Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * This file is provided under a dual BSD/GPLv2 license.  When using or
0003  * redistributing this file, you may do so under either license.
0004  *
0005  * GPL LICENSE SUMMARY
0006  *
0007  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
0008  *
0009  * This program is free software; you can redistribute it and/or modify
0010  * it under the terms of version 2 of the GNU General Public License as
0011  * published by the Free Software Foundation.
0012  *
0013  * This program is distributed in the hope that it will be useful, but
0014  * WITHOUT ANY WARRANTY; without even the implied warranty of
0015  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
0016  * General Public License for more details.
0017  *
0018  * You should have received a copy of the GNU General Public License
0019  * along with this program; if not, write to the Free Software
0020  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
0021  * The full GNU General Public License is included in this distribution
0022  * in the file called LICENSE.GPL.
0023  *
0024  * BSD LICENSE
0025  *
0026  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
0027  * All rights reserved.
0028  *
0029  * Redistribution and use in source and binary forms, with or without
0030  * modification, are permitted provided that the following conditions
0031  * are met:
0032  *
0033  *   * Redistributions of source code must retain the above copyright
0034  *     notice, this list of conditions and the following disclaimer.
0035  *   * Redistributions in binary form must reproduce the above copyright
0036  *     notice, this list of conditions and the following disclaimer in
0037  *     the documentation and/or other materials provided with the
0038  *     distribution.
0039  *   * Neither the name of Intel Corporation nor the names of its
0040  *     contributors may be used to endorse or promote products derived
0041  *     from this software without specific prior written permission.
0042  *
0043  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
0044  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
0045  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
0046  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
0047  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
0048  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
0049  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
0050  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
0051  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
0052  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
0053  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
0054  */
0055 #include <linux/circ_buf.h>
0056 #include <linux/device.h>
0057 #include <scsi/sas.h>
0058 #include "host.h"
0059 #include "isci.h"
0060 #include "port.h"
0061 #include "probe_roms.h"
0062 #include "remote_device.h"
0063 #include "request.h"
0064 #include "scu_completion_codes.h"
0065 #include "scu_event_codes.h"
0066 #include "registers.h"
0067 #include "scu_remote_node_context.h"
0068 #include "scu_task_context.h"
0069 
0070 #define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
0071 
0072 #define smu_max_ports(dcc_value) \
0073     (\
0074         (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
0075          >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
0076     )
0077 
0078 #define smu_max_task_contexts(dcc_value)    \
0079     (\
0080         (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
0081          >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
0082     )
0083 
0084 #define smu_max_rncs(dcc_value) \
0085     (\
0086         (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
0087          >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
0088     )
0089 
0090 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
0091 
0092 /*
0093  * The number of milliseconds to wait while a given phy is consuming power
0094  * before allowing another set of phys to consume power. Ultimately, this will
0095  * be specified by OEM parameter.
0096  */
0097 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
0098 
0099 /*
0100  * NORMALIZE_PUT_POINTER() -
0101  *
0102  * This macro will normalize the completion queue put pointer so its value can
0103  * be used as an array inde
0104  */
0105 #define NORMALIZE_PUT_POINTER(x) \
0106     ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
0107 
0108 
0109 /*
0110  * NORMALIZE_EVENT_POINTER() -
0111  *
0112  * This macro will normalize the completion queue event entry so its value can
0113  * be used as an index.
0114  */
0115 #define NORMALIZE_EVENT_POINTER(x) \
0116     (\
0117         ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
0118         >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
0119     )
0120 
0121 /*
0122  * NORMALIZE_GET_POINTER() -
0123  *
0124  * This macro will normalize the completion queue get pointer so its value can
0125  * be used as an index into an array
0126  */
0127 #define NORMALIZE_GET_POINTER(x) \
0128     ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
0129 
0130 /*
0131  * NORMALIZE_GET_POINTER_CYCLE_BIT() -
0132  *
0133  * This macro will normalize the completion queue cycle pointer so it matches
0134  * the completion queue cycle bit
0135  */
0136 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
0137     ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
0138 
0139 /*
0140  * COMPLETION_QUEUE_CYCLE_BIT() -
0141  *
0142  * This macro will return the cycle bit of the completion queue entry
0143  */
0144 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
0145 
0146 /* Init the state machine and call the state entry function (if any) */
0147 void sci_init_sm(struct sci_base_state_machine *sm,
0148          const struct sci_base_state *state_table, u32 initial_state)
0149 {
0150     sci_state_transition_t handler;
0151 
0152     sm->initial_state_id    = initial_state;
0153     sm->previous_state_id   = initial_state;
0154     sm->current_state_id    = initial_state;
0155     sm->state_table         = state_table;
0156 
0157     handler = sm->state_table[initial_state].enter_state;
0158     if (handler)
0159         handler(sm);
0160 }
0161 
0162 /* Call the state exit fn, update the current state, call the state entry fn */
0163 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
0164 {
0165     sci_state_transition_t handler;
0166 
0167     handler = sm->state_table[sm->current_state_id].exit_state;
0168     if (handler)
0169         handler(sm);
0170 
0171     sm->previous_state_id = sm->current_state_id;
0172     sm->current_state_id = next_state;
0173 
0174     handler = sm->state_table[sm->current_state_id].enter_state;
0175     if (handler)
0176         handler(sm);
0177 }
0178 
0179 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
0180 {
0181     u32 get_value = ihost->completion_queue_get;
0182     u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
0183 
0184     if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
0185         COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
0186         return true;
0187 
0188     return false;
0189 }
0190 
0191 static bool sci_controller_isr(struct isci_host *ihost)
0192 {
0193     if (sci_controller_completion_queue_has_entries(ihost))
0194         return true;
0195 
0196     /* we have a spurious interrupt it could be that we have already
0197      * emptied the completion queue from a previous interrupt
0198      * FIXME: really!?
0199      */
0200     writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
0201 
0202     /* There is a race in the hardware that could cause us not to be
0203      * notified of an interrupt completion if we do not take this
0204      * step.  We will mask then unmask the interrupts so if there is
0205      * another interrupt pending the clearing of the interrupt
0206      * source we get the next interrupt message.
0207      */
0208     spin_lock(&ihost->scic_lock);
0209     if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) {
0210         writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
0211         writel(0, &ihost->smu_registers->interrupt_mask);
0212     }
0213     spin_unlock(&ihost->scic_lock);
0214 
0215     return false;
0216 }
0217 
0218 irqreturn_t isci_msix_isr(int vec, void *data)
0219 {
0220     struct isci_host *ihost = data;
0221 
0222     if (sci_controller_isr(ihost))
0223         tasklet_schedule(&ihost->completion_tasklet);
0224 
0225     return IRQ_HANDLED;
0226 }
0227 
0228 static bool sci_controller_error_isr(struct isci_host *ihost)
0229 {
0230     u32 interrupt_status;
0231 
0232     interrupt_status =
0233         readl(&ihost->smu_registers->interrupt_status);
0234     interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
0235 
0236     if (interrupt_status != 0) {
0237         /*
0238          * There is an error interrupt pending so let it through and handle
0239          * in the callback */
0240         return true;
0241     }
0242 
0243     /*
0244      * There is a race in the hardware that could cause us not to be notified
0245      * of an interrupt completion if we do not take this step.  We will mask
0246      * then unmask the error interrupts so if there was another interrupt
0247      * pending we will be notified.
0248      * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
0249     writel(0xff, &ihost->smu_registers->interrupt_mask);
0250     writel(0, &ihost->smu_registers->interrupt_mask);
0251 
0252     return false;
0253 }
0254 
0255 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
0256 {
0257     u32 index = SCU_GET_COMPLETION_INDEX(ent);
0258     struct isci_request *ireq = ihost->reqs[index];
0259 
0260     /* Make sure that we really want to process this IO request */
0261     if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
0262         ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
0263         ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
0264         /* Yep this is a valid io request pass it along to the
0265          * io request handler
0266          */
0267         sci_io_request_tc_completion(ireq, ent);
0268 }
0269 
0270 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
0271 {
0272     u32 index;
0273     struct isci_request *ireq;
0274     struct isci_remote_device *idev;
0275 
0276     index = SCU_GET_COMPLETION_INDEX(ent);
0277 
0278     switch (scu_get_command_request_type(ent)) {
0279     case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
0280     case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
0281         ireq = ihost->reqs[index];
0282         dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
0283              __func__, ent, ireq);
0284         /* @todo For a post TC operation we need to fail the IO
0285          * request
0286          */
0287         break;
0288     case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
0289     case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
0290     case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
0291         idev = ihost->device_table[index];
0292         dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
0293              __func__, ent, idev);
0294         /* @todo For a port RNC operation we need to fail the
0295          * device
0296          */
0297         break;
0298     default:
0299         dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
0300              __func__, ent);
0301         break;
0302     }
0303 }
0304 
0305 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
0306 {
0307     u32 index;
0308     u32 frame_index;
0309 
0310     struct scu_unsolicited_frame_header *frame_header;
0311     struct isci_phy *iphy;
0312     struct isci_remote_device *idev;
0313 
0314     enum sci_status result = SCI_FAILURE;
0315 
0316     frame_index = SCU_GET_FRAME_INDEX(ent);
0317 
0318     frame_header = ihost->uf_control.buffers.array[frame_index].header;
0319     ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
0320 
0321     if (SCU_GET_FRAME_ERROR(ent)) {
0322         /*
0323          * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
0324          * /       this cause a problem? We expect the phy initialization will
0325          * /       fail if there is an error in the frame. */
0326         sci_controller_release_frame(ihost, frame_index);
0327         return;
0328     }
0329 
0330     if (frame_header->is_address_frame) {
0331         index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
0332         iphy = &ihost->phys[index];
0333         result = sci_phy_frame_handler(iphy, frame_index);
0334     } else {
0335 
0336         index = SCU_GET_COMPLETION_INDEX(ent);
0337 
0338         if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
0339             /*
0340              * This is a signature fis or a frame from a direct attached SATA
0341              * device that has not yet been created.  In either case forwared
0342              * the frame to the PE and let it take care of the frame data. */
0343             index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
0344             iphy = &ihost->phys[index];
0345             result = sci_phy_frame_handler(iphy, frame_index);
0346         } else {
0347             if (index < ihost->remote_node_entries)
0348                 idev = ihost->device_table[index];
0349             else
0350                 idev = NULL;
0351 
0352             if (idev != NULL)
0353                 result = sci_remote_device_frame_handler(idev, frame_index);
0354             else
0355                 sci_controller_release_frame(ihost, frame_index);
0356         }
0357     }
0358 
0359     if (result != SCI_SUCCESS) {
0360         /*
0361          * / @todo Is there any reason to report some additional error message
0362          * /       when we get this failure notifiction? */
0363     }
0364 }
0365 
0366 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
0367 {
0368     struct isci_remote_device *idev;
0369     struct isci_request *ireq;
0370     struct isci_phy *iphy;
0371     u32 index;
0372 
0373     index = SCU_GET_COMPLETION_INDEX(ent);
0374 
0375     switch (scu_get_event_type(ent)) {
0376     case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
0377         /* / @todo The driver did something wrong and we need to fix the condtion. */
0378         dev_err(&ihost->pdev->dev,
0379             "%s: SCIC Controller 0x%p received SMU command error "
0380             "0x%x\n",
0381             __func__,
0382             ihost,
0383             ent);
0384         break;
0385 
0386     case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
0387     case SCU_EVENT_TYPE_SMU_ERROR:
0388     case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
0389         /*
0390          * / @todo This is a hardware failure and its likely that we want to
0391          * /       reset the controller. */
0392         dev_err(&ihost->pdev->dev,
0393             "%s: SCIC Controller 0x%p received fatal controller "
0394             "event  0x%x\n",
0395             __func__,
0396             ihost,
0397             ent);
0398         break;
0399 
0400     case SCU_EVENT_TYPE_TRANSPORT_ERROR:
0401         ireq = ihost->reqs[index];
0402         sci_io_request_event_handler(ireq, ent);
0403         break;
0404 
0405     case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
0406         switch (scu_get_event_specifier(ent)) {
0407         case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
0408         case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
0409             ireq = ihost->reqs[index];
0410             if (ireq != NULL)
0411                 sci_io_request_event_handler(ireq, ent);
0412             else
0413                 dev_warn(&ihost->pdev->dev,
0414                      "%s: SCIC Controller 0x%p received "
0415                      "event 0x%x for io request object "
0416                      "that doesn't exist.\n",
0417                      __func__,
0418                      ihost,
0419                      ent);
0420 
0421             break;
0422 
0423         case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
0424             idev = ihost->device_table[index];
0425             if (idev != NULL)
0426                 sci_remote_device_event_handler(idev, ent);
0427             else
0428                 dev_warn(&ihost->pdev->dev,
0429                      "%s: SCIC Controller 0x%p received "
0430                      "event 0x%x for remote device object "
0431                      "that doesn't exist.\n",
0432                      __func__,
0433                      ihost,
0434                      ent);
0435 
0436             break;
0437         }
0438         break;
0439 
0440     case SCU_EVENT_TYPE_BROADCAST_CHANGE:
0441     /*
0442      * direct the broadcast change event to the phy first and then let
0443      * the phy redirect the broadcast change to the port object */
0444     case SCU_EVENT_TYPE_ERR_CNT_EVENT:
0445     /*
0446      * direct error counter event to the phy object since that is where
0447      * we get the event notification.  This is a type 4 event. */
0448     case SCU_EVENT_TYPE_OSSP_EVENT:
0449         index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
0450         iphy = &ihost->phys[index];
0451         sci_phy_event_handler(iphy, ent);
0452         break;
0453 
0454     case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
0455     case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
0456     case SCU_EVENT_TYPE_RNC_OPS_MISC:
0457         if (index < ihost->remote_node_entries) {
0458             idev = ihost->device_table[index];
0459 
0460             if (idev != NULL)
0461                 sci_remote_device_event_handler(idev, ent);
0462         } else
0463             dev_err(&ihost->pdev->dev,
0464                 "%s: SCIC Controller 0x%p received event 0x%x "
0465                 "for remote device object 0x%0x that doesn't "
0466                 "exist.\n",
0467                 __func__,
0468                 ihost,
0469                 ent,
0470                 index);
0471 
0472         break;
0473 
0474     default:
0475         dev_warn(&ihost->pdev->dev,
0476              "%s: SCIC Controller received unknown event code %x\n",
0477              __func__,
0478              ent);
0479         break;
0480     }
0481 }
0482 
0483 static void sci_controller_process_completions(struct isci_host *ihost)
0484 {
0485     u32 completion_count = 0;
0486     u32 ent;
0487     u32 get_index;
0488     u32 get_cycle;
0489     u32 event_get;
0490     u32 event_cycle;
0491 
0492     dev_dbg(&ihost->pdev->dev,
0493         "%s: completion queue beginning get:0x%08x\n",
0494         __func__,
0495         ihost->completion_queue_get);
0496 
0497     /* Get the component parts of the completion queue */
0498     get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
0499     get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
0500 
0501     event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
0502     event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
0503 
0504     while (
0505         NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
0506         == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
0507         ) {
0508         completion_count++;
0509 
0510         ent = ihost->completion_queue[get_index];
0511 
0512         /* increment the get pointer and check for rollover to toggle the cycle bit */
0513         get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
0514                  (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
0515         get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
0516 
0517         dev_dbg(&ihost->pdev->dev,
0518             "%s: completion queue entry:0x%08x\n",
0519             __func__,
0520             ent);
0521 
0522         switch (SCU_GET_COMPLETION_TYPE(ent)) {
0523         case SCU_COMPLETION_TYPE_TASK:
0524             sci_controller_task_completion(ihost, ent);
0525             break;
0526 
0527         case SCU_COMPLETION_TYPE_SDMA:
0528             sci_controller_sdma_completion(ihost, ent);
0529             break;
0530 
0531         case SCU_COMPLETION_TYPE_UFI:
0532             sci_controller_unsolicited_frame(ihost, ent);
0533             break;
0534 
0535         case SCU_COMPLETION_TYPE_EVENT:
0536             sci_controller_event_completion(ihost, ent);
0537             break;
0538 
0539         case SCU_COMPLETION_TYPE_NOTIFY: {
0540             event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
0541                        (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
0542             event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
0543 
0544             sci_controller_event_completion(ihost, ent);
0545             break;
0546         }
0547         default:
0548             dev_warn(&ihost->pdev->dev,
0549                  "%s: SCIC Controller received unknown "
0550                  "completion type %x\n",
0551                  __func__,
0552                  ent);
0553             break;
0554         }
0555     }
0556 
0557     /* Update the get register if we completed one or more entries */
0558     if (completion_count > 0) {
0559         ihost->completion_queue_get =
0560             SMU_CQGR_GEN_BIT(ENABLE) |
0561             SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
0562             event_cycle |
0563             SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
0564             get_cycle |
0565             SMU_CQGR_GEN_VAL(POINTER, get_index);
0566 
0567         writel(ihost->completion_queue_get,
0568                &ihost->smu_registers->completion_queue_get);
0569 
0570     }
0571 
0572     dev_dbg(&ihost->pdev->dev,
0573         "%s: completion queue ending get:0x%08x\n",
0574         __func__,
0575         ihost->completion_queue_get);
0576 
0577 }
0578 
0579 static void sci_controller_error_handler(struct isci_host *ihost)
0580 {
0581     u32 interrupt_status;
0582 
0583     interrupt_status =
0584         readl(&ihost->smu_registers->interrupt_status);
0585 
0586     if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
0587         sci_controller_completion_queue_has_entries(ihost)) {
0588 
0589         sci_controller_process_completions(ihost);
0590         writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
0591     } else {
0592         dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
0593             interrupt_status);
0594 
0595         sci_change_state(&ihost->sm, SCIC_FAILED);
0596 
0597         return;
0598     }
0599 
0600     /* If we dont process any completions I am not sure that we want to do this.
0601      * We are in the middle of a hardware fault and should probably be reset.
0602      */
0603     writel(0, &ihost->smu_registers->interrupt_mask);
0604 }
0605 
0606 irqreturn_t isci_intx_isr(int vec, void *data)
0607 {
0608     irqreturn_t ret = IRQ_NONE;
0609     struct isci_host *ihost = data;
0610 
0611     if (sci_controller_isr(ihost)) {
0612         writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
0613         tasklet_schedule(&ihost->completion_tasklet);
0614         ret = IRQ_HANDLED;
0615     } else if (sci_controller_error_isr(ihost)) {
0616         spin_lock(&ihost->scic_lock);
0617         sci_controller_error_handler(ihost);
0618         spin_unlock(&ihost->scic_lock);
0619         ret = IRQ_HANDLED;
0620     }
0621 
0622     return ret;
0623 }
0624 
0625 irqreturn_t isci_error_isr(int vec, void *data)
0626 {
0627     struct isci_host *ihost = data;
0628 
0629     if (sci_controller_error_isr(ihost))
0630         sci_controller_error_handler(ihost);
0631 
0632     return IRQ_HANDLED;
0633 }
0634 
0635 /**
0636  * isci_host_start_complete() - This function is called by the core library,
0637  *    through the ISCI Module, to indicate controller start status.
0638  * @ihost: This parameter specifies the ISCI host object
0639  * @completion_status: This parameter specifies the completion status from the
0640  *    core library.
0641  *
0642  */
0643 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
0644 {
0645     if (completion_status != SCI_SUCCESS)
0646         dev_info(&ihost->pdev->dev,
0647             "controller start timed out, continuing...\n");
0648     clear_bit(IHOST_START_PENDING, &ihost->flags);
0649     wake_up(&ihost->eventq);
0650 }
0651 
0652 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
0653 {
0654     struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
0655     struct isci_host *ihost = ha->lldd_ha;
0656 
0657     if (test_bit(IHOST_START_PENDING, &ihost->flags))
0658         return 0;
0659 
0660     sas_drain_work(ha);
0661 
0662     return 1;
0663 }
0664 
0665 /**
0666  * sci_controller_get_suggested_start_timeout() - This method returns the
0667  *    suggested sci_controller_start() timeout amount.  The user is free to
0668  *    use any timeout value, but this method provides the suggested minimum
0669  *    start timeout value.  The returned value is based upon empirical
0670  *    information determined as a result of interoperability testing.
0671  * @ihost: the handle to the controller object for which to return the
0672  *    suggested start timeout.
0673  *
0674  * This method returns the number of milliseconds for the suggested start
0675  * operation timeout.
0676  */
0677 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
0678 {
0679     /* Validate the user supplied parameters. */
0680     if (!ihost)
0681         return 0;
0682 
0683     /*
0684      * The suggested minimum timeout value for a controller start operation:
0685      *
0686      *     Signature FIS Timeout
0687      *   + Phy Start Timeout
0688      *   + Number of Phy Spin Up Intervals
0689      *   ---------------------------------
0690      *   Number of milliseconds for the controller start operation.
0691      *
0692      * NOTE: The number of phy spin up intervals will be equivalent
0693      *       to the number of phys divided by the number phys allowed
0694      *       per interval - 1 (once OEM parameters are supported).
0695      *       Currently we assume only 1 phy per interval. */
0696 
0697     return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
0698         + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
0699         + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
0700 }
0701 
0702 static void sci_controller_enable_interrupts(struct isci_host *ihost)
0703 {
0704     set_bit(IHOST_IRQ_ENABLED, &ihost->flags);
0705     writel(0, &ihost->smu_registers->interrupt_mask);
0706 }
0707 
0708 void sci_controller_disable_interrupts(struct isci_host *ihost)
0709 {
0710     clear_bit(IHOST_IRQ_ENABLED, &ihost->flags);
0711     writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
0712     readl(&ihost->smu_registers->interrupt_mask); /* flush */
0713 }
0714 
0715 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
0716 {
0717     u32 port_task_scheduler_value;
0718 
0719     port_task_scheduler_value =
0720         readl(&ihost->scu_registers->peg0.ptsg.control);
0721     port_task_scheduler_value |=
0722         (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
0723          SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
0724     writel(port_task_scheduler_value,
0725            &ihost->scu_registers->peg0.ptsg.control);
0726 }
0727 
0728 static void sci_controller_assign_task_entries(struct isci_host *ihost)
0729 {
0730     u32 task_assignment;
0731 
0732     /*
0733      * Assign all the TCs to function 0
0734      * TODO: Do we actually need to read this register to write it back?
0735      */
0736 
0737     task_assignment =
0738         readl(&ihost->smu_registers->task_context_assignment[0]);
0739 
0740     task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
0741         (SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
0742         (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
0743 
0744     writel(task_assignment,
0745         &ihost->smu_registers->task_context_assignment[0]);
0746 
0747 }
0748 
0749 static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
0750 {
0751     u32 index;
0752     u32 completion_queue_control_value;
0753     u32 completion_queue_get_value;
0754     u32 completion_queue_put_value;
0755 
0756     ihost->completion_queue_get = 0;
0757 
0758     completion_queue_control_value =
0759         (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
0760          SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
0761 
0762     writel(completion_queue_control_value,
0763            &ihost->smu_registers->completion_queue_control);
0764 
0765 
0766     /* Set the completion queue get pointer and enable the queue */
0767     completion_queue_get_value = (
0768         (SMU_CQGR_GEN_VAL(POINTER, 0))
0769         | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
0770         | (SMU_CQGR_GEN_BIT(ENABLE))
0771         | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
0772         );
0773 
0774     writel(completion_queue_get_value,
0775            &ihost->smu_registers->completion_queue_get);
0776 
0777     /* Set the completion queue put pointer */
0778     completion_queue_put_value = (
0779         (SMU_CQPR_GEN_VAL(POINTER, 0))
0780         | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
0781         );
0782 
0783     writel(completion_queue_put_value,
0784            &ihost->smu_registers->completion_queue_put);
0785 
0786     /* Initialize the cycle bit of the completion queue entries */
0787     for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
0788         /*
0789          * If get.cycle_bit != completion_queue.cycle_bit
0790          * its not a valid completion queue entry
0791          * so at system start all entries are invalid */
0792         ihost->completion_queue[index] = 0x80000000;
0793     }
0794 }
0795 
0796 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
0797 {
0798     u32 frame_queue_control_value;
0799     u32 frame_queue_get_value;
0800     u32 frame_queue_put_value;
0801 
0802     /* Write the queue size */
0803     frame_queue_control_value =
0804         SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
0805 
0806     writel(frame_queue_control_value,
0807            &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
0808 
0809     /* Setup the get pointer for the unsolicited frame queue */
0810     frame_queue_get_value = (
0811         SCU_UFQGP_GEN_VAL(POINTER, 0)
0812         |  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
0813         );
0814 
0815     writel(frame_queue_get_value,
0816            &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
0817     /* Setup the put pointer for the unsolicited frame queue */
0818     frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
0819     writel(frame_queue_put_value,
0820            &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
0821 }
0822 
0823 void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
0824 {
0825     if (ihost->sm.current_state_id == SCIC_STARTING) {
0826         /*
0827          * We move into the ready state, because some of the phys/ports
0828          * may be up and operational.
0829          */
0830         sci_change_state(&ihost->sm, SCIC_READY);
0831 
0832         isci_host_start_complete(ihost, status);
0833     }
0834 }
0835 
0836 static bool is_phy_starting(struct isci_phy *iphy)
0837 {
0838     enum sci_phy_states state;
0839 
0840     state = iphy->sm.current_state_id;
0841     switch (state) {
0842     case SCI_PHY_STARTING:
0843     case SCI_PHY_SUB_INITIAL:
0844     case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
0845     case SCI_PHY_SUB_AWAIT_IAF_UF:
0846     case SCI_PHY_SUB_AWAIT_SAS_POWER:
0847     case SCI_PHY_SUB_AWAIT_SATA_POWER:
0848     case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
0849     case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
0850     case SCI_PHY_SUB_AWAIT_OSSP_EN:
0851     case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
0852     case SCI_PHY_SUB_FINAL:
0853         return true;
0854     default:
0855         return false;
0856     }
0857 }
0858 
0859 bool is_controller_start_complete(struct isci_host *ihost)
0860 {
0861     int i;
0862 
0863     for (i = 0; i < SCI_MAX_PHYS; i++) {
0864         struct isci_phy *iphy = &ihost->phys[i];
0865         u32 state = iphy->sm.current_state_id;
0866 
0867         /* in apc mode we need to check every phy, in
0868          * mpc mode we only need to check phys that have
0869          * been configured into a port
0870          */
0871         if (is_port_config_apc(ihost))
0872             /* pass */;
0873         else if (!phy_get_non_dummy_port(iphy))
0874             continue;
0875 
0876         /* The controller start operation is complete iff:
0877          * - all links have been given an opportunity to start
0878          * - have no indication of a connected device
0879          * - have an indication of a connected device and it has
0880          *   finished the link training process.
0881          */
0882         if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
0883             (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
0884             (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
0885             (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask))
0886             return false;
0887     }
0888 
0889     return true;
0890 }
0891 
0892 /**
0893  * sci_controller_start_next_phy - start phy
0894  * @ihost: controller
0895  *
0896  * If all the phys have been started, then attempt to transition the
0897  * controller to the READY state and inform the user
0898  * (sci_cb_controller_start_complete()).
0899  */
0900 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
0901 {
0902     struct sci_oem_params *oem = &ihost->oem_parameters;
0903     struct isci_phy *iphy;
0904     enum sci_status status;
0905 
0906     status = SCI_SUCCESS;
0907 
0908     if (ihost->phy_startup_timer_pending)
0909         return status;
0910 
0911     if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
0912         if (is_controller_start_complete(ihost)) {
0913             sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
0914             sci_del_timer(&ihost->phy_timer);
0915             ihost->phy_startup_timer_pending = false;
0916         }
0917     } else {
0918         iphy = &ihost->phys[ihost->next_phy_to_start];
0919 
0920         if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
0921             if (phy_get_non_dummy_port(iphy) == NULL) {
0922                 ihost->next_phy_to_start++;
0923 
0924                 /* Caution recursion ahead be forwarned
0925                  *
0926                  * The PHY was never added to a PORT in MPC mode
0927                  * so start the next phy in sequence This phy
0928                  * will never go link up and will not draw power
0929                  * the OEM parameters either configured the phy
0930                  * incorrectly for the PORT or it was never
0931                  * assigned to a PORT
0932                  */
0933                 return sci_controller_start_next_phy(ihost);
0934             }
0935         }
0936 
0937         status = sci_phy_start(iphy);
0938 
0939         if (status == SCI_SUCCESS) {
0940             sci_mod_timer(&ihost->phy_timer,
0941                       SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
0942             ihost->phy_startup_timer_pending = true;
0943         } else {
0944             dev_warn(&ihost->pdev->dev,
0945                  "%s: Controller stop operation failed "
0946                  "to stop phy %d because of status "
0947                  "%d.\n",
0948                  __func__,
0949                  ihost->phys[ihost->next_phy_to_start].phy_index,
0950                  status);
0951         }
0952 
0953         ihost->next_phy_to_start++;
0954     }
0955 
0956     return status;
0957 }
0958 
0959 static void phy_startup_timeout(struct timer_list *t)
0960 {
0961     struct sci_timer *tmr = from_timer(tmr, t, timer);
0962     struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
0963     unsigned long flags;
0964     enum sci_status status;
0965 
0966     spin_lock_irqsave(&ihost->scic_lock, flags);
0967 
0968     if (tmr->cancel)
0969         goto done;
0970 
0971     ihost->phy_startup_timer_pending = false;
0972 
0973     do {
0974         status = sci_controller_start_next_phy(ihost);
0975     } while (status != SCI_SUCCESS);
0976 
0977 done:
0978     spin_unlock_irqrestore(&ihost->scic_lock, flags);
0979 }
0980 
0981 static u16 isci_tci_active(struct isci_host *ihost)
0982 {
0983     return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
0984 }
0985 
0986 static enum sci_status sci_controller_start(struct isci_host *ihost,
0987                          u32 timeout)
0988 {
0989     enum sci_status result;
0990     u16 index;
0991 
0992     if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
0993         dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
0994              __func__, ihost->sm.current_state_id);
0995         return SCI_FAILURE_INVALID_STATE;
0996     }
0997 
0998     /* Build the TCi free pool */
0999     BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
1000     ihost->tci_head = 0;
1001     ihost->tci_tail = 0;
1002     for (index = 0; index < ihost->task_context_entries; index++)
1003         isci_tci_free(ihost, index);
1004 
1005     /* Build the RNi free pool */
1006     sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1007                      ihost->remote_node_entries);
1008 
1009     /*
1010      * Before anything else lets make sure we will not be
1011      * interrupted by the hardware.
1012      */
1013     sci_controller_disable_interrupts(ihost);
1014 
1015     /* Enable the port task scheduler */
1016     sci_controller_enable_port_task_scheduler(ihost);
1017 
1018     /* Assign all the task entries to ihost physical function */
1019     sci_controller_assign_task_entries(ihost);
1020 
1021     /* Now initialize the completion queue */
1022     sci_controller_initialize_completion_queue(ihost);
1023 
1024     /* Initialize the unsolicited frame queue for use */
1025     sci_controller_initialize_unsolicited_frame_queue(ihost);
1026 
1027     /* Start all of the ports on this controller */
1028     for (index = 0; index < ihost->logical_port_entries; index++) {
1029         struct isci_port *iport = &ihost->ports[index];
1030 
1031         result = sci_port_start(iport);
1032         if (result)
1033             return result;
1034     }
1035 
1036     sci_controller_start_next_phy(ihost);
1037 
1038     sci_mod_timer(&ihost->timer, timeout);
1039 
1040     sci_change_state(&ihost->sm, SCIC_STARTING);
1041 
1042     return SCI_SUCCESS;
1043 }
1044 
1045 void isci_host_start(struct Scsi_Host *shost)
1046 {
1047     struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1048     unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1049 
1050     set_bit(IHOST_START_PENDING, &ihost->flags);
1051 
1052     spin_lock_irq(&ihost->scic_lock);
1053     sci_controller_start(ihost, tmo);
1054     sci_controller_enable_interrupts(ihost);
1055     spin_unlock_irq(&ihost->scic_lock);
1056 }
1057 
1058 static void isci_host_stop_complete(struct isci_host *ihost)
1059 {
1060     sci_controller_disable_interrupts(ihost);
1061     clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1062     wake_up(&ihost->eventq);
1063 }
1064 
1065 static void sci_controller_completion_handler(struct isci_host *ihost)
1066 {
1067     /* Empty out the completion queue */
1068     if (sci_controller_completion_queue_has_entries(ihost))
1069         sci_controller_process_completions(ihost);
1070 
1071     /* Clear the interrupt and enable all interrupts again */
1072     writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1073     /* Could we write the value of SMU_ISR_COMPLETION? */
1074     writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1075     writel(0, &ihost->smu_registers->interrupt_mask);
1076 }
1077 
1078 void ireq_done(struct isci_host *ihost, struct isci_request *ireq, struct sas_task *task)
1079 {
1080     if (!test_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags) &&
1081         !(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1082         if (test_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags)) {
1083             /* Normal notification (task_done) */
1084             dev_dbg(&ihost->pdev->dev,
1085                 "%s: Normal - ireq/task = %p/%p\n",
1086                 __func__, ireq, task);
1087             task->lldd_task = NULL;
1088             task->task_done(task);
1089         } else {
1090             dev_dbg(&ihost->pdev->dev,
1091                 "%s: Error - ireq/task = %p/%p\n",
1092                 __func__, ireq, task);
1093             if (sas_protocol_ata(task->task_proto))
1094                 task->lldd_task = NULL;
1095             sas_task_abort(task);
1096         }
1097     } else
1098         task->lldd_task = NULL;
1099 
1100     if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags))
1101         wake_up_all(&ihost->eventq);
1102 
1103     if (!test_bit(IREQ_NO_AUTO_FREE_TAG, &ireq->flags))
1104         isci_free_tag(ihost, ireq->io_tag);
1105 }
1106 /**
1107  * isci_host_completion_routine() - This function is the delayed service
1108  *    routine that calls the sci core library's completion handler. It's
1109  *    scheduled as a tasklet from the interrupt service routine when interrupts
1110  *    in use, or set as the timeout function in polled mode.
1111  * @data: This parameter specifies the ISCI host object
1112  *
1113  */
1114 void isci_host_completion_routine(unsigned long data)
1115 {
1116     struct isci_host *ihost = (struct isci_host *)data;
1117     u16 active;
1118 
1119     spin_lock_irq(&ihost->scic_lock);
1120     sci_controller_completion_handler(ihost);
1121     spin_unlock_irq(&ihost->scic_lock);
1122 
1123     /*
1124      * we subtract SCI_MAX_PORTS to account for the number of dummy TCs
1125      * issued for hardware issue workaround
1126      */
1127     active = isci_tci_active(ihost) - SCI_MAX_PORTS;
1128 
1129     /*
1130      * the coalesence timeout doubles at each encoding step, so
1131      * update it based on the ilog2 value of the outstanding requests
1132      */
1133     writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1134            SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1135            &ihost->smu_registers->interrupt_coalesce_control);
1136 }
1137 
1138 /**
1139  * sci_controller_stop() - This method will stop an individual controller
1140  *    object.This method will invoke the associated user callback upon
1141  *    completion.  The completion callback is called when the following
1142  *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1143  *    controller has been quiesced. This method will ensure that all IO
1144  *    requests are quiesced, phys are stopped, and all additional operation by
1145  *    the hardware is halted.
1146  * @ihost: the handle to the controller object to stop.
1147  * @timeout: This parameter specifies the number of milliseconds in which the
1148  *    stop operation should complete.
1149  *
1150  * The controller must be in the STARTED or STOPPED state. Indicate if the
1151  * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1152  * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1153  * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1154  * controller is not either in the STARTED or STOPPED states.
1155  */
1156 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1157 {
1158     if (ihost->sm.current_state_id != SCIC_READY) {
1159         dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1160              __func__, ihost->sm.current_state_id);
1161         return SCI_FAILURE_INVALID_STATE;
1162     }
1163 
1164     sci_mod_timer(&ihost->timer, timeout);
1165     sci_change_state(&ihost->sm, SCIC_STOPPING);
1166     return SCI_SUCCESS;
1167 }
1168 
1169 /**
1170  * sci_controller_reset() - This method will reset the supplied core
1171  *    controller regardless of the state of said controller.  This operation is
1172  *    considered destructive.  In other words, all current operations are wiped
1173  *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1174  *    requests are not aborted or completed at the actual remote device.
1175  * @ihost: the handle to the controller object to reset.
1176  *
1177  * Indicate if the controller reset method succeeded or failed in some way.
1178  * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1179  * the controller reset operation is unable to complete.
1180  */
1181 static enum sci_status sci_controller_reset(struct isci_host *ihost)
1182 {
1183     switch (ihost->sm.current_state_id) {
1184     case SCIC_RESET:
1185     case SCIC_READY:
1186     case SCIC_STOPPING:
1187     case SCIC_FAILED:
1188         /*
1189          * The reset operation is not a graceful cleanup, just
1190          * perform the state transition.
1191          */
1192         sci_change_state(&ihost->sm, SCIC_RESETTING);
1193         return SCI_SUCCESS;
1194     default:
1195         dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1196              __func__, ihost->sm.current_state_id);
1197         return SCI_FAILURE_INVALID_STATE;
1198     }
1199 }
1200 
1201 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1202 {
1203     u32 index;
1204     enum sci_status status;
1205     enum sci_status phy_status;
1206 
1207     status = SCI_SUCCESS;
1208 
1209     for (index = 0; index < SCI_MAX_PHYS; index++) {
1210         phy_status = sci_phy_stop(&ihost->phys[index]);
1211 
1212         if (phy_status != SCI_SUCCESS &&
1213             phy_status != SCI_FAILURE_INVALID_STATE) {
1214             status = SCI_FAILURE;
1215 
1216             dev_warn(&ihost->pdev->dev,
1217                  "%s: Controller stop operation failed to stop "
1218                  "phy %d because of status %d.\n",
1219                  __func__,
1220                  ihost->phys[index].phy_index, phy_status);
1221         }
1222     }
1223 
1224     return status;
1225 }
1226 
1227 
1228 /**
1229  * isci_host_deinit - shutdown frame reception and dma
1230  * @ihost: host to take down
1231  *
1232  * This is called in either the driver shutdown or the suspend path.  In
1233  * the shutdown case libsas went through port teardown and normal device
1234  * removal (i.e. physical links stayed up to service scsi_device removal
1235  * commands).  In the suspend case we disable the hardware without
1236  * notifying libsas of the link down events since we want libsas to
1237  * remember the domain across the suspend/resume cycle
1238  */
1239 void isci_host_deinit(struct isci_host *ihost)
1240 {
1241     int i;
1242 
1243     /* disable output data selects */
1244     for (i = 0; i < isci_gpio_count(ihost); i++)
1245         writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1246 
1247     set_bit(IHOST_STOP_PENDING, &ihost->flags);
1248 
1249     spin_lock_irq(&ihost->scic_lock);
1250     sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1251     spin_unlock_irq(&ihost->scic_lock);
1252 
1253     wait_for_stop(ihost);
1254 
1255     /* phy stop is after controller stop to allow port and device to
1256      * go idle before shutting down the phys, but the expectation is
1257      * that i/o has been shut off well before we reach this
1258      * function.
1259      */
1260     sci_controller_stop_phys(ihost);
1261 
1262     /* disable sgpio: where the above wait should give time for the
1263      * enclosure to sample the gpios going inactive
1264      */
1265     writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1266 
1267     spin_lock_irq(&ihost->scic_lock);
1268     sci_controller_reset(ihost);
1269     spin_unlock_irq(&ihost->scic_lock);
1270 
1271     /* Cancel any/all outstanding port timers */
1272     for (i = 0; i < ihost->logical_port_entries; i++) {
1273         struct isci_port *iport = &ihost->ports[i];
1274         del_timer_sync(&iport->timer.timer);
1275     }
1276 
1277     /* Cancel any/all outstanding phy timers */
1278     for (i = 0; i < SCI_MAX_PHYS; i++) {
1279         struct isci_phy *iphy = &ihost->phys[i];
1280         del_timer_sync(&iphy->sata_timer.timer);
1281     }
1282 
1283     del_timer_sync(&ihost->port_agent.timer.timer);
1284 
1285     del_timer_sync(&ihost->power_control.timer.timer);
1286 
1287     del_timer_sync(&ihost->timer.timer);
1288 
1289     del_timer_sync(&ihost->phy_timer.timer);
1290 }
1291 
1292 static void __iomem *scu_base(struct isci_host *isci_host)
1293 {
1294     struct pci_dev *pdev = isci_host->pdev;
1295     int id = isci_host->id;
1296 
1297     return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1298 }
1299 
1300 static void __iomem *smu_base(struct isci_host *isci_host)
1301 {
1302     struct pci_dev *pdev = isci_host->pdev;
1303     int id = isci_host->id;
1304 
1305     return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1306 }
1307 
1308 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1309 {
1310     struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1311 
1312     sci_change_state(&ihost->sm, SCIC_RESET);
1313 }
1314 
1315 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1316 {
1317     struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1318 
1319     sci_del_timer(&ihost->timer);
1320 }
1321 
1322 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1323 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1324 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1325 #define INTERRUPT_COALESCE_NUMBER_MAX                        256
1326 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1327 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1328 
1329 /**
1330  * sci_controller_set_interrupt_coalescence() - This method allows the user to
1331  *    configure the interrupt coalescence.
1332  * @ihost: This parameter represents the handle to the controller object
1333  *    for which its interrupt coalesce register is overridden.
1334  * @coalesce_number: Used to control the number of entries in the Completion
1335  *    Queue before an interrupt is generated. If the number of entries exceed
1336  *    this number, an interrupt will be generated. The valid range of the input
1337  *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1338  * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1339  *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1340  *    interrupt coalescing timeout.
1341  *
1342  * Indicate if the user successfully set the interrupt coalesce parameters.
1343  * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1344  * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1345  */
1346 static enum sci_status
1347 sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1348                      u32 coalesce_number,
1349                      u32 coalesce_timeout)
1350 {
1351     u8 timeout_encode = 0;
1352     u32 min = 0;
1353     u32 max = 0;
1354 
1355     /* Check if the input parameters fall in the range. */
1356     if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1357         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1358 
1359     /*
1360      *  Defined encoding for interrupt coalescing timeout:
1361      *              Value   Min      Max     Units
1362      *              -----   ---      ---     -----
1363      *              0       -        -       Disabled
1364      *              1       13.3     20.0    ns
1365      *              2       26.7     40.0
1366      *              3       53.3     80.0
1367      *              4       106.7    160.0
1368      *              5       213.3    320.0
1369      *              6       426.7    640.0
1370      *              7       853.3    1280.0
1371      *              8       1.7      2.6     us
1372      *              9       3.4      5.1
1373      *              10      6.8      10.2
1374      *              11      13.7     20.5
1375      *              12      27.3     41.0
1376      *              13      54.6     81.9
1377      *              14      109.2    163.8
1378      *              15      218.5    327.7
1379      *              16      436.9    655.4
1380      *              17      873.8    1310.7
1381      *              18      1.7      2.6     ms
1382      *              19      3.5      5.2
1383      *              20      7.0      10.5
1384      *              21      14.0     21.0
1385      *              22      28.0     41.9
1386      *              23      55.9     83.9
1387      *              24      111.8    167.8
1388      *              25      223.7    335.5
1389      *              26      447.4    671.1
1390      *              27      894.8    1342.2
1391      *              28      1.8      2.7     s
1392      *              Others Undefined */
1393 
1394     /*
1395      * Use the table above to decide the encode of interrupt coalescing timeout
1396      * value for register writing. */
1397     if (coalesce_timeout == 0)
1398         timeout_encode = 0;
1399     else{
1400         /* make the timeout value in unit of (10 ns). */
1401         coalesce_timeout = coalesce_timeout * 100;
1402         min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1403         max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1404 
1405         /* get the encode of timeout for register writing. */
1406         for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1407               timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1408               timeout_encode++) {
1409             if (min <= coalesce_timeout &&  max > coalesce_timeout)
1410                 break;
1411             else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1412                  && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1413                 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1414                     break;
1415                 else{
1416                     timeout_encode++;
1417                     break;
1418                 }
1419             } else {
1420                 max = max * 2;
1421                 min = min * 2;
1422             }
1423         }
1424 
1425         if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1426             /* the value is out of range. */
1427             return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1428     }
1429 
1430     writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1431            SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1432            &ihost->smu_registers->interrupt_coalesce_control);
1433 
1434 
1435     ihost->interrupt_coalesce_number = (u16)coalesce_number;
1436     ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1437 
1438     return SCI_SUCCESS;
1439 }
1440 
1441 
1442 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1443 {
1444     struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1445     u32 val;
1446 
1447     /* enable clock gating for power control of the scu unit */
1448     val = readl(&ihost->smu_registers->clock_gating_control);
1449     val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) |
1450          SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) |
1451          SMU_CGUCR_GEN_BIT(XCLK_ENABLE));
1452     val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
1453     writel(val, &ihost->smu_registers->clock_gating_control);
1454 
1455     /* set the default interrupt coalescence number and timeout value. */
1456     sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1457 }
1458 
1459 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1460 {
1461     struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1462 
1463     /* disable interrupt coalescence. */
1464     sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1465 }
1466 
1467 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1468 {
1469     u32 index;
1470     enum sci_status port_status;
1471     enum sci_status status = SCI_SUCCESS;
1472 
1473     for (index = 0; index < ihost->logical_port_entries; index++) {
1474         struct isci_port *iport = &ihost->ports[index];
1475 
1476         port_status = sci_port_stop(iport);
1477 
1478         if ((port_status != SCI_SUCCESS) &&
1479             (port_status != SCI_FAILURE_INVALID_STATE)) {
1480             status = SCI_FAILURE;
1481 
1482             dev_warn(&ihost->pdev->dev,
1483                  "%s: Controller stop operation failed to "
1484                  "stop port %d because of status %d.\n",
1485                  __func__,
1486                  iport->logical_port_index,
1487                  port_status);
1488         }
1489     }
1490 
1491     return status;
1492 }
1493 
1494 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1495 {
1496     u32 index;
1497     enum sci_status status;
1498     enum sci_status device_status;
1499 
1500     status = SCI_SUCCESS;
1501 
1502     for (index = 0; index < ihost->remote_node_entries; index++) {
1503         if (ihost->device_table[index] != NULL) {
1504             /* / @todo What timeout value do we want to provide to this request? */
1505             device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1506 
1507             if ((device_status != SCI_SUCCESS) &&
1508                 (device_status != SCI_FAILURE_INVALID_STATE)) {
1509                 dev_warn(&ihost->pdev->dev,
1510                      "%s: Controller stop operation failed "
1511                      "to stop device 0x%p because of "
1512                      "status %d.\n",
1513                      __func__,
1514                      ihost->device_table[index], device_status);
1515             }
1516         }
1517     }
1518 
1519     return status;
1520 }
1521 
1522 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1523 {
1524     struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1525 
1526     sci_controller_stop_devices(ihost);
1527     sci_controller_stop_ports(ihost);
1528 
1529     if (!sci_controller_has_remote_devices_stopping(ihost))
1530         isci_host_stop_complete(ihost);
1531 }
1532 
1533 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1534 {
1535     struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1536 
1537     sci_del_timer(&ihost->timer);
1538 }
1539 
1540 static void sci_controller_reset_hardware(struct isci_host *ihost)
1541 {
1542     /* Disable interrupts so we dont take any spurious interrupts */
1543     sci_controller_disable_interrupts(ihost);
1544 
1545     /* Reset the SCU */
1546     writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1547 
1548     /* Delay for 1ms to before clearing the CQP and UFQPR. */
1549     udelay(1000);
1550 
1551     /* The write to the CQGR clears the CQP */
1552     writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1553 
1554     /* The write to the UFQGP clears the UFQPR */
1555     writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1556 
1557     /* clear all interrupts */
1558     writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status);
1559 }
1560 
1561 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1562 {
1563     struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1564 
1565     sci_controller_reset_hardware(ihost);
1566     sci_change_state(&ihost->sm, SCIC_RESET);
1567 }
1568 
1569 static const struct sci_base_state sci_controller_state_table[] = {
1570     [SCIC_INITIAL] = {
1571         .enter_state = sci_controller_initial_state_enter,
1572     },
1573     [SCIC_RESET] = {},
1574     [SCIC_INITIALIZING] = {},
1575     [SCIC_INITIALIZED] = {},
1576     [SCIC_STARTING] = {
1577         .exit_state  = sci_controller_starting_state_exit,
1578     },
1579     [SCIC_READY] = {
1580         .enter_state = sci_controller_ready_state_enter,
1581         .exit_state  = sci_controller_ready_state_exit,
1582     },
1583     [SCIC_RESETTING] = {
1584         .enter_state = sci_controller_resetting_state_enter,
1585     },
1586     [SCIC_STOPPING] = {
1587         .enter_state = sci_controller_stopping_state_enter,
1588         .exit_state = sci_controller_stopping_state_exit,
1589     },
1590     [SCIC_FAILED] = {}
1591 };
1592 
1593 static void controller_timeout(struct timer_list *t)
1594 {
1595     struct sci_timer *tmr = from_timer(tmr, t, timer);
1596     struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1597     struct sci_base_state_machine *sm = &ihost->sm;
1598     unsigned long flags;
1599 
1600     spin_lock_irqsave(&ihost->scic_lock, flags);
1601 
1602     if (tmr->cancel)
1603         goto done;
1604 
1605     if (sm->current_state_id == SCIC_STARTING)
1606         sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1607     else if (sm->current_state_id == SCIC_STOPPING) {
1608         sci_change_state(sm, SCIC_FAILED);
1609         isci_host_stop_complete(ihost);
1610     } else  /* / @todo Now what do we want to do in this case? */
1611         dev_err(&ihost->pdev->dev,
1612             "%s: Controller timer fired when controller was not "
1613             "in a state being timed.\n",
1614             __func__);
1615 
1616 done:
1617     spin_unlock_irqrestore(&ihost->scic_lock, flags);
1618 }
1619 
1620 static enum sci_status sci_controller_construct(struct isci_host *ihost,
1621                         void __iomem *scu_base,
1622                         void __iomem *smu_base)
1623 {
1624     u8 i;
1625 
1626     sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1627 
1628     ihost->scu_registers = scu_base;
1629     ihost->smu_registers = smu_base;
1630 
1631     sci_port_configuration_agent_construct(&ihost->port_agent);
1632 
1633     /* Construct the ports for this controller */
1634     for (i = 0; i < SCI_MAX_PORTS; i++)
1635         sci_port_construct(&ihost->ports[i], i, ihost);
1636     sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1637 
1638     /* Construct the phys for this controller */
1639     for (i = 0; i < SCI_MAX_PHYS; i++) {
1640         /* Add all the PHYs to the dummy port */
1641         sci_phy_construct(&ihost->phys[i],
1642                   &ihost->ports[SCI_MAX_PORTS], i);
1643     }
1644 
1645     ihost->invalid_phy_mask = 0;
1646 
1647     sci_init_timer(&ihost->timer, controller_timeout);
1648 
1649     return sci_controller_reset(ihost);
1650 }
1651 
1652 int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
1653 {
1654     int i;
1655 
1656     for (i = 0; i < SCI_MAX_PORTS; i++)
1657         if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1658             return -EINVAL;
1659 
1660     for (i = 0; i < SCI_MAX_PHYS; i++)
1661         if (oem->phys[i].sas_address.high == 0 &&
1662             oem->phys[i].sas_address.low == 0)
1663             return -EINVAL;
1664 
1665     if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1666         for (i = 0; i < SCI_MAX_PHYS; i++)
1667             if (oem->ports[i].phy_mask != 0)
1668                 return -EINVAL;
1669     } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1670         u8 phy_mask = 0;
1671 
1672         for (i = 0; i < SCI_MAX_PHYS; i++)
1673             phy_mask |= oem->ports[i].phy_mask;
1674 
1675         if (phy_mask == 0)
1676             return -EINVAL;
1677     } else
1678         return -EINVAL;
1679 
1680     if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
1681         oem->controller.max_concurr_spin_up < 1)
1682         return -EINVAL;
1683 
1684     if (oem->controller.do_enable_ssc) {
1685         if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
1686             return -EINVAL;
1687 
1688         if (version >= ISCI_ROM_VER_1_1) {
1689             u8 test = oem->controller.ssc_sata_tx_spread_level;
1690 
1691             switch (test) {
1692             case 0:
1693             case 2:
1694             case 3:
1695             case 6:
1696             case 7:
1697                 break;
1698             default:
1699                 return -EINVAL;
1700             }
1701 
1702             test = oem->controller.ssc_sas_tx_spread_level;
1703             if (oem->controller.ssc_sas_tx_type == 0) {
1704                 switch (test) {
1705                 case 0:
1706                 case 2:
1707                 case 3:
1708                     break;
1709                 default:
1710                     return -EINVAL;
1711                 }
1712             } else if (oem->controller.ssc_sas_tx_type == 1) {
1713                 switch (test) {
1714                 case 0:
1715                 case 3:
1716                 case 6:
1717                     break;
1718                 default:
1719                     return -EINVAL;
1720                 }
1721             }
1722         }
1723     }
1724 
1725     return 0;
1726 }
1727 
1728 static u8 max_spin_up(struct isci_host *ihost)
1729 {
1730     if (ihost->user_parameters.max_concurr_spinup)
1731         return min_t(u8, ihost->user_parameters.max_concurr_spinup,
1732                  MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1733     else
1734         return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
1735                  MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1736 }
1737 
1738 static void power_control_timeout(struct timer_list *t)
1739 {
1740     struct sci_timer *tmr = from_timer(tmr, t, timer);
1741     struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1742     struct isci_phy *iphy;
1743     unsigned long flags;
1744     u8 i;
1745 
1746     spin_lock_irqsave(&ihost->scic_lock, flags);
1747 
1748     if (tmr->cancel)
1749         goto done;
1750 
1751     ihost->power_control.phys_granted_power = 0;
1752 
1753     if (ihost->power_control.phys_waiting == 0) {
1754         ihost->power_control.timer_started = false;
1755         goto done;
1756     }
1757 
1758     for (i = 0; i < SCI_MAX_PHYS; i++) {
1759 
1760         if (ihost->power_control.phys_waiting == 0)
1761             break;
1762 
1763         iphy = ihost->power_control.requesters[i];
1764         if (iphy == NULL)
1765             continue;
1766 
1767         if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1768             break;
1769 
1770         ihost->power_control.requesters[i] = NULL;
1771         ihost->power_control.phys_waiting--;
1772         ihost->power_control.phys_granted_power++;
1773         sci_phy_consume_power_handler(iphy);
1774 
1775         if (iphy->protocol == SAS_PROTOCOL_SSP) {
1776             u8 j;
1777 
1778             for (j = 0; j < SCI_MAX_PHYS; j++) {
1779                 struct isci_phy *requester = ihost->power_control.requesters[j];
1780 
1781                 /*
1782                  * Search the power_control queue to see if there are other phys
1783                  * attached to the same remote device. If found, take all of
1784                  * them out of await_sas_power state.
1785                  */
1786                 if (requester != NULL && requester != iphy) {
1787                     u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
1788                               iphy->frame_rcvd.iaf.sas_addr,
1789                               sizeof(requester->frame_rcvd.iaf.sas_addr));
1790 
1791                     if (other == 0) {
1792                         ihost->power_control.requesters[j] = NULL;
1793                         ihost->power_control.phys_waiting--;
1794                         sci_phy_consume_power_handler(requester);
1795                     }
1796                 }
1797             }
1798         }
1799     }
1800 
1801     /*
1802      * It doesn't matter if the power list is empty, we need to start the
1803      * timer in case another phy becomes ready.
1804      */
1805     sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1806     ihost->power_control.timer_started = true;
1807 
1808 done:
1809     spin_unlock_irqrestore(&ihost->scic_lock, flags);
1810 }
1811 
1812 void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1813                            struct isci_phy *iphy)
1814 {
1815     BUG_ON(iphy == NULL);
1816 
1817     if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1818         ihost->power_control.phys_granted_power++;
1819         sci_phy_consume_power_handler(iphy);
1820 
1821         /*
1822          * stop and start the power_control timer. When the timer fires, the
1823          * no_of_phys_granted_power will be set to 0
1824          */
1825         if (ihost->power_control.timer_started)
1826             sci_del_timer(&ihost->power_control.timer);
1827 
1828         sci_mod_timer(&ihost->power_control.timer,
1829                  SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1830         ihost->power_control.timer_started = true;
1831 
1832     } else {
1833         /*
1834          * There are phys, attached to the same sas address as this phy, are
1835          * already in READY state, this phy don't need wait.
1836          */
1837         u8 i;
1838         struct isci_phy *current_phy;
1839 
1840         for (i = 0; i < SCI_MAX_PHYS; i++) {
1841             u8 other;
1842             current_phy = &ihost->phys[i];
1843 
1844             other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
1845                        iphy->frame_rcvd.iaf.sas_addr,
1846                        sizeof(current_phy->frame_rcvd.iaf.sas_addr));
1847 
1848             if (current_phy->sm.current_state_id == SCI_PHY_READY &&
1849                 current_phy->protocol == SAS_PROTOCOL_SSP &&
1850                 other == 0) {
1851                 sci_phy_consume_power_handler(iphy);
1852                 break;
1853             }
1854         }
1855 
1856         if (i == SCI_MAX_PHYS) {
1857             /* Add the phy in the waiting list */
1858             ihost->power_control.requesters[iphy->phy_index] = iphy;
1859             ihost->power_control.phys_waiting++;
1860         }
1861     }
1862 }
1863 
1864 void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1865                            struct isci_phy *iphy)
1866 {
1867     BUG_ON(iphy == NULL);
1868 
1869     if (ihost->power_control.requesters[iphy->phy_index])
1870         ihost->power_control.phys_waiting--;
1871 
1872     ihost->power_control.requesters[iphy->phy_index] = NULL;
1873 }
1874 
1875 static int is_long_cable(int phy, unsigned char selection_byte)
1876 {
1877     return !!(selection_byte & (1 << phy));
1878 }
1879 
1880 static int is_medium_cable(int phy, unsigned char selection_byte)
1881 {
1882     return !!(selection_byte & (1 << (phy + 4)));
1883 }
1884 
1885 static enum cable_selections decode_selection_byte(
1886     int phy,
1887     unsigned char selection_byte)
1888 {
1889     return ((selection_byte & (1 << phy)) ? 1 : 0)
1890         + (selection_byte & (1 << (phy + 4)) ? 2 : 0);
1891 }
1892 
1893 static unsigned char *to_cable_select(struct isci_host *ihost)
1894 {
1895     if (is_cable_select_overridden())
1896         return ((unsigned char *)&cable_selection_override)
1897             + ihost->id;
1898     else
1899         return &ihost->oem_parameters.controller.cable_selection_mask;
1900 }
1901 
1902 enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
1903 {
1904     return decode_selection_byte(phy, *to_cable_select(ihost));
1905 }
1906 
1907 char *lookup_cable_names(enum cable_selections selection)
1908 {
1909     static char *cable_names[] = {
1910         [short_cable]     = "short",
1911         [long_cable]      = "long",
1912         [medium_cable]    = "medium",
1913         [undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
1914     };
1915     return (selection <= undefined_cable) ? cable_names[selection]
1916                           : cable_names[undefined_cable];
1917 }
1918 
1919 #define AFE_REGISTER_WRITE_DELAY 10
1920 
1921 static void sci_controller_afe_initialization(struct isci_host *ihost)
1922 {
1923     struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
1924     const struct sci_oem_params *oem = &ihost->oem_parameters;
1925     struct pci_dev *pdev = ihost->pdev;
1926     u32 afe_status;
1927     u32 phy_id;
1928     unsigned char cable_selection_mask = *to_cable_select(ihost);
1929 
1930     /* Clear DFX Status registers */
1931     writel(0x0081000f, &afe->afe_dfx_master_control0);
1932     udelay(AFE_REGISTER_WRITE_DELAY);
1933 
1934     if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
1935         /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1936          * Timer, PM Stagger Timer
1937          */
1938         writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
1939         udelay(AFE_REGISTER_WRITE_DELAY);
1940     }
1941 
1942     /* Configure bias currents to normal */
1943     if (is_a2(pdev))
1944         writel(0x00005A00, &afe->afe_bias_control);
1945     else if (is_b0(pdev) || is_c0(pdev))
1946         writel(0x00005F00, &afe->afe_bias_control);
1947     else if (is_c1(pdev))
1948         writel(0x00005500, &afe->afe_bias_control);
1949 
1950     udelay(AFE_REGISTER_WRITE_DELAY);
1951 
1952     /* Enable PLL */
1953     if (is_a2(pdev))
1954         writel(0x80040908, &afe->afe_pll_control0);
1955     else if (is_b0(pdev) || is_c0(pdev))
1956         writel(0x80040A08, &afe->afe_pll_control0);
1957     else if (is_c1(pdev)) {
1958         writel(0x80000B08, &afe->afe_pll_control0);
1959         udelay(AFE_REGISTER_WRITE_DELAY);
1960         writel(0x00000B08, &afe->afe_pll_control0);
1961         udelay(AFE_REGISTER_WRITE_DELAY);
1962         writel(0x80000B08, &afe->afe_pll_control0);
1963     }
1964 
1965     udelay(AFE_REGISTER_WRITE_DELAY);
1966 
1967     /* Wait for the PLL to lock */
1968     do {
1969         afe_status = readl(&afe->afe_common_block_status);
1970         udelay(AFE_REGISTER_WRITE_DELAY);
1971     } while ((afe_status & 0x00001000) == 0);
1972 
1973     if (is_a2(pdev)) {
1974         /* Shorten SAS SNW lock time (RxLock timer value from 76
1975          * us to 50 us)
1976          */
1977         writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
1978         udelay(AFE_REGISTER_WRITE_DELAY);
1979     }
1980 
1981     for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
1982         struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_id];
1983         const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
1984         int cable_length_long =
1985             is_long_cable(phy_id, cable_selection_mask);
1986         int cable_length_medium =
1987             is_medium_cable(phy_id, cable_selection_mask);
1988 
1989         if (is_a2(pdev)) {
1990             /* All defaults, except the Receive Word
1991              * Alignament/Comma Detect Enable....(0xe800)
1992              */
1993             writel(0x00004512, &xcvr->afe_xcvr_control0);
1994             udelay(AFE_REGISTER_WRITE_DELAY);
1995 
1996             writel(0x0050100F, &xcvr->afe_xcvr_control1);
1997             udelay(AFE_REGISTER_WRITE_DELAY);
1998         } else if (is_b0(pdev)) {
1999             /* Configure transmitter SSC parameters */
2000             writel(0x00030000, &xcvr->afe_tx_ssc_control);
2001             udelay(AFE_REGISTER_WRITE_DELAY);
2002         } else if (is_c0(pdev)) {
2003             /* Configure transmitter SSC parameters */
2004             writel(0x00010202, &xcvr->afe_tx_ssc_control);
2005             udelay(AFE_REGISTER_WRITE_DELAY);
2006 
2007             /* All defaults, except the Receive Word
2008              * Alignament/Comma Detect Enable....(0xe800)
2009              */
2010             writel(0x00014500, &xcvr->afe_xcvr_control0);
2011             udelay(AFE_REGISTER_WRITE_DELAY);
2012         } else if (is_c1(pdev)) {
2013             /* Configure transmitter SSC parameters */
2014             writel(0x00010202, &xcvr->afe_tx_ssc_control);
2015             udelay(AFE_REGISTER_WRITE_DELAY);
2016 
2017             /* All defaults, except the Receive Word
2018              * Alignament/Comma Detect Enable....(0xe800)
2019              */
2020             writel(0x0001C500, &xcvr->afe_xcvr_control0);
2021             udelay(AFE_REGISTER_WRITE_DELAY);
2022         }
2023 
2024         /* Power up TX and RX out from power down (PWRDNTX and
2025          * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2026          */
2027         if (is_a2(pdev))
2028             writel(0x000003F0, &xcvr->afe_channel_control);
2029         else if (is_b0(pdev)) {
2030             writel(0x000003D7, &xcvr->afe_channel_control);
2031             udelay(AFE_REGISTER_WRITE_DELAY);
2032 
2033             writel(0x000003D4, &xcvr->afe_channel_control);
2034         } else if (is_c0(pdev)) {
2035             writel(0x000001E7, &xcvr->afe_channel_control);
2036             udelay(AFE_REGISTER_WRITE_DELAY);
2037 
2038             writel(0x000001E4, &xcvr->afe_channel_control);
2039         } else if (is_c1(pdev)) {
2040             writel(cable_length_long ? 0x000002F7 : 0x000001F7,
2041                    &xcvr->afe_channel_control);
2042             udelay(AFE_REGISTER_WRITE_DELAY);
2043 
2044             writel(cable_length_long ? 0x000002F4 : 0x000001F4,
2045                    &xcvr->afe_channel_control);
2046         }
2047         udelay(AFE_REGISTER_WRITE_DELAY);
2048 
2049         if (is_a2(pdev)) {
2050             /* Enable TX equalization (0xe824) */
2051             writel(0x00040000, &xcvr->afe_tx_control);
2052             udelay(AFE_REGISTER_WRITE_DELAY);
2053         }
2054 
2055         if (is_a2(pdev) || is_b0(pdev))
2056             /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2057              * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2058              * Enabled) ....(0xe800)
2059              */
2060             writel(0x00004100, &xcvr->afe_xcvr_control0);
2061         else if (is_c0(pdev))
2062             writel(0x00014100, &xcvr->afe_xcvr_control0);
2063         else if (is_c1(pdev))
2064             writel(0x0001C100, &xcvr->afe_xcvr_control0);
2065         udelay(AFE_REGISTER_WRITE_DELAY);
2066 
2067         /* Leave DFE/FFE on */
2068         if (is_a2(pdev))
2069             writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2070         else if (is_b0(pdev)) {
2071             writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2072             udelay(AFE_REGISTER_WRITE_DELAY);
2073             /* Enable TX equalization (0xe824) */
2074             writel(0x00040000, &xcvr->afe_tx_control);
2075         } else if (is_c0(pdev)) {
2076             writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
2077             udelay(AFE_REGISTER_WRITE_DELAY);
2078 
2079             writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
2080             udelay(AFE_REGISTER_WRITE_DELAY);
2081 
2082             /* Enable TX equalization (0xe824) */
2083             writel(0x00040000, &xcvr->afe_tx_control);
2084         } else if (is_c1(pdev)) {
2085             writel(cable_length_long ? 0x01500C0C :
2086                    cable_length_medium ? 0x01400C0D : 0x02400C0D,
2087                    &xcvr->afe_xcvr_control1);
2088             udelay(AFE_REGISTER_WRITE_DELAY);
2089 
2090             writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
2091             udelay(AFE_REGISTER_WRITE_DELAY);
2092 
2093             writel(cable_length_long ? 0x33091C1F :
2094                    cable_length_medium ? 0x3315181F : 0x2B17161F,
2095                    &xcvr->afe_rx_ssc_control0);
2096             udelay(AFE_REGISTER_WRITE_DELAY);
2097 
2098             /* Enable TX equalization (0xe824) */
2099             writel(0x00040000, &xcvr->afe_tx_control);
2100         }
2101 
2102         udelay(AFE_REGISTER_WRITE_DELAY);
2103 
2104         writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
2105         udelay(AFE_REGISTER_WRITE_DELAY);
2106 
2107         writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
2108         udelay(AFE_REGISTER_WRITE_DELAY);
2109 
2110         writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
2111         udelay(AFE_REGISTER_WRITE_DELAY);
2112 
2113         writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
2114         udelay(AFE_REGISTER_WRITE_DELAY);
2115     }
2116 
2117     /* Transfer control to the PEs */
2118     writel(0x00010f00, &afe->afe_dfx_master_control0);
2119     udelay(AFE_REGISTER_WRITE_DELAY);
2120 }
2121 
2122 static void sci_controller_initialize_power_control(struct isci_host *ihost)
2123 {
2124     sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2125 
2126     memset(ihost->power_control.requesters, 0,
2127            sizeof(ihost->power_control.requesters));
2128 
2129     ihost->power_control.phys_waiting = 0;
2130     ihost->power_control.phys_granted_power = 0;
2131 }
2132 
2133 static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2134 {
2135     struct sci_base_state_machine *sm = &ihost->sm;
2136     enum sci_status result = SCI_FAILURE;
2137     unsigned long i, state, val;
2138 
2139     if (ihost->sm.current_state_id != SCIC_RESET) {
2140         dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2141              __func__, ihost->sm.current_state_id);
2142         return SCI_FAILURE_INVALID_STATE;
2143     }
2144 
2145     sci_change_state(sm, SCIC_INITIALIZING);
2146 
2147     sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2148 
2149     ihost->next_phy_to_start = 0;
2150     ihost->phy_startup_timer_pending = false;
2151 
2152     sci_controller_initialize_power_control(ihost);
2153 
2154     /*
2155      * There is nothing to do here for B0 since we do not have to
2156      * program the AFE registers.
2157      * / @todo The AFE settings are supposed to be correct for the B0 but
2158      * /       presently they seem to be wrong. */
2159     sci_controller_afe_initialization(ihost);
2160 
2161 
2162     /* Take the hardware out of reset */
2163     writel(0, &ihost->smu_registers->soft_reset_control);
2164 
2165     /*
2166      * / @todo Provide meaningfull error code for hardware failure
2167      * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2168     for (i = 100; i >= 1; i--) {
2169         u32 status;
2170 
2171         /* Loop until the hardware reports success */
2172         udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2173         status = readl(&ihost->smu_registers->control_status);
2174 
2175         if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2176             break;
2177     }
2178     if (i == 0)
2179         goto out;
2180 
2181     /*
2182      * Determine what are the actaul device capacities that the
2183      * hardware will support */
2184     val = readl(&ihost->smu_registers->device_context_capacity);
2185 
2186     /* Record the smaller of the two capacity values */
2187     ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2188     ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2189     ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2190 
2191     /*
2192      * Make all PEs that are unassigned match up with the
2193      * logical ports
2194      */
2195     for (i = 0; i < ihost->logical_port_entries; i++) {
2196         struct scu_port_task_scheduler_group_registers __iomem
2197             *ptsg = &ihost->scu_registers->peg0.ptsg;
2198 
2199         writel(i, &ptsg->protocol_engine[i]);
2200     }
2201 
2202     /* Initialize hardware PCI Relaxed ordering in DMA engines */
2203     val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2204     val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2205     writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2206 
2207     val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2208     val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2209     writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2210 
2211     /*
2212      * Initialize the PHYs before the PORTs because the PHY registers
2213      * are accessed during the port initialization.
2214      */
2215     for (i = 0; i < SCI_MAX_PHYS; i++) {
2216         result = sci_phy_initialize(&ihost->phys[i],
2217                         &ihost->scu_registers->peg0.pe[i].tl,
2218                         &ihost->scu_registers->peg0.pe[i].ll);
2219         if (result != SCI_SUCCESS)
2220             goto out;
2221     }
2222 
2223     for (i = 0; i < ihost->logical_port_entries; i++) {
2224         struct isci_port *iport = &ihost->ports[i];
2225 
2226         iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2227         iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2228         iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2229     }
2230 
2231     result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2232 
2233  out:
2234     /* Advance the controller state machine */
2235     if (result == SCI_SUCCESS)
2236         state = SCIC_INITIALIZED;
2237     else
2238         state = SCIC_FAILED;
2239     sci_change_state(sm, state);
2240 
2241     return result;
2242 }
2243 
2244 static int sci_controller_dma_alloc(struct isci_host *ihost)
2245 {
2246     struct device *dev = &ihost->pdev->dev;
2247     size_t size;
2248     int i;
2249 
2250     /* detect re-initialization */
2251     if (ihost->completion_queue)
2252         return 0;
2253 
2254     size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2255     ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma,
2256                               GFP_KERNEL);
2257     if (!ihost->completion_queue)
2258         return -ENOMEM;
2259 
2260     size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2261     ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma,
2262                                    GFP_KERNEL);
2263 
2264     if (!ihost->remote_node_context_table)
2265         return -ENOMEM;
2266 
2267     size = ihost->task_context_entries * sizeof(struct scu_task_context),
2268     ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma,
2269                             GFP_KERNEL);
2270     if (!ihost->task_context_table)
2271         return -ENOMEM;
2272 
2273     size = SCI_UFI_TOTAL_SIZE;
2274     ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL);
2275     if (!ihost->ufi_buf)
2276         return -ENOMEM;
2277 
2278     for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2279         struct isci_request *ireq;
2280         dma_addr_t dma;
2281 
2282         ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL);
2283         if (!ireq)
2284             return -ENOMEM;
2285 
2286         ireq->tc = &ihost->task_context_table[i];
2287         ireq->owning_controller = ihost;
2288         ireq->request_daddr = dma;
2289         ireq->isci_host = ihost;
2290         ihost->reqs[i] = ireq;
2291     }
2292 
2293     return 0;
2294 }
2295 
2296 static int sci_controller_mem_init(struct isci_host *ihost)
2297 {
2298     int err = sci_controller_dma_alloc(ihost);
2299 
2300     if (err)
2301         return err;
2302 
2303     writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower);
2304     writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper);
2305 
2306     writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower);
2307     writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper);
2308 
2309     writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower);
2310     writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper);
2311 
2312     sci_unsolicited_frame_control_construct(ihost);
2313 
2314     /*
2315      * Inform the silicon as to the location of the UF headers and
2316      * address table.
2317      */
2318     writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2319         &ihost->scu_registers->sdma.uf_header_base_address_lower);
2320     writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2321         &ihost->scu_registers->sdma.uf_header_base_address_upper);
2322 
2323     writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2324         &ihost->scu_registers->sdma.uf_address_table_lower);
2325     writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2326         &ihost->scu_registers->sdma.uf_address_table_upper);
2327 
2328     return 0;
2329 }
2330 
2331 /**
2332  * isci_host_init - (re-)initialize hardware and internal (private) state
2333  * @ihost: host to init
2334  *
2335  * Any public facing objects (like asd_sas_port, and asd_sas_phys), or
2336  * one-time initialization objects like locks and waitqueues, are
2337  * not touched (they are initialized in isci_host_alloc)
2338  */
2339 int isci_host_init(struct isci_host *ihost)
2340 {
2341     int i, err;
2342     enum sci_status status;
2343 
2344     spin_lock_irq(&ihost->scic_lock);
2345     status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost));
2346     spin_unlock_irq(&ihost->scic_lock);
2347     if (status != SCI_SUCCESS) {
2348         dev_err(&ihost->pdev->dev,
2349             "%s: sci_controller_construct failed - status = %x\n",
2350             __func__,
2351             status);
2352         return -ENODEV;
2353     }
2354 
2355     spin_lock_irq(&ihost->scic_lock);
2356     status = sci_controller_initialize(ihost);
2357     spin_unlock_irq(&ihost->scic_lock);
2358     if (status != SCI_SUCCESS) {
2359         dev_warn(&ihost->pdev->dev,
2360              "%s: sci_controller_initialize failed -"
2361              " status = 0x%x\n",
2362              __func__, status);
2363         return -ENODEV;
2364     }
2365 
2366     err = sci_controller_mem_init(ihost);
2367     if (err)
2368         return err;
2369 
2370     /* enable sgpio */
2371     writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2372     for (i = 0; i < isci_gpio_count(ihost); i++)
2373         writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2374     writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2375 
2376     return 0;
2377 }
2378 
2379 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2380                 struct isci_phy *iphy)
2381 {
2382     switch (ihost->sm.current_state_id) {
2383     case SCIC_STARTING:
2384         sci_del_timer(&ihost->phy_timer);
2385         ihost->phy_startup_timer_pending = false;
2386         ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2387                           iport, iphy);
2388         sci_controller_start_next_phy(ihost);
2389         break;
2390     case SCIC_READY:
2391         ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2392                           iport, iphy);
2393         break;
2394     default:
2395         dev_dbg(&ihost->pdev->dev,
2396             "%s: SCIC Controller linkup event from phy %d in "
2397             "unexpected state %d\n", __func__, iphy->phy_index,
2398             ihost->sm.current_state_id);
2399     }
2400 }
2401 
2402 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2403                   struct isci_phy *iphy)
2404 {
2405     switch (ihost->sm.current_state_id) {
2406     case SCIC_STARTING:
2407     case SCIC_READY:
2408         ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2409                            iport, iphy);
2410         break;
2411     default:
2412         dev_dbg(&ihost->pdev->dev,
2413             "%s: SCIC Controller linkdown event from phy %d in "
2414             "unexpected state %d\n",
2415             __func__,
2416             iphy->phy_index,
2417             ihost->sm.current_state_id);
2418     }
2419 }
2420 
2421 bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2422 {
2423     u32 index;
2424 
2425     for (index = 0; index < ihost->remote_node_entries; index++) {
2426         if ((ihost->device_table[index] != NULL) &&
2427            (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2428             return true;
2429     }
2430 
2431     return false;
2432 }
2433 
2434 void sci_controller_remote_device_stopped(struct isci_host *ihost,
2435                       struct isci_remote_device *idev)
2436 {
2437     if (ihost->sm.current_state_id != SCIC_STOPPING) {
2438         dev_dbg(&ihost->pdev->dev,
2439             "SCIC Controller 0x%p remote device stopped event "
2440             "from device 0x%p in unexpected state %d\n",
2441             ihost, idev,
2442             ihost->sm.current_state_id);
2443         return;
2444     }
2445 
2446     if (!sci_controller_has_remote_devices_stopping(ihost))
2447         isci_host_stop_complete(ihost);
2448 }
2449 
2450 void sci_controller_post_request(struct isci_host *ihost, u32 request)
2451 {
2452     dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2453         __func__, ihost->id, request);
2454 
2455     writel(request, &ihost->smu_registers->post_context_port);
2456 }
2457 
2458 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2459 {
2460     u16 task_index;
2461     u16 task_sequence;
2462 
2463     task_index = ISCI_TAG_TCI(io_tag);
2464 
2465     if (task_index < ihost->task_context_entries) {
2466         struct isci_request *ireq = ihost->reqs[task_index];
2467 
2468         if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2469             task_sequence = ISCI_TAG_SEQ(io_tag);
2470 
2471             if (task_sequence == ihost->io_request_sequence[task_index])
2472                 return ireq;
2473         }
2474     }
2475 
2476     return NULL;
2477 }
2478 
2479 /**
2480  * sci_controller_allocate_remote_node_context()
2481  * This method allocates remote node index and the reserves the remote node
2482  *    context space for use. This method can fail if there are no more remote
2483  *    node index available.
2484  * @ihost: This is the controller object which contains the set of
2485  *    free remote node ids
2486  * @idev: This is the device object which is requesting the a remote node
2487  *    id
2488  * @node_id: This is the remote node id that is assinged to the device if one
2489  *    is available
2490  *
2491  * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2492  * node index available.
2493  */
2494 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2495                                 struct isci_remote_device *idev,
2496                                 u16 *node_id)
2497 {
2498     u16 node_index;
2499     u32 remote_node_count = sci_remote_device_node_count(idev);
2500 
2501     node_index = sci_remote_node_table_allocate_remote_node(
2502         &ihost->available_remote_nodes, remote_node_count
2503         );
2504 
2505     if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2506         ihost->device_table[node_index] = idev;
2507 
2508         *node_id = node_index;
2509 
2510         return SCI_SUCCESS;
2511     }
2512 
2513     return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2514 }
2515 
2516 void sci_controller_free_remote_node_context(struct isci_host *ihost,
2517                          struct isci_remote_device *idev,
2518                          u16 node_id)
2519 {
2520     u32 remote_node_count = sci_remote_device_node_count(idev);
2521 
2522     if (ihost->device_table[node_id] == idev) {
2523         ihost->device_table[node_id] = NULL;
2524 
2525         sci_remote_node_table_release_remote_node_index(
2526             &ihost->available_remote_nodes, remote_node_count, node_id
2527             );
2528     }
2529 }
2530 
2531 void sci_controller_copy_sata_response(void *response_buffer,
2532                        void *frame_header,
2533                        void *frame_buffer)
2534 {
2535     /* XXX type safety? */
2536     memcpy(response_buffer, frame_header, sizeof(u32));
2537 
2538     memcpy(response_buffer + sizeof(u32),
2539            frame_buffer,
2540            sizeof(struct dev_to_host_fis) - sizeof(u32));
2541 }
2542 
2543 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2544 {
2545     if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2546         writel(ihost->uf_control.get,
2547             &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2548 }
2549 
2550 void isci_tci_free(struct isci_host *ihost, u16 tci)
2551 {
2552     u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2553 
2554     ihost->tci_pool[tail] = tci;
2555     ihost->tci_tail = tail + 1;
2556 }
2557 
2558 static u16 isci_tci_alloc(struct isci_host *ihost)
2559 {
2560     u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2561     u16 tci = ihost->tci_pool[head];
2562 
2563     ihost->tci_head = head + 1;
2564     return tci;
2565 }
2566 
2567 static u16 isci_tci_space(struct isci_host *ihost)
2568 {
2569     return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2570 }
2571 
2572 u16 isci_alloc_tag(struct isci_host *ihost)
2573 {
2574     if (isci_tci_space(ihost)) {
2575         u16 tci = isci_tci_alloc(ihost);
2576         u8 seq = ihost->io_request_sequence[tci];
2577 
2578         return ISCI_TAG(seq, tci);
2579     }
2580 
2581     return SCI_CONTROLLER_INVALID_IO_TAG;
2582 }
2583 
2584 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2585 {
2586     u16 tci = ISCI_TAG_TCI(io_tag);
2587     u16 seq = ISCI_TAG_SEQ(io_tag);
2588 
2589     /* prevent tail from passing head */
2590     if (isci_tci_active(ihost) == 0)
2591         return SCI_FAILURE_INVALID_IO_TAG;
2592 
2593     if (seq == ihost->io_request_sequence[tci]) {
2594         ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2595 
2596         isci_tci_free(ihost, tci);
2597 
2598         return SCI_SUCCESS;
2599     }
2600     return SCI_FAILURE_INVALID_IO_TAG;
2601 }
2602 
2603 enum sci_status sci_controller_start_io(struct isci_host *ihost,
2604                     struct isci_remote_device *idev,
2605                     struct isci_request *ireq)
2606 {
2607     enum sci_status status;
2608 
2609     if (ihost->sm.current_state_id != SCIC_READY) {
2610         dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2611              __func__, ihost->sm.current_state_id);
2612         return SCI_FAILURE_INVALID_STATE;
2613     }
2614 
2615     status = sci_remote_device_start_io(ihost, idev, ireq);
2616     if (status != SCI_SUCCESS)
2617         return status;
2618 
2619     set_bit(IREQ_ACTIVE, &ireq->flags);
2620     sci_controller_post_request(ihost, ireq->post_context);
2621     return SCI_SUCCESS;
2622 }
2623 
2624 enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2625                          struct isci_remote_device *idev,
2626                          struct isci_request *ireq)
2627 {
2628     /* terminate an ongoing (i.e. started) core IO request.  This does not
2629      * abort the IO request at the target, but rather removes the IO
2630      * request from the host controller.
2631      */
2632     enum sci_status status;
2633 
2634     if (ihost->sm.current_state_id != SCIC_READY) {
2635         dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2636              __func__, ihost->sm.current_state_id);
2637         return SCI_FAILURE_INVALID_STATE;
2638     }
2639     status = sci_io_request_terminate(ireq);
2640 
2641     dev_dbg(&ihost->pdev->dev, "%s: status=%d; ireq=%p; flags=%lx\n",
2642         __func__, status, ireq, ireq->flags);
2643 
2644     if ((status == SCI_SUCCESS) &&
2645         !test_bit(IREQ_PENDING_ABORT, &ireq->flags) &&
2646         !test_and_set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags)) {
2647         /* Utilize the original post context command and or in the
2648          * POST_TC_ABORT request sub-type.
2649          */
2650         sci_controller_post_request(
2651             ihost, ireq->post_context |
2652                 SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2653     }
2654     return status;
2655 }
2656 
2657 /**
2658  * sci_controller_complete_io() - This method will perform core specific
2659  *    completion operations for an IO request.  After this method is invoked,
2660  *    the user should consider the IO request as invalid until it is properly
2661  *    reused (i.e. re-constructed).
2662  * @ihost: The handle to the controller object for which to complete the
2663  *    IO request.
2664  * @idev: The handle to the remote device object for which to complete
2665  *    the IO request.
2666  * @ireq: the handle to the io request object to complete.
2667  */
2668 enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2669                        struct isci_remote_device *idev,
2670                        struct isci_request *ireq)
2671 {
2672     enum sci_status status;
2673 
2674     switch (ihost->sm.current_state_id) {
2675     case SCIC_STOPPING:
2676         /* XXX: Implement this function */
2677         return SCI_FAILURE;
2678     case SCIC_READY:
2679         status = sci_remote_device_complete_io(ihost, idev, ireq);
2680         if (status != SCI_SUCCESS)
2681             return status;
2682 
2683         clear_bit(IREQ_ACTIVE, &ireq->flags);
2684         return SCI_SUCCESS;
2685     default:
2686         dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2687              __func__, ihost->sm.current_state_id);
2688         return SCI_FAILURE_INVALID_STATE;
2689     }
2690 
2691 }
2692 
2693 enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2694 {
2695     struct isci_host *ihost = ireq->owning_controller;
2696 
2697     if (ihost->sm.current_state_id != SCIC_READY) {
2698         dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2699              __func__, ihost->sm.current_state_id);
2700         return SCI_FAILURE_INVALID_STATE;
2701     }
2702 
2703     set_bit(IREQ_ACTIVE, &ireq->flags);
2704     sci_controller_post_request(ihost, ireq->post_context);
2705     return SCI_SUCCESS;
2706 }
2707 
2708 /**
2709  * sci_controller_start_task() - This method is called by the SCIC user to
2710  *    send/start a framework task management request.
2711  * @ihost: the handle to the controller object for which to start the task
2712  *    management request.
2713  * @idev: the handle to the remote device object for which to start
2714  *    the task management request.
2715  * @ireq: the handle to the task request object to start.
2716  */
2717 enum sci_status sci_controller_start_task(struct isci_host *ihost,
2718                       struct isci_remote_device *idev,
2719                       struct isci_request *ireq)
2720 {
2721     enum sci_status status;
2722 
2723     if (ihost->sm.current_state_id != SCIC_READY) {
2724         dev_warn(&ihost->pdev->dev,
2725              "%s: SCIC Controller starting task from invalid "
2726              "state\n",
2727              __func__);
2728         return SCI_FAILURE_INVALID_STATE;
2729     }
2730 
2731     status = sci_remote_device_start_task(ihost, idev, ireq);
2732     switch (status) {
2733     case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2734         set_bit(IREQ_ACTIVE, &ireq->flags);
2735 
2736         /*
2737          * We will let framework know this task request started successfully,
2738          * although core is still woring on starting the request (to post tc when
2739          * RNC is resumed.)
2740          */
2741         return SCI_SUCCESS;
2742     case SCI_SUCCESS:
2743         set_bit(IREQ_ACTIVE, &ireq->flags);
2744         sci_controller_post_request(ihost, ireq->post_context);
2745         break;
2746     default:
2747         break;
2748     }
2749 
2750     return status;
2751 }
2752 
2753 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2754 {
2755     int d;
2756 
2757     /* no support for TX_GP_CFG */
2758     if (reg_index == 0)
2759         return -EINVAL;
2760 
2761     for (d = 0; d < isci_gpio_count(ihost); d++) {
2762         u32 val = 0x444; /* all ODx.n clear */
2763         int i;
2764 
2765         for (i = 0; i < 3; i++) {
2766             int bit;
2767 
2768             bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2769                                write_data, reg_index,
2770                                reg_count);
2771             if (bit < 0)
2772                 break;
2773 
2774             /* if od is set, clear the 'invert' bit */
2775             val &= ~(bit << ((i << 2) + 2));
2776         }
2777 
2778         if (i < 3)
2779             break;
2780         writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
2781     }
2782 
2783     /* unless reg_index is > 1, we should always be able to write at
2784      * least one register
2785      */
2786     return d > 0;
2787 }
2788 
2789 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
2790             u8 reg_count, u8 *write_data)
2791 {
2792     struct isci_host *ihost = sas_ha->lldd_ha;
2793     int written;
2794 
2795     switch (reg_type) {
2796     case SAS_GPIO_REG_TX_GP:
2797         written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
2798         break;
2799     default:
2800         written = -EINVAL;
2801     }
2802 
2803     return written;
2804 }