(1);
1267         return BLK_STS_NOTSUPP;
1268     }
1269 }
1270 
1271 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1272 {
1273     struct request *rq = scsi_cmd_to_rq(SCpnt);
1274 
1275     if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1276         mempool_free(rq->special_vec.bv_page, sd_page_pool);
1277 }
1278 
1279 static bool sd_need_revalidate(struct block_device *bdev,
1280         struct scsi_disk *sdkp)
1281 {
1282     if (sdkp->device->removable || sdkp->write_prot) {
1283         if (bdev_check_media_change(bdev))
1284             return true;
1285     }
1286 
1287     /*
1288      * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1289      * nothing to do with partitions, BLKRRPART is used to force a full
1290      * revalidate after things like a format for historical reasons.
1291      */
1292     return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1293 }
1294 
1295 /**
1296  *  sd_open - open a scsi disk device
1297  *  @bdev: Block device of the scsi disk to open
1298  *  @mode: FMODE_* mask
1299  *
1300  *  Returns 0 if successful. Returns a negated errno value in case 
1301  *  of error.
1302  *
1303  *  Note: This can be called from a user context (e.g. fsck(1) )
1304  *  or from within the kernel (e.g. as a result of a mount(1) ).
1305  *  In the latter case @inode and @filp carry an abridged amount
1306  *  of information as noted above.
1307  *
1308  *  Locking: called with bdev->bd_disk->open_mutex held.
1309  **/
1310 static int sd_open(struct block_device *bdev, fmode_t mode)
1311 {
1312     struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1313     struct scsi_device *sdev = sdkp->device;
1314     int retval;
1315 
1316     if (scsi_device_get(sdev))
1317         return -ENXIO;
1318 
1319     SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1320 
1321     /*
1322      * If the device is in error recovery, wait until it is done.
1323      * If the device is offline, then disallow any access to it.
1324      */
1325     retval = -ENXIO;
1326     if (!scsi_block_when_processing_errors(sdev))
1327         goto error_out;
1328 
1329     if (sd_need_revalidate(bdev, sdkp))
1330         sd_revalidate_disk(bdev->bd_disk);
1331 
1332     /*
1333      * If the drive is empty, just let the open fail.
1334      */
1335     retval = -ENOMEDIUM;
1336     if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1337         goto error_out;
1338 
1339     /*
1340      * If the device has the write protect tab set, have the open fail
1341      * if the user expects to be able to write to the thing.
1342      */
1343     retval = -EROFS;
1344     if (sdkp->write_prot && (mode & FMODE_WRITE))
1345         goto error_out;
1346 
1347     /*
1348      * It is possible that the disk changing stuff resulted in
1349      * the device being taken offline.  If this is the case,
1350      * report this to the user, and don't pretend that the
1351      * open actually succeeded.
1352      */
1353     retval = -ENXIO;
1354     if (!scsi_device_online(sdev))
1355         goto error_out;
1356 
1357     if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1358         if (scsi_block_when_processing_errors(sdev))
1359             scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1360     }
1361 
1362     return 0;
1363 
1364 error_out:
1365     scsi_device_put(sdev);
1366     return retval;  
1367 }
1368 
1369 /**
1370  *  sd_release - invoked when the (last) close(2) is called on this
1371  *  scsi disk.
1372  *  @disk: disk to release
1373  *  @mode: FMODE_* mask
1374  *
1375  *  Returns 0. 
1376  *
1377  *  Note: may block (uninterruptible) if error recovery is underway
1378  *  on this disk.
1379  *
1380  *  Locking: called with bdev->bd_disk->open_mutex held.
1381  **/
1382 static void sd_release(struct gendisk *disk, fmode_t mode)
1383 {
1384     struct scsi_disk *sdkp = scsi_disk(disk);
1385     struct scsi_device *sdev = sdkp->device;
1386 
1387     SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1388 
1389     if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1390         if (scsi_block_when_processing_errors(sdev))
1391             scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1392     }
1393 
1394     scsi_device_put(sdev);
1395 }
1396 
1397 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1398 {
1399     struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1400     struct scsi_device *sdp = sdkp->device;
1401     struct Scsi_Host *host = sdp->host;
1402     sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1403     int diskinfo[4];
1404 
1405     /* default to most commonly used values */
1406     diskinfo[0] = 0x40; /* 1 << 6 */
1407     diskinfo[1] = 0x20; /* 1 << 5 */
1408     diskinfo[2] = capacity >> 11;
1409 
1410     /* override with calculated, extended default, or driver values */
1411     if (host->hostt->bios_param)
1412         host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1413     else
1414         scsicam_bios_param(bdev, capacity, diskinfo);
1415 
1416     geo->heads = diskinfo[0];
1417     geo->sectors = diskinfo[1];
1418     geo->cylinders = diskinfo[2];
1419     return 0;
1420 }
1421 
1422 /**
1423  *  sd_ioctl - process an ioctl
1424  *  @bdev: target block device
1425  *  @mode: FMODE_* mask
1426  *  @cmd: ioctl command number
1427  *  @arg: this is third argument given to ioctl(2) system call.
1428  *  Often contains a pointer.
1429  *
1430  *  Returns 0 if successful (some ioctls return positive numbers on
1431  *  success as well). Returns a negated errno value in case of error.
1432  *
1433  *  Note: most ioctls are forward onto the block subsystem or further
1434  *  down in the scsi subsystem.
1435  **/
1436 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1437             unsigned int cmd, unsigned long arg)
1438 {
1439     struct gendisk *disk = bdev->bd_disk;
1440     struct scsi_disk *sdkp = scsi_disk(disk);
1441     struct scsi_device *sdp = sdkp->device;
1442     void __user *p = (void __user *)arg;
1443     int error;
1444     
1445     SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1446                     "cmd=0x%x\n", disk->disk_name, cmd));
1447 
1448     if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1449         return -ENOIOCTLCMD;
1450 
1451     /*
1452      * If we are in the middle of error recovery, don't let anyone
1453      * else try and use this device.  Also, if error recovery fails, it
1454      * may try and take the device offline, in which case all further
1455      * access to the device is prohibited.
1456      */
1457     error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1458             (mode & FMODE_NDELAY) != 0);
1459     if (error)
1460         return error;
1461 
1462     if (is_sed_ioctl(cmd))
1463         return sed_ioctl(sdkp->opal_dev, cmd, p);
1464     return scsi_ioctl(sdp, mode, cmd, p);
1465 }
1466 
1467 static void set_media_not_present(struct scsi_disk *sdkp)
1468 {
1469     if (sdkp->media_present)
1470         sdkp->device->changed = 1;
1471 
1472     if (sdkp->device->removable) {
1473         sdkp->media_present = 0;
1474         sdkp->capacity = 0;
1475     }
1476 }
1477 
1478 static int media_not_present(struct scsi_disk *sdkp,
1479                  struct scsi_sense_hdr *sshdr)
1480 {
1481     if (!scsi_sense_valid(sshdr))
1482         return 0;
1483 
1484     /* not invoked for commands that could return deferred errors */
1485     switch (sshdr->sense_key) {
1486     case UNIT_ATTENTION:
1487     case NOT_READY:
1488         /* medium not present */
1489         if (sshdr->asc == 0x3A) {
1490             set_media_not_present(sdkp);
1491             return 1;
1492         }
1493     }
1494     return 0;
1495 }
1496 
1497 /**
1498  *  sd_check_events - check media events
1499  *  @disk: kernel device descriptor
1500  *  @clearing: disk events currently being cleared
1501  *
1502  *  Returns mask of DISK_EVENT_*.
1503  *
1504  *  Note: this function is invoked from the block subsystem.
1505  **/
1506 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1507 {
1508     struct scsi_disk *sdkp = disk->private_data;
1509     struct scsi_device *sdp;
1510     int retval;
1511     bool disk_changed;
1512 
1513     if (!sdkp)
1514         return 0;
1515 
1516     sdp = sdkp->device;
1517     SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1518 
1519     /*
1520      * If the device is offline, don't send any commands - just pretend as
1521      * if the command failed.  If the device ever comes back online, we
1522      * can deal with it then.  It is only because of unrecoverable errors
1523      * that we would ever take a device offline in the first place.
1524      */
1525     if (!scsi_device_online(sdp)) {
1526         set_media_not_present(sdkp);
1527         goto out;
1528     }
1529 
1530     /*
1531      * Using TEST_UNIT_READY enables differentiation between drive with
1532      * no cartridge loaded - NOT READY, drive with changed cartridge -
1533      * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1534      *
1535      * Drives that auto spin down. eg iomega jaz 1G, will be started
1536      * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1537      * sd_revalidate() is called.
1538      */
1539     if (scsi_block_when_processing_errors(sdp)) {
1540         struct scsi_sense_hdr sshdr = { 0, };
1541 
1542         retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1543                           &sshdr);
1544 
1545         /* failed to execute TUR, assume media not present */
1546         if (retval < 0 || host_byte(retval)) {
1547             set_media_not_present(sdkp);
1548             goto out;
1549         }
1550 
1551         if (media_not_present(sdkp, &sshdr))
1552             goto out;
1553     }
1554 
1555     /*
1556      * For removable scsi disk we have to recognise the presence
1557      * of a disk in the drive.
1558      */
1559     if (!sdkp->media_present)
1560         sdp->changed = 1;
1561     sdkp->media_present = 1;
1562 out:
1563     /*
1564      * sdp->changed is set under the following conditions:
1565      *
1566      *  Medium present state has changed in either direction.
1567      *  Device has indicated UNIT_ATTENTION.
1568      */
1569     disk_changed = sdp->changed;
1570     sdp->changed = 0;
1571     return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1572 }
1573 
1574 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1575 {
1576     int retries, res;
1577     struct scsi_device *sdp = sdkp->device;
1578     const int timeout = sdp->request_queue->rq_timeout
1579         * SD_FLUSH_TIMEOUT_MULTIPLIER;
1580     struct scsi_sense_hdr my_sshdr;
1581 
1582     if (!scsi_device_online(sdp))
1583         return -ENODEV;
1584 
1585     /* caller might not be interested in sense, but we need it */
1586     if (!sshdr)
1587         sshdr = &my_sshdr;
1588 
1589     for (retries = 3; retries > 0; --retries) {
1590         unsigned char cmd[10] = { 0 };
1591 
1592         cmd[0] = SYNCHRONIZE_CACHE;
1593         /*
1594          * Leave the rest of the command zero to indicate
1595          * flush everything.
1596          */
1597         res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1598                 timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1599         if (res == 0)
1600             break;
1601     }
1602 
1603     if (res) {
1604         sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1605 
1606         if (res < 0)
1607             return res;
1608 
1609         if (scsi_status_is_check_condition(res) &&
1610             scsi_sense_valid(sshdr)) {
1611             sd_print_sense_hdr(sdkp, sshdr);
1612 
1613             /* we need to evaluate the error return  */
1614             if (sshdr->asc == 0x3a ||   /* medium not present */
1615                 sshdr->asc == 0x20 ||   /* invalid command */
1616                 (sshdr->asc == 0x74 && sshdr->ascq == 0x71))    /* drive is password locked */
1617                 /* this is no error here */
1618                 return 0;
1619         }
1620 
1621         switch (host_byte(res)) {
1622         /* ignore errors due to racing a disconnection */
1623         case DID_BAD_TARGET:
1624         case DID_NO_CONNECT:
1625             return 0;
1626         /* signal the upper layer it might try again */
1627         case DID_BUS_BUSY:
1628         case DID_IMM_RETRY:
1629         case DID_REQUEUE:
1630         case DID_SOFT_ERROR:
1631             return -EBUSY;
1632         default:
1633             return -EIO;
1634         }
1635     }
1636     return 0;
1637 }
1638 
1639 static void sd_rescan(struct device *dev)
1640 {
1641     struct scsi_disk *sdkp = dev_get_drvdata(dev);
1642 
1643     sd_revalidate_disk(sdkp->disk);
1644 }
1645 
1646 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1647         enum blk_unique_id type)
1648 {
1649     struct scsi_device *sdev = scsi_disk(disk)->device;
1650     const struct scsi_vpd *vpd;
1651     const unsigned char *d;
1652     int ret = -ENXIO, len;
1653 
1654     rcu_read_lock();
1655     vpd = rcu_dereference(sdev->vpd_pg83);
1656     if (!vpd)
1657         goto out_unlock;
1658 
1659     ret = -EINVAL;
1660     for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1661         /* we only care about designators with LU association */
1662         if (((d[1] >> 4) & 0x3) != 0x00)
1663             continue;
1664         if ((d[1] & 0xf) != type)
1665             continue;
1666 
1667         /*
1668          * Only exit early if a 16-byte descriptor was found.  Otherwise
1669          * keep looking as one with more entropy might still show up.
1670          */
1671         len = d[3];
1672         if (len != 8 && len != 12 && len != 16)
1673             continue;
1674         ret = len;
1675         memcpy(id, d + 4, len);
1676         if (len == 16)
1677             break;
1678     }
1679 out_unlock:
1680     rcu_read_unlock();
1681     return ret;
1682 }
1683 
1684 static char sd_pr_type(enum pr_type type)
1685 {
1686     switch (type) {
1687     case PR_WRITE_EXCLUSIVE:
1688         return 0x01;
1689     case PR_EXCLUSIVE_ACCESS:
1690         return 0x03;
1691     case PR_WRITE_EXCLUSIVE_REG_ONLY:
1692         return 0x05;
1693     case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1694         return 0x06;
1695     case PR_WRITE_EXCLUSIVE_ALL_REGS:
1696         return 0x07;
1697     case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1698         return 0x08;
1699     default:
1700         return 0;
1701     }
1702 };
1703 
1704 static int sd_pr_command(struct block_device *bdev, u8 sa,
1705         u64 key, u64 sa_key, u8 type, u8 flags)
1706 {
1707     struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1708     struct scsi_device *sdev = sdkp->device;
1709     struct scsi_sense_hdr sshdr;
1710     int result;
1711     u8 cmd[16] = { 0, };
1712     u8 data[24] = { 0, };
1713 
1714     cmd[0] = PERSISTENT_RESERVE_OUT;
1715     cmd[1] = sa;
1716     cmd[2] = type;
1717     put_unaligned_be32(sizeof(data), &cmd[5]);
1718 
1719     put_unaligned_be64(key, &data[0]);
1720     put_unaligned_be64(sa_key, &data[8]);
1721     data[20] = flags;
1722 
1723     result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1724             &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1725 
1726     if (scsi_status_is_check_condition(result) &&
1727         scsi_sense_valid(&sshdr)) {
1728         sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1729         scsi_print_sense_hdr(sdev, NULL, &sshdr);
1730     }
1731 
1732     return result;
1733 }
1734 
1735 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1736         u32 flags)
1737 {
1738     if (flags & ~PR_FL_IGNORE_KEY)
1739         return -EOPNOTSUPP;
1740     return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1741             old_key, new_key, 0,
1742             (1 << 0) /* APTPL */);
1743 }
1744 
1745 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1746         u32 flags)
1747 {
1748     if (flags)
1749         return -EOPNOTSUPP;
1750     return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1751 }
1752 
1753 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1754 {
1755     return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1756 }
1757 
1758 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1759         enum pr_type type, bool abort)
1760 {
1761     return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1762                  sd_pr_type(type), 0);
1763 }
1764 
1765 static int sd_pr_clear(struct block_device *bdev, u64 key)
1766 {
1767     return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1768 }
1769 
1770 static const struct pr_ops sd_pr_ops = {
1771     .pr_register    = sd_pr_register,
1772     .pr_reserve = sd_pr_reserve,
1773     .pr_release = sd_pr_release,
1774     .pr_preempt = sd_pr_preempt,
1775     .pr_clear   = sd_pr_clear,
1776 };
1777 
1778 static void scsi_disk_free_disk(struct gendisk *disk)
1779 {
1780     struct scsi_disk *sdkp = scsi_disk(disk);
1781 
1782     put_device(&sdkp->disk_dev);
1783 }
1784 
1785 static const struct block_device_operations sd_fops = {
1786     .owner          = THIS_MODULE,
1787     .open           = sd_open,
1788     .release        = sd_release,
1789     .ioctl          = sd_ioctl,
1790     .getgeo         = sd_getgeo,
1791     .compat_ioctl       = blkdev_compat_ptr_ioctl,
1792     .check_events       = sd_check_events,
1793     .unlock_native_capacity = sd_unlock_native_capacity,
1794     .report_zones       = sd_zbc_report_zones,
1795     .get_unique_id      = sd_get_unique_id,
1796     .free_disk      = scsi_disk_free_disk,
1797     .pr_ops         = &sd_pr_ops,
1798 };
1799 
1800 /**
1801  *  sd_eh_reset - reset error handling callback
1802  *  @scmd:      sd-issued command that has failed
1803  *
1804  *  This function is called by the SCSI midlayer before starting
1805  *  SCSI EH. When counting medium access failures we have to be
1806  *  careful to register it only only once per device and SCSI EH run;
1807  *  there might be several timed out commands which will cause the
1808  *  'max_medium_access_timeouts' counter to trigger after the first
1809  *  SCSI EH run already and set the device to offline.
1810  *  So this function resets the internal counter before starting SCSI EH.
1811  **/
1812 static void sd_eh_reset(struct scsi_cmnd *scmd)
1813 {
1814     struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1815 
1816     /* New SCSI EH run, reset gate variable */
1817     sdkp->ignore_medium_access_errors = false;
1818 }
1819 
1820 /**
1821  *  sd_eh_action - error handling callback
1822  *  @scmd:      sd-issued command that has failed
1823  *  @eh_disp:   The recovery disposition suggested by the midlayer
1824  *
1825  *  This function is called by the SCSI midlayer upon completion of an
1826  *  error test command (currently TEST UNIT READY). The result of sending
1827  *  the eh command is passed in eh_disp.  We're looking for devices that
1828  *  fail medium access commands but are OK with non access commands like
1829  *  test unit ready (so wrongly see the device as having a successful
1830  *  recovery)
1831  **/
1832 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1833 {
1834     struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1835     struct scsi_device *sdev = scmd->device;
1836 
1837     if (!scsi_device_online(sdev) ||
1838         !scsi_medium_access_command(scmd) ||
1839         host_byte(scmd->result) != DID_TIME_OUT ||
1840         eh_disp != SUCCESS)
1841         return eh_disp;
1842 
1843     /*
1844      * The device has timed out executing a medium access command.
1845      * However, the TEST UNIT READY command sent during error
1846      * handling completed successfully. Either the device is in the
1847      * process of recovering or has it suffered an internal failure
1848      * that prevents access to the storage medium.
1849      */
1850     if (!sdkp->ignore_medium_access_errors) {
1851         sdkp->medium_access_timed_out++;
1852         sdkp->ignore_medium_access_errors = true;
1853     }
1854 
1855     /*
1856      * If the device keeps failing read/write commands but TEST UNIT
1857      * READY always completes successfully we assume that medium
1858      * access is no longer possible and take the device offline.
1859      */
1860     if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1861         scmd_printk(KERN_ERR, scmd,
1862                 "Medium access timeout failure. Offlining disk!\n");
1863         mutex_lock(&sdev->state_mutex);
1864         scsi_device_set_state(sdev, SDEV_OFFLINE);
1865         mutex_unlock(&sdev->state_mutex);
1866 
1867         return SUCCESS;
1868     }
1869 
1870     return eh_disp;
1871 }
1872 
1873 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1874 {
1875     struct request *req = scsi_cmd_to_rq(scmd);
1876     struct scsi_device *sdev = scmd->device;
1877     unsigned int transferred, good_bytes;
1878     u64 start_lba, end_lba, bad_lba;
1879 
1880     /*
1881      * Some commands have a payload smaller than the device logical
1882      * block size (e.g. INQUIRY on a 4K disk).
1883      */
1884     if (scsi_bufflen(scmd) <= sdev->sector_size)
1885         return 0;
1886 
1887     /* Check if we have a 'bad_lba' information */
1888     if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1889                      SCSI_SENSE_BUFFERSIZE,
1890                      &bad_lba))
1891         return 0;
1892 
1893     /*
1894      * If the bad lba was reported incorrectly, we have no idea where
1895      * the error is.
1896      */
1897     start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1898     end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1899     if (bad_lba < start_lba || bad_lba >= end_lba)
1900         return 0;
1901 
1902     /*
1903      * resid is optional but mostly filled in.  When it's unused,
1904      * its value is zero, so we assume the whole buffer transferred
1905      */
1906     transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1907 
1908     /* This computation should always be done in terms of the
1909      * resolution of the device's medium.
1910      */
1911     good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1912 
1913     return min(good_bytes, transferred);
1914 }
1915 
1916 /**
1917  *  sd_done - bottom half handler: called when the lower level
1918  *  driver has completed (successfully or otherwise) a scsi command.
1919  *  @SCpnt: mid-level's per command structure.
1920  *
1921  *  Note: potentially run from within an ISR. Must not block.
1922  **/
1923 static int sd_done(struct scsi_cmnd *SCpnt)
1924 {
1925     int result = SCpnt->result;
1926     unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1927     unsigned int sector_size = SCpnt->device->sector_size;
1928     unsigned int resid;
1929     struct scsi_sense_hdr sshdr;
1930     struct request *req = scsi_cmd_to_rq(SCpnt);
1931     struct scsi_disk *sdkp = scsi_disk(req->q->disk);
1932     int sense_valid = 0;
1933     int sense_deferred = 0;
1934 
1935     switch (req_op(req)) {
1936     case REQ_OP_DISCARD:
1937     case REQ_OP_WRITE_ZEROES:
1938     case REQ_OP_ZONE_RESET:
1939     case REQ_OP_ZONE_RESET_ALL:
1940     case REQ_OP_ZONE_OPEN:
1941     case REQ_OP_ZONE_CLOSE:
1942     case REQ_OP_ZONE_FINISH:
1943         if (!result) {
1944             good_bytes = blk_rq_bytes(req);
1945             scsi_set_resid(SCpnt, 0);
1946         } else {
1947             good_bytes = 0;
1948             scsi_set_resid(SCpnt, blk_rq_bytes(req));
1949         }
1950         break;
1951     default:
1952         /*
1953          * In case of bogus fw or device, we could end up having
1954          * an unaligned partial completion. Check this here and force
1955          * alignment.
1956          */
1957         resid = scsi_get_resid(SCpnt);
1958         if (resid & (sector_size - 1)) {
1959             sd_printk(KERN_INFO, sdkp,
1960                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1961                 resid, sector_size);
1962             scsi_print_command(SCpnt);
1963             resid = min(scsi_bufflen(SCpnt),
1964                     round_up(resid, sector_size));
1965             scsi_set_resid(SCpnt, resid);
1966         }
1967     }
1968 
1969     if (result) {
1970         sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1971         if (sense_valid)
1972             sense_deferred = scsi_sense_is_deferred(&sshdr);
1973     }
1974     sdkp->medium_access_timed_out = 0;
1975 
1976     if (!scsi_status_is_check_condition(result) &&
1977         (!sense_valid || sense_deferred))
1978         goto out;
1979 
1980     switch (sshdr.sense_key) {
1981     case HARDWARE_ERROR:
1982     case MEDIUM_ERROR:
1983         good_bytes = sd_completed_bytes(SCpnt);
1984         break;
1985     case RECOVERED_ERROR:
1986         good_bytes = scsi_bufflen(SCpnt);
1987         break;
1988     case NO_SENSE:
1989         /* This indicates a false check condition, so ignore it.  An
1990          * unknown amount of data was transferred so treat it as an
1991          * error.
1992          */
1993         SCpnt->result = 0;
1994         memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1995         break;
1996     case ABORTED_COMMAND:
1997         if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
1998             good_bytes = sd_completed_bytes(SCpnt);
1999         break;
2000     case ILLEGAL_REQUEST:
2001         switch (sshdr.asc) {
2002         case 0x10:  /* DIX: Host detected corruption */
2003             good_bytes = sd_completed_bytes(SCpnt);
2004             break;
2005         case 0x20:  /* INVALID COMMAND OPCODE */
2006         case 0x24:  /* INVALID FIELD IN CDB */
2007             switch (SCpnt->cmnd[0]) {
2008             case UNMAP:
2009                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2010                 break;
2011             case WRITE_SAME_16:
2012             case WRITE_SAME:
2013                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2014                     sd_config_discard(sdkp, SD_LBP_DISABLE);
2015                 } else {
2016                     sdkp->device->no_write_same = 1;
2017                     sd_config_write_same(sdkp);
2018                     req->rq_flags |= RQF_QUIET;
2019                 }
2020                 break;
2021             }
2022         }
2023         break;
2024     default:
2025         break;
2026     }
2027 
2028  out:
2029     if (sd_is_zoned(sdkp))
2030         good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2031 
2032     SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2033                        "sd_done: completed %d of %d bytes\n",
2034                        good_bytes, scsi_bufflen(SCpnt)));
2035 
2036     return good_bytes;
2037 }
2038 
2039 /*
2040  * spinup disk - called only in sd_revalidate_disk()
2041  */
2042 static void
2043 sd_spinup_disk(struct scsi_disk *sdkp)
2044 {
2045     unsigned char cmd[10];
2046     unsigned long spintime_expire = 0;
2047     int retries, spintime;
2048     unsigned int the_result;
2049     struct scsi_sense_hdr sshdr;
2050     int sense_valid = 0;
2051 
2052     spintime = 0;
2053 
2054     /* Spin up drives, as required.  Only do this at boot time */
2055     /* Spinup needs to be done for module loads too. */
2056     do {
2057         retries = 0;
2058 
2059         do {
2060             bool media_was_present = sdkp->media_present;
2061 
2062             cmd[0] = TEST_UNIT_READY;
2063             memset((void *) &cmd[1], 0, 9);
2064 
2065             the_result = scsi_execute_req(sdkp->device, cmd,
2066                               DMA_NONE, NULL, 0,
2067                               &sshdr, SD_TIMEOUT,
2068                               sdkp->max_retries, NULL);
2069 
2070             /*
2071              * If the drive has indicated to us that it
2072              * doesn't have any media in it, don't bother
2073              * with any more polling.
2074              */
2075             if (media_not_present(sdkp, &sshdr)) {
2076                 if (media_was_present)
2077                     sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2078                 return;
2079             }
2080 
2081             if (the_result)
2082                 sense_valid = scsi_sense_valid(&sshdr);
2083             retries++;
2084         } while (retries < 3 &&
2085              (!scsi_status_is_good(the_result) ||
2086               (scsi_status_is_check_condition(the_result) &&
2087               sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2088 
2089         if (!scsi_status_is_check_condition(the_result)) {
2090             /* no sense, TUR either succeeded or failed
2091              * with a status error */
2092             if(!spintime && !scsi_status_is_good(the_result)) {
2093                 sd_print_result(sdkp, "Test Unit Ready failed",
2094                         the_result);
2095             }
2096             break;
2097         }
2098 
2099         /*
2100          * The device does not want the automatic start to be issued.
2101          */
2102         if (sdkp->device->no_start_on_add)
2103             break;
2104 
2105         if (sense_valid && sshdr.sense_key == NOT_READY) {
2106             if (sshdr.asc == 4 && sshdr.ascq == 3)
2107                 break;  /* manual intervention required */
2108             if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2109                 break;  /* standby */
2110             if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2111                 break;  /* unavailable */
2112             if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2113                 break;  /* sanitize in progress */
2114             /*
2115              * Issue command to spin up drive when not ready
2116              */
2117             if (!spintime) {
2118                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2119                 cmd[0] = START_STOP;
2120                 cmd[1] = 1; /* Return immediately */
2121                 memset((void *) &cmd[2], 0, 8);
2122                 cmd[4] = 1; /* Start spin cycle */
2123                 if (sdkp->device->start_stop_pwr_cond)
2124                     cmd[4] |= 1 << 4;
2125                 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2126                          NULL, 0, &sshdr,
2127                          SD_TIMEOUT, sdkp->max_retries,
2128                          NULL);
2129                 spintime_expire = jiffies + 100 * HZ;
2130                 spintime = 1;
2131             }
2132             /* Wait 1 second for next try */
2133             msleep(1000);
2134             printk(KERN_CONT ".");
2135 
2136         /*
2137          * Wait for USB flash devices with slow firmware.
2138          * Yes, this sense key/ASC combination shouldn't
2139          * occur here.  It's characteristic of these devices.
2140          */
2141         } else if (sense_valid &&
2142                 sshdr.sense_key == UNIT_ATTENTION &&
2143                 sshdr.asc == 0x28) {
2144             if (!spintime) {
2145                 spintime_expire = jiffies + 5 * HZ;
2146                 spintime = 1;
2147             }
2148             /* Wait 1 second for next try */
2149             msleep(1000);
2150         } else {
2151             /* we don't understand the sense code, so it's
2152              * probably pointless to loop */
2153             if(!spintime) {
2154                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2155                 sd_print_sense_hdr(sdkp, &sshdr);
2156             }
2157             break;
2158         }
2159                 
2160     } while (spintime && time_before_eq(jiffies, spintime_expire));
2161 
2162     if (spintime) {
2163         if (scsi_status_is_good(the_result))
2164             printk(KERN_CONT "ready\n");
2165         else
2166             printk(KERN_CONT "not responding...\n");
2167     }
2168 }
2169 
2170 /*
2171  * Determine whether disk supports Data Integrity Field.
2172  */
2173 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2174 {
2175     struct scsi_device *sdp = sdkp->device;
2176     u8 type;
2177 
2178     if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2179         sdkp->protection_type = 0;
2180         return 0;
2181     }
2182 
2183     type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2184 
2185     if (type > T10_PI_TYPE3_PROTECTION) {
2186         sd_printk(KERN_ERR, sdkp, "formatted with unsupported"  \
2187               " protection type %u. Disabling disk!\n",
2188               type);
2189         sdkp->protection_type = 0;
2190         return -ENODEV;
2191     }
2192 
2193     sdkp->protection_type = type;
2194 
2195     return 0;
2196 }
2197 
2198 static void sd_config_protection(struct scsi_disk *sdkp)
2199 {
2200     struct scsi_device *sdp = sdkp->device;
2201 
2202     if (!sdkp->first_scan)
2203         return;
2204 
2205     sd_dif_config_host(sdkp);
2206 
2207     if (!sdkp->protection_type)
2208         return;
2209 
2210     if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2211         sd_printk(KERN_NOTICE, sdkp,
2212               "Disabling DIF Type %u protection\n",
2213               sdkp->protection_type);
2214         sdkp->protection_type = 0;
2215     }
2216 
2217     sd_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2218           sdkp->protection_type);
2219 }
2220 
2221 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2222             struct scsi_sense_hdr *sshdr, int sense_valid,
2223             int the_result)
2224 {
2225     if (sense_valid)
2226         sd_print_sense_hdr(sdkp, sshdr);
2227     else
2228         sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2229 
2230     /*
2231      * Set dirty bit for removable devices if not ready -
2232      * sometimes drives will not report this properly.
2233      */
2234     if (sdp->removable &&
2235         sense_valid && sshdr->sense_key == NOT_READY)
2236         set_media_not_present(sdkp);
2237 
2238     /*
2239      * We used to set media_present to 0 here to indicate no media
2240      * in the drive, but some drives fail read capacity even with
2241      * media present, so we can't do that.
2242      */
2243     sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2244 }
2245 
2246 #define RC16_LEN 32
2247 #if RC16_LEN > SD_BUF_SIZE
2248 #error RC16_LEN must not be more than SD_BUF_SIZE
2249 #endif
2250 
2251 #define READ_CAPACITY_RETRIES_ON_RESET  10
2252 
2253 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2254                         unsigned char *buffer)
2255 {
2256     unsigned char cmd[16];
2257     struct scsi_sense_hdr sshdr;
2258     int sense_valid = 0;
2259     int the_result;
2260     int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2261     unsigned int alignment;
2262     unsigned long long lba;
2263     unsigned sector_size;
2264 
2265     if (sdp->no_read_capacity_16)
2266         return -EINVAL;
2267 
2268     do {
2269         memset(cmd, 0, 16);
2270         cmd[0] = SERVICE_ACTION_IN_16;
2271         cmd[1] = SAI_READ_CAPACITY_16;
2272         cmd[13] = RC16_LEN;
2273         memset(buffer, 0, RC16_LEN);
2274 
2275         the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2276                     buffer, RC16_LEN, &sshdr,
2277                     SD_TIMEOUT, sdkp->max_retries, NULL);
2278 
2279         if (media_not_present(sdkp, &sshdr))
2280             return -ENODEV;
2281 
2282         if (the_result > 0) {
2283             sense_valid = scsi_sense_valid(&sshdr);
2284             if (sense_valid &&
2285                 sshdr.sense_key == ILLEGAL_REQUEST &&
2286                 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2287                 sshdr.ascq == 0x00)
2288                 /* Invalid Command Operation Code or
2289                  * Invalid Field in CDB, just retry
2290                  * silently with RC10 */
2291                 return -EINVAL;
2292             if (sense_valid &&
2293                 sshdr.sense_key == UNIT_ATTENTION &&
2294                 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2295                 /* Device reset might occur several times,
2296                  * give it one more chance */
2297                 if (--reset_retries > 0)
2298                     continue;
2299         }
2300         retries--;
2301 
2302     } while (the_result && retries);
2303 
2304     if (the_result) {
2305         sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2306         read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2307         return -EINVAL;
2308     }
2309 
2310     sector_size = get_unaligned_be32(&buffer[8]);
2311     lba = get_unaligned_be64(&buffer[0]);
2312 
2313     if (sd_read_protection_type(sdkp, buffer) < 0) {
2314         sdkp->capacity = 0;
2315         return -ENODEV;
2316     }
2317 
2318     /* Logical blocks per physical block exponent */
2319     sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2320 
2321     /* RC basis */
2322     sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2323 
2324     /* Lowest aligned logical block */
2325     alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2326     blk_queue_alignment_offset(sdp->request_queue, alignment);
2327     if (alignment && sdkp->first_scan)
2328         sd_printk(KERN_NOTICE, sdkp,
2329               "physical block alignment offset: %u\n", alignment);
2330 
2331     if (buffer[14] & 0x80) { /* LBPME */
2332         sdkp->lbpme = 1;
2333 
2334         if (buffer[14] & 0x40) /* LBPRZ */
2335             sdkp->lbprz = 1;
2336 
2337         sd_config_discard(sdkp, SD_LBP_WS16);
2338     }
2339 
2340     sdkp->capacity = lba + 1;
2341     return sector_size;
2342 }
2343 
2344 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2345                         unsigned char *buffer)
2346 {
2347     unsigned char cmd[16];
2348     struct scsi_sense_hdr sshdr;
2349     int sense_valid = 0;
2350     int the_result;
2351     int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2352     sector_t lba;
2353     unsigned sector_size;
2354 
2355     do {
2356         cmd[0] = READ_CAPACITY;
2357         memset(&cmd[1], 0, 9);
2358         memset(buffer, 0, 8);
2359 
2360         the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2361                     buffer, 8, &sshdr,
2362                     SD_TIMEOUT, sdkp->max_retries, NULL);
2363 
2364         if (media_not_present(sdkp, &sshdr))
2365             return -ENODEV;
2366 
2367         if (the_result > 0) {
2368             sense_valid = scsi_sense_valid(&sshdr);
2369             if (sense_valid &&
2370                 sshdr.sense_key == UNIT_ATTENTION &&
2371                 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2372                 /* Device reset might occur several times,
2373                  * give it one more chance */
2374                 if (--reset_retries > 0)
2375                     continue;
2376         }
2377         retries--;
2378 
2379     } while (the_result && retries);
2380 
2381     if (the_result) {
2382         sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2383         read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2384         return -EINVAL;
2385     }
2386 
2387     sector_size = get_unaligned_be32(&buffer[4]);
2388     lba = get_unaligned_be32(&buffer[0]);
2389 
2390     if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2391         /* Some buggy (usb cardreader) devices return an lba of
2392            0xffffffff when the want to report a size of 0 (with
2393            which they really mean no media is present) */
2394         sdkp->capacity = 0;
2395         sdkp->physical_block_size = sector_size;
2396         return sector_size;
2397     }
2398 
2399     sdkp->capacity = lba + 1;
2400     sdkp->physical_block_size = sector_size;
2401     return sector_size;
2402 }
2403 
2404 static int sd_try_rc16_first(struct scsi_device *sdp)
2405 {
2406     if (sdp->host->max_cmd_len < 16)
2407         return 0;
2408     if (sdp->try_rc_10_first)
2409         return 0;
2410     if (sdp->scsi_level > SCSI_SPC_2)
2411         return 1;
2412     if (scsi_device_protection(sdp))
2413         return 1;
2414     return 0;
2415 }
2416 
2417 /*
2418  * read disk capacity
2419  */
2420 static void
2421 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2422 {
2423     int sector_size;
2424     struct scsi_device *sdp = sdkp->device;
2425 
2426     if (sd_try_rc16_first(sdp)) {
2427         sector_size = read_capacity_16(sdkp, sdp, buffer);
2428         if (sector_size == -EOVERFLOW)
2429             goto got_data;
2430         if (sector_size == -ENODEV)
2431             return;
2432         if (sector_size < 0)
2433             sector_size = read_capacity_10(sdkp, sdp, buffer);
2434         if (sector_size < 0)
2435             return;
2436     } else {
2437         sector_size = read_capacity_10(sdkp, sdp, buffer);
2438         if (sector_size == -EOVERFLOW)
2439             goto got_data;
2440         if (sector_size < 0)
2441             return;
2442         if ((sizeof(sdkp->capacity) > 4) &&
2443             (sdkp->capacity > 0xffffffffULL)) {
2444             int old_sector_size = sector_size;
2445             sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2446                     "Trying to use READ CAPACITY(16).\n");
2447             sector_size = read_capacity_16(sdkp, sdp, buffer);
2448             if (sector_size < 0) {
2449                 sd_printk(KERN_NOTICE, sdkp,
2450                     "Using 0xffffffff as device size\n");
2451                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2452                 sector_size = old_sector_size;
2453                 goto got_data;
2454             }
2455             /* Remember that READ CAPACITY(16) succeeded */
2456             sdp->try_rc_10_first = 0;
2457         }
2458     }
2459 
2460     /* Some devices are known to return the total number of blocks,
2461      * not the highest block number.  Some devices have versions
2462      * which do this and others which do not.  Some devices we might
2463      * suspect of doing this but we don't know for certain.
2464      *
2465      * If we know the reported capacity is wrong, decrement it.  If
2466      * we can only guess, then assume the number of blocks is even
2467      * (usually true but not always) and err on the side of lowering
2468      * the capacity.
2469      */
2470     if (sdp->fix_capacity ||
2471         (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2472         sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2473                 "from its reported value: %llu\n",
2474                 (unsigned long long) sdkp->capacity);
2475         --sdkp->capacity;
2476     }
2477 
2478 got_data:
2479     if (sector_size == 0) {
2480         sector_size = 512;
2481         sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2482               "assuming 512.\n");
2483     }
2484 
2485     if (sector_size != 512 &&
2486         sector_size != 1024 &&
2487         sector_size != 2048 &&
2488         sector_size != 4096) {
2489         sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2490               sector_size);
2491         /*
2492          * The user might want to re-format the drive with
2493          * a supported sectorsize.  Once this happens, it
2494          * would be relatively trivial to set the thing up.
2495          * For this reason, we leave the thing in the table.
2496          */
2497         sdkp->capacity = 0;
2498         /*
2499          * set a bogus sector size so the normal read/write
2500          * logic in the block layer will eventually refuse any
2501          * request on this device without tripping over power
2502          * of two sector size assumptions
2503          */
2504         sector_size = 512;
2505     }
2506     blk_queue_logical_block_size(sdp->request_queue, sector_size);
2507     blk_queue_physical_block_size(sdp->request_queue,
2508                       sdkp->physical_block_size);
2509     sdkp->device->sector_size = sector_size;
2510 
2511     if (sdkp->capacity > 0xffffffff)
2512         sdp->use_16_for_rw = 1;
2513 
2514 }
2515 
2516 /*
2517  * Print disk capacity
2518  */
2519 static void
2520 sd_print_capacity(struct scsi_disk *sdkp,
2521           sector_t old_capacity)
2522 {
2523     int sector_size = sdkp->device->sector_size;
2524     char cap_str_2[10], cap_str_10[10];
2525 
2526     if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2527         return;
2528 
2529     string_get_size(sdkp->capacity, sector_size,
2530             STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2531     string_get_size(sdkp->capacity, sector_size,
2532             STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2533 
2534     sd_printk(KERN_NOTICE, sdkp,
2535           "%llu %d-byte logical blocks: (%s/%s)\n",
2536           (unsigned long long)sdkp->capacity,
2537           sector_size, cap_str_10, cap_str_2);
2538 
2539     if (sdkp->physical_block_size != sector_size)
2540         sd_printk(KERN_NOTICE, sdkp,
2541               "%u-byte physical blocks\n",
2542               sdkp->physical_block_size);
2543 }
2544 
2545 /* called with buffer of length 512 */
2546 static inline int
2547 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2548          unsigned char *buffer, int len, struct scsi_mode_data *data,
2549          struct scsi_sense_hdr *sshdr)
2550 {
2551     /*
2552      * If we must use MODE SENSE(10), make sure that the buffer length
2553      * is at least 8 bytes so that the mode sense header fits.
2554      */
2555     if (sdkp->device->use_10_for_ms && len < 8)
2556         len = 8;
2557 
2558     return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2559                    SD_TIMEOUT, sdkp->max_retries, data,
2560                    sshdr);
2561 }
2562 
2563 /*
2564  * read write protect setting, if possible - called only in sd_revalidate_disk()
2565  * called with buffer of length SD_BUF_SIZE
2566  */
2567 static void
2568 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2569 {
2570     int res;
2571     struct scsi_device *sdp = sdkp->device;
2572     struct scsi_mode_data data;
2573     int old_wp = sdkp->write_prot;
2574 
2575     set_disk_ro(sdkp->disk, 0);
2576     if (sdp->skip_ms_page_3f) {
2577         sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2578         return;
2579     }
2580 
2581     if (sdp->use_192_bytes_for_3f) {
2582         res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2583     } else {
2584         /*
2585          * First attempt: ask for all pages (0x3F), but only 4 bytes.
2586          * We have to start carefully: some devices hang if we ask
2587          * for more than is available.
2588          */
2589         res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2590 
2591         /*
2592          * Second attempt: ask for page 0 When only page 0 is
2593          * implemented, a request for page 3F may return Sense Key
2594          * 5: Illegal Request, Sense Code 24: Invalid field in
2595          * CDB.
2596          */
2597         if (res < 0)
2598             res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2599 
2600         /*
2601          * Third attempt: ask 255 bytes, as we did earlier.
2602          */
2603         if (res < 0)
2604             res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2605                            &data, NULL);
2606     }
2607 
2608     if (res < 0) {
2609         sd_first_printk(KERN_WARNING, sdkp,
2610               "Test WP failed, assume Write Enabled\n");
2611     } else {
2612         sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2613         set_disk_ro(sdkp->disk, sdkp->write_prot);
2614         if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2615             sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2616                   sdkp->write_prot ? "on" : "off");
2617             sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2618         }
2619     }
2620 }
2621 
2622 /*
2623  * sd_read_cache_type - called only from sd_revalidate_disk()
2624  * called with buffer of length SD_BUF_SIZE
2625  */
2626 static void
2627 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2628 {
2629     int len = 0, res;
2630     struct scsi_device *sdp = sdkp->device;
2631 
2632     int dbd;
2633     int modepage;
2634     int first_len;
2635     struct scsi_mode_data data;
2636     struct scsi_sense_hdr sshdr;
2637     int old_wce = sdkp->WCE;
2638     int old_rcd = sdkp->RCD;
2639     int old_dpofua = sdkp->DPOFUA;
2640 
2641 
2642     if (sdkp->cache_override)
2643         return;
2644 
2645     first_len = 4;
2646     if (sdp->skip_ms_page_8) {
2647         if (sdp->type == TYPE_RBC)
2648             goto defaults;
2649         else {
2650             if (sdp->skip_ms_page_3f)
2651                 goto defaults;
2652             modepage = 0x3F;
2653             if (sdp->use_192_bytes_for_3f)
2654                 first_len = 192;
2655             dbd = 0;
2656         }
2657     } else if (sdp->type == TYPE_RBC) {
2658         modepage = 6;
2659         dbd = 8;
2660     } else {
2661         modepage = 8;
2662         dbd = 0;
2663     }
2664 
2665     /* cautiously ask */
2666     res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2667             &data, &sshdr);
2668 
2669     if (res < 0)
2670         goto bad_sense;
2671 
2672     if (!data.header_length) {
2673         modepage = 6;
2674         first_len = 0;
2675         sd_first_printk(KERN_ERR, sdkp,
2676                 "Missing header in MODE_SENSE response\n");
2677     }
2678 
2679     /* that went OK, now ask for the proper length */
2680     len = data.length;
2681 
2682     /*
2683      * We're only interested in the first three bytes, actually.
2684      * But the data cache page is defined for the first 20.
2685      */
2686     if (len < 3)
2687         goto bad_sense;
2688     else if (len > SD_BUF_SIZE) {
2689         sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2690               "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2691         len = SD_BUF_SIZE;
2692     }
2693     if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2694         len = 192;
2695 
2696     /* Get the data */
2697     if (len > first_len)
2698         res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2699                 &data, &sshdr);
2700 
2701     if (!res) {
2702         int offset = data.header_length + data.block_descriptor_length;
2703 
2704         while (offset < len) {
2705             u8 page_code = buffer[offset] & 0x3F;
2706             u8 spf       = buffer[offset] & 0x40;
2707 
2708             if (page_code == 8 || page_code == 6) {
2709                 /* We're interested only in the first 3 bytes.
2710                  */
2711                 if (len - offset <= 2) {
2712                     sd_first_printk(KERN_ERR, sdkp,
2713                         "Incomplete mode parameter "
2714                             "data\n");
2715                     goto defaults;
2716                 } else {
2717                     modepage = page_code;
2718                     goto Page_found;
2719                 }
2720             } else {
2721                 /* Go to the next page */
2722                 if (spf && len - offset > 3)
2723                     offset += 4 + (buffer[offset+2] << 8) +
2724                         buffer[offset+3];
2725                 else if (!spf && len - offset > 1)
2726                     offset += 2 + buffer[offset+1];
2727                 else {
2728                     sd_first_printk(KERN_ERR, sdkp,
2729                             "Incomplete mode "
2730                             "parameter data\n");
2731                     goto defaults;
2732                 }
2733             }
2734         }
2735 
2736         sd_first_printk(KERN_WARNING, sdkp,
2737                 "No Caching mode page found\n");
2738         goto defaults;
2739 
2740     Page_found:
2741         if (modepage == 8) {
2742             sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2743             sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2744         } else {
2745             sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2746             sdkp->RCD = 0;
2747         }
2748 
2749         sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2750         if (sdp->broken_fua) {
2751             sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2752             sdkp->DPOFUA = 0;
2753         } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2754                !sdkp->device->use_16_for_rw) {
2755             sd_first_printk(KERN_NOTICE, sdkp,
2756                   "Uses READ/WRITE(6), disabling FUA\n");
2757             sdkp->DPOFUA = 0;
2758         }
2759 
2760         /* No cache flush allowed for write protected devices */
2761         if (sdkp->WCE && sdkp->write_prot)
2762             sdkp->WCE = 0;
2763 
2764         if (sdkp->first_scan || old_wce != sdkp->WCE ||
2765             old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2766             sd_printk(KERN_NOTICE, sdkp,
2767                   "Write cache: %s, read cache: %s, %s\n",
2768                   sdkp->WCE ? "enabled" : "disabled",
2769                   sdkp->RCD ? "disabled" : "enabled",
2770                   sdkp->DPOFUA ? "supports DPO and FUA"
2771                   : "doesn't support DPO or FUA");
2772 
2773         return;
2774     }
2775 
2776 bad_sense:
2777     if (scsi_sense_valid(&sshdr) &&
2778         sshdr.sense_key == ILLEGAL_REQUEST &&
2779         sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2780         /* Invalid field in CDB */
2781         sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2782     else
2783         sd_first_printk(KERN_ERR, sdkp,
2784                 "Asking for cache data failed\n");
2785 
2786 defaults:
2787     if (sdp->wce_default_on) {
2788         sd_first_printk(KERN_NOTICE, sdkp,
2789                 "Assuming drive cache: write back\n");
2790         sdkp->WCE = 1;
2791     } else {
2792         sd_first_printk(KERN_WARNING, sdkp,
2793                 "Assuming drive cache: write through\n");
2794         sdkp->WCE = 0;
2795     }
2796     sdkp->RCD = 0;
2797     sdkp->DPOFUA = 0;
2798 }
2799 
2800 /*
2801  * The ATO bit indicates whether the DIF application tag is available
2802  * for use by the operating system.
2803  */
2804 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2805 {
2806     int res, offset;
2807     struct scsi_device *sdp = sdkp->device;
2808     struct scsi_mode_data data;
2809     struct scsi_sense_hdr sshdr;
2810 
2811     if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2812         return;
2813 
2814     if (sdkp->protection_type == 0)
2815         return;
2816 
2817     res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2818                   sdkp->max_retries, &data, &sshdr);
2819 
2820     if (res < 0 || !data.header_length ||
2821         data.length < 6) {
2822         sd_first_printk(KERN_WARNING, sdkp,
2823               "getting Control mode page failed, assume no ATO\n");
2824 
2825         if (scsi_sense_valid(&sshdr))
2826             sd_print_sense_hdr(sdkp, &sshdr);
2827 
2828         return;
2829     }
2830 
2831     offset = data.header_length + data.block_descriptor_length;
2832 
2833     if ((buffer[offset] & 0x3f) != 0x0a) {
2834         sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2835         return;
2836     }
2837 
2838     if ((buffer[offset + 5] & 0x80) == 0)
2839         return;
2840 
2841     sdkp->ATO = 1;
2842 
2843     return;
2844 }
2845 
2846 /**
2847  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2848  * @sdkp: disk to query
2849  */
2850 static void sd_read_block_limits(struct scsi_disk *sdkp)
2851 {
2852     struct scsi_vpd *vpd;
2853 
2854     rcu_read_lock();
2855 
2856     vpd = rcu_dereference(sdkp->device->vpd_pgb0);
2857     if (!vpd || vpd->len < 16)
2858         goto out;
2859 
2860     sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
2861     sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
2862     sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
2863 
2864     if (vpd->len >= 64) {
2865         unsigned int lba_count, desc_count;
2866 
2867         sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
2868 
2869         if (!sdkp->lbpme)
2870             goto out;
2871 
2872         lba_count = get_unaligned_be32(&vpd->data[20]);
2873         desc_count = get_unaligned_be32(&vpd->data[24]);
2874 
2875         if (lba_count && desc_count)
2876             sdkp->max_unmap_blocks = lba_count;
2877 
2878         sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
2879 
2880         if (vpd->data[32] & 0x80)
2881             sdkp->unmap_alignment =
2882                 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
2883 
2884         if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2885 
2886             if (sdkp->max_unmap_blocks)
2887                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2888             else
2889                 sd_config_discard(sdkp, SD_LBP_WS16);
2890 
2891         } else {    /* LBP VPD page tells us what to use */
2892             if (sdkp->lbpu && sdkp->max_unmap_blocks)
2893                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2894             else if (sdkp->lbpws)
2895                 sd_config_discard(sdkp, SD_LBP_WS16);
2896             else if (sdkp->lbpws10)
2897                 sd_config_discard(sdkp, SD_LBP_WS10);
2898             else
2899                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2900         }
2901     }
2902 
2903  out:
2904     rcu_read_unlock();
2905 }
2906 
2907 /**
2908  * sd_read_block_characteristics - Query block dev. characteristics
2909  * @sdkp: disk to query
2910  */
2911 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2912 {
2913     struct request_queue *q = sdkp->disk->queue;
2914     struct scsi_vpd *vpd;
2915     u16 rot;
2916     u8 zoned;
2917 
2918     rcu_read_lock();
2919     vpd = rcu_dereference(sdkp->device->vpd_pgb1);
2920 
2921     if (!vpd || vpd->len < 8) {
2922         rcu_read_unlock();
2923             return;
2924     }
2925 
2926     rot = get_unaligned_be16(&vpd->data[4]);
2927     zoned = (vpd->data[8] >> 4) & 3;
2928     rcu_read_unlock();
2929 
2930     if (rot == 1) {
2931         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2932         blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2933     }
2934 
2935     if (sdkp->device->type == TYPE_ZBC) {
2936         /* Host-managed */
2937         disk_set_zoned(sdkp->disk, BLK_ZONED_HM);
2938     } else {
2939         sdkp->zoned = zoned;
2940         if (sdkp->zoned == 1) {
2941             /* Host-aware */
2942             disk_set_zoned(sdkp->disk, BLK_ZONED_HA);
2943         } else {
2944             /* Regular disk or drive managed disk */
2945             disk_set_zoned(sdkp->disk, BLK_ZONED_NONE);
2946         }
2947     }
2948 
2949     if (!sdkp->first_scan)
2950         return;
2951 
2952     if (blk_queue_is_zoned(q)) {
2953         sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2954               q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2955     } else {
2956         if (sdkp->zoned == 1)
2957             sd_printk(KERN_NOTICE, sdkp,
2958                   "Host-aware SMR disk used as regular disk\n");
2959         else if (sdkp->zoned == 2)
2960             sd_printk(KERN_NOTICE, sdkp,
2961                   "Drive-managed SMR disk\n");
2962     }
2963 }
2964 
2965 /**
2966  * sd_read_block_provisioning - Query provisioning VPD page
2967  * @sdkp: disk to query
2968  */
2969 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2970 {
2971     struct scsi_vpd *vpd;
2972 
2973     if (sdkp->lbpme == 0)
2974         return;
2975 
2976     rcu_read_lock();
2977     vpd = rcu_dereference(sdkp->device->vpd_pgb2);
2978 
2979     if (!vpd || vpd->len < 8) {
2980         rcu_read_unlock();
2981         return;
2982     }
2983 
2984     sdkp->lbpvpd    = 1;
2985     sdkp->lbpu  = (vpd->data[5] >> 7) & 1; /* UNMAP */
2986     sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
2987     sdkp->lbpws10   = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
2988     rcu_read_unlock();
2989 }
2990 
2991 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2992 {
2993     struct scsi_device *sdev = sdkp->device;
2994 
2995     if (sdev->host->no_write_same) {
2996         sdev->no_write_same = 1;
2997 
2998         return;
2999     }
3000 
3001     if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3002         struct scsi_vpd *vpd;
3003 
3004         sdev->no_report_opcodes = 1;
3005 
3006         /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3007          * CODES is unsupported and the device has an ATA
3008          * Information VPD page (SAT).
3009          */
3010         rcu_read_lock();
3011         vpd = rcu_dereference(sdev->vpd_pg89);
3012         if (vpd)
3013             sdev->no_write_same = 1;
3014         rcu_read_unlock();
3015     }
3016 
3017     if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3018         sdkp->ws16 = 1;
3019 
3020     if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3021         sdkp->ws10 = 1;
3022 }
3023 
3024 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3025 {
3026     struct scsi_device *sdev = sdkp->device;
3027 
3028     if (!sdev->security_supported)
3029         return;
3030 
3031     if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3032             SECURITY_PROTOCOL_IN) == 1 &&
3033         scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3034             SECURITY_PROTOCOL_OUT) == 1)
3035         sdkp->security = 1;
3036 }
3037 
3038 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3039 {
3040     return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3041 }
3042 
3043 /**
3044  * sd_read_cpr - Query concurrent positioning ranges
3045  * @sdkp:   disk to query
3046  */
3047 static void sd_read_cpr(struct scsi_disk *sdkp)
3048 {
3049     struct blk_independent_access_ranges *iars = NULL;
3050     unsigned char *buffer = NULL;
3051     unsigned int nr_cpr = 0;
3052     int i, vpd_len, buf_len = SD_BUF_SIZE;
3053     u8 *desc;
3054 
3055     /*
3056      * We need to have the capacity set first for the block layer to be
3057      * able to check the ranges.
3058      */
3059     if (sdkp->first_scan)
3060         return;
3061 
3062     if (!sdkp->capacity)
3063         goto out;
3064 
3065     /*
3066      * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3067      * leading to a maximum page size of 64 + 256*32 bytes.
3068      */
3069     buf_len = 64 + 256*32;
3070     buffer = kmalloc(buf_len, GFP_KERNEL);
3071     if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3072         goto out;
3073 
3074     /* We must have at least a 64B header and one 32B range descriptor */
3075     vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3076     if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3077         sd_printk(KERN_ERR, sdkp,
3078               "Invalid Concurrent Positioning Ranges VPD page\n");
3079         goto out;
3080     }
3081 
3082     nr_cpr = (vpd_len - 64) / 32;
3083     if (nr_cpr == 1) {
3084         nr_cpr = 0;
3085         goto out;
3086     }
3087 
3088     iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3089     if (!iars) {
3090         nr_cpr = 0;
3091         goto out;
3092     }
3093 
3094     desc = &buffer[64];
3095     for (i = 0; i < nr_cpr; i++, desc += 32) {
3096         if (desc[0] != i) {
3097             sd_printk(KERN_ERR, sdkp,
3098                 "Invalid Concurrent Positioning Range number\n");
3099             nr_cpr = 0;
3100             break;
3101         }
3102 
3103         iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3104         iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3105     }
3106 
3107 out:
3108     disk_set_independent_access_ranges(sdkp->disk, iars);
3109     if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3110         sd_printk(KERN_NOTICE, sdkp,
3111               "%u concurrent positioning ranges\n", nr_cpr);
3112         sdkp->nr_actuators = nr_cpr;
3113     }
3114 
3115     kfree(buffer);
3116 }
3117 
3118 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3119 {
3120     struct scsi_device *sdp = sdkp->device;
3121     unsigned int min_xfer_bytes =
3122         logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3123 
3124     if (sdkp->min_xfer_blocks == 0)
3125         return false;
3126 
3127     if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3128         sd_first_printk(KERN_WARNING, sdkp,
3129                 "Preferred minimum I/O size %u bytes not a " \
3130                 "multiple of physical block size (%u bytes)\n",
3131                 min_xfer_bytes, sdkp->physical_block_size);
3132         sdkp->min_xfer_blocks = 0;
3133         return false;
3134     }
3135 
3136     sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3137             min_xfer_bytes);
3138     return true;
3139 }
3140 
3141 /*
3142  * Determine the device's preferred I/O size for reads and writes
3143  * unless the reported value is unreasonably small, large, not a
3144  * multiple of the physical block size, or simply garbage.
3145  */
3146 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3147                       unsigned int dev_max)
3148 {
3149     struct scsi_device *sdp = sdkp->device;
3150     unsigned int opt_xfer_bytes =
3151         logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3152     unsigned int min_xfer_bytes =
3153         logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3154 
3155     if (sdkp->opt_xfer_blocks == 0)
3156         return false;
3157 
3158     if (sdkp->opt_xfer_blocks > dev_max) {
3159         sd_first_printk(KERN_WARNING, sdkp,
3160                 "Optimal transfer size %u logical blocks " \
3161                 "> dev_max (%u logical blocks)\n",
3162                 sdkp->opt_xfer_blocks, dev_max);
3163         return false;
3164     }
3165 
3166     if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3167         sd_first_printk(KERN_WARNING, sdkp,
3168                 "Optimal transfer size %u logical blocks " \
3169                 "> sd driver limit (%u logical blocks)\n",
3170                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3171         return false;
3172     }
3173 
3174     if (opt_xfer_bytes < PAGE_SIZE) {
3175         sd_first_printk(KERN_WARNING, sdkp,
3176                 "Optimal transfer size %u bytes < " \
3177                 "PAGE_SIZE (%u bytes)\n",
3178                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3179         return false;
3180     }
3181 
3182     if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3183         sd_first_printk(KERN_WARNING, sdkp,
3184                 "Optimal transfer size %u bytes not a " \
3185                 "multiple of preferred minimum block " \
3186                 "size (%u bytes)\n",
3187                 opt_xfer_bytes, min_xfer_bytes);
3188         return false;
3189     }
3190 
3191     if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3192         sd_first_printk(KERN_WARNING, sdkp,
3193                 "Optimal transfer size %u bytes not a " \
3194                 "multiple of physical block size (%u bytes)\n",
3195                 opt_xfer_bytes, sdkp->physical_block_size);
3196         return false;
3197     }
3198 
3199     sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3200             opt_xfer_bytes);
3201     return true;
3202 }
3203 
3204 /**
3205  *  sd_revalidate_disk - called the first time a new disk is seen,
3206  *  performs disk spin up, read_capacity, etc.
3207  *  @disk: struct gendisk we care about
3208  **/
3209 static int sd_revalidate_disk(struct gendisk *disk)
3210 {
3211     struct scsi_disk *sdkp = scsi_disk(disk);
3212     struct scsi_device *sdp = sdkp->device;
3213     struct request_queue *q = sdkp->disk->queue;
3214     sector_t old_capacity = sdkp->capacity;
3215     unsigned char *buffer;
3216     unsigned int dev_max, rw_max;
3217 
3218     SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3219                       "sd_revalidate_disk\n"));
3220 
3221     /*
3222      * If the device is offline, don't try and read capacity or any
3223      * of the other niceties.
3224      */
3225     if (!scsi_device_online(sdp))
3226         goto out;
3227 
3228     buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3229     if (!buffer) {
3230         sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3231               "allocation failure.\n");
3232         goto out;
3233     }
3234 
3235     sd_spinup_disk(sdkp);
3236 
3237     /*
3238      * Without media there is no reason to ask; moreover, some devices
3239      * react badly if we do.
3240      */
3241     if (sdkp->media_present) {
3242         sd_read_capacity(sdkp, buffer);
3243 
3244         /*
3245          * set the default to rotational.  All non-rotational devices
3246          * support the block characteristics VPD page, which will
3247          * cause this to be updated correctly and any device which
3248          * doesn't support it should be treated as rotational.
3249          */
3250         blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3251         blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3252 
3253         if (scsi_device_supports_vpd(sdp)) {
3254             sd_read_block_provisioning(sdkp);
3255             sd_read_block_limits(sdkp);
3256             sd_read_block_characteristics(sdkp);
3257             sd_zbc_read_zones(sdkp, buffer);
3258             sd_read_cpr(sdkp);
3259         }
3260 
3261         sd_print_capacity(sdkp, old_capacity);
3262 
3263         sd_read_write_protect_flag(sdkp, buffer);
3264         sd_read_cache_type(sdkp, buffer);
3265         sd_read_app_tag_own(sdkp, buffer);
3266         sd_read_write_same(sdkp, buffer);
3267         sd_read_security(sdkp, buffer);
3268         sd_config_protection(sdkp);
3269     }
3270 
3271     /*
3272      * We now have all cache related info, determine how we deal
3273      * with flush requests.
3274      */
3275     sd_set_flush_flag(sdkp);
3276 
3277     /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3278     dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3279 
3280     /* Some devices report a maximum block count for READ/WRITE requests. */
3281     dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3282     q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3283 
3284     if (sd_validate_min_xfer_size(sdkp))
3285         blk_queue_io_min(sdkp->disk->queue,
3286                  logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3287     else
3288         blk_queue_io_min(sdkp->disk->queue, 0);
3289 
3290     if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3291         q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3292         rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3293     } else {
3294         q->limits.io_opt = 0;
3295         rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3296                       (sector_t)BLK_DEF_MAX_SECTORS);
3297     }
3298 
3299     /*
3300      * Limit default to SCSI host optimal sector limit if set. There may be
3301      * an impact on performance for when the size of a request exceeds this
3302      * host limit.
3303      */
3304     rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3305 
3306     /* Do not exceed controller limit */
3307     rw_max = min(rw_max, queue_max_hw_sectors(q));
3308 
3309     /*
3310      * Only update max_sectors if previously unset or if the current value
3311      * exceeds the capabilities of the hardware.
3312      */
3313     if (sdkp->first_scan ||
3314         q->limits.max_sectors > q->limits.max_dev_sectors ||
3315         q->limits.max_sectors > q->limits.max_hw_sectors)
3316         q->limits.max_sectors = rw_max;
3317 
3318     sdkp->first_scan = 0;
3319 
3320     set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3321     sd_config_write_same(sdkp);
3322     kfree(buffer);
3323 
3324     /*
3325      * For a zoned drive, revalidating the zones can be done only once
3326      * the gendisk capacity is set. So if this fails, set back the gendisk
3327      * capacity to 0.
3328      */
3329     if (sd_zbc_revalidate_zones(sdkp))
3330         set_capacity_and_notify(disk, 0);
3331 
3332  out:
3333     return 0;
3334 }
3335 
3336 /**
3337  *  sd_unlock_native_capacity - unlock native capacity
3338  *  @disk: struct gendisk to set capacity for
3339  *
3340  *  Block layer calls this function if it detects that partitions
3341  *  on @disk reach beyond the end of the device.  If the SCSI host
3342  *  implements ->unlock_native_capacity() method, it's invoked to
3343  *  give it a chance to adjust the device capacity.
3344  *
3345  *  CONTEXT:
3346  *  Defined by block layer.  Might sleep.
3347  */
3348 static void sd_unlock_native_capacity(struct gendisk *disk)
3349 {
3350     struct scsi_device *sdev = scsi_disk(disk)->device;
3351 
3352     if (sdev->host->hostt->unlock_native_capacity)
3353         sdev->host->hostt->unlock_native_capacity(sdev);
3354 }
3355 
3356 /**
3357  *  sd_format_disk_name - format disk name
3358  *  @prefix: name prefix - ie. "sd" for SCSI disks
3359  *  @index: index of the disk to format name for
3360  *  @buf: output buffer
3361  *  @buflen: length of the output buffer
3362  *
3363  *  SCSI disk names starts at sda.  The 26th device is sdz and the
3364  *  27th is sdaa.  The last one for two lettered suffix is sdzz
3365  *  which is followed by sdaaa.
3366  *
3367  *  This is basically 26 base counting with one extra 'nil' entry
3368  *  at the beginning from the second digit on and can be
3369  *  determined using similar method as 26 base conversion with the
3370  *  index shifted -1 after each digit is computed.
3371  *
3372  *  CONTEXT:
3373  *  Don't care.
3374  *
3375  *  RETURNS:
3376  *  0 on success, -errno on failure.
3377  */
3378 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3379 {
3380     const int base = 'z' - 'a' + 1;
3381     char *begin = buf + strlen(prefix);
3382     char *end = buf + buflen;
3383     char *p;
3384     int unit;
3385 
3386     p = end - 1;
3387     *p = '\0';
3388     unit = base;
3389     do {
3390         if (p == begin)
3391             return -EINVAL;
3392         *--p = 'a' + (index % unit);
3393         index = (index / unit) - 1;
3394     } while (index >= 0);
3395 
3396     memmove(begin, p, end - p);
3397     memcpy(buf, prefix, strlen(prefix));
3398 
3399     return 0;
3400 }
3401 
3402 /**
3403  *  sd_probe - called during driver initialization and whenever a
3404  *  new scsi device is attached to the system. It is called once
3405  *  for each scsi device (not just disks) present.
3406  *  @dev: pointer to device object
3407  *
3408  *  Returns 0 if successful (or not interested in this scsi device 
3409  *  (e.g. scanner)); 1 when there is an error.
3410  *
3411  *  Note: this function is invoked from the scsi mid-level.
3412  *  This function sets up the mapping between a given 
3413  *  <host,channel,id,lun> (found in sdp) and new device name 
3414  *  (e.g. /dev/sda). More precisely it is the block device major 
3415  *  and minor number that is chosen here.
3416  *
3417  *  Assume sd_probe is not re-entrant (for time being)
3418  *  Also think about sd_probe() and sd_remove() running coincidentally.
3419  **/
3420 static int sd_probe(struct device *dev)
3421 {
3422     struct scsi_device *sdp = to_scsi_device(dev);
3423     struct scsi_disk *sdkp;
3424     struct gendisk *gd;
3425     int index;
3426     int error;
3427 
3428     scsi_autopm_get_device(sdp);
3429     error = -ENODEV;
3430     if (sdp->type != TYPE_DISK &&
3431         sdp->type != TYPE_ZBC &&
3432         sdp->type != TYPE_MOD &&
3433         sdp->type != TYPE_RBC)
3434         goto out;
3435 
3436     if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3437         sdev_printk(KERN_WARNING, sdp,
3438                 "Unsupported ZBC host-managed device.\n");
3439         goto out;
3440     }
3441 
3442     SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3443                     "sd_probe\n"));
3444 
3445     error = -ENOMEM;
3446     sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3447     if (!sdkp)
3448         goto out;
3449 
3450     gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3451                      &sd_bio_compl_lkclass);
3452     if (!gd)
3453         goto out_free;
3454 
3455     index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3456     if (index < 0) {
3457         sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3458         goto out_put;
3459     }
3460 
3461     error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3462     if (error) {
3463         sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3464         goto out_free_index;
3465     }
3466 
3467     sdkp->device = sdp;
3468     sdkp->disk = gd;
3469     sdkp->index = index;
3470     sdkp->max_retries = SD_MAX_RETRIES;
3471     atomic_set(&sdkp->openers, 0);
3472     atomic_set(&sdkp->device->ioerr_cnt, 0);
3473 
3474     if (!sdp->request_queue->rq_timeout) {
3475         if (sdp->type != TYPE_MOD)
3476             blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3477         else
3478             blk_queue_rq_timeout(sdp->request_queue,
3479                          SD_MOD_TIMEOUT);
3480     }
3481 
3482     device_initialize(&sdkp->disk_dev);
3483     sdkp->disk_dev.parent = get_device(dev);
3484     sdkp->disk_dev.class = &sd_disk_class;
3485     dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3486 
3487     error = device_add(&sdkp->disk_dev);
3488     if (error) {
3489         put_device(&sdkp->disk_dev);
3490         goto out;
3491     }
3492 
3493     dev_set_drvdata(dev, sdkp);
3494 
3495     gd->major = sd_major((index & 0xf0) >> 4);
3496     gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3497     gd->minors = SD_MINORS;
3498 
3499     gd->fops = &sd_fops;
3500     gd->private_data = sdkp;
3501 
3502     /* defaults, until the device tells us otherwise */
3503     sdp->sector_size = 512;
3504     sdkp->capacity = 0;
3505     sdkp->media_present = 1;
3506     sdkp->write_prot = 0;
3507     sdkp->cache_override = 0;
3508     sdkp->WCE = 0;
3509     sdkp->RCD = 0;
3510     sdkp->ATO = 0;
3511     sdkp->first_scan = 1;
3512     sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3513 
3514     sd_revalidate_disk(gd);
3515 
3516     if (sdp->removable) {
3517         gd->flags |= GENHD_FL_REMOVABLE;
3518         gd->events |= DISK_EVENT_MEDIA_CHANGE;
3519         gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3520     }
3521 
3522     blk_pm_runtime_init(sdp->request_queue, dev);
3523     if (sdp->rpm_autosuspend) {
3524         pm_runtime_set_autosuspend_delay(dev,
3525             sdp->host->hostt->rpm_autosuspend_delay);
3526     }
3527 
3528     error = device_add_disk(dev, gd, NULL);
3529     if (error) {
3530         put_device(&sdkp->disk_dev);
3531         put_disk(gd);
3532         goto out;
3533     }
3534 
3535     if (sdkp->security) {
3536         sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3537         if (sdkp->opal_dev)
3538             sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3539     }
3540 
3541     sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3542           sdp->removable ? "removable " : "");
3543     scsi_autopm_put_device(sdp);
3544 
3545     return 0;
3546 
3547  out_free_index:
3548     ida_free(&sd_index_ida, index);
3549  out_put:
3550     put_disk(gd);
3551  out_free:
3552     kfree(sdkp);
3553  out:
3554     scsi_autopm_put_device(sdp);
3555     return error;
3556 }
3557 
3558 /**
3559  *  sd_remove - called whenever a scsi disk (previously recognized by
3560  *  sd_probe) is detached from the system. It is called (potentially
3561  *  multiple times) during sd module unload.
3562  *  @dev: pointer to device object
3563  *
3564  *  Note: this function is invoked from the scsi mid-level.
3565  *  This function potentially frees up a device name (e.g. /dev/sdc)
3566  *  that could be re-used by a subsequent sd_probe().
3567  *  This function is not called when the built-in sd driver is "exit-ed".
3568  **/
3569 static int sd_remove(struct device *dev)
3570 {
3571     struct scsi_disk *sdkp = dev_get_drvdata(dev);
3572 
3573     scsi_autopm_get_device(sdkp->device);
3574 
3575     device_del(&sdkp->disk_dev);
3576     del_gendisk(sdkp->disk);
3577     sd_shutdown(dev);
3578 
3579     put_disk(sdkp->disk);
3580     return 0;
3581 }
3582 
3583 static void scsi_disk_release(struct device *dev)
3584 {
3585     struct scsi_disk *sdkp = to_scsi_disk(dev);
3586 
3587     ida_free(&sd_index_ida, sdkp->index);
3588     sd_zbc_free_zone_info(sdkp);
3589     put_device(&sdkp->device->sdev_gendev);
3590     free_opal_dev(sdkp->opal_dev);
3591 
3592     kfree(sdkp);
3593 }
3594 
3595 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3596 {
3597     unsigned char cmd[6] = { START_STOP };  /* START_VALID */
3598     struct scsi_sense_hdr sshdr;
3599     struct scsi_device *sdp = sdkp->device;
3600     int res;
3601 
3602     if (start)
3603         cmd[4] |= 1;    /* START */
3604 
3605     if (sdp->start_stop_pwr_cond)
3606         cmd[4] |= start ? 1 << 4 : 3 << 4;  /* Active or Standby */
3607 
3608     if (!scsi_device_online(sdp))
3609         return -ENODEV;
3610 
3611     res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3612             SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3613     if (res) {
3614         sd_print_result(sdkp, "Start/Stop Unit failed", res);
3615         if (res > 0 && scsi_sense_valid(&sshdr)) {
3616             sd_print_sense_hdr(sdkp, &sshdr);
3617             /* 0x3a is medium not present */
3618             if (sshdr.asc == 0x3a)
3619                 res = 0;
3620         }
3621     }
3622 
3623     /* SCSI error codes must not go to the generic layer */
3624     if (res)
3625         return -EIO;
3626 
3627     return 0;
3628 }
3629 
3630 /*
3631  * Send a SYNCHRONIZE CACHE instruction down to the device through
3632  * the normal SCSI command structure.  Wait for the command to
3633  * complete.
3634  */
3635 static void sd_shutdown(struct device *dev)
3636 {
3637     struct scsi_disk *sdkp = dev_get_drvdata(dev);
3638 
3639     if (!sdkp)
3640         return;         /* this can happen */
3641 
3642     if (pm_runtime_suspended(dev))
3643         return;
3644 
3645     if (sdkp->WCE && sdkp->media_present) {
3646         sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3647         sd_sync_cache(sdkp, NULL);
3648     }
3649 
3650     if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3651         sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3652         sd_start_stop_device(sdkp, 0);
3653     }
3654 }
3655 
3656 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3657 {
3658     struct scsi_disk *sdkp = dev_get_drvdata(dev);
3659     struct scsi_sense_hdr sshdr;
3660     int ret = 0;
3661 
3662     if (!sdkp)  /* E.g.: runtime suspend following sd_remove() */
3663         return 0;
3664 
3665     if (sdkp->WCE && sdkp->media_present) {
3666         if (!sdkp->device->silence_suspend)
3667             sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3668         ret = sd_sync_cache(sdkp, &sshdr);
3669 
3670         if (ret) {
3671             /* ignore OFFLINE device */
3672             if (ret == -ENODEV)
3673                 return 0;
3674 
3675             if (!scsi_sense_valid(&sshdr) ||
3676                 sshdr.sense_key != ILLEGAL_REQUEST)
3677                 return ret;
3678 
3679             /*
3680              * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3681              * doesn't support sync. There's not much to do and
3682              * suspend shouldn't fail.
3683              */
3684             ret = 0;
3685         }
3686     }
3687 
3688     if (sdkp->device->manage_start_stop) {
3689         if (!sdkp->device->silence_suspend)
3690             sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3691         /* an error is not worth aborting a system sleep */
3692         ret = sd_start_stop_device(sdkp, 0);
3693         if (ignore_stop_errors)
3694             ret = 0;
3695     }
3696 
3697     return ret;
3698 }
3699 
3700 static int sd_suspend_system(struct device *dev)
3701 {
3702     if (pm_runtime_suspended(dev))
3703         return 0;
3704 
3705     return sd_suspend_common(dev, true);
3706 }
3707 
3708 static int sd_suspend_runtime(struct device *dev)
3709 {
3710     return sd_suspend_common(dev, false);
3711 }
3712 
3713 static int sd_resume(struct device *dev)
3714 {
3715     struct scsi_disk *sdkp = dev_get_drvdata(dev);
3716     int ret;
3717 
3718     if (!sdkp)  /* E.g.: runtime resume at the start of sd_probe() */
3719         return 0;
3720 
3721     if (!sdkp->device->manage_start_stop)
3722         return 0;
3723 
3724     sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3725     ret = sd_start_stop_device(sdkp, 1);
3726     if (!ret)
3727         opal_unlock_from_suspend(sdkp->opal_dev);
3728     return ret;
3729 }
3730 
3731 static int sd_resume_system(struct device *dev)
3732 {
3733     if (pm_runtime_suspended(dev))
3734         return 0;
3735 
3736     return sd_resume(dev);
3737 }
3738 
3739 static int sd_resume_runtime(struct device *dev)
3740 {
3741     struct scsi_disk *sdkp = dev_get_drvdata(dev);
3742     struct scsi_device *sdp;
3743 
3744     if (!sdkp)  /* E.g.: runtime resume at the start of sd_probe() */
3745         return 0;
3746 
3747     sdp = sdkp->device;
3748 
3749     if (sdp->ignore_media_change) {
3750         /* clear the device's sense data */
3751         static const u8 cmd[10] = { REQUEST_SENSE };
3752 
3753         if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL,
3754                  NULL, sdp->request_queue->rq_timeout, 1, 0,
3755                  RQF_PM, NULL))
3756             sd_printk(KERN_NOTICE, sdkp,
3757                   "Failed to clear sense data\n");
3758     }
3759 
3760     return sd_resume(dev);
3761 }
3762 
3763 /**
3764  *  init_sd - entry point for this driver (both when built in or when
3765  *  a module).
3766  *
3767  *  Note: this function registers this driver with the scsi mid-level.
3768  **/
3769 static int __init init_sd(void)
3770 {
3771     int majors = 0, i, err;
3772 
3773     SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3774 
3775     for (i = 0; i < SD_MAJORS; i++) {
3776         if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3777             continue;
3778         majors++;
3779     }
3780 
3781     if (!majors)
3782         return -ENODEV;
3783 
3784     err = class_register(&sd_disk_class);
3785     if (err)
3786         goto err_out;
3787 
3788     sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3789                      0, 0, NULL);
3790     if (!sd_cdb_cache) {
3791         printk(KERN_ERR "sd: can't init extended cdb cache\n");
3792         err = -ENOMEM;
3793         goto err_out_class;
3794     }
3795 
3796     sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3797     if (!sd_page_pool) {
3798         printk(KERN_ERR "sd: can't init discard page pool\n");
3799         err = -ENOMEM;
3800         goto err_out_cache;
3801     }
3802 
3803     err = scsi_register_driver(&sd_template.gendrv);
3804     if (err)
3805         goto err_out_driver;
3806 
3807     return 0;
3808 
3809 err_out_driver:
3810     mempool_destroy(sd_page_pool);
3811 
3812 err_out_cache:
3813     kmem_cache_destroy(sd_cdb_cache);
3814 
3815 err_out_class:
3816     class_unregister(&sd_disk_class);
3817 err_out:
3818     for (i = 0; i < SD_MAJORS; i++)
3819         unregister_blkdev(sd_major(i), "sd");
3820     return err;
3821 }
3822 
3823 /**
3824  *  exit_sd - exit point for this driver (when it is a module).
3825  *
3826  *  Note: this function unregisters this driver from the scsi mid-level.
3827  **/
3828 static void __exit exit_sd(void)
3829 {
3830     int i;
3831 
3832     SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3833 
3834     scsi_unregister_driver(&sd_template.gendrv);
3835     mempool_destroy(sd_page_pool);
3836     kmem_cache_destroy(sd_cdb_cache);
3837 
3838     class_unregister(&sd_disk_class);
3839 
3840     for (i = 0; i < SD_MAJORS; i++)
3841         unregister_blkdev(sd_major(i), "sd");
3842 }
3843 
3844 module_init(init_sd);
3845 module_exit(exit_sd);
3846 
3847 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3848 {
3849     scsi_print_sense_hdr(sdkp->device,
3850                  sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3851 }
3852 
3853 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3854 {
3855     const char *hb_string = scsi_hostbyte_string(result);
3856 
3857     if (hb_string)
3858         sd_printk(KERN_INFO, sdkp,
3859               "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3860               hb_string ? hb_string : "invalid",
3861               "DRIVER_OK");
3862     else
3863         sd_printk(KERN_INFO, sdkp,
3864               "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3865               msg, host_byte(result), "DRIVER_OK");
3866 }