Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Serial Attached SCSI (SAS) Expander discovery and configuration
0004  *
0005  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
0006  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
0007  *
0008  * This file is licensed under GPLv2.
0009  */
0010 
0011 #include <linux/scatterlist.h>
0012 #include <linux/blkdev.h>
0013 #include <linux/slab.h>
0014 #include <asm/unaligned.h>
0015 
0016 #include "sas_internal.h"
0017 
0018 #include <scsi/sas_ata.h>
0019 #include <scsi/scsi_transport.h>
0020 #include <scsi/scsi_transport_sas.h>
0021 #include "scsi_sas_internal.h"
0022 
0023 static int sas_discover_expander(struct domain_device *dev);
0024 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
0025 static int sas_configure_phy(struct domain_device *dev, int phy_id,
0026                  u8 *sas_addr, int include);
0027 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
0028 
0029 /* ---------- SMP task management ---------- */
0030 
0031 /* Give it some long enough timeout. In seconds. */
0032 #define SMP_TIMEOUT 10
0033 
0034 static int smp_execute_task_sg(struct domain_device *dev,
0035         struct scatterlist *req, struct scatterlist *resp)
0036 {
0037     int res, retry;
0038     struct sas_task *task = NULL;
0039     struct sas_internal *i =
0040         to_sas_internal(dev->port->ha->core.shost->transportt);
0041     struct sas_ha_struct *ha = dev->port->ha;
0042 
0043     pm_runtime_get_sync(ha->dev);
0044     mutex_lock(&dev->ex_dev.cmd_mutex);
0045     for (retry = 0; retry < 3; retry++) {
0046         if (test_bit(SAS_DEV_GONE, &dev->state)) {
0047             res = -ECOMM;
0048             break;
0049         }
0050 
0051         task = sas_alloc_slow_task(GFP_KERNEL);
0052         if (!task) {
0053             res = -ENOMEM;
0054             break;
0055         }
0056         task->dev = dev;
0057         task->task_proto = dev->tproto;
0058         task->smp_task.smp_req = *req;
0059         task->smp_task.smp_resp = *resp;
0060 
0061         task->task_done = sas_task_internal_done;
0062 
0063         task->slow_task->timer.function = sas_task_internal_timedout;
0064         task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
0065         add_timer(&task->slow_task->timer);
0066 
0067         res = i->dft->lldd_execute_task(task, GFP_KERNEL);
0068 
0069         if (res) {
0070             del_timer(&task->slow_task->timer);
0071             pr_notice("executing SMP task failed:%d\n", res);
0072             break;
0073         }
0074 
0075         wait_for_completion(&task->slow_task->completion);
0076         res = -ECOMM;
0077         if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
0078             pr_notice("smp task timed out or aborted\n");
0079             i->dft->lldd_abort_task(task);
0080             if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
0081                 pr_notice("SMP task aborted and not done\n");
0082                 break;
0083             }
0084         }
0085         if (task->task_status.resp == SAS_TASK_COMPLETE &&
0086             task->task_status.stat == SAS_SAM_STAT_GOOD) {
0087             res = 0;
0088             break;
0089         }
0090         if (task->task_status.resp == SAS_TASK_COMPLETE &&
0091             task->task_status.stat == SAS_DATA_UNDERRUN) {
0092             /* no error, but return the number of bytes of
0093              * underrun */
0094             res = task->task_status.residual;
0095             break;
0096         }
0097         if (task->task_status.resp == SAS_TASK_COMPLETE &&
0098             task->task_status.stat == SAS_DATA_OVERRUN) {
0099             res = -EMSGSIZE;
0100             break;
0101         }
0102         if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
0103             task->task_status.stat == SAS_DEVICE_UNKNOWN)
0104             break;
0105         else {
0106             pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
0107                   __func__,
0108                   SAS_ADDR(dev->sas_addr),
0109                   task->task_status.resp,
0110                   task->task_status.stat);
0111             sas_free_task(task);
0112             task = NULL;
0113         }
0114     }
0115     mutex_unlock(&dev->ex_dev.cmd_mutex);
0116     pm_runtime_put_sync(ha->dev);
0117 
0118     BUG_ON(retry == 3 && task != NULL);
0119     sas_free_task(task);
0120     return res;
0121 }
0122 
0123 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
0124                 void *resp, int resp_size)
0125 {
0126     struct scatterlist req_sg;
0127     struct scatterlist resp_sg;
0128 
0129     sg_init_one(&req_sg, req, req_size);
0130     sg_init_one(&resp_sg, resp, resp_size);
0131     return smp_execute_task_sg(dev, &req_sg, &resp_sg);
0132 }
0133 
0134 /* ---------- Allocations ---------- */
0135 
0136 static inline void *alloc_smp_req(int size)
0137 {
0138     u8 *p = kzalloc(size, GFP_KERNEL);
0139     if (p)
0140         p[0] = SMP_REQUEST;
0141     return p;
0142 }
0143 
0144 static inline void *alloc_smp_resp(int size)
0145 {
0146     return kzalloc(size, GFP_KERNEL);
0147 }
0148 
0149 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
0150 {
0151     switch (phy->routing_attr) {
0152     case TABLE_ROUTING:
0153         if (dev->ex_dev.t2t_supp)
0154             return 'U';
0155         else
0156             return 'T';
0157     case DIRECT_ROUTING:
0158         return 'D';
0159     case SUBTRACTIVE_ROUTING:
0160         return 'S';
0161     default:
0162         return '?';
0163     }
0164 }
0165 
0166 static enum sas_device_type to_dev_type(struct discover_resp *dr)
0167 {
0168     /* This is detecting a failure to transmit initial dev to host
0169      * FIS as described in section J.5 of sas-2 r16
0170      */
0171     if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
0172         dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
0173         return SAS_SATA_PENDING;
0174     else
0175         return dr->attached_dev_type;
0176 }
0177 
0178 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
0179                struct smp_disc_resp *disc_resp)
0180 {
0181     enum sas_device_type dev_type;
0182     enum sas_linkrate linkrate;
0183     u8 sas_addr[SAS_ADDR_SIZE];
0184     struct discover_resp *dr = &disc_resp->disc;
0185     struct sas_ha_struct *ha = dev->port->ha;
0186     struct expander_device *ex = &dev->ex_dev;
0187     struct ex_phy *phy = &ex->ex_phy[phy_id];
0188     struct sas_rphy *rphy = dev->rphy;
0189     bool new_phy = !phy->phy;
0190     char *type;
0191 
0192     if (new_phy) {
0193         if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
0194             return;
0195         phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
0196 
0197         /* FIXME: error_handling */
0198         BUG_ON(!phy->phy);
0199     }
0200 
0201     switch (disc_resp->result) {
0202     case SMP_RESP_PHY_VACANT:
0203         phy->phy_state = PHY_VACANT;
0204         break;
0205     default:
0206         phy->phy_state = PHY_NOT_PRESENT;
0207         break;
0208     case SMP_RESP_FUNC_ACC:
0209         phy->phy_state = PHY_EMPTY; /* do not know yet */
0210         break;
0211     }
0212 
0213     /* check if anything important changed to squelch debug */
0214     dev_type = phy->attached_dev_type;
0215     linkrate  = phy->linkrate;
0216     memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
0217 
0218     /* Handle vacant phy - rest of dr data is not valid so skip it */
0219     if (phy->phy_state == PHY_VACANT) {
0220         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
0221         phy->attached_dev_type = SAS_PHY_UNUSED;
0222         if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
0223             phy->phy_id = phy_id;
0224             goto skip;
0225         } else
0226             goto out;
0227     }
0228 
0229     phy->attached_dev_type = to_dev_type(dr);
0230     if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
0231         goto out;
0232     phy->phy_id = phy_id;
0233     phy->linkrate = dr->linkrate;
0234     phy->attached_sata_host = dr->attached_sata_host;
0235     phy->attached_sata_dev  = dr->attached_sata_dev;
0236     phy->attached_sata_ps   = dr->attached_sata_ps;
0237     phy->attached_iproto = dr->iproto << 1;
0238     phy->attached_tproto = dr->tproto << 1;
0239     /* help some expanders that fail to zero sas_address in the 'no
0240      * device' case
0241      */
0242     if (phy->attached_dev_type == SAS_PHY_UNUSED ||
0243         phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
0244         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
0245     else
0246         memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
0247     phy->attached_phy_id = dr->attached_phy_id;
0248     phy->phy_change_count = dr->change_count;
0249     phy->routing_attr = dr->routing_attr;
0250     phy->virtual = dr->virtual;
0251     phy->last_da_index = -1;
0252 
0253     phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
0254     phy->phy->identify.device_type = dr->attached_dev_type;
0255     phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
0256     phy->phy->identify.target_port_protocols = phy->attached_tproto;
0257     if (!phy->attached_tproto && dr->attached_sata_dev)
0258         phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
0259     phy->phy->identify.phy_identifier = phy_id;
0260     phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
0261     phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
0262     phy->phy->minimum_linkrate = dr->pmin_linkrate;
0263     phy->phy->maximum_linkrate = dr->pmax_linkrate;
0264     phy->phy->negotiated_linkrate = phy->linkrate;
0265     phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
0266 
0267  skip:
0268     if (new_phy)
0269         if (sas_phy_add(phy->phy)) {
0270             sas_phy_free(phy->phy);
0271             return;
0272         }
0273 
0274  out:
0275     switch (phy->attached_dev_type) {
0276     case SAS_SATA_PENDING:
0277         type = "stp pending";
0278         break;
0279     case SAS_PHY_UNUSED:
0280         type = "no device";
0281         break;
0282     case SAS_END_DEVICE:
0283         if (phy->attached_iproto) {
0284             if (phy->attached_tproto)
0285                 type = "host+target";
0286             else
0287                 type = "host";
0288         } else {
0289             if (dr->attached_sata_dev)
0290                 type = "stp";
0291             else
0292                 type = "ssp";
0293         }
0294         break;
0295     case SAS_EDGE_EXPANDER_DEVICE:
0296     case SAS_FANOUT_EXPANDER_DEVICE:
0297         type = "smp";
0298         break;
0299     default:
0300         type = "unknown";
0301     }
0302 
0303     /* this routine is polled by libata error recovery so filter
0304      * unimportant messages
0305      */
0306     if (new_phy || phy->attached_dev_type != dev_type ||
0307         phy->linkrate != linkrate ||
0308         SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
0309         /* pass */;
0310     else
0311         return;
0312 
0313     /* if the attached device type changed and ata_eh is active,
0314      * make sure we run revalidation when eh completes (see:
0315      * sas_enable_revalidation)
0316      */
0317     if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
0318         set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
0319 
0320     pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
0321          test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
0322          SAS_ADDR(dev->sas_addr), phy->phy_id,
0323          sas_route_char(dev, phy), phy->linkrate,
0324          SAS_ADDR(phy->attached_sas_addr), type);
0325 }
0326 
0327 /* check if we have an existing attached ata device on this expander phy */
0328 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
0329 {
0330     struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
0331     struct domain_device *dev;
0332     struct sas_rphy *rphy;
0333 
0334     if (!ex_phy->port)
0335         return NULL;
0336 
0337     rphy = ex_phy->port->rphy;
0338     if (!rphy)
0339         return NULL;
0340 
0341     dev = sas_find_dev_by_rphy(rphy);
0342 
0343     if (dev && dev_is_sata(dev))
0344         return dev;
0345 
0346     return NULL;
0347 }
0348 
0349 #define DISCOVER_REQ_SIZE  16
0350 #define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
0351 
0352 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
0353                       struct smp_disc_resp *disc_resp,
0354                       int single)
0355 {
0356     struct discover_resp *dr = &disc_resp->disc;
0357     int res;
0358 
0359     disc_req[9] = single;
0360 
0361     res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
0362                    disc_resp, DISCOVER_RESP_SIZE);
0363     if (res)
0364         return res;
0365     if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
0366         pr_notice("Found loopback topology, just ignore it!\n");
0367         return 0;
0368     }
0369     sas_set_ex_phy(dev, single, disc_resp);
0370     return 0;
0371 }
0372 
0373 int sas_ex_phy_discover(struct domain_device *dev, int single)
0374 {
0375     struct expander_device *ex = &dev->ex_dev;
0376     int  res = 0;
0377     u8   *disc_req;
0378     struct smp_disc_resp *disc_resp;
0379 
0380     disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
0381     if (!disc_req)
0382         return -ENOMEM;
0383 
0384     disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
0385     if (!disc_resp) {
0386         kfree(disc_req);
0387         return -ENOMEM;
0388     }
0389 
0390     disc_req[1] = SMP_DISCOVER;
0391 
0392     if (0 <= single && single < ex->num_phys) {
0393         res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
0394     } else {
0395         int i;
0396 
0397         for (i = 0; i < ex->num_phys; i++) {
0398             res = sas_ex_phy_discover_helper(dev, disc_req,
0399                              disc_resp, i);
0400             if (res)
0401                 goto out_err;
0402         }
0403     }
0404 out_err:
0405     kfree(disc_resp);
0406     kfree(disc_req);
0407     return res;
0408 }
0409 
0410 static int sas_expander_discover(struct domain_device *dev)
0411 {
0412     struct expander_device *ex = &dev->ex_dev;
0413     int res;
0414 
0415     ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
0416     if (!ex->ex_phy)
0417         return -ENOMEM;
0418 
0419     res = sas_ex_phy_discover(dev, -1);
0420     if (res)
0421         goto out_err;
0422 
0423     return 0;
0424  out_err:
0425     kfree(ex->ex_phy);
0426     ex->ex_phy = NULL;
0427     return res;
0428 }
0429 
0430 #define MAX_EXPANDER_PHYS 128
0431 
0432 #define RG_REQ_SIZE   8
0433 #define RG_RESP_SIZE  sizeof(struct smp_rg_resp)
0434 
0435 static int sas_ex_general(struct domain_device *dev)
0436 {
0437     u8 *rg_req;
0438     struct smp_rg_resp *rg_resp;
0439     struct report_general_resp *rg;
0440     int res;
0441     int i;
0442 
0443     rg_req = alloc_smp_req(RG_REQ_SIZE);
0444     if (!rg_req)
0445         return -ENOMEM;
0446 
0447     rg_resp = alloc_smp_resp(RG_RESP_SIZE);
0448     if (!rg_resp) {
0449         kfree(rg_req);
0450         return -ENOMEM;
0451     }
0452 
0453     rg_req[1] = SMP_REPORT_GENERAL;
0454 
0455     for (i = 0; i < 5; i++) {
0456         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
0457                        RG_RESP_SIZE);
0458 
0459         if (res) {
0460             pr_notice("RG to ex %016llx failed:0x%x\n",
0461                   SAS_ADDR(dev->sas_addr), res);
0462             goto out;
0463         } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
0464             pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
0465                  SAS_ADDR(dev->sas_addr), rg_resp->result);
0466             res = rg_resp->result;
0467             goto out;
0468         }
0469 
0470         rg = &rg_resp->rg;
0471         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
0472         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
0473         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
0474         dev->ex_dev.t2t_supp = rg->t2t_supp;
0475         dev->ex_dev.conf_route_table = rg->conf_route_table;
0476         dev->ex_dev.configuring = rg->configuring;
0477         memcpy(dev->ex_dev.enclosure_logical_id,
0478                rg->enclosure_logical_id, 8);
0479 
0480         if (dev->ex_dev.configuring) {
0481             pr_debug("RG: ex %016llx self-configuring...\n",
0482                  SAS_ADDR(dev->sas_addr));
0483             schedule_timeout_interruptible(5*HZ);
0484         } else
0485             break;
0486     }
0487 out:
0488     kfree(rg_req);
0489     kfree(rg_resp);
0490     return res;
0491 }
0492 
0493 static void ex_assign_manuf_info(struct domain_device *dev, void
0494                     *_mi_resp)
0495 {
0496     u8 *mi_resp = _mi_resp;
0497     struct sas_rphy *rphy = dev->rphy;
0498     struct sas_expander_device *edev = rphy_to_expander_device(rphy);
0499 
0500     memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
0501     memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
0502     memcpy(edev->product_rev, mi_resp + 36,
0503            SAS_EXPANDER_PRODUCT_REV_LEN);
0504 
0505     if (mi_resp[8] & 1) {
0506         memcpy(edev->component_vendor_id, mi_resp + 40,
0507                SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
0508         edev->component_id = mi_resp[48] << 8 | mi_resp[49];
0509         edev->component_revision_id = mi_resp[50];
0510     }
0511 }
0512 
0513 #define MI_REQ_SIZE   8
0514 #define MI_RESP_SIZE 64
0515 
0516 static int sas_ex_manuf_info(struct domain_device *dev)
0517 {
0518     u8 *mi_req;
0519     u8 *mi_resp;
0520     int res;
0521 
0522     mi_req = alloc_smp_req(MI_REQ_SIZE);
0523     if (!mi_req)
0524         return -ENOMEM;
0525 
0526     mi_resp = alloc_smp_resp(MI_RESP_SIZE);
0527     if (!mi_resp) {
0528         kfree(mi_req);
0529         return -ENOMEM;
0530     }
0531 
0532     mi_req[1] = SMP_REPORT_MANUF_INFO;
0533 
0534     res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
0535     if (res) {
0536         pr_notice("MI: ex %016llx failed:0x%x\n",
0537               SAS_ADDR(dev->sas_addr), res);
0538         goto out;
0539     } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
0540         pr_debug("MI ex %016llx returned SMP result:0x%x\n",
0541              SAS_ADDR(dev->sas_addr), mi_resp[2]);
0542         goto out;
0543     }
0544 
0545     ex_assign_manuf_info(dev, mi_resp);
0546 out:
0547     kfree(mi_req);
0548     kfree(mi_resp);
0549     return res;
0550 }
0551 
0552 #define PC_REQ_SIZE  44
0553 #define PC_RESP_SIZE 8
0554 
0555 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
0556             enum phy_func phy_func,
0557             struct sas_phy_linkrates *rates)
0558 {
0559     u8 *pc_req;
0560     u8 *pc_resp;
0561     int res;
0562 
0563     pc_req = alloc_smp_req(PC_REQ_SIZE);
0564     if (!pc_req)
0565         return -ENOMEM;
0566 
0567     pc_resp = alloc_smp_resp(PC_RESP_SIZE);
0568     if (!pc_resp) {
0569         kfree(pc_req);
0570         return -ENOMEM;
0571     }
0572 
0573     pc_req[1] = SMP_PHY_CONTROL;
0574     pc_req[9] = phy_id;
0575     pc_req[10] = phy_func;
0576     if (rates) {
0577         pc_req[32] = rates->minimum_linkrate << 4;
0578         pc_req[33] = rates->maximum_linkrate << 4;
0579     }
0580 
0581     res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
0582     if (res) {
0583         pr_err("ex %016llx phy%02d PHY control failed: %d\n",
0584                SAS_ADDR(dev->sas_addr), phy_id, res);
0585     } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
0586         pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
0587                SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
0588         res = pc_resp[2];
0589     }
0590     kfree(pc_resp);
0591     kfree(pc_req);
0592     return res;
0593 }
0594 
0595 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
0596 {
0597     struct expander_device *ex = &dev->ex_dev;
0598     struct ex_phy *phy = &ex->ex_phy[phy_id];
0599 
0600     sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
0601     phy->linkrate = SAS_PHY_DISABLED;
0602 }
0603 
0604 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
0605 {
0606     struct expander_device *ex = &dev->ex_dev;
0607     int i;
0608 
0609     for (i = 0; i < ex->num_phys; i++) {
0610         struct ex_phy *phy = &ex->ex_phy[i];
0611 
0612         if (phy->phy_state == PHY_VACANT ||
0613             phy->phy_state == PHY_NOT_PRESENT)
0614             continue;
0615 
0616         if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
0617             sas_ex_disable_phy(dev, i);
0618     }
0619 }
0620 
0621 static int sas_dev_present_in_domain(struct asd_sas_port *port,
0622                         u8 *sas_addr)
0623 {
0624     struct domain_device *dev;
0625 
0626     if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
0627         return 1;
0628     list_for_each_entry(dev, &port->dev_list, dev_list_node) {
0629         if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
0630             return 1;
0631     }
0632     return 0;
0633 }
0634 
0635 #define RPEL_REQ_SIZE   16
0636 #define RPEL_RESP_SIZE  32
0637 int sas_smp_get_phy_events(struct sas_phy *phy)
0638 {
0639     int res;
0640     u8 *req;
0641     u8 *resp;
0642     struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
0643     struct domain_device *dev = sas_find_dev_by_rphy(rphy);
0644 
0645     req = alloc_smp_req(RPEL_REQ_SIZE);
0646     if (!req)
0647         return -ENOMEM;
0648 
0649     resp = alloc_smp_resp(RPEL_RESP_SIZE);
0650     if (!resp) {
0651         kfree(req);
0652         return -ENOMEM;
0653     }
0654 
0655     req[1] = SMP_REPORT_PHY_ERR_LOG;
0656     req[9] = phy->number;
0657 
0658     res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
0659                    resp, RPEL_RESP_SIZE);
0660 
0661     if (res)
0662         goto out;
0663 
0664     phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
0665     phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
0666     phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
0667     phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
0668 
0669  out:
0670     kfree(req);
0671     kfree(resp);
0672     return res;
0673 
0674 }
0675 
0676 #ifdef CONFIG_SCSI_SAS_ATA
0677 
0678 #define RPS_REQ_SIZE  16
0679 #define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
0680 
0681 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
0682                 struct smp_rps_resp *rps_resp)
0683 {
0684     int res;
0685     u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
0686     u8 *resp = (u8 *)rps_resp;
0687 
0688     if (!rps_req)
0689         return -ENOMEM;
0690 
0691     rps_req[1] = SMP_REPORT_PHY_SATA;
0692     rps_req[9] = phy_id;
0693 
0694     res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
0695                    rps_resp, RPS_RESP_SIZE);
0696 
0697     /* 0x34 is the FIS type for the D2H fis.  There's a potential
0698      * standards cockup here.  sas-2 explicitly specifies the FIS
0699      * should be encoded so that FIS type is in resp[24].
0700      * However, some expanders endian reverse this.  Undo the
0701      * reversal here */
0702     if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
0703         int i;
0704 
0705         for (i = 0; i < 5; i++) {
0706             int j = 24 + (i*4);
0707             u8 a, b;
0708             a = resp[j + 0];
0709             b = resp[j + 1];
0710             resp[j + 0] = resp[j + 3];
0711             resp[j + 1] = resp[j + 2];
0712             resp[j + 2] = b;
0713             resp[j + 3] = a;
0714         }
0715     }
0716 
0717     kfree(rps_req);
0718     return res;
0719 }
0720 #endif
0721 
0722 static void sas_ex_get_linkrate(struct domain_device *parent,
0723                        struct domain_device *child,
0724                        struct ex_phy *parent_phy)
0725 {
0726     struct expander_device *parent_ex = &parent->ex_dev;
0727     struct sas_port *port;
0728     int i;
0729 
0730     child->pathways = 0;
0731 
0732     port = parent_phy->port;
0733 
0734     for (i = 0; i < parent_ex->num_phys; i++) {
0735         struct ex_phy *phy = &parent_ex->ex_phy[i];
0736 
0737         if (phy->phy_state == PHY_VACANT ||
0738             phy->phy_state == PHY_NOT_PRESENT)
0739             continue;
0740 
0741         if (SAS_ADDR(phy->attached_sas_addr) ==
0742             SAS_ADDR(child->sas_addr)) {
0743 
0744             child->min_linkrate = min(parent->min_linkrate,
0745                           phy->linkrate);
0746             child->max_linkrate = max(parent->max_linkrate,
0747                           phy->linkrate);
0748             child->pathways++;
0749             sas_port_add_phy(port, phy->phy);
0750         }
0751     }
0752     child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
0753     child->pathways = min(child->pathways, parent->pathways);
0754 }
0755 
0756 static struct domain_device *sas_ex_discover_end_dev(
0757     struct domain_device *parent, int phy_id)
0758 {
0759     struct expander_device *parent_ex = &parent->ex_dev;
0760     struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
0761     struct domain_device *child = NULL;
0762     struct sas_rphy *rphy;
0763     int res;
0764 
0765     if (phy->attached_sata_host || phy->attached_sata_ps)
0766         return NULL;
0767 
0768     child = sas_alloc_device();
0769     if (!child)
0770         return NULL;
0771 
0772     kref_get(&parent->kref);
0773     child->parent = parent;
0774     child->port   = parent->port;
0775     child->iproto = phy->attached_iproto;
0776     memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
0777     sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
0778     if (!phy->port) {
0779         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
0780         if (unlikely(!phy->port))
0781             goto out_err;
0782         if (unlikely(sas_port_add(phy->port) != 0)) {
0783             sas_port_free(phy->port);
0784             goto out_err;
0785         }
0786     }
0787     sas_ex_get_linkrate(parent, child, phy);
0788     sas_device_set_phy(child, phy->port);
0789 
0790 #ifdef CONFIG_SCSI_SAS_ATA
0791     if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
0792         if (child->linkrate > parent->min_linkrate) {
0793             struct sas_phy *cphy = child->phy;
0794             enum sas_linkrate min_prate = cphy->minimum_linkrate,
0795                 parent_min_lrate = parent->min_linkrate,
0796                 min_linkrate = (min_prate > parent_min_lrate) ?
0797                            parent_min_lrate : 0;
0798             struct sas_phy_linkrates rates = {
0799                 .maximum_linkrate = parent->min_linkrate,
0800                 .minimum_linkrate = min_linkrate,
0801             };
0802             int ret;
0803 
0804             pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
0805                    SAS_ADDR(child->sas_addr), phy_id);
0806             ret = sas_smp_phy_control(parent, phy_id,
0807                           PHY_FUNC_LINK_RESET, &rates);
0808             if (ret) {
0809                 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
0810                        SAS_ADDR(child->sas_addr), phy_id, ret);
0811                 goto out_free;
0812             }
0813             pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
0814                   SAS_ADDR(child->sas_addr), phy_id);
0815             child->linkrate = child->min_linkrate;
0816         }
0817         res = sas_get_ata_info(child, phy);
0818         if (res)
0819             goto out_free;
0820 
0821         sas_init_dev(child);
0822         res = sas_ata_init(child);
0823         if (res)
0824             goto out_free;
0825         rphy = sas_end_device_alloc(phy->port);
0826         if (!rphy)
0827             goto out_free;
0828         rphy->identify.phy_identifier = phy_id;
0829 
0830         child->rphy = rphy;
0831         get_device(&rphy->dev);
0832 
0833         list_add_tail(&child->disco_list_node, &parent->port->disco_list);
0834 
0835         res = sas_discover_sata(child);
0836         if (res) {
0837             pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
0838                   SAS_ADDR(child->sas_addr),
0839                   SAS_ADDR(parent->sas_addr), phy_id, res);
0840             goto out_list_del;
0841         }
0842     } else
0843 #endif
0844       if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
0845         child->dev_type = SAS_END_DEVICE;
0846         rphy = sas_end_device_alloc(phy->port);
0847         /* FIXME: error handling */
0848         if (unlikely(!rphy))
0849             goto out_free;
0850         child->tproto = phy->attached_tproto;
0851         sas_init_dev(child);
0852 
0853         child->rphy = rphy;
0854         get_device(&rphy->dev);
0855         rphy->identify.phy_identifier = phy_id;
0856         sas_fill_in_rphy(child, rphy);
0857 
0858         list_add_tail(&child->disco_list_node, &parent->port->disco_list);
0859 
0860         res = sas_discover_end_dev(child);
0861         if (res) {
0862             pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
0863                   SAS_ADDR(child->sas_addr),
0864                   SAS_ADDR(parent->sas_addr), phy_id, res);
0865             goto out_list_del;
0866         }
0867     } else {
0868         pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
0869               phy->attached_tproto, SAS_ADDR(parent->sas_addr),
0870               phy_id);
0871         goto out_free;
0872     }
0873 
0874     list_add_tail(&child->siblings, &parent_ex->children);
0875     return child;
0876 
0877  out_list_del:
0878     sas_rphy_free(child->rphy);
0879     list_del(&child->disco_list_node);
0880     spin_lock_irq(&parent->port->dev_list_lock);
0881     list_del(&child->dev_list_node);
0882     spin_unlock_irq(&parent->port->dev_list_lock);
0883  out_free:
0884     sas_port_delete(phy->port);
0885  out_err:
0886     phy->port = NULL;
0887     sas_put_device(child);
0888     return NULL;
0889 }
0890 
0891 /* See if this phy is part of a wide port */
0892 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
0893 {
0894     struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
0895     int i;
0896 
0897     for (i = 0; i < parent->ex_dev.num_phys; i++) {
0898         struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
0899 
0900         if (ephy == phy)
0901             continue;
0902 
0903         if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
0904                 SAS_ADDR_SIZE) && ephy->port) {
0905             sas_port_add_phy(ephy->port, phy->phy);
0906             phy->port = ephy->port;
0907             phy->phy_state = PHY_DEVICE_DISCOVERED;
0908             return true;
0909         }
0910     }
0911 
0912     return false;
0913 }
0914 
0915 static struct domain_device *sas_ex_discover_expander(
0916     struct domain_device *parent, int phy_id)
0917 {
0918     struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
0919     struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
0920     struct domain_device *child = NULL;
0921     struct sas_rphy *rphy;
0922     struct sas_expander_device *edev;
0923     struct asd_sas_port *port;
0924     int res;
0925 
0926     if (phy->routing_attr == DIRECT_ROUTING) {
0927         pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
0928             SAS_ADDR(parent->sas_addr), phy_id,
0929             SAS_ADDR(phy->attached_sas_addr),
0930             phy->attached_phy_id);
0931         return NULL;
0932     }
0933     child = sas_alloc_device();
0934     if (!child)
0935         return NULL;
0936 
0937     phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
0938     /* FIXME: better error handling */
0939     BUG_ON(sas_port_add(phy->port) != 0);
0940 
0941 
0942     switch (phy->attached_dev_type) {
0943     case SAS_EDGE_EXPANDER_DEVICE:
0944         rphy = sas_expander_alloc(phy->port,
0945                       SAS_EDGE_EXPANDER_DEVICE);
0946         break;
0947     case SAS_FANOUT_EXPANDER_DEVICE:
0948         rphy = sas_expander_alloc(phy->port,
0949                       SAS_FANOUT_EXPANDER_DEVICE);
0950         break;
0951     default:
0952         rphy = NULL;    /* shut gcc up */
0953         BUG();
0954     }
0955     port = parent->port;
0956     child->rphy = rphy;
0957     get_device(&rphy->dev);
0958     edev = rphy_to_expander_device(rphy);
0959     child->dev_type = phy->attached_dev_type;
0960     kref_get(&parent->kref);
0961     child->parent = parent;
0962     child->port = port;
0963     child->iproto = phy->attached_iproto;
0964     child->tproto = phy->attached_tproto;
0965     memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
0966     sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
0967     sas_ex_get_linkrate(parent, child, phy);
0968     edev->level = parent_ex->level + 1;
0969     parent->port->disc.max_level = max(parent->port->disc.max_level,
0970                        edev->level);
0971     sas_init_dev(child);
0972     sas_fill_in_rphy(child, rphy);
0973     sas_rphy_add(rphy);
0974 
0975     spin_lock_irq(&parent->port->dev_list_lock);
0976     list_add_tail(&child->dev_list_node, &parent->port->dev_list);
0977     spin_unlock_irq(&parent->port->dev_list_lock);
0978 
0979     res = sas_discover_expander(child);
0980     if (res) {
0981         sas_rphy_delete(rphy);
0982         spin_lock_irq(&parent->port->dev_list_lock);
0983         list_del(&child->dev_list_node);
0984         spin_unlock_irq(&parent->port->dev_list_lock);
0985         sas_put_device(child);
0986         sas_port_delete(phy->port);
0987         phy->port = NULL;
0988         return NULL;
0989     }
0990     list_add_tail(&child->siblings, &parent->ex_dev.children);
0991     return child;
0992 }
0993 
0994 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
0995 {
0996     struct expander_device *ex = &dev->ex_dev;
0997     struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
0998     struct domain_device *child = NULL;
0999     int res = 0;
1000 
1001     /* Phy state */
1002     if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1003         if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1004             res = sas_ex_phy_discover(dev, phy_id);
1005         if (res)
1006             return res;
1007     }
1008 
1009     /* Parent and domain coherency */
1010     if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1011                  SAS_ADDR(dev->port->sas_addr))) {
1012         sas_add_parent_port(dev, phy_id);
1013         return 0;
1014     }
1015     if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1016                 SAS_ADDR(dev->parent->sas_addr))) {
1017         sas_add_parent_port(dev, phy_id);
1018         if (ex_phy->routing_attr == TABLE_ROUTING)
1019             sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1020         return 0;
1021     }
1022 
1023     if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1024         sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1025 
1026     if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1027         if (ex_phy->routing_attr == DIRECT_ROUTING) {
1028             memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1029             sas_configure_routing(dev, ex_phy->attached_sas_addr);
1030         }
1031         return 0;
1032     } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1033         return 0;
1034 
1035     if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1036         ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1037         ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1038         ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1039         pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1040             ex_phy->attached_dev_type,
1041             SAS_ADDR(dev->sas_addr),
1042             phy_id);
1043         return 0;
1044     }
1045 
1046     res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1047     if (res) {
1048         pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1049               SAS_ADDR(ex_phy->attached_sas_addr), res);
1050         sas_disable_routing(dev, ex_phy->attached_sas_addr);
1051         return res;
1052     }
1053 
1054     if (sas_ex_join_wide_port(dev, phy_id)) {
1055         pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1056              phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1057         return res;
1058     }
1059 
1060     switch (ex_phy->attached_dev_type) {
1061     case SAS_END_DEVICE:
1062     case SAS_SATA_PENDING:
1063         child = sas_ex_discover_end_dev(dev, phy_id);
1064         break;
1065     case SAS_FANOUT_EXPANDER_DEVICE:
1066         if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1067             pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1068                  SAS_ADDR(ex_phy->attached_sas_addr),
1069                  ex_phy->attached_phy_id,
1070                  SAS_ADDR(dev->sas_addr),
1071                  phy_id);
1072             sas_ex_disable_phy(dev, phy_id);
1073             return res;
1074         } else
1075             memcpy(dev->port->disc.fanout_sas_addr,
1076                    ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1077         fallthrough;
1078     case SAS_EDGE_EXPANDER_DEVICE:
1079         child = sas_ex_discover_expander(dev, phy_id);
1080         break;
1081     default:
1082         break;
1083     }
1084 
1085     if (!child)
1086         pr_notice("ex %016llx phy%02d failed to discover\n",
1087               SAS_ADDR(dev->sas_addr), phy_id);
1088     return res;
1089 }
1090 
1091 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1092 {
1093     struct expander_device *ex = &dev->ex_dev;
1094     int i;
1095 
1096     for (i = 0; i < ex->num_phys; i++) {
1097         struct ex_phy *phy = &ex->ex_phy[i];
1098 
1099         if (phy->phy_state == PHY_VACANT ||
1100             phy->phy_state == PHY_NOT_PRESENT)
1101             continue;
1102 
1103         if (dev_is_expander(phy->attached_dev_type) &&
1104             phy->routing_attr == SUBTRACTIVE_ROUTING) {
1105 
1106             memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1107 
1108             return 1;
1109         }
1110     }
1111     return 0;
1112 }
1113 
1114 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1115 {
1116     struct expander_device *ex = &dev->ex_dev;
1117     struct domain_device *child;
1118     u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1119 
1120     list_for_each_entry(child, &ex->children, siblings) {
1121         if (!dev_is_expander(child->dev_type))
1122             continue;
1123         if (sub_addr[0] == 0) {
1124             sas_find_sub_addr(child, sub_addr);
1125             continue;
1126         } else {
1127             u8 s2[SAS_ADDR_SIZE];
1128 
1129             if (sas_find_sub_addr(child, s2) &&
1130                 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1131 
1132                 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1133                       SAS_ADDR(dev->sas_addr),
1134                       SAS_ADDR(child->sas_addr),
1135                       SAS_ADDR(s2),
1136                       SAS_ADDR(sub_addr));
1137 
1138                 sas_ex_disable_port(child, s2);
1139             }
1140         }
1141     }
1142     return 0;
1143 }
1144 /**
1145  * sas_ex_discover_devices - discover devices attached to this expander
1146  * @dev: pointer to the expander domain device
1147  * @single: if you want to do a single phy, else set to -1;
1148  *
1149  * Configure this expander for use with its devices and register the
1150  * devices of this expander.
1151  */
1152 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1153 {
1154     struct expander_device *ex = &dev->ex_dev;
1155     int i = 0, end = ex->num_phys;
1156     int res = 0;
1157 
1158     if (0 <= single && single < end) {
1159         i = single;
1160         end = i+1;
1161     }
1162 
1163     for ( ; i < end; i++) {
1164         struct ex_phy *ex_phy = &ex->ex_phy[i];
1165 
1166         if (ex_phy->phy_state == PHY_VACANT ||
1167             ex_phy->phy_state == PHY_NOT_PRESENT ||
1168             ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1169             continue;
1170 
1171         switch (ex_phy->linkrate) {
1172         case SAS_PHY_DISABLED:
1173         case SAS_PHY_RESET_PROBLEM:
1174         case SAS_SATA_PORT_SELECTOR:
1175             continue;
1176         default:
1177             res = sas_ex_discover_dev(dev, i);
1178             if (res)
1179                 break;
1180             continue;
1181         }
1182     }
1183 
1184     if (!res)
1185         sas_check_level_subtractive_boundary(dev);
1186 
1187     return res;
1188 }
1189 
1190 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1191 {
1192     struct expander_device *ex = &dev->ex_dev;
1193     int i;
1194     u8  *sub_sas_addr = NULL;
1195 
1196     if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1197         return 0;
1198 
1199     for (i = 0; i < ex->num_phys; i++) {
1200         struct ex_phy *phy = &ex->ex_phy[i];
1201 
1202         if (phy->phy_state == PHY_VACANT ||
1203             phy->phy_state == PHY_NOT_PRESENT)
1204             continue;
1205 
1206         if (dev_is_expander(phy->attached_dev_type) &&
1207             phy->routing_attr == SUBTRACTIVE_ROUTING) {
1208 
1209             if (!sub_sas_addr)
1210                 sub_sas_addr = &phy->attached_sas_addr[0];
1211             else if (SAS_ADDR(sub_sas_addr) !=
1212                  SAS_ADDR(phy->attached_sas_addr)) {
1213 
1214                 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1215                       SAS_ADDR(dev->sas_addr), i,
1216                       SAS_ADDR(phy->attached_sas_addr),
1217                       SAS_ADDR(sub_sas_addr));
1218                 sas_ex_disable_phy(dev, i);
1219             }
1220         }
1221     }
1222     return 0;
1223 }
1224 
1225 static void sas_print_parent_topology_bug(struct domain_device *child,
1226                          struct ex_phy *parent_phy,
1227                          struct ex_phy *child_phy)
1228 {
1229     static const char *ex_type[] = {
1230         [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1231         [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1232     };
1233     struct domain_device *parent = child->parent;
1234 
1235     pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1236           ex_type[parent->dev_type],
1237           SAS_ADDR(parent->sas_addr),
1238           parent_phy->phy_id,
1239 
1240           ex_type[child->dev_type],
1241           SAS_ADDR(child->sas_addr),
1242           child_phy->phy_id,
1243 
1244           sas_route_char(parent, parent_phy),
1245           sas_route_char(child, child_phy));
1246 }
1247 
1248 static int sas_check_eeds(struct domain_device *child,
1249                  struct ex_phy *parent_phy,
1250                  struct ex_phy *child_phy)
1251 {
1252     int res = 0;
1253     struct domain_device *parent = child->parent;
1254 
1255     if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1256         res = -ENODEV;
1257         pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1258             SAS_ADDR(parent->sas_addr),
1259             parent_phy->phy_id,
1260             SAS_ADDR(child->sas_addr),
1261             child_phy->phy_id,
1262             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1263     } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1264         memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1265                SAS_ADDR_SIZE);
1266         memcpy(parent->port->disc.eeds_b, child->sas_addr,
1267                SAS_ADDR_SIZE);
1268     } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1269             SAS_ADDR(parent->sas_addr)) ||
1270            (SAS_ADDR(parent->port->disc.eeds_a) ==
1271             SAS_ADDR(child->sas_addr)))
1272            &&
1273            ((SAS_ADDR(parent->port->disc.eeds_b) ==
1274              SAS_ADDR(parent->sas_addr)) ||
1275             (SAS_ADDR(parent->port->disc.eeds_b) ==
1276              SAS_ADDR(child->sas_addr))))
1277         ;
1278     else {
1279         res = -ENODEV;
1280         pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1281             SAS_ADDR(parent->sas_addr),
1282             parent_phy->phy_id,
1283             SAS_ADDR(child->sas_addr),
1284             child_phy->phy_id);
1285     }
1286 
1287     return res;
1288 }
1289 
1290 /* Here we spill over 80 columns.  It is intentional.
1291  */
1292 static int sas_check_parent_topology(struct domain_device *child)
1293 {
1294     struct expander_device *child_ex = &child->ex_dev;
1295     struct expander_device *parent_ex;
1296     int i;
1297     int res = 0;
1298 
1299     if (!child->parent)
1300         return 0;
1301 
1302     if (!dev_is_expander(child->parent->dev_type))
1303         return 0;
1304 
1305     parent_ex = &child->parent->ex_dev;
1306 
1307     for (i = 0; i < parent_ex->num_phys; i++) {
1308         struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1309         struct ex_phy *child_phy;
1310 
1311         if (parent_phy->phy_state == PHY_VACANT ||
1312             parent_phy->phy_state == PHY_NOT_PRESENT)
1313             continue;
1314 
1315         if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1316             continue;
1317 
1318         child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1319 
1320         switch (child->parent->dev_type) {
1321         case SAS_EDGE_EXPANDER_DEVICE:
1322             if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1323                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1324                     child_phy->routing_attr != TABLE_ROUTING) {
1325                     sas_print_parent_topology_bug(child, parent_phy, child_phy);
1326                     res = -ENODEV;
1327                 }
1328             } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1329                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1330                     res = sas_check_eeds(child, parent_phy, child_phy);
1331                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1332                     sas_print_parent_topology_bug(child, parent_phy, child_phy);
1333                     res = -ENODEV;
1334                 }
1335             } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1336                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1337                     (child_phy->routing_attr == TABLE_ROUTING &&
1338                      child_ex->t2t_supp && parent_ex->t2t_supp)) {
1339                     /* All good */;
1340                 } else {
1341                     sas_print_parent_topology_bug(child, parent_phy, child_phy);
1342                     res = -ENODEV;
1343                 }
1344             }
1345             break;
1346         case SAS_FANOUT_EXPANDER_DEVICE:
1347             if (parent_phy->routing_attr != TABLE_ROUTING ||
1348                 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1349                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1350                 res = -ENODEV;
1351             }
1352             break;
1353         default:
1354             break;
1355         }
1356     }
1357 
1358     return res;
1359 }
1360 
1361 #define RRI_REQ_SIZE  16
1362 #define RRI_RESP_SIZE 44
1363 
1364 static int sas_configure_present(struct domain_device *dev, int phy_id,
1365                  u8 *sas_addr, int *index, int *present)
1366 {
1367     int i, res = 0;
1368     struct expander_device *ex = &dev->ex_dev;
1369     struct ex_phy *phy = &ex->ex_phy[phy_id];
1370     u8 *rri_req;
1371     u8 *rri_resp;
1372 
1373     *present = 0;
1374     *index = 0;
1375 
1376     rri_req = alloc_smp_req(RRI_REQ_SIZE);
1377     if (!rri_req)
1378         return -ENOMEM;
1379 
1380     rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1381     if (!rri_resp) {
1382         kfree(rri_req);
1383         return -ENOMEM;
1384     }
1385 
1386     rri_req[1] = SMP_REPORT_ROUTE_INFO;
1387     rri_req[9] = phy_id;
1388 
1389     for (i = 0; i < ex->max_route_indexes ; i++) {
1390         *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1391         res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1392                        RRI_RESP_SIZE);
1393         if (res)
1394             goto out;
1395         res = rri_resp[2];
1396         if (res == SMP_RESP_NO_INDEX) {
1397             pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1398                 SAS_ADDR(dev->sas_addr), phy_id, i);
1399             goto out;
1400         } else if (res != SMP_RESP_FUNC_ACC) {
1401             pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1402                   __func__, SAS_ADDR(dev->sas_addr), phy_id,
1403                   i, res);
1404             goto out;
1405         }
1406         if (SAS_ADDR(sas_addr) != 0) {
1407             if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1408                 *index = i;
1409                 if ((rri_resp[12] & 0x80) == 0x80)
1410                     *present = 0;
1411                 else
1412                     *present = 1;
1413                 goto out;
1414             } else if (SAS_ADDR(rri_resp+16) == 0) {
1415                 *index = i;
1416                 *present = 0;
1417                 goto out;
1418             }
1419         } else if (SAS_ADDR(rri_resp+16) == 0 &&
1420                phy->last_da_index < i) {
1421             phy->last_da_index = i;
1422             *index = i;
1423             *present = 0;
1424             goto out;
1425         }
1426     }
1427     res = -1;
1428 out:
1429     kfree(rri_req);
1430     kfree(rri_resp);
1431     return res;
1432 }
1433 
1434 #define CRI_REQ_SIZE  44
1435 #define CRI_RESP_SIZE  8
1436 
1437 static int sas_configure_set(struct domain_device *dev, int phy_id,
1438                  u8 *sas_addr, int index, int include)
1439 {
1440     int res;
1441     u8 *cri_req;
1442     u8 *cri_resp;
1443 
1444     cri_req = alloc_smp_req(CRI_REQ_SIZE);
1445     if (!cri_req)
1446         return -ENOMEM;
1447 
1448     cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1449     if (!cri_resp) {
1450         kfree(cri_req);
1451         return -ENOMEM;
1452     }
1453 
1454     cri_req[1] = SMP_CONF_ROUTE_INFO;
1455     *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1456     cri_req[9] = phy_id;
1457     if (SAS_ADDR(sas_addr) == 0 || !include)
1458         cri_req[12] |= 0x80;
1459     memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1460 
1461     res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1462                    CRI_RESP_SIZE);
1463     if (res)
1464         goto out;
1465     res = cri_resp[2];
1466     if (res == SMP_RESP_NO_INDEX) {
1467         pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1468             SAS_ADDR(dev->sas_addr), phy_id, index);
1469     }
1470 out:
1471     kfree(cri_req);
1472     kfree(cri_resp);
1473     return res;
1474 }
1475 
1476 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1477                     u8 *sas_addr, int include)
1478 {
1479     int index;
1480     int present;
1481     int res;
1482 
1483     res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1484     if (res)
1485         return res;
1486     if (include ^ present)
1487         return sas_configure_set(dev, phy_id, sas_addr, index,
1488                      include);
1489 
1490     return res;
1491 }
1492 
1493 /**
1494  * sas_configure_parent - configure routing table of parent
1495  * @parent: parent expander
1496  * @child: child expander
1497  * @sas_addr: SAS port identifier of device directly attached to child
1498  * @include: whether or not to include @child in the expander routing table
1499  */
1500 static int sas_configure_parent(struct domain_device *parent,
1501                 struct domain_device *child,
1502                 u8 *sas_addr, int include)
1503 {
1504     struct expander_device *ex_parent = &parent->ex_dev;
1505     int res = 0;
1506     int i;
1507 
1508     if (parent->parent) {
1509         res = sas_configure_parent(parent->parent, parent, sas_addr,
1510                        include);
1511         if (res)
1512             return res;
1513     }
1514 
1515     if (ex_parent->conf_route_table == 0) {
1516         pr_debug("ex %016llx has self-configuring routing table\n",
1517              SAS_ADDR(parent->sas_addr));
1518         return 0;
1519     }
1520 
1521     for (i = 0; i < ex_parent->num_phys; i++) {
1522         struct ex_phy *phy = &ex_parent->ex_phy[i];
1523 
1524         if ((phy->routing_attr == TABLE_ROUTING) &&
1525             (SAS_ADDR(phy->attached_sas_addr) ==
1526              SAS_ADDR(child->sas_addr))) {
1527             res = sas_configure_phy(parent, i, sas_addr, include);
1528             if (res)
1529                 return res;
1530         }
1531     }
1532 
1533     return res;
1534 }
1535 
1536 /**
1537  * sas_configure_routing - configure routing
1538  * @dev: expander device
1539  * @sas_addr: port identifier of device directly attached to the expander device
1540  */
1541 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1542 {
1543     if (dev->parent)
1544         return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1545     return 0;
1546 }
1547 
1548 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1549 {
1550     if (dev->parent)
1551         return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1552     return 0;
1553 }
1554 
1555 /**
1556  * sas_discover_expander - expander discovery
1557  * @dev: pointer to expander domain device
1558  *
1559  * See comment in sas_discover_sata().
1560  */
1561 static int sas_discover_expander(struct domain_device *dev)
1562 {
1563     int res;
1564 
1565     res = sas_notify_lldd_dev_found(dev);
1566     if (res)
1567         return res;
1568 
1569     res = sas_ex_general(dev);
1570     if (res)
1571         goto out_err;
1572     res = sas_ex_manuf_info(dev);
1573     if (res)
1574         goto out_err;
1575 
1576     res = sas_expander_discover(dev);
1577     if (res) {
1578         pr_warn("expander %016llx discovery failed(0x%x)\n",
1579             SAS_ADDR(dev->sas_addr), res);
1580         goto out_err;
1581     }
1582 
1583     sas_check_ex_subtractive_boundary(dev);
1584     res = sas_check_parent_topology(dev);
1585     if (res)
1586         goto out_err;
1587     return 0;
1588 out_err:
1589     sas_notify_lldd_dev_gone(dev);
1590     return res;
1591 }
1592 
1593 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1594 {
1595     int res = 0;
1596     struct domain_device *dev;
1597 
1598     list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1599         if (dev_is_expander(dev->dev_type)) {
1600             struct sas_expander_device *ex =
1601                 rphy_to_expander_device(dev->rphy);
1602 
1603             if (level == ex->level)
1604                 res = sas_ex_discover_devices(dev, -1);
1605             else if (level > 0)
1606                 res = sas_ex_discover_devices(port->port_dev, -1);
1607 
1608         }
1609     }
1610 
1611     return res;
1612 }
1613 
1614 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1615 {
1616     int res;
1617     int level;
1618 
1619     do {
1620         level = port->disc.max_level;
1621         res = sas_ex_level_discovery(port, level);
1622         mb();
1623     } while (level < port->disc.max_level);
1624 
1625     return res;
1626 }
1627 
1628 int sas_discover_root_expander(struct domain_device *dev)
1629 {
1630     int res;
1631     struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1632 
1633     res = sas_rphy_add(dev->rphy);
1634     if (res)
1635         goto out_err;
1636 
1637     ex->level = dev->port->disc.max_level; /* 0 */
1638     res = sas_discover_expander(dev);
1639     if (res)
1640         goto out_err2;
1641 
1642     sas_ex_bfs_disc(dev->port);
1643 
1644     return res;
1645 
1646 out_err2:
1647     sas_rphy_remove(dev->rphy);
1648 out_err:
1649     return res;
1650 }
1651 
1652 /* ---------- Domain revalidation ---------- */
1653 
1654 static int sas_get_phy_discover(struct domain_device *dev,
1655                 int phy_id, struct smp_disc_resp *disc_resp)
1656 {
1657     int res;
1658     u8 *disc_req;
1659 
1660     disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1661     if (!disc_req)
1662         return -ENOMEM;
1663 
1664     disc_req[1] = SMP_DISCOVER;
1665     disc_req[9] = phy_id;
1666 
1667     res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1668                    disc_resp, DISCOVER_RESP_SIZE);
1669     if (res)
1670         goto out;
1671     if (disc_resp->result != SMP_RESP_FUNC_ACC)
1672         res = disc_resp->result;
1673 out:
1674     kfree(disc_req);
1675     return res;
1676 }
1677 
1678 static int sas_get_phy_change_count(struct domain_device *dev,
1679                     int phy_id, int *pcc)
1680 {
1681     int res;
1682     struct smp_disc_resp *disc_resp;
1683 
1684     disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1685     if (!disc_resp)
1686         return -ENOMEM;
1687 
1688     res = sas_get_phy_discover(dev, phy_id, disc_resp);
1689     if (!res)
1690         *pcc = disc_resp->disc.change_count;
1691 
1692     kfree(disc_resp);
1693     return res;
1694 }
1695 
1696 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1697                     u8 *sas_addr, enum sas_device_type *type)
1698 {
1699     int res;
1700     struct smp_disc_resp *disc_resp;
1701 
1702     disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1703     if (!disc_resp)
1704         return -ENOMEM;
1705 
1706     res = sas_get_phy_discover(dev, phy_id, disc_resp);
1707     if (res == 0) {
1708         memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1709                SAS_ADDR_SIZE);
1710         *type = to_dev_type(&disc_resp->disc);
1711         if (*type == 0)
1712             memset(sas_addr, 0, SAS_ADDR_SIZE);
1713     }
1714     kfree(disc_resp);
1715     return res;
1716 }
1717 
1718 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1719                   int from_phy, bool update)
1720 {
1721     struct expander_device *ex = &dev->ex_dev;
1722     int res = 0;
1723     int i;
1724 
1725     for (i = from_phy; i < ex->num_phys; i++) {
1726         int phy_change_count = 0;
1727 
1728         res = sas_get_phy_change_count(dev, i, &phy_change_count);
1729         switch (res) {
1730         case SMP_RESP_PHY_VACANT:
1731         case SMP_RESP_NO_PHY:
1732             continue;
1733         case SMP_RESP_FUNC_ACC:
1734             break;
1735         default:
1736             return res;
1737         }
1738 
1739         if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1740             if (update)
1741                 ex->ex_phy[i].phy_change_count =
1742                     phy_change_count;
1743             *phy_id = i;
1744             return 0;
1745         }
1746     }
1747     return 0;
1748 }
1749 
1750 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1751 {
1752     int res;
1753     u8  *rg_req;
1754     struct smp_rg_resp  *rg_resp;
1755 
1756     rg_req = alloc_smp_req(RG_REQ_SIZE);
1757     if (!rg_req)
1758         return -ENOMEM;
1759 
1760     rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1761     if (!rg_resp) {
1762         kfree(rg_req);
1763         return -ENOMEM;
1764     }
1765 
1766     rg_req[1] = SMP_REPORT_GENERAL;
1767 
1768     res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1769                    RG_RESP_SIZE);
1770     if (res)
1771         goto out;
1772     if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1773         res = rg_resp->result;
1774         goto out;
1775     }
1776 
1777     *ecc = be16_to_cpu(rg_resp->rg.change_count);
1778 out:
1779     kfree(rg_resp);
1780     kfree(rg_req);
1781     return res;
1782 }
1783 /**
1784  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1785  * @dev:domain device to be detect.
1786  * @src_dev: the device which originated BROADCAST(CHANGE).
1787  *
1788  * Add self-configuration expander support. Suppose two expander cascading,
1789  * when the first level expander is self-configuring, hotplug the disks in
1790  * second level expander, BROADCAST(CHANGE) will not only be originated
1791  * in the second level expander, but also be originated in the first level
1792  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1793  * expander changed count in two level expanders will all increment at least
1794  * once, but the phy which chang count has changed is the source device which
1795  * we concerned.
1796  */
1797 
1798 static int sas_find_bcast_dev(struct domain_device *dev,
1799                   struct domain_device **src_dev)
1800 {
1801     struct expander_device *ex = &dev->ex_dev;
1802     int ex_change_count = -1;
1803     int phy_id = -1;
1804     int res;
1805     struct domain_device *ch;
1806 
1807     res = sas_get_ex_change_count(dev, &ex_change_count);
1808     if (res)
1809         goto out;
1810     if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1811         /* Just detect if this expander phys phy change count changed,
1812         * in order to determine if this expander originate BROADCAST,
1813         * and do not update phy change count field in our structure.
1814         */
1815         res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1816         if (phy_id != -1) {
1817             *src_dev = dev;
1818             ex->ex_change_count = ex_change_count;
1819             pr_info("ex %016llx phy%02d change count has changed\n",
1820                 SAS_ADDR(dev->sas_addr), phy_id);
1821             return res;
1822         } else
1823             pr_info("ex %016llx phys DID NOT change\n",
1824                 SAS_ADDR(dev->sas_addr));
1825     }
1826     list_for_each_entry(ch, &ex->children, siblings) {
1827         if (dev_is_expander(ch->dev_type)) {
1828             res = sas_find_bcast_dev(ch, src_dev);
1829             if (*src_dev)
1830                 return res;
1831         }
1832     }
1833 out:
1834     return res;
1835 }
1836 
1837 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1838 {
1839     struct expander_device *ex = &dev->ex_dev;
1840     struct domain_device *child, *n;
1841 
1842     list_for_each_entry_safe(child, n, &ex->children, siblings) {
1843         set_bit(SAS_DEV_GONE, &child->state);
1844         if (dev_is_expander(child->dev_type))
1845             sas_unregister_ex_tree(port, child);
1846         else
1847             sas_unregister_dev(port, child);
1848     }
1849     sas_unregister_dev(port, dev);
1850 }
1851 
1852 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1853                      int phy_id, bool last)
1854 {
1855     struct expander_device *ex_dev = &parent->ex_dev;
1856     struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1857     struct domain_device *child, *n, *found = NULL;
1858     if (last) {
1859         list_for_each_entry_safe(child, n,
1860             &ex_dev->children, siblings) {
1861             if (SAS_ADDR(child->sas_addr) ==
1862                 SAS_ADDR(phy->attached_sas_addr)) {
1863                 set_bit(SAS_DEV_GONE, &child->state);
1864                 if (dev_is_expander(child->dev_type))
1865                     sas_unregister_ex_tree(parent->port, child);
1866                 else
1867                     sas_unregister_dev(parent->port, child);
1868                 found = child;
1869                 break;
1870             }
1871         }
1872         sas_disable_routing(parent, phy->attached_sas_addr);
1873     }
1874     memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1875     if (phy->port) {
1876         sas_port_delete_phy(phy->port, phy->phy);
1877         sas_device_set_phy(found, phy->port);
1878         if (phy->port->num_phys == 0)
1879             list_add_tail(&phy->port->del_list,
1880                 &parent->port->sas_port_del_list);
1881         phy->port = NULL;
1882     }
1883 }
1884 
1885 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1886                       const int level)
1887 {
1888     struct expander_device *ex_root = &root->ex_dev;
1889     struct domain_device *child;
1890     int res = 0;
1891 
1892     list_for_each_entry(child, &ex_root->children, siblings) {
1893         if (dev_is_expander(child->dev_type)) {
1894             struct sas_expander_device *ex =
1895                 rphy_to_expander_device(child->rphy);
1896 
1897             if (level > ex->level)
1898                 res = sas_discover_bfs_by_root_level(child,
1899                                      level);
1900             else if (level == ex->level)
1901                 res = sas_ex_discover_devices(child, -1);
1902         }
1903     }
1904     return res;
1905 }
1906 
1907 static int sas_discover_bfs_by_root(struct domain_device *dev)
1908 {
1909     int res;
1910     struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1911     int level = ex->level+1;
1912 
1913     res = sas_ex_discover_devices(dev, -1);
1914     if (res)
1915         goto out;
1916     do {
1917         res = sas_discover_bfs_by_root_level(dev, level);
1918         mb();
1919         level += 1;
1920     } while (level <= dev->port->disc.max_level);
1921 out:
1922     return res;
1923 }
1924 
1925 static int sas_discover_new(struct domain_device *dev, int phy_id)
1926 {
1927     struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1928     struct domain_device *child;
1929     int res;
1930 
1931     pr_debug("ex %016llx phy%02d new device attached\n",
1932          SAS_ADDR(dev->sas_addr), phy_id);
1933     res = sas_ex_phy_discover(dev, phy_id);
1934     if (res)
1935         return res;
1936 
1937     if (sas_ex_join_wide_port(dev, phy_id))
1938         return 0;
1939 
1940     res = sas_ex_discover_devices(dev, phy_id);
1941     if (res)
1942         return res;
1943     list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1944         if (SAS_ADDR(child->sas_addr) ==
1945             SAS_ADDR(ex_phy->attached_sas_addr)) {
1946             if (dev_is_expander(child->dev_type))
1947                 res = sas_discover_bfs_by_root(child);
1948             break;
1949         }
1950     }
1951     return res;
1952 }
1953 
1954 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1955 {
1956     if (old == new)
1957         return true;
1958 
1959     /* treat device directed resets as flutter, if we went
1960      * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1961      */
1962     if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1963         (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1964         return true;
1965 
1966     return false;
1967 }
1968 
1969 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1970                   bool last, int sibling)
1971 {
1972     struct expander_device *ex = &dev->ex_dev;
1973     struct ex_phy *phy = &ex->ex_phy[phy_id];
1974     enum sas_device_type type = SAS_PHY_UNUSED;
1975     u8 sas_addr[SAS_ADDR_SIZE];
1976     char msg[80] = "";
1977     int res;
1978 
1979     if (!last)
1980         sprintf(msg, ", part of a wide port with phy%02d", sibling);
1981 
1982     pr_debug("ex %016llx rediscovering phy%02d%s\n",
1983          SAS_ADDR(dev->sas_addr), phy_id, msg);
1984 
1985     memset(sas_addr, 0, SAS_ADDR_SIZE);
1986     res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1987     switch (res) {
1988     case SMP_RESP_NO_PHY:
1989         phy->phy_state = PHY_NOT_PRESENT;
1990         sas_unregister_devs_sas_addr(dev, phy_id, last);
1991         return res;
1992     case SMP_RESP_PHY_VACANT:
1993         phy->phy_state = PHY_VACANT;
1994         sas_unregister_devs_sas_addr(dev, phy_id, last);
1995         return res;
1996     case SMP_RESP_FUNC_ACC:
1997         break;
1998     case -ECOMM:
1999         break;
2000     default:
2001         return res;
2002     }
2003 
2004     if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2005         phy->phy_state = PHY_EMPTY;
2006         sas_unregister_devs_sas_addr(dev, phy_id, last);
2007         /*
2008          * Even though the PHY is empty, for convenience we discover
2009          * the PHY to update the PHY info, like negotiated linkrate.
2010          */
2011         sas_ex_phy_discover(dev, phy_id);
2012         return res;
2013     } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2014            dev_type_flutter(type, phy->attached_dev_type)) {
2015         struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2016         char *action = "";
2017 
2018         sas_ex_phy_discover(dev, phy_id);
2019 
2020         if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2021             action = ", needs recovery";
2022         pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2023              SAS_ADDR(dev->sas_addr), phy_id, action);
2024         return res;
2025     }
2026 
2027     /* we always have to delete the old device when we went here */
2028     pr_info("ex %016llx phy%02d replace %016llx\n",
2029         SAS_ADDR(dev->sas_addr), phy_id,
2030         SAS_ADDR(phy->attached_sas_addr));
2031     sas_unregister_devs_sas_addr(dev, phy_id, last);
2032 
2033     return sas_discover_new(dev, phy_id);
2034 }
2035 
2036 /**
2037  * sas_rediscover - revalidate the domain.
2038  * @dev:domain device to be detect.
2039  * @phy_id: the phy id will be detected.
2040  *
2041  * NOTE: this process _must_ quit (return) as soon as any connection
2042  * errors are encountered.  Connection recovery is done elsewhere.
2043  * Discover process only interrogates devices in order to discover the
2044  * domain.For plugging out, we un-register the device only when it is
2045  * the last phy in the port, for other phys in this port, we just delete it
2046  * from the port.For inserting, we do discovery when it is the
2047  * first phy,for other phys in this port, we add it to the port to
2048  * forming the wide-port.
2049  */
2050 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2051 {
2052     struct expander_device *ex = &dev->ex_dev;
2053     struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2054     int res = 0;
2055     int i;
2056     bool last = true;   /* is this the last phy of the port */
2057 
2058     pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2059          SAS_ADDR(dev->sas_addr), phy_id);
2060 
2061     if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2062         for (i = 0; i < ex->num_phys; i++) {
2063             struct ex_phy *phy = &ex->ex_phy[i];
2064 
2065             if (i == phy_id)
2066                 continue;
2067             if (SAS_ADDR(phy->attached_sas_addr) ==
2068                 SAS_ADDR(changed_phy->attached_sas_addr)) {
2069                 last = false;
2070                 break;
2071             }
2072         }
2073         res = sas_rediscover_dev(dev, phy_id, last, i);
2074     } else
2075         res = sas_discover_new(dev, phy_id);
2076     return res;
2077 }
2078 
2079 /**
2080  * sas_ex_revalidate_domain - revalidate the domain
2081  * @port_dev: port domain device.
2082  *
2083  * NOTE: this process _must_ quit (return) as soon as any connection
2084  * errors are encountered.  Connection recovery is done elsewhere.
2085  * Discover process only interrogates devices in order to discover the
2086  * domain.
2087  */
2088 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2089 {
2090     int res;
2091     struct domain_device *dev = NULL;
2092 
2093     res = sas_find_bcast_dev(port_dev, &dev);
2094     if (res == 0 && dev) {
2095         struct expander_device *ex = &dev->ex_dev;
2096         int i = 0, phy_id;
2097 
2098         do {
2099             phy_id = -1;
2100             res = sas_find_bcast_phy(dev, &phy_id, i, true);
2101             if (phy_id == -1)
2102                 break;
2103             res = sas_rediscover(dev, phy_id);
2104             i = phy_id + 1;
2105         } while (i < ex->num_phys);
2106     }
2107     return res;
2108 }
2109 
2110 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2111         struct sas_rphy *rphy)
2112 {
2113     struct domain_device *dev;
2114     unsigned int rcvlen = 0;
2115     int ret = -EINVAL;
2116 
2117     /* no rphy means no smp target support (ie aic94xx host) */
2118     if (!rphy)
2119         return sas_smp_host_handler(job, shost);
2120 
2121     switch (rphy->identify.device_type) {
2122     case SAS_EDGE_EXPANDER_DEVICE:
2123     case SAS_FANOUT_EXPANDER_DEVICE:
2124         break;
2125     default:
2126         pr_err("%s: can we send a smp request to a device?\n",
2127                __func__);
2128         goto out;
2129     }
2130 
2131     dev = sas_find_dev_by_rphy(rphy);
2132     if (!dev) {
2133         pr_err("%s: fail to find a domain_device?\n", __func__);
2134         goto out;
2135     }
2136 
2137     /* do we need to support multiple segments? */
2138     if (job->request_payload.sg_cnt > 1 ||
2139         job->reply_payload.sg_cnt > 1) {
2140         pr_info("%s: multiple segments req %u, rsp %u\n",
2141             __func__, job->request_payload.payload_len,
2142             job->reply_payload.payload_len);
2143         goto out;
2144     }
2145 
2146     ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2147             job->reply_payload.sg_list);
2148     if (ret >= 0) {
2149         /* bsg_job_done() requires the length received  */
2150         rcvlen = job->reply_payload.payload_len - ret;
2151         ret = 0;
2152     }
2153 
2154 out:
2155     bsg_job_done(job, ret, rcvlen);
2156 }