Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * This is the Fusion MPT base driver providing common API layer interface
0003  * for access to MPT (Message Passing Technology) firmware.
0004  *
0005  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
0006  * Copyright (C) 2012-2014  LSI Corporation
0007  * Copyright (C) 2013-2014 Avago Technologies
0008  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
0009  *
0010  * This program is free software; you can redistribute it and/or
0011  * modify it under the terms of the GNU General Public License
0012  * as published by the Free Software Foundation; either version 2
0013  * of the License, or (at your option) any later version.
0014  *
0015  * This program is distributed in the hope that it will be useful,
0016  * but WITHOUT ANY WARRANTY; without even the implied warranty of
0017  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
0018  * GNU General Public License for more details.
0019  *
0020  * NO WARRANTY
0021  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
0022  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
0023  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
0024  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
0025  * solely responsible for determining the appropriateness of using and
0026  * distributing the Program and assumes all risks associated with its
0027  * exercise of rights under this Agreement, including but not limited to
0028  * the risks and costs of program errors, damage to or loss of data,
0029  * programs or equipment, and unavailability or interruption of operations.
0030 
0031  * DISCLAIMER OF LIABILITY
0032  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
0033  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
0034  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
0035  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
0036  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
0037  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
0038  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
0039 
0040  * You should have received a copy of the GNU General Public License
0041  * along with this program; if not, write to the Free Software
0042  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
0043  * USA.
0044  */
0045 
0046 #include <linux/kernel.h>
0047 #include <linux/module.h>
0048 #include <linux/errno.h>
0049 #include <linux/init.h>
0050 #include <linux/slab.h>
0051 #include <linux/types.h>
0052 #include <linux/pci.h>
0053 #include <linux/kdev_t.h>
0054 #include <linux/blkdev.h>
0055 #include <linux/delay.h>
0056 #include <linux/interrupt.h>
0057 #include <linux/dma-mapping.h>
0058 #include <linux/io.h>
0059 #include <linux/time.h>
0060 #include <linux/ktime.h>
0061 #include <linux/kthread.h>
0062 #include <asm/page.h>        /* To get host page size per arch */
0063 #include <linux/aer.h>
0064 
0065 
0066 #include "mpt3sas_base.h"
0067 
0068 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
0069 
0070 
0071 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
0072 
0073  /* maximum controller queue depth */
0074 #define MAX_HBA_QUEUE_DEPTH 30000
0075 #define MAX_CHAIN_DEPTH     100000
0076 static int max_queue_depth = -1;
0077 module_param(max_queue_depth, int, 0444);
0078 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
0079 
0080 static int max_sgl_entries = -1;
0081 module_param(max_sgl_entries, int, 0444);
0082 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
0083 
0084 static int msix_disable = -1;
0085 module_param(msix_disable, int, 0444);
0086 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
0087 
0088 static int smp_affinity_enable = 1;
0089 module_param(smp_affinity_enable, int, 0444);
0090 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
0091 
0092 static int max_msix_vectors = -1;
0093 module_param(max_msix_vectors, int, 0444);
0094 MODULE_PARM_DESC(max_msix_vectors,
0095     " max msix vectors");
0096 
0097 static int irqpoll_weight = -1;
0098 module_param(irqpoll_weight, int, 0444);
0099 MODULE_PARM_DESC(irqpoll_weight,
0100     "irq poll weight (default= one fourth of HBA queue depth)");
0101 
0102 static int mpt3sas_fwfault_debug;
0103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
0104     " enable detection of firmware fault and halt firmware - (default=0)");
0105 
0106 static int perf_mode = -1;
0107 module_param(perf_mode, int, 0444);
0108 MODULE_PARM_DESC(perf_mode,
0109     "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
0110     "0 - balanced: high iops mode is enabled &\n\t\t"
0111     "interrupt coalescing is enabled only on high iops queues,\n\t\t"
0112     "1 - iops: high iops mode is disabled &\n\t\t"
0113     "interrupt coalescing is enabled on all queues,\n\t\t"
0114     "2 - latency: high iops mode is disabled &\n\t\t"
0115     "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
0116     "\t\tdefault - default perf_mode is 'balanced'"
0117     );
0118 
0119 static int poll_queues;
0120 module_param(poll_queues, int, 0444);
0121 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
0122     "This parameter is effective only if host_tagset_enable=1. &\n\t\t"
0123     "when poll_queues are enabled then &\n\t\t"
0124     "perf_mode is set to latency mode. &\n\t\t"
0125     );
0126 
0127 enum mpt3sas_perf_mode {
0128     MPT_PERF_MODE_DEFAULT   = -1,
0129     MPT_PERF_MODE_BALANCED  = 0,
0130     MPT_PERF_MODE_IOPS  = 1,
0131     MPT_PERF_MODE_LATENCY   = 2,
0132 };
0133 
0134 static int
0135 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
0136         u32 ioc_state, int timeout);
0137 static int
0138 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
0139 static void
0140 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
0141 
0142 /**
0143  * mpt3sas_base_check_cmd_timeout - Function
0144  *      to check timeout and command termination due
0145  *      to Host reset.
0146  *
0147  * @ioc:    per adapter object.
0148  * @status: Status of issued command.
0149  * @mpi_request:mf request pointer.
0150  * @sz:     size of buffer.
0151  *
0152  * Return: 1/0 Reset to be done or Not
0153  */
0154 u8
0155 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
0156         u8 status, void *mpi_request, int sz)
0157 {
0158     u8 issue_reset = 0;
0159 
0160     if (!(status & MPT3_CMD_RESET))
0161         issue_reset = 1;
0162 
0163     ioc_err(ioc, "Command %s\n",
0164         issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
0165     _debug_dump_mf(mpi_request, sz);
0166 
0167     return issue_reset;
0168 }
0169 
0170 /**
0171  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
0172  * @val: ?
0173  * @kp: ?
0174  *
0175  * Return: ?
0176  */
0177 static int
0178 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
0179 {
0180     int ret = param_set_int(val, kp);
0181     struct MPT3SAS_ADAPTER *ioc;
0182 
0183     if (ret)
0184         return ret;
0185 
0186     /* global ioc spinlock to protect controller list on list operations */
0187     pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
0188     spin_lock(&gioc_lock);
0189     list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
0190         ioc->fwfault_debug = mpt3sas_fwfault_debug;
0191     spin_unlock(&gioc_lock);
0192     return 0;
0193 }
0194 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
0195     param_get_int, &mpt3sas_fwfault_debug, 0644);
0196 
0197 /**
0198  * _base_readl_aero - retry readl for max three times.
0199  * @addr: MPT Fusion system interface register address
0200  *
0201  * Retry the readl() for max three times if it gets zero value
0202  * while reading the system interface register.
0203  */
0204 static inline u32
0205 _base_readl_aero(const volatile void __iomem *addr)
0206 {
0207     u32 i = 0, ret_val;
0208 
0209     do {
0210         ret_val = readl(addr);
0211         i++;
0212     } while (ret_val == 0 && i < 3);
0213 
0214     return ret_val;
0215 }
0216 
0217 static inline u32
0218 _base_readl(const volatile void __iomem *addr)
0219 {
0220     return readl(addr);
0221 }
0222 
0223 /**
0224  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
0225  *                in BAR0 space.
0226  *
0227  * @ioc: per adapter object
0228  * @reply: reply message frame(lower 32bit addr)
0229  * @index: System request message index.
0230  */
0231 static void
0232 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
0233         u32 index)
0234 {
0235     /*
0236      * 256 is offset within sys register.
0237      * 256 offset MPI frame starts. Max MPI frame supported is 32.
0238      * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
0239      */
0240     u16 cmd_credit = ioc->facts.RequestCredit + 1;
0241     void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
0242             MPI_FRAME_START_OFFSET +
0243             (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
0244 
0245     writel(reply, reply_free_iomem);
0246 }
0247 
0248 /**
0249  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
0250  *              to system/BAR0 region.
0251  *
0252  * @dst_iomem: Pointer to the destination location in BAR0 space.
0253  * @src: Pointer to the Source data.
0254  * @size: Size of data to be copied.
0255  */
0256 static void
0257 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
0258 {
0259     int i;
0260     u32 *src_virt_mem = (u32 *)src;
0261 
0262     for (i = 0; i < size/4; i++)
0263         writel((u32)src_virt_mem[i],
0264                 (void __iomem *)dst_iomem + (i * 4));
0265 }
0266 
0267 /**
0268  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
0269  *
0270  * @dst_iomem: Pointer to the destination location in BAR0 space.
0271  * @src: Pointer to the Source data.
0272  * @size: Size of data to be copied.
0273  */
0274 static void
0275 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
0276 {
0277     int i;
0278     u32 *src_virt_mem = (u32 *)(src);
0279 
0280     for (i = 0; i < size/4; i++)
0281         writel((u32)src_virt_mem[i],
0282             (void __iomem *)dst_iomem + (i * 4));
0283 }
0284 
0285 /**
0286  * _base_get_chain - Calculates and Returns virtual chain address
0287  *           for the provided smid in BAR0 space.
0288  *
0289  * @ioc: per adapter object
0290  * @smid: system request message index
0291  * @sge_chain_count: Scatter gather chain count.
0292  *
0293  * Return: the chain address.
0294  */
0295 static inline void __iomem*
0296 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
0297         u8 sge_chain_count)
0298 {
0299     void __iomem *base_chain, *chain_virt;
0300     u16 cmd_credit = ioc->facts.RequestCredit + 1;
0301 
0302     base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
0303         (cmd_credit * ioc->request_sz) +
0304         REPLY_FREE_POOL_SIZE;
0305     chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
0306             ioc->request_sz) + (sge_chain_count * ioc->request_sz);
0307     return chain_virt;
0308 }
0309 
0310 /**
0311  * _base_get_chain_phys - Calculates and Returns physical address
0312  *          in BAR0 for scatter gather chains, for
0313  *          the provided smid.
0314  *
0315  * @ioc: per adapter object
0316  * @smid: system request message index
0317  * @sge_chain_count: Scatter gather chain count.
0318  *
0319  * Return: Physical chain address.
0320  */
0321 static inline phys_addr_t
0322 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
0323         u8 sge_chain_count)
0324 {
0325     phys_addr_t base_chain_phys, chain_phys;
0326     u16 cmd_credit = ioc->facts.RequestCredit + 1;
0327 
0328     base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
0329         (cmd_credit * ioc->request_sz) +
0330         REPLY_FREE_POOL_SIZE;
0331     chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
0332             ioc->request_sz) + (sge_chain_count * ioc->request_sz);
0333     return chain_phys;
0334 }
0335 
0336 /**
0337  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
0338  *          buffer address for the provided smid.
0339  *          (Each smid can have 64K starts from 17024)
0340  *
0341  * @ioc: per adapter object
0342  * @smid: system request message index
0343  *
0344  * Return: Pointer to buffer location in BAR0.
0345  */
0346 
0347 static void __iomem *
0348 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
0349 {
0350     u16 cmd_credit = ioc->facts.RequestCredit + 1;
0351     // Added extra 1 to reach end of chain.
0352     void __iomem *chain_end = _base_get_chain(ioc,
0353             cmd_credit + 1,
0354             ioc->facts.MaxChainDepth);
0355     return chain_end + (smid * 64 * 1024);
0356 }
0357 
0358 /**
0359  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
0360  *      Host buffer Physical address for the provided smid.
0361  *      (Each smid can have 64K starts from 17024)
0362  *
0363  * @ioc: per adapter object
0364  * @smid: system request message index
0365  *
0366  * Return: Pointer to buffer location in BAR0.
0367  */
0368 static phys_addr_t
0369 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
0370 {
0371     u16 cmd_credit = ioc->facts.RequestCredit + 1;
0372     phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
0373             cmd_credit + 1,
0374             ioc->facts.MaxChainDepth);
0375     return chain_end_phys + (smid * 64 * 1024);
0376 }
0377 
0378 /**
0379  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
0380  *          lookup list and Provides chain_buffer
0381  *          address for the matching dma address.
0382  *          (Each smid can have 64K starts from 17024)
0383  *
0384  * @ioc: per adapter object
0385  * @chain_buffer_dma: Chain buffer dma address.
0386  *
0387  * Return: Pointer to chain buffer. Or Null on Failure.
0388  */
0389 static void *
0390 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
0391         dma_addr_t chain_buffer_dma)
0392 {
0393     u16 index, j;
0394     struct chain_tracker *ct;
0395 
0396     for (index = 0; index < ioc->scsiio_depth; index++) {
0397         for (j = 0; j < ioc->chains_needed_per_io; j++) {
0398             ct = &ioc->chain_lookup[index].chains_per_smid[j];
0399             if (ct && ct->chain_buffer_dma == chain_buffer_dma)
0400                 return ct->chain_buffer;
0401         }
0402     }
0403     ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
0404     return NULL;
0405 }
0406 
0407 /**
0408  * _clone_sg_entries -  MPI EP's scsiio and config requests
0409  *          are handled here. Base function for
0410  *          double buffering, before submitting
0411  *          the requests.
0412  *
0413  * @ioc: per adapter object.
0414  * @mpi_request: mf request pointer.
0415  * @smid: system request message index.
0416  */
0417 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
0418         void *mpi_request, u16 smid)
0419 {
0420     Mpi2SGESimple32_t *sgel, *sgel_next;
0421     u32  sgl_flags, sge_chain_count = 0;
0422     bool is_write = false;
0423     u16 i = 0;
0424     void __iomem *buffer_iomem;
0425     phys_addr_t buffer_iomem_phys;
0426     void __iomem *buff_ptr;
0427     phys_addr_t buff_ptr_phys;
0428     void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
0429     void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
0430     phys_addr_t dst_addr_phys;
0431     MPI2RequestHeader_t *request_hdr;
0432     struct scsi_cmnd *scmd;
0433     struct scatterlist *sg_scmd = NULL;
0434     int is_scsiio_req = 0;
0435 
0436     request_hdr = (MPI2RequestHeader_t *) mpi_request;
0437 
0438     if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
0439         Mpi25SCSIIORequest_t *scsiio_request =
0440             (Mpi25SCSIIORequest_t *)mpi_request;
0441         sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
0442         is_scsiio_req = 1;
0443     } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
0444         Mpi2ConfigRequest_t  *config_req =
0445             (Mpi2ConfigRequest_t *)mpi_request;
0446         sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
0447     } else
0448         return;
0449 
0450     /* From smid we can get scsi_cmd, once we have sg_scmd,
0451      * we just need to get sg_virt and sg_next to get virtual
0452      * address associated with sgel->Address.
0453      */
0454 
0455     if (is_scsiio_req) {
0456         /* Get scsi_cmd using smid */
0457         scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
0458         if (scmd == NULL) {
0459             ioc_err(ioc, "scmd is NULL\n");
0460             return;
0461         }
0462 
0463         /* Get sg_scmd from scmd provided */
0464         sg_scmd = scsi_sglist(scmd);
0465     }
0466 
0467     /*
0468      * 0 - 255  System register
0469      * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
0470      * 4352 - 4864  Reply_free pool (512 byte is reserved
0471      *      considering maxCredit 32. Reply need extra
0472      *      room, for mCPU case kept four times of
0473      *      maxCredit).
0474      * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
0475      *      128 byte size = 12288)
0476      * 17152 - x    Host buffer mapped with smid.
0477      *      (Each smid can have 64K Max IO.)
0478      * BAR0+Last 1K MSIX Addr and Data
0479      * Total size in use 2113664 bytes of 4MB BAR0
0480      */
0481 
0482     buffer_iomem = _base_get_buffer_bar0(ioc, smid);
0483     buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
0484 
0485     buff_ptr = buffer_iomem;
0486     buff_ptr_phys = buffer_iomem_phys;
0487     WARN_ON(buff_ptr_phys > U32_MAX);
0488 
0489     if (le32_to_cpu(sgel->FlagsLength) &
0490             (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
0491         is_write = true;
0492 
0493     for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
0494 
0495         sgl_flags =
0496             (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
0497 
0498         switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
0499         case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
0500             /*
0501              * Helper function which on passing
0502              * chain_buffer_dma returns chain_buffer. Get
0503              * the virtual address for sgel->Address
0504              */
0505             sgel_next =
0506                 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
0507                         le32_to_cpu(sgel->Address));
0508             if (sgel_next == NULL)
0509                 return;
0510             /*
0511              * This is coping 128 byte chain
0512              * frame (not a host buffer)
0513              */
0514             dst_chain_addr[sge_chain_count] =
0515                 _base_get_chain(ioc,
0516                     smid, sge_chain_count);
0517             src_chain_addr[sge_chain_count] =
0518                         (void *) sgel_next;
0519             dst_addr_phys = _base_get_chain_phys(ioc,
0520                         smid, sge_chain_count);
0521             WARN_ON(dst_addr_phys > U32_MAX);
0522             sgel->Address =
0523                 cpu_to_le32(lower_32_bits(dst_addr_phys));
0524             sgel = sgel_next;
0525             sge_chain_count++;
0526             break;
0527         case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
0528             if (is_write) {
0529                 if (is_scsiio_req) {
0530                     _base_clone_to_sys_mem(buff_ptr,
0531                         sg_virt(sg_scmd),
0532                         (le32_to_cpu(sgel->FlagsLength) &
0533                         0x00ffffff));
0534                     /*
0535                      * FIXME: this relies on a a zero
0536                      * PCI mem_offset.
0537                      */
0538                     sgel->Address =
0539                         cpu_to_le32((u32)buff_ptr_phys);
0540                 } else {
0541                     _base_clone_to_sys_mem(buff_ptr,
0542                         ioc->config_vaddr,
0543                         (le32_to_cpu(sgel->FlagsLength) &
0544                         0x00ffffff));
0545                     sgel->Address =
0546                         cpu_to_le32((u32)buff_ptr_phys);
0547                 }
0548             }
0549             buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
0550                 0x00ffffff);
0551             buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
0552                 0x00ffffff);
0553             if ((le32_to_cpu(sgel->FlagsLength) &
0554                 (MPI2_SGE_FLAGS_END_OF_BUFFER
0555                     << MPI2_SGE_FLAGS_SHIFT)))
0556                 goto eob_clone_chain;
0557             else {
0558                 /*
0559                  * Every single element in MPT will have
0560                  * associated sg_next. Better to sanity that
0561                  * sg_next is not NULL, but it will be a bug
0562                  * if it is null.
0563                  */
0564                 if (is_scsiio_req) {
0565                     sg_scmd = sg_next(sg_scmd);
0566                     if (sg_scmd)
0567                         sgel++;
0568                     else
0569                         goto eob_clone_chain;
0570                 }
0571             }
0572             break;
0573         }
0574     }
0575 
0576 eob_clone_chain:
0577     for (i = 0; i < sge_chain_count; i++) {
0578         if (is_scsiio_req)
0579             _base_clone_to_sys_mem(dst_chain_addr[i],
0580                 src_chain_addr[i], ioc->request_sz);
0581     }
0582 }
0583 
0584 /**
0585  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
0586  * @arg: input argument, used to derive ioc
0587  *
0588  * Return:
0589  * 0 if controller is removed from pci subsystem.
0590  * -1 for other case.
0591  */
0592 static int mpt3sas_remove_dead_ioc_func(void *arg)
0593 {
0594     struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
0595     struct pci_dev *pdev;
0596 
0597     if (!ioc)
0598         return -1;
0599 
0600     pdev = ioc->pdev;
0601     if (!pdev)
0602         return -1;
0603     pci_stop_and_remove_bus_device_locked(pdev);
0604     return 0;
0605 }
0606 
0607 /**
0608  * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
0609  * @ioc: Per Adapter Object
0610  *
0611  * Return: nothing.
0612  */
0613 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
0614 {
0615     Mpi26IoUnitControlRequest_t *mpi_request;
0616     Mpi26IoUnitControlReply_t *mpi_reply;
0617     u16 smid;
0618     ktime_t current_time;
0619     u64 TimeStamp = 0;
0620     u8 issue_reset = 0;
0621 
0622     mutex_lock(&ioc->scsih_cmds.mutex);
0623     if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
0624         ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
0625         goto out;
0626     }
0627     ioc->scsih_cmds.status = MPT3_CMD_PENDING;
0628     smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
0629     if (!smid) {
0630         ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
0631         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
0632         goto out;
0633     }
0634     mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
0635     ioc->scsih_cmds.smid = smid;
0636     memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
0637     mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
0638     mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
0639     mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
0640     current_time = ktime_get_real();
0641     TimeStamp = ktime_to_ms(current_time);
0642     mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32);
0643     mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
0644     init_completion(&ioc->scsih_cmds.done);
0645     ioc->put_smid_default(ioc, smid);
0646     dinitprintk(ioc, ioc_info(ioc,
0647         "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
0648         TimeStamp));
0649     wait_for_completion_timeout(&ioc->scsih_cmds.done,
0650         MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
0651     if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
0652         mpt3sas_check_cmd_timeout(ioc,
0653             ioc->scsih_cmds.status, mpi_request,
0654             sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
0655         goto issue_host_reset;
0656     }
0657     if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
0658         mpi_reply = ioc->scsih_cmds.reply;
0659         dinitprintk(ioc, ioc_info(ioc,
0660             "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
0661             le16_to_cpu(mpi_reply->IOCStatus),
0662             le32_to_cpu(mpi_reply->IOCLogInfo)));
0663     }
0664 issue_host_reset:
0665     if (issue_reset)
0666         mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
0667     ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
0668 out:
0669     mutex_unlock(&ioc->scsih_cmds.mutex);
0670 }
0671 
0672 /**
0673  * _base_fault_reset_work - workq handling ioc fault conditions
0674  * @work: input argument, used to derive ioc
0675  *
0676  * Context: sleep.
0677  */
0678 static void
0679 _base_fault_reset_work(struct work_struct *work)
0680 {
0681     struct MPT3SAS_ADAPTER *ioc =
0682         container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
0683     unsigned long    flags;
0684     u32 doorbell;
0685     int rc;
0686     struct task_struct *p;
0687 
0688 
0689     spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
0690     if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
0691             ioc->pci_error_recovery)
0692         goto rearm_timer;
0693     spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
0694 
0695     doorbell = mpt3sas_base_get_iocstate(ioc, 0);
0696     if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
0697         ioc_err(ioc, "SAS host is non-operational !!!!\n");
0698 
0699         /* It may be possible that EEH recovery can resolve some of
0700          * pci bus failure issues rather removing the dead ioc function
0701          * by considering controller is in a non-operational state. So
0702          * here priority is given to the EEH recovery. If it doesn't
0703          * not resolve this issue, mpt3sas driver will consider this
0704          * controller to non-operational state and remove the dead ioc
0705          * function.
0706          */
0707         if (ioc->non_operational_loop++ < 5) {
0708             spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
0709                              flags);
0710             goto rearm_timer;
0711         }
0712 
0713         /*
0714          * Call _scsih_flush_pending_cmds callback so that we flush all
0715          * pending commands back to OS. This call is required to avoid
0716          * deadlock at block layer. Dead IOC will fail to do diag reset,
0717          * and this call is safe since dead ioc will never return any
0718          * command back from HW.
0719          */
0720         mpt3sas_base_pause_mq_polling(ioc);
0721         ioc->schedule_dead_ioc_flush_running_cmds(ioc);
0722         /*
0723          * Set remove_host flag early since kernel thread will
0724          * take some time to execute.
0725          */
0726         ioc->remove_host = 1;
0727         /*Remove the Dead Host */
0728         p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
0729             "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
0730         if (IS_ERR(p))
0731             ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
0732                 __func__);
0733         else
0734             ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
0735                 __func__);
0736         return; /* don't rearm timer */
0737     }
0738 
0739     if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
0740         u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
0741             ioc->manu_pg11.CoreDumpTOSec :
0742             MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
0743 
0744         timeout /= (FAULT_POLLING_INTERVAL/1000);
0745 
0746         if (ioc->ioc_coredump_loop == 0) {
0747             mpt3sas_print_coredump_info(ioc,
0748                 doorbell & MPI2_DOORBELL_DATA_MASK);
0749             /* do not accept any IOs and disable the interrupts */
0750             spin_lock_irqsave(
0751                 &ioc->ioc_reset_in_progress_lock, flags);
0752             ioc->shost_recovery = 1;
0753             spin_unlock_irqrestore(
0754                 &ioc->ioc_reset_in_progress_lock, flags);
0755             mpt3sas_base_mask_interrupts(ioc);
0756             mpt3sas_base_pause_mq_polling(ioc);
0757             _base_clear_outstanding_commands(ioc);
0758         }
0759 
0760         ioc_info(ioc, "%s: CoreDump loop %d.",
0761             __func__, ioc->ioc_coredump_loop);
0762 
0763         /* Wait until CoreDump completes or times out */
0764         if (ioc->ioc_coredump_loop++ < timeout) {
0765             spin_lock_irqsave(
0766                 &ioc->ioc_reset_in_progress_lock, flags);
0767             goto rearm_timer;
0768         }
0769     }
0770 
0771     if (ioc->ioc_coredump_loop) {
0772         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
0773             ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
0774                 __func__, ioc->ioc_coredump_loop);
0775         else
0776             ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
0777                 __func__, ioc->ioc_coredump_loop);
0778         ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
0779     }
0780     ioc->non_operational_loop = 0;
0781     if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
0782         rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
0783         ioc_warn(ioc, "%s: hard reset: %s\n",
0784              __func__, rc == 0 ? "success" : "failed");
0785         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
0786         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
0787             mpt3sas_print_fault_code(ioc, doorbell &
0788                 MPI2_DOORBELL_DATA_MASK);
0789         } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
0790             MPI2_IOC_STATE_COREDUMP)
0791             mpt3sas_print_coredump_info(ioc, doorbell &
0792                 MPI2_DOORBELL_DATA_MASK);
0793         if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
0794             MPI2_IOC_STATE_OPERATIONAL)
0795             return; /* don't rearm timer */
0796     }
0797     ioc->ioc_coredump_loop = 0;
0798     if (ioc->time_sync_interval &&
0799         ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
0800         ioc->timestamp_update_count = 0;
0801         _base_sync_drv_fw_timestamp(ioc);
0802     }
0803     spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
0804  rearm_timer:
0805     if (ioc->fault_reset_work_q)
0806         queue_delayed_work(ioc->fault_reset_work_q,
0807             &ioc->fault_reset_work,
0808             msecs_to_jiffies(FAULT_POLLING_INTERVAL));
0809     spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
0810 }
0811 
0812 /**
0813  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
0814  * @ioc: per adapter object
0815  *
0816  * Context: sleep.
0817  */
0818 void
0819 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
0820 {
0821     unsigned long    flags;
0822 
0823     if (ioc->fault_reset_work_q)
0824         return;
0825 
0826     ioc->timestamp_update_count = 0;
0827     /* initialize fault polling */
0828 
0829     INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
0830     snprintf(ioc->fault_reset_work_q_name,
0831         sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
0832         ioc->driver_name, ioc->id);
0833     ioc->fault_reset_work_q =
0834         create_singlethread_workqueue(ioc->fault_reset_work_q_name);
0835     if (!ioc->fault_reset_work_q) {
0836         ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
0837         return;
0838     }
0839     spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
0840     if (ioc->fault_reset_work_q)
0841         queue_delayed_work(ioc->fault_reset_work_q,
0842             &ioc->fault_reset_work,
0843             msecs_to_jiffies(FAULT_POLLING_INTERVAL));
0844     spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
0845 }
0846 
0847 /**
0848  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
0849  * @ioc: per adapter object
0850  *
0851  * Context: sleep.
0852  */
0853 void
0854 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
0855 {
0856     unsigned long flags;
0857     struct workqueue_struct *wq;
0858 
0859     spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
0860     wq = ioc->fault_reset_work_q;
0861     ioc->fault_reset_work_q = NULL;
0862     spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
0863     if (wq) {
0864         if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
0865             flush_workqueue(wq);
0866         destroy_workqueue(wq);
0867     }
0868 }
0869 
0870 /**
0871  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
0872  * @ioc: per adapter object
0873  * @fault_code: fault code
0874  */
0875 void
0876 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
0877 {
0878     ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
0879 }
0880 
0881 /**
0882  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
0883  * @ioc: per adapter object
0884  * @fault_code: fault code
0885  *
0886  * Return: nothing.
0887  */
0888 void
0889 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
0890 {
0891     ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
0892 }
0893 
0894 /**
0895  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
0896  * completes or times out
0897  * @ioc: per adapter object
0898  * @caller: caller function name
0899  *
0900  * Return: 0 for success, non-zero for failure.
0901  */
0902 int
0903 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
0904         const char *caller)
0905 {
0906     u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
0907             ioc->manu_pg11.CoreDumpTOSec :
0908             MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
0909 
0910     int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
0911                     timeout);
0912 
0913     if (ioc_state)
0914         ioc_err(ioc,
0915             "%s: CoreDump timed out. (ioc_state=0x%x)\n",
0916             caller, ioc_state);
0917     else
0918         ioc_info(ioc,
0919             "%s: CoreDump completed. (ioc_state=0x%x)\n",
0920             caller, ioc_state);
0921 
0922     return ioc_state;
0923 }
0924 
0925 /**
0926  * mpt3sas_halt_firmware - halt's mpt controller firmware
0927  * @ioc: per adapter object
0928  *
0929  * For debugging timeout related issues.  Writing 0xCOFFEE00
0930  * to the doorbell register will halt controller firmware. With
0931  * the purpose to stop both driver and firmware, the enduser can
0932  * obtain a ring buffer from controller UART.
0933  */
0934 void
0935 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
0936 {
0937     u32 doorbell;
0938 
0939     if (!ioc->fwfault_debug)
0940         return;
0941 
0942     dump_stack();
0943 
0944     doorbell = ioc->base_readl(&ioc->chip->Doorbell);
0945     if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
0946         mpt3sas_print_fault_code(ioc, doorbell &
0947             MPI2_DOORBELL_DATA_MASK);
0948     } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
0949         MPI2_IOC_STATE_COREDUMP) {
0950         mpt3sas_print_coredump_info(ioc, doorbell &
0951             MPI2_DOORBELL_DATA_MASK);
0952     } else {
0953         writel(0xC0FFEE00, &ioc->chip->Doorbell);
0954         ioc_err(ioc, "Firmware is halted due to command timeout\n");
0955     }
0956 
0957     if (ioc->fwfault_debug == 2)
0958         for (;;)
0959             ;
0960     else
0961         panic("panic in %s\n", __func__);
0962 }
0963 
0964 /**
0965  * _base_sas_ioc_info - verbose translation of the ioc status
0966  * @ioc: per adapter object
0967  * @mpi_reply: reply mf payload returned from firmware
0968  * @request_hdr: request mf
0969  */
0970 static void
0971 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
0972     MPI2RequestHeader_t *request_hdr)
0973 {
0974     u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
0975         MPI2_IOCSTATUS_MASK;
0976     char *desc = NULL;
0977     u16 frame_sz;
0978     char *func_str = NULL;
0979 
0980     /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
0981     if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
0982         request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
0983         request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
0984         return;
0985 
0986     if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
0987         return;
0988     /*
0989      * Older Firmware version doesn't support driver trigger pages.
0990      * So, skip displaying 'config invalid type' type
0991      * of error message.
0992      */
0993     if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
0994         Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
0995 
0996         if ((rqst->ExtPageType ==
0997             MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
0998             !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
0999             return;
1000         }
1001     }
1002 
1003     switch (ioc_status) {
1004 
1005 /****************************************************************************
1006 *  Common IOCStatus values for all replies
1007 ****************************************************************************/
1008 
1009     case MPI2_IOCSTATUS_INVALID_FUNCTION:
1010         desc = "invalid function";
1011         break;
1012     case MPI2_IOCSTATUS_BUSY:
1013         desc = "busy";
1014         break;
1015     case MPI2_IOCSTATUS_INVALID_SGL:
1016         desc = "invalid sgl";
1017         break;
1018     case MPI2_IOCSTATUS_INTERNAL_ERROR:
1019         desc = "internal error";
1020         break;
1021     case MPI2_IOCSTATUS_INVALID_VPID:
1022         desc = "invalid vpid";
1023         break;
1024     case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1025         desc = "insufficient resources";
1026         break;
1027     case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1028         desc = "insufficient power";
1029         break;
1030     case MPI2_IOCSTATUS_INVALID_FIELD:
1031         desc = "invalid field";
1032         break;
1033     case MPI2_IOCSTATUS_INVALID_STATE:
1034         desc = "invalid state";
1035         break;
1036     case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1037         desc = "op state not supported";
1038         break;
1039 
1040 /****************************************************************************
1041 *  Config IOCStatus values
1042 ****************************************************************************/
1043 
1044     case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1045         desc = "config invalid action";
1046         break;
1047     case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1048         desc = "config invalid type";
1049         break;
1050     case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1051         desc = "config invalid page";
1052         break;
1053     case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1054         desc = "config invalid data";
1055         break;
1056     case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1057         desc = "config no defaults";
1058         break;
1059     case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1060         desc = "config can't commit";
1061         break;
1062 
1063 /****************************************************************************
1064 *  SCSI IO Reply
1065 ****************************************************************************/
1066 
1067     case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1068     case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1069     case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1070     case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1071     case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1072     case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1073     case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1074     case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1075     case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1076     case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1077     case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1078     case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1079         break;
1080 
1081 /****************************************************************************
1082 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
1083 ****************************************************************************/
1084 
1085     case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1086         desc = "eedp guard error";
1087         break;
1088     case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1089         desc = "eedp ref tag error";
1090         break;
1091     case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1092         desc = "eedp app tag error";
1093         break;
1094 
1095 /****************************************************************************
1096 *  SCSI Target values
1097 ****************************************************************************/
1098 
1099     case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1100         desc = "target invalid io index";
1101         break;
1102     case MPI2_IOCSTATUS_TARGET_ABORTED:
1103         desc = "target aborted";
1104         break;
1105     case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1106         desc = "target no conn retryable";
1107         break;
1108     case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1109         desc = "target no connection";
1110         break;
1111     case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1112         desc = "target xfer count mismatch";
1113         break;
1114     case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1115         desc = "target data offset error";
1116         break;
1117     case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1118         desc = "target too much write data";
1119         break;
1120     case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1121         desc = "target iu too short";
1122         break;
1123     case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1124         desc = "target ack nak timeout";
1125         break;
1126     case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1127         desc = "target nak received";
1128         break;
1129 
1130 /****************************************************************************
1131 *  Serial Attached SCSI values
1132 ****************************************************************************/
1133 
1134     case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1135         desc = "smp request failed";
1136         break;
1137     case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1138         desc = "smp data overrun";
1139         break;
1140 
1141 /****************************************************************************
1142 *  Diagnostic Buffer Post / Diagnostic Release values
1143 ****************************************************************************/
1144 
1145     case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1146         desc = "diagnostic released";
1147         break;
1148     default:
1149         break;
1150     }
1151 
1152     if (!desc)
1153         return;
1154 
1155     switch (request_hdr->Function) {
1156     case MPI2_FUNCTION_CONFIG:
1157         frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1158         func_str = "config_page";
1159         break;
1160     case MPI2_FUNCTION_SCSI_TASK_MGMT:
1161         frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1162         func_str = "task_mgmt";
1163         break;
1164     case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1165         frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1166         func_str = "sas_iounit_ctl";
1167         break;
1168     case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1169         frame_sz = sizeof(Mpi2SepRequest_t);
1170         func_str = "enclosure";
1171         break;
1172     case MPI2_FUNCTION_IOC_INIT:
1173         frame_sz = sizeof(Mpi2IOCInitRequest_t);
1174         func_str = "ioc_init";
1175         break;
1176     case MPI2_FUNCTION_PORT_ENABLE:
1177         frame_sz = sizeof(Mpi2PortEnableRequest_t);
1178         func_str = "port_enable";
1179         break;
1180     case MPI2_FUNCTION_SMP_PASSTHROUGH:
1181         frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1182         func_str = "smp_passthru";
1183         break;
1184     case MPI2_FUNCTION_NVME_ENCAPSULATED:
1185         frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1186             ioc->sge_size;
1187         func_str = "nvme_encapsulated";
1188         break;
1189     default:
1190         frame_sz = 32;
1191         func_str = "unknown";
1192         break;
1193     }
1194 
1195     ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1196          desc, ioc_status, request_hdr, func_str);
1197 
1198     _debug_dump_mf(request_hdr, frame_sz/4);
1199 }
1200 
1201 /**
1202  * _base_display_event_data - verbose translation of firmware asyn events
1203  * @ioc: per adapter object
1204  * @mpi_reply: reply mf payload returned from firmware
1205  */
1206 static void
1207 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1208     Mpi2EventNotificationReply_t *mpi_reply)
1209 {
1210     char *desc = NULL;
1211     u16 event;
1212 
1213     if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1214         return;
1215 
1216     event = le16_to_cpu(mpi_reply->Event);
1217 
1218     switch (event) {
1219     case MPI2_EVENT_LOG_DATA:
1220         desc = "Log Data";
1221         break;
1222     case MPI2_EVENT_STATE_CHANGE:
1223         desc = "Status Change";
1224         break;
1225     case MPI2_EVENT_HARD_RESET_RECEIVED:
1226         desc = "Hard Reset Received";
1227         break;
1228     case MPI2_EVENT_EVENT_CHANGE:
1229         desc = "Event Change";
1230         break;
1231     case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1232         desc = "Device Status Change";
1233         break;
1234     case MPI2_EVENT_IR_OPERATION_STATUS:
1235         if (!ioc->hide_ir_msg)
1236             desc = "IR Operation Status";
1237         break;
1238     case MPI2_EVENT_SAS_DISCOVERY:
1239     {
1240         Mpi2EventDataSasDiscovery_t *event_data =
1241             (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1242         ioc_info(ioc, "Discovery: (%s)",
1243              event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1244              "start" : "stop");
1245         if (event_data->DiscoveryStatus)
1246             pr_cont(" discovery_status(0x%08x)",
1247                 le32_to_cpu(event_data->DiscoveryStatus));
1248         pr_cont("\n");
1249         return;
1250     }
1251     case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1252         desc = "SAS Broadcast Primitive";
1253         break;
1254     case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1255         desc = "SAS Init Device Status Change";
1256         break;
1257     case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1258         desc = "SAS Init Table Overflow";
1259         break;
1260     case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1261         desc = "SAS Topology Change List";
1262         break;
1263     case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1264         desc = "SAS Enclosure Device Status Change";
1265         break;
1266     case MPI2_EVENT_IR_VOLUME:
1267         if (!ioc->hide_ir_msg)
1268             desc = "IR Volume";
1269         break;
1270     case MPI2_EVENT_IR_PHYSICAL_DISK:
1271         if (!ioc->hide_ir_msg)
1272             desc = "IR Physical Disk";
1273         break;
1274     case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1275         if (!ioc->hide_ir_msg)
1276             desc = "IR Configuration Change List";
1277         break;
1278     case MPI2_EVENT_LOG_ENTRY_ADDED:
1279         if (!ioc->hide_ir_msg)
1280             desc = "Log Entry Added";
1281         break;
1282     case MPI2_EVENT_TEMP_THRESHOLD:
1283         desc = "Temperature Threshold";
1284         break;
1285     case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1286         desc = "Cable Event";
1287         break;
1288     case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1289         desc = "SAS Device Discovery Error";
1290         break;
1291     case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1292         desc = "PCIE Device Status Change";
1293         break;
1294     case MPI2_EVENT_PCIE_ENUMERATION:
1295     {
1296         Mpi26EventDataPCIeEnumeration_t *event_data =
1297             (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1298         ioc_info(ioc, "PCIE Enumeration: (%s)",
1299              event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1300              "start" : "stop");
1301         if (event_data->EnumerationStatus)
1302             pr_cont("enumeration_status(0x%08x)",
1303                 le32_to_cpu(event_data->EnumerationStatus));
1304         pr_cont("\n");
1305         return;
1306     }
1307     case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1308         desc = "PCIE Topology Change List";
1309         break;
1310     }
1311 
1312     if (!desc)
1313         return;
1314 
1315     ioc_info(ioc, "%s\n", desc);
1316 }
1317 
1318 /**
1319  * _base_sas_log_info - verbose translation of firmware log info
1320  * @ioc: per adapter object
1321  * @log_info: log info
1322  */
1323 static void
1324 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc, u32 log_info)
1325 {
1326     union loginfo_type {
1327         u32 loginfo;
1328         struct {
1329             u32 subcode:16;
1330             u32 code:8;
1331             u32 originator:4;
1332             u32 bus_type:4;
1333         } dw;
1334     };
1335     union loginfo_type sas_loginfo;
1336     char *originator_str = NULL;
1337 
1338     sas_loginfo.loginfo = log_info;
1339     if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1340         return;
1341 
1342     /* each nexus loss loginfo */
1343     if (log_info == 0x31170000)
1344         return;
1345 
1346     /* eat the loginfos associated with task aborts */
1347     if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1348         0x31140000 || log_info == 0x31130000))
1349         return;
1350 
1351     switch (sas_loginfo.dw.originator) {
1352     case 0:
1353         originator_str = "IOP";
1354         break;
1355     case 1:
1356         originator_str = "PL";
1357         break;
1358     case 2:
1359         if (!ioc->hide_ir_msg)
1360             originator_str = "IR";
1361         else
1362             originator_str = "WarpDrive";
1363         break;
1364     }
1365 
1366     ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1367          log_info,
1368          originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1369 }
1370 
1371 /**
1372  * _base_display_reply_info - handle reply descriptors depending on IOC Status
1373  * @ioc: per adapter object
1374  * @smid: system request message index
1375  * @msix_index: MSIX table index supplied by the OS
1376  * @reply: reply message frame (lower 32bit addr)
1377  */
1378 static void
1379 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1380     u32 reply)
1381 {
1382     MPI2DefaultReply_t *mpi_reply;
1383     u16 ioc_status;
1384     u32 loginfo = 0;
1385 
1386     mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1387     if (unlikely(!mpi_reply)) {
1388         ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1389             __FILE__, __LINE__, __func__);
1390         return;
1391     }
1392     ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1393 
1394     if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1395         (ioc->logging_level & MPT_DEBUG_REPLY)) {
1396         _base_sas_ioc_info(ioc, mpi_reply,
1397            mpt3sas_base_get_msg_frame(ioc, smid));
1398     }
1399 
1400     if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1401         loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1402         _base_sas_log_info(ioc, loginfo);
1403     }
1404 
1405     if (ioc_status || loginfo) {
1406         ioc_status &= MPI2_IOCSTATUS_MASK;
1407         mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1408     }
1409 }
1410 
1411 /**
1412  * mpt3sas_base_done - base internal command completion routine
1413  * @ioc: per adapter object
1414  * @smid: system request message index
1415  * @msix_index: MSIX table index supplied by the OS
1416  * @reply: reply message frame(lower 32bit addr)
1417  *
1418  * Return:
1419  * 1 meaning mf should be freed from _base_interrupt
1420  * 0 means the mf is freed from this function.
1421  */
1422 u8
1423 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1424     u32 reply)
1425 {
1426     MPI2DefaultReply_t *mpi_reply;
1427 
1428     mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1429     if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1430         return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1431 
1432     if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1433         return 1;
1434 
1435     ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1436     if (mpi_reply) {
1437         ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1438         memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1439     }
1440     ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1441 
1442     complete(&ioc->base_cmds.done);
1443     return 1;
1444 }
1445 
1446 /**
1447  * _base_async_event - main callback handler for firmware asyn events
1448  * @ioc: per adapter object
1449  * @msix_index: MSIX table index supplied by the OS
1450  * @reply: reply message frame(lower 32bit addr)
1451  *
1452  * Return:
1453  * 1 meaning mf should be freed from _base_interrupt
1454  * 0 means the mf is freed from this function.
1455  */
1456 static u8
1457 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1458 {
1459     Mpi2EventNotificationReply_t *mpi_reply;
1460     Mpi2EventAckRequest_t *ack_request;
1461     u16 smid;
1462     struct _event_ack_list *delayed_event_ack;
1463 
1464     mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1465     if (!mpi_reply)
1466         return 1;
1467     if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1468         return 1;
1469 
1470     _base_display_event_data(ioc, mpi_reply);
1471 
1472     if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1473         goto out;
1474     smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1475     if (!smid) {
1476         delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1477                     GFP_ATOMIC);
1478         if (!delayed_event_ack)
1479             goto out;
1480         INIT_LIST_HEAD(&delayed_event_ack->list);
1481         delayed_event_ack->Event = mpi_reply->Event;
1482         delayed_event_ack->EventContext = mpi_reply->EventContext;
1483         list_add_tail(&delayed_event_ack->list,
1484                 &ioc->delayed_event_ack_list);
1485         dewtprintk(ioc,
1486                ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1487                     le16_to_cpu(mpi_reply->Event)));
1488         goto out;
1489     }
1490 
1491     ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1492     memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1493     ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1494     ack_request->Event = mpi_reply->Event;
1495     ack_request->EventContext = mpi_reply->EventContext;
1496     ack_request->VF_ID = 0;  /* TODO */
1497     ack_request->VP_ID = 0;
1498     ioc->put_smid_default(ioc, smid);
1499 
1500  out:
1501 
1502     /* scsih callback handler */
1503     mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1504 
1505     /* ctl callback handler */
1506     mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1507 
1508     return 1;
1509 }
1510 
1511 static struct scsiio_tracker *
1512 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1513 {
1514     struct scsi_cmnd *cmd;
1515 
1516     if (WARN_ON(!smid) ||
1517         WARN_ON(smid >= ioc->hi_priority_smid))
1518         return NULL;
1519 
1520     cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1521     if (cmd)
1522         return scsi_cmd_priv(cmd);
1523 
1524     return NULL;
1525 }
1526 
1527 /**
1528  * _base_get_cb_idx - obtain the callback index
1529  * @ioc: per adapter object
1530  * @smid: system request message index
1531  *
1532  * Return: callback index.
1533  */
1534 static u8
1535 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1536 {
1537     int i;
1538     u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1539     u8 cb_idx = 0xFF;
1540 
1541     if (smid < ioc->hi_priority_smid) {
1542         struct scsiio_tracker *st;
1543 
1544         if (smid < ctl_smid) {
1545             st = _get_st_from_smid(ioc, smid);
1546             if (st)
1547                 cb_idx = st->cb_idx;
1548         } else if (smid == ctl_smid)
1549             cb_idx = ioc->ctl_cb_idx;
1550     } else if (smid < ioc->internal_smid) {
1551         i = smid - ioc->hi_priority_smid;
1552         cb_idx = ioc->hpr_lookup[i].cb_idx;
1553     } else if (smid <= ioc->hba_queue_depth) {
1554         i = smid - ioc->internal_smid;
1555         cb_idx = ioc->internal_lookup[i].cb_idx;
1556     }
1557     return cb_idx;
1558 }
1559 
1560 /**
1561  * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1562  *              when driver is flushing out the IOs.
1563  * @ioc: per adapter object
1564  *
1565  * Pause polling on the mq poll (io uring) queues when driver is flushing
1566  * out the IOs. Otherwise we may see the race condition of completing the same
1567  * IO from two paths.
1568  *
1569  * Returns nothing.
1570  */
1571 void
1572 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1573 {
1574     int iopoll_q_count =
1575         ioc->reply_queue_count - ioc->iopoll_q_start_index;
1576     int qid;
1577 
1578     for (qid = 0; qid < iopoll_q_count; qid++)
1579         atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1580 
1581     /*
1582      * wait for current poll to complete.
1583      */
1584     for (qid = 0; qid < iopoll_q_count; qid++) {
1585         while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) {
1586             cpu_relax();
1587             udelay(500);
1588         }
1589     }
1590 }
1591 
1592 /**
1593  * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1594  * @ioc: per adapter object
1595  *
1596  * Returns nothing.
1597  */
1598 void
1599 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1600 {
1601     int iopoll_q_count =
1602         ioc->reply_queue_count - ioc->iopoll_q_start_index;
1603     int qid;
1604 
1605     for (qid = 0; qid < iopoll_q_count; qid++)
1606         atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1607 }
1608 
1609 /**
1610  * mpt3sas_base_mask_interrupts - disable interrupts
1611  * @ioc: per adapter object
1612  *
1613  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1614  */
1615 void
1616 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1617 {
1618     u32 him_register;
1619 
1620     ioc->mask_interrupts = 1;
1621     him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1622     him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1623     writel(him_register, &ioc->chip->HostInterruptMask);
1624     ioc->base_readl(&ioc->chip->HostInterruptMask);
1625 }
1626 
1627 /**
1628  * mpt3sas_base_unmask_interrupts - enable interrupts
1629  * @ioc: per adapter object
1630  *
1631  * Enabling only Reply Interrupts
1632  */
1633 void
1634 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1635 {
1636     u32 him_register;
1637 
1638     him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1639     him_register &= ~MPI2_HIM_RIM;
1640     writel(him_register, &ioc->chip->HostInterruptMask);
1641     ioc->mask_interrupts = 0;
1642 }
1643 
1644 union reply_descriptor {
1645     u64 word;
1646     struct {
1647         u32 low;
1648         u32 high;
1649     } u;
1650 };
1651 
1652 static u32 base_mod64(u64 dividend, u32 divisor)
1653 {
1654     u32 remainder;
1655 
1656     if (!divisor)
1657         pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1658     remainder = do_div(dividend, divisor);
1659     return remainder;
1660 }
1661 
1662 /**
1663  * _base_process_reply_queue - Process reply descriptors from reply
1664  *      descriptor post queue.
1665  * @reply_q: per IRQ's reply queue object.
1666  *
1667  * Return: number of reply descriptors processed from reply
1668  *      descriptor queue.
1669  */
1670 static int
1671 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1672 {
1673     union reply_descriptor rd;
1674     u64 completed_cmds;
1675     u8 request_descript_type;
1676     u16 smid;
1677     u8 cb_idx;
1678     u32 reply;
1679     u8 msix_index = reply_q->msix_index;
1680     struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1681     Mpi2ReplyDescriptorsUnion_t *rpf;
1682     u8 rc;
1683 
1684     completed_cmds = 0;
1685     if (!atomic_add_unless(&reply_q->busy, 1, 1))
1686         return completed_cmds;
1687 
1688     rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1689     request_descript_type = rpf->Default.ReplyFlags
1690          & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1691     if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1692         atomic_dec(&reply_q->busy);
1693         return completed_cmds;
1694     }
1695 
1696     cb_idx = 0xFF;
1697     do {
1698         rd.word = le64_to_cpu(rpf->Words);
1699         if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1700             goto out;
1701         reply = 0;
1702         smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1703         if (request_descript_type ==
1704             MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1705             request_descript_type ==
1706             MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1707             request_descript_type ==
1708             MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1709             cb_idx = _base_get_cb_idx(ioc, smid);
1710             if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1711                 (likely(mpt_callbacks[cb_idx] != NULL))) {
1712                 rc = mpt_callbacks[cb_idx](ioc, smid,
1713                     msix_index, 0);
1714                 if (rc)
1715                     mpt3sas_base_free_smid(ioc, smid);
1716             }
1717         } else if (request_descript_type ==
1718             MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1719             reply = le32_to_cpu(
1720                 rpf->AddressReply.ReplyFrameAddress);
1721             if (reply > ioc->reply_dma_max_address ||
1722                 reply < ioc->reply_dma_min_address)
1723                 reply = 0;
1724             if (smid) {
1725                 cb_idx = _base_get_cb_idx(ioc, smid);
1726                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1727                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1728                     rc = mpt_callbacks[cb_idx](ioc, smid,
1729                         msix_index, reply);
1730                     if (reply)
1731                         _base_display_reply_info(ioc,
1732                             smid, msix_index, reply);
1733                     if (rc)
1734                         mpt3sas_base_free_smid(ioc,
1735                             smid);
1736                 }
1737             } else {
1738                 _base_async_event(ioc, msix_index, reply);
1739             }
1740 
1741             /* reply free queue handling */
1742             if (reply) {
1743                 ioc->reply_free_host_index =
1744                     (ioc->reply_free_host_index ==
1745                     (ioc->reply_free_queue_depth - 1)) ?
1746                     0 : ioc->reply_free_host_index + 1;
1747                 ioc->reply_free[ioc->reply_free_host_index] =
1748                     cpu_to_le32(reply);
1749                 if (ioc->is_mcpu_endpoint)
1750                     _base_clone_reply_to_sys_mem(ioc,
1751                         reply,
1752                         ioc->reply_free_host_index);
1753                 writel(ioc->reply_free_host_index,
1754                     &ioc->chip->ReplyFreeHostIndex);
1755             }
1756         }
1757 
1758         rpf->Words = cpu_to_le64(ULLONG_MAX);
1759         reply_q->reply_post_host_index =
1760             (reply_q->reply_post_host_index ==
1761             (ioc->reply_post_queue_depth - 1)) ? 0 :
1762             reply_q->reply_post_host_index + 1;
1763         request_descript_type =
1764             reply_q->reply_post_free[reply_q->reply_post_host_index].
1765             Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1766         completed_cmds++;
1767         /* Update the reply post host index after continuously
1768          * processing the threshold number of Reply Descriptors.
1769          * So that FW can find enough entries to post the Reply
1770          * Descriptors in the reply descriptor post queue.
1771          */
1772         if (completed_cmds >= ioc->thresh_hold) {
1773             if (ioc->combined_reply_queue) {
1774                 writel(reply_q->reply_post_host_index |
1775                         ((msix_index  & 7) <<
1776                          MPI2_RPHI_MSIX_INDEX_SHIFT),
1777                     ioc->replyPostRegisterIndex[msix_index/8]);
1778             } else {
1779                 writel(reply_q->reply_post_host_index |
1780                         (msix_index <<
1781                          MPI2_RPHI_MSIX_INDEX_SHIFT),
1782                         &ioc->chip->ReplyPostHostIndex);
1783             }
1784             if (!reply_q->is_iouring_poll_q &&
1785                 !reply_q->irq_poll_scheduled) {
1786                 reply_q->irq_poll_scheduled = true;
1787                 irq_poll_sched(&reply_q->irqpoll);
1788             }
1789             atomic_dec(&reply_q->busy);
1790             return completed_cmds;
1791         }
1792         if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1793             goto out;
1794         if (!reply_q->reply_post_host_index)
1795             rpf = reply_q->reply_post_free;
1796         else
1797             rpf++;
1798     } while (1);
1799 
1800  out:
1801 
1802     if (!completed_cmds) {
1803         atomic_dec(&reply_q->busy);
1804         return completed_cmds;
1805     }
1806 
1807     if (ioc->is_warpdrive) {
1808         writel(reply_q->reply_post_host_index,
1809         ioc->reply_post_host_index[msix_index]);
1810         atomic_dec(&reply_q->busy);
1811         return completed_cmds;
1812     }
1813 
1814     /* Update Reply Post Host Index.
1815      * For those HBA's which support combined reply queue feature
1816      * 1. Get the correct Supplemental Reply Post Host Index Register.
1817      *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1818      *    Index Register address bank i.e replyPostRegisterIndex[],
1819      * 2. Then update this register with new reply host index value
1820      *    in ReplyPostIndex field and the MSIxIndex field with
1821      *    msix_index value reduced to a value between 0 and 7,
1822      *    using a modulo 8 operation. Since each Supplemental Reply Post
1823      *    Host Index Register supports 8 MSI-X vectors.
1824      *
1825      * For other HBA's just update the Reply Post Host Index register with
1826      * new reply host index value in ReplyPostIndex Field and msix_index
1827      * value in MSIxIndex field.
1828      */
1829     if (ioc->combined_reply_queue)
1830         writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1831             MPI2_RPHI_MSIX_INDEX_SHIFT),
1832             ioc->replyPostRegisterIndex[msix_index/8]);
1833     else
1834         writel(reply_q->reply_post_host_index | (msix_index <<
1835             MPI2_RPHI_MSIX_INDEX_SHIFT),
1836             &ioc->chip->ReplyPostHostIndex);
1837     atomic_dec(&reply_q->busy);
1838     return completed_cmds;
1839 }
1840 
1841 /**
1842  * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1843  * @shost: Scsi_Host object
1844  * @queue_num: hw ctx queue number
1845  *
1846  * Return number of entries that has been processed from poll queue.
1847  */
1848 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1849 {
1850     struct MPT3SAS_ADAPTER *ioc =
1851         (struct MPT3SAS_ADAPTER *)shost->hostdata;
1852     struct adapter_reply_queue *reply_q;
1853     int num_entries = 0;
1854     int qid = queue_num - ioc->iopoll_q_start_index;
1855 
1856     if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1857         !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1858         return 0;
1859 
1860     reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1861 
1862     num_entries = _base_process_reply_queue(reply_q);
1863     atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1864 
1865     return num_entries;
1866 }
1867 
1868 /**
1869  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1870  * @irq: irq number (not used)
1871  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1872  *
1873  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1874  */
1875 static irqreturn_t
1876 _base_interrupt(int irq, void *bus_id)
1877 {
1878     struct adapter_reply_queue *reply_q = bus_id;
1879     struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1880 
1881     if (ioc->mask_interrupts)
1882         return IRQ_NONE;
1883     if (reply_q->irq_poll_scheduled)
1884         return IRQ_HANDLED;
1885     return ((_base_process_reply_queue(reply_q) > 0) ?
1886             IRQ_HANDLED : IRQ_NONE);
1887 }
1888 
1889 /**
1890  * _base_irqpoll - IRQ poll callback handler
1891  * @irqpoll: irq_poll object
1892  * @budget: irq poll weight
1893  *
1894  * Return: number of reply descriptors processed
1895  */
1896 static int
1897 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1898 {
1899     struct adapter_reply_queue *reply_q;
1900     int num_entries = 0;
1901 
1902     reply_q = container_of(irqpoll, struct adapter_reply_queue,
1903             irqpoll);
1904     if (reply_q->irq_line_enable) {
1905         disable_irq_nosync(reply_q->os_irq);
1906         reply_q->irq_line_enable = false;
1907     }
1908     num_entries = _base_process_reply_queue(reply_q);
1909     if (num_entries < budget) {
1910         irq_poll_complete(irqpoll);
1911         reply_q->irq_poll_scheduled = false;
1912         reply_q->irq_line_enable = true;
1913         enable_irq(reply_q->os_irq);
1914         /*
1915          * Go for one more round of processing the
1916          * reply descriptor post queue in case the HBA
1917          * Firmware has posted some reply descriptors
1918          * while reenabling the IRQ.
1919          */
1920         _base_process_reply_queue(reply_q);
1921     }
1922 
1923     return num_entries;
1924 }
1925 
1926 /**
1927  * _base_init_irqpolls - initliaze IRQ polls
1928  * @ioc: per adapter object
1929  *
1930  * Return: nothing
1931  */
1932 static void
1933 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1934 {
1935     struct adapter_reply_queue *reply_q, *next;
1936 
1937     if (list_empty(&ioc->reply_queue_list))
1938         return;
1939 
1940     list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1941         if (reply_q->is_iouring_poll_q)
1942             continue;
1943         irq_poll_init(&reply_q->irqpoll,
1944             ioc->hba_queue_depth/4, _base_irqpoll);
1945         reply_q->irq_poll_scheduled = false;
1946         reply_q->irq_line_enable = true;
1947         reply_q->os_irq = pci_irq_vector(ioc->pdev,
1948             reply_q->msix_index);
1949     }
1950 }
1951 
1952 /**
1953  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1954  * @ioc: per adapter object
1955  *
1956  * Return: Whether or not MSI/X is enabled.
1957  */
1958 static inline int
1959 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1960 {
1961     return (ioc->facts.IOCCapabilities &
1962         MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1963 }
1964 
1965 /**
1966  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1967  * @ioc: per adapter object
1968  * @poll: poll over reply descriptor pools incase interrupt for
1969  *      timed-out SCSI command got delayed
1970  * Context: non-ISR context
1971  *
1972  * Called when a Task Management request has completed.
1973  */
1974 void
1975 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1976 {
1977     struct adapter_reply_queue *reply_q;
1978 
1979     /* If MSIX capability is turned off
1980      * then multi-queues are not enabled
1981      */
1982     if (!_base_is_controller_msix_enabled(ioc))
1983         return;
1984 
1985     list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1986         if (ioc->shost_recovery || ioc->remove_host ||
1987                 ioc->pci_error_recovery)
1988             return;
1989         /* TMs are on msix_index == 0 */
1990         if (reply_q->msix_index == 0)
1991             continue;
1992 
1993         if (reply_q->is_iouring_poll_q) {
1994             _base_process_reply_queue(reply_q);
1995             continue;
1996         }
1997 
1998         synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1999         if (reply_q->irq_poll_scheduled) {
2000             /* Calling irq_poll_disable will wait for any pending
2001              * callbacks to have completed.
2002              */
2003             irq_poll_disable(&reply_q->irqpoll);
2004             irq_poll_enable(&reply_q->irqpoll);
2005             /* check how the scheduled poll has ended,
2006              * clean up only if necessary
2007              */
2008             if (reply_q->irq_poll_scheduled) {
2009                 reply_q->irq_poll_scheduled = false;
2010                 reply_q->irq_line_enable = true;
2011                 enable_irq(reply_q->os_irq);
2012             }
2013         }
2014 
2015         if (poll)
2016             _base_process_reply_queue(reply_q);
2017     }
2018 }
2019 
2020 /**
2021  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2022  * @cb_idx: callback index
2023  */
2024 void
2025 mpt3sas_base_release_callback_handler(u8 cb_idx)
2026 {
2027     mpt_callbacks[cb_idx] = NULL;
2028 }
2029 
2030 /**
2031  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2032  * @cb_func: callback function
2033  *
2034  * Return: Index of @cb_func.
2035  */
2036 u8
2037 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2038 {
2039     u8 cb_idx;
2040 
2041     for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2042         if (mpt_callbacks[cb_idx] == NULL)
2043             break;
2044 
2045     mpt_callbacks[cb_idx] = cb_func;
2046     return cb_idx;
2047 }
2048 
2049 /**
2050  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2051  */
2052 void
2053 mpt3sas_base_initialize_callback_handler(void)
2054 {
2055     u8 cb_idx;
2056 
2057     for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2058         mpt3sas_base_release_callback_handler(cb_idx);
2059 }
2060 
2061 
2062 /**
2063  * _base_build_zero_len_sge - build zero length sg entry
2064  * @ioc: per adapter object
2065  * @paddr: virtual address for SGE
2066  *
2067  * Create a zero length scatter gather entry to insure the IOCs hardware has
2068  * something to use if the target device goes brain dead and tries
2069  * to send data even when none is asked for.
2070  */
2071 static void
2072 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2073 {
2074     u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2075         MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2076         MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2077         MPI2_SGE_FLAGS_SHIFT);
2078     ioc->base_add_sg_single(paddr, flags_length, -1);
2079 }
2080 
2081 /**
2082  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2083  * @paddr: virtual address for SGE
2084  * @flags_length: SGE flags and data transfer length
2085  * @dma_addr: Physical address
2086  */
2087 static void
2088 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2089 {
2090     Mpi2SGESimple32_t *sgel = paddr;
2091 
2092     flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2093         MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2094     sgel->FlagsLength = cpu_to_le32(flags_length);
2095     sgel->Address = cpu_to_le32(dma_addr);
2096 }
2097 
2098 
2099 /**
2100  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2101  * @paddr: virtual address for SGE
2102  * @flags_length: SGE flags and data transfer length
2103  * @dma_addr: Physical address
2104  */
2105 static void
2106 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2107 {
2108     Mpi2SGESimple64_t *sgel = paddr;
2109 
2110     flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2111         MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2112     sgel->FlagsLength = cpu_to_le32(flags_length);
2113     sgel->Address = cpu_to_le64(dma_addr);
2114 }
2115 
2116 /**
2117  * _base_get_chain_buffer_tracker - obtain chain tracker
2118  * @ioc: per adapter object
2119  * @scmd: SCSI commands of the IO request
2120  *
2121  * Return: chain tracker from chain_lookup table using key as
2122  * smid and smid's chain_offset.
2123  */
2124 static struct chain_tracker *
2125 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2126                    struct scsi_cmnd *scmd)
2127 {
2128     struct chain_tracker *chain_req;
2129     struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2130     u16 smid = st->smid;
2131     u8 chain_offset =
2132        atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2133 
2134     if (chain_offset == ioc->chains_needed_per_io)
2135         return NULL;
2136 
2137     chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2138     atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2139     return chain_req;
2140 }
2141 
2142 
2143 /**
2144  * _base_build_sg - build generic sg
2145  * @ioc: per adapter object
2146  * @psge: virtual address for SGE
2147  * @data_out_dma: physical address for WRITES
2148  * @data_out_sz: data xfer size for WRITES
2149  * @data_in_dma: physical address for READS
2150  * @data_in_sz: data xfer size for READS
2151  */
2152 static void
2153 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2154     dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2155     size_t data_in_sz)
2156 {
2157     u32 sgl_flags;
2158 
2159     if (!data_out_sz && !data_in_sz) {
2160         _base_build_zero_len_sge(ioc, psge);
2161         return;
2162     }
2163 
2164     if (data_out_sz && data_in_sz) {
2165         /* WRITE sgel first */
2166         sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2167             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2168         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2169         ioc->base_add_sg_single(psge, sgl_flags |
2170             data_out_sz, data_out_dma);
2171 
2172         /* incr sgel */
2173         psge += ioc->sge_size;
2174 
2175         /* READ sgel last */
2176         sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2177             MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2178             MPI2_SGE_FLAGS_END_OF_LIST);
2179         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2180         ioc->base_add_sg_single(psge, sgl_flags |
2181             data_in_sz, data_in_dma);
2182     } else if (data_out_sz) /* WRITE */ {
2183         sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2184             MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2185             MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2186         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2187         ioc->base_add_sg_single(psge, sgl_flags |
2188             data_out_sz, data_out_dma);
2189     } else if (data_in_sz) /* READ */ {
2190         sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2191             MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2192             MPI2_SGE_FLAGS_END_OF_LIST);
2193         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2194         ioc->base_add_sg_single(psge, sgl_flags |
2195             data_in_sz, data_in_dma);
2196     }
2197 }
2198 
2199 /* IEEE format sgls */
2200 
2201 /**
2202  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2203  *                        a native SGL (NVMe PRP).
2204  * @ioc: per adapter object
2205  * @smid: system request message index for getting asscociated SGL
2206  * @nvme_encap_request: the NVMe request msg frame pointer
2207  * @data_out_dma: physical address for WRITES
2208  * @data_out_sz: data xfer size for WRITES
2209  * @data_in_dma: physical address for READS
2210  * @data_in_sz: data xfer size for READS
2211  *
2212  * The native SGL is built starting in the first PRP
2213  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2214  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2215  * used to describe a larger data buffer.  If the data buffer is too large to
2216  * describe using the two PRP entriess inside the NVMe message, then PRP1
2217  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2218  * list located elsewhere in memory to describe the remaining data memory
2219  * segments.  The PRP list will be contiguous.
2220  *
2221  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2222  * consists of a list of PRP entries to describe a number of noncontigous
2223  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2224  * however, that this function is only used by the IOCTL call, so the memory
2225  * given will be guaranteed to be contiguous.  There is no need to translate
2226  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2227  * contiguous space that is one page size each.
2228  *
2229  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2230  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2231  * contains the second PRP element if the memory being described fits within 2
2232  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2233  *
2234  * A PRP list pointer contains the address of a PRP list, structured as a linear
2235  * array of PRP entries.  Each PRP entry in this list describes a segment of
2236  * physical memory.
2237  *
2238  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2239  * always points at the beginning of a 4KB physical memory page, and the offset
2240  * describes where within that 4KB page the memory segment begins.  Only the
2241  * first element in a PRP list may contain a non-zero offset, implying that all
2242  * memory segments following the first begin at the start of a 4KB page.
2243  *
2244  * Each PRP element normally describes 4KB of physical memory, with exceptions
2245  * for the first and last elements in the list.  If the memory being described
2246  * by the list begins at a non-zero offset within the first 4KB page, then the
2247  * first PRP element will contain a non-zero offset indicating where the region
2248  * begins within the 4KB page.  The last memory segment may end before the end
2249  * of the 4KB segment, depending upon the overall size of the memory being
2250  * described by the PRP list.
2251  *
2252  * Since PRP entries lack any indication of size, the overall data buffer length
2253  * is used to determine where the end of the data memory buffer is located, and
2254  * how many PRP entries are required to describe it.
2255  */
2256 static void
2257 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2258     Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2259     dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2260     size_t data_in_sz)
2261 {
2262     int     prp_size = NVME_PRP_SIZE;
2263     __le64      *prp_entry, *prp1_entry, *prp2_entry;
2264     __le64      *prp_page;
2265     dma_addr_t  prp_entry_dma, prp_page_dma, dma_addr;
2266     u32     offset, entry_len;
2267     u32     page_mask_result, page_mask;
2268     size_t      length;
2269     struct mpt3sas_nvme_cmd *nvme_cmd =
2270         (void *)nvme_encap_request->NVMe_Command;
2271 
2272     /*
2273      * Not all commands require a data transfer. If no data, just return
2274      * without constructing any PRP.
2275      */
2276     if (!data_in_sz && !data_out_sz)
2277         return;
2278     prp1_entry = &nvme_cmd->prp1;
2279     prp2_entry = &nvme_cmd->prp2;
2280     prp_entry = prp1_entry;
2281     /*
2282      * For the PRP entries, use the specially allocated buffer of
2283      * contiguous memory.
2284      */
2285     prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2286     prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2287 
2288     /*
2289      * Check if we are within 1 entry of a page boundary we don't
2290      * want our first entry to be a PRP List entry.
2291      */
2292     page_mask = ioc->page_size - 1;
2293     page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2294     if (!page_mask_result) {
2295         /* Bump up to next page boundary. */
2296         prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2297         prp_page_dma = prp_page_dma + prp_size;
2298     }
2299 
2300     /*
2301      * Set PRP physical pointer, which initially points to the current PRP
2302      * DMA memory page.
2303      */
2304     prp_entry_dma = prp_page_dma;
2305 
2306     /* Get physical address and length of the data buffer. */
2307     if (data_in_sz) {
2308         dma_addr = data_in_dma;
2309         length = data_in_sz;
2310     } else {
2311         dma_addr = data_out_dma;
2312         length = data_out_sz;
2313     }
2314 
2315     /* Loop while the length is not zero. */
2316     while (length) {
2317         /*
2318          * Check if we need to put a list pointer here if we are at
2319          * page boundary - prp_size (8 bytes).
2320          */
2321         page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2322         if (!page_mask_result) {
2323             /*
2324              * This is the last entry in a PRP List, so we need to
2325              * put a PRP list pointer here.  What this does is:
2326              *   - bump the current memory pointer to the next
2327              *     address, which will be the next full page.
2328              *   - set the PRP Entry to point to that page.  This
2329              *     is now the PRP List pointer.
2330              *   - bump the PRP Entry pointer the start of the
2331              *     next page.  Since all of this PRP memory is
2332              *     contiguous, no need to get a new page - it's
2333              *     just the next address.
2334              */
2335             prp_entry_dma++;
2336             *prp_entry = cpu_to_le64(prp_entry_dma);
2337             prp_entry++;
2338         }
2339 
2340         /* Need to handle if entry will be part of a page. */
2341         offset = dma_addr & page_mask;
2342         entry_len = ioc->page_size - offset;
2343 
2344         if (prp_entry == prp1_entry) {
2345             /*
2346              * Must fill in the first PRP pointer (PRP1) before
2347              * moving on.
2348              */
2349             *prp1_entry = cpu_to_le64(dma_addr);
2350 
2351             /*
2352              * Now point to the second PRP entry within the
2353              * command (PRP2).
2354              */
2355             prp_entry = prp2_entry;
2356         } else if (prp_entry == prp2_entry) {
2357             /*
2358              * Should the PRP2 entry be a PRP List pointer or just
2359              * a regular PRP pointer?  If there is more than one
2360              * more page of data, must use a PRP List pointer.
2361              */
2362             if (length > ioc->page_size) {
2363                 /*
2364                  * PRP2 will contain a PRP List pointer because
2365                  * more PRP's are needed with this command. The
2366                  * list will start at the beginning of the
2367                  * contiguous buffer.
2368                  */
2369                 *prp2_entry = cpu_to_le64(prp_entry_dma);
2370 
2371                 /*
2372                  * The next PRP Entry will be the start of the
2373                  * first PRP List.
2374                  */
2375                 prp_entry = prp_page;
2376             } else {
2377                 /*
2378                  * After this, the PRP Entries are complete.
2379                  * This command uses 2 PRP's and no PRP list.
2380                  */
2381                 *prp2_entry = cpu_to_le64(dma_addr);
2382             }
2383         } else {
2384             /*
2385              * Put entry in list and bump the addresses.
2386              *
2387              * After PRP1 and PRP2 are filled in, this will fill in
2388              * all remaining PRP entries in a PRP List, one per
2389              * each time through the loop.
2390              */
2391             *prp_entry = cpu_to_le64(dma_addr);
2392             prp_entry++;
2393             prp_entry_dma++;
2394         }
2395 
2396         /*
2397          * Bump the phys address of the command's data buffer by the
2398          * entry_len.
2399          */
2400         dma_addr += entry_len;
2401 
2402         /* Decrement length accounting for last partial page. */
2403         if (entry_len > length)
2404             length = 0;
2405         else
2406             length -= entry_len;
2407     }
2408 }
2409 
2410 /**
2411  * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2412  *          SGLs specific to NVMe drives only
2413  *
2414  * @ioc:        per adapter object
2415  * @scmd:       SCSI command from the mid-layer
2416  * @mpi_request:    mpi request
2417  * @smid:       msg Index
2418  * @sge_count:      scatter gather element count.
2419  *
2420  * Return:      true: PRPs are built
2421  *          false: IEEE SGLs needs to be built
2422  */
2423 static void
2424 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2425         struct scsi_cmnd *scmd,
2426         Mpi25SCSIIORequest_t *mpi_request,
2427         u16 smid, int sge_count)
2428 {
2429     int sge_len, num_prp_in_chain = 0;
2430     Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2431     __le64 *curr_buff;
2432     dma_addr_t msg_dma, sge_addr, offset;
2433     u32 page_mask, page_mask_result;
2434     struct scatterlist *sg_scmd;
2435     u32 first_prp_len;
2436     int data_len = scsi_bufflen(scmd);
2437     u32 nvme_pg_size;
2438 
2439     nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2440     /*
2441      * Nvme has a very convoluted prp format.  One prp is required
2442      * for each page or partial page. Driver need to split up OS sg_list
2443      * entries if it is longer than one page or cross a page
2444      * boundary.  Driver also have to insert a PRP list pointer entry as
2445      * the last entry in each physical page of the PRP list.
2446      *
2447      * NOTE: The first PRP "entry" is actually placed in the first
2448      * SGL entry in the main message as IEEE 64 format.  The 2nd
2449      * entry in the main message is the chain element, and the rest
2450      * of the PRP entries are built in the contiguous pcie buffer.
2451      */
2452     page_mask = nvme_pg_size - 1;
2453 
2454     /*
2455      * Native SGL is needed.
2456      * Put a chain element in main message frame that points to the first
2457      * chain buffer.
2458      *
2459      * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2460      *        a native SGL.
2461      */
2462 
2463     /* Set main message chain element pointer */
2464     main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2465     /*
2466      * For NVMe the chain element needs to be the 2nd SG entry in the main
2467      * message.
2468      */
2469     main_chain_element = (Mpi25IeeeSgeChain64_t *)
2470         ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2471 
2472     /*
2473      * For the PRP entries, use the specially allocated buffer of
2474      * contiguous memory.  Normal chain buffers can't be used
2475      * because each chain buffer would need to be the size of an OS
2476      * page (4k).
2477      */
2478     curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2479     msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2480 
2481     main_chain_element->Address = cpu_to_le64(msg_dma);
2482     main_chain_element->NextChainOffset = 0;
2483     main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2484             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2485             MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2486 
2487     /* Build first prp, sge need not to be page aligned*/
2488     ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2489     sg_scmd = scsi_sglist(scmd);
2490     sge_addr = sg_dma_address(sg_scmd);
2491     sge_len = sg_dma_len(sg_scmd);
2492 
2493     offset = sge_addr & page_mask;
2494     first_prp_len = nvme_pg_size - offset;
2495 
2496     ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2497     ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2498 
2499     data_len -= first_prp_len;
2500 
2501     if (sge_len > first_prp_len) {
2502         sge_addr += first_prp_len;
2503         sge_len -= first_prp_len;
2504     } else if (data_len && (sge_len == first_prp_len)) {
2505         sg_scmd = sg_next(sg_scmd);
2506         sge_addr = sg_dma_address(sg_scmd);
2507         sge_len = sg_dma_len(sg_scmd);
2508     }
2509 
2510     for (;;) {
2511         offset = sge_addr & page_mask;
2512 
2513         /* Put PRP pointer due to page boundary*/
2514         page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2515         if (unlikely(!page_mask_result)) {
2516             scmd_printk(KERN_NOTICE,
2517                 scmd, "page boundary curr_buff: 0x%p\n",
2518                 curr_buff);
2519             msg_dma += 8;
2520             *curr_buff = cpu_to_le64(msg_dma);
2521             curr_buff++;
2522             num_prp_in_chain++;
2523         }
2524 
2525         *curr_buff = cpu_to_le64(sge_addr);
2526         curr_buff++;
2527         msg_dma += 8;
2528         num_prp_in_chain++;
2529 
2530         sge_addr += nvme_pg_size;
2531         sge_len -= nvme_pg_size;
2532         data_len -= nvme_pg_size;
2533 
2534         if (data_len <= 0)
2535             break;
2536 
2537         if (sge_len > 0)
2538             continue;
2539 
2540         sg_scmd = sg_next(sg_scmd);
2541         sge_addr = sg_dma_address(sg_scmd);
2542         sge_len = sg_dma_len(sg_scmd);
2543     }
2544 
2545     main_chain_element->Length =
2546         cpu_to_le32(num_prp_in_chain * sizeof(u64));
2547     return;
2548 }
2549 
2550 static bool
2551 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2552     struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2553 {
2554     u32 data_length = 0;
2555     bool build_prp = true;
2556 
2557     data_length = scsi_bufflen(scmd);
2558     if (pcie_device &&
2559         (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2560         build_prp = false;
2561         return build_prp;
2562     }
2563 
2564     /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2565      * we built IEEE SGL
2566      */
2567     if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2568         build_prp = false;
2569 
2570     return build_prp;
2571 }
2572 
2573 /**
2574  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2575  * determine if the driver needs to build a native SGL.  If so, that native
2576  * SGL is built in the special contiguous buffers allocated especially for
2577  * PCIe SGL creation.  If the driver will not build a native SGL, return
2578  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2579  * supports NVMe.
2580  * @ioc: per adapter object
2581  * @mpi_request: mf request pointer
2582  * @smid: system request message index
2583  * @scmd: scsi command
2584  * @pcie_device: points to the PCIe device's info
2585  *
2586  * Return: 0 if native SGL was built, 1 if no SGL was built
2587  */
2588 static int
2589 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2590     Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2591     struct _pcie_device *pcie_device)
2592 {
2593     int sges_left;
2594 
2595     /* Get the SG list pointer and info. */
2596     sges_left = scsi_dma_map(scmd);
2597     if (sges_left < 0)
2598         return 1;
2599 
2600     /* Check if we need to build a native SG list. */
2601     if (!base_is_prp_possible(ioc, pcie_device,
2602                 scmd, sges_left)) {
2603         /* We built a native SG list, just return. */
2604         goto out;
2605     }
2606 
2607     /*
2608      * Build native NVMe PRP.
2609      */
2610     base_make_prp_nvme(ioc, scmd, mpi_request,
2611             smid, sges_left);
2612 
2613     return 0;
2614 out:
2615     scsi_dma_unmap(scmd);
2616     return 1;
2617 }
2618 
2619 /**
2620  * _base_add_sg_single_ieee - add sg element for IEEE format
2621  * @paddr: virtual address for SGE
2622  * @flags: SGE flags
2623  * @chain_offset: number of 128 byte elements from start of segment
2624  * @length: data transfer length
2625  * @dma_addr: Physical address
2626  */
2627 static void
2628 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2629     dma_addr_t dma_addr)
2630 {
2631     Mpi25IeeeSgeChain64_t *sgel = paddr;
2632 
2633     sgel->Flags = flags;
2634     sgel->NextChainOffset = chain_offset;
2635     sgel->Length = cpu_to_le32(length);
2636     sgel->Address = cpu_to_le64(dma_addr);
2637 }
2638 
2639 /**
2640  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2641  * @ioc: per adapter object
2642  * @paddr: virtual address for SGE
2643  *
2644  * Create a zero length scatter gather entry to insure the IOCs hardware has
2645  * something to use if the target device goes brain dead and tries
2646  * to send data even when none is asked for.
2647  */
2648 static void
2649 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2650 {
2651     u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2652         MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2653         MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2654 
2655     _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2656 }
2657 
2658 /**
2659  * _base_build_sg_scmd - main sg creation routine
2660  *      pcie_device is unused here!
2661  * @ioc: per adapter object
2662  * @scmd: scsi command
2663  * @smid: system request message index
2664  * @unused: unused pcie_device pointer
2665  * Context: none.
2666  *
2667  * The main routine that builds scatter gather table from a given
2668  * scsi request sent via the .queuecommand main handler.
2669  *
2670  * Return: 0 success, anything else error
2671  */
2672 static int
2673 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2674     struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2675 {
2676     Mpi2SCSIIORequest_t *mpi_request;
2677     dma_addr_t chain_dma;
2678     struct scatterlist *sg_scmd;
2679     void *sg_local, *chain;
2680     u32 chain_offset;
2681     u32 chain_length;
2682     u32 chain_flags;
2683     int sges_left;
2684     u32 sges_in_segment;
2685     u32 sgl_flags;
2686     u32 sgl_flags_last_element;
2687     u32 sgl_flags_end_buffer;
2688     struct chain_tracker *chain_req;
2689 
2690     mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2691 
2692     /* init scatter gather flags */
2693     sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2694     if (scmd->sc_data_direction == DMA_TO_DEVICE)
2695         sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2696     sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2697         << MPI2_SGE_FLAGS_SHIFT;
2698     sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2699         MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2700         << MPI2_SGE_FLAGS_SHIFT;
2701     sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2702 
2703     sg_scmd = scsi_sglist(scmd);
2704     sges_left = scsi_dma_map(scmd);
2705     if (sges_left < 0)
2706         return -ENOMEM;
2707 
2708     sg_local = &mpi_request->SGL;
2709     sges_in_segment = ioc->max_sges_in_main_message;
2710     if (sges_left <= sges_in_segment)
2711         goto fill_in_last_segment;
2712 
2713     mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2714         (sges_in_segment * ioc->sge_size))/4;
2715 
2716     /* fill in main message segment when there is a chain following */
2717     while (sges_in_segment) {
2718         if (sges_in_segment == 1)
2719             ioc->base_add_sg_single(sg_local,
2720                 sgl_flags_last_element | sg_dma_len(sg_scmd),
2721                 sg_dma_address(sg_scmd));
2722         else
2723             ioc->base_add_sg_single(sg_local, sgl_flags |
2724                 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2725         sg_scmd = sg_next(sg_scmd);
2726         sg_local += ioc->sge_size;
2727         sges_left--;
2728         sges_in_segment--;
2729     }
2730 
2731     /* initializing the chain flags and pointers */
2732     chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2733     chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2734     if (!chain_req)
2735         return -1;
2736     chain = chain_req->chain_buffer;
2737     chain_dma = chain_req->chain_buffer_dma;
2738     do {
2739         sges_in_segment = (sges_left <=
2740             ioc->max_sges_in_chain_message) ? sges_left :
2741             ioc->max_sges_in_chain_message;
2742         chain_offset = (sges_left == sges_in_segment) ?
2743             0 : (sges_in_segment * ioc->sge_size)/4;
2744         chain_length = sges_in_segment * ioc->sge_size;
2745         if (chain_offset) {
2746             chain_offset = chain_offset <<
2747                 MPI2_SGE_CHAIN_OFFSET_SHIFT;
2748             chain_length += ioc->sge_size;
2749         }
2750         ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2751             chain_length, chain_dma);
2752         sg_local = chain;
2753         if (!chain_offset)
2754             goto fill_in_last_segment;
2755 
2756         /* fill in chain segments */
2757         while (sges_in_segment) {
2758             if (sges_in_segment == 1)
2759                 ioc->base_add_sg_single(sg_local,
2760                     sgl_flags_last_element |
2761                     sg_dma_len(sg_scmd),
2762                     sg_dma_address(sg_scmd));
2763             else
2764                 ioc->base_add_sg_single(sg_local, sgl_flags |
2765                     sg_dma_len(sg_scmd),
2766                     sg_dma_address(sg_scmd));
2767             sg_scmd = sg_next(sg_scmd);
2768             sg_local += ioc->sge_size;
2769             sges_left--;
2770             sges_in_segment--;
2771         }
2772 
2773         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2774         if (!chain_req)
2775             return -1;
2776         chain = chain_req->chain_buffer;
2777         chain_dma = chain_req->chain_buffer_dma;
2778     } while (1);
2779 
2780 
2781  fill_in_last_segment:
2782 
2783     /* fill the last segment */
2784     while (sges_left) {
2785         if (sges_left == 1)
2786             ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2787                 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2788         else
2789             ioc->base_add_sg_single(sg_local, sgl_flags |
2790                 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2791         sg_scmd = sg_next(sg_scmd);
2792         sg_local += ioc->sge_size;
2793         sges_left--;
2794     }
2795 
2796     return 0;
2797 }
2798 
2799 /**
2800  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2801  * @ioc: per adapter object
2802  * @scmd: scsi command
2803  * @smid: system request message index
2804  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2805  * constructed on need.
2806  * Context: none.
2807  *
2808  * The main routine that builds scatter gather table from a given
2809  * scsi request sent via the .queuecommand main handler.
2810  *
2811  * Return: 0 success, anything else error
2812  */
2813 static int
2814 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2815     struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2816 {
2817     Mpi25SCSIIORequest_t *mpi_request;
2818     dma_addr_t chain_dma;
2819     struct scatterlist *sg_scmd;
2820     void *sg_local, *chain;
2821     u32 chain_offset;
2822     u32 chain_length;
2823     int sges_left;
2824     u32 sges_in_segment;
2825     u8 simple_sgl_flags;
2826     u8 simple_sgl_flags_last;
2827     u8 chain_sgl_flags;
2828     struct chain_tracker *chain_req;
2829 
2830     mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2831 
2832     /* init scatter gather flags */
2833     simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2834         MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2835     simple_sgl_flags_last = simple_sgl_flags |
2836         MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2837     chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2838         MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2839 
2840     /* Check if we need to build a native SG list. */
2841     if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2842             smid, scmd, pcie_device) == 0)) {
2843         /* We built a native SG list, just return. */
2844         return 0;
2845     }
2846 
2847     sg_scmd = scsi_sglist(scmd);
2848     sges_left = scsi_dma_map(scmd);
2849     if (sges_left < 0)
2850         return -ENOMEM;
2851 
2852     sg_local = &mpi_request->SGL;
2853     sges_in_segment = (ioc->request_sz -
2854            offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2855     if (sges_left <= sges_in_segment)
2856         goto fill_in_last_segment;
2857 
2858     mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2859         (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2860 
2861     /* fill in main message segment when there is a chain following */
2862     while (sges_in_segment > 1) {
2863         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2864             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2865         sg_scmd = sg_next(sg_scmd);
2866         sg_local += ioc->sge_size_ieee;
2867         sges_left--;
2868         sges_in_segment--;
2869     }
2870 
2871     /* initializing the pointers */
2872     chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2873     if (!chain_req)
2874         return -1;
2875     chain = chain_req->chain_buffer;
2876     chain_dma = chain_req->chain_buffer_dma;
2877     do {
2878         sges_in_segment = (sges_left <=
2879             ioc->max_sges_in_chain_message) ? sges_left :
2880             ioc->max_sges_in_chain_message;
2881         chain_offset = (sges_left == sges_in_segment) ?
2882             0 : sges_in_segment;
2883         chain_length = sges_in_segment * ioc->sge_size_ieee;
2884         if (chain_offset)
2885             chain_length += ioc->sge_size_ieee;
2886         _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2887             chain_offset, chain_length, chain_dma);
2888 
2889         sg_local = chain;
2890         if (!chain_offset)
2891             goto fill_in_last_segment;
2892 
2893         /* fill in chain segments */
2894         while (sges_in_segment) {
2895             _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2896                 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2897             sg_scmd = sg_next(sg_scmd);
2898             sg_local += ioc->sge_size_ieee;
2899             sges_left--;
2900             sges_in_segment--;
2901         }
2902 
2903         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2904         if (!chain_req)
2905             return -1;
2906         chain = chain_req->chain_buffer;
2907         chain_dma = chain_req->chain_buffer_dma;
2908     } while (1);
2909 
2910 
2911  fill_in_last_segment:
2912 
2913     /* fill the last segment */
2914     while (sges_left > 0) {
2915         if (sges_left == 1)
2916             _base_add_sg_single_ieee(sg_local,
2917                 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2918                 sg_dma_address(sg_scmd));
2919         else
2920             _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2921                 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2922         sg_scmd = sg_next(sg_scmd);
2923         sg_local += ioc->sge_size_ieee;
2924         sges_left--;
2925     }
2926 
2927     return 0;
2928 }
2929 
2930 /**
2931  * _base_build_sg_ieee - build generic sg for IEEE format
2932  * @ioc: per adapter object
2933  * @psge: virtual address for SGE
2934  * @data_out_dma: physical address for WRITES
2935  * @data_out_sz: data xfer size for WRITES
2936  * @data_in_dma: physical address for READS
2937  * @data_in_sz: data xfer size for READS
2938  */
2939 static void
2940 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2941     dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2942     size_t data_in_sz)
2943 {
2944     u8 sgl_flags;
2945 
2946     if (!data_out_sz && !data_in_sz) {
2947         _base_build_zero_len_sge_ieee(ioc, psge);
2948         return;
2949     }
2950 
2951     if (data_out_sz && data_in_sz) {
2952         /* WRITE sgel first */
2953         sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2954             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2955         _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2956             data_out_dma);
2957 
2958         /* incr sgel */
2959         psge += ioc->sge_size_ieee;
2960 
2961         /* READ sgel last */
2962         sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2963         _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2964             data_in_dma);
2965     } else if (data_out_sz) /* WRITE */ {
2966         sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2967             MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2968             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2969         _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2970             data_out_dma);
2971     } else if (data_in_sz) /* READ */ {
2972         sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2973             MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2974             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2975         _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2976             data_in_dma);
2977     }
2978 }
2979 
2980 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2981 
2982 /**
2983  * _base_config_dma_addressing - set dma addressing
2984  * @ioc: per adapter object
2985  * @pdev: PCI device struct
2986  *
2987  * Return: 0 for success, non-zero for failure.
2988  */
2989 static int
2990 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2991 {
2992     struct sysinfo s;
2993 
2994     if (ioc->is_mcpu_endpoint ||
2995         sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
2996         dma_get_required_mask(&pdev->dev) <= DMA_BIT_MASK(32))
2997         ioc->dma_mask = 32;
2998     /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2999     else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
3000         ioc->dma_mask = 63;
3001     else
3002         ioc->dma_mask = 64;
3003 
3004     if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)) ||
3005         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)))
3006         return -ENODEV;
3007 
3008     if (ioc->dma_mask > 32) {
3009         ioc->base_add_sg_single = &_base_add_sg_single_64;
3010         ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3011     } else {
3012         ioc->base_add_sg_single = &_base_add_sg_single_32;
3013         ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3014     }
3015 
3016     si_meminfo(&s);
3017     ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3018         ioc->dma_mask, convert_to_kb(s.totalram));
3019 
3020     return 0;
3021 }
3022 
3023 /**
3024  * _base_check_enable_msix - checks MSIX capabable.
3025  * @ioc: per adapter object
3026  *
3027  * Check to see if card is capable of MSIX, and set number
3028  * of available msix vectors
3029  */
3030 static int
3031 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3032 {
3033     int base;
3034     u16 message_control;
3035 
3036     /* Check whether controller SAS2008 B0 controller,
3037      * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3038      */
3039     if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3040         ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3041         return -EINVAL;
3042     }
3043 
3044     base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3045     if (!base) {
3046         dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3047         return -EINVAL;
3048     }
3049 
3050     /* get msix vector count */
3051     /* NUMA_IO not supported for older controllers */
3052     if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3053         ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3054         ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3055         ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3056         ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3057         ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3058         ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3059         ioc->msix_vector_count = 1;
3060     else {
3061         pci_read_config_word(ioc->pdev, base + 2, &message_control);
3062         ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3063     }
3064     dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3065                   ioc->msix_vector_count));
3066     return 0;
3067 }
3068 
3069 /**
3070  * mpt3sas_base_free_irq - free irq
3071  * @ioc: per adapter object
3072  *
3073  * Freeing respective reply_queue from the list.
3074  */
3075 void
3076 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3077 {
3078     unsigned int irq;
3079     struct adapter_reply_queue *reply_q, *next;
3080 
3081     if (list_empty(&ioc->reply_queue_list))
3082         return;
3083 
3084     list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3085         list_del(&reply_q->list);
3086         if (reply_q->is_iouring_poll_q) {
3087             kfree(reply_q);
3088             continue;
3089         }
3090 
3091         if (ioc->smp_affinity_enable) {
3092             irq = pci_irq_vector(ioc->pdev, reply_q->msix_index);
3093             irq_update_affinity_hint(irq, NULL);
3094         }
3095         free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3096              reply_q);
3097         kfree(reply_q);
3098     }
3099 }
3100 
3101 /**
3102  * _base_request_irq - request irq
3103  * @ioc: per adapter object
3104  * @index: msix index into vector table
3105  *
3106  * Inserting respective reply_queue into the list.
3107  */
3108 static int
3109 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3110 {
3111     struct pci_dev *pdev = ioc->pdev;
3112     struct adapter_reply_queue *reply_q;
3113     int r, qid;
3114 
3115     reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3116     if (!reply_q) {
3117         ioc_err(ioc, "unable to allocate memory %zu!\n",
3118             sizeof(struct adapter_reply_queue));
3119         return -ENOMEM;
3120     }
3121     reply_q->ioc = ioc;
3122     reply_q->msix_index = index;
3123 
3124     atomic_set(&reply_q->busy, 0);
3125 
3126     if (index >= ioc->iopoll_q_start_index) {
3127         qid = index - ioc->iopoll_q_start_index;
3128         snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3129             ioc->driver_name, ioc->id, qid);
3130         reply_q->is_iouring_poll_q = 1;
3131         ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3132         goto out;
3133     }
3134 
3135 
3136     if (ioc->msix_enable)
3137         snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3138             ioc->driver_name, ioc->id, index);
3139     else
3140         snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3141             ioc->driver_name, ioc->id);
3142     r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3143             IRQF_SHARED, reply_q->name, reply_q);
3144     if (r) {
3145         pr_err("%s: unable to allocate interrupt %d!\n",
3146                reply_q->name, pci_irq_vector(pdev, index));
3147         kfree(reply_q);
3148         return -EBUSY;
3149     }
3150 out:
3151     INIT_LIST_HEAD(&reply_q->list);
3152     list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3153     return 0;
3154 }
3155 
3156 /**
3157  * _base_assign_reply_queues - assigning msix index for each cpu
3158  * @ioc: per adapter object
3159  *
3160  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3161  */
3162 static void
3163 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3164 {
3165     unsigned int cpu, nr_cpus, nr_msix, index = 0, irq;
3166     struct adapter_reply_queue *reply_q;
3167     int iopoll_q_count = ioc->reply_queue_count -
3168         ioc->iopoll_q_start_index;
3169     const struct cpumask *mask;
3170 
3171     if (!_base_is_controller_msix_enabled(ioc))
3172         return;
3173 
3174     if (ioc->msix_load_balance)
3175         return;
3176 
3177     memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3178 
3179     nr_cpus = num_online_cpus();
3180     nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3181                            ioc->facts.MaxMSIxVectors);
3182     if (!nr_msix)
3183         return;
3184 
3185     if (ioc->smp_affinity_enable) {
3186 
3187         /*
3188          * set irq affinity to local numa node for those irqs
3189          * corresponding to high iops queues.
3190          */
3191         if (ioc->high_iops_queues) {
3192             mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev));
3193             for (index = 0; index < ioc->high_iops_queues;
3194                 index++) {
3195                 irq = pci_irq_vector(ioc->pdev, index);
3196                 irq_set_affinity_and_hint(irq, mask);
3197             }
3198         }
3199 
3200         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3201             const cpumask_t *mask;
3202 
3203             if (reply_q->msix_index < ioc->high_iops_queues ||
3204                 reply_q->msix_index >= ioc->iopoll_q_start_index)
3205                 continue;
3206 
3207             mask = pci_irq_get_affinity(ioc->pdev,
3208                 reply_q->msix_index);
3209             if (!mask) {
3210                 ioc_warn(ioc, "no affinity for msi %x\n",
3211                      reply_q->msix_index);
3212                 goto fall_back;
3213             }
3214 
3215             for_each_cpu_and(cpu, mask, cpu_online_mask) {
3216                 if (cpu >= ioc->cpu_msix_table_sz)
3217                     break;
3218                 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3219             }
3220         }
3221         return;
3222     }
3223 
3224 fall_back:
3225     cpu = cpumask_first(cpu_online_mask);
3226     nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3227     index = 0;
3228 
3229     list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3230         unsigned int i, group = nr_cpus / nr_msix;
3231 
3232         if (reply_q->msix_index < ioc->high_iops_queues ||
3233             reply_q->msix_index >= ioc->iopoll_q_start_index)
3234             continue;
3235 
3236         if (cpu >= nr_cpus)
3237             break;
3238 
3239         if (index < nr_cpus % nr_msix)
3240             group++;
3241 
3242         for (i = 0 ; i < group ; i++) {
3243             ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3244             cpu = cpumask_next(cpu, cpu_online_mask);
3245         }
3246         index++;
3247     }
3248 }
3249 
3250 /**
3251  * _base_check_and_enable_high_iops_queues - enable high iops mode
3252  * @ioc: per adapter object
3253  * @hba_msix_vector_count: msix vectors supported by HBA
3254  *
3255  * Enable high iops queues only if
3256  *  - HBA is a SEA/AERO controller and
3257  *  - MSI-Xs vector supported by the HBA is 128 and
3258  *  - total CPU count in the system >=16 and
3259  *  - loaded driver with default max_msix_vectors module parameter and
3260  *  - system booted in non kdump mode
3261  *
3262  * Return: nothing.
3263  */
3264 static void
3265 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3266         int hba_msix_vector_count)
3267 {
3268     u16 lnksta, speed;
3269 
3270     /*
3271      * Disable high iops queues if io uring poll queues are enabled.
3272      */
3273     if (perf_mode == MPT_PERF_MODE_IOPS ||
3274         perf_mode == MPT_PERF_MODE_LATENCY ||
3275         ioc->io_uring_poll_queues) {
3276         ioc->high_iops_queues = 0;
3277         return;
3278     }
3279 
3280     if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3281 
3282         pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3283         speed = lnksta & PCI_EXP_LNKSTA_CLS;
3284 
3285         if (speed < 0x4) {
3286             ioc->high_iops_queues = 0;
3287             return;
3288         }
3289     }
3290 
3291     if (!reset_devices && ioc->is_aero_ioc &&
3292         hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3293         num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3294         max_msix_vectors == -1)
3295         ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3296     else
3297         ioc->high_iops_queues = 0;
3298 }
3299 
3300 /**
3301  * mpt3sas_base_disable_msix - disables msix
3302  * @ioc: per adapter object
3303  *
3304  */
3305 void
3306 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3307 {
3308     if (!ioc->msix_enable)
3309         return;
3310     pci_free_irq_vectors(ioc->pdev);
3311     ioc->msix_enable = 0;
3312     kfree(ioc->io_uring_poll_queues);
3313 }
3314 
3315 /**
3316  * _base_alloc_irq_vectors - allocate msix vectors
3317  * @ioc: per adapter object
3318  *
3319  */
3320 static int
3321 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3322 {
3323     int i, irq_flags = PCI_IRQ_MSIX;
3324     struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3325     struct irq_affinity *descp = &desc;
3326     /*
3327      * Don't allocate msix vectors for poll_queues.
3328      * msix_vectors is always within a range of FW supported reply queue.
3329      */
3330     int nr_msix_vectors = ioc->iopoll_q_start_index;
3331 
3332 
3333     if (ioc->smp_affinity_enable)
3334         irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3335     else
3336         descp = NULL;
3337 
3338     ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3339         ioc->reply_queue_count, nr_msix_vectors);
3340 
3341     i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3342         ioc->high_iops_queues,
3343         nr_msix_vectors, irq_flags, descp);
3344 
3345     return i;
3346 }
3347 
3348 /**
3349  * _base_enable_msix - enables msix, failback to io_apic
3350  * @ioc: per adapter object
3351  *
3352  */
3353 static int
3354 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3355 {
3356     int r;
3357     int i, local_max_msix_vectors;
3358     u8 try_msix = 0;
3359     int iopoll_q_count = 0;
3360 
3361     ioc->msix_load_balance = false;
3362 
3363     if (msix_disable == -1 || msix_disable == 0)
3364         try_msix = 1;
3365 
3366     if (!try_msix)
3367         goto try_ioapic;
3368 
3369     if (_base_check_enable_msix(ioc) != 0)
3370         goto try_ioapic;
3371 
3372     ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3373     pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3374         ioc->cpu_count, max_msix_vectors);
3375 
3376     ioc->reply_queue_count =
3377         min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3378 
3379     if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3380         local_max_msix_vectors = (reset_devices) ? 1 : 8;
3381     else
3382         local_max_msix_vectors = max_msix_vectors;
3383 
3384     if (local_max_msix_vectors == 0)
3385         goto try_ioapic;
3386 
3387     /*
3388      * Enable msix_load_balance only if combined reply queue mode is
3389      * disabled on SAS3 & above generation HBA devices.
3390      */
3391     if (!ioc->combined_reply_queue &&
3392         ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3393         ioc_info(ioc,
3394             "combined ReplyQueue is off, Enabling msix load balance\n");
3395         ioc->msix_load_balance = true;
3396     }
3397 
3398     /*
3399      * smp affinity setting is not need when msix load balance
3400      * is enabled.
3401      */
3402     if (ioc->msix_load_balance)
3403         ioc->smp_affinity_enable = 0;
3404 
3405     if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3406         ioc->shost->host_tagset = 0;
3407 
3408     /*
3409      * Enable io uring poll queues only if host_tagset is enabled.
3410      */
3411     if (ioc->shost->host_tagset)
3412         iopoll_q_count = poll_queues;
3413 
3414     if (iopoll_q_count) {
3415         ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3416             sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3417         if (!ioc->io_uring_poll_queues)
3418             iopoll_q_count = 0;
3419     }
3420 
3421     if (ioc->is_aero_ioc)
3422         _base_check_and_enable_high_iops_queues(ioc,
3423             ioc->msix_vector_count);
3424 
3425     /*
3426      * Add high iops queues count to reply queue count if high iops queues
3427      * are enabled.
3428      */
3429     ioc->reply_queue_count = min_t(int,
3430         ioc->reply_queue_count + ioc->high_iops_queues,
3431         ioc->msix_vector_count);
3432 
3433     /*
3434      * Adjust the reply queue count incase reply queue count
3435      * exceeds the user provided MSIx vectors count.
3436      */
3437     if (local_max_msix_vectors > 0)
3438         ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3439             ioc->reply_queue_count);
3440     /*
3441      * Add io uring poll queues count to reply queues count
3442      * if io uring is enabled in driver.
3443      */
3444     if (iopoll_q_count) {
3445         if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3446             iopoll_q_count = 0;
3447         ioc->reply_queue_count = min_t(int,
3448             ioc->reply_queue_count + iopoll_q_count,
3449             ioc->msix_vector_count);
3450     }
3451 
3452     /*
3453      * Starting index of io uring poll queues in reply queue list.
3454      */
3455     ioc->iopoll_q_start_index =
3456         ioc->reply_queue_count - iopoll_q_count;
3457 
3458     r = _base_alloc_irq_vectors(ioc);
3459     if (r < 0) {
3460         ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3461         goto try_ioapic;
3462     }
3463 
3464     /*
3465      * Adjust the reply queue count if the allocated
3466      * MSIx vectors is less then the requested number
3467      * of MSIx vectors.
3468      */
3469     if (r < ioc->iopoll_q_start_index) {
3470         ioc->reply_queue_count = r + iopoll_q_count;
3471         ioc->iopoll_q_start_index =
3472             ioc->reply_queue_count - iopoll_q_count;
3473     }
3474 
3475     ioc->msix_enable = 1;
3476     for (i = 0; i < ioc->reply_queue_count; i++) {
3477         r = _base_request_irq(ioc, i);
3478         if (r) {
3479             mpt3sas_base_free_irq(ioc);
3480             mpt3sas_base_disable_msix(ioc);
3481             goto try_ioapic;
3482         }
3483     }
3484 
3485     ioc_info(ioc, "High IOPs queues : %s\n",
3486             ioc->high_iops_queues ? "enabled" : "disabled");
3487 
3488     return 0;
3489 
3490 /* failback to io_apic interrupt routing */
3491  try_ioapic:
3492     ioc->high_iops_queues = 0;
3493     ioc_info(ioc, "High IOPs queues : disabled\n");
3494     ioc->reply_queue_count = 1;
3495     ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3496     r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3497     if (r < 0) {
3498         dfailprintk(ioc,
3499                 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3500                      r));
3501     } else
3502         r = _base_request_irq(ioc, 0);
3503 
3504     return r;
3505 }
3506 
3507 /**
3508  * mpt3sas_base_unmap_resources - free controller resources
3509  * @ioc: per adapter object
3510  */
3511 static void
3512 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3513 {
3514     struct pci_dev *pdev = ioc->pdev;
3515 
3516     dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3517 
3518     mpt3sas_base_free_irq(ioc);
3519     mpt3sas_base_disable_msix(ioc);
3520 
3521     kfree(ioc->replyPostRegisterIndex);
3522     ioc->replyPostRegisterIndex = NULL;
3523 
3524 
3525     if (ioc->chip_phys) {
3526         iounmap(ioc->chip);
3527         ioc->chip_phys = 0;
3528     }
3529 
3530     if (pci_is_enabled(pdev)) {
3531         pci_release_selected_regions(ioc->pdev, ioc->bars);
3532         pci_disable_pcie_error_reporting(pdev);
3533         pci_disable_device(pdev);
3534     }
3535 }
3536 
3537 static int
3538 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3539 
3540 /**
3541  * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3542  *     and if it is in fault state then issue diag reset.
3543  * @ioc: per adapter object
3544  *
3545  * Return: 0 for success, non-zero for failure.
3546  */
3547 int
3548 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3549 {
3550     u32 ioc_state;
3551     int rc = -EFAULT;
3552 
3553     dinitprintk(ioc, pr_info("%s\n", __func__));
3554     if (ioc->pci_error_recovery)
3555         return 0;
3556     ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3557     dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3558 
3559     if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3560         mpt3sas_print_fault_code(ioc, ioc_state &
3561             MPI2_DOORBELL_DATA_MASK);
3562         mpt3sas_base_mask_interrupts(ioc);
3563         rc = _base_diag_reset(ioc);
3564     } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3565         MPI2_IOC_STATE_COREDUMP) {
3566         mpt3sas_print_coredump_info(ioc, ioc_state &
3567              MPI2_DOORBELL_DATA_MASK);
3568         mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3569         mpt3sas_base_mask_interrupts(ioc);
3570         rc = _base_diag_reset(ioc);
3571     }
3572 
3573     return rc;
3574 }
3575 
3576 /**
3577  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3578  * @ioc: per adapter object
3579  *
3580  * Return: 0 for success, non-zero for failure.
3581  */
3582 int
3583 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3584 {
3585     struct pci_dev *pdev = ioc->pdev;
3586     u32 memap_sz;
3587     u32 pio_sz;
3588     int i, r = 0, rc;
3589     u64 pio_chip = 0;
3590     phys_addr_t chip_phys = 0;
3591     struct adapter_reply_queue *reply_q;
3592     int iopoll_q_count = 0;
3593 
3594     dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3595 
3596     ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3597     if (pci_enable_device_mem(pdev)) {
3598         ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3599         ioc->bars = 0;
3600         return -ENODEV;
3601     }
3602 
3603 
3604     if (pci_request_selected_regions(pdev, ioc->bars,
3605         ioc->driver_name)) {
3606         ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3607         ioc->bars = 0;
3608         r = -ENODEV;
3609         goto out_fail;
3610     }
3611 
3612 /* AER (Advanced Error Reporting) hooks */
3613     pci_enable_pcie_error_reporting(pdev);
3614 
3615     pci_set_master(pdev);
3616 
3617 
3618     if (_base_config_dma_addressing(ioc, pdev) != 0) {
3619         ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3620         r = -ENODEV;
3621         goto out_fail;
3622     }
3623 
3624     for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3625          (!memap_sz || !pio_sz); i++) {
3626         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3627             if (pio_sz)
3628                 continue;
3629             pio_chip = (u64)pci_resource_start(pdev, i);
3630             pio_sz = pci_resource_len(pdev, i);
3631         } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3632             if (memap_sz)
3633                 continue;
3634             ioc->chip_phys = pci_resource_start(pdev, i);
3635             chip_phys = ioc->chip_phys;
3636             memap_sz = pci_resource_len(pdev, i);
3637             ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3638         }
3639     }
3640 
3641     if (ioc->chip == NULL) {
3642         ioc_err(ioc,
3643             "unable to map adapter memory! or resource not found\n");
3644         r = -EINVAL;
3645         goto out_fail;
3646     }
3647 
3648     mpt3sas_base_mask_interrupts(ioc);
3649 
3650     r = _base_get_ioc_facts(ioc);
3651     if (r) {
3652         rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3653         if (rc || (_base_get_ioc_facts(ioc)))
3654             goto out_fail;
3655     }
3656 
3657     if (!ioc->rdpq_array_enable_assigned) {
3658         ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3659         ioc->rdpq_array_enable_assigned = 1;
3660     }
3661 
3662     r = _base_enable_msix(ioc);
3663     if (r)
3664         goto out_fail;
3665 
3666     iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3667     for (i = 0; i < iopoll_q_count; i++) {
3668         atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3669         atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3670     }
3671 
3672     if (!ioc->is_driver_loading)
3673         _base_init_irqpolls(ioc);
3674     /* Use the Combined reply queue feature only for SAS3 C0 & higher
3675      * revision HBAs and also only when reply queue count is greater than 8
3676      */
3677     if (ioc->combined_reply_queue) {
3678         /* Determine the Supplemental Reply Post Host Index Registers
3679          * Addresse. Supplemental Reply Post Host Index Registers
3680          * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3681          * each register is at offset bytes of
3682          * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3683          */
3684         ioc->replyPostRegisterIndex = kcalloc(
3685              ioc->combined_reply_index_count,
3686              sizeof(resource_size_t *), GFP_KERNEL);
3687         if (!ioc->replyPostRegisterIndex) {
3688             ioc_err(ioc,
3689                 "allocation for replyPostRegisterIndex failed!\n");
3690             r = -ENOMEM;
3691             goto out_fail;
3692         }
3693 
3694         for (i = 0; i < ioc->combined_reply_index_count; i++) {
3695             ioc->replyPostRegisterIndex[i] =
3696                 (resource_size_t __iomem *)
3697                 ((u8 __force *)&ioc->chip->Doorbell +
3698                  MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3699                  (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3700         }
3701     }
3702 
3703     if (ioc->is_warpdrive) {
3704         ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3705             &ioc->chip->ReplyPostHostIndex;
3706 
3707         for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3708             ioc->reply_post_host_index[i] =
3709             (resource_size_t __iomem *)
3710             ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3711             * 4)));
3712     }
3713 
3714     list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3715         if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3716             pr_info("%s: enabled: index: %d\n",
3717                 reply_q->name, reply_q->msix_index);
3718             continue;
3719         }
3720 
3721         pr_info("%s: %s enabled: IRQ %d\n",
3722             reply_q->name,
3723             ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3724             pci_irq_vector(ioc->pdev, reply_q->msix_index));
3725     }
3726 
3727     ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3728          &chip_phys, ioc->chip, memap_sz);
3729     ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3730          (unsigned long long)pio_chip, pio_sz);
3731 
3732     /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3733     pci_save_state(pdev);
3734     return 0;
3735 
3736  out_fail:
3737     mpt3sas_base_unmap_resources(ioc);
3738     return r;
3739 }
3740 
3741 /**
3742  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3743  * @ioc: per adapter object
3744  * @smid: system request message index(smid zero is invalid)
3745  *
3746  * Return: virt pointer to message frame.
3747  */
3748 void *
3749 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3750 {
3751     return (void *)(ioc->request + (smid * ioc->request_sz));
3752 }
3753 
3754 /**
3755  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3756  * @ioc: per adapter object
3757  * @smid: system request message index
3758  *
3759  * Return: virt pointer to sense buffer.
3760  */
3761 void *
3762 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3763 {
3764     return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3765 }
3766 
3767 /**
3768  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3769  * @ioc: per adapter object
3770  * @smid: system request message index
3771  *
3772  * Return: phys pointer to the low 32bit address of the sense buffer.
3773  */
3774 __le32
3775 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3776 {
3777     return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3778         SCSI_SENSE_BUFFERSIZE));
3779 }
3780 
3781 /**
3782  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3783  * @ioc: per adapter object
3784  * @smid: system request message index
3785  *
3786  * Return: virt pointer to a PCIe SGL.
3787  */
3788 void *
3789 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3790 {
3791     return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3792 }
3793 
3794 /**
3795  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3796  * @ioc: per adapter object
3797  * @smid: system request message index
3798  *
3799  * Return: phys pointer to the address of the PCIe buffer.
3800  */
3801 dma_addr_t
3802 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3803 {
3804     return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3805 }
3806 
3807 /**
3808  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3809  * @ioc: per adapter object
3810  * @phys_addr: lower 32 physical addr of the reply
3811  *
3812  * Converts 32bit lower physical addr into a virt address.
3813  */
3814 void *
3815 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3816 {
3817     if (!phys_addr)
3818         return NULL;
3819     return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3820 }
3821 
3822 /**
3823  * _base_get_msix_index - get the msix index
3824  * @ioc: per adapter object
3825  * @scmd: scsi_cmnd object
3826  *
3827  * Return: msix index of general reply queues,
3828  * i.e. reply queue on which IO request's reply
3829  * should be posted by the HBA firmware.
3830  */
3831 static inline u8
3832 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3833     struct scsi_cmnd *scmd)
3834 {
3835     /* Enables reply_queue load balancing */
3836     if (ioc->msix_load_balance)
3837         return ioc->reply_queue_count ?
3838             base_mod64(atomic64_add_return(1,
3839             &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3840 
3841     if (scmd && ioc->shost->nr_hw_queues > 1) {
3842         u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3843 
3844         return blk_mq_unique_tag_to_hwq(tag) +
3845             ioc->high_iops_queues;
3846     }
3847 
3848     return ioc->cpu_msix_table[raw_smp_processor_id()];
3849 }
3850 
3851 /**
3852  * _base_get_high_iops_msix_index - get the msix index of
3853  *              high iops queues
3854  * @ioc: per adapter object
3855  * @scmd: scsi_cmnd object
3856  *
3857  * Return: msix index of high iops reply queues.
3858  * i.e. high iops reply queue on which IO request's
3859  * reply should be posted by the HBA firmware.
3860  */
3861 static inline u8
3862 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3863     struct scsi_cmnd *scmd)
3864 {
3865     /**
3866      * Round robin the IO interrupts among the high iops
3867      * reply queues in terms of batch count 16 when outstanding
3868      * IOs on the target device is >=8.
3869      */
3870 
3871     if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3872         return base_mod64((
3873             atomic64_add_return(1, &ioc->high_iops_outstanding) /
3874             MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3875             MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3876 
3877     return _base_get_msix_index(ioc, scmd);
3878 }
3879 
3880 /**
3881  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3882  * @ioc: per adapter object
3883  * @cb_idx: callback index
3884  *
3885  * Return: smid (zero is invalid)
3886  */
3887 u16
3888 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3889 {
3890     unsigned long flags;
3891     struct request_tracker *request;
3892     u16 smid;
3893 
3894     spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3895     if (list_empty(&ioc->internal_free_list)) {
3896         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3897         ioc_err(ioc, "%s: smid not available\n", __func__);
3898         return 0;
3899     }
3900 
3901     request = list_entry(ioc->internal_free_list.next,
3902         struct request_tracker, tracker_list);
3903     request->cb_idx = cb_idx;
3904     smid = request->smid;
3905     list_del(&request->tracker_list);
3906     spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3907     return smid;
3908 }
3909 
3910 /**
3911  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3912  * @ioc: per adapter object
3913  * @cb_idx: callback index
3914  * @scmd: pointer to scsi command object
3915  *
3916  * Return: smid (zero is invalid)
3917  */
3918 u16
3919 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3920     struct scsi_cmnd *scmd)
3921 {
3922     struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3923     u16 smid;
3924     u32 tag, unique_tag;
3925 
3926     unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3927     tag = blk_mq_unique_tag_to_tag(unique_tag);
3928 
3929     /*
3930      * Store hw queue number corresponding to the tag.
3931      * This hw queue number is used later to determine
3932      * the unique_tag using the logic below. This unique_tag
3933      * is used to retrieve the scmd pointer corresponding
3934      * to tag using scsi_host_find_tag() API.
3935      *
3936      * tag = smid - 1;
3937      * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3938      */
3939     ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3940 
3941     smid = tag + 1;
3942     request->cb_idx = cb_idx;
3943     request->smid = smid;
3944     request->scmd = scmd;
3945     INIT_LIST_HEAD(&request->chain_list);
3946     return smid;
3947 }
3948 
3949 /**
3950  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3951  * @ioc: per adapter object
3952  * @cb_idx: callback index
3953  *
3954  * Return: smid (zero is invalid)
3955  */
3956 u16
3957 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3958 {
3959     unsigned long flags;
3960     struct request_tracker *request;
3961     u16 smid;
3962 
3963     spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3964     if (list_empty(&ioc->hpr_free_list)) {
3965         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3966         return 0;
3967     }
3968 
3969     request = list_entry(ioc->hpr_free_list.next,
3970         struct request_tracker, tracker_list);
3971     request->cb_idx = cb_idx;
3972     smid = request->smid;
3973     list_del(&request->tracker_list);
3974     spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3975     return smid;
3976 }
3977 
3978 static void
3979 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3980 {
3981     /*
3982      * See _wait_for_commands_to_complete() call with regards to this code.
3983      */
3984     if (ioc->shost_recovery && ioc->pending_io_count) {
3985         ioc->pending_io_count = scsi_host_busy(ioc->shost);
3986         if (ioc->pending_io_count == 0)
3987             wake_up(&ioc->reset_wq);
3988     }
3989 }
3990 
3991 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3992                struct scsiio_tracker *st)
3993 {
3994     if (WARN_ON(st->smid == 0))
3995         return;
3996     st->cb_idx = 0xFF;
3997     st->direct_io = 0;
3998     st->scmd = NULL;
3999     atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4000     st->smid = 0;
4001 }
4002 
4003 /**
4004  * mpt3sas_base_free_smid - put smid back on free_list
4005  * @ioc: per adapter object
4006  * @smid: system request message index
4007  */
4008 void
4009 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4010 {
4011     unsigned long flags;
4012     int i;
4013 
4014     if (smid < ioc->hi_priority_smid) {
4015         struct scsiio_tracker *st;
4016         void *request;
4017 
4018         st = _get_st_from_smid(ioc, smid);
4019         if (!st) {
4020             _base_recovery_check(ioc);
4021             return;
4022         }
4023 
4024         /* Clear MPI request frame */
4025         request = mpt3sas_base_get_msg_frame(ioc, smid);
4026         memset(request, 0, ioc->request_sz);
4027 
4028         mpt3sas_base_clear_st(ioc, st);
4029         _base_recovery_check(ioc);
4030         ioc->io_queue_num[smid - 1] = 0;
4031         return;
4032     }
4033 
4034     spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4035     if (smid < ioc->internal_smid) {
4036         /* hi-priority */
4037         i = smid - ioc->hi_priority_smid;
4038         ioc->hpr_lookup[i].cb_idx = 0xFF;
4039         list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4040     } else if (smid <= ioc->hba_queue_depth) {
4041         /* internal queue */
4042         i = smid - ioc->internal_smid;
4043         ioc->internal_lookup[i].cb_idx = 0xFF;
4044         list_add(&ioc->internal_lookup[i].tracker_list,
4045             &ioc->internal_free_list);
4046     }
4047     spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4048 }
4049 
4050 /**
4051  * _base_mpi_ep_writeq - 32 bit write to MMIO
4052  * @b: data payload
4053  * @addr: address in MMIO space
4054  * @writeq_lock: spin lock
4055  *
4056  * This special handling for MPI EP to take care of 32 bit
4057  * environment where its not quarenteed to send the entire word
4058  * in one transfer.
4059  */
4060 static inline void
4061 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4062                     spinlock_t *writeq_lock)
4063 {
4064     unsigned long flags;
4065 
4066     spin_lock_irqsave(writeq_lock, flags);
4067     __raw_writel((u32)(b), addr);
4068     __raw_writel((u32)(b >> 32), (addr + 4));
4069     spin_unlock_irqrestore(writeq_lock, flags);
4070 }
4071 
4072 /**
4073  * _base_writeq - 64 bit write to MMIO
4074  * @b: data payload
4075  * @addr: address in MMIO space
4076  * @writeq_lock: spin lock
4077  *
4078  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4079  * care of 32 bit environment where its not quarenteed to send the entire word
4080  * in one transfer.
4081  */
4082 #if defined(writeq) && defined(CONFIG_64BIT)
4083 static inline void
4084 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4085 {
4086     wmb();
4087     __raw_writeq(b, addr);
4088     barrier();
4089 }
4090 #else
4091 static inline void
4092 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4093 {
4094     _base_mpi_ep_writeq(b, addr, writeq_lock);
4095 }
4096 #endif
4097 
4098 /**
4099  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4100  *                                variable of scsi tracker
4101  * @ioc: per adapter object
4102  * @smid: system request message index
4103  *
4104  * Return: msix index.
4105  */
4106 static u8
4107 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4108 {
4109     struct scsiio_tracker *st = NULL;
4110 
4111     if (smid < ioc->hi_priority_smid)
4112         st = _get_st_from_smid(ioc, smid);
4113 
4114     if (st == NULL)
4115         return  _base_get_msix_index(ioc, NULL);
4116 
4117     st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4118     return st->msix_io;
4119 }
4120 
4121 /**
4122  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4123  * @ioc: per adapter object
4124  * @smid: system request message index
4125  * @handle: device handle
4126  */
4127 static void
4128 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4129     u16 smid, u16 handle)
4130 {
4131     Mpi2RequestDescriptorUnion_t descriptor;
4132     u64 *request = (u64 *)&descriptor;
4133     void *mpi_req_iomem;
4134     __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4135 
4136     _clone_sg_entries(ioc, (void *) mfp, smid);
4137     mpi_req_iomem = (void __force *)ioc->chip +
4138             MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4139     _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4140                     ioc->request_sz);
4141     descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4142     descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4143     descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4144     descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4145     descriptor.SCSIIO.LMID = 0;
4146     _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4147         &ioc->scsi_lookup_lock);
4148 }
4149 
4150 /**
4151  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4152  * @ioc: per adapter object
4153  * @smid: system request message index
4154  * @handle: device handle
4155  */
4156 static void
4157 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4158 {
4159     Mpi2RequestDescriptorUnion_t descriptor;
4160     u64 *request = (u64 *)&descriptor;
4161 
4162 
4163     descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4164     descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4165     descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4166     descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4167     descriptor.SCSIIO.LMID = 0;
4168     _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4169         &ioc->scsi_lookup_lock);
4170 }
4171 
4172 /**
4173  * _base_put_smid_fast_path - send fast path request to firmware
4174  * @ioc: per adapter object
4175  * @smid: system request message index
4176  * @handle: device handle
4177  */
4178 static void
4179 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4180     u16 handle)
4181 {
4182     Mpi2RequestDescriptorUnion_t descriptor;
4183     u64 *request = (u64 *)&descriptor;
4184 
4185     descriptor.SCSIIO.RequestFlags =
4186         MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4187     descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4188     descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4189     descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4190     descriptor.SCSIIO.LMID = 0;
4191     _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4192         &ioc->scsi_lookup_lock);
4193 }
4194 
4195 /**
4196  * _base_put_smid_hi_priority - send Task Management request to firmware
4197  * @ioc: per adapter object
4198  * @smid: system request message index
4199  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4200  */
4201 static void
4202 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4203     u16 msix_task)
4204 {
4205     Mpi2RequestDescriptorUnion_t descriptor;
4206     void *mpi_req_iomem;
4207     u64 *request;
4208 
4209     if (ioc->is_mcpu_endpoint) {
4210         __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4211 
4212         /* TBD 256 is offset within sys register. */
4213         mpi_req_iomem = (void __force *)ioc->chip
4214                     + MPI_FRAME_START_OFFSET
4215                     + (smid * ioc->request_sz);
4216         _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4217                             ioc->request_sz);
4218     }
4219 
4220     request = (u64 *)&descriptor;
4221 
4222     descriptor.HighPriority.RequestFlags =
4223         MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4224     descriptor.HighPriority.MSIxIndex =  msix_task;
4225     descriptor.HighPriority.SMID = cpu_to_le16(smid);
4226     descriptor.HighPriority.LMID = 0;
4227     descriptor.HighPriority.Reserved1 = 0;
4228     if (ioc->is_mcpu_endpoint)
4229         _base_mpi_ep_writeq(*request,
4230                 &ioc->chip->RequestDescriptorPostLow,
4231                 &ioc->scsi_lookup_lock);
4232     else
4233         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4234             &ioc->scsi_lookup_lock);
4235 }
4236 
4237 /**
4238  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4239  *  firmware
4240  * @ioc: per adapter object
4241  * @smid: system request message index
4242  */
4243 void
4244 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4245 {
4246     Mpi2RequestDescriptorUnion_t descriptor;
4247     u64 *request = (u64 *)&descriptor;
4248 
4249     descriptor.Default.RequestFlags =
4250         MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4251     descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
4252     descriptor.Default.SMID = cpu_to_le16(smid);
4253     descriptor.Default.LMID = 0;
4254     descriptor.Default.DescriptorTypeDependent = 0;
4255     _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4256         &ioc->scsi_lookup_lock);
4257 }
4258 
4259 /**
4260  * _base_put_smid_default - Default, primarily used for config pages
4261  * @ioc: per adapter object
4262  * @smid: system request message index
4263  */
4264 static void
4265 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4266 {
4267     Mpi2RequestDescriptorUnion_t descriptor;
4268     void *mpi_req_iomem;
4269     u64 *request;
4270 
4271     if (ioc->is_mcpu_endpoint) {
4272         __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4273 
4274         _clone_sg_entries(ioc, (void *) mfp, smid);
4275         /* TBD 256 is offset within sys register */
4276         mpi_req_iomem = (void __force *)ioc->chip +
4277             MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4278         _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4279                             ioc->request_sz);
4280     }
4281     request = (u64 *)&descriptor;
4282     descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4283     descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4284     descriptor.Default.SMID = cpu_to_le16(smid);
4285     descriptor.Default.LMID = 0;
4286     descriptor.Default.DescriptorTypeDependent = 0;
4287     if (ioc->is_mcpu_endpoint)
4288         _base_mpi_ep_writeq(*request,
4289                 &ioc->chip->RequestDescriptorPostLow,
4290                 &ioc->scsi_lookup_lock);
4291     else
4292         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4293                 &ioc->scsi_lookup_lock);
4294 }
4295 
4296 /**
4297  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4298  *   Atomic Request Descriptor
4299  * @ioc: per adapter object
4300  * @smid: system request message index
4301  * @handle: device handle, unused in this function, for function type match
4302  *
4303  * Return: nothing.
4304  */
4305 static void
4306 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4307     u16 handle)
4308 {
4309     Mpi26AtomicRequestDescriptor_t descriptor;
4310     u32 *request = (u32 *)&descriptor;
4311 
4312     descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4313     descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4314     descriptor.SMID = cpu_to_le16(smid);
4315 
4316     writel(*request, &ioc->chip->AtomicRequestDescriptorPost);
4317 }
4318 
4319 /**
4320  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4321  * using Atomic Request Descriptor
4322  * @ioc: per adapter object
4323  * @smid: system request message index
4324  * @handle: device handle, unused in this function, for function type match
4325  * Return: nothing
4326  */
4327 static void
4328 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4329     u16 handle)
4330 {
4331     Mpi26AtomicRequestDescriptor_t descriptor;
4332     u32 *request = (u32 *)&descriptor;
4333 
4334     descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4335     descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4336     descriptor.SMID = cpu_to_le16(smid);
4337 
4338     writel(*request, &ioc->chip->AtomicRequestDescriptorPost);
4339 }
4340 
4341 /**
4342  * _base_put_smid_hi_priority_atomic - send Task Management request to
4343  * firmware using Atomic Request Descriptor
4344  * @ioc: per adapter object
4345  * @smid: system request message index
4346  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4347  *
4348  * Return: nothing.
4349  */
4350 static void
4351 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4352     u16 msix_task)
4353 {
4354     Mpi26AtomicRequestDescriptor_t descriptor;
4355     u32 *request = (u32 *)&descriptor;
4356 
4357     descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4358     descriptor.MSIxIndex = msix_task;
4359     descriptor.SMID = cpu_to_le16(smid);
4360 
4361     writel(*request, &ioc->chip->AtomicRequestDescriptorPost);
4362 }
4363 
4364 /**
4365  * _base_put_smid_default_atomic - Default, primarily used for config pages
4366  * use Atomic Request Descriptor
4367  * @ioc: per adapter object
4368  * @smid: system request message index
4369  *
4370  * Return: nothing.
4371  */
4372 static void
4373 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4374 {
4375     Mpi26AtomicRequestDescriptor_t descriptor;
4376     u32 *request = (u32 *)&descriptor;
4377 
4378     descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4379     descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4380     descriptor.SMID = cpu_to_le16(smid);
4381 
4382     writel(*request, &ioc->chip->AtomicRequestDescriptorPost);
4383 }
4384 
4385 /**
4386  * _base_display_OEMs_branding - Display branding string
4387  * @ioc: per adapter object
4388  */
4389 static void
4390 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4391 {
4392     if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4393         return;
4394 
4395     switch (ioc->pdev->subsystem_vendor) {
4396     case PCI_VENDOR_ID_INTEL:
4397         switch (ioc->pdev->device) {
4398         case MPI2_MFGPAGE_DEVID_SAS2008:
4399             switch (ioc->pdev->subsystem_device) {
4400             case MPT2SAS_INTEL_RMS2LL080_SSDID:
4401                 ioc_info(ioc, "%s\n",
4402                      MPT2SAS_INTEL_RMS2LL080_BRANDING);
4403                 break;
4404             case MPT2SAS_INTEL_RMS2LL040_SSDID:
4405                 ioc_info(ioc, "%s\n",
4406                      MPT2SAS_INTEL_RMS2LL040_BRANDING);
4407                 break;
4408             case MPT2SAS_INTEL_SSD910_SSDID:
4409                 ioc_info(ioc, "%s\n",
4410                      MPT2SAS_INTEL_SSD910_BRANDING);
4411                 break;
4412             default:
4413                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4414                      ioc->pdev->subsystem_device);
4415                 break;
4416             }
4417             break;
4418         case MPI2_MFGPAGE_DEVID_SAS2308_2:
4419             switch (ioc->pdev->subsystem_device) {
4420             case MPT2SAS_INTEL_RS25GB008_SSDID:
4421                 ioc_info(ioc, "%s\n",
4422                      MPT2SAS_INTEL_RS25GB008_BRANDING);
4423                 break;
4424             case MPT2SAS_INTEL_RMS25JB080_SSDID:
4425                 ioc_info(ioc, "%s\n",
4426                      MPT2SAS_INTEL_RMS25JB080_BRANDING);
4427                 break;
4428             case MPT2SAS_INTEL_RMS25JB040_SSDID:
4429                 ioc_info(ioc, "%s\n",
4430                      MPT2SAS_INTEL_RMS25JB040_BRANDING);
4431                 break;
4432             case MPT2SAS_INTEL_RMS25KB080_SSDID:
4433                 ioc_info(ioc, "%s\n",
4434                      MPT2SAS_INTEL_RMS25KB080_BRANDING);
4435                 break;
4436             case MPT2SAS_INTEL_RMS25KB040_SSDID:
4437                 ioc_info(ioc, "%s\n",
4438                      MPT2SAS_INTEL_RMS25KB040_BRANDING);
4439                 break;
4440             case MPT2SAS_INTEL_RMS25LB040_SSDID:
4441                 ioc_info(ioc, "%s\n",
4442                      MPT2SAS_INTEL_RMS25LB040_BRANDING);
4443                 break;
4444             case MPT2SAS_INTEL_RMS25LB080_SSDID:
4445                 ioc_info(ioc, "%s\n",
4446                      MPT2SAS_INTEL_RMS25LB080_BRANDING);
4447                 break;
4448             default:
4449                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4450                      ioc->pdev->subsystem_device);
4451                 break;
4452             }
4453             break;
4454         case MPI25_MFGPAGE_DEVID_SAS3008:
4455             switch (ioc->pdev->subsystem_device) {
4456             case MPT3SAS_INTEL_RMS3JC080_SSDID:
4457                 ioc_info(ioc, "%s\n",
4458                      MPT3SAS_INTEL_RMS3JC080_BRANDING);
4459                 break;
4460 
4461             case MPT3SAS_INTEL_RS3GC008_SSDID:
4462                 ioc_info(ioc, "%s\n",
4463                      MPT3SAS_INTEL_RS3GC008_BRANDING);
4464                 break;
4465             case MPT3SAS_INTEL_RS3FC044_SSDID:
4466                 ioc_info(ioc, "%s\n",
4467                      MPT3SAS_INTEL_RS3FC044_BRANDING);
4468                 break;
4469             case MPT3SAS_INTEL_RS3UC080_SSDID:
4470                 ioc_info(ioc, "%s\n",
4471                      MPT3SAS_INTEL_RS3UC080_BRANDING);
4472                 break;
4473             default:
4474                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4475                      ioc->pdev->subsystem_device);
4476                 break;
4477             }
4478             break;
4479         default:
4480             ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4481                  ioc->pdev->subsystem_device);
4482             break;
4483         }
4484         break;
4485     case PCI_VENDOR_ID_DELL:
4486         switch (ioc->pdev->device) {
4487         case MPI2_MFGPAGE_DEVID_SAS2008:
4488             switch (ioc->pdev->subsystem_device) {
4489             case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4490                 ioc_info(ioc, "%s\n",
4491                      MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4492                 break;
4493             case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4494                 ioc_info(ioc, "%s\n",
4495                      MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4496                 break;
4497             case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4498                 ioc_info(ioc, "%s\n",
4499                      MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4500                 break;
4501             case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4502                 ioc_info(ioc, "%s\n",
4503                      MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4504                 break;
4505             case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4506                 ioc_info(ioc, "%s\n",
4507                      MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4508                 break;
4509             case MPT2SAS_DELL_PERC_H200_SSDID:
4510                 ioc_info(ioc, "%s\n",
4511                      MPT2SAS_DELL_PERC_H200_BRANDING);
4512                 break;
4513             case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4514                 ioc_info(ioc, "%s\n",
4515                      MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4516                 break;
4517             default:
4518                 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4519                      ioc->pdev->subsystem_device);
4520                 break;
4521             }
4522             break;
4523         case MPI25_MFGPAGE_DEVID_SAS3008:
4524             switch (ioc->pdev->subsystem_device) {
4525             case MPT3SAS_DELL_12G_HBA_SSDID:
4526                 ioc_info(ioc, "%s\n",
4527                      MPT3SAS_DELL_12G_HBA_BRANDING);
4528                 break;
4529             default:
4530                 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4531                      ioc->pdev->subsystem_device);
4532                 break;
4533             }
4534             break;
4535         default:
4536             ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4537                  ioc->pdev->subsystem_device);
4538             break;
4539         }
4540         break;
4541     case PCI_VENDOR_ID_CISCO:
4542         switch (ioc->pdev->device) {
4543         case MPI25_MFGPAGE_DEVID_SAS3008:
4544             switch (ioc->pdev->subsystem_device) {
4545             case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4546                 ioc_info(ioc, "%s\n",
4547                      MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4548                 break;
4549             case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4550                 ioc_info(ioc, "%s\n",
4551                      MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4552                 break;
4553             case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4554                 ioc_info(ioc, "%s\n",
4555                      MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4556                 break;
4557             default:
4558                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4559                      ioc->pdev->subsystem_device);
4560                 break;
4561             }
4562             break;
4563         case MPI25_MFGPAGE_DEVID_SAS3108_1:
4564             switch (ioc->pdev->subsystem_device) {
4565             case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4566                 ioc_info(ioc, "%s\n",
4567                      MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4568                 break;
4569             case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4570                 ioc_info(ioc, "%s\n",
4571                      MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4572                 break;
4573             default:
4574                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4575                      ioc->pdev->subsystem_device);
4576                 break;
4577             }
4578             break;
4579         default:
4580             ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4581                  ioc->pdev->subsystem_device);
4582             break;
4583         }
4584         break;
4585     case MPT2SAS_HP_3PAR_SSVID:
4586         switch (ioc->pdev->device) {
4587         case MPI2_MFGPAGE_DEVID_SAS2004:
4588             switch (ioc->pdev->subsystem_device) {
4589             case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4590                 ioc_info(ioc, "%s\n",
4591                      MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4592                 break;
4593             default:
4594                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4595                      ioc->pdev->subsystem_device);
4596                 break;
4597             }
4598             break;
4599         case MPI2_MFGPAGE_DEVID_SAS2308_2:
4600             switch (ioc->pdev->subsystem_device) {
4601             case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4602                 ioc_info(ioc, "%s\n",
4603                      MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4604                 break;
4605             case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4606                 ioc_info(ioc, "%s\n",
4607                      MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4608                 break;
4609             case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4610                 ioc_info(ioc, "%s\n",
4611                      MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4612                 break;
4613             case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4614                 ioc_info(ioc, "%s\n",
4615                      MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4616                 break;
4617             default:
4618                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4619                      ioc->pdev->subsystem_device);
4620                 break;
4621             }
4622             break;
4623         default:
4624             ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4625                  ioc->pdev->subsystem_device);
4626             break;
4627         }
4628         break;
4629     default:
4630         break;
4631     }
4632 }
4633 
4634 /**
4635  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4636  *              version from FW Image Header.
4637  * @ioc: per adapter object
4638  *
4639  * Return: 0 for success, non-zero for failure.
4640  */
4641     static int
4642 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4643 {
4644     Mpi2FWImageHeader_t *fw_img_hdr;
4645     Mpi26ComponentImageHeader_t *cmp_img_hdr;
4646     Mpi25FWUploadRequest_t *mpi_request;
4647     Mpi2FWUploadReply_t mpi_reply;
4648     int r = 0, issue_diag_reset = 0;
4649     u32  package_version = 0;
4650     void *fwpkg_data = NULL;
4651     dma_addr_t fwpkg_data_dma;
4652     u16 smid, ioc_status;
4653     size_t data_length;
4654 
4655     dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4656 
4657     if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4658         ioc_err(ioc, "%s: internal command already in use\n", __func__);
4659         return -EAGAIN;
4660     }
4661 
4662     data_length = sizeof(Mpi2FWImageHeader_t);
4663     fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4664             &fwpkg_data_dma, GFP_KERNEL);
4665     if (!fwpkg_data) {
4666         ioc_err(ioc,
4667             "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4668             __FILE__, __LINE__, __func__);
4669         return -ENOMEM;
4670     }
4671 
4672     smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4673     if (!smid) {
4674         ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4675         r = -EAGAIN;
4676         goto out;
4677     }
4678 
4679     ioc->base_cmds.status = MPT3_CMD_PENDING;
4680     mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4681     ioc->base_cmds.smid = smid;
4682     memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4683     mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4684     mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4685     mpi_request->ImageSize = cpu_to_le32(data_length);
4686     ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4687             data_length);
4688     init_completion(&ioc->base_cmds.done);
4689     ioc->put_smid_default(ioc, smid);
4690     /* Wait for 15 seconds */
4691     wait_for_completion_timeout(&ioc->base_cmds.done,
4692             FW_IMG_HDR_READ_TIMEOUT*HZ);
4693     ioc_info(ioc, "%s: complete\n", __func__);
4694     if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4695         ioc_err(ioc, "%s: timeout\n", __func__);
4696         _debug_dump_mf(mpi_request,
4697                 sizeof(Mpi25FWUploadRequest_t)/4);
4698         issue_diag_reset = 1;
4699     } else {
4700         memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4701         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4702             memcpy(&mpi_reply, ioc->base_cmds.reply,
4703                     sizeof(Mpi2FWUploadReply_t));
4704             ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4705                         MPI2_IOCSTATUS_MASK;
4706             if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4707                 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4708                 if (le32_to_cpu(fw_img_hdr->Signature) ==
4709                     MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4710                     cmp_img_hdr =
4711                         (Mpi26ComponentImageHeader_t *)
4712                         (fwpkg_data);
4713                     package_version =
4714                         le32_to_cpu(
4715                         cmp_img_hdr->ApplicationSpecific);
4716                 } else
4717                     package_version =
4718                         le32_to_cpu(
4719                         fw_img_hdr->PackageVersion.Word);
4720                 if (package_version)
4721                     ioc_info(ioc,
4722                     "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4723                     ((package_version) & 0xFF000000) >> 24,
4724                     ((package_version) & 0x00FF0000) >> 16,
4725                     ((package_version) & 0x0000FF00) >> 8,
4726                     (package_version) & 0x000000FF);
4727             } else {
4728                 _debug_dump_mf(&mpi_reply,
4729                         sizeof(Mpi2FWUploadReply_t)/4);
4730             }
4731         }
4732     }
4733     ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4734 out:
4735     if (fwpkg_data)
4736         dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4737                 fwpkg_data_dma);
4738     if (issue_diag_reset) {
4739         if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4740             return -EFAULT;
4741         if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4742             return -EFAULT;
4743         r = -EAGAIN;
4744     }
4745     return r;
4746 }
4747 
4748 /**
4749  * _base_display_ioc_capabilities - Display IOC's capabilities.
4750  * @ioc: per adapter object
4751  */
4752 static void
4753 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4754 {
4755     int i = 0;
4756     char desc[17] = {0};
4757     u32 iounit_pg1_flags;
4758     u32 bios_version;
4759 
4760     bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4761     strncpy(desc, ioc->manu_pg0.ChipName, 16);
4762     ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4763          desc,
4764          (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4765          (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4766          (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4767          ioc->facts.FWVersion.Word & 0x000000FF,
4768          ioc->pdev->revision,
4769          (bios_version & 0xFF000000) >> 24,
4770          (bios_version & 0x00FF0000) >> 16,
4771          (bios_version & 0x0000FF00) >> 8,
4772          bios_version & 0x000000FF);
4773 
4774     _base_display_OEMs_branding(ioc);
4775 
4776     if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4777         pr_info("%sNVMe", i ? "," : "");
4778         i++;
4779     }
4780 
4781     ioc_info(ioc, "Protocol=(");
4782 
4783     if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4784         pr_cont("Initiator");
4785         i++;
4786     }
4787 
4788     if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4789         pr_cont("%sTarget", i ? "," : "");
4790         i++;
4791     }
4792 
4793     i = 0;
4794     pr_cont("), Capabilities=(");
4795 
4796     if (!ioc->hide_ir_msg) {
4797         if (ioc->facts.IOCCapabilities &
4798             MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4799             pr_cont("Raid");
4800             i++;
4801         }
4802     }
4803 
4804     if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4805         pr_cont("%sTLR", i ? "," : "");
4806         i++;
4807     }
4808 
4809     if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4810         pr_cont("%sMulticast", i ? "," : "");
4811         i++;
4812     }
4813 
4814     if (ioc->facts.IOCCapabilities &
4815         MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4816         pr_cont("%sBIDI Target", i ? "," : "");
4817         i++;
4818     }
4819 
4820     if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4821         pr_cont("%sEEDP", i ? "," : "");
4822         i++;
4823     }
4824 
4825     if (ioc->facts.IOCCapabilities &
4826         MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4827         pr_cont("%sSnapshot Buffer", i ? "," : "");
4828         i++;
4829     }
4830 
4831     if (ioc->facts.IOCCapabilities &
4832         MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4833         pr_cont("%sDiag Trace Buffer", i ? "," : "");
4834         i++;
4835     }
4836 
4837     if (ioc->facts.IOCCapabilities &
4838         MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4839         pr_cont("%sDiag Extended Buffer", i ? "," : "");
4840         i++;
4841     }
4842 
4843     if (ioc->facts.IOCCapabilities &
4844         MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4845         pr_cont("%sTask Set Full", i ? "," : "");
4846         i++;
4847     }
4848 
4849     iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4850     if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4851         pr_cont("%sNCQ", i ? "," : "");
4852         i++;
4853     }
4854 
4855     pr_cont(")\n");
4856 }
4857 
4858 /**
4859  * mpt3sas_base_update_missing_delay - change the missing delay timers
4860  * @ioc: per adapter object
4861  * @device_missing_delay: amount of time till device is reported missing
4862  * @io_missing_delay: interval IO is returned when there is a missing device
4863  *
4864  * Passed on the command line, this function will modify the device missing
4865  * delay, as well as the io missing delay. This should be called at driver
4866  * load time.
4867  */
4868 void
4869 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4870     u16 device_missing_delay, u8 io_missing_delay)
4871 {
4872     u16 dmd, dmd_new, dmd_orignal;
4873     u8 io_missing_delay_original;
4874     u16 sz;
4875     Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4876     Mpi2ConfigReply_t mpi_reply;
4877     u8 num_phys = 0;
4878     u16 ioc_status;
4879 
4880     mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4881     if (!num_phys)
4882         return;
4883 
4884     sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4885         sizeof(Mpi2SasIOUnit1PhyData_t));
4886     sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4887     if (!sas_iounit_pg1) {
4888         ioc_err(ioc, "failure at %s:%d/%s()!\n",
4889             __FILE__, __LINE__, __func__);
4890         goto out;
4891     }
4892     if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4893         sas_iounit_pg1, sz))) {
4894         ioc_err(ioc, "failure at %s:%d/%s()!\n",
4895             __FILE__, __LINE__, __func__);
4896         goto out;
4897     }
4898     ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4899         MPI2_IOCSTATUS_MASK;
4900     if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4901         ioc_err(ioc, "failure at %s:%d/%s()!\n",
4902             __FILE__, __LINE__, __func__);
4903         goto out;
4904     }
4905 
4906     /* device missing delay */
4907     dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4908     if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4909         dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4910     else
4911         dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4912     dmd_orignal = dmd;
4913     if (device_missing_delay > 0x7F) {
4914         dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4915             device_missing_delay;
4916         dmd = dmd / 16;
4917         dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4918     } else
4919         dmd = device_missing_delay;
4920     sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4921 
4922     /* io missing delay */
4923     io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4924     sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4925 
4926     if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4927         sz)) {
4928         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4929             dmd_new = (dmd &
4930                 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4931         else
4932             dmd_new =
4933             dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4934         ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4935              dmd_orignal, dmd_new);
4936         ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4937              io_missing_delay_original,
4938              io_missing_delay);
4939         ioc->device_missing_delay = dmd_new;
4940         ioc->io_missing_delay = io_missing_delay;
4941     }
4942 
4943 out:
4944     kfree(sas_iounit_pg1);
4945 }
4946 
4947 /**
4948  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4949  *    according to performance mode.
4950  * @ioc : per adapter object
4951  *
4952  * Return: zero on success; otherwise return EAGAIN error code asking the
4953  * caller to retry.
4954  */
4955 static int
4956 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4957 {
4958     Mpi2IOCPage1_t ioc_pg1;
4959     Mpi2ConfigReply_t mpi_reply;
4960     int rc;
4961 
4962     rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4963     if (rc)
4964         return rc;
4965     memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4966 
4967     switch (perf_mode) {
4968     case MPT_PERF_MODE_DEFAULT:
4969     case MPT_PERF_MODE_BALANCED:
4970         if (ioc->high_iops_queues) {
4971             ioc_info(ioc,
4972                 "Enable interrupt coalescing only for first\t"
4973                 "%d reply queues\n",
4974                 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4975             /*
4976              * If 31st bit is zero then interrupt coalescing is
4977              * enabled for all reply descriptor post queues.
4978              * If 31st bit is set to one then user can
4979              * enable/disable interrupt coalescing on per reply
4980              * descriptor post queue group(8) basis. So to enable
4981              * interrupt coalescing only on first reply descriptor
4982              * post queue group 31st bit and zero th bit is enabled.
4983              */
4984             ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4985                 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4986             rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4987             if (rc)
4988                 return rc;
4989             ioc_info(ioc, "performance mode: balanced\n");
4990             return 0;
4991         }
4992         fallthrough;
4993     case MPT_PERF_MODE_LATENCY:
4994         /*
4995          * Enable interrupt coalescing on all reply queues
4996          * with timeout value 0xA
4997          */
4998         ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4999         ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5000         ioc_pg1.ProductSpecific = 0;
5001         rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5002         if (rc)
5003             return rc;
5004         ioc_info(ioc, "performance mode: latency\n");
5005         break;
5006     case MPT_PERF_MODE_IOPS:
5007         /*
5008          * Enable interrupt coalescing on all reply queues.
5009          */
5010         ioc_info(ioc,
5011             "performance mode: iops with coalescing timeout: 0x%x\n",
5012             le32_to_cpu(ioc_pg1.CoalescingTimeout));
5013         ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5014         ioc_pg1.ProductSpecific = 0;
5015         rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5016         if (rc)
5017             return rc;
5018         break;
5019     }
5020     return 0;
5021 }
5022 
5023 /**
5024  * _base_get_event_diag_triggers - get event diag trigger values from
5025  *              persistent pages
5026  * @ioc : per adapter object
5027  *
5028  * Return: nothing.
5029  */
5030 static int
5031 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5032 {
5033     Mpi26DriverTriggerPage2_t trigger_pg2;
5034     struct SL_WH_EVENT_TRIGGER_T *event_tg;
5035     MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
5036     Mpi2ConfigReply_t mpi_reply;
5037     int r = 0, i = 0;
5038     u16 count = 0;
5039     u16 ioc_status;
5040 
5041     r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5042         &trigger_pg2);
5043     if (r)
5044         return r;
5045 
5046     ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5047         MPI2_IOCSTATUS_MASK;
5048     if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5049         dinitprintk(ioc,
5050             ioc_err(ioc,
5051             "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5052            __func__, ioc_status));
5053         return 0;
5054     }
5055 
5056     if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5057         count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5058         count = min_t(u16, NUM_VALID_ENTRIES, count);
5059         ioc->diag_trigger_event.ValidEntries = count;
5060 
5061         event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5062         mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5063         for (i = 0; i < count; i++) {
5064             event_tg->EventValue = le16_to_cpu(
5065                 mpi_event_tg->MPIEventCode);
5066             event_tg->LogEntryQualifier = le16_to_cpu(
5067                 mpi_event_tg->MPIEventCodeSpecific);
5068             event_tg++;
5069             mpi_event_tg++;
5070         }
5071     }
5072     return 0;
5073 }
5074 
5075 /**
5076  * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5077  *              persistent pages
5078  * @ioc : per adapter object
5079  *
5080  * Return: 0 on success; otherwise return failure status.
5081  */
5082 static int
5083 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5084 {
5085     Mpi26DriverTriggerPage3_t trigger_pg3;
5086     struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5087     MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
5088     Mpi2ConfigReply_t mpi_reply;
5089     int r = 0, i = 0;
5090     u16 count = 0;
5091     u16 ioc_status;
5092 
5093     r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5094         &trigger_pg3);
5095     if (r)
5096         return r;
5097 
5098     ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5099         MPI2_IOCSTATUS_MASK;
5100     if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5101         dinitprintk(ioc,
5102             ioc_err(ioc,
5103             "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5104             __func__, ioc_status));
5105         return 0;
5106     }
5107 
5108     if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5109         count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5110         count = min_t(u16, NUM_VALID_ENTRIES, count);
5111         ioc->diag_trigger_scsi.ValidEntries = count;
5112 
5113         scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5114         mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5115         for (i = 0; i < count; i++) {
5116             scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5117             scsi_tg->ASC = mpi_scsi_tg->ASC;
5118             scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5119 
5120             scsi_tg++;
5121             mpi_scsi_tg++;
5122         }
5123     }
5124     return 0;
5125 }
5126 
5127 /**
5128  * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5129  *              persistent pages
5130  * @ioc : per adapter object
5131  *
5132  * Return: 0 on success; otherwise return failure status.
5133  */
5134 static int
5135 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5136 {
5137     Mpi26DriverTriggerPage4_t trigger_pg4;
5138     struct SL_WH_MPI_TRIGGER_T *status_tg;
5139     MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
5140     Mpi2ConfigReply_t mpi_reply;
5141     int r = 0, i = 0;
5142     u16 count = 0;
5143     u16 ioc_status;
5144 
5145     r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5146         &trigger_pg4);
5147     if (r)
5148         return r;
5149 
5150     ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5151         MPI2_IOCSTATUS_MASK;
5152     if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5153         dinitprintk(ioc,
5154             ioc_err(ioc,
5155             "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5156             __func__, ioc_status));
5157         return 0;
5158     }
5159 
5160     if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5161         count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5162         count = min_t(u16, NUM_VALID_ENTRIES, count);
5163         ioc->diag_trigger_mpi.ValidEntries = count;
5164 
5165         status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5166         mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5167 
5168         for (i = 0; i < count; i++) {
5169             status_tg->IOCStatus = le16_to_cpu(
5170                 mpi_status_tg->IOCStatus);
5171             status_tg->IocLogInfo = le32_to_cpu(
5172                 mpi_status_tg->LogInfo);
5173 
5174             status_tg++;
5175             mpi_status_tg++;
5176         }
5177     }
5178     return 0;
5179 }
5180 
5181 /**
5182  * _base_get_master_diag_triggers - get master diag trigger values from
5183  *              persistent pages
5184  * @ioc : per adapter object
5185  *
5186  * Return: nothing.
5187  */
5188 static int
5189 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5190 {
5191     Mpi26DriverTriggerPage1_t trigger_pg1;
5192     Mpi2ConfigReply_t mpi_reply;
5193     int r;
5194     u16 ioc_status;
5195 
5196     r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5197         &trigger_pg1);
5198     if (r)
5199         return r;
5200 
5201     ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5202         MPI2_IOCSTATUS_MASK;
5203     if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5204         dinitprintk(ioc,
5205             ioc_err(ioc,
5206             "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5207            __func__, ioc_status));
5208         return 0;
5209     }
5210 
5211     if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5212         ioc->diag_trigger_master.MasterData |=
5213             le32_to_cpu(
5214             trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5215     return 0;
5216 }
5217 
5218 /**
5219  * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5220  *                  driver trigger pages or not
5221  * @ioc : per adapter object
5222  * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5223  *
5224  * Return: trigger flags mask if HBA FW supports driver trigger pages;
5225  * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5226  * return EAGAIN if diag reset occurred due to FW fault and asking the
5227  * caller to retry the command.
5228  *
5229  */
5230 static int
5231 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5232 {
5233     Mpi26DriverTriggerPage0_t trigger_pg0;
5234     int r = 0;
5235     Mpi2ConfigReply_t mpi_reply;
5236     u16 ioc_status;
5237 
5238     r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5239         &trigger_pg0);
5240     if (r)
5241         return r;
5242 
5243     ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5244         MPI2_IOCSTATUS_MASK;
5245     if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5246         return -EFAULT;
5247 
5248     *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5249     return 0;
5250 }
5251 
5252 /**
5253  * _base_get_diag_triggers - Retrieve diag trigger values from
5254  *              persistent pages.
5255  * @ioc : per adapter object
5256  *
5257  * Return: zero on success; otherwise return EAGAIN error codes
5258  * asking the caller to retry.
5259  */
5260 static int
5261 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5262 {
5263     int trigger_flags;
5264     int r;
5265 
5266     /*
5267      * Default setting of master trigger.
5268      */
5269     ioc->diag_trigger_master.MasterData =
5270         (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5271 
5272     r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5273     if (r) {
5274         if (r == -EAGAIN)
5275             return r;
5276         /*
5277          * Don't go for error handling when FW doesn't support
5278          * driver trigger pages.
5279          */
5280         return 0;
5281     }
5282 
5283     ioc->supports_trigger_pages = 1;
5284 
5285     /*
5286      * Retrieve master diag trigger values from driver trigger pg1
5287      * if master trigger bit enabled in TriggerFlags.
5288      */
5289     if ((u16)trigger_flags &
5290         MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5291         r = _base_get_master_diag_triggers(ioc);
5292         if (r)
5293             return r;
5294     }
5295 
5296     /*
5297      * Retrieve event diag trigger values from driver trigger pg2
5298      * if event trigger bit enabled in TriggerFlags.
5299      */
5300     if ((u16)trigger_flags &
5301         MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5302         r = _base_get_event_diag_triggers(ioc);
5303         if (r)
5304             return r;
5305     }
5306 
5307     /*
5308      * Retrieve scsi diag trigger values from driver trigger pg3
5309      * if scsi trigger bit enabled in TriggerFlags.
5310      */
5311     if ((u16)trigger_flags &
5312         MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5313         r = _base_get_scsi_diag_triggers(ioc);
5314         if (r)
5315             return r;
5316     }
5317     /*
5318      * Retrieve mpi error diag trigger values from driver trigger pg4
5319      * if loginfo trigger bit enabled in TriggerFlags.
5320      */
5321     if ((u16)trigger_flags &
5322         MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5323         r = _base_get_mpi_diag_triggers(ioc);
5324         if (r)
5325             return r;
5326     }
5327     return 0;
5328 }
5329 
5330 /**
5331  * _base_update_diag_trigger_pages - Update the driver trigger pages after
5332  *          online FW update, in case updated FW supports driver
5333  *          trigger pages.
5334  * @ioc : per adapter object
5335  *
5336  * Return: nothing.
5337  */
5338 static void
5339 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5340 {
5341 
5342     if (ioc->diag_trigger_master.MasterData)
5343         mpt3sas_config_update_driver_trigger_pg1(ioc,
5344             &ioc->diag_trigger_master, 1);
5345 
5346     if (ioc->diag_trigger_event.ValidEntries)
5347         mpt3sas_config_update_driver_trigger_pg2(ioc,
5348             &ioc->diag_trigger_event, 1);
5349 
5350     if (ioc->diag_trigger_scsi.ValidEntries)
5351         mpt3sas_config_update_driver_trigger_pg3(ioc,
5352             &ioc->diag_trigger_scsi, 1);
5353 
5354     if (ioc->diag_trigger_mpi.ValidEntries)
5355         mpt3sas_config_update_driver_trigger_pg4(ioc,
5356             &ioc->diag_trigger_mpi, 1);
5357 }
5358 
5359 /**
5360  * _base_assign_fw_reported_qd  - Get FW reported QD for SAS/SATA devices.
5361  *              - On failure set default QD values.
5362  * @ioc : per adapter object
5363  *
5364  * Returns 0 for success, non-zero for failure.
5365  *
5366  */
5367 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5368 {
5369     Mpi2ConfigReply_t mpi_reply;
5370     Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
5371     Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5372     u16 depth;
5373     int sz;
5374     int rc = 0;
5375 
5376     ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5377     ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5378     ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5379     ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5380     if (!ioc->is_gen35_ioc)
5381         goto out;
5382     /* sas iounit page 1 */
5383     sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData);
5384     sas_iounit_pg1 = kzalloc(sizeof(Mpi2SasIOUnitPage1_t), GFP_KERNEL);
5385     if (!sas_iounit_pg1) {
5386         pr_err("%s: failure at %s:%d/%s()!\n",
5387             ioc->name, __FILE__, __LINE__, __func__);
5388         return rc;
5389     }
5390     rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5391         sas_iounit_pg1, sz);
5392     if (rc) {
5393         pr_err("%s: failure at %s:%d/%s()!\n",
5394             ioc->name, __FILE__, __LINE__, __func__);
5395         goto out;
5396     }
5397 
5398     depth = le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth);
5399     ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5400 
5401     depth = le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth);
5402     ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5403 
5404     depth = sas_iounit_pg1->SATAMaxQDepth;
5405     ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH);
5406 
5407     /* pcie iounit page 1 */
5408     rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5409         &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5410     if (rc) {
5411         pr_err("%s: failure at %s:%d/%s()!\n",
5412             ioc->name, __FILE__, __LINE__, __func__);
5413         goto out;
5414     }
5415     ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5416         (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5417         MPT3SAS_NVME_QUEUE_DEPTH;
5418 out:
5419     dinitprintk(ioc, pr_err(
5420         "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5421         ioc->max_wideport_qd, ioc->max_narrowport_qd,
5422         ioc->max_sata_qd, ioc->max_nvme_qd));
5423     kfree(sas_iounit_pg1);
5424     return rc;
5425 }
5426 
5427 /**
5428  * _base_static_config_pages - static start of day config pages
5429  * @ioc: per adapter object
5430  */
5431 static int
5432 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5433 {
5434     Mpi2ConfigReply_t mpi_reply;
5435     u32 iounit_pg1_flags;
5436     int tg_flags = 0;
5437     int rc;
5438     ioc->nvme_abort_timeout = 30;
5439 
5440     rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5441         &ioc->manu_pg0);
5442     if (rc)
5443         return rc;
5444     if (ioc->ir_firmware) {
5445         rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5446             &ioc->manu_pg10);
5447         if (rc)
5448             return rc;
5449     }
5450     /*
5451      * Ensure correct T10 PI operation if vendor left EEDPTagMode
5452      * flag unset in NVDATA.
5453      */
5454     rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5455         &ioc->manu_pg11);
5456     if (rc)
5457         return rc;
5458     if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5459         pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5460             ioc->name);
5461         ioc->manu_pg11.EEDPTagMode &= ~0x3;
5462         ioc->manu_pg11.EEDPTagMode |= 0x1;
5463         mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5464             &ioc->manu_pg11);
5465     }
5466     if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5467         ioc->tm_custom_handling = 1;
5468     else {
5469         ioc->tm_custom_handling = 0;
5470         if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5471             ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5472         else if (ioc->manu_pg11.NVMeAbortTO >
5473                     NVME_TASK_ABORT_MAX_TIMEOUT)
5474             ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5475         else
5476             ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5477     }
5478     ioc->time_sync_interval =
5479         ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5480     if (ioc->time_sync_interval) {
5481         if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5482             ioc->time_sync_interval =
5483                 ioc->time_sync_interval * SECONDS_PER_HOUR;
5484         else
5485             ioc->time_sync_interval =
5486                 ioc->time_sync_interval * SECONDS_PER_MIN;
5487         dinitprintk(ioc, ioc_info(ioc,
5488             "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5489             ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5490             MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5491     } else {
5492         if (ioc->is_gen35_ioc)
5493             ioc_warn(ioc,
5494                 "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5495     }
5496     rc = _base_assign_fw_reported_qd(ioc);
5497     if (rc)
5498         return rc;
5499     rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5500     if (rc)
5501         return rc;
5502     rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5503     if (rc)
5504         return rc;
5505     rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5506     if (rc)
5507         return rc;
5508     rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5509     if (rc)
5510         return rc;
5511     rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5512     if (rc)
5513         return rc;
5514     rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5515     if (rc)
5516         return rc;
5517     _base_display_ioc_capabilities(ioc);
5518 
5519     /*
5520      * Enable task_set_full handling in iounit_pg1 when the
5521      * facts capabilities indicate that its supported.
5522      */
5523     iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5524     if ((ioc->facts.IOCCapabilities &
5525         MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5526         iounit_pg1_flags &=
5527             ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5528     else
5529         iounit_pg1_flags |=
5530             MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5531     ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5532     rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5533     if (rc)
5534         return rc;
5535 
5536     if (ioc->iounit_pg8.NumSensors)
5537         ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5538     if (ioc->is_aero_ioc) {
5539         rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5540         if (rc)
5541             return rc;
5542     }
5543     if (ioc->is_gen35_ioc) {
5544         if (ioc->is_driver_loading) {
5545             rc = _base_get_diag_triggers(ioc);
5546             if (rc)
5547                 return rc;
5548         } else {
5549             /*
5550              * In case of online HBA FW update operation,
5551              * check whether updated FW supports the driver trigger
5552              * pages or not.
5553              * - If previous FW has not supported driver trigger
5554              *   pages and newer FW supports them then update these
5555              *   pages with current diag trigger values.
5556              * - If previous FW has supported driver trigger pages
5557              *   and new FW doesn't support them then disable
5558              *   support_trigger_pages flag.
5559              */
5560             _base_check_for_trigger_pages_support(ioc, &tg_flags);
5561             if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5562                 _base_update_diag_trigger_pages(ioc);
5563             else if (ioc->supports_trigger_pages &&
5564                 tg_flags == -EFAULT)
5565                 ioc->supports_trigger_pages = 0;
5566         }
5567     }
5568     return 0;
5569 }
5570 
5571 /**
5572  * mpt3sas_free_enclosure_list - release memory
5573  * @ioc: per adapter object
5574  *
5575  * Free memory allocated during enclosure add.
5576  */
5577 void
5578 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5579 {
5580     struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5581 
5582     /* Free enclosure list */
5583     list_for_each_entry_safe(enclosure_dev,
5584             enclosure_dev_next, &ioc->enclosure_list, list) {
5585         list_del(&enclosure_dev->list);
5586         kfree(enclosure_dev);
5587     }
5588 }
5589 
5590 /**
5591  * _base_release_memory_pools - release memory
5592  * @ioc: per adapter object
5593  *
5594  * Free memory allocated from _base_allocate_memory_pools.
5595  */
5596 static void
5597 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5598 {
5599     int i = 0;
5600     int j = 0;
5601     int dma_alloc_count = 0;
5602     struct chain_tracker *ct;
5603     int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5604 
5605     dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5606 
5607     if (ioc->request) {
5608         dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5609             ioc->request,  ioc->request_dma);
5610         dexitprintk(ioc,
5611                 ioc_info(ioc, "request_pool(0x%p): free\n",
5612                      ioc->request));
5613         ioc->request = NULL;
5614     }
5615 
5616     if (ioc->sense) {
5617         dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5618         dma_pool_destroy(ioc->sense_dma_pool);
5619         dexitprintk(ioc,
5620                 ioc_info(ioc, "sense_pool(0x%p): free\n",
5621                      ioc->sense));
5622         ioc->sense = NULL;
5623     }
5624 
5625     if (ioc->reply) {
5626         dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5627         dma_pool_destroy(ioc->reply_dma_pool);
5628         dexitprintk(ioc,
5629                 ioc_info(ioc, "reply_pool(0x%p): free\n",
5630                      ioc->reply));
5631         ioc->reply = NULL;
5632     }
5633 
5634     if (ioc->reply_free) {
5635         dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5636             ioc->reply_free_dma);
5637         dma_pool_destroy(ioc->reply_free_dma_pool);
5638         dexitprintk(ioc,
5639                 ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5640                      ioc->reply_free));
5641         ioc->reply_free = NULL;
5642     }
5643 
5644     if (ioc->reply_post) {
5645         dma_alloc_count = DIV_ROUND_UP(count,
5646                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5647         for (i = 0; i < count; i++) {
5648             if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5649                 && dma_alloc_count) {
5650                 if (ioc->reply_post[i].reply_post_free) {
5651                     dma_pool_free(
5652                         ioc->reply_post_free_dma_pool,
5653                         ioc->reply_post[i].reply_post_free,
5654                     ioc->reply_post[i].reply_post_free_dma);
5655                     dexitprintk(ioc, ioc_info(ioc,
5656                        "reply_post_free_pool(0x%p): free\n",
5657                        ioc->reply_post[i].reply_post_free));
5658                     ioc->reply_post[i].reply_post_free =
5659                                     NULL;
5660                 }
5661                 --dma_alloc_count;
5662             }
5663         }
5664         dma_pool_destroy(ioc->reply_post_free_dma_pool);
5665         if (ioc->reply_post_free_array &&
5666             ioc->rdpq_array_enable) {
5667             dma_pool_free(ioc->reply_post_free_array_dma_pool,
5668                 ioc->reply_post_free_array,
5669                 ioc->reply_post_free_array_dma);
5670             ioc->reply_post_free_array = NULL;
5671         }
5672         dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5673         kfree(ioc->reply_post);
5674     }
5675 
5676     if (ioc->pcie_sgl_dma_pool) {
5677         for (i = 0; i < ioc->scsiio_depth; i++) {
5678             dma_pool_free(ioc->pcie_sgl_dma_pool,
5679                     ioc->pcie_sg_lookup[i].pcie_sgl,
5680                     ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5681             ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5682         }
5683         dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5684     }
5685     if (ioc->config_page) {
5686         dexitprintk(ioc,
5687                 ioc_info(ioc, "config_page(0x%p): free\n",
5688                      ioc->config_page));
5689         dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5690             ioc->config_page, ioc->config_page_dma);
5691     }
5692 
5693     kfree(ioc->hpr_lookup);
5694     ioc->hpr_lookup = NULL;
5695     kfree(ioc->internal_lookup);
5696     ioc->internal_lookup = NULL;
5697     if (ioc->chain_lookup) {
5698         for (i = 0; i < ioc->scsiio_depth; i++) {
5699             for (j = ioc->chains_per_prp_buffer;
5700                 j < ioc->chains_needed_per_io; j++) {
5701                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5702                 if (ct && ct->chain_buffer)
5703                     dma_pool_free(ioc->chain_dma_pool,
5704                         ct->chain_buffer,
5705                         ct->chain_buffer_dma);
5706             }
5707             kfree(ioc->chain_lookup[i].chains_per_smid);
5708         }
5709         dma_pool_destroy(ioc->chain_dma_pool);
5710         kfree(ioc->chain_lookup);
5711         ioc->chain_lookup = NULL;
5712     }
5713 
5714     kfree(ioc->io_queue_num);
5715     ioc->io_queue_num = NULL;
5716 }
5717 
5718 /**
5719  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5720  *  having same upper 32bits in their base memory address.
5721  * @start_address: Base address of a reply queue set
5722  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5723  *
5724  * Return: 1 if reply queues in a set have a same upper 32bits in their base
5725  * memory address, else 0.
5726  */
5727 static int
5728 mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz)
5729 {
5730     dma_addr_t end_address;
5731 
5732     end_address = start_address + pool_sz - 1;
5733 
5734     if (upper_32_bits(start_address) == upper_32_bits(end_address))
5735         return 1;
5736     else
5737         return 0;
5738 }
5739 
5740 /**
5741  * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5742  * @ioc: Adapter object
5743  *
5744  * Return: 0 for success, non-zero for failure.
5745  **/
5746 static inline int
5747 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5748 {
5749     int reduce_sz = 64;
5750 
5751     if ((ioc->hba_queue_depth - reduce_sz) >
5752         (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5753         ioc->hba_queue_depth -= reduce_sz;
5754         return 0;
5755     } else
5756         return -ENOMEM;
5757 }
5758 
5759 /**
5760  * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5761  *          for pcie sgl pools.
5762  * @ioc: Adapter object
5763  * @sz: DMA Pool size
5764  *
5765  * Return: 0 for success, non-zero for failure.
5766  */
5767 
5768 static int
5769 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5770 {
5771     int i = 0, j = 0;
5772     struct chain_tracker *ct;
5773 
5774     ioc->pcie_sgl_dma_pool =
5775         dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5776         ioc->page_size, 0);
5777     if (!ioc->pcie_sgl_dma_pool) {
5778         ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5779         return -ENOMEM;
5780     }
5781 
5782     ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5783     ioc->chains_per_prp_buffer =
5784         min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5785     for (i = 0; i < ioc->scsiio_depth; i++) {
5786         ioc->pcie_sg_lookup[i].pcie_sgl =
5787             dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5788             &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5789         if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5790             ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5791             return -EAGAIN;
5792         }
5793 
5794         if (!mpt3sas_check_same_4gb_region(
5795             ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) {
5796             ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5797                 ioc->pcie_sg_lookup[i].pcie_sgl,
5798                 (unsigned long long)
5799                 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5800             ioc->use_32bit_dma = true;
5801             return -EAGAIN;
5802         }
5803 
5804         for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5805             ct = &ioc->chain_lookup[i].chains_per_smid[j];
5806             ct->chain_buffer =
5807                 ioc->pcie_sg_lookup[i].pcie_sgl +
5808                 (j * ioc->chain_segment_sz);
5809             ct->chain_buffer_dma =
5810                 ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5811                 (j * ioc->chain_segment_sz);
5812         }
5813     }
5814     dinitprintk(ioc, ioc_info(ioc,
5815         "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5816         ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5817     dinitprintk(ioc, ioc_info(ioc,
5818         "Number of chains can fit in a PRP page(%d)\n",
5819         ioc->chains_per_prp_buffer));
5820     return 0;
5821 }
5822 
5823 /**
5824  * _base_allocate_chain_dma_pool - Allocating DMA'able memory
5825  *          for chain dma pool.
5826  * @ioc: Adapter object
5827  * @sz: DMA Pool size
5828  *
5829  * Return: 0 for success, non-zero for failure.
5830  */
5831 static int
5832 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5833 {
5834     int i = 0, j = 0;
5835     struct chain_tracker *ctr;
5836 
5837     ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5838         ioc->chain_segment_sz, 16, 0);
5839     if (!ioc->chain_dma_pool)
5840         return -ENOMEM;
5841 
5842     for (i = 0; i < ioc->scsiio_depth; i++) {
5843         for (j = ioc->chains_per_prp_buffer;
5844             j < ioc->chains_needed_per_io; j++) {
5845             ctr = &ioc->chain_lookup[i].chains_per_smid[j];
5846             ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
5847                 GFP_KERNEL, &ctr->chain_buffer_dma);
5848             if (!ctr->chain_buffer)
5849                 return -EAGAIN;
5850             if (!mpt3sas_check_same_4gb_region(
5851                 ctr->chain_buffer_dma, ioc->chain_segment_sz)) {
5852                 ioc_err(ioc,
5853                     "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
5854                     ctr->chain_buffer,
5855                     (unsigned long long)ctr->chain_buffer_dma);
5856                 ioc->use_32bit_dma = true;
5857                 return -EAGAIN;
5858             }
5859         }
5860     }
5861     dinitprintk(ioc, ioc_info(ioc,
5862         "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
5863         ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
5864         (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
5865         ioc->chain_segment_sz))/1024));
5866     return 0;
5867 }
5868 
5869 /**
5870  * _base_allocate_sense_dma_pool - Allocating DMA'able memory
5871  *          for sense dma pool.
5872  * @ioc: Adapter object
5873  * @sz: DMA Pool size
5874  * Return: 0 for success, non-zero for failure.
5875  */
5876 static int
5877 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5878 {
5879     ioc->sense_dma_pool =
5880         dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
5881     if (!ioc->sense_dma_pool)
5882         return -ENOMEM;
5883     ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
5884         GFP_KERNEL, &ioc->sense_dma);
5885     if (!ioc->sense)
5886         return -EAGAIN;
5887     if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) {
5888         dinitprintk(ioc, pr_err(
5889             "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
5890             ioc->sense, (unsigned long long) ioc->sense_dma));
5891         ioc->use_32bit_dma = true;
5892         return -EAGAIN;
5893     }
5894     ioc_info(ioc,
5895         "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
5896         ioc->sense, (unsigned long long)ioc->sense_dma,
5897         ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
5898     return 0;
5899 }
5900 
5901 /**
5902  * _base_allocate_reply_pool - Allocating DMA'able memory
5903  *          for reply pool.
5904  * @ioc: Adapter object
5905  * @sz: DMA Pool size
5906  * Return: 0 for success, non-zero for failure.
5907  */
5908 static int
5909 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5910 {
5911     /* reply pool, 4 byte align */
5912     ioc->reply_dma_pool = dma_pool_create("reply pool",
5913         &ioc->pdev->dev, sz, 4, 0);
5914     if (!ioc->reply_dma_pool)
5915         return -ENOMEM;
5916     ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5917         &ioc->reply_dma);
5918     if (!ioc->reply)
5919         return -EAGAIN;
5920     if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) {
5921         dinitprintk(ioc, pr_err(
5922             "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
5923             ioc->reply, (unsigned long long) ioc->reply_dma));
5924         ioc->use_32bit_dma = true;
5925         return -EAGAIN;
5926     }
5927     ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5928     ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5929     ioc_info(ioc,
5930         "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5931         ioc->reply, (unsigned long long)ioc->reply_dma,
5932         ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
5933     return 0;
5934 }
5935 
5936 /**
5937  * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
5938  *          for reply free dma pool.
5939  * @ioc: Adapter object
5940  * @sz: DMA Pool size
5941  * Return: 0 for success, non-zero for failure.
5942  */
5943 static int
5944 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5945 {
5946     /* reply free queue, 16 byte align */
5947     ioc->reply_free_dma_pool = dma_pool_create(
5948         "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
5949     if (!ioc->reply_free_dma_pool)
5950         return -ENOMEM;
5951     ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
5952         GFP_KERNEL, &ioc->reply_free_dma);
5953     if (!ioc->reply_free)
5954         return -EAGAIN;
5955     if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) {
5956         dinitprintk(ioc,
5957             pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
5958             ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
5959         ioc->use_32bit_dma = true;
5960         return -EAGAIN;
5961     }
5962     memset(ioc->reply_free, 0, sz);
5963     dinitprintk(ioc, ioc_info(ioc,
5964         "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5965         ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
5966     dinitprintk(ioc, ioc_info(ioc,
5967         "reply_free_dma (0x%llx)\n",
5968         (unsigned long long)ioc->reply_free_dma));
5969     return 0;
5970 }
5971 
5972 /**
5973  * _base_allocate_reply_post_free_array - Allocating DMA'able memory
5974  *          for reply post free array.
5975  * @ioc: Adapter object
5976  * @reply_post_free_array_sz: DMA Pool size
5977  * Return: 0 for success, non-zero for failure.
5978  */
5979 
5980 static int
5981 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
5982     u32 reply_post_free_array_sz)
5983 {
5984     ioc->reply_post_free_array_dma_pool =
5985         dma_pool_create("reply_post_free_array pool",
5986         &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5987     if (!ioc->reply_post_free_array_dma_pool)
5988         return -ENOMEM;
5989     ioc->reply_post_free_array =
5990         dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5991         GFP_KERNEL, &ioc->reply_post_free_array_dma);
5992     if (!ioc->reply_post_free_array)
5993         return -EAGAIN;
5994     if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma,
5995         reply_post_free_array_sz)) {
5996         dinitprintk(ioc, pr_err(
5997             "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
5998             ioc->reply_free,
5999             (unsigned long long) ioc->reply_free_dma));
6000         ioc->use_32bit_dma = true;
6001         return -EAGAIN;
6002     }
6003     return 0;
6004 }
6005 /**
6006  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6007  *                     for reply queues.
6008  * @ioc: per adapter object
6009  * @sz: DMA Pool size
6010  * Return: 0 for success, non-zero for failure.
6011  */
6012 static int
6013 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6014 {
6015     int i = 0;
6016     u32 dma_alloc_count = 0;
6017     int reply_post_free_sz = ioc->reply_post_queue_depth *
6018         sizeof(Mpi2DefaultReplyDescriptor_t);
6019     int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6020 
6021     ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6022             GFP_KERNEL);
6023     if (!ioc->reply_post)
6024         return -ENOMEM;
6025     /*
6026      *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6027      *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6028      *  be within 4GB boundary i.e reply queues in a set must have same
6029      *  upper 32-bits in their memory address. so here driver is allocating
6030      *  the DMA'able memory for reply queues according.
6031      *  Driver uses limitation of
6032      *  VENTURA_SERIES to manage INVADER_SERIES as well.
6033      */
6034     dma_alloc_count = DIV_ROUND_UP(count,
6035                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6036     ioc->reply_post_free_dma_pool =
6037         dma_pool_create("reply_post_free pool",
6038             &ioc->pdev->dev, sz, 16, 0);
6039     if (!ioc->reply_post_free_dma_pool)
6040         return -ENOMEM;
6041     for (i = 0; i < count; i++) {
6042         if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6043             ioc->reply_post[i].reply_post_free =
6044                 dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6045                 GFP_KERNEL,
6046                 &ioc->reply_post[i].reply_post_free_dma);
6047             if (!ioc->reply_post[i].reply_post_free)
6048                 return -ENOMEM;
6049             /*
6050              * Each set of RDPQ pool must satisfy 4gb boundary
6051              * restriction.
6052              * 1) Check if allocated resources for RDPQ pool are in
6053              *  the same 4GB range.
6054              * 2) If #1 is true, continue with 64 bit DMA.
6055              * 3) If #1 is false, return 1. which means free all the
6056              * resources and set DMA mask to 32 and allocate.
6057              */
6058             if (!mpt3sas_check_same_4gb_region(
6059                 ioc->reply_post[i].reply_post_free_dma, sz)) {
6060                 dinitprintk(ioc,
6061                     ioc_err(ioc, "bad Replypost free pool(0x%p)"
6062                     "reply_post_free_dma = (0x%llx)\n",
6063                     ioc->reply_post[i].reply_post_free,
6064                     (unsigned long long)
6065                     ioc->reply_post[i].reply_post_free_dma));
6066                 return -EAGAIN;
6067             }
6068             dma_alloc_count--;
6069 
6070         } else {
6071             ioc->reply_post[i].reply_post_free =
6072                 (Mpi2ReplyDescriptorsUnion_t *)
6073                 ((long)ioc->reply_post[i-1].reply_post_free
6074                 + reply_post_free_sz);
6075             ioc->reply_post[i].reply_post_free_dma =
6076                 (dma_addr_t)
6077                 (ioc->reply_post[i-1].reply_post_free_dma +
6078                 reply_post_free_sz);
6079         }
6080     }
6081     return 0;
6082 }
6083 
6084 /**
6085  * _base_allocate_memory_pools - allocate start of day memory pools
6086  * @ioc: per adapter object
6087  *
6088  * Return: 0 success, anything else error.
6089  */
6090 static int
6091 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6092 {
6093     struct mpt3sas_facts *facts;
6094     u16 max_sge_elements;
6095     u16 chains_needed_per_io;
6096     u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6097     u32 retry_sz;
6098     u32 rdpq_sz = 0, sense_sz = 0;
6099     u16 max_request_credit, nvme_blocks_needed;
6100     unsigned short sg_tablesize;
6101     u16 sge_size;
6102     int i;
6103     int ret = 0, rc = 0;
6104 
6105     dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6106 
6107 
6108     retry_sz = 0;
6109     facts = &ioc->facts;
6110 
6111     /* command line tunables for max sgl entries */
6112     if (max_sgl_entries != -1)
6113         sg_tablesize = max_sgl_entries;
6114     else {
6115         if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6116             sg_tablesize = MPT2SAS_SG_DEPTH;
6117         else
6118             sg_tablesize = MPT3SAS_SG_DEPTH;
6119     }
6120 
6121     /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6122     if (reset_devices)
6123         sg_tablesize = min_t(unsigned short, sg_tablesize,
6124            MPT_KDUMP_MIN_PHYS_SEGMENTS);
6125 
6126     if (ioc->is_mcpu_endpoint)
6127         ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6128     else {
6129         if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6130             sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6131         else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6132             sg_tablesize = min_t(unsigned short, sg_tablesize,
6133                     SG_MAX_SEGMENTS);
6134             ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6135                  sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6136         }
6137         ioc->shost->sg_tablesize = sg_tablesize;
6138     }
6139 
6140     ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6141         (facts->RequestCredit / 4));
6142     if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6143         if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6144                 INTERNAL_SCSIIO_CMDS_COUNT)) {
6145             ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6146                 facts->RequestCredit);
6147             return -ENOMEM;
6148         }
6149         ioc->internal_depth = 10;
6150     }
6151 
6152     ioc->hi_priority_depth = ioc->internal_depth - (5);
6153     /* command line tunables  for max controller queue depth */
6154     if (max_queue_depth != -1 && max_queue_depth != 0) {
6155         max_request_credit = min_t(u16, max_queue_depth +
6156             ioc->internal_depth, facts->RequestCredit);
6157         if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6158             max_request_credit =  MAX_HBA_QUEUE_DEPTH;
6159     } else if (reset_devices)
6160         max_request_credit = min_t(u16, facts->RequestCredit,
6161             (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6162     else
6163         max_request_credit = min_t(u16, facts->RequestCredit,
6164             MAX_HBA_QUEUE_DEPTH);
6165 
6166     /* Firmware maintains additional facts->HighPriorityCredit number of
6167      * credits for HiPriprity Request messages, so hba queue depth will be
6168      * sum of max_request_credit and high priority queue depth.
6169      */
6170     ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6171 
6172     /* request frame size */
6173     ioc->request_sz = facts->IOCRequestFrameSize * 4;
6174 
6175     /* reply frame size */
6176     ioc->reply_sz = facts->ReplyFrameSize * 4;
6177 
6178     /* chain segment size */
6179     if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6180         if (facts->IOCMaxChainSegmentSize)
6181             ioc->chain_segment_sz =
6182                     facts->IOCMaxChainSegmentSize *
6183                     MAX_CHAIN_ELEMT_SZ;
6184         else
6185         /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6186             ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6187                             MAX_CHAIN_ELEMT_SZ;
6188     } else
6189         ioc->chain_segment_sz = ioc->request_sz;
6190 
6191     /* calculate the max scatter element size */
6192     sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6193 
6194  retry_allocation:
6195     total_sz = 0;
6196     /* calculate number of sg elements left over in the 1st frame */
6197     max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6198         sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6199     ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6200 
6201     /* now do the same for a chain buffer */
6202     max_sge_elements = ioc->chain_segment_sz - sge_size;
6203     ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6204 
6205     /*
6206      *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6207      */
6208     chains_needed_per_io = ((ioc->shost->sg_tablesize -
6209        ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6210         + 1;
6211     if (chains_needed_per_io > facts->MaxChainDepth) {
6212         chains_needed_per_io = facts->MaxChainDepth;
6213         ioc->shost->sg_tablesize = min_t(u16,
6214         ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6215         * chains_needed_per_io), ioc->shost->sg_tablesize);
6216     }
6217     ioc->chains_needed_per_io = chains_needed_per_io;
6218 
6219     /* reply free queue sizing - taking into account for 64 FW events */
6220     ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6221 
6222     /* mCPU manage single counters for simplicity */
6223     if (ioc->is_mcpu_endpoint)
6224         ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6225     else {
6226         /* calculate reply descriptor post queue depth */
6227         ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6228             ioc->reply_free_queue_depth +  1;
6229         /* align the reply post queue on the next 16 count boundary */
6230         if (ioc->reply_post_queue_depth % 16)
6231             ioc->reply_post_queue_depth += 16 -
6232                 (ioc->reply_post_queue_depth % 16);
6233     }
6234 
6235     if (ioc->reply_post_queue_depth >
6236         facts->MaxReplyDescriptorPostQueueDepth) {
6237         ioc->reply_post_queue_depth =
6238                 facts->MaxReplyDescriptorPostQueueDepth -
6239             (facts->MaxReplyDescriptorPostQueueDepth % 16);
6240         ioc->hba_queue_depth =
6241                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
6242         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6243     }
6244 
6245     ioc_info(ioc,
6246         "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6247         "sge_per_io(%d), chains_per_io(%d)\n",
6248         ioc->max_sges_in_main_message,
6249         ioc->max_sges_in_chain_message,
6250         ioc->shost->sg_tablesize,
6251         ioc->chains_needed_per_io);
6252 
6253     /* reply post queue, 16 byte align */
6254     reply_post_free_sz = ioc->reply_post_queue_depth *
6255         sizeof(Mpi2DefaultReplyDescriptor_t);
6256     rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6257     if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6258         || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6259         rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6260     ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6261     if (ret == -EAGAIN) {
6262         /*
6263          * Free allocated bad RDPQ memory pools.
6264          * Change dma coherent mask to 32 bit and reallocate RDPQ
6265          */
6266         _base_release_memory_pools(ioc);
6267         ioc->use_32bit_dma = true;
6268         if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6269             ioc_err(ioc,
6270                 "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6271             return -ENODEV;
6272         }
6273         if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6274             return -ENOMEM;
6275     } else if (ret == -ENOMEM)
6276         return -ENOMEM;
6277     total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6278         DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6279     ioc->scsiio_depth = ioc->hba_queue_depth -
6280         ioc->hi_priority_depth - ioc->internal_depth;
6281 
6282     /* set the scsi host can_queue depth
6283      * with some internal commands that could be outstanding
6284      */
6285     ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6286     dinitprintk(ioc,
6287             ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6288                  ioc->shost->can_queue));
6289 
6290     /* contiguous pool for request and chains, 16 byte align, one extra "
6291      * "frame for smid=0
6292      */
6293     ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6294     sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6295 
6296     /* hi-priority queue */
6297     sz += (ioc->hi_priority_depth * ioc->request_sz);
6298 
6299     /* internal queue */
6300     sz += (ioc->internal_depth * ioc->request_sz);
6301 
6302     ioc->request_dma_sz = sz;
6303     ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6304             &ioc->request_dma, GFP_KERNEL);
6305     if (!ioc->request) {
6306         ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6307             ioc->hba_queue_depth, ioc->chains_needed_per_io,
6308             ioc->request_sz, sz / 1024);
6309         if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6310             goto out;
6311         retry_sz = 64;
6312         ioc->hba_queue_depth -= retry_sz;
6313         _base_release_memory_pools(ioc);
6314         goto retry_allocation;
6315     }
6316 
6317     if (retry_sz)
6318         ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6319             ioc->hba_queue_depth, ioc->chains_needed_per_io,
6320             ioc->request_sz, sz / 1024);
6321 
6322     /* hi-priority queue */
6323     ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6324         ioc->request_sz);
6325     ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6326         ioc->request_sz);
6327 
6328     /* internal queue */
6329     ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6330         ioc->request_sz);
6331     ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6332         ioc->request_sz);
6333 
6334     ioc_info(ioc,
6335         "request pool(0x%p) - dma(0x%llx): "
6336         "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6337         ioc->request, (unsigned long long) ioc->request_dma,
6338         ioc->hba_queue_depth, ioc->request_sz,
6339         (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6340 
6341     total_sz += sz;
6342 
6343     dinitprintk(ioc,
6344             ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6345                  ioc->request, ioc->scsiio_depth));
6346 
6347     ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6348     sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6349     ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6350     if (!ioc->chain_lookup) {
6351         ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6352         goto out;
6353     }
6354 
6355     sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6356     for (i = 0; i < ioc->scsiio_depth; i++) {
6357         ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6358         if (!ioc->chain_lookup[i].chains_per_smid) {
6359             ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6360             goto out;
6361         }
6362     }
6363 
6364     /* initialize hi-priority queue smid's */
6365     ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6366         sizeof(struct request_tracker), GFP_KERNEL);
6367     if (!ioc->hpr_lookup) {
6368         ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6369         goto out;
6370     }
6371     ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6372     dinitprintk(ioc,
6373             ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6374                  ioc->hi_priority,
6375                  ioc->hi_priority_depth, ioc->hi_priority_smid));
6376 
6377     /* initialize internal queue smid's */
6378     ioc->internal_lookup = kcalloc(ioc->internal_depth,
6379         sizeof(struct request_tracker), GFP_KERNEL);
6380     if (!ioc->internal_lookup) {
6381         ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6382         goto out;
6383     }
6384     ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6385     dinitprintk(ioc,
6386             ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6387                  ioc->internal,
6388                  ioc->internal_depth, ioc->internal_smid));
6389 
6390     ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6391         sizeof(u16), GFP_KERNEL);
6392     if (!ioc->io_queue_num)
6393         goto out;
6394     /*
6395      * The number of NVMe page sized blocks needed is:
6396      *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6397      * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6398      * that is placed in the main message frame.  8 is the size of each PRP
6399      * entry or PRP list pointer entry.  8 is subtracted from page_size
6400      * because of the PRP list pointer entry at the end of a page, so this
6401      * is not counted as a PRP entry.  The 1 added page is a round up.
6402      *
6403      * To avoid allocation failures due to the amount of memory that could
6404      * be required for NVMe PRP's, only each set of NVMe blocks will be
6405      * contiguous, so a new set is allocated for each possible I/O.
6406      */
6407 
6408     ioc->chains_per_prp_buffer = 0;
6409     if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6410         nvme_blocks_needed =
6411             (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6412         nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6413         nvme_blocks_needed++;
6414 
6415         sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6416         ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6417         if (!ioc->pcie_sg_lookup) {
6418             ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6419             goto out;
6420         }
6421         sz = nvme_blocks_needed * ioc->page_size;
6422         rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6423         if (rc == -ENOMEM)
6424             return -ENOMEM;
6425         else if (rc == -EAGAIN)
6426             goto try_32bit_dma;
6427         total_sz += sz * ioc->scsiio_depth;
6428     }
6429 
6430     rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6431     if (rc == -ENOMEM)
6432         return -ENOMEM;
6433     else if (rc == -EAGAIN)
6434         goto try_32bit_dma;
6435     total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6436         ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6437     dinitprintk(ioc,
6438         ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6439         ioc->chain_depth, ioc->chain_segment_sz,
6440         (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6441     /* sense buffers, 4 byte align */
6442     sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6443     rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6444     if (rc  == -ENOMEM)
6445         return -ENOMEM;
6446     else if (rc == -EAGAIN)
6447         goto try_32bit_dma;
6448     total_sz += sense_sz;
6449     ioc_info(ioc,
6450         "sense pool(0x%p)- dma(0x%llx): depth(%d),"
6451         "element_size(%d), pool_size(%d kB)\n",
6452         ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
6453         SCSI_SENSE_BUFFERSIZE, sz / 1024);
6454     /* reply pool, 4 byte align */
6455     sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6456     rc = _base_allocate_reply_pool(ioc, sz);
6457     if (rc == -ENOMEM)
6458         return -ENOMEM;
6459     else if (rc == -EAGAIN)
6460         goto try_32bit_dma;
6461     total_sz += sz;
6462 
6463     /* reply free queue, 16 byte align */
6464     sz = ioc->reply_free_queue_depth * 4;
6465     rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6466     if (rc  == -ENOMEM)
6467         return -ENOMEM;
6468     else if (rc == -EAGAIN)
6469         goto try_32bit_dma;
6470     dinitprintk(ioc,
6471             ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6472                  (unsigned long long)ioc->reply_free_dma));
6473     total_sz += sz;
6474     if (ioc->rdpq_array_enable) {
6475         reply_post_free_array_sz = ioc->reply_queue_count *
6476             sizeof(Mpi2IOCInitRDPQArrayEntry);
6477         rc = _base_allocate_reply_post_free_array(ioc,
6478             reply_post_free_array_sz);
6479         if (rc == -ENOMEM)
6480             return -ENOMEM;
6481         else if (rc == -EAGAIN)
6482             goto try_32bit_dma;
6483     }
6484     ioc->config_page_sz = 512;
6485     ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6486             ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6487     if (!ioc->config_page) {
6488         ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6489         goto out;
6490     }
6491 
6492     ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6493         ioc->config_page, (unsigned long long)ioc->config_page_dma,
6494         ioc->config_page_sz);
6495     total_sz += ioc->config_page_sz;
6496 
6497     ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6498          total_sz / 1024);
6499     ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6500          ioc->shost->can_queue, facts->RequestCredit);
6501     ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6502          ioc->shost->sg_tablesize);
6503     return 0;
6504 
6505 try_32bit_dma:
6506     _base_release_memory_pools(ioc);
6507     if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6508         /* Change dma coherent mask to 32 bit and reallocate */
6509         if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6510             pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6511                 pci_name(ioc->pdev));
6512             return -ENODEV;
6513         }
6514     } else if (_base_reduce_hba_queue_depth(ioc) != 0)
6515         return -ENOMEM;
6516     goto retry_allocation;
6517 
6518  out:
6519     return -ENOMEM;
6520 }
6521 
6522 /**
6523  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6524  * @ioc: Pointer to MPT_ADAPTER structure
6525  * @cooked: Request raw or cooked IOC state
6526  *
6527  * Return: all IOC Doorbell register bits if cooked==0, else just the
6528  * Doorbell bits in MPI_IOC_STATE_MASK.
6529  */
6530 u32
6531 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6532 {
6533     u32 s, sc;
6534 
6535     s = ioc->base_readl(&ioc->chip->Doorbell);
6536     sc = s & MPI2_IOC_STATE_MASK;
6537     return cooked ? sc : s;
6538 }
6539 
6540 /**
6541  * _base_wait_on_iocstate - waiting on a particular ioc state
6542  * @ioc: ?
6543  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6544  * @timeout: timeout in second
6545  *
6546  * Return: 0 for success, non-zero for failure.
6547  */
6548 static int
6549 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6550 {
6551     u32 count, cntdn;
6552     u32 current_state;
6553 
6554     count = 0;
6555     cntdn = 1000 * timeout;
6556     do {
6557         current_state = mpt3sas_base_get_iocstate(ioc, 1);
6558         if (current_state == ioc_state)
6559             return 0;
6560         if (count && current_state == MPI2_IOC_STATE_FAULT)
6561             break;
6562         if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6563             break;
6564 
6565         usleep_range(1000, 1500);
6566         count++;
6567     } while (--cntdn);
6568 
6569     return current_state;
6570 }
6571 
6572 /**
6573  * _base_dump_reg_set - This function will print hexdump of register set.
6574  * @ioc: per adapter object
6575  *
6576  * Return: nothing.
6577  */
6578 static inline void
6579 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6580 {
6581     unsigned int i, sz = 256;
6582     u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6583 
6584     ioc_info(ioc, "System Register set:\n");
6585     for (i = 0; i < (sz / sizeof(u32)); i++)
6586         pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6587 }
6588 
6589 /**
6590  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6591  * a write to the doorbell)
6592  * @ioc: per adapter object
6593  * @timeout: timeout in seconds
6594  *
6595  * Return: 0 for success, non-zero for failure.
6596  *
6597  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6598  */
6599 
6600 static int
6601 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6602 {
6603     u32 cntdn, count;
6604     u32 int_status;
6605 
6606     count = 0;
6607     cntdn = 1000 * timeout;
6608     do {
6609         int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6610         if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6611             dhsprintk(ioc,
6612                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6613                        __func__, count, timeout));
6614             return 0;
6615         }
6616 
6617         usleep_range(1000, 1500);
6618         count++;
6619     } while (--cntdn);
6620 
6621     ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6622         __func__, count, int_status);
6623     return -EFAULT;
6624 }
6625 
6626 static int
6627 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6628 {
6629     u32 cntdn, count;
6630     u32 int_status;
6631 
6632     count = 0;
6633     cntdn = 2000 * timeout;
6634     do {
6635         int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6636         if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6637             dhsprintk(ioc,
6638                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6639                        __func__, count, timeout));
6640             return 0;
6641         }
6642 
6643         udelay(500);
6644         count++;
6645     } while (--cntdn);
6646 
6647     ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6648         __func__, count, int_status);
6649     return -EFAULT;
6650 
6651 }
6652 
6653 /**
6654  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6655  * @ioc: per adapter object
6656  * @timeout: timeout in second
6657  *
6658  * Return: 0 for success, non-zero for failure.
6659  *
6660  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6661  * doorbell.
6662  */
6663 static int
6664 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6665 {
6666     u32 cntdn, count;
6667     u32 int_status;
6668     u32 doorbell;
6669 
6670     count = 0;
6671     cntdn = 1000 * timeout;
6672     do {
6673         int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6674         if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6675             dhsprintk(ioc,
6676                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6677                        __func__, count, timeout));
6678             return 0;
6679         } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6680             doorbell = ioc->base_readl(&ioc->chip->Doorbell);
6681             if ((doorbell & MPI2_IOC_STATE_MASK) ==
6682                 MPI2_IOC_STATE_FAULT) {
6683                 mpt3sas_print_fault_code(ioc, doorbell);
6684                 return -EFAULT;
6685             }
6686             if ((doorbell & MPI2_IOC_STATE_MASK) ==
6687                 MPI2_IOC_STATE_COREDUMP) {
6688                 mpt3sas_print_coredump_info(ioc, doorbell);
6689                 return -EFAULT;
6690             }
6691         } else if (int_status == 0xFFFFFFFF)
6692             goto out;
6693 
6694         usleep_range(1000, 1500);
6695         count++;
6696     } while (--cntdn);
6697 
6698  out:
6699     ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6700         __func__, count, int_status);
6701     return -EFAULT;
6702 }
6703 
6704 /**
6705  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6706  * @ioc: per adapter object
6707  * @timeout: timeout in second
6708  *
6709  * Return: 0 for success, non-zero for failure.
6710  */
6711 static int
6712 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6713 {
6714     u32 cntdn, count;
6715     u32 doorbell_reg;
6716 
6717     count = 0;
6718     cntdn = 1000 * timeout;
6719     do {
6720         doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
6721         if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6722             dhsprintk(ioc,
6723                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6724                        __func__, count, timeout));
6725             return 0;
6726         }
6727 
6728         usleep_range(1000, 1500);
6729         count++;
6730     } while (--cntdn);
6731 
6732     ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6733         __func__, count, doorbell_reg);
6734     return -EFAULT;
6735 }
6736 
6737 /**
6738  * _base_send_ioc_reset - send doorbell reset
6739  * @ioc: per adapter object
6740  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6741  * @timeout: timeout in second
6742  *
6743  * Return: 0 for success, non-zero for failure.
6744  */
6745 static int
6746 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6747 {
6748     u32 ioc_state;
6749     int r = 0;
6750     unsigned long flags;
6751 
6752     if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6753         ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6754         return -EFAULT;
6755     }
6756 
6757     if (!(ioc->facts.IOCCapabilities &
6758        MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6759         return -EFAULT;
6760 
6761     ioc_info(ioc, "sending message unit reset !!\n");
6762 
6763     writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6764         &ioc->chip->Doorbell);
6765     if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6766         r = -EFAULT;
6767         goto out;
6768     }
6769 
6770     ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6771     if (ioc_state) {
6772         ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6773             __func__, ioc_state);
6774         r = -EFAULT;
6775         goto out;
6776     }
6777  out:
6778     if (r != 0) {
6779         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6780         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6781         /*
6782          * Wait for IOC state CoreDump to clear only during
6783          * HBA initialization & release time.
6784          */
6785         if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6786             MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6787             ioc->fault_reset_work_q == NULL)) {
6788             spin_unlock_irqrestore(
6789                 &ioc->ioc_reset_in_progress_lock, flags);
6790             mpt3sas_print_coredump_info(ioc, ioc_state);
6791             mpt3sas_base_wait_for_coredump_completion(ioc,
6792                 __func__);
6793             spin_lock_irqsave(
6794                 &ioc->ioc_reset_in_progress_lock, flags);
6795         }
6796         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6797     }
6798     ioc_info(ioc, "message unit reset: %s\n",
6799          r == 0 ? "SUCCESS" : "FAILED");
6800     return r;
6801 }
6802 
6803 /**
6804  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6805  * @ioc: per adapter object
6806  * @timeout: timeout in seconds
6807  *
6808  * Return: Waits up to timeout seconds for the IOC to
6809  * become operational. Returns 0 if IOC is present
6810  * and operational; otherwise returns %-EFAULT.
6811  */
6812 
6813 int
6814 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6815 {
6816     int wait_state_count = 0;
6817     u32 ioc_state;
6818 
6819     do {
6820         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6821         if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6822             break;
6823 
6824         /*
6825          * Watchdog thread will be started after IOC Initialization, so
6826          * no need to wait here for IOC state to become operational
6827          * when IOC Initialization is on. Instead the driver will
6828          * return ETIME status, so that calling function can issue
6829          * diag reset operation and retry the command.
6830          */
6831         if (ioc->is_driver_loading)
6832             return -ETIME;
6833 
6834         ssleep(1);
6835         ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
6836                 __func__, ++wait_state_count);
6837     } while (--timeout);
6838     if (!timeout) {
6839         ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
6840         return -EFAULT;
6841     }
6842     if (wait_state_count)
6843         ioc_info(ioc, "ioc is operational\n");
6844     return 0;
6845 }
6846 
6847 /**
6848  * _base_handshake_req_reply_wait - send request thru doorbell interface
6849  * @ioc: per adapter object
6850  * @request_bytes: request length
6851  * @request: pointer having request payload
6852  * @reply_bytes: reply length
6853  * @reply: pointer to reply payload
6854  * @timeout: timeout in second
6855  *
6856  * Return: 0 for success, non-zero for failure.
6857  */
6858 static int
6859 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
6860     u32 *request, int reply_bytes, u16 *reply, int timeout)
6861 {
6862     MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
6863     int i;
6864     u8 failed;
6865     __le32 *mfp;
6866 
6867     /* make sure doorbell is not in use */
6868     if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
6869         ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
6870         return -EFAULT;
6871     }
6872 
6873     /* clear pending doorbell interrupts from previous state changes */
6874     if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
6875         MPI2_HIS_IOC2SYS_DB_STATUS)
6876         writel(0, &ioc->chip->HostInterruptStatus);
6877 
6878     /* send message to ioc */
6879     writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
6880         ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
6881         &ioc->chip->Doorbell);
6882 
6883     if ((_base_spin_on_doorbell_int(ioc, 5))) {
6884         ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6885             __LINE__);
6886         return -EFAULT;
6887     }
6888     writel(0, &ioc->chip->HostInterruptStatus);
6889 
6890     if ((_base_wait_for_doorbell_ack(ioc, 5))) {
6891         ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
6892             __LINE__);
6893         return -EFAULT;
6894     }
6895 
6896     /* send message 32-bits at a time */
6897     for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
6898         writel(request[i], &ioc->chip->Doorbell);
6899         if ((_base_wait_for_doorbell_ack(ioc, 5)))
6900             failed = 1;
6901     }
6902 
6903     if (failed) {
6904         ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
6905             __LINE__);
6906         return -EFAULT;
6907     }
6908 
6909     /* now wait for the reply */
6910     if ((_base_wait_for_doorbell_int(ioc, timeout))) {
6911         ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6912             __LINE__);
6913         return -EFAULT;
6914     }
6915 
6916     /* read the first two 16-bits, it gives the total length of the reply */
6917     reply[0] = ioc->base_readl(&ioc->chip->Doorbell)
6918         & MPI2_DOORBELL_DATA_MASK;
6919     writel(0, &ioc->chip->HostInterruptStatus);
6920     if ((_base_wait_for_doorbell_int(ioc, 5))) {
6921         ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6922             __LINE__);
6923         return -EFAULT;
6924     }
6925     reply[1] = ioc->base_readl(&ioc->chip->Doorbell)
6926         & MPI2_DOORBELL_DATA_MASK;
6927     writel(0, &ioc->chip->HostInterruptStatus);
6928 
6929     for (i = 2; i < default_reply->MsgLength * 2; i++)  {
6930         if ((_base_wait_for_doorbell_int(ioc, 5))) {
6931             ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6932                 __LINE__);
6933             return -EFAULT;
6934         }
6935         if (i >=  reply_bytes/2) /* overflow case */
6936             ioc->base_readl(&ioc->chip->Doorbell);
6937         else
6938             reply[i] = ioc->base_readl(&ioc->chip->Doorbell)
6939                 & MPI2_DOORBELL_DATA_MASK;
6940         writel(0, &ioc->chip->HostInterruptStatus);
6941     }
6942 
6943     _base_wait_for_doorbell_int(ioc, 5);
6944     if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
6945         dhsprintk(ioc,
6946               ioc_info(ioc, "doorbell is in use (line=%d)\n",
6947                    __LINE__));
6948     }
6949     writel(0, &ioc->chip->HostInterruptStatus);
6950 
6951     if (ioc->logging_level & MPT_DEBUG_INIT) {
6952         mfp = (__le32 *)reply;
6953         pr_info("\toffset:data\n");
6954         for (i = 0; i < reply_bytes/4; i++)
6955             ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6956                 le32_to_cpu(mfp[i]));
6957     }
6958     return 0;
6959 }
6960 
6961 /**
6962  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6963  * @ioc: per adapter object
6964  * @mpi_reply: the reply payload from FW
6965  * @mpi_request: the request payload sent to FW
6966  *
6967  * The SAS IO Unit Control Request message allows the host to perform low-level
6968  * operations, such as resets on the PHYs of the IO Unit, also allows the host
6969  * to obtain the IOC assigned device handles for a device if it has other
6970  * identifying information about the device, in addition allows the host to
6971  * remove IOC resources associated with the device.
6972  *
6973  * Return: 0 for success, non-zero for failure.
6974  */
6975 int
6976 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6977     Mpi2SasIoUnitControlReply_t *mpi_reply,
6978     Mpi2SasIoUnitControlRequest_t *mpi_request)
6979 {
6980     u16 smid;
6981     u8 issue_reset = 0;
6982     int rc;
6983     void *request;
6984 
6985     dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6986 
6987     mutex_lock(&ioc->base_cmds.mutex);
6988 
6989     if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6990         ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6991         rc = -EAGAIN;
6992         goto out;
6993     }
6994 
6995     rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6996     if (rc)
6997         goto out;
6998 
6999     smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7000     if (!smid) {
7001         ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7002         rc = -EAGAIN;
7003         goto out;
7004     }
7005 
7006     rc = 0;
7007     ioc->base_cmds.status = MPT3_CMD_PENDING;
7008     request = mpt3sas_base_get_msg_frame(ioc, smid);
7009     ioc->base_cmds.smid = smid;
7010     memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7011     if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7012         mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7013         ioc->ioc_link_reset_in_progress = 1;
7014     init_completion(&ioc->base_cmds.done);
7015     ioc->put_smid_default(ioc, smid);
7016     wait_for_completion_timeout(&ioc->base_cmds.done,
7017         msecs_to_jiffies(10000));
7018     if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7019         mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7020         ioc->ioc_link_reset_in_progress)
7021         ioc->ioc_link_reset_in_progress = 0;
7022     if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7023         mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7024             mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7025             issue_reset);
7026         goto issue_host_reset;
7027     }
7028     if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7029         memcpy(mpi_reply, ioc->base_cmds.reply,
7030             sizeof(Mpi2SasIoUnitControlReply_t));
7031     else
7032         memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7033     ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7034     goto out;
7035 
7036  issue_host_reset:
7037     if (issue_reset)
7038         mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7039     ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7040     rc = -EFAULT;
7041  out:
7042     mutex_unlock(&ioc->base_cmds.mutex);
7043     return rc;
7044 }
7045 
7046 /**
7047  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7048  * @ioc: per adapter object
7049  * @mpi_reply: the reply payload from FW
7050  * @mpi_request: the request payload sent to FW
7051  *
7052  * The SCSI Enclosure Processor request message causes the IOC to
7053  * communicate with SES devices to control LED status signals.
7054  *
7055  * Return: 0 for success, non-zero for failure.
7056  */
7057 int
7058 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7059     Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7060 {
7061     u16 smid;
7062     u8 issue_reset = 0;
7063     int rc;
7064     void *request;
7065 
7066     dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7067 
7068     mutex_lock(&ioc->base_cmds.mutex);
7069 
7070     if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7071         ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7072         rc = -EAGAIN;
7073         goto out;
7074     }
7075 
7076     rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7077     if (rc)
7078         goto out;
7079 
7080     smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7081     if (!smid) {
7082         ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7083         rc = -EAGAIN;
7084         goto out;
7085     }
7086 
7087     rc = 0;
7088     ioc->base_cmds.status = MPT3_CMD_PENDING;
7089     request = mpt3sas_base_get_msg_frame(ioc, smid);
7090     ioc->base_cmds.smid = smid;
7091     memset(request, 0, ioc->request_sz);
7092     memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7093     init_completion(&ioc->base_cmds.done);
7094     ioc->put_smid_default(ioc, smid);
7095     wait_for_completion_timeout(&ioc->base_cmds.done,
7096         msecs_to_jiffies(10000));
7097     if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7098         mpt3sas_check_cmd_timeout(ioc,
7099             ioc->base_cmds.status, mpi_request,
7100             sizeof(Mpi2SepRequest_t)/4, issue_reset);
7101         goto issue_host_reset;
7102     }
7103     if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7104         memcpy(mpi_reply, ioc->base_cmds.reply,
7105             sizeof(Mpi2SepReply_t));
7106     else
7107         memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7108     ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7109     goto out;
7110 
7111  issue_host_reset:
7112     if (issue_reset)
7113         mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7114     ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7115     rc = -EFAULT;
7116  out:
7117     mutex_unlock(&ioc->base_cmds.mutex);
7118     return rc;
7119 }
7120 
7121 /**
7122  * _base_get_port_facts - obtain port facts reply and save in ioc
7123  * @ioc: per adapter object
7124  * @port: ?
7125  *
7126  * Return: 0 for success, non-zero for failure.
7127  */
7128 static int
7129 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7130 {
7131     Mpi2PortFactsRequest_t mpi_request;
7132     Mpi2PortFactsReply_t mpi_reply;
7133     struct mpt3sas_port_facts *pfacts;
7134     int mpi_reply_sz, mpi_request_sz, r;
7135 
7136     dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7137 
7138     mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7139     mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7140     memset(&mpi_request, 0, mpi_request_sz);
7141     mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7142     mpi_request.PortNumber = port;
7143     r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7144         (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7145 
7146     if (r != 0) {
7147         ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7148         return r;
7149     }
7150 
7151     pfacts = &ioc->pfacts[port];
7152     memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7153     pfacts->PortNumber = mpi_reply.PortNumber;
7154     pfacts->VP_ID = mpi_reply.VP_ID;
7155     pfacts->VF_ID = mpi_reply.VF_ID;
7156     pfacts->MaxPostedCmdBuffers =
7157         le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7158 
7159     return 0;
7160 }
7161 
7162 /**
7163  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7164  * @ioc: per adapter object
7165  * @timeout:
7166  *
7167  * Return: 0 for success, non-zero for failure.
7168  */
7169 static int
7170 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7171 {
7172     u32 ioc_state;
7173     int rc;
7174 
7175     dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7176 
7177     if (ioc->pci_error_recovery) {
7178         dfailprintk(ioc,
7179                 ioc_info(ioc, "%s: host in pci error recovery\n",
7180                      __func__));
7181         return -EFAULT;
7182     }
7183 
7184     ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7185     dhsprintk(ioc,
7186           ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7187                __func__, ioc_state));
7188 
7189     if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7190         (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7191         return 0;
7192 
7193     if (ioc_state & MPI2_DOORBELL_USED) {
7194         dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7195         goto issue_diag_reset;
7196     }
7197 
7198     if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7199         mpt3sas_print_fault_code(ioc, ioc_state &
7200             MPI2_DOORBELL_DATA_MASK);
7201         goto issue_diag_reset;
7202     } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7203         MPI2_IOC_STATE_COREDUMP) {
7204         ioc_info(ioc,
7205             "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7206             __func__, ioc_state);
7207         return -EFAULT;
7208     }
7209 
7210     ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7211     if (ioc_state) {
7212         dfailprintk(ioc,
7213                 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7214                      __func__, ioc_state));
7215         return -EFAULT;
7216     }
7217 
7218  issue_diag_reset:
7219     rc = _base_diag_reset(ioc);
7220     return rc;
7221 }
7222 
7223 /**
7224  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7225  * @ioc: per adapter object
7226  *
7227  * Return: 0 for success, non-zero for failure.
7228  */
7229 static int
7230 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7231 {
7232     Mpi2IOCFactsRequest_t mpi_request;
7233     Mpi2IOCFactsReply_t mpi_reply;
7234     struct mpt3sas_facts *facts;
7235     int mpi_reply_sz, mpi_request_sz, r;
7236 
7237     dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7238 
7239     r = _base_wait_for_iocstate(ioc, 10);
7240     if (r) {
7241         dfailprintk(ioc,
7242                 ioc_info(ioc, "%s: failed getting to correct state\n",
7243                      __func__));
7244         return r;
7245     }
7246     mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7247     mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7248     memset(&mpi_request, 0, mpi_request_sz);
7249     mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7250     r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7251         (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7252 
7253     if (r != 0) {
7254         ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7255         return r;
7256     }
7257 
7258     facts = &ioc->facts;
7259     memset(facts, 0, sizeof(struct mpt3sas_facts));
7260     facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7261     facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7262     facts->VP_ID = mpi_reply.VP_ID;
7263     facts->VF_ID = mpi_reply.VF_ID;
7264     facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7265     facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7266     facts->WhoInit = mpi_reply.WhoInit;
7267     facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7268     facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7269     if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7270         MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7271         ioc->combined_reply_queue = 0;
7272     facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7273     facts->MaxReplyDescriptorPostQueueDepth =
7274         le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7275     facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7276     facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7277     if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7278         ioc->ir_firmware = 1;
7279     if ((facts->IOCCapabilities &
7280           MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7281         ioc->rdpq_array_capable = 1;
7282     if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7283         && ioc->is_aero_ioc)
7284         ioc->atomic_desc_capable = 1;
7285     facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7286     facts->IOCRequestFrameSize =
7287         le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7288     if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7289         facts->IOCMaxChainSegmentSize =
7290             le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7291     }
7292     facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7293     facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7294     ioc->shost->max_id = -1;
7295     facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7296     facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7297     facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7298     facts->HighPriorityCredit =
7299         le16_to_cpu(mpi_reply.HighPriorityCredit);
7300     facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7301     facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7302     facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7303 
7304     /*
7305      * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7306      */
7307     ioc->page_size = 1 << facts->CurrentHostPageSize;
7308     if (ioc->page_size == 1) {
7309         ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7310         ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7311     }
7312     dinitprintk(ioc,
7313             ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7314                  facts->CurrentHostPageSize));
7315 
7316     dinitprintk(ioc,
7317             ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7318                  facts->RequestCredit, facts->MaxChainDepth));
7319     dinitprintk(ioc,
7320             ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7321                  facts->IOCRequestFrameSize * 4,
7322                  facts->ReplyFrameSize * 4));
7323     return 0;
7324 }
7325 
7326 /**
7327  * _base_send_ioc_init - send ioc_init to firmware
7328  * @ioc: per adapter object
7329  *
7330  * Return: 0 for success, non-zero for failure.
7331  */
7332 static int
7333 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7334 {
7335     Mpi2IOCInitRequest_t mpi_request;
7336     Mpi2IOCInitReply_t mpi_reply;
7337     int i, r = 0;
7338     ktime_t current_time;
7339     u16 ioc_status;
7340     u32 reply_post_free_array_sz = 0;
7341 
7342     dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7343 
7344     memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7345     mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7346     mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7347     mpi_request.VF_ID = 0; /* TODO */
7348     mpi_request.VP_ID = 0;
7349     mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7350     mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7351     mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7352 
7353     if (_base_is_controller_msix_enabled(ioc))
7354         mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7355     mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7356     mpi_request.ReplyDescriptorPostQueueDepth =
7357         cpu_to_le16(ioc->reply_post_queue_depth);
7358     mpi_request.ReplyFreeQueueDepth =
7359         cpu_to_le16(ioc->reply_free_queue_depth);
7360 
7361     mpi_request.SenseBufferAddressHigh =
7362         cpu_to_le32((u64)ioc->sense_dma >> 32);
7363     mpi_request.SystemReplyAddressHigh =
7364         cpu_to_le32((u64)ioc->reply_dma >> 32);
7365     mpi_request.SystemRequestFrameBaseAddress =
7366         cpu_to_le64((u64)ioc->request_dma);
7367     mpi_request.ReplyFreeQueueAddress =
7368         cpu_to_le64((u64)ioc->reply_free_dma);
7369 
7370     if (ioc->rdpq_array_enable) {
7371         reply_post_free_array_sz = ioc->reply_queue_count *
7372             sizeof(Mpi2IOCInitRDPQArrayEntry);
7373         memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7374         for (i = 0; i < ioc->reply_queue_count; i++)
7375             ioc->reply_post_free_array[i].RDPQBaseAddress =
7376                 cpu_to_le64(
7377                 (u64)ioc->reply_post[i].reply_post_free_dma);
7378         mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7379         mpi_request.ReplyDescriptorPostQueueAddress =
7380             cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7381     } else {
7382         mpi_request.ReplyDescriptorPostQueueAddress =
7383             cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7384     }
7385 
7386     /*
7387      * Set the flag to enable CoreDump state feature in IOC firmware.
7388      */
7389     mpi_request.ConfigurationFlags |=
7390         cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7391 
7392     /* This time stamp specifies number of milliseconds
7393      * since epoch ~ midnight January 1, 1970.
7394      */
7395     current_time = ktime_get_real();
7396     mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7397 
7398     if (ioc->logging_level & MPT_DEBUG_INIT) {
7399         __le32 *mfp;
7400         int i;
7401 
7402         mfp = (__le32 *)&mpi_request;
7403         ioc_info(ioc, "\toffset:data\n");
7404         for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7405             ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7406                 le32_to_cpu(mfp[i]));
7407     }
7408 
7409     r = _base_handshake_req_reply_wait(ioc,
7410         sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7411         sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7412 
7413     if (r != 0) {
7414         ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7415         return r;
7416     }
7417 
7418     ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7419     if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7420         mpi_reply.IOCLogInfo) {
7421         ioc_err(ioc, "%s: failed\n", __func__);
7422         r = -EIO;
7423     }
7424 
7425     /* Reset TimeSync Counter*/
7426     ioc->timestamp_update_count = 0;
7427     return r;
7428 }
7429 
7430 /**
7431  * mpt3sas_port_enable_done - command completion routine for port enable
7432  * @ioc: per adapter object
7433  * @smid: system request message index
7434  * @msix_index: MSIX table index supplied by the OS
7435  * @reply: reply message frame(lower 32bit addr)
7436  *
7437  * Return: 1 meaning mf should be freed from _base_interrupt
7438  *          0 means the mf is freed from this function.
7439  */
7440 u8
7441 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7442     u32 reply)
7443 {
7444     MPI2DefaultReply_t *mpi_reply;
7445     u16 ioc_status;
7446 
7447     if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7448         return 1;
7449 
7450     mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7451     if (!mpi_reply)
7452         return 1;
7453 
7454     if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7455         return 1;
7456 
7457     ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7458     ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7459     ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7460     memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7461     ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7462     if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7463         ioc->port_enable_failed = 1;
7464 
7465     if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7466         ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7467         if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7468             mpt3sas_port_enable_complete(ioc);
7469             return 1;
7470         } else {
7471             ioc->start_scan_failed = ioc_status;
7472             ioc->start_scan = 0;
7473             return 1;
7474         }
7475     }
7476     complete(&ioc->port_enable_cmds.done);
7477     return 1;
7478 }
7479 
7480 /**
7481  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7482  * @ioc: per adapter object
7483  *
7484  * Return: 0 for success, non-zero for failure.
7485  */
7486 static int
7487 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7488 {
7489     Mpi2PortEnableRequest_t *mpi_request;
7490     Mpi2PortEnableReply_t *mpi_reply;
7491     int r = 0;
7492     u16 smid;
7493     u16 ioc_status;
7494 
7495     ioc_info(ioc, "sending port enable !!\n");
7496 
7497     if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7498         ioc_err(ioc, "%s: internal command already in use\n", __func__);
7499         return -EAGAIN;
7500     }
7501 
7502     smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7503     if (!smid) {
7504         ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7505         return -EAGAIN;
7506     }
7507 
7508     ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7509     mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7510     ioc->port_enable_cmds.smid = smid;
7511     memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7512     mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7513 
7514     init_completion(&ioc->port_enable_cmds.done);
7515     ioc->put_smid_default(ioc, smid);
7516     wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7517     if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7518         ioc_err(ioc, "%s: timeout\n", __func__);
7519         _debug_dump_mf(mpi_request,
7520             sizeof(Mpi2PortEnableRequest_t)/4);
7521         if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7522             r = -EFAULT;
7523         else
7524             r = -ETIME;
7525         goto out;
7526     }
7527 
7528     mpi_reply = ioc->port_enable_cmds.reply;
7529     ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7530     if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7531         ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7532             __func__, ioc_status);
7533         r = -EFAULT;
7534         goto out;
7535     }
7536 
7537  out:
7538     ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7539     ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7540     return r;
7541 }
7542 
7543 /**
7544  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7545  * @ioc: per adapter object
7546  *
7547  * Return: 0 for success, non-zero for failure.
7548  */
7549 int
7550 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7551 {
7552     Mpi2PortEnableRequest_t *mpi_request;
7553     u16 smid;
7554 
7555     ioc_info(ioc, "sending port enable !!\n");
7556 
7557     if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7558         ioc_err(ioc, "%s: internal command already in use\n", __func__);
7559         return -EAGAIN;
7560     }
7561 
7562     smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7563     if (!smid) {
7564         ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7565         return -EAGAIN;
7566     }
7567     ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7568     ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7569     ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7570     mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7571     ioc->port_enable_cmds.smid = smid;
7572     memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7573     mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7574 
7575     ioc->put_smid_default(ioc, smid);
7576     return 0;
7577 }
7578 
7579 /**
7580  * _base_determine_wait_on_discovery - desposition
7581  * @ioc: per adapter object
7582  *
7583  * Decide whether to wait on discovery to complete. Used to either
7584  * locate boot device, or report volumes ahead of physical devices.
7585  *
7586  * Return: 1 for wait, 0 for don't wait.
7587  */
7588 static int
7589 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7590 {
7591     /* We wait for discovery to complete if IR firmware is loaded.
7592      * The sas topology events arrive before PD events, so we need time to
7593      * turn on the bit in ioc->pd_handles to indicate PD
7594      * Also, it maybe required to report Volumes ahead of physical
7595      * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7596      */
7597     if (ioc->ir_firmware)
7598         return 1;
7599 
7600     /* if no Bios, then we don't need to wait */
7601     if (!ioc->bios_pg3.BiosVersion)
7602         return 0;
7603 
7604     /* Bios is present, then we drop down here.
7605      *
7606      * If there any entries in the Bios Page 2, then we wait
7607      * for discovery to complete.
7608      */
7609 
7610     /* Current Boot Device */
7611     if ((ioc->bios_pg2.CurrentBootDeviceForm &
7612         MPI2_BIOSPAGE2_FORM_MASK) ==
7613         MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7614     /* Request Boot Device */
7615        (ioc->bios_pg2.ReqBootDeviceForm &
7616         MPI2_BIOSPAGE2_FORM_MASK) ==
7617         MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7618     /* Alternate Request Boot Device */
7619        (ioc->bios_pg2.ReqAltBootDeviceForm &
7620         MPI2_BIOSPAGE2_FORM_MASK) ==
7621         MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7622         return 0;
7623 
7624     return 1;
7625 }
7626 
7627 /**
7628  * _base_unmask_events - turn on notification for this event
7629  * @ioc: per adapter object
7630  * @event: firmware event
7631  *
7632  * The mask is stored in ioc->event_masks.
7633  */
7634 static void
7635 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7636 {
7637     u32 desired_event;
7638 
7639     if (event >= 128)
7640         return;
7641 
7642     desired_event = (1 << (event % 32));
7643 
7644     if (event < 32)
7645         ioc->event_masks[0] &= ~desired_event;
7646     else if (event < 64)
7647         ioc->event_masks[1] &= ~desired_event;
7648     else if (event < 96)
7649         ioc->event_masks[2] &= ~desired_event;
7650     else if (event < 128)
7651         ioc->event_masks[3] &= ~desired_event;
7652 }
7653 
7654 /**
7655  * _base_event_notification - send event notification
7656  * @ioc: per adapter object
7657  *
7658  * Return: 0 for success, non-zero for failure.
7659  */
7660 static int
7661 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7662 {
7663     Mpi2EventNotificationRequest_t *mpi_request;
7664     u16 smid;
7665     int r = 0;
7666     int i, issue_diag_reset = 0;
7667 
7668     dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7669 
7670     if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7671         ioc_err(ioc, "%s: internal command already in use\n", __func__);
7672         return -EAGAIN;
7673     }
7674 
7675     smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7676     if (!smid) {
7677         ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7678         return -EAGAIN;
7679     }
7680     ioc->base_cmds.status = MPT3_CMD_PENDING;
7681     mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7682     ioc->base_cmds.smid = smid;
7683     memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7684     mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7685     mpi_request->VF_ID = 0; /* TODO */
7686     mpi_request->VP_ID = 0;
7687     for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7688         mpi_request->EventMasks[i] =
7689             cpu_to_le32(ioc->event_masks[i]);
7690     init_completion(&ioc->base_cmds.done);
7691     ioc->put_smid_default(ioc, smid);
7692     wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7693     if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7694         ioc_err(ioc, "%s: timeout\n", __func__);
7695         _debug_dump_mf(mpi_request,
7696             sizeof(Mpi2EventNotificationRequest_t)/4);
7697         if (ioc->base_cmds.status & MPT3_CMD_RESET)
7698             r = -EFAULT;
7699         else
7700             issue_diag_reset = 1;
7701 
7702     } else
7703         dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7704     ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7705 
7706     if (issue_diag_reset) {
7707         if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7708             return -EFAULT;
7709         if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7710             return -EFAULT;
7711         r = -EAGAIN;
7712     }
7713     return r;
7714 }
7715 
7716 /**
7717  * mpt3sas_base_validate_event_type - validating event types
7718  * @ioc: per adapter object
7719  * @event_type: firmware event
7720  *
7721  * This will turn on firmware event notification when application
7722  * ask for that event. We don't mask events that are already enabled.
7723  */
7724 void
7725 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7726 {
7727     int i, j;
7728     u32 event_mask, desired_event;
7729     u8 send_update_to_fw;
7730 
7731     for (i = 0, send_update_to_fw = 0; i <
7732         MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7733         event_mask = ~event_type[i];
7734         desired_event = 1;
7735         for (j = 0; j < 32; j++) {
7736             if (!(event_mask & desired_event) &&
7737                 (ioc->event_masks[i] & desired_event)) {
7738                 ioc->event_masks[i] &= ~desired_event;
7739                 send_update_to_fw = 1;
7740             }
7741             desired_event = (desired_event << 1);
7742         }
7743     }
7744 
7745     if (!send_update_to_fw)
7746         return;
7747 
7748     mutex_lock(&ioc->base_cmds.mutex);
7749     _base_event_notification(ioc);
7750     mutex_unlock(&ioc->base_cmds.mutex);
7751 }
7752 
7753 /**
7754  * _base_diag_reset - the "big hammer" start of day reset
7755  * @ioc: per adapter object
7756  *
7757  * Return: 0 for success, non-zero for failure.
7758  */
7759 static int
7760 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7761 {
7762     u32 host_diagnostic;
7763     u32 ioc_state;
7764     u32 count;
7765     u32 hcb_size;
7766 
7767     ioc_info(ioc, "sending diag reset !!\n");
7768 
7769     pci_cfg_access_lock(ioc->pdev);
7770 
7771     drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7772 
7773     count = 0;
7774     do {
7775         /* Write magic sequence to WriteSequence register
7776          * Loop until in diagnostic mode
7777          */
7778         drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7779         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7780         writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7781         writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7782         writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7783         writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7784         writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7785         writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7786 
7787         /* wait 100 msec */
7788         msleep(100);
7789 
7790         if (count++ > 20) {
7791             ioc_info(ioc,
7792                 "Stop writing magic sequence after 20 retries\n");
7793             _base_dump_reg_set(ioc);
7794             goto out;
7795         }
7796 
7797         host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7798         drsprintk(ioc,
7799               ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7800                    count, host_diagnostic));
7801 
7802     } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7803 
7804     hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7805 
7806     drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7807     writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7808          &ioc->chip->HostDiagnostic);
7809 
7810     /*This delay allows the chip PCIe hardware time to finish reset tasks*/
7811     msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7812 
7813     /* Approximately 300 second max wait */
7814     for (count = 0; count < (300000000 /
7815         MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7816 
7817         host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7818 
7819         if (host_diagnostic == 0xFFFFFFFF) {
7820             ioc_info(ioc,
7821                 "Invalid host diagnostic register value\n");
7822             _base_dump_reg_set(ioc);
7823             goto out;
7824         }
7825         if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7826             break;
7827 
7828         msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
7829     }
7830 
7831     if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
7832 
7833         drsprintk(ioc,
7834               ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
7835         host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
7836         host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
7837         writel(host_diagnostic, &ioc->chip->HostDiagnostic);
7838 
7839         drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
7840         writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
7841             &ioc->chip->HCBSize);
7842     }
7843 
7844     drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
7845     writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
7846         &ioc->chip->HostDiagnostic);
7847 
7848     drsprintk(ioc,
7849           ioc_info(ioc, "disable writes to the diagnostic register\n"));
7850     writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7851 
7852     drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
7853     ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
7854     if (ioc_state) {
7855         ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7856             __func__, ioc_state);
7857         _base_dump_reg_set(ioc);
7858         goto out;
7859     }
7860 
7861     pci_cfg_access_unlock(ioc->pdev);
7862     ioc_info(ioc, "diag reset: SUCCESS\n");
7863     return 0;
7864 
7865  out:
7866     pci_cfg_access_unlock(ioc->pdev);
7867     ioc_err(ioc, "diag reset: FAILED\n");
7868     return -EFAULT;
7869 }
7870 
7871 /**
7872  * mpt3sas_base_make_ioc_ready - put controller in READY state
7873  * @ioc: per adapter object
7874  * @type: FORCE_BIG_HAMMER or SOFT_RESET
7875  *
7876  * Return: 0 for success, non-zero for failure.
7877  */
7878 int
7879 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
7880 {
7881     u32 ioc_state;
7882     int rc;
7883     int count;
7884 
7885     dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7886 
7887     if (ioc->pci_error_recovery)
7888         return 0;
7889 
7890     ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7891     dhsprintk(ioc,
7892           ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7893                __func__, ioc_state));
7894 
7895     /* if in RESET state, it should move to READY state shortly */
7896     count = 0;
7897     if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
7898         while ((ioc_state & MPI2_IOC_STATE_MASK) !=
7899             MPI2_IOC_STATE_READY) {
7900             if (count++ == 10) {
7901                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7902                     __func__, ioc_state);
7903                 return -EFAULT;
7904             }
7905             ssleep(1);
7906             ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7907         }
7908     }
7909 
7910     if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
7911         return 0;
7912 
7913     if (ioc_state & MPI2_DOORBELL_USED) {
7914         ioc_info(ioc, "unexpected doorbell active!\n");
7915         goto issue_diag_reset;
7916     }
7917 
7918     if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7919         mpt3sas_print_fault_code(ioc, ioc_state &
7920             MPI2_DOORBELL_DATA_MASK);
7921         goto issue_diag_reset;
7922     }
7923 
7924     if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
7925         /*
7926          * if host reset is invoked while watch dog thread is waiting
7927          * for IOC state to be changed to Fault state then driver has
7928          * to wait here for CoreDump state to clear otherwise reset
7929          * will be issued to the FW and FW move the IOC state to
7930          * reset state without copying the FW logs to coredump region.
7931          */
7932         if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
7933             mpt3sas_print_coredump_info(ioc, ioc_state &
7934                 MPI2_DOORBELL_DATA_MASK);
7935             mpt3sas_base_wait_for_coredump_completion(ioc,
7936                 __func__);
7937         }
7938         goto issue_diag_reset;
7939     }
7940 
7941     if (type == FORCE_BIG_HAMMER)
7942         goto issue_diag_reset;
7943 
7944     if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7945         if (!(_base_send_ioc_reset(ioc,
7946             MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
7947             return 0;
7948     }
7949 
7950  issue_diag_reset:
7951     rc = _base_diag_reset(ioc);
7952     return rc;
7953 }
7954 
7955 /**
7956  * _base_make_ioc_operational - put controller in OPERATIONAL state
7957  * @ioc: per adapter object
7958  *
7959  * Return: 0 for success, non-zero for failure.
7960  */
7961 static int
7962 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
7963 {
7964     int r, i, index, rc;
7965     unsigned long   flags;
7966     u32 reply_address;
7967     u16 smid;
7968     struct _tr_list *delayed_tr, *delayed_tr_next;
7969     struct _sc_list *delayed_sc, *delayed_sc_next;
7970     struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7971     u8 hide_flag;
7972     struct adapter_reply_queue *reply_q;
7973     Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7974 
7975     dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7976 
7977     /* clean the delayed target reset list */
7978     list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7979         &ioc->delayed_tr_list, list) {
7980         list_del(&delayed_tr->list);
7981         kfree(delayed_tr);
7982     }
7983 
7984 
7985     list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7986         &ioc->delayed_tr_volume_list, list) {
7987         list_del(&delayed_tr->list);
7988         kfree(delayed_tr);
7989     }
7990 
7991     list_for_each_entry_safe(delayed_sc, delayed_sc_next,
7992         &ioc->delayed_sc_list, list) {
7993         list_del(&delayed_sc->list);
7994         kfree(delayed_sc);
7995     }
7996 
7997     list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
7998         &ioc->delayed_event_ack_list, list) {
7999         list_del(&delayed_event_ack->list);
8000         kfree(delayed_event_ack);
8001     }
8002 
8003     spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8004 
8005     /* hi-priority queue */
8006     INIT_LIST_HEAD(&ioc->hpr_free_list);
8007     smid = ioc->hi_priority_smid;
8008     for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8009         ioc->hpr_lookup[i].cb_idx = 0xFF;
8010         ioc->hpr_lookup[i].smid = smid;
8011         list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8012             &ioc->hpr_free_list);
8013     }
8014 
8015     /* internal queue */
8016     INIT_LIST_HEAD(&ioc->internal_free_list);
8017     smid = ioc->internal_smid;
8018     for (i = 0; i < ioc->internal_depth; i++, smid++) {
8019         ioc->internal_lookup[i].cb_idx = 0xFF;
8020         ioc->internal_lookup[i].smid = smid;
8021         list_add_tail(&ioc->internal_lookup[i].tracker_list,
8022             &ioc->internal_free_list);
8023     }
8024 
8025     spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8026 
8027     /* initialize Reply Free Queue */
8028     for (i = 0, reply_address = (u32)ioc->reply_dma ;
8029         i < ioc->reply_free_queue_depth ; i++, reply_address +=
8030         ioc->reply_sz) {
8031         ioc->reply_free[i] = cpu_to_le32(reply_address);
8032         if (ioc->is_mcpu_endpoint)
8033             _base_clone_reply_to_sys_mem(ioc,
8034                     reply_address, i);
8035     }
8036 
8037     /* initialize reply queues */
8038     if (ioc->is_driver_loading)
8039         _base_assign_reply_queues(ioc);
8040 
8041     /* initialize Reply Post Free Queue */
8042     index = 0;
8043     reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8044     list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8045         /*
8046          * If RDPQ is enabled, switch to the next allocation.
8047          * Otherwise advance within the contiguous region.
8048          */
8049         if (ioc->rdpq_array_enable) {
8050             reply_q->reply_post_free =
8051                 ioc->reply_post[index++].reply_post_free;
8052         } else {
8053             reply_q->reply_post_free = reply_post_free_contig;
8054             reply_post_free_contig += ioc->reply_post_queue_depth;
8055         }
8056 
8057         reply_q->reply_post_host_index = 0;
8058         for (i = 0; i < ioc->reply_post_queue_depth; i++)
8059             reply_q->reply_post_free[i].Words =
8060                 cpu_to_le64(ULLONG_MAX);
8061         if (!_base_is_controller_msix_enabled(ioc))
8062             goto skip_init_reply_post_free_queue;
8063     }
8064  skip_init_reply_post_free_queue:
8065 
8066     r = _base_send_ioc_init(ioc);
8067     if (r) {
8068         /*
8069          * No need to check IOC state for fault state & issue
8070          * diag reset during host reset. This check is need
8071          * only during driver load time.
8072          */
8073         if (!ioc->is_driver_loading)
8074             return r;
8075 
8076         rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8077         if (rc || (_base_send_ioc_init(ioc)))
8078             return r;
8079     }
8080 
8081     /* initialize reply free host index */
8082     ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8083     writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8084 
8085     /* initialize reply post host index */
8086     list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8087         if (ioc->combined_reply_queue)
8088             writel((reply_q->msix_index & 7)<<
8089                MPI2_RPHI_MSIX_INDEX_SHIFT,
8090                ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8091         else
8092             writel(reply_q->msix_index <<
8093                 MPI2_RPHI_MSIX_INDEX_SHIFT,
8094                 &ioc->chip->ReplyPostHostIndex);
8095 
8096         if (!_base_is_controller_msix_enabled(ioc))
8097             goto skip_init_reply_post_host_index;
8098     }
8099 
8100  skip_init_reply_post_host_index:
8101 
8102     mpt3sas_base_unmask_interrupts(ioc);
8103 
8104     if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8105         r = _base_display_fwpkg_version(ioc);
8106         if (r)
8107             return r;
8108     }
8109 
8110     r = _base_static_config_pages(ioc);
8111     if (r)
8112         return r;
8113 
8114     r = _base_event_notification(ioc);
8115     if (r)
8116         return r;
8117 
8118     if (!ioc->shost_recovery) {
8119 
8120         if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8121             == 0x80) {
8122             hide_flag = (u8) (
8123                 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8124                 MFG_PAGE10_HIDE_SSDS_MASK);
8125             if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8126                 ioc->mfg_pg10_hide_flag = hide_flag;
8127         }
8128 
8129         ioc->wait_for_discovery_to_complete =
8130             _base_determine_wait_on_discovery(ioc);
8131 
8132         return r; /* scan_start and scan_finished support */
8133     }
8134 
8135     r = _base_send_port_enable(ioc);
8136     if (r)
8137         return r;
8138 
8139     return r;
8140 }
8141 
8142 /**
8143  * mpt3sas_base_free_resources - free resources controller resources
8144  * @ioc: per adapter object
8145  */
8146 void
8147 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8148 {
8149     dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8150 
8151     /* synchronizing freeing resource with pci_access_mutex lock */
8152     mutex_lock(&ioc->pci_access_mutex);
8153     if (ioc->chip_phys && ioc->chip) {
8154         mpt3sas_base_mask_interrupts(ioc);
8155         ioc->shost_recovery = 1;
8156         mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8157         ioc->shost_recovery = 0;
8158     }
8159 
8160     mpt3sas_base_unmap_resources(ioc);
8161     mutex_unlock(&ioc->pci_access_mutex);
8162     return;
8163 }
8164 
8165 /**
8166  * mpt3sas_base_attach - attach controller instance
8167  * @ioc: per adapter object
8168  *
8169  * Return: 0 for success, non-zero for failure.
8170  */
8171 int
8172 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8173 {
8174     int r, i, rc;
8175     int cpu_id, last_cpu_id = 0;
8176 
8177     dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8178 
8179     /* setup cpu_msix_table */
8180     ioc->cpu_count = num_online_cpus();
8181     for_each_online_cpu(cpu_id)
8182         last_cpu_id = cpu_id;
8183     ioc->cpu_msix_table_sz = last_cpu_id + 1;
8184     ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8185     ioc->reply_queue_count = 1;
8186     if (!ioc->cpu_msix_table) {
8187         ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8188         r = -ENOMEM;
8189         goto out_free_resources;
8190     }
8191 
8192     if (ioc->is_warpdrive) {
8193         ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8194             sizeof(resource_size_t *), GFP_KERNEL);
8195         if (!ioc->reply_post_host_index) {
8196             ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8197             r = -ENOMEM;
8198             goto out_free_resources;
8199         }
8200     }
8201 
8202     ioc->smp_affinity_enable = smp_affinity_enable;
8203 
8204     ioc->rdpq_array_enable_assigned = 0;
8205     ioc->use_32bit_dma = false;
8206     ioc->dma_mask = 64;
8207     if (ioc->is_aero_ioc)
8208         ioc->base_readl = &_base_readl_aero;
8209     else
8210         ioc->base_readl = &_base_readl;
8211     r = mpt3sas_base_map_resources(ioc);
8212     if (r)
8213         goto out_free_resources;
8214 
8215     pci_set_drvdata(ioc->pdev, ioc->shost);
8216     r = _base_get_ioc_facts(ioc);
8217     if (r) {
8218         rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8219         if (rc || (_base_get_ioc_facts(ioc)))
8220             goto out_free_resources;
8221     }
8222 
8223     switch (ioc->hba_mpi_version_belonged) {
8224     case MPI2_VERSION:
8225         ioc->build_sg_scmd = &_base_build_sg_scmd;
8226         ioc->build_sg = &_base_build_sg;
8227         ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8228         ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8229         break;
8230     case MPI25_VERSION:
8231     case MPI26_VERSION:
8232         /*
8233          * In SAS3.0,
8234          * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8235          * Target Status - all require the IEEE formatted scatter gather
8236          * elements.
8237          */
8238         ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8239         ioc->build_sg = &_base_build_sg_ieee;
8240         ioc->build_nvme_prp = &_base_build_nvme_prp;
8241         ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8242         ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8243         if (ioc->high_iops_queues)
8244             ioc->get_msix_index_for_smlio =
8245                     &_base_get_high_iops_msix_index;
8246         else
8247             ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8248         break;
8249     }
8250     if (ioc->atomic_desc_capable) {
8251         ioc->put_smid_default = &_base_put_smid_default_atomic;
8252         ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8253         ioc->put_smid_fast_path =
8254                 &_base_put_smid_fast_path_atomic;
8255         ioc->put_smid_hi_priority =
8256                 &_base_put_smid_hi_priority_atomic;
8257     } else {
8258         ioc->put_smid_default = &_base_put_smid_default;
8259         ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8260         ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8261         if (ioc->is_mcpu_endpoint)
8262             ioc->put_smid_scsi_io =
8263                 &_base_put_smid_mpi_ep_scsi_io;
8264         else
8265             ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8266     }
8267     /*
8268      * These function pointers for other requests that don't
8269      * the require IEEE scatter gather elements.
8270      *
8271      * For example Configuration Pages and SAS IOUNIT Control don't.
8272      */
8273     ioc->build_sg_mpi = &_base_build_sg;
8274     ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8275 
8276     r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8277     if (r)
8278         goto out_free_resources;
8279 
8280     ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8281         sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8282     if (!ioc->pfacts) {
8283         r = -ENOMEM;
8284         goto out_free_resources;
8285     }
8286 
8287     for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8288         r = _base_get_port_facts(ioc, i);
8289         if (r) {
8290             rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8291             if (rc || (_base_get_port_facts(ioc, i)))
8292                 goto out_free_resources;
8293         }
8294     }
8295 
8296     r = _base_allocate_memory_pools(ioc);
8297     if (r)
8298         goto out_free_resources;
8299 
8300     if (irqpoll_weight > 0)
8301         ioc->thresh_hold = irqpoll_weight;
8302     else
8303         ioc->thresh_hold = ioc->hba_queue_depth/4;
8304 
8305     _base_init_irqpolls(ioc);
8306     init_waitqueue_head(&ioc->reset_wq);
8307 
8308     /* allocate memory pd handle bitmask list */
8309     ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8310     if (ioc->facts.MaxDevHandle % 8)
8311         ioc->pd_handles_sz++;
8312     ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8313         GFP_KERNEL);
8314     if (!ioc->pd_handles) {
8315         r = -ENOMEM;
8316         goto out_free_resources;
8317     }
8318     ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8319         GFP_KERNEL);
8320     if (!ioc->blocking_handles) {
8321         r = -ENOMEM;
8322         goto out_free_resources;
8323     }
8324 
8325     /* allocate memory for pending OS device add list */
8326     ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8327     if (ioc->facts.MaxDevHandle % 8)
8328         ioc->pend_os_device_add_sz++;
8329     ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8330         GFP_KERNEL);
8331     if (!ioc->pend_os_device_add) {
8332         r = -ENOMEM;
8333         goto out_free_resources;
8334     }
8335 
8336     ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8337     ioc->device_remove_in_progress =
8338         kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8339     if (!ioc->device_remove_in_progress) {
8340         r = -ENOMEM;
8341         goto out_free_resources;
8342     }
8343 
8344     ioc->fwfault_debug = mpt3sas_fwfault_debug;
8345 
8346     /* base internal command bits */
8347     mutex_init(&ioc->base_cmds.mutex);
8348     ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8349     ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8350 
8351     /* port_enable command bits */
8352     ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8353     ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8354 
8355     /* transport internal command bits */
8356     ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8357     ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8358     mutex_init(&ioc->transport_cmds.mutex);
8359 
8360     /* scsih internal command bits */
8361     ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8362     ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8363     mutex_init(&ioc->scsih_cmds.mutex);
8364 
8365     /* task management internal command bits */
8366     ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8367     ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8368     mutex_init(&ioc->tm_cmds.mutex);
8369 
8370     /* config page internal command bits */
8371     ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8372     ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8373     mutex_init(&ioc->config_cmds.mutex);
8374 
8375     /* ctl module internal command bits */
8376     ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8377     ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8378     ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8379     mutex_init(&ioc->ctl_cmds.mutex);
8380 
8381     if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8382         !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8383         !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8384         !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8385         r = -ENOMEM;
8386         goto out_free_resources;
8387     }
8388 
8389     for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8390         ioc->event_masks[i] = -1;
8391 
8392     /* here we enable the events we care about */
8393     _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8394     _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8395     _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8396     _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8397     _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8398     _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8399     _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8400     _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8401     _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8402     _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8403     _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8404     _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8405     _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8406     if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8407         if (ioc->is_gen35_ioc) {
8408             _base_unmask_events(ioc,
8409                 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8410             _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8411             _base_unmask_events(ioc,
8412                 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8413         }
8414     }
8415     r = _base_make_ioc_operational(ioc);
8416     if (r == -EAGAIN) {
8417         r = _base_make_ioc_operational(ioc);
8418         if (r)
8419             goto out_free_resources;
8420     }
8421 
8422     /*
8423      * Copy current copy of IOCFacts in prev_fw_facts
8424      * and it will be used during online firmware upgrade.
8425      */
8426     memcpy(&ioc->prev_fw_facts, &ioc->facts,
8427         sizeof(struct mpt3sas_facts));
8428 
8429     ioc->non_operational_loop = 0;
8430     ioc->ioc_coredump_loop = 0;
8431     ioc->got_task_abort_from_ioctl = 0;
8432     return 0;
8433 
8434  out_free_resources:
8435 
8436     ioc->remove_host = 1;
8437 
8438     mpt3sas_base_free_resources(ioc);
8439     _base_release_memory_pools(ioc);
8440     pci_set_drvdata(ioc->pdev, NULL);
8441     kfree(ioc->cpu_msix_table);
8442     if (ioc->is_warpdrive)
8443         kfree(ioc->reply_post_host_index);
8444     kfree(ioc->pd_handles);
8445     kfree(ioc->blocking_handles);
8446     kfree(ioc->device_remove_in_progress);
8447     kfree(ioc->pend_os_device_add);
8448     kfree(ioc->tm_cmds.reply);
8449     kfree(ioc->transport_cmds.reply);
8450     kfree(ioc->scsih_cmds.reply);
8451     kfree(ioc->config_cmds.reply);
8452     kfree(ioc->base_cmds.reply);
8453     kfree(ioc->port_enable_cmds.reply);
8454     kfree(ioc->ctl_cmds.reply);
8455     kfree(ioc->ctl_cmds.sense);
8456     kfree(ioc->pfacts);
8457     ioc->ctl_cmds.reply = NULL;
8458     ioc->base_cmds.reply = NULL;
8459     ioc->tm_cmds.reply = NULL;
8460     ioc->scsih_cmds.reply = NULL;
8461     ioc->transport_cmds.reply = NULL;
8462     ioc->config_cmds.reply = NULL;
8463     ioc->pfacts = NULL;
8464     return r;
8465 }
8466 
8467 
8468 /**
8469  * mpt3sas_base_detach - remove controller instance
8470  * @ioc: per adapter object
8471  */
8472 void
8473 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8474 {
8475     dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8476 
8477     mpt3sas_base_stop_watchdog(ioc);
8478     mpt3sas_base_free_resources(ioc);
8479     _base_release_memory_pools(ioc);
8480     mpt3sas_free_enclosure_list(ioc);
8481     pci_set_drvdata(ioc->pdev, NULL);
8482     kfree(ioc->cpu_msix_table);
8483     if (ioc->is_warpdrive)
8484         kfree(ioc->reply_post_host_index);
8485     kfree(ioc->pd_handles);
8486     kfree(ioc->blocking_handles);
8487     kfree(ioc->device_remove_in_progress);
8488     kfree(ioc->pend_os_device_add);
8489     kfree(ioc->pfacts);
8490     kfree(ioc->ctl_cmds.reply);
8491     kfree(ioc->ctl_cmds.sense);
8492     kfree(ioc->base_cmds.reply);
8493     kfree(ioc->port_enable_cmds.reply);
8494     kfree(ioc->tm_cmds.reply);
8495     kfree(ioc->transport_cmds.reply);
8496     kfree(ioc->scsih_cmds.reply);
8497     kfree(ioc->config_cmds.reply);
8498 }
8499 
8500 /**
8501  * _base_pre_reset_handler - pre reset handler
8502  * @ioc: per adapter object
8503  */
8504 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8505 {
8506     mpt3sas_scsih_pre_reset_handler(ioc);
8507     mpt3sas_ctl_pre_reset_handler(ioc);
8508     dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8509 }
8510 
8511 /**
8512  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8513  * @ioc: per adapter object
8514  */
8515 static void
8516 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8517 {
8518     dtmprintk(ioc,
8519         ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8520     if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8521         ioc->transport_cmds.status |= MPT3_CMD_RESET;
8522         mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8523         complete(&ioc->transport_cmds.done);
8524     }
8525     if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8526         ioc->base_cmds.status |= MPT3_CMD_RESET;
8527         mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8528         complete(&ioc->base_cmds.done);
8529     }
8530     if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8531         ioc->port_enable_failed = 1;
8532         ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8533         mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8534         if (ioc->is_driver_loading) {
8535             ioc->start_scan_failed =
8536                 MPI2_IOCSTATUS_INTERNAL_ERROR;
8537             ioc->start_scan = 0;
8538         } else {
8539             complete(&ioc->port_enable_cmds.done);
8540         }
8541     }
8542     if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8543         ioc->config_cmds.status |= MPT3_CMD_RESET;
8544         mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8545         ioc->config_cmds.smid = USHRT_MAX;
8546         complete(&ioc->config_cmds.done);
8547     }
8548 }
8549 
8550 /**
8551  * _base_clear_outstanding_commands - clear all outstanding commands
8552  * @ioc: per adapter object
8553  */
8554 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8555 {
8556     mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8557     mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8558     _base_clear_outstanding_mpt_commands(ioc);
8559 }
8560 
8561 /**
8562  * _base_reset_done_handler - reset done handler
8563  * @ioc: per adapter object
8564  */
8565 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8566 {
8567     mpt3sas_scsih_reset_done_handler(ioc);
8568     mpt3sas_ctl_reset_done_handler(ioc);
8569     dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8570 }
8571 
8572 /**
8573  * mpt3sas_wait_for_commands_to_complete - reset controller
8574  * @ioc: Pointer to MPT_ADAPTER structure
8575  *
8576  * This function is waiting 10s for all pending commands to complete
8577  * prior to putting controller in reset.
8578  */
8579 void
8580 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8581 {
8582     u32 ioc_state;
8583 
8584     ioc->pending_io_count = 0;
8585 
8586     ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8587     if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8588         return;
8589 
8590     /* pending command count */
8591     ioc->pending_io_count = scsi_host_busy(ioc->shost);
8592 
8593     if (!ioc->pending_io_count)
8594         return;
8595 
8596     /* wait for pending commands to complete */
8597     wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8598 }
8599 
8600 /**
8601  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8602  *     attributes during online firmware upgrade and update the corresponding
8603  *     IOC variables accordingly.
8604  *
8605  * @ioc: Pointer to MPT_ADAPTER structure
8606  */
8607 static int
8608 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8609 {
8610     u16 pd_handles_sz;
8611     void *pd_handles = NULL, *blocking_handles = NULL;
8612     void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8613     struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8614 
8615     if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8616         pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8617         if (ioc->facts.MaxDevHandle % 8)
8618             pd_handles_sz++;
8619 
8620         pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8621             GFP_KERNEL);
8622         if (!pd_handles) {
8623             ioc_info(ioc,
8624                 "Unable to allocate the memory for pd_handles of sz: %d\n",
8625                 pd_handles_sz);
8626             return -ENOMEM;
8627         }
8628         memset(pd_handles + ioc->pd_handles_sz, 0,
8629             (pd_handles_sz - ioc->pd_handles_sz));
8630         ioc->pd_handles = pd_handles;
8631 
8632         blocking_handles = krealloc(ioc->blocking_handles,
8633             pd_handles_sz, GFP_KERNEL);
8634         if (!blocking_handles) {
8635             ioc_info(ioc,
8636                 "Unable to allocate the memory for "
8637                 "blocking_handles of sz: %d\n",
8638                 pd_handles_sz);
8639             return -ENOMEM;
8640         }
8641         memset(blocking_handles + ioc->pd_handles_sz, 0,
8642             (pd_handles_sz - ioc->pd_handles_sz));
8643         ioc->blocking_handles = blocking_handles;
8644         ioc->pd_handles_sz = pd_handles_sz;
8645 
8646         pend_os_device_add = krealloc(ioc->pend_os_device_add,
8647             pd_handles_sz, GFP_KERNEL);
8648         if (!pend_os_device_add) {
8649             ioc_info(ioc,
8650                 "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8651                 pd_handles_sz);
8652             return -ENOMEM;
8653         }
8654         memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8655             (pd_handles_sz - ioc->pend_os_device_add_sz));
8656         ioc->pend_os_device_add = pend_os_device_add;
8657         ioc->pend_os_device_add_sz = pd_handles_sz;
8658 
8659         device_remove_in_progress = krealloc(
8660             ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8661         if (!device_remove_in_progress) {
8662             ioc_info(ioc,
8663                 "Unable to allocate the memory for "
8664                 "device_remove_in_progress of sz: %d\n "
8665                 , pd_handles_sz);
8666             return -ENOMEM;
8667         }
8668         memset(device_remove_in_progress +
8669             ioc->device_remove_in_progress_sz, 0,
8670             (pd_handles_sz - ioc->device_remove_in_progress_sz));
8671         ioc->device_remove_in_progress = device_remove_in_progress;
8672         ioc->device_remove_in_progress_sz = pd_handles_sz;
8673     }
8674 
8675     memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8676     return 0;
8677 }
8678 
8679 /**
8680  * mpt3sas_base_hard_reset_handler - reset controller
8681  * @ioc: Pointer to MPT_ADAPTER structure
8682  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8683  *
8684  * Return: 0 for success, non-zero for failure.
8685  */
8686 int
8687 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8688     enum reset_type type)
8689 {
8690     int r;
8691     unsigned long flags;
8692     u32 ioc_state;
8693     u8 is_fault = 0, is_trigger = 0;
8694 
8695     dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8696 
8697     if (ioc->pci_error_recovery) {
8698         ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8699         r = 0;
8700         goto out_unlocked;
8701     }
8702 
8703     if (mpt3sas_fwfault_debug)
8704         mpt3sas_halt_firmware(ioc);
8705 
8706     /* wait for an active reset in progress to complete */
8707     mutex_lock(&ioc->reset_in_progress_mutex);
8708 
8709     spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8710     ioc->shost_recovery = 1;
8711     spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8712 
8713     if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8714         MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8715         (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8716         MPT3_DIAG_BUFFER_IS_RELEASED))) {
8717         is_trigger = 1;
8718         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8719         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8720             (ioc_state & MPI2_IOC_STATE_MASK) ==
8721             MPI2_IOC_STATE_COREDUMP) {
8722             is_fault = 1;
8723             ioc->htb_rel.trigger_info_dwords[1] =
8724                 (ioc_state & MPI2_DOORBELL_DATA_MASK);
8725         }
8726     }
8727     _base_pre_reset_handler(ioc);
8728     mpt3sas_wait_for_commands_to_complete(ioc);
8729     mpt3sas_base_mask_interrupts(ioc);
8730     mpt3sas_base_pause_mq_polling(ioc);
8731     r = mpt3sas_base_make_ioc_ready(ioc, type);
8732     if (r)
8733         goto out;
8734     _base_clear_outstanding_commands(ioc);
8735 
8736     /* If this hard reset is called while port enable is active, then
8737      * there is no reason to call make_ioc_operational
8738      */
8739     if (ioc->is_driver_loading && ioc->port_enable_failed) {
8740         ioc->remove_host = 1;
8741         r = -EFAULT;
8742         goto out;
8743     }
8744     r = _base_get_ioc_facts(ioc);
8745     if (r)
8746         goto out;
8747 
8748     r = _base_check_ioc_facts_changes(ioc);
8749     if (r) {
8750         ioc_info(ioc,
8751             "Some of the parameters got changed in this new firmware"
8752             " image and it requires system reboot\n");
8753         goto out;
8754     }
8755     if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8756         panic("%s: Issue occurred with flashing controller firmware."
8757               "Please reboot the system and ensure that the correct"
8758               " firmware version is running\n", ioc->name);
8759 
8760     r = _base_make_ioc_operational(ioc);
8761     if (!r)
8762         _base_reset_done_handler(ioc);
8763 
8764  out:
8765     ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8766 
8767     spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8768     ioc->shost_recovery = 0;
8769     spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8770     ioc->ioc_reset_count++;
8771     mutex_unlock(&ioc->reset_in_progress_mutex);
8772     mpt3sas_base_resume_mq_polling(ioc);
8773 
8774  out_unlocked:
8775     if ((r == 0) && is_trigger) {
8776         if (is_fault)
8777             mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8778         else
8779             mpt3sas_trigger_master(ioc,
8780                 MASTER_TRIGGER_ADAPTER_RESET);
8781     }
8782     dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8783     return r;
8784 }