Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  *    Disk Array driver for HP Smart Array SAS controllers
0003  *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
0004  *    Copyright 2016 Microsemi Corporation
0005  *    Copyright 2014-2015 PMC-Sierra, Inc.
0006  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
0007  *
0008  *    This program is free software; you can redistribute it and/or modify
0009  *    it under the terms of the GNU General Public License as published by
0010  *    the Free Software Foundation; version 2 of the License.
0011  *
0012  *    This program is distributed in the hope that it will be useful,
0013  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
0014  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
0015  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
0016  *
0017  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
0018  *
0019  */
0020 
0021 #include <linux/module.h>
0022 #include <linux/interrupt.h>
0023 #include <linux/types.h>
0024 #include <linux/pci.h>
0025 #include <linux/kernel.h>
0026 #include <linux/slab.h>
0027 #include <linux/delay.h>
0028 #include <linux/fs.h>
0029 #include <linux/timer.h>
0030 #include <linux/init.h>
0031 #include <linux/spinlock.h>
0032 #include <linux/compat.h>
0033 #include <linux/blktrace_api.h>
0034 #include <linux/uaccess.h>
0035 #include <linux/io.h>
0036 #include <linux/dma-mapping.h>
0037 #include <linux/completion.h>
0038 #include <linux/moduleparam.h>
0039 #include <scsi/scsi.h>
0040 #include <scsi/scsi_cmnd.h>
0041 #include <scsi/scsi_device.h>
0042 #include <scsi/scsi_host.h>
0043 #include <scsi/scsi_tcq.h>
0044 #include <scsi/scsi_eh.h>
0045 #include <scsi/scsi_transport_sas.h>
0046 #include <scsi/scsi_dbg.h>
0047 #include <linux/cciss_ioctl.h>
0048 #include <linux/string.h>
0049 #include <linux/bitmap.h>
0050 #include <linux/atomic.h>
0051 #include <linux/jiffies.h>
0052 #include <linux/percpu-defs.h>
0053 #include <linux/percpu.h>
0054 #include <asm/unaligned.h>
0055 #include <asm/div64.h>
0056 #include "hpsa_cmd.h"
0057 #include "hpsa.h"
0058 
0059 /*
0060  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
0061  * with an optional trailing '-' followed by a byte value (0-255).
0062  */
0063 #define HPSA_DRIVER_VERSION "3.4.20-200"
0064 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
0065 #define HPSA "hpsa"
0066 
0067 /* How long to wait for CISS doorbell communication */
0068 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
0069 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
0070 #define MAX_CLEAR_EVENT_WAIT 30000  /* times 20 ms = 600 s */
0071 #define MAX_MODE_CHANGE_WAIT 2000   /* times 10 ms = 20 s */
0072 #define MAX_IOCTL_CONFIG_WAIT 1000
0073 
0074 /*define how many times we will try a command because of bus resets */
0075 #define MAX_CMD_RETRIES 3
0076 /* How long to wait before giving up on a command */
0077 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
0078 
0079 /* Embedded module documentation macros - see modules.h */
0080 MODULE_AUTHOR("Hewlett-Packard Company");
0081 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
0082     HPSA_DRIVER_VERSION);
0083 MODULE_VERSION(HPSA_DRIVER_VERSION);
0084 MODULE_LICENSE("GPL");
0085 MODULE_ALIAS("cciss");
0086 
0087 static int hpsa_simple_mode;
0088 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
0089 MODULE_PARM_DESC(hpsa_simple_mode,
0090     "Use 'simple mode' rather than 'performant mode'");
0091 
0092 /* define the PCI info for the cards we can control */
0093 static const struct pci_device_id hpsa_pci_device_id[] = {
0094     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
0095     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
0096     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
0097     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
0098     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
0099     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
0100     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
0101     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
0102     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
0103     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
0104     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
0105     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
0106     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
0107     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
0108     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
0109     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
0110     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
0111     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
0112     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
0113     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
0114     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
0115     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
0116     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
0117     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
0118     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
0119     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
0120     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
0121     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
0122     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
0123     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
0124     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
0125     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
0126     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
0127     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
0128     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
0129     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
0130     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
0131     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
0132     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
0133     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
0134     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
0135     {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
0136     {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
0137     {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
0138     {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
0139     {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
0140     {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
0141     {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
0142     {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
0143     {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
0144     {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
0145     {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
0146     {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
0147     {PCI_VENDOR_ID_HP,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
0148         PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
0149     {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
0150         PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
0151     {0,}
0152 };
0153 
0154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
0155 
0156 /*  board_id = Subsystem Device ID & Vendor ID
0157  *  product = Marketing Name for the board
0158  *  access = Address of the struct of function pointers
0159  */
0160 static struct board_type products[] = {
0161     {0x40700E11, "Smart Array 5300", &SA5A_access},
0162     {0x40800E11, "Smart Array 5i", &SA5B_access},
0163     {0x40820E11, "Smart Array 532", &SA5B_access},
0164     {0x40830E11, "Smart Array 5312", &SA5B_access},
0165     {0x409A0E11, "Smart Array 641", &SA5A_access},
0166     {0x409B0E11, "Smart Array 642", &SA5A_access},
0167     {0x409C0E11, "Smart Array 6400", &SA5A_access},
0168     {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
0169     {0x40910E11, "Smart Array 6i", &SA5A_access},
0170     {0x3225103C, "Smart Array P600", &SA5A_access},
0171     {0x3223103C, "Smart Array P800", &SA5A_access},
0172     {0x3234103C, "Smart Array P400", &SA5A_access},
0173     {0x3235103C, "Smart Array P400i", &SA5A_access},
0174     {0x3211103C, "Smart Array E200i", &SA5A_access},
0175     {0x3212103C, "Smart Array E200", &SA5A_access},
0176     {0x3213103C, "Smart Array E200i", &SA5A_access},
0177     {0x3214103C, "Smart Array E200i", &SA5A_access},
0178     {0x3215103C, "Smart Array E200i", &SA5A_access},
0179     {0x3237103C, "Smart Array E500", &SA5A_access},
0180     {0x323D103C, "Smart Array P700m", &SA5A_access},
0181     {0x3241103C, "Smart Array P212", &SA5_access},
0182     {0x3243103C, "Smart Array P410", &SA5_access},
0183     {0x3245103C, "Smart Array P410i", &SA5_access},
0184     {0x3247103C, "Smart Array P411", &SA5_access},
0185     {0x3249103C, "Smart Array P812", &SA5_access},
0186     {0x324A103C, "Smart Array P712m", &SA5_access},
0187     {0x324B103C, "Smart Array P711m", &SA5_access},
0188     {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
0189     {0x3350103C, "Smart Array P222", &SA5_access},
0190     {0x3351103C, "Smart Array P420", &SA5_access},
0191     {0x3352103C, "Smart Array P421", &SA5_access},
0192     {0x3353103C, "Smart Array P822", &SA5_access},
0193     {0x3354103C, "Smart Array P420i", &SA5_access},
0194     {0x3355103C, "Smart Array P220i", &SA5_access},
0195     {0x3356103C, "Smart Array P721m", &SA5_access},
0196     {0x1920103C, "Smart Array P430i", &SA5_access},
0197     {0x1921103C, "Smart Array P830i", &SA5_access},
0198     {0x1922103C, "Smart Array P430", &SA5_access},
0199     {0x1923103C, "Smart Array P431", &SA5_access},
0200     {0x1924103C, "Smart Array P830", &SA5_access},
0201     {0x1925103C, "Smart Array P831", &SA5_access},
0202     {0x1926103C, "Smart Array P731m", &SA5_access},
0203     {0x1928103C, "Smart Array P230i", &SA5_access},
0204     {0x1929103C, "Smart Array P530", &SA5_access},
0205     {0x21BD103C, "Smart Array P244br", &SA5_access},
0206     {0x21BE103C, "Smart Array P741m", &SA5_access},
0207     {0x21BF103C, "Smart HBA H240ar", &SA5_access},
0208     {0x21C0103C, "Smart Array P440ar", &SA5_access},
0209     {0x21C1103C, "Smart Array P840ar", &SA5_access},
0210     {0x21C2103C, "Smart Array P440", &SA5_access},
0211     {0x21C3103C, "Smart Array P441", &SA5_access},
0212     {0x21C4103C, "Smart Array", &SA5_access},
0213     {0x21C5103C, "Smart Array P841", &SA5_access},
0214     {0x21C6103C, "Smart HBA H244br", &SA5_access},
0215     {0x21C7103C, "Smart HBA H240", &SA5_access},
0216     {0x21C8103C, "Smart HBA H241", &SA5_access},
0217     {0x21C9103C, "Smart Array", &SA5_access},
0218     {0x21CA103C, "Smart Array P246br", &SA5_access},
0219     {0x21CB103C, "Smart Array P840", &SA5_access},
0220     {0x21CC103C, "Smart Array", &SA5_access},
0221     {0x21CD103C, "Smart Array", &SA5_access},
0222     {0x21CE103C, "Smart HBA", &SA5_access},
0223     {0x05809005, "SmartHBA-SA", &SA5_access},
0224     {0x05819005, "SmartHBA-SA 8i", &SA5_access},
0225     {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
0226     {0x05839005, "SmartHBA-SA 8e", &SA5_access},
0227     {0x05849005, "SmartHBA-SA 16i", &SA5_access},
0228     {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
0229     {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
0230     {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
0231     {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
0232     {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
0233     {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
0234     {0xFFFF103C, "Unknown Smart Array", &SA5_access},
0235 };
0236 
0237 static struct scsi_transport_template *hpsa_sas_transport_template;
0238 static int hpsa_add_sas_host(struct ctlr_info *h);
0239 static void hpsa_delete_sas_host(struct ctlr_info *h);
0240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
0241             struct hpsa_scsi_dev_t *device);
0242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
0243 static struct hpsa_scsi_dev_t
0244     *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
0245         struct sas_rphy *rphy);
0246 
0247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
0248 static const struct scsi_cmnd hpsa_cmd_busy;
0249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
0250 static const struct scsi_cmnd hpsa_cmd_idle;
0251 static int number_of_controllers;
0252 
0253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
0254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
0255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
0256               void __user *arg);
0257 static int hpsa_passthru_ioctl(struct ctlr_info *h,
0258                    IOCTL_Command_struct *iocommand);
0259 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
0260                    BIG_IOCTL_Command_struct *ioc);
0261 
0262 #ifdef CONFIG_COMPAT
0263 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
0264     void __user *arg);
0265 #endif
0266 
0267 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
0268 static struct CommandList *cmd_alloc(struct ctlr_info *h);
0269 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
0270 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
0271                         struct scsi_cmnd *scmd);
0272 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
0273     void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
0274     int cmd_type);
0275 static void hpsa_free_cmd_pool(struct ctlr_info *h);
0276 #define VPD_PAGE (1 << 8)
0277 #define HPSA_SIMPLE_ERROR_BITS 0x03
0278 
0279 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
0280 static void hpsa_scan_start(struct Scsi_Host *);
0281 static int hpsa_scan_finished(struct Scsi_Host *sh,
0282     unsigned long elapsed_time);
0283 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
0284 
0285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
0286 static int hpsa_slave_alloc(struct scsi_device *sdev);
0287 static int hpsa_slave_configure(struct scsi_device *sdev);
0288 static void hpsa_slave_destroy(struct scsi_device *sdev);
0289 
0290 static void hpsa_update_scsi_devices(struct ctlr_info *h);
0291 static int check_for_unit_attention(struct ctlr_info *h,
0292     struct CommandList *c);
0293 static void check_ioctl_unit_attention(struct ctlr_info *h,
0294     struct CommandList *c);
0295 /* performant mode helper functions */
0296 static void calc_bucket_map(int *bucket, int num_buckets,
0297     int nsgs, int min_blocks, u32 *bucket_map);
0298 static void hpsa_free_performant_mode(struct ctlr_info *h);
0299 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
0300 static inline u32 next_command(struct ctlr_info *h, u8 q);
0301 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
0302                    u32 *cfg_base_addr, u64 *cfg_base_addr_index,
0303                    u64 *cfg_offset);
0304 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
0305                     unsigned long *memory_bar);
0306 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
0307                 bool *legacy_board);
0308 static int wait_for_device_to_become_ready(struct ctlr_info *h,
0309                        unsigned char lunaddr[],
0310                        int reply_queue);
0311 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
0312                      int wait_for_ready);
0313 static inline void finish_cmd(struct CommandList *c);
0314 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
0315 #define BOARD_NOT_READY 0
0316 #define BOARD_READY 1
0317 static void hpsa_drain_accel_commands(struct ctlr_info *h);
0318 static void hpsa_flush_cache(struct ctlr_info *h);
0319 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
0320     struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
0321     u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
0322 static void hpsa_command_resubmit_worker(struct work_struct *work);
0323 static u32 lockup_detected(struct ctlr_info *h);
0324 static int detect_controller_lockup(struct ctlr_info *h);
0325 static void hpsa_disable_rld_caching(struct ctlr_info *h);
0326 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
0327     struct ReportExtendedLUNdata *buf, int bufsize);
0328 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
0329     unsigned char scsi3addr[], u8 page);
0330 static int hpsa_luns_changed(struct ctlr_info *h);
0331 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
0332                    struct hpsa_scsi_dev_t *dev,
0333                    unsigned char *scsi3addr);
0334 
0335 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
0336 {
0337     unsigned long *priv = shost_priv(sdev->host);
0338     return (struct ctlr_info *) *priv;
0339 }
0340 
0341 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
0342 {
0343     unsigned long *priv = shost_priv(sh);
0344     return (struct ctlr_info *) *priv;
0345 }
0346 
0347 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
0348 {
0349     return c->scsi_cmd == SCSI_CMD_IDLE;
0350 }
0351 
0352 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
0353 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
0354             u8 *sense_key, u8 *asc, u8 *ascq)
0355 {
0356     struct scsi_sense_hdr sshdr;
0357     bool rc;
0358 
0359     *sense_key = -1;
0360     *asc = -1;
0361     *ascq = -1;
0362 
0363     if (sense_data_len < 1)
0364         return;
0365 
0366     rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
0367     if (rc) {
0368         *sense_key = sshdr.sense_key;
0369         *asc = sshdr.asc;
0370         *ascq = sshdr.ascq;
0371     }
0372 }
0373 
0374 static int check_for_unit_attention(struct ctlr_info *h,
0375     struct CommandList *c)
0376 {
0377     u8 sense_key, asc, ascq;
0378     int sense_len;
0379 
0380     if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
0381         sense_len = sizeof(c->err_info->SenseInfo);
0382     else
0383         sense_len = c->err_info->SenseLen;
0384 
0385     decode_sense_data(c->err_info->SenseInfo, sense_len,
0386                 &sense_key, &asc, &ascq);
0387     if (sense_key != UNIT_ATTENTION || asc == 0xff)
0388         return 0;
0389 
0390     switch (asc) {
0391     case STATE_CHANGED:
0392         dev_warn(&h->pdev->dev,
0393             "%s: a state change detected, command retried\n",
0394             h->devname);
0395         break;
0396     case LUN_FAILED:
0397         dev_warn(&h->pdev->dev,
0398             "%s: LUN failure detected\n", h->devname);
0399         break;
0400     case REPORT_LUNS_CHANGED:
0401         dev_warn(&h->pdev->dev,
0402             "%s: report LUN data changed\n", h->devname);
0403     /*
0404      * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
0405      * target (array) devices.
0406      */
0407         break;
0408     case POWER_OR_RESET:
0409         dev_warn(&h->pdev->dev,
0410             "%s: a power on or device reset detected\n",
0411             h->devname);
0412         break;
0413     case UNIT_ATTENTION_CLEARED:
0414         dev_warn(&h->pdev->dev,
0415             "%s: unit attention cleared by another initiator\n",
0416             h->devname);
0417         break;
0418     default:
0419         dev_warn(&h->pdev->dev,
0420             "%s: unknown unit attention detected\n",
0421             h->devname);
0422         break;
0423     }
0424     return 1;
0425 }
0426 
0427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
0428 {
0429     if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
0430         (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
0431          c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
0432         return 0;
0433     dev_warn(&h->pdev->dev, HPSA "device busy");
0434     return 1;
0435 }
0436 
0437 static u32 lockup_detected(struct ctlr_info *h);
0438 static ssize_t host_show_lockup_detected(struct device *dev,
0439         struct device_attribute *attr, char *buf)
0440 {
0441     int ld;
0442     struct ctlr_info *h;
0443     struct Scsi_Host *shost = class_to_shost(dev);
0444 
0445     h = shost_to_hba(shost);
0446     ld = lockup_detected(h);
0447 
0448     return sprintf(buf, "ld=%d\n", ld);
0449 }
0450 
0451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
0452                      struct device_attribute *attr,
0453                      const char *buf, size_t count)
0454 {
0455     int status, len;
0456     struct ctlr_info *h;
0457     struct Scsi_Host *shost = class_to_shost(dev);
0458     char tmpbuf[10];
0459 
0460     if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
0461         return -EACCES;
0462     len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
0463     strncpy(tmpbuf, buf, len);
0464     tmpbuf[len] = '\0';
0465     if (sscanf(tmpbuf, "%d", &status) != 1)
0466         return -EINVAL;
0467     h = shost_to_hba(shost);
0468     h->acciopath_status = !!status;
0469     dev_warn(&h->pdev->dev,
0470         "hpsa: HP SSD Smart Path %s via sysfs update.\n",
0471         h->acciopath_status ? "enabled" : "disabled");
0472     return count;
0473 }
0474 
0475 static ssize_t host_store_raid_offload_debug(struct device *dev,
0476                      struct device_attribute *attr,
0477                      const char *buf, size_t count)
0478 {
0479     int debug_level, len;
0480     struct ctlr_info *h;
0481     struct Scsi_Host *shost = class_to_shost(dev);
0482     char tmpbuf[10];
0483 
0484     if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
0485         return -EACCES;
0486     len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
0487     strncpy(tmpbuf, buf, len);
0488     tmpbuf[len] = '\0';
0489     if (sscanf(tmpbuf, "%d", &debug_level) != 1)
0490         return -EINVAL;
0491     if (debug_level < 0)
0492         debug_level = 0;
0493     h = shost_to_hba(shost);
0494     h->raid_offload_debug = debug_level;
0495     dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
0496         h->raid_offload_debug);
0497     return count;
0498 }
0499 
0500 static ssize_t host_store_rescan(struct device *dev,
0501                  struct device_attribute *attr,
0502                  const char *buf, size_t count)
0503 {
0504     struct ctlr_info *h;
0505     struct Scsi_Host *shost = class_to_shost(dev);
0506     h = shost_to_hba(shost);
0507     hpsa_scan_start(h->scsi_host);
0508     return count;
0509 }
0510 
0511 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
0512 {
0513     device->offload_enabled = 0;
0514     device->offload_to_be_enabled = 0;
0515 }
0516 
0517 static ssize_t host_show_firmware_revision(struct device *dev,
0518          struct device_attribute *attr, char *buf)
0519 {
0520     struct ctlr_info *h;
0521     struct Scsi_Host *shost = class_to_shost(dev);
0522     unsigned char *fwrev;
0523 
0524     h = shost_to_hba(shost);
0525     if (!h->hba_inquiry_data)
0526         return 0;
0527     fwrev = &h->hba_inquiry_data[32];
0528     return snprintf(buf, 20, "%c%c%c%c\n",
0529         fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
0530 }
0531 
0532 static ssize_t host_show_commands_outstanding(struct device *dev,
0533          struct device_attribute *attr, char *buf)
0534 {
0535     struct Scsi_Host *shost = class_to_shost(dev);
0536     struct ctlr_info *h = shost_to_hba(shost);
0537 
0538     return snprintf(buf, 20, "%d\n",
0539             atomic_read(&h->commands_outstanding));
0540 }
0541 
0542 static ssize_t host_show_transport_mode(struct device *dev,
0543     struct device_attribute *attr, char *buf)
0544 {
0545     struct ctlr_info *h;
0546     struct Scsi_Host *shost = class_to_shost(dev);
0547 
0548     h = shost_to_hba(shost);
0549     return snprintf(buf, 20, "%s\n",
0550         h->transMethod & CFGTBL_Trans_Performant ?
0551             "performant" : "simple");
0552 }
0553 
0554 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
0555     struct device_attribute *attr, char *buf)
0556 {
0557     struct ctlr_info *h;
0558     struct Scsi_Host *shost = class_to_shost(dev);
0559 
0560     h = shost_to_hba(shost);
0561     return snprintf(buf, 30, "HP SSD Smart Path %s\n",
0562         (h->acciopath_status == 1) ?  "enabled" : "disabled");
0563 }
0564 
0565 /* List of controllers which cannot be hard reset on kexec with reset_devices */
0566 static u32 unresettable_controller[] = {
0567     0x324a103C, /* Smart Array P712m */
0568     0x324b103C, /* Smart Array P711m */
0569     0x3223103C, /* Smart Array P800 */
0570     0x3234103C, /* Smart Array P400 */
0571     0x3235103C, /* Smart Array P400i */
0572     0x3211103C, /* Smart Array E200i */
0573     0x3212103C, /* Smart Array E200 */
0574     0x3213103C, /* Smart Array E200i */
0575     0x3214103C, /* Smart Array E200i */
0576     0x3215103C, /* Smart Array E200i */
0577     0x3237103C, /* Smart Array E500 */
0578     0x323D103C, /* Smart Array P700m */
0579     0x40800E11, /* Smart Array 5i */
0580     0x409C0E11, /* Smart Array 6400 */
0581     0x409D0E11, /* Smart Array 6400 EM */
0582     0x40700E11, /* Smart Array 5300 */
0583     0x40820E11, /* Smart Array 532 */
0584     0x40830E11, /* Smart Array 5312 */
0585     0x409A0E11, /* Smart Array 641 */
0586     0x409B0E11, /* Smart Array 642 */
0587     0x40910E11, /* Smart Array 6i */
0588 };
0589 
0590 /* List of controllers which cannot even be soft reset */
0591 static u32 soft_unresettable_controller[] = {
0592     0x40800E11, /* Smart Array 5i */
0593     0x40700E11, /* Smart Array 5300 */
0594     0x40820E11, /* Smart Array 532 */
0595     0x40830E11, /* Smart Array 5312 */
0596     0x409A0E11, /* Smart Array 641 */
0597     0x409B0E11, /* Smart Array 642 */
0598     0x40910E11, /* Smart Array 6i */
0599     /* Exclude 640x boards.  These are two pci devices in one slot
0600      * which share a battery backed cache module.  One controls the
0601      * cache, the other accesses the cache through the one that controls
0602      * it.  If we reset the one controlling the cache, the other will
0603      * likely not be happy.  Just forbid resetting this conjoined mess.
0604      * The 640x isn't really supported by hpsa anyway.
0605      */
0606     0x409C0E11, /* Smart Array 6400 */
0607     0x409D0E11, /* Smart Array 6400 EM */
0608 };
0609 
0610 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
0611 {
0612     int i;
0613 
0614     for (i = 0; i < nelems; i++)
0615         if (a[i] == board_id)
0616             return 1;
0617     return 0;
0618 }
0619 
0620 static int ctlr_is_hard_resettable(u32 board_id)
0621 {
0622     return !board_id_in_array(unresettable_controller,
0623             ARRAY_SIZE(unresettable_controller), board_id);
0624 }
0625 
0626 static int ctlr_is_soft_resettable(u32 board_id)
0627 {
0628     return !board_id_in_array(soft_unresettable_controller,
0629             ARRAY_SIZE(soft_unresettable_controller), board_id);
0630 }
0631 
0632 static int ctlr_is_resettable(u32 board_id)
0633 {
0634     return ctlr_is_hard_resettable(board_id) ||
0635         ctlr_is_soft_resettable(board_id);
0636 }
0637 
0638 static ssize_t host_show_resettable(struct device *dev,
0639     struct device_attribute *attr, char *buf)
0640 {
0641     struct ctlr_info *h;
0642     struct Scsi_Host *shost = class_to_shost(dev);
0643 
0644     h = shost_to_hba(shost);
0645     return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
0646 }
0647 
0648 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
0649 {
0650     return (scsi3addr[3] & 0xC0) == 0x40;
0651 }
0652 
0653 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
0654     "1(+0)ADM", "UNKNOWN", "PHYS DRV"
0655 };
0656 #define HPSA_RAID_0 0
0657 #define HPSA_RAID_4 1
0658 #define HPSA_RAID_1 2   /* also used for RAID 10 */
0659 #define HPSA_RAID_5 3   /* also used for RAID 50 */
0660 #define HPSA_RAID_51    4
0661 #define HPSA_RAID_6 5   /* also used for RAID 60 */
0662 #define HPSA_RAID_ADM   6   /* also used for RAID 1+0 ADM */
0663 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
0664 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
0665 
0666 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
0667 {
0668     return !device->physical_device;
0669 }
0670 
0671 static ssize_t raid_level_show(struct device *dev,
0672          struct device_attribute *attr, char *buf)
0673 {
0674     ssize_t l = 0;
0675     unsigned char rlevel;
0676     struct ctlr_info *h;
0677     struct scsi_device *sdev;
0678     struct hpsa_scsi_dev_t *hdev;
0679     unsigned long flags;
0680 
0681     sdev = to_scsi_device(dev);
0682     h = sdev_to_hba(sdev);
0683     spin_lock_irqsave(&h->lock, flags);
0684     hdev = sdev->hostdata;
0685     if (!hdev) {
0686         spin_unlock_irqrestore(&h->lock, flags);
0687         return -ENODEV;
0688     }
0689 
0690     /* Is this even a logical drive? */
0691     if (!is_logical_device(hdev)) {
0692         spin_unlock_irqrestore(&h->lock, flags);
0693         l = snprintf(buf, PAGE_SIZE, "N/A\n");
0694         return l;
0695     }
0696 
0697     rlevel = hdev->raid_level;
0698     spin_unlock_irqrestore(&h->lock, flags);
0699     if (rlevel > RAID_UNKNOWN)
0700         rlevel = RAID_UNKNOWN;
0701     l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
0702     return l;
0703 }
0704 
0705 static ssize_t lunid_show(struct device *dev,
0706          struct device_attribute *attr, char *buf)
0707 {
0708     struct ctlr_info *h;
0709     struct scsi_device *sdev;
0710     struct hpsa_scsi_dev_t *hdev;
0711     unsigned long flags;
0712     unsigned char lunid[8];
0713 
0714     sdev = to_scsi_device(dev);
0715     h = sdev_to_hba(sdev);
0716     spin_lock_irqsave(&h->lock, flags);
0717     hdev = sdev->hostdata;
0718     if (!hdev) {
0719         spin_unlock_irqrestore(&h->lock, flags);
0720         return -ENODEV;
0721     }
0722     memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
0723     spin_unlock_irqrestore(&h->lock, flags);
0724     return snprintf(buf, 20, "0x%8phN\n", lunid);
0725 }
0726 
0727 static ssize_t unique_id_show(struct device *dev,
0728          struct device_attribute *attr, char *buf)
0729 {
0730     struct ctlr_info *h;
0731     struct scsi_device *sdev;
0732     struct hpsa_scsi_dev_t *hdev;
0733     unsigned long flags;
0734     unsigned char sn[16];
0735 
0736     sdev = to_scsi_device(dev);
0737     h = sdev_to_hba(sdev);
0738     spin_lock_irqsave(&h->lock, flags);
0739     hdev = sdev->hostdata;
0740     if (!hdev) {
0741         spin_unlock_irqrestore(&h->lock, flags);
0742         return -ENODEV;
0743     }
0744     memcpy(sn, hdev->device_id, sizeof(sn));
0745     spin_unlock_irqrestore(&h->lock, flags);
0746     return snprintf(buf, 16 * 2 + 2,
0747             "%02X%02X%02X%02X%02X%02X%02X%02X"
0748             "%02X%02X%02X%02X%02X%02X%02X%02X\n",
0749             sn[0], sn[1], sn[2], sn[3],
0750             sn[4], sn[5], sn[6], sn[7],
0751             sn[8], sn[9], sn[10], sn[11],
0752             sn[12], sn[13], sn[14], sn[15]);
0753 }
0754 
0755 static ssize_t sas_address_show(struct device *dev,
0756           struct device_attribute *attr, char *buf)
0757 {
0758     struct ctlr_info *h;
0759     struct scsi_device *sdev;
0760     struct hpsa_scsi_dev_t *hdev;
0761     unsigned long flags;
0762     u64 sas_address;
0763 
0764     sdev = to_scsi_device(dev);
0765     h = sdev_to_hba(sdev);
0766     spin_lock_irqsave(&h->lock, flags);
0767     hdev = sdev->hostdata;
0768     if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
0769         spin_unlock_irqrestore(&h->lock, flags);
0770         return -ENODEV;
0771     }
0772     sas_address = hdev->sas_address;
0773     spin_unlock_irqrestore(&h->lock, flags);
0774 
0775     return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
0776 }
0777 
0778 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
0779          struct device_attribute *attr, char *buf)
0780 {
0781     struct ctlr_info *h;
0782     struct scsi_device *sdev;
0783     struct hpsa_scsi_dev_t *hdev;
0784     unsigned long flags;
0785     int offload_enabled;
0786 
0787     sdev = to_scsi_device(dev);
0788     h = sdev_to_hba(sdev);
0789     spin_lock_irqsave(&h->lock, flags);
0790     hdev = sdev->hostdata;
0791     if (!hdev) {
0792         spin_unlock_irqrestore(&h->lock, flags);
0793         return -ENODEV;
0794     }
0795     offload_enabled = hdev->offload_enabled;
0796     spin_unlock_irqrestore(&h->lock, flags);
0797 
0798     if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
0799         return snprintf(buf, 20, "%d\n", offload_enabled);
0800     else
0801         return snprintf(buf, 40, "%s\n",
0802                 "Not applicable for a controller");
0803 }
0804 
0805 #define MAX_PATHS 8
0806 static ssize_t path_info_show(struct device *dev,
0807          struct device_attribute *attr, char *buf)
0808 {
0809     struct ctlr_info *h;
0810     struct scsi_device *sdev;
0811     struct hpsa_scsi_dev_t *hdev;
0812     unsigned long flags;
0813     int i;
0814     int output_len = 0;
0815     u8 box;
0816     u8 bay;
0817     u8 path_map_index = 0;
0818     char *active;
0819     unsigned char phys_connector[2];
0820 
0821     sdev = to_scsi_device(dev);
0822     h = sdev_to_hba(sdev);
0823     spin_lock_irqsave(&h->devlock, flags);
0824     hdev = sdev->hostdata;
0825     if (!hdev) {
0826         spin_unlock_irqrestore(&h->devlock, flags);
0827         return -ENODEV;
0828     }
0829 
0830     bay = hdev->bay;
0831     for (i = 0; i < MAX_PATHS; i++) {
0832         path_map_index = 1<<i;
0833         if (i == hdev->active_path_index)
0834             active = "Active";
0835         else if (hdev->path_map & path_map_index)
0836             active = "Inactive";
0837         else
0838             continue;
0839 
0840         output_len += scnprintf(buf + output_len,
0841                 PAGE_SIZE - output_len,
0842                 "[%d:%d:%d:%d] %20.20s ",
0843                 h->scsi_host->host_no,
0844                 hdev->bus, hdev->target, hdev->lun,
0845                 scsi_device_type(hdev->devtype));
0846 
0847         if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
0848             output_len += scnprintf(buf + output_len,
0849                         PAGE_SIZE - output_len,
0850                         "%s\n", active);
0851             continue;
0852         }
0853 
0854         box = hdev->box[i];
0855         memcpy(&phys_connector, &hdev->phys_connector[i],
0856             sizeof(phys_connector));
0857         if (phys_connector[0] < '0')
0858             phys_connector[0] = '0';
0859         if (phys_connector[1] < '0')
0860             phys_connector[1] = '0';
0861         output_len += scnprintf(buf + output_len,
0862                 PAGE_SIZE - output_len,
0863                 "PORT: %.2s ",
0864                 phys_connector);
0865         if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
0866             hdev->expose_device) {
0867             if (box == 0 || box == 0xFF) {
0868                 output_len += scnprintf(buf + output_len,
0869                     PAGE_SIZE - output_len,
0870                     "BAY: %hhu %s\n",
0871                     bay, active);
0872             } else {
0873                 output_len += scnprintf(buf + output_len,
0874                     PAGE_SIZE - output_len,
0875                     "BOX: %hhu BAY: %hhu %s\n",
0876                     box, bay, active);
0877             }
0878         } else if (box != 0 && box != 0xFF) {
0879             output_len += scnprintf(buf + output_len,
0880                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
0881                 box, active);
0882         } else
0883             output_len += scnprintf(buf + output_len,
0884                 PAGE_SIZE - output_len, "%s\n", active);
0885     }
0886 
0887     spin_unlock_irqrestore(&h->devlock, flags);
0888     return output_len;
0889 }
0890 
0891 static ssize_t host_show_ctlr_num(struct device *dev,
0892     struct device_attribute *attr, char *buf)
0893 {
0894     struct ctlr_info *h;
0895     struct Scsi_Host *shost = class_to_shost(dev);
0896 
0897     h = shost_to_hba(shost);
0898     return snprintf(buf, 20, "%d\n", h->ctlr);
0899 }
0900 
0901 static ssize_t host_show_legacy_board(struct device *dev,
0902     struct device_attribute *attr, char *buf)
0903 {
0904     struct ctlr_info *h;
0905     struct Scsi_Host *shost = class_to_shost(dev);
0906 
0907     h = shost_to_hba(shost);
0908     return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
0909 }
0910 
0911 static DEVICE_ATTR_RO(raid_level);
0912 static DEVICE_ATTR_RO(lunid);
0913 static DEVICE_ATTR_RO(unique_id);
0914 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
0915 static DEVICE_ATTR_RO(sas_address);
0916 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
0917             host_show_hp_ssd_smart_path_enabled, NULL);
0918 static DEVICE_ATTR_RO(path_info);
0919 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
0920         host_show_hp_ssd_smart_path_status,
0921         host_store_hp_ssd_smart_path_status);
0922 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
0923             host_store_raid_offload_debug);
0924 static DEVICE_ATTR(firmware_revision, S_IRUGO,
0925     host_show_firmware_revision, NULL);
0926 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
0927     host_show_commands_outstanding, NULL);
0928 static DEVICE_ATTR(transport_mode, S_IRUGO,
0929     host_show_transport_mode, NULL);
0930 static DEVICE_ATTR(resettable, S_IRUGO,
0931     host_show_resettable, NULL);
0932 static DEVICE_ATTR(lockup_detected, S_IRUGO,
0933     host_show_lockup_detected, NULL);
0934 static DEVICE_ATTR(ctlr_num, S_IRUGO,
0935     host_show_ctlr_num, NULL);
0936 static DEVICE_ATTR(legacy_board, S_IRUGO,
0937     host_show_legacy_board, NULL);
0938 
0939 static struct attribute *hpsa_sdev_attrs[] = {
0940     &dev_attr_raid_level.attr,
0941     &dev_attr_lunid.attr,
0942     &dev_attr_unique_id.attr,
0943     &dev_attr_hp_ssd_smart_path_enabled.attr,
0944     &dev_attr_path_info.attr,
0945     &dev_attr_sas_address.attr,
0946     NULL,
0947 };
0948 
0949 ATTRIBUTE_GROUPS(hpsa_sdev);
0950 
0951 static struct attribute *hpsa_shost_attrs[] = {
0952     &dev_attr_rescan.attr,
0953     &dev_attr_firmware_revision.attr,
0954     &dev_attr_commands_outstanding.attr,
0955     &dev_attr_transport_mode.attr,
0956     &dev_attr_resettable.attr,
0957     &dev_attr_hp_ssd_smart_path_status.attr,
0958     &dev_attr_raid_offload_debug.attr,
0959     &dev_attr_lockup_detected.attr,
0960     &dev_attr_ctlr_num.attr,
0961     &dev_attr_legacy_board.attr,
0962     NULL,
0963 };
0964 
0965 ATTRIBUTE_GROUPS(hpsa_shost);
0966 
0967 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
0968                  HPSA_MAX_CONCURRENT_PASSTHRUS)
0969 
0970 static struct scsi_host_template hpsa_driver_template = {
0971     .module         = THIS_MODULE,
0972     .name           = HPSA,
0973     .proc_name      = HPSA,
0974     .queuecommand       = hpsa_scsi_queue_command,
0975     .scan_start     = hpsa_scan_start,
0976     .scan_finished      = hpsa_scan_finished,
0977     .change_queue_depth = hpsa_change_queue_depth,
0978     .this_id        = -1,
0979     .eh_device_reset_handler = hpsa_eh_device_reset_handler,
0980     .ioctl          = hpsa_ioctl,
0981     .slave_alloc        = hpsa_slave_alloc,
0982     .slave_configure    = hpsa_slave_configure,
0983     .slave_destroy      = hpsa_slave_destroy,
0984 #ifdef CONFIG_COMPAT
0985     .compat_ioctl       = hpsa_compat_ioctl,
0986 #endif
0987     .sdev_groups = hpsa_sdev_groups,
0988     .shost_groups = hpsa_shost_groups,
0989     .max_sectors = 2048,
0990     .no_write_same = 1,
0991 };
0992 
0993 static inline u32 next_command(struct ctlr_info *h, u8 q)
0994 {
0995     u32 a;
0996     struct reply_queue_buffer *rq = &h->reply_queue[q];
0997 
0998     if (h->transMethod & CFGTBL_Trans_io_accel1)
0999         return h->access.command_completed(h, q);
1000 
1001     if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
1002         return h->access.command_completed(h, q);
1003 
1004     if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1005         a = rq->head[rq->current_entry];
1006         rq->current_entry++;
1007         atomic_dec(&h->commands_outstanding);
1008     } else {
1009         a = FIFO_EMPTY;
1010     }
1011     /* Check for wraparound */
1012     if (rq->current_entry == h->max_commands) {
1013         rq->current_entry = 0;
1014         rq->wraparound ^= 1;
1015     }
1016     return a;
1017 }
1018 
1019 /*
1020  * There are some special bits in the bus address of the
1021  * command that we have to set for the controller to know
1022  * how to process the command:
1023  *
1024  * Normal performant mode:
1025  * bit 0: 1 means performant mode, 0 means simple mode.
1026  * bits 1-3 = block fetch table entry
1027  * bits 4-6 = command type (== 0)
1028  *
1029  * ioaccel1 mode:
1030  * bit 0 = "performant mode" bit.
1031  * bits 1-3 = block fetch table entry
1032  * bits 4-6 = command type (== 110)
1033  * (command type is needed because ioaccel1 mode
1034  * commands are submitted through the same register as normal
1035  * mode commands, so this is how the controller knows whether
1036  * the command is normal mode or ioaccel1 mode.)
1037  *
1038  * ioaccel2 mode:
1039  * bit 0 = "performant mode" bit.
1040  * bits 1-4 = block fetch table entry (note extra bit)
1041  * bits 4-6 = not needed, because ioaccel2 mode has
1042  * a separate special register for submitting commands.
1043  */
1044 
1045 /*
1046  * set_performant_mode: Modify the tag for cciss performant
1047  * set bit 0 for pull model, bits 3-1 for block fetch
1048  * register number
1049  */
1050 #define DEFAULT_REPLY_QUEUE (-1)
1051 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1052                     int reply_queue)
1053 {
1054     if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1055         c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1056         if (unlikely(!h->msix_vectors))
1057             return;
1058         c->Header.ReplyQueue = reply_queue;
1059     }
1060 }
1061 
1062 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1063                         struct CommandList *c,
1064                         int reply_queue)
1065 {
1066     struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1067 
1068     /*
1069      * Tell the controller to post the reply to the queue for this
1070      * processor.  This seems to give the best I/O throughput.
1071      */
1072     cp->ReplyQueue = reply_queue;
1073     /*
1074      * Set the bits in the address sent down to include:
1075      *  - performant mode bit (bit 0)
1076      *  - pull count (bits 1-3)
1077      *  - command type (bits 4-6)
1078      */
1079     c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1080                     IOACCEL1_BUSADDR_CMDTYPE;
1081 }
1082 
1083 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1084                         struct CommandList *c,
1085                         int reply_queue)
1086 {
1087     struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1088         &h->ioaccel2_cmd_pool[c->cmdindex];
1089 
1090     /* Tell the controller to post the reply to the queue for this
1091      * processor.  This seems to give the best I/O throughput.
1092      */
1093     cp->reply_queue = reply_queue;
1094     /* Set the bits in the address sent down to include:
1095      *  - performant mode bit not used in ioaccel mode 2
1096      *  - pull count (bits 0-3)
1097      *  - command type isn't needed for ioaccel2
1098      */
1099     c->busaddr |= h->ioaccel2_blockFetchTable[0];
1100 }
1101 
1102 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1103                         struct CommandList *c,
1104                         int reply_queue)
1105 {
1106     struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1107 
1108     /*
1109      * Tell the controller to post the reply to the queue for this
1110      * processor.  This seems to give the best I/O throughput.
1111      */
1112     cp->reply_queue = reply_queue;
1113     /*
1114      * Set the bits in the address sent down to include:
1115      *  - performant mode bit not used in ioaccel mode 2
1116      *  - pull count (bits 0-3)
1117      *  - command type isn't needed for ioaccel2
1118      */
1119     c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1120 }
1121 
1122 static int is_firmware_flash_cmd(u8 *cdb)
1123 {
1124     return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1125 }
1126 
1127 /*
1128  * During firmware flash, the heartbeat register may not update as frequently
1129  * as it should.  So we dial down lockup detection during firmware flash. and
1130  * dial it back up when firmware flash completes.
1131  */
1132 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1133 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1134 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1135 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1136         struct CommandList *c)
1137 {
1138     if (!is_firmware_flash_cmd(c->Request.CDB))
1139         return;
1140     atomic_inc(&h->firmware_flash_in_progress);
1141     h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1142 }
1143 
1144 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1145         struct CommandList *c)
1146 {
1147     if (is_firmware_flash_cmd(c->Request.CDB) &&
1148         atomic_dec_and_test(&h->firmware_flash_in_progress))
1149         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1150 }
1151 
1152 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1153     struct CommandList *c, int reply_queue)
1154 {
1155     dial_down_lockup_detection_during_fw_flash(h, c);
1156     atomic_inc(&h->commands_outstanding);
1157     /*
1158      * Check to see if the command is being retried.
1159      */
1160     if (c->device && !c->retry_pending)
1161         atomic_inc(&c->device->commands_outstanding);
1162 
1163     reply_queue = h->reply_map[raw_smp_processor_id()];
1164     switch (c->cmd_type) {
1165     case CMD_IOACCEL1:
1166         set_ioaccel1_performant_mode(h, c, reply_queue);
1167         writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1168         break;
1169     case CMD_IOACCEL2:
1170         set_ioaccel2_performant_mode(h, c, reply_queue);
1171         writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1172         break;
1173     case IOACCEL2_TMF:
1174         set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1175         writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1176         break;
1177     default:
1178         set_performant_mode(h, c, reply_queue);
1179         h->access.submit_command(h, c);
1180     }
1181 }
1182 
1183 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1184 {
1185     __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1186 }
1187 
1188 static inline int is_hba_lunid(unsigned char scsi3addr[])
1189 {
1190     return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1191 }
1192 
1193 static inline int is_scsi_rev_5(struct ctlr_info *h)
1194 {
1195     if (!h->hba_inquiry_data)
1196         return 0;
1197     if ((h->hba_inquiry_data[2] & 0x07) == 5)
1198         return 1;
1199     return 0;
1200 }
1201 
1202 static int hpsa_find_target_lun(struct ctlr_info *h,
1203     unsigned char scsi3addr[], int bus, int *target, int *lun)
1204 {
1205     /* finds an unused bus, target, lun for a new physical device
1206      * assumes h->devlock is held
1207      */
1208     int i, found = 0;
1209     DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1210 
1211     bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1212 
1213     for (i = 0; i < h->ndevices; i++) {
1214         if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1215             __set_bit(h->dev[i]->target, lun_taken);
1216     }
1217 
1218     i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1219     if (i < HPSA_MAX_DEVICES) {
1220         /* *bus = 1; */
1221         *target = i;
1222         *lun = 0;
1223         found = 1;
1224     }
1225     return !found;
1226 }
1227 
1228 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1229     struct hpsa_scsi_dev_t *dev, char *description)
1230 {
1231 #define LABEL_SIZE 25
1232     char label[LABEL_SIZE];
1233 
1234     if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1235         return;
1236 
1237     switch (dev->devtype) {
1238     case TYPE_RAID:
1239         snprintf(label, LABEL_SIZE, "controller");
1240         break;
1241     case TYPE_ENCLOSURE:
1242         snprintf(label, LABEL_SIZE, "enclosure");
1243         break;
1244     case TYPE_DISK:
1245     case TYPE_ZBC:
1246         if (dev->external)
1247             snprintf(label, LABEL_SIZE, "external");
1248         else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1249             snprintf(label, LABEL_SIZE, "%s",
1250                 raid_label[PHYSICAL_DRIVE]);
1251         else
1252             snprintf(label, LABEL_SIZE, "RAID-%s",
1253                 dev->raid_level > RAID_UNKNOWN ? "?" :
1254                 raid_label[dev->raid_level]);
1255         break;
1256     case TYPE_ROM:
1257         snprintf(label, LABEL_SIZE, "rom");
1258         break;
1259     case TYPE_TAPE:
1260         snprintf(label, LABEL_SIZE, "tape");
1261         break;
1262     case TYPE_MEDIUM_CHANGER:
1263         snprintf(label, LABEL_SIZE, "changer");
1264         break;
1265     default:
1266         snprintf(label, LABEL_SIZE, "UNKNOWN");
1267         break;
1268     }
1269 
1270     dev_printk(level, &h->pdev->dev,
1271             "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1272             h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1273             description,
1274             scsi_device_type(dev->devtype),
1275             dev->vendor,
1276             dev->model,
1277             label,
1278             dev->offload_config ? '+' : '-',
1279             dev->offload_to_be_enabled ? '+' : '-',
1280             dev->expose_device);
1281 }
1282 
1283 /* Add an entry into h->dev[] array. */
1284 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1285         struct hpsa_scsi_dev_t *device,
1286         struct hpsa_scsi_dev_t *added[], int *nadded)
1287 {
1288     /* assumes h->devlock is held */
1289     int n = h->ndevices;
1290     int i;
1291     unsigned char addr1[8], addr2[8];
1292     struct hpsa_scsi_dev_t *sd;
1293 
1294     if (n >= HPSA_MAX_DEVICES) {
1295         dev_err(&h->pdev->dev, "too many devices, some will be "
1296             "inaccessible.\n");
1297         return -1;
1298     }
1299 
1300     /* physical devices do not have lun or target assigned until now. */
1301     if (device->lun != -1)
1302         /* Logical device, lun is already assigned. */
1303         goto lun_assigned;
1304 
1305     /* If this device a non-zero lun of a multi-lun device
1306      * byte 4 of the 8-byte LUN addr will contain the logical
1307      * unit no, zero otherwise.
1308      */
1309     if (device->scsi3addr[4] == 0) {
1310         /* This is not a non-zero lun of a multi-lun device */
1311         if (hpsa_find_target_lun(h, device->scsi3addr,
1312             device->bus, &device->target, &device->lun) != 0)
1313             return -1;
1314         goto lun_assigned;
1315     }
1316 
1317     /* This is a non-zero lun of a multi-lun device.
1318      * Search through our list and find the device which
1319      * has the same 8 byte LUN address, excepting byte 4 and 5.
1320      * Assign the same bus and target for this new LUN.
1321      * Use the logical unit number from the firmware.
1322      */
1323     memcpy(addr1, device->scsi3addr, 8);
1324     addr1[4] = 0;
1325     addr1[5] = 0;
1326     for (i = 0; i < n; i++) {
1327         sd = h->dev[i];
1328         memcpy(addr2, sd->scsi3addr, 8);
1329         addr2[4] = 0;
1330         addr2[5] = 0;
1331         /* differ only in byte 4 and 5? */
1332         if (memcmp(addr1, addr2, 8) == 0) {
1333             device->bus = sd->bus;
1334             device->target = sd->target;
1335             device->lun = device->scsi3addr[4];
1336             break;
1337         }
1338     }
1339     if (device->lun == -1) {
1340         dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1341             " suspect firmware bug or unsupported hardware "
1342             "configuration.\n");
1343         return -1;
1344     }
1345 
1346 lun_assigned:
1347 
1348     h->dev[n] = device;
1349     h->ndevices++;
1350     added[*nadded] = device;
1351     (*nadded)++;
1352     hpsa_show_dev_msg(KERN_INFO, h, device,
1353         device->expose_device ? "added" : "masked");
1354     return 0;
1355 }
1356 
1357 /*
1358  * Called during a scan operation.
1359  *
1360  * Update an entry in h->dev[] array.
1361  */
1362 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1363     int entry, struct hpsa_scsi_dev_t *new_entry)
1364 {
1365     /* assumes h->devlock is held */
1366     BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1367 
1368     /* Raid level changed. */
1369     h->dev[entry]->raid_level = new_entry->raid_level;
1370 
1371     /*
1372      * ioacccel_handle may have changed for a dual domain disk
1373      */
1374     h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1375 
1376     /* Raid offload parameters changed.  Careful about the ordering. */
1377     if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1378         /*
1379          * if drive is newly offload_enabled, we want to copy the
1380          * raid map data first.  If previously offload_enabled and
1381          * offload_config were set, raid map data had better be
1382          * the same as it was before. If raid map data has changed
1383          * then it had better be the case that
1384          * h->dev[entry]->offload_enabled is currently 0.
1385          */
1386         h->dev[entry]->raid_map = new_entry->raid_map;
1387         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1388     }
1389     if (new_entry->offload_to_be_enabled) {
1390         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1391         wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1392     }
1393     h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1394     h->dev[entry]->offload_config = new_entry->offload_config;
1395     h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1396     h->dev[entry]->queue_depth = new_entry->queue_depth;
1397 
1398     /*
1399      * We can turn off ioaccel offload now, but need to delay turning
1400      * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1401      * can't do that until all the devices are updated.
1402      */
1403     h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1404 
1405     /*
1406      * turn ioaccel off immediately if told to do so.
1407      */
1408     if (!new_entry->offload_to_be_enabled)
1409         h->dev[entry]->offload_enabled = 0;
1410 
1411     hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1412 }
1413 
1414 /* Replace an entry from h->dev[] array. */
1415 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1416     int entry, struct hpsa_scsi_dev_t *new_entry,
1417     struct hpsa_scsi_dev_t *added[], int *nadded,
1418     struct hpsa_scsi_dev_t *removed[], int *nremoved)
1419 {
1420     /* assumes h->devlock is held */
1421     BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1422     removed[*nremoved] = h->dev[entry];
1423     (*nremoved)++;
1424 
1425     /*
1426      * New physical devices won't have target/lun assigned yet
1427      * so we need to preserve the values in the slot we are replacing.
1428      */
1429     if (new_entry->target == -1) {
1430         new_entry->target = h->dev[entry]->target;
1431         new_entry->lun = h->dev[entry]->lun;
1432     }
1433 
1434     h->dev[entry] = new_entry;
1435     added[*nadded] = new_entry;
1436     (*nadded)++;
1437 
1438     hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1439 }
1440 
1441 /* Remove an entry from h->dev[] array. */
1442 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1443     struct hpsa_scsi_dev_t *removed[], int *nremoved)
1444 {
1445     /* assumes h->devlock is held */
1446     int i;
1447     struct hpsa_scsi_dev_t *sd;
1448 
1449     BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1450 
1451     sd = h->dev[entry];
1452     removed[*nremoved] = h->dev[entry];
1453     (*nremoved)++;
1454 
1455     for (i = entry; i < h->ndevices-1; i++)
1456         h->dev[i] = h->dev[i+1];
1457     h->ndevices--;
1458     hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1459 }
1460 
1461 #define SCSI3ADDR_EQ(a, b) ( \
1462     (a)[7] == (b)[7] && \
1463     (a)[6] == (b)[6] && \
1464     (a)[5] == (b)[5] && \
1465     (a)[4] == (b)[4] && \
1466     (a)[3] == (b)[3] && \
1467     (a)[2] == (b)[2] && \
1468     (a)[1] == (b)[1] && \
1469     (a)[0] == (b)[0])
1470 
1471 static void fixup_botched_add(struct ctlr_info *h,
1472     struct hpsa_scsi_dev_t *added)
1473 {
1474     /* called when scsi_add_device fails in order to re-adjust
1475      * h->dev[] to match the mid layer's view.
1476      */
1477     unsigned long flags;
1478     int i, j;
1479 
1480     spin_lock_irqsave(&h->lock, flags);
1481     for (i = 0; i < h->ndevices; i++) {
1482         if (h->dev[i] == added) {
1483             for (j = i; j < h->ndevices-1; j++)
1484                 h->dev[j] = h->dev[j+1];
1485             h->ndevices--;
1486             break;
1487         }
1488     }
1489     spin_unlock_irqrestore(&h->lock, flags);
1490     kfree(added);
1491 }
1492 
1493 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1494     struct hpsa_scsi_dev_t *dev2)
1495 {
1496     /* we compare everything except lun and target as these
1497      * are not yet assigned.  Compare parts likely
1498      * to differ first
1499      */
1500     if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1501         sizeof(dev1->scsi3addr)) != 0)
1502         return 0;
1503     if (memcmp(dev1->device_id, dev2->device_id,
1504         sizeof(dev1->device_id)) != 0)
1505         return 0;
1506     if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1507         return 0;
1508     if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1509         return 0;
1510     if (dev1->devtype != dev2->devtype)
1511         return 0;
1512     if (dev1->bus != dev2->bus)
1513         return 0;
1514     return 1;
1515 }
1516 
1517 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1518     struct hpsa_scsi_dev_t *dev2)
1519 {
1520     /* Device attributes that can change, but don't mean
1521      * that the device is a different device, nor that the OS
1522      * needs to be told anything about the change.
1523      */
1524     if (dev1->raid_level != dev2->raid_level)
1525         return 1;
1526     if (dev1->offload_config != dev2->offload_config)
1527         return 1;
1528     if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1529         return 1;
1530     if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1531         if (dev1->queue_depth != dev2->queue_depth)
1532             return 1;
1533     /*
1534      * This can happen for dual domain devices. An active
1535      * path change causes the ioaccel handle to change
1536      *
1537      * for example note the handle differences between p0 and p1
1538      * Device                    WWN               ,WWN hash,Handle
1539      * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1540      *  p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1541      */
1542     if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1543         return 1;
1544     return 0;
1545 }
1546 
1547 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1548  * and return needle location in *index.  If scsi3addr matches, but not
1549  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1550  * location in *index.
1551  * In the case of a minor device attribute change, such as RAID level, just
1552  * return DEVICE_UPDATED, along with the updated device's location in index.
1553  * If needle not found, return DEVICE_NOT_FOUND.
1554  */
1555 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1556     struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1557     int *index)
1558 {
1559     int i;
1560 #define DEVICE_NOT_FOUND 0
1561 #define DEVICE_CHANGED 1
1562 #define DEVICE_SAME 2
1563 #define DEVICE_UPDATED 3
1564     if (needle == NULL)
1565         return DEVICE_NOT_FOUND;
1566 
1567     for (i = 0; i < haystack_size; i++) {
1568         if (haystack[i] == NULL) /* previously removed. */
1569             continue;
1570         if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1571             *index = i;
1572             if (device_is_the_same(needle, haystack[i])) {
1573                 if (device_updated(needle, haystack[i]))
1574                     return DEVICE_UPDATED;
1575                 return DEVICE_SAME;
1576             } else {
1577                 /* Keep offline devices offline */
1578                 if (needle->volume_offline)
1579                     return DEVICE_NOT_FOUND;
1580                 return DEVICE_CHANGED;
1581             }
1582         }
1583     }
1584     *index = -1;
1585     return DEVICE_NOT_FOUND;
1586 }
1587 
1588 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1589                     unsigned char scsi3addr[])
1590 {
1591     struct offline_device_entry *device;
1592     unsigned long flags;
1593 
1594     /* Check to see if device is already on the list */
1595     spin_lock_irqsave(&h->offline_device_lock, flags);
1596     list_for_each_entry(device, &h->offline_device_list, offline_list) {
1597         if (memcmp(device->scsi3addr, scsi3addr,
1598             sizeof(device->scsi3addr)) == 0) {
1599             spin_unlock_irqrestore(&h->offline_device_lock, flags);
1600             return;
1601         }
1602     }
1603     spin_unlock_irqrestore(&h->offline_device_lock, flags);
1604 
1605     /* Device is not on the list, add it. */
1606     device = kmalloc(sizeof(*device), GFP_KERNEL);
1607     if (!device)
1608         return;
1609 
1610     memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1611     spin_lock_irqsave(&h->offline_device_lock, flags);
1612     list_add_tail(&device->offline_list, &h->offline_device_list);
1613     spin_unlock_irqrestore(&h->offline_device_lock, flags);
1614 }
1615 
1616 /* Print a message explaining various offline volume states */
1617 static void hpsa_show_volume_status(struct ctlr_info *h,
1618     struct hpsa_scsi_dev_t *sd)
1619 {
1620     if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1621         dev_info(&h->pdev->dev,
1622             "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1623             h->scsi_host->host_no,
1624             sd->bus, sd->target, sd->lun);
1625     switch (sd->volume_offline) {
1626     case HPSA_LV_OK:
1627         break;
1628     case HPSA_LV_UNDERGOING_ERASE:
1629         dev_info(&h->pdev->dev,
1630             "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1631             h->scsi_host->host_no,
1632             sd->bus, sd->target, sd->lun);
1633         break;
1634     case HPSA_LV_NOT_AVAILABLE:
1635         dev_info(&h->pdev->dev,
1636             "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1637             h->scsi_host->host_no,
1638             sd->bus, sd->target, sd->lun);
1639         break;
1640     case HPSA_LV_UNDERGOING_RPI:
1641         dev_info(&h->pdev->dev,
1642             "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1643             h->scsi_host->host_no,
1644             sd->bus, sd->target, sd->lun);
1645         break;
1646     case HPSA_LV_PENDING_RPI:
1647         dev_info(&h->pdev->dev,
1648             "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1649             h->scsi_host->host_no,
1650             sd->bus, sd->target, sd->lun);
1651         break;
1652     case HPSA_LV_ENCRYPTED_NO_KEY:
1653         dev_info(&h->pdev->dev,
1654             "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1655             h->scsi_host->host_no,
1656             sd->bus, sd->target, sd->lun);
1657         break;
1658     case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1659         dev_info(&h->pdev->dev,
1660             "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1661             h->scsi_host->host_no,
1662             sd->bus, sd->target, sd->lun);
1663         break;
1664     case HPSA_LV_UNDERGOING_ENCRYPTION:
1665         dev_info(&h->pdev->dev,
1666             "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1667             h->scsi_host->host_no,
1668             sd->bus, sd->target, sd->lun);
1669         break;
1670     case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1671         dev_info(&h->pdev->dev,
1672             "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1673             h->scsi_host->host_no,
1674             sd->bus, sd->target, sd->lun);
1675         break;
1676     case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1677         dev_info(&h->pdev->dev,
1678             "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1679             h->scsi_host->host_no,
1680             sd->bus, sd->target, sd->lun);
1681         break;
1682     case HPSA_LV_PENDING_ENCRYPTION:
1683         dev_info(&h->pdev->dev,
1684             "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1685             h->scsi_host->host_no,
1686             sd->bus, sd->target, sd->lun);
1687         break;
1688     case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1689         dev_info(&h->pdev->dev,
1690             "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1691             h->scsi_host->host_no,
1692             sd->bus, sd->target, sd->lun);
1693         break;
1694     }
1695 }
1696 
1697 /*
1698  * Figure the list of physical drive pointers for a logical drive with
1699  * raid offload configured.
1700  */
1701 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1702                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1703                 struct hpsa_scsi_dev_t *logical_drive)
1704 {
1705     struct raid_map_data *map = &logical_drive->raid_map;
1706     struct raid_map_disk_data *dd = &map->data[0];
1707     int i, j;
1708     int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1709                 le16_to_cpu(map->metadata_disks_per_row);
1710     int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1711                 le16_to_cpu(map->layout_map_count) *
1712                 total_disks_per_row;
1713     int nphys_disk = le16_to_cpu(map->layout_map_count) *
1714                 total_disks_per_row;
1715     int qdepth;
1716 
1717     if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1718         nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1719 
1720     logical_drive->nphysical_disks = nraid_map_entries;
1721 
1722     qdepth = 0;
1723     for (i = 0; i < nraid_map_entries; i++) {
1724         logical_drive->phys_disk[i] = NULL;
1725         if (!logical_drive->offload_config)
1726             continue;
1727         for (j = 0; j < ndevices; j++) {
1728             if (dev[j] == NULL)
1729                 continue;
1730             if (dev[j]->devtype != TYPE_DISK &&
1731                 dev[j]->devtype != TYPE_ZBC)
1732                 continue;
1733             if (is_logical_device(dev[j]))
1734                 continue;
1735             if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1736                 continue;
1737 
1738             logical_drive->phys_disk[i] = dev[j];
1739             if (i < nphys_disk)
1740                 qdepth = min(h->nr_cmds, qdepth +
1741                     logical_drive->phys_disk[i]->queue_depth);
1742             break;
1743         }
1744 
1745         /*
1746          * This can happen if a physical drive is removed and
1747          * the logical drive is degraded.  In that case, the RAID
1748          * map data will refer to a physical disk which isn't actually
1749          * present.  And in that case offload_enabled should already
1750          * be 0, but we'll turn it off here just in case
1751          */
1752         if (!logical_drive->phys_disk[i]) {
1753             dev_warn(&h->pdev->dev,
1754                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1755                 __func__,
1756                 h->scsi_host->host_no, logical_drive->bus,
1757                 logical_drive->target, logical_drive->lun);
1758             hpsa_turn_off_ioaccel_for_device(logical_drive);
1759             logical_drive->queue_depth = 8;
1760         }
1761     }
1762     if (nraid_map_entries)
1763         /*
1764          * This is correct for reads, too high for full stripe writes,
1765          * way too high for partial stripe writes
1766          */
1767         logical_drive->queue_depth = qdepth;
1768     else {
1769         if (logical_drive->external)
1770             logical_drive->queue_depth = EXTERNAL_QD;
1771         else
1772             logical_drive->queue_depth = h->nr_cmds;
1773     }
1774 }
1775 
1776 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1777                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1778 {
1779     int i;
1780 
1781     for (i = 0; i < ndevices; i++) {
1782         if (dev[i] == NULL)
1783             continue;
1784         if (dev[i]->devtype != TYPE_DISK &&
1785             dev[i]->devtype != TYPE_ZBC)
1786             continue;
1787         if (!is_logical_device(dev[i]))
1788             continue;
1789 
1790         /*
1791          * If offload is currently enabled, the RAID map and
1792          * phys_disk[] assignment *better* not be changing
1793          * because we would be changing ioaccel phsy_disk[] pointers
1794          * on a ioaccel volume processing I/O requests.
1795          *
1796          * If an ioaccel volume status changed, initially because it was
1797          * re-configured and thus underwent a transformation, or
1798          * a drive failed, we would have received a state change
1799          * request and ioaccel should have been turned off. When the
1800          * transformation completes, we get another state change
1801          * request to turn ioaccel back on. In this case, we need
1802          * to update the ioaccel information.
1803          *
1804          * Thus: If it is not currently enabled, but will be after
1805          * the scan completes, make sure the ioaccel pointers
1806          * are up to date.
1807          */
1808 
1809         if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1810             hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1811     }
1812 }
1813 
1814 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1815 {
1816     int rc = 0;
1817 
1818     if (!h->scsi_host)
1819         return 1;
1820 
1821     if (is_logical_device(device)) /* RAID */
1822         rc = scsi_add_device(h->scsi_host, device->bus,
1823                     device->target, device->lun);
1824     else /* HBA */
1825         rc = hpsa_add_sas_device(h->sas_host, device);
1826 
1827     return rc;
1828 }
1829 
1830 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1831                         struct hpsa_scsi_dev_t *dev)
1832 {
1833     int i;
1834     int count = 0;
1835 
1836     for (i = 0; i < h->nr_cmds; i++) {
1837         struct CommandList *c = h->cmd_pool + i;
1838         int refcount = atomic_inc_return(&c->refcount);
1839 
1840         if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1841                 dev->scsi3addr)) {
1842             unsigned long flags;
1843 
1844             spin_lock_irqsave(&h->lock, flags); /* Implied MB */
1845             if (!hpsa_is_cmd_idle(c))
1846                 ++count;
1847             spin_unlock_irqrestore(&h->lock, flags);
1848         }
1849 
1850         cmd_free(h, c);
1851     }
1852 
1853     return count;
1854 }
1855 
1856 #define NUM_WAIT 20
1857 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1858                         struct hpsa_scsi_dev_t *device)
1859 {
1860     int cmds = 0;
1861     int waits = 0;
1862     int num_wait = NUM_WAIT;
1863 
1864     if (device->external)
1865         num_wait = HPSA_EH_PTRAID_TIMEOUT;
1866 
1867     while (1) {
1868         cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1869         if (cmds == 0)
1870             break;
1871         if (++waits > num_wait)
1872             break;
1873         msleep(1000);
1874     }
1875 
1876     if (waits > num_wait) {
1877         dev_warn(&h->pdev->dev,
1878             "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1879             __func__,
1880             h->scsi_host->host_no,
1881             device->bus, device->target, device->lun, cmds);
1882     }
1883 }
1884 
1885 static void hpsa_remove_device(struct ctlr_info *h,
1886             struct hpsa_scsi_dev_t *device)
1887 {
1888     struct scsi_device *sdev = NULL;
1889 
1890     if (!h->scsi_host)
1891         return;
1892 
1893     /*
1894      * Allow for commands to drain
1895      */
1896     device->removed = 1;
1897     hpsa_wait_for_outstanding_commands_for_dev(h, device);
1898 
1899     if (is_logical_device(device)) { /* RAID */
1900         sdev = scsi_device_lookup(h->scsi_host, device->bus,
1901                         device->target, device->lun);
1902         if (sdev) {
1903             scsi_remove_device(sdev);
1904             scsi_device_put(sdev);
1905         } else {
1906             /*
1907              * We don't expect to get here.  Future commands
1908              * to this device will get a selection timeout as
1909              * if the device were gone.
1910              */
1911             hpsa_show_dev_msg(KERN_WARNING, h, device,
1912                     "didn't find device for removal.");
1913         }
1914     } else { /* HBA */
1915 
1916         hpsa_remove_sas_device(device);
1917     }
1918 }
1919 
1920 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1921     struct hpsa_scsi_dev_t *sd[], int nsds)
1922 {
1923     /* sd contains scsi3 addresses and devtypes, and inquiry
1924      * data.  This function takes what's in sd to be the current
1925      * reality and updates h->dev[] to reflect that reality.
1926      */
1927     int i, entry, device_change, changes = 0;
1928     struct hpsa_scsi_dev_t *csd;
1929     unsigned long flags;
1930     struct hpsa_scsi_dev_t **added, **removed;
1931     int nadded, nremoved;
1932 
1933     /*
1934      * A reset can cause a device status to change
1935      * re-schedule the scan to see what happened.
1936      */
1937     spin_lock_irqsave(&h->reset_lock, flags);
1938     if (h->reset_in_progress) {
1939         h->drv_req_rescan = 1;
1940         spin_unlock_irqrestore(&h->reset_lock, flags);
1941         return;
1942     }
1943     spin_unlock_irqrestore(&h->reset_lock, flags);
1944 
1945     added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1946     removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1947 
1948     if (!added || !removed) {
1949         dev_warn(&h->pdev->dev, "out of memory in "
1950             "adjust_hpsa_scsi_table\n");
1951         goto free_and_out;
1952     }
1953 
1954     spin_lock_irqsave(&h->devlock, flags);
1955 
1956     /* find any devices in h->dev[] that are not in
1957      * sd[] and remove them from h->dev[], and for any
1958      * devices which have changed, remove the old device
1959      * info and add the new device info.
1960      * If minor device attributes change, just update
1961      * the existing device structure.
1962      */
1963     i = 0;
1964     nremoved = 0;
1965     nadded = 0;
1966     while (i < h->ndevices) {
1967         csd = h->dev[i];
1968         device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1969         if (device_change == DEVICE_NOT_FOUND) {
1970             changes++;
1971             hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1972             continue; /* remove ^^^, hence i not incremented */
1973         } else if (device_change == DEVICE_CHANGED) {
1974             changes++;
1975             hpsa_scsi_replace_entry(h, i, sd[entry],
1976                 added, &nadded, removed, &nremoved);
1977             /* Set it to NULL to prevent it from being freed
1978              * at the bottom of hpsa_update_scsi_devices()
1979              */
1980             sd[entry] = NULL;
1981         } else if (device_change == DEVICE_UPDATED) {
1982             hpsa_scsi_update_entry(h, i, sd[entry]);
1983         }
1984         i++;
1985     }
1986 
1987     /* Now, make sure every device listed in sd[] is also
1988      * listed in h->dev[], adding them if they aren't found
1989      */
1990 
1991     for (i = 0; i < nsds; i++) {
1992         if (!sd[i]) /* if already added above. */
1993             continue;
1994 
1995         /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1996          * as the SCSI mid-layer does not handle such devices well.
1997          * It relentlessly loops sending TUR at 3Hz, then READ(10)
1998          * at 160Hz, and prevents the system from coming up.
1999          */
2000         if (sd[i]->volume_offline) {
2001             hpsa_show_volume_status(h, sd[i]);
2002             hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
2003             continue;
2004         }
2005 
2006         device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2007                     h->ndevices, &entry);
2008         if (device_change == DEVICE_NOT_FOUND) {
2009             changes++;
2010             if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2011                 break;
2012             sd[i] = NULL; /* prevent from being freed later. */
2013         } else if (device_change == DEVICE_CHANGED) {
2014             /* should never happen... */
2015             changes++;
2016             dev_warn(&h->pdev->dev,
2017                 "device unexpectedly changed.\n");
2018             /* but if it does happen, we just ignore that device */
2019         }
2020     }
2021     hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2022 
2023     /*
2024      * Now that h->dev[]->phys_disk[] is coherent, we can enable
2025      * any logical drives that need it enabled.
2026      *
2027      * The raid map should be current by now.
2028      *
2029      * We are updating the device list used for I/O requests.
2030      */
2031     for (i = 0; i < h->ndevices; i++) {
2032         if (h->dev[i] == NULL)
2033             continue;
2034         h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2035     }
2036 
2037     spin_unlock_irqrestore(&h->devlock, flags);
2038 
2039     /* Monitor devices which are in one of several NOT READY states to be
2040      * brought online later. This must be done without holding h->devlock,
2041      * so don't touch h->dev[]
2042      */
2043     for (i = 0; i < nsds; i++) {
2044         if (!sd[i]) /* if already added above. */
2045             continue;
2046         if (sd[i]->volume_offline)
2047             hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2048     }
2049 
2050     /* Don't notify scsi mid layer of any changes the first time through
2051      * (or if there are no changes) scsi_scan_host will do it later the
2052      * first time through.
2053      */
2054     if (!changes)
2055         goto free_and_out;
2056 
2057     /* Notify scsi mid layer of any removed devices */
2058     for (i = 0; i < nremoved; i++) {
2059         if (removed[i] == NULL)
2060             continue;
2061         if (removed[i]->expose_device)
2062             hpsa_remove_device(h, removed[i]);
2063         kfree(removed[i]);
2064         removed[i] = NULL;
2065     }
2066 
2067     /* Notify scsi mid layer of any added devices */
2068     for (i = 0; i < nadded; i++) {
2069         int rc = 0;
2070 
2071         if (added[i] == NULL)
2072             continue;
2073         if (!(added[i]->expose_device))
2074             continue;
2075         rc = hpsa_add_device(h, added[i]);
2076         if (!rc)
2077             continue;
2078         dev_warn(&h->pdev->dev,
2079             "addition failed %d, device not added.", rc);
2080         /* now we have to remove it from h->dev,
2081          * since it didn't get added to scsi mid layer
2082          */
2083         fixup_botched_add(h, added[i]);
2084         h->drv_req_rescan = 1;
2085     }
2086 
2087 free_and_out:
2088     kfree(added);
2089     kfree(removed);
2090 }
2091 
2092 /*
2093  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2094  * Assume's h->devlock is held.
2095  */
2096 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2097     int bus, int target, int lun)
2098 {
2099     int i;
2100     struct hpsa_scsi_dev_t *sd;
2101 
2102     for (i = 0; i < h->ndevices; i++) {
2103         sd = h->dev[i];
2104         if (sd->bus == bus && sd->target == target && sd->lun == lun)
2105             return sd;
2106     }
2107     return NULL;
2108 }
2109 
2110 static int hpsa_slave_alloc(struct scsi_device *sdev)
2111 {
2112     struct hpsa_scsi_dev_t *sd = NULL;
2113     unsigned long flags;
2114     struct ctlr_info *h;
2115 
2116     h = sdev_to_hba(sdev);
2117     spin_lock_irqsave(&h->devlock, flags);
2118     if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2119         struct scsi_target *starget;
2120         struct sas_rphy *rphy;
2121 
2122         starget = scsi_target(sdev);
2123         rphy = target_to_rphy(starget);
2124         sd = hpsa_find_device_by_sas_rphy(h, rphy);
2125         if (sd) {
2126             sd->target = sdev_id(sdev);
2127             sd->lun = sdev->lun;
2128         }
2129     }
2130     if (!sd)
2131         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2132                     sdev_id(sdev), sdev->lun);
2133 
2134     if (sd && sd->expose_device) {
2135         atomic_set(&sd->ioaccel_cmds_out, 0);
2136         sdev->hostdata = sd;
2137     } else
2138         sdev->hostdata = NULL;
2139     spin_unlock_irqrestore(&h->devlock, flags);
2140     return 0;
2141 }
2142 
2143 /* configure scsi device based on internal per-device structure */
2144 #define CTLR_TIMEOUT (120 * HZ)
2145 static int hpsa_slave_configure(struct scsi_device *sdev)
2146 {
2147     struct hpsa_scsi_dev_t *sd;
2148     int queue_depth;
2149 
2150     sd = sdev->hostdata;
2151     sdev->no_uld_attach = !sd || !sd->expose_device;
2152 
2153     if (sd) {
2154         sd->was_removed = 0;
2155         queue_depth = sd->queue_depth != 0 ?
2156                 sd->queue_depth : sdev->host->can_queue;
2157         if (sd->external) {
2158             queue_depth = EXTERNAL_QD;
2159             sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2160             blk_queue_rq_timeout(sdev->request_queue,
2161                         HPSA_EH_PTRAID_TIMEOUT);
2162         }
2163         if (is_hba_lunid(sd->scsi3addr)) {
2164             sdev->eh_timeout = CTLR_TIMEOUT;
2165             blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2166         }
2167     } else {
2168         queue_depth = sdev->host->can_queue;
2169     }
2170 
2171     scsi_change_queue_depth(sdev, queue_depth);
2172 
2173     return 0;
2174 }
2175 
2176 static void hpsa_slave_destroy(struct scsi_device *sdev)
2177 {
2178     struct hpsa_scsi_dev_t *hdev = NULL;
2179 
2180     hdev = sdev->hostdata;
2181 
2182     if (hdev)
2183         hdev->was_removed = 1;
2184 }
2185 
2186 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2187 {
2188     int i;
2189 
2190     if (!h->ioaccel2_cmd_sg_list)
2191         return;
2192     for (i = 0; i < h->nr_cmds; i++) {
2193         kfree(h->ioaccel2_cmd_sg_list[i]);
2194         h->ioaccel2_cmd_sg_list[i] = NULL;
2195     }
2196     kfree(h->ioaccel2_cmd_sg_list);
2197     h->ioaccel2_cmd_sg_list = NULL;
2198 }
2199 
2200 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2201 {
2202     int i;
2203 
2204     if (h->chainsize <= 0)
2205         return 0;
2206 
2207     h->ioaccel2_cmd_sg_list =
2208         kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2209                     GFP_KERNEL);
2210     if (!h->ioaccel2_cmd_sg_list)
2211         return -ENOMEM;
2212     for (i = 0; i < h->nr_cmds; i++) {
2213         h->ioaccel2_cmd_sg_list[i] =
2214             kmalloc_array(h->maxsgentries,
2215                       sizeof(*h->ioaccel2_cmd_sg_list[i]),
2216                       GFP_KERNEL);
2217         if (!h->ioaccel2_cmd_sg_list[i])
2218             goto clean;
2219     }
2220     return 0;
2221 
2222 clean:
2223     hpsa_free_ioaccel2_sg_chain_blocks(h);
2224     return -ENOMEM;
2225 }
2226 
2227 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2228 {
2229     int i;
2230 
2231     if (!h->cmd_sg_list)
2232         return;
2233     for (i = 0; i < h->nr_cmds; i++) {
2234         kfree(h->cmd_sg_list[i]);
2235         h->cmd_sg_list[i] = NULL;
2236     }
2237     kfree(h->cmd_sg_list);
2238     h->cmd_sg_list = NULL;
2239 }
2240 
2241 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2242 {
2243     int i;
2244 
2245     if (h->chainsize <= 0)
2246         return 0;
2247 
2248     h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2249                  GFP_KERNEL);
2250     if (!h->cmd_sg_list)
2251         return -ENOMEM;
2252 
2253     for (i = 0; i < h->nr_cmds; i++) {
2254         h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2255                           sizeof(*h->cmd_sg_list[i]),
2256                           GFP_KERNEL);
2257         if (!h->cmd_sg_list[i])
2258             goto clean;
2259 
2260     }
2261     return 0;
2262 
2263 clean:
2264     hpsa_free_sg_chain_blocks(h);
2265     return -ENOMEM;
2266 }
2267 
2268 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2269     struct io_accel2_cmd *cp, struct CommandList *c)
2270 {
2271     struct ioaccel2_sg_element *chain_block;
2272     u64 temp64;
2273     u32 chain_size;
2274 
2275     chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2276     chain_size = le32_to_cpu(cp->sg[0].length);
2277     temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2278                 DMA_TO_DEVICE);
2279     if (dma_mapping_error(&h->pdev->dev, temp64)) {
2280         /* prevent subsequent unmapping */
2281         cp->sg->address = 0;
2282         return -1;
2283     }
2284     cp->sg->address = cpu_to_le64(temp64);
2285     return 0;
2286 }
2287 
2288 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2289     struct io_accel2_cmd *cp)
2290 {
2291     struct ioaccel2_sg_element *chain_sg;
2292     u64 temp64;
2293     u32 chain_size;
2294 
2295     chain_sg = cp->sg;
2296     temp64 = le64_to_cpu(chain_sg->address);
2297     chain_size = le32_to_cpu(cp->sg[0].length);
2298     dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2299 }
2300 
2301 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2302     struct CommandList *c)
2303 {
2304     struct SGDescriptor *chain_sg, *chain_block;
2305     u64 temp64;
2306     u32 chain_len;
2307 
2308     chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2309     chain_block = h->cmd_sg_list[c->cmdindex];
2310     chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2311     chain_len = sizeof(*chain_sg) *
2312         (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2313     chain_sg->Len = cpu_to_le32(chain_len);
2314     temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2315                 DMA_TO_DEVICE);
2316     if (dma_mapping_error(&h->pdev->dev, temp64)) {
2317         /* prevent subsequent unmapping */
2318         chain_sg->Addr = cpu_to_le64(0);
2319         return -1;
2320     }
2321     chain_sg->Addr = cpu_to_le64(temp64);
2322     return 0;
2323 }
2324 
2325 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2326     struct CommandList *c)
2327 {
2328     struct SGDescriptor *chain_sg;
2329 
2330     if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2331         return;
2332 
2333     chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2334     dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2335             le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2336 }
2337 
2338 
2339 /* Decode the various types of errors on ioaccel2 path.
2340  * Return 1 for any error that should generate a RAID path retry.
2341  * Return 0 for errors that don't require a RAID path retry.
2342  */
2343 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2344                     struct CommandList *c,
2345                     struct scsi_cmnd *cmd,
2346                     struct io_accel2_cmd *c2,
2347                     struct hpsa_scsi_dev_t *dev)
2348 {
2349     int data_len;
2350     int retry = 0;
2351     u32 ioaccel2_resid = 0;
2352 
2353     switch (c2->error_data.serv_response) {
2354     case IOACCEL2_SERV_RESPONSE_COMPLETE:
2355         switch (c2->error_data.status) {
2356         case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2357             if (cmd)
2358                 cmd->result = 0;
2359             break;
2360         case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2361             cmd->result |= SAM_STAT_CHECK_CONDITION;
2362             if (c2->error_data.data_present !=
2363                     IOACCEL2_SENSE_DATA_PRESENT) {
2364                 memset(cmd->sense_buffer, 0,
2365                     SCSI_SENSE_BUFFERSIZE);
2366                 break;
2367             }
2368             /* copy the sense data */
2369             data_len = c2->error_data.sense_data_len;
2370             if (data_len > SCSI_SENSE_BUFFERSIZE)
2371                 data_len = SCSI_SENSE_BUFFERSIZE;
2372             if (data_len > sizeof(c2->error_data.sense_data_buff))
2373                 data_len =
2374                     sizeof(c2->error_data.sense_data_buff);
2375             memcpy(cmd->sense_buffer,
2376                 c2->error_data.sense_data_buff, data_len);
2377             retry = 1;
2378             break;
2379         case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2380             retry = 1;
2381             break;
2382         case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2383             retry = 1;
2384             break;
2385         case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2386             retry = 1;
2387             break;
2388         case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2389             retry = 1;
2390             break;
2391         default:
2392             retry = 1;
2393             break;
2394         }
2395         break;
2396     case IOACCEL2_SERV_RESPONSE_FAILURE:
2397         switch (c2->error_data.status) {
2398         case IOACCEL2_STATUS_SR_IO_ERROR:
2399         case IOACCEL2_STATUS_SR_IO_ABORTED:
2400         case IOACCEL2_STATUS_SR_OVERRUN:
2401             retry = 1;
2402             break;
2403         case IOACCEL2_STATUS_SR_UNDERRUN:
2404             cmd->result = (DID_OK << 16);       /* host byte */
2405             ioaccel2_resid = get_unaligned_le32(
2406                         &c2->error_data.resid_cnt[0]);
2407             scsi_set_resid(cmd, ioaccel2_resid);
2408             break;
2409         case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2410         case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2411         case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2412             /*
2413              * Did an HBA disk disappear? We will eventually
2414              * get a state change event from the controller but
2415              * in the meantime, we need to tell the OS that the
2416              * HBA disk is no longer there and stop I/O
2417              * from going down. This allows the potential re-insert
2418              * of the disk to get the same device node.
2419              */
2420             if (dev->physical_device && dev->expose_device) {
2421                 cmd->result = DID_NO_CONNECT << 16;
2422                 dev->removed = 1;
2423                 h->drv_req_rescan = 1;
2424                 dev_warn(&h->pdev->dev,
2425                     "%s: device is gone!\n", __func__);
2426             } else
2427                 /*
2428                  * Retry by sending down the RAID path.
2429                  * We will get an event from ctlr to
2430                  * trigger rescan regardless.
2431                  */
2432                 retry = 1;
2433             break;
2434         default:
2435             retry = 1;
2436         }
2437         break;
2438     case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2439         break;
2440     case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2441         break;
2442     case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2443         retry = 1;
2444         break;
2445     case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2446         break;
2447     default:
2448         retry = 1;
2449         break;
2450     }
2451 
2452     if (dev->in_reset)
2453         retry = 0;
2454 
2455     return retry;   /* retry on raid path? */
2456 }
2457 
2458 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2459         struct CommandList *c)
2460 {
2461     struct hpsa_scsi_dev_t *dev = c->device;
2462 
2463     /*
2464      * Reset c->scsi_cmd here so that the reset handler will know
2465      * this command has completed.  Then, check to see if the handler is
2466      * waiting for this command, and, if so, wake it.
2467      */
2468     c->scsi_cmd = SCSI_CMD_IDLE;
2469     mb();   /* Declare command idle before checking for pending events. */
2470     if (dev) {
2471         atomic_dec(&dev->commands_outstanding);
2472         if (dev->in_reset &&
2473             atomic_read(&dev->commands_outstanding) <= 0)
2474             wake_up_all(&h->event_sync_wait_queue);
2475     }
2476 }
2477 
2478 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2479                       struct CommandList *c)
2480 {
2481     hpsa_cmd_resolve_events(h, c);
2482     cmd_tagged_free(h, c);
2483 }
2484 
2485 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2486         struct CommandList *c, struct scsi_cmnd *cmd)
2487 {
2488     hpsa_cmd_resolve_and_free(h, c);
2489     if (cmd)
2490         scsi_done(cmd);
2491 }
2492 
2493 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2494 {
2495     INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2496     queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2497 }
2498 
2499 static void process_ioaccel2_completion(struct ctlr_info *h,
2500         struct CommandList *c, struct scsi_cmnd *cmd,
2501         struct hpsa_scsi_dev_t *dev)
2502 {
2503     struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2504 
2505     /* check for good status */
2506     if (likely(c2->error_data.serv_response == 0 &&
2507             c2->error_data.status == 0)) {
2508         cmd->result = 0;
2509         return hpsa_cmd_free_and_done(h, c, cmd);
2510     }
2511 
2512     /*
2513      * Any RAID offload error results in retry which will use
2514      * the normal I/O path so the controller can handle whatever is
2515      * wrong.
2516      */
2517     if (is_logical_device(dev) &&
2518         c2->error_data.serv_response ==
2519             IOACCEL2_SERV_RESPONSE_FAILURE) {
2520         if (c2->error_data.status ==
2521             IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2522             hpsa_turn_off_ioaccel_for_device(dev);
2523         }
2524 
2525         if (dev->in_reset) {
2526             cmd->result = DID_RESET << 16;
2527             return hpsa_cmd_free_and_done(h, c, cmd);
2528         }
2529 
2530         return hpsa_retry_cmd(h, c);
2531     }
2532 
2533     if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2534         return hpsa_retry_cmd(h, c);
2535 
2536     return hpsa_cmd_free_and_done(h, c, cmd);
2537 }
2538 
2539 /* Returns 0 on success, < 0 otherwise. */
2540 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2541                     struct CommandList *cp)
2542 {
2543     u8 tmf_status = cp->err_info->ScsiStatus;
2544 
2545     switch (tmf_status) {
2546     case CISS_TMF_COMPLETE:
2547         /*
2548          * CISS_TMF_COMPLETE never happens, instead,
2549          * ei->CommandStatus == 0 for this case.
2550          */
2551     case CISS_TMF_SUCCESS:
2552         return 0;
2553     case CISS_TMF_INVALID_FRAME:
2554     case CISS_TMF_NOT_SUPPORTED:
2555     case CISS_TMF_FAILED:
2556     case CISS_TMF_WRONG_LUN:
2557     case CISS_TMF_OVERLAPPED_TAG:
2558         break;
2559     default:
2560         dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2561                 tmf_status);
2562         break;
2563     }
2564     return -tmf_status;
2565 }
2566 
2567 static void complete_scsi_command(struct CommandList *cp)
2568 {
2569     struct scsi_cmnd *cmd;
2570     struct ctlr_info *h;
2571     struct ErrorInfo *ei;
2572     struct hpsa_scsi_dev_t *dev;
2573     struct io_accel2_cmd *c2;
2574 
2575     u8 sense_key;
2576     u8 asc;      /* additional sense code */
2577     u8 ascq;     /* additional sense code qualifier */
2578     unsigned long sense_data_size;
2579 
2580     ei = cp->err_info;
2581     cmd = cp->scsi_cmd;
2582     h = cp->h;
2583 
2584     if (!cmd->device) {
2585         cmd->result = DID_NO_CONNECT << 16;
2586         return hpsa_cmd_free_and_done(h, cp, cmd);
2587     }
2588 
2589     dev = cmd->device->hostdata;
2590     if (!dev) {
2591         cmd->result = DID_NO_CONNECT << 16;
2592         return hpsa_cmd_free_and_done(h, cp, cmd);
2593     }
2594     c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2595 
2596     scsi_dma_unmap(cmd); /* undo the DMA mappings */
2597     if ((cp->cmd_type == CMD_SCSI) &&
2598         (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2599         hpsa_unmap_sg_chain_block(h, cp);
2600 
2601     if ((cp->cmd_type == CMD_IOACCEL2) &&
2602         (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2603         hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2604 
2605     cmd->result = (DID_OK << 16);       /* host byte */
2606 
2607     /* SCSI command has already been cleaned up in SML */
2608     if (dev->was_removed) {
2609         hpsa_cmd_resolve_and_free(h, cp);
2610         return;
2611     }
2612 
2613     if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2614         if (dev->physical_device && dev->expose_device &&
2615             dev->removed) {
2616             cmd->result = DID_NO_CONNECT << 16;
2617             return hpsa_cmd_free_and_done(h, cp, cmd);
2618         }
2619         if (likely(cp->phys_disk != NULL))
2620             atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2621     }
2622 
2623     /*
2624      * We check for lockup status here as it may be set for
2625      * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2626      * fail_all_oustanding_cmds()
2627      */
2628     if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2629         /* DID_NO_CONNECT will prevent a retry */
2630         cmd->result = DID_NO_CONNECT << 16;
2631         return hpsa_cmd_free_and_done(h, cp, cmd);
2632     }
2633 
2634     if (cp->cmd_type == CMD_IOACCEL2)
2635         return process_ioaccel2_completion(h, cp, cmd, dev);
2636 
2637     scsi_set_resid(cmd, ei->ResidualCnt);
2638     if (ei->CommandStatus == 0)
2639         return hpsa_cmd_free_and_done(h, cp, cmd);
2640 
2641     /* For I/O accelerator commands, copy over some fields to the normal
2642      * CISS header used below for error handling.
2643      */
2644     if (cp->cmd_type == CMD_IOACCEL1) {
2645         struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2646         cp->Header.SGList = scsi_sg_count(cmd);
2647         cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2648         cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2649             IOACCEL1_IOFLAGS_CDBLEN_MASK;
2650         cp->Header.tag = c->tag;
2651         memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2652         memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2653 
2654         /* Any RAID offload error results in retry which will use
2655          * the normal I/O path so the controller can handle whatever's
2656          * wrong.
2657          */
2658         if (is_logical_device(dev)) {
2659             if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2660                 dev->offload_enabled = 0;
2661             return hpsa_retry_cmd(h, cp);
2662         }
2663     }
2664 
2665     /* an error has occurred */
2666     switch (ei->CommandStatus) {
2667 
2668     case CMD_TARGET_STATUS:
2669         cmd->result |= ei->ScsiStatus;
2670         /* copy the sense data */
2671         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2672             sense_data_size = SCSI_SENSE_BUFFERSIZE;
2673         else
2674             sense_data_size = sizeof(ei->SenseInfo);
2675         if (ei->SenseLen < sense_data_size)
2676             sense_data_size = ei->SenseLen;
2677         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2678         if (ei->ScsiStatus)
2679             decode_sense_data(ei->SenseInfo, sense_data_size,
2680                 &sense_key, &asc, &ascq);
2681         if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2682             switch (sense_key) {
2683             case ABORTED_COMMAND:
2684                 cmd->result |= DID_SOFT_ERROR << 16;
2685                 break;
2686             case UNIT_ATTENTION:
2687                 if (asc == 0x3F && ascq == 0x0E)
2688                     h->drv_req_rescan = 1;
2689                 break;
2690             case ILLEGAL_REQUEST:
2691                 if (asc == 0x25 && ascq == 0x00) {
2692                     dev->removed = 1;
2693                     cmd->result = DID_NO_CONNECT << 16;
2694                 }
2695                 break;
2696             }
2697             break;
2698         }
2699         /* Problem was not a check condition
2700          * Pass it up to the upper layers...
2701          */
2702         if (ei->ScsiStatus) {
2703             dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2704                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2705                 "Returning result: 0x%x\n",
2706                 cp, ei->ScsiStatus,
2707                 sense_key, asc, ascq,
2708                 cmd->result);
2709         } else {  /* scsi status is zero??? How??? */
2710             dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2711                 "Returning no connection.\n", cp),
2712 
2713             /* Ordinarily, this case should never happen,
2714              * but there is a bug in some released firmware
2715              * revisions that allows it to happen if, for
2716              * example, a 4100 backplane loses power and
2717              * the tape drive is in it.  We assume that
2718              * it's a fatal error of some kind because we
2719              * can't show that it wasn't. We will make it
2720              * look like selection timeout since that is
2721              * the most common reason for this to occur,
2722              * and it's severe enough.
2723              */
2724 
2725             cmd->result = DID_NO_CONNECT << 16;
2726         }
2727         break;
2728 
2729     case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2730         break;
2731     case CMD_DATA_OVERRUN:
2732         dev_warn(&h->pdev->dev,
2733             "CDB %16phN data overrun\n", cp->Request.CDB);
2734         break;
2735     case CMD_INVALID: {
2736         /* print_bytes(cp, sizeof(*cp), 1, 0);
2737         print_cmd(cp); */
2738         /* We get CMD_INVALID if you address a non-existent device
2739          * instead of a selection timeout (no response).  You will
2740          * see this if you yank out a drive, then try to access it.
2741          * This is kind of a shame because it means that any other
2742          * CMD_INVALID (e.g. driver bug) will get interpreted as a
2743          * missing target. */
2744         cmd->result = DID_NO_CONNECT << 16;
2745     }
2746         break;
2747     case CMD_PROTOCOL_ERR:
2748         cmd->result = DID_ERROR << 16;
2749         dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2750                 cp->Request.CDB);
2751         break;
2752     case CMD_HARDWARE_ERR:
2753         cmd->result = DID_ERROR << 16;
2754         dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2755             cp->Request.CDB);
2756         break;
2757     case CMD_CONNECTION_LOST:
2758         cmd->result = DID_ERROR << 16;
2759         dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2760             cp->Request.CDB);
2761         break;
2762     case CMD_ABORTED:
2763         cmd->result = DID_ABORT << 16;
2764         break;
2765     case CMD_ABORT_FAILED:
2766         cmd->result = DID_ERROR << 16;
2767         dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2768             cp->Request.CDB);
2769         break;
2770     case CMD_UNSOLICITED_ABORT:
2771         cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2772         dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2773             cp->Request.CDB);
2774         break;
2775     case CMD_TIMEOUT:
2776         cmd->result = DID_TIME_OUT << 16;
2777         dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2778             cp->Request.CDB);
2779         break;
2780     case CMD_UNABORTABLE:
2781         cmd->result = DID_ERROR << 16;
2782         dev_warn(&h->pdev->dev, "Command unabortable\n");
2783         break;
2784     case CMD_TMF_STATUS:
2785         if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2786             cmd->result = DID_ERROR << 16;
2787         break;
2788     case CMD_IOACCEL_DISABLED:
2789         /* This only handles the direct pass-through case since RAID
2790          * offload is handled above.  Just attempt a retry.
2791          */
2792         cmd->result = DID_SOFT_ERROR << 16;
2793         dev_warn(&h->pdev->dev,
2794                 "cp %p had HP SSD Smart Path error\n", cp);
2795         break;
2796     default:
2797         cmd->result = DID_ERROR << 16;
2798         dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2799                 cp, ei->CommandStatus);
2800     }
2801 
2802     return hpsa_cmd_free_and_done(h, cp, cmd);
2803 }
2804 
2805 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2806         int sg_used, enum dma_data_direction data_direction)
2807 {
2808     int i;
2809 
2810     for (i = 0; i < sg_used; i++)
2811         dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2812                 le32_to_cpu(c->SG[i].Len),
2813                 data_direction);
2814 }
2815 
2816 static int hpsa_map_one(struct pci_dev *pdev,
2817         struct CommandList *cp,
2818         unsigned char *buf,
2819         size_t buflen,
2820         enum dma_data_direction data_direction)
2821 {
2822     u64 addr64;
2823 
2824     if (buflen == 0 || data_direction == DMA_NONE) {
2825         cp->Header.SGList = 0;
2826         cp->Header.SGTotal = cpu_to_le16(0);
2827         return 0;
2828     }
2829 
2830     addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2831     if (dma_mapping_error(&pdev->dev, addr64)) {
2832         /* Prevent subsequent unmap of something never mapped */
2833         cp->Header.SGList = 0;
2834         cp->Header.SGTotal = cpu_to_le16(0);
2835         return -1;
2836     }
2837     cp->SG[0].Addr = cpu_to_le64(addr64);
2838     cp->SG[0].Len = cpu_to_le32(buflen);
2839     cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2840     cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2841     cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2842     return 0;
2843 }
2844 
2845 #define NO_TIMEOUT ((unsigned long) -1)
2846 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2847 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2848     struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2849 {
2850     DECLARE_COMPLETION_ONSTACK(wait);
2851 
2852     c->waiting = &wait;
2853     __enqueue_cmd_and_start_io(h, c, reply_queue);
2854     if (timeout_msecs == NO_TIMEOUT) {
2855         /* TODO: get rid of this no-timeout thing */
2856         wait_for_completion_io(&wait);
2857         return IO_OK;
2858     }
2859     if (!wait_for_completion_io_timeout(&wait,
2860                     msecs_to_jiffies(timeout_msecs))) {
2861         dev_warn(&h->pdev->dev, "Command timed out.\n");
2862         return -ETIMEDOUT;
2863     }
2864     return IO_OK;
2865 }
2866 
2867 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2868                    int reply_queue, unsigned long timeout_msecs)
2869 {
2870     if (unlikely(lockup_detected(h))) {
2871         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2872         return IO_OK;
2873     }
2874     return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2875 }
2876 
2877 static u32 lockup_detected(struct ctlr_info *h)
2878 {
2879     int cpu;
2880     u32 rc, *lockup_detected;
2881 
2882     cpu = get_cpu();
2883     lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2884     rc = *lockup_detected;
2885     put_cpu();
2886     return rc;
2887 }
2888 
2889 #define MAX_DRIVER_CMD_RETRIES 25
2890 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2891         struct CommandList *c, enum dma_data_direction data_direction,
2892         unsigned long timeout_msecs)
2893 {
2894     int backoff_time = 10, retry_count = 0;
2895     int rc;
2896 
2897     do {
2898         memset(c->err_info, 0, sizeof(*c->err_info));
2899         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2900                           timeout_msecs);
2901         if (rc)
2902             break;
2903         retry_count++;
2904         if (retry_count > 3) {
2905             msleep(backoff_time);
2906             if (backoff_time < 1000)
2907                 backoff_time *= 2;
2908         }
2909     } while ((check_for_unit_attention(h, c) ||
2910             check_for_busy(h, c)) &&
2911             retry_count <= MAX_DRIVER_CMD_RETRIES);
2912     hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2913     if (retry_count > MAX_DRIVER_CMD_RETRIES)
2914         rc = -EIO;
2915     return rc;
2916 }
2917 
2918 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2919                 struct CommandList *c)
2920 {
2921     const u8 *cdb = c->Request.CDB;
2922     const u8 *lun = c->Header.LUN.LunAddrBytes;
2923 
2924     dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2925          txt, lun, cdb);
2926 }
2927 
2928 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2929             struct CommandList *cp)
2930 {
2931     const struct ErrorInfo *ei = cp->err_info;
2932     struct device *d = &cp->h->pdev->dev;
2933     u8 sense_key, asc, ascq;
2934     int sense_len;
2935 
2936     switch (ei->CommandStatus) {
2937     case CMD_TARGET_STATUS:
2938         if (ei->SenseLen > sizeof(ei->SenseInfo))
2939             sense_len = sizeof(ei->SenseInfo);
2940         else
2941             sense_len = ei->SenseLen;
2942         decode_sense_data(ei->SenseInfo, sense_len,
2943                     &sense_key, &asc, &ascq);
2944         hpsa_print_cmd(h, "SCSI status", cp);
2945         if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2946             dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2947                 sense_key, asc, ascq);
2948         else
2949             dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2950         if (ei->ScsiStatus == 0)
2951             dev_warn(d, "SCSI status is abnormally zero.  "
2952             "(probably indicates selection timeout "
2953             "reported incorrectly due to a known "
2954             "firmware bug, circa July, 2001.)\n");
2955         break;
2956     case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2957         break;
2958     case CMD_DATA_OVERRUN:
2959         hpsa_print_cmd(h, "overrun condition", cp);
2960         break;
2961     case CMD_INVALID: {
2962         /* controller unfortunately reports SCSI passthru's
2963          * to non-existent targets as invalid commands.
2964          */
2965         hpsa_print_cmd(h, "invalid command", cp);
2966         dev_warn(d, "probably means device no longer present\n");
2967         }
2968         break;
2969     case CMD_PROTOCOL_ERR:
2970         hpsa_print_cmd(h, "protocol error", cp);
2971         break;
2972     case CMD_HARDWARE_ERR:
2973         hpsa_print_cmd(h, "hardware error", cp);
2974         break;
2975     case CMD_CONNECTION_LOST:
2976         hpsa_print_cmd(h, "connection lost", cp);
2977         break;
2978     case CMD_ABORTED:
2979         hpsa_print_cmd(h, "aborted", cp);
2980         break;
2981     case CMD_ABORT_FAILED:
2982         hpsa_print_cmd(h, "abort failed", cp);
2983         break;
2984     case CMD_UNSOLICITED_ABORT:
2985         hpsa_print_cmd(h, "unsolicited abort", cp);
2986         break;
2987     case CMD_TIMEOUT:
2988         hpsa_print_cmd(h, "timed out", cp);
2989         break;
2990     case CMD_UNABORTABLE:
2991         hpsa_print_cmd(h, "unabortable", cp);
2992         break;
2993     case CMD_CTLR_LOCKUP:
2994         hpsa_print_cmd(h, "controller lockup detected", cp);
2995         break;
2996     default:
2997         hpsa_print_cmd(h, "unknown status", cp);
2998         dev_warn(d, "Unknown command status %x\n",
2999                 ei->CommandStatus);
3000     }
3001 }
3002 
3003 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
3004                     u8 page, u8 *buf, size_t bufsize)
3005 {
3006     int rc = IO_OK;
3007     struct CommandList *c;
3008     struct ErrorInfo *ei;
3009 
3010     c = cmd_alloc(h);
3011     if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3012             page, scsi3addr, TYPE_CMD)) {
3013         rc = -1;
3014         goto out;
3015     }
3016     rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3017             NO_TIMEOUT);
3018     if (rc)
3019         goto out;
3020     ei = c->err_info;
3021     if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3022         hpsa_scsi_interpret_error(h, c);
3023         rc = -1;
3024     }
3025 out:
3026     cmd_free(h, c);
3027     return rc;
3028 }
3029 
3030 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3031                         u8 *scsi3addr)
3032 {
3033     u8 *buf;
3034     u64 sa = 0;
3035     int rc = 0;
3036 
3037     buf = kzalloc(1024, GFP_KERNEL);
3038     if (!buf)
3039         return 0;
3040 
3041     rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3042                     buf, 1024);
3043 
3044     if (rc)
3045         goto out;
3046 
3047     sa = get_unaligned_be64(buf+12);
3048 
3049 out:
3050     kfree(buf);
3051     return sa;
3052 }
3053 
3054 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3055             u16 page, unsigned char *buf,
3056             unsigned char bufsize)
3057 {
3058     int rc = IO_OK;
3059     struct CommandList *c;
3060     struct ErrorInfo *ei;
3061 
3062     c = cmd_alloc(h);
3063 
3064     if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3065             page, scsi3addr, TYPE_CMD)) {
3066         rc = -1;
3067         goto out;
3068     }
3069     rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3070             NO_TIMEOUT);
3071     if (rc)
3072         goto out;
3073     ei = c->err_info;
3074     if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3075         hpsa_scsi_interpret_error(h, c);
3076         rc = -1;
3077     }
3078 out:
3079     cmd_free(h, c);
3080     return rc;
3081 }
3082 
3083 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3084     u8 reset_type, int reply_queue)
3085 {
3086     int rc = IO_OK;
3087     struct CommandList *c;
3088     struct ErrorInfo *ei;
3089 
3090     c = cmd_alloc(h);
3091     c->device = dev;
3092 
3093     /* fill_cmd can't fail here, no data buffer to map. */
3094     (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3095     rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3096     if (rc) {
3097         dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3098         goto out;
3099     }
3100     /* no unmap needed here because no data xfer. */
3101 
3102     ei = c->err_info;
3103     if (ei->CommandStatus != 0) {
3104         hpsa_scsi_interpret_error(h, c);
3105         rc = -1;
3106     }
3107 out:
3108     cmd_free(h, c);
3109     return rc;
3110 }
3111 
3112 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3113                    struct hpsa_scsi_dev_t *dev,
3114                    unsigned char *scsi3addr)
3115 {
3116     int i;
3117     bool match = false;
3118     struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3119     struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3120 
3121     if (hpsa_is_cmd_idle(c))
3122         return false;
3123 
3124     switch (c->cmd_type) {
3125     case CMD_SCSI:
3126     case CMD_IOCTL_PEND:
3127         match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3128                 sizeof(c->Header.LUN.LunAddrBytes));
3129         break;
3130 
3131     case CMD_IOACCEL1:
3132     case CMD_IOACCEL2:
3133         if (c->phys_disk == dev) {
3134             /* HBA mode match */
3135             match = true;
3136         } else {
3137             /* Possible RAID mode -- check each phys dev. */
3138             /* FIXME:  Do we need to take out a lock here?  If
3139              * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3140              * instead. */
3141             for (i = 0; i < dev->nphysical_disks && !match; i++) {
3142                 /* FIXME: an alternate test might be
3143                  *
3144                  * match = dev->phys_disk[i]->ioaccel_handle
3145                  *              == c2->scsi_nexus;      */
3146                 match = dev->phys_disk[i] == c->phys_disk;
3147             }
3148         }
3149         break;
3150 
3151     case IOACCEL2_TMF:
3152         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3153             match = dev->phys_disk[i]->ioaccel_handle ==
3154                     le32_to_cpu(ac->it_nexus);
3155         }
3156         break;
3157 
3158     case 0:     /* The command is in the middle of being initialized. */
3159         match = false;
3160         break;
3161 
3162     default:
3163         dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3164             c->cmd_type);
3165         BUG();
3166     }
3167 
3168     return match;
3169 }
3170 
3171 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3172     u8 reset_type, int reply_queue)
3173 {
3174     int rc = 0;
3175 
3176     /* We can really only handle one reset at a time */
3177     if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3178         dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3179         return -EINTR;
3180     }
3181 
3182     rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3183     if (!rc) {
3184         /* incremented by sending the reset request */
3185         atomic_dec(&dev->commands_outstanding);
3186         wait_event(h->event_sync_wait_queue,
3187             atomic_read(&dev->commands_outstanding) <= 0 ||
3188             lockup_detected(h));
3189     }
3190 
3191     if (unlikely(lockup_detected(h))) {
3192         dev_warn(&h->pdev->dev,
3193              "Controller lockup detected during reset wait\n");
3194         rc = -ENODEV;
3195     }
3196 
3197     if (!rc)
3198         rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3199 
3200     mutex_unlock(&h->reset_mutex);
3201     return rc;
3202 }
3203 
3204 static void hpsa_get_raid_level(struct ctlr_info *h,
3205     unsigned char *scsi3addr, unsigned char *raid_level)
3206 {
3207     int rc;
3208     unsigned char *buf;
3209 
3210     *raid_level = RAID_UNKNOWN;
3211     buf = kzalloc(64, GFP_KERNEL);
3212     if (!buf)
3213         return;
3214 
3215     if (!hpsa_vpd_page_supported(h, scsi3addr,
3216         HPSA_VPD_LV_DEVICE_GEOMETRY))
3217         goto exit;
3218 
3219     rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3220         HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3221 
3222     if (rc == 0)
3223         *raid_level = buf[8];
3224     if (*raid_level > RAID_UNKNOWN)
3225         *raid_level = RAID_UNKNOWN;
3226 exit:
3227     kfree(buf);
3228     return;
3229 }
3230 
3231 #define HPSA_MAP_DEBUG
3232 #ifdef HPSA_MAP_DEBUG
3233 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3234                 struct raid_map_data *map_buff)
3235 {
3236     struct raid_map_disk_data *dd = &map_buff->data[0];
3237     int map, row, col;
3238     u16 map_cnt, row_cnt, disks_per_row;
3239 
3240     if (rc != 0)
3241         return;
3242 
3243     /* Show details only if debugging has been activated. */
3244     if (h->raid_offload_debug < 2)
3245         return;
3246 
3247     dev_info(&h->pdev->dev, "structure_size = %u\n",
3248                 le32_to_cpu(map_buff->structure_size));
3249     dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3250             le32_to_cpu(map_buff->volume_blk_size));
3251     dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3252             le64_to_cpu(map_buff->volume_blk_cnt));
3253     dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3254             map_buff->phys_blk_shift);
3255     dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3256             map_buff->parity_rotation_shift);
3257     dev_info(&h->pdev->dev, "strip_size = %u\n",
3258             le16_to_cpu(map_buff->strip_size));
3259     dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3260             le64_to_cpu(map_buff->disk_starting_blk));
3261     dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3262             le64_to_cpu(map_buff->disk_blk_cnt));
3263     dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3264             le16_to_cpu(map_buff->data_disks_per_row));
3265     dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3266             le16_to_cpu(map_buff->metadata_disks_per_row));
3267     dev_info(&h->pdev->dev, "row_cnt = %u\n",
3268             le16_to_cpu(map_buff->row_cnt));
3269     dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3270             le16_to_cpu(map_buff->layout_map_count));
3271     dev_info(&h->pdev->dev, "flags = 0x%x\n",
3272             le16_to_cpu(map_buff->flags));
3273     dev_info(&h->pdev->dev, "encryption = %s\n",
3274             le16_to_cpu(map_buff->flags) &
3275             RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3276     dev_info(&h->pdev->dev, "dekindex = %u\n",
3277             le16_to_cpu(map_buff->dekindex));
3278     map_cnt = le16_to_cpu(map_buff->layout_map_count);
3279     for (map = 0; map < map_cnt; map++) {
3280         dev_info(&h->pdev->dev, "Map%u:\n", map);
3281         row_cnt = le16_to_cpu(map_buff->row_cnt);
3282         for (row = 0; row < row_cnt; row++) {
3283             dev_info(&h->pdev->dev, "  Row%u:\n", row);
3284             disks_per_row =
3285                 le16_to_cpu(map_buff->data_disks_per_row);
3286             for (col = 0; col < disks_per_row; col++, dd++)
3287                 dev_info(&h->pdev->dev,
3288                     "    D%02u: h=0x%04x xor=%u,%u\n",
3289                     col, dd->ioaccel_handle,
3290                     dd->xor_mult[0], dd->xor_mult[1]);
3291             disks_per_row =
3292                 le16_to_cpu(map_buff->metadata_disks_per_row);
3293             for (col = 0; col < disks_per_row; col++, dd++)
3294                 dev_info(&h->pdev->dev,
3295                     "    M%02u: h=0x%04x xor=%u,%u\n",
3296                     col, dd->ioaccel_handle,
3297                     dd->xor_mult[0], dd->xor_mult[1]);
3298         }
3299     }
3300 }
3301 #else
3302 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3303             __attribute__((unused)) int rc,
3304             __attribute__((unused)) struct raid_map_data *map_buff)
3305 {
3306 }
3307 #endif
3308 
3309 static int hpsa_get_raid_map(struct ctlr_info *h,
3310     unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3311 {
3312     int rc = 0;
3313     struct CommandList *c;
3314     struct ErrorInfo *ei;
3315 
3316     c = cmd_alloc(h);
3317 
3318     if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3319             sizeof(this_device->raid_map), 0,
3320             scsi3addr, TYPE_CMD)) {
3321         dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3322         cmd_free(h, c);
3323         return -1;
3324     }
3325     rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3326             NO_TIMEOUT);
3327     if (rc)
3328         goto out;
3329     ei = c->err_info;
3330     if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3331         hpsa_scsi_interpret_error(h, c);
3332         rc = -1;
3333         goto out;
3334     }
3335     cmd_free(h, c);
3336 
3337     /* @todo in the future, dynamically allocate RAID map memory */
3338     if (le32_to_cpu(this_device->raid_map.structure_size) >
3339                 sizeof(this_device->raid_map)) {
3340         dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3341         rc = -1;
3342     }
3343     hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3344     return rc;
3345 out:
3346     cmd_free(h, c);
3347     return rc;
3348 }
3349 
3350 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3351         unsigned char scsi3addr[], u16 bmic_device_index,
3352         struct bmic_sense_subsystem_info *buf, size_t bufsize)
3353 {
3354     int rc = IO_OK;
3355     struct CommandList *c;
3356     struct ErrorInfo *ei;
3357 
3358     c = cmd_alloc(h);
3359 
3360     rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3361         0, RAID_CTLR_LUNID, TYPE_CMD);
3362     if (rc)
3363         goto out;
3364 
3365     c->Request.CDB[2] = bmic_device_index & 0xff;
3366     c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3367 
3368     rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3369             NO_TIMEOUT);
3370     if (rc)
3371         goto out;
3372     ei = c->err_info;
3373     if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3374         hpsa_scsi_interpret_error(h, c);
3375         rc = -1;
3376     }
3377 out:
3378     cmd_free(h, c);
3379     return rc;
3380 }
3381 
3382 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3383     struct bmic_identify_controller *buf, size_t bufsize)
3384 {
3385     int rc = IO_OK;
3386     struct CommandList *c;
3387     struct ErrorInfo *ei;
3388 
3389     c = cmd_alloc(h);
3390 
3391     rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3392         0, RAID_CTLR_LUNID, TYPE_CMD);
3393     if (rc)
3394         goto out;
3395 
3396     rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3397             NO_TIMEOUT);
3398     if (rc)
3399         goto out;
3400     ei = c->err_info;
3401     if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3402         hpsa_scsi_interpret_error(h, c);
3403         rc = -1;
3404     }
3405 out:
3406     cmd_free(h, c);
3407     return rc;
3408 }
3409 
3410 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3411         unsigned char scsi3addr[], u16 bmic_device_index,
3412         struct bmic_identify_physical_device *buf, size_t bufsize)
3413 {
3414     int rc = IO_OK;
3415     struct CommandList *c;
3416     struct ErrorInfo *ei;
3417 
3418     c = cmd_alloc(h);
3419     rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3420         0, RAID_CTLR_LUNID, TYPE_CMD);
3421     if (rc)
3422         goto out;
3423 
3424     c->Request.CDB[2] = bmic_device_index & 0xff;
3425     c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3426 
3427     hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3428                         NO_TIMEOUT);
3429     ei = c->err_info;
3430     if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3431         hpsa_scsi_interpret_error(h, c);
3432         rc = -1;
3433     }
3434 out:
3435     cmd_free(h, c);
3436 
3437     return rc;
3438 }
3439 
3440 /*
3441  * get enclosure information
3442  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3443  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3444  * Uses id_physical_device to determine the box_index.
3445  */
3446 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3447             unsigned char *scsi3addr,
3448             struct ReportExtendedLUNdata *rlep, int rle_index,
3449             struct hpsa_scsi_dev_t *encl_dev)
3450 {
3451     int rc = -1;
3452     struct CommandList *c = NULL;
3453     struct ErrorInfo *ei = NULL;
3454     struct bmic_sense_storage_box_params *bssbp = NULL;
3455     struct bmic_identify_physical_device *id_phys = NULL;
3456     struct ext_report_lun_entry *rle;
3457     u16 bmic_device_index = 0;
3458 
3459     if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3460         return;
3461 
3462     rle = &rlep->LUN[rle_index];
3463 
3464     encl_dev->eli =
3465         hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3466 
3467     bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3468 
3469     if (encl_dev->target == -1 || encl_dev->lun == -1) {
3470         rc = IO_OK;
3471         goto out;
3472     }
3473 
3474     if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3475         rc = IO_OK;
3476         goto out;
3477     }
3478 
3479     bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3480     if (!bssbp)
3481         goto out;
3482 
3483     id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3484     if (!id_phys)
3485         goto out;
3486 
3487     rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3488                         id_phys, sizeof(*id_phys));
3489     if (rc) {
3490         dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3491             __func__, encl_dev->external, bmic_device_index);
3492         goto out;
3493     }
3494 
3495     c = cmd_alloc(h);
3496 
3497     rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3498             sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3499 
3500     if (rc)
3501         goto out;
3502 
3503     if (id_phys->phys_connector[1] == 'E')
3504         c->Request.CDB[5] = id_phys->box_index;
3505     else
3506         c->Request.CDB[5] = 0;
3507 
3508     rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3509                         NO_TIMEOUT);
3510     if (rc)
3511         goto out;
3512 
3513     ei = c->err_info;
3514     if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3515         rc = -1;
3516         goto out;
3517     }
3518 
3519     encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3520     memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3521         bssbp->phys_connector, sizeof(bssbp->phys_connector));
3522 
3523     rc = IO_OK;
3524 out:
3525     kfree(bssbp);
3526     kfree(id_phys);
3527 
3528     if (c)
3529         cmd_free(h, c);
3530 
3531     if (rc != IO_OK)
3532         hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3533             "Error, could not get enclosure information");
3534 }
3535 
3536 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3537                         unsigned char *scsi3addr)
3538 {
3539     struct ReportExtendedLUNdata *physdev;
3540     u32 nphysicals;
3541     u64 sa = 0;
3542     int i;
3543 
3544     physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3545     if (!physdev)
3546         return 0;
3547 
3548     if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3549         dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3550         kfree(physdev);
3551         return 0;
3552     }
3553     nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3554 
3555     for (i = 0; i < nphysicals; i++)
3556         if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3557             sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3558             break;
3559         }
3560 
3561     kfree(physdev);
3562 
3563     return sa;
3564 }
3565 
3566 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3567                     struct hpsa_scsi_dev_t *dev)
3568 {
3569     int rc;
3570     u64 sa = 0;
3571 
3572     if (is_hba_lunid(scsi3addr)) {
3573         struct bmic_sense_subsystem_info *ssi;
3574 
3575         ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3576         if (!ssi)
3577             return;
3578 
3579         rc = hpsa_bmic_sense_subsystem_information(h,
3580                     scsi3addr, 0, ssi, sizeof(*ssi));
3581         if (rc == 0) {
3582             sa = get_unaligned_be64(ssi->primary_world_wide_id);
3583             h->sas_address = sa;
3584         }
3585 
3586         kfree(ssi);
3587     } else
3588         sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3589 
3590     dev->sas_address = sa;
3591 }
3592 
3593 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3594     struct ReportExtendedLUNdata *physdev)
3595 {
3596     u32 nphysicals;
3597     int i;
3598 
3599     if (h->discovery_polling)
3600         return;
3601 
3602     nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3603 
3604     for (i = 0; i < nphysicals; i++) {
3605         if (physdev->LUN[i].device_type ==
3606             BMIC_DEVICE_TYPE_CONTROLLER
3607             && !is_hba_lunid(physdev->LUN[i].lunid)) {
3608             dev_info(&h->pdev->dev,
3609                 "External controller present, activate discovery polling and disable rld caching\n");
3610             hpsa_disable_rld_caching(h);
3611             h->discovery_polling = 1;
3612             break;
3613         }
3614     }
3615 }
3616 
3617 /* Get a device id from inquiry page 0x83 */
3618 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3619     unsigned char scsi3addr[], u8 page)
3620 {
3621     int rc;
3622     int i;
3623     int pages;
3624     unsigned char *buf, bufsize;
3625 
3626     buf = kzalloc(256, GFP_KERNEL);
3627     if (!buf)
3628         return false;
3629 
3630     /* Get the size of the page list first */
3631     rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3632                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3633                 buf, HPSA_VPD_HEADER_SZ);
3634     if (rc != 0)
3635         goto exit_unsupported;
3636     pages = buf[3];
3637     if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3638         bufsize = pages + HPSA_VPD_HEADER_SZ;
3639     else
3640         bufsize = 255;
3641 
3642     /* Get the whole VPD page list */
3643     rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3644                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3645                 buf, bufsize);
3646     if (rc != 0)
3647         goto exit_unsupported;
3648 
3649     pages = buf[3];
3650     for (i = 1; i <= pages; i++)
3651         if (buf[3 + i] == page)
3652             goto exit_supported;
3653 exit_unsupported:
3654     kfree(buf);
3655     return false;
3656 exit_supported:
3657     kfree(buf);
3658     return true;
3659 }
3660 
3661 /*
3662  * Called during a scan operation.
3663  * Sets ioaccel status on the new device list, not the existing device list
3664  *
3665  * The device list used during I/O will be updated later in
3666  * adjust_hpsa_scsi_table.
3667  */
3668 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3669     unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3670 {
3671     int rc;
3672     unsigned char *buf;
3673     u8 ioaccel_status;
3674 
3675     this_device->offload_config = 0;
3676     this_device->offload_enabled = 0;
3677     this_device->offload_to_be_enabled = 0;
3678 
3679     buf = kzalloc(64, GFP_KERNEL);
3680     if (!buf)
3681         return;
3682     if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3683         goto out;
3684     rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3685             VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3686     if (rc != 0)
3687         goto out;
3688 
3689 #define IOACCEL_STATUS_BYTE 4
3690 #define OFFLOAD_CONFIGURED_BIT 0x01
3691 #define OFFLOAD_ENABLED_BIT 0x02
3692     ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3693     this_device->offload_config =
3694         !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3695     if (this_device->offload_config) {
3696         bool offload_enabled =
3697             !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3698         /*
3699          * Check to see if offload can be enabled.
3700          */
3701         if (offload_enabled) {
3702             rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3703             if (rc) /* could not load raid_map */
3704                 goto out;
3705             this_device->offload_to_be_enabled = 1;
3706         }
3707     }
3708 
3709 out:
3710     kfree(buf);
3711     return;
3712 }
3713 
3714 /* Get the device id from inquiry page 0x83 */
3715 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3716     unsigned char *device_id, int index, int buflen)
3717 {
3718     int rc;
3719     unsigned char *buf;
3720 
3721     /* Does controller have VPD for device id? */
3722     if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3723         return 1; /* not supported */
3724 
3725     buf = kzalloc(64, GFP_KERNEL);
3726     if (!buf)
3727         return -ENOMEM;
3728 
3729     rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3730                     HPSA_VPD_LV_DEVICE_ID, buf, 64);
3731     if (rc == 0) {
3732         if (buflen > 16)
3733             buflen = 16;
3734         memcpy(device_id, &buf[8], buflen);
3735     }
3736 
3737     kfree(buf);
3738 
3739     return rc; /*0 - got id,  otherwise, didn't */
3740 }
3741 
3742 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3743         void *buf, int bufsize,
3744         int extended_response)
3745 {
3746     int rc = IO_OK;
3747     struct CommandList *c;
3748     unsigned char scsi3addr[8];
3749     struct ErrorInfo *ei;
3750 
3751     c = cmd_alloc(h);
3752 
3753     /* address the controller */
3754     memset(scsi3addr, 0, sizeof(scsi3addr));
3755     if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3756         buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3757         rc = -EAGAIN;
3758         goto out;
3759     }
3760     if (extended_response)
3761         c->Request.CDB[1] = extended_response;
3762     rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3763             NO_TIMEOUT);
3764     if (rc)
3765         goto out;
3766     ei = c->err_info;
3767     if (ei->CommandStatus != 0 &&
3768         ei->CommandStatus != CMD_DATA_UNDERRUN) {
3769         hpsa_scsi_interpret_error(h, c);
3770         rc = -EIO;
3771     } else {
3772         struct ReportLUNdata *rld = buf;
3773 
3774         if (rld->extended_response_flag != extended_response) {
3775             if (!h->legacy_board) {
3776                 dev_err(&h->pdev->dev,
3777                     "report luns requested format %u, got %u\n",
3778                     extended_response,
3779                     rld->extended_response_flag);
3780                 rc = -EINVAL;
3781             } else
3782                 rc = -EOPNOTSUPP;
3783         }
3784     }
3785 out:
3786     cmd_free(h, c);
3787     return rc;
3788 }
3789 
3790 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3791         struct ReportExtendedLUNdata *buf, int bufsize)
3792 {
3793     int rc;
3794     struct ReportLUNdata *lbuf;
3795 
3796     rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3797                       HPSA_REPORT_PHYS_EXTENDED);
3798     if (!rc || rc != -EOPNOTSUPP)
3799         return rc;
3800 
3801     /* REPORT PHYS EXTENDED is not supported */
3802     lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3803     if (!lbuf)
3804         return -ENOMEM;
3805 
3806     rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3807     if (!rc) {
3808         int i;
3809         u32 nphys;
3810 
3811         /* Copy ReportLUNdata header */
3812         memcpy(buf, lbuf, 8);
3813         nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3814         for (i = 0; i < nphys; i++)
3815             memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3816     }
3817     kfree(lbuf);
3818     return rc;
3819 }
3820 
3821 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3822         struct ReportLUNdata *buf, int bufsize)
3823 {
3824     return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3825 }
3826 
3827 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3828     int bus, int target, int lun)
3829 {
3830     device->bus = bus;
3831     device->target = target;
3832     device->lun = lun;
3833 }
3834 
3835 /* Use VPD inquiry to get details of volume status */
3836 static int hpsa_get_volume_status(struct ctlr_info *h,
3837                     unsigned char scsi3addr[])
3838 {
3839     int rc;
3840     int status;
3841     int size;
3842     unsigned char *buf;
3843 
3844     buf = kzalloc(64, GFP_KERNEL);
3845     if (!buf)
3846         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3847 
3848     /* Does controller have VPD for logical volume status? */
3849     if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3850         goto exit_failed;
3851 
3852     /* Get the size of the VPD return buffer */
3853     rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3854                     buf, HPSA_VPD_HEADER_SZ);
3855     if (rc != 0)
3856         goto exit_failed;
3857     size = buf[3];
3858 
3859     /* Now get the whole VPD buffer */
3860     rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3861                     buf, size + HPSA_VPD_HEADER_SZ);
3862     if (rc != 0)
3863         goto exit_failed;
3864     status = buf[4]; /* status byte */
3865 
3866     kfree(buf);
3867     return status;
3868 exit_failed:
3869     kfree(buf);
3870     return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3871 }
3872 
3873 /* Determine offline status of a volume.
3874  * Return either:
3875  *  0 (not offline)
3876  *  0xff (offline for unknown reasons)
3877  *  # (integer code indicating one of several NOT READY states
3878  *     describing why a volume is to be kept offline)
3879  */
3880 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3881                     unsigned char scsi3addr[])
3882 {
3883     struct CommandList *c;
3884     unsigned char *sense;
3885     u8 sense_key, asc, ascq;
3886     int sense_len;
3887     int rc, ldstat = 0;
3888 #define ASC_LUN_NOT_READY 0x04
3889 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3890 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3891 
3892     c = cmd_alloc(h);
3893 
3894     (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3895     rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3896                     NO_TIMEOUT);
3897     if (rc) {
3898         cmd_free(h, c);
3899         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3900     }
3901     sense = c->err_info->SenseInfo;
3902     if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3903         sense_len = sizeof(c->err_info->SenseInfo);
3904     else
3905         sense_len = c->err_info->SenseLen;
3906     decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3907     cmd_free(h, c);
3908 
3909     /* Determine the reason for not ready state */
3910     ldstat = hpsa_get_volume_status(h, scsi3addr);
3911 
3912     /* Keep volume offline in certain cases: */
3913     switch (ldstat) {
3914     case HPSA_LV_FAILED:
3915     case HPSA_LV_UNDERGOING_ERASE:
3916     case HPSA_LV_NOT_AVAILABLE:
3917     case HPSA_LV_UNDERGOING_RPI:
3918     case HPSA_LV_PENDING_RPI:
3919     case HPSA_LV_ENCRYPTED_NO_KEY:
3920     case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3921     case HPSA_LV_UNDERGOING_ENCRYPTION:
3922     case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3923     case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3924         return ldstat;
3925     case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3926         /* If VPD status page isn't available,
3927          * use ASC/ASCQ to determine state
3928          */
3929         if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3930             (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3931             return ldstat;
3932         break;
3933     default:
3934         break;
3935     }
3936     return HPSA_LV_OK;
3937 }
3938 
3939 static int hpsa_update_device_info(struct ctlr_info *h,
3940     unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3941     unsigned char *is_OBDR_device)
3942 {
3943 
3944 #define OBDR_SIG_OFFSET 43
3945 #define OBDR_TAPE_SIG "$DR-10"
3946 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3947 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3948 
3949     unsigned char *inq_buff;
3950     unsigned char *obdr_sig;
3951     int rc = 0;
3952 
3953     inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3954     if (!inq_buff) {
3955         rc = -ENOMEM;
3956         goto bail_out;
3957     }
3958 
3959     /* Do an inquiry to the device to see what it is. */
3960     if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3961         (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3962         dev_err(&h->pdev->dev,
3963             "%s: inquiry failed, device will be skipped.\n",
3964             __func__);
3965         rc = HPSA_INQUIRY_FAILED;
3966         goto bail_out;
3967     }
3968 
3969     scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3970     scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3971 
3972     this_device->devtype = (inq_buff[0] & 0x1f);
3973     memcpy(this_device->scsi3addr, scsi3addr, 8);
3974     memcpy(this_device->vendor, &inq_buff[8],
3975         sizeof(this_device->vendor));
3976     memcpy(this_device->model, &inq_buff[16],
3977         sizeof(this_device->model));
3978     this_device->rev = inq_buff[2];
3979     memset(this_device->device_id, 0,
3980         sizeof(this_device->device_id));
3981     if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3982         sizeof(this_device->device_id)) < 0) {
3983         dev_err(&h->pdev->dev,
3984             "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3985             h->ctlr, __func__,
3986             h->scsi_host->host_no,
3987             this_device->bus, this_device->target,
3988             this_device->lun,
3989             scsi_device_type(this_device->devtype),
3990             this_device->model);
3991         rc = HPSA_LV_FAILED;
3992         goto bail_out;
3993     }
3994 
3995     if ((this_device->devtype == TYPE_DISK ||
3996         this_device->devtype == TYPE_ZBC) &&
3997         is_logical_dev_addr_mode(scsi3addr)) {
3998         unsigned char volume_offline;
3999 
4000         hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
4001         if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
4002             hpsa_get_ioaccel_status(h, scsi3addr, this_device);
4003         volume_offline = hpsa_volume_offline(h, scsi3addr);
4004         if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4005             h->legacy_board) {
4006             /*
4007              * Legacy boards might not support volume status
4008              */
4009             dev_info(&h->pdev->dev,
4010                  "C0:T%d:L%d Volume status not available, assuming online.\n",
4011                  this_device->target, this_device->lun);
4012             volume_offline = 0;
4013         }
4014         this_device->volume_offline = volume_offline;
4015         if (volume_offline == HPSA_LV_FAILED) {
4016             rc = HPSA_LV_FAILED;
4017             dev_err(&h->pdev->dev,
4018                 "%s: LV failed, device will be skipped.\n",
4019                 __func__);
4020             goto bail_out;
4021         }
4022     } else {
4023         this_device->raid_level = RAID_UNKNOWN;
4024         this_device->offload_config = 0;
4025         hpsa_turn_off_ioaccel_for_device(this_device);
4026         this_device->hba_ioaccel_enabled = 0;
4027         this_device->volume_offline = 0;
4028         this_device->queue_depth = h->nr_cmds;
4029     }
4030 
4031     if (this_device->external)
4032         this_device->queue_depth = EXTERNAL_QD;
4033 
4034     if (is_OBDR_device) {
4035         /* See if this is a One-Button-Disaster-Recovery device
4036          * by looking for "$DR-10" at offset 43 in inquiry data.
4037          */
4038         obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4039         *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4040                     strncmp(obdr_sig, OBDR_TAPE_SIG,
4041                         OBDR_SIG_LEN) == 0);
4042     }
4043     kfree(inq_buff);
4044     return 0;
4045 
4046 bail_out:
4047     kfree(inq_buff);
4048     return rc;
4049 }
4050 
4051 /*
4052  * Helper function to assign bus, target, lun mapping of devices.
4053  * Logical drive target and lun are assigned at this time, but
4054  * physical device lun and target assignment are deferred (assigned
4055  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4056 */
4057 static void figure_bus_target_lun(struct ctlr_info *h,
4058     u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4059 {
4060     u32 lunid = get_unaligned_le32(lunaddrbytes);
4061 
4062     if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4063         /* physical device, target and lun filled in later */
4064         if (is_hba_lunid(lunaddrbytes)) {
4065             int bus = HPSA_HBA_BUS;
4066 
4067             if (!device->rev)
4068                 bus = HPSA_LEGACY_HBA_BUS;
4069             hpsa_set_bus_target_lun(device,
4070                     bus, 0, lunid & 0x3fff);
4071         } else
4072             /* defer target, lun assignment for physical devices */
4073             hpsa_set_bus_target_lun(device,
4074                     HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4075         return;
4076     }
4077     /* It's a logical device */
4078     if (device->external) {
4079         hpsa_set_bus_target_lun(device,
4080             HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4081             lunid & 0x00ff);
4082         return;
4083     }
4084     hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4085                 0, lunid & 0x3fff);
4086 }
4087 
4088 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4089     int i, int nphysicals, int nlocal_logicals)
4090 {
4091     /* In report logicals, local logicals are listed first,
4092     * then any externals.
4093     */
4094     int logicals_start = nphysicals + (raid_ctlr_position == 0);
4095 
4096     if (i == raid_ctlr_position)
4097         return 0;
4098 
4099     if (i < logicals_start)
4100         return 0;
4101 
4102     /* i is in logicals range, but still within local logicals */
4103     if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4104         return 0;
4105 
4106     return 1; /* it's an external lun */
4107 }
4108 
4109 /*
4110  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4111  * logdev.  The number of luns in physdev and logdev are returned in
4112  * *nphysicals and *nlogicals, respectively.
4113  * Returns 0 on success, -1 otherwise.
4114  */
4115 static int hpsa_gather_lun_info(struct ctlr_info *h,
4116     struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4117     struct ReportLUNdata *logdev, u32 *nlogicals)
4118 {
4119     if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4120         dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4121         return -1;
4122     }
4123     *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4124     if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4125         dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4126             HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4127         *nphysicals = HPSA_MAX_PHYS_LUN;
4128     }
4129     if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4130         dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4131         return -1;
4132     }
4133     *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4134     /* Reject Logicals in excess of our max capability. */
4135     if (*nlogicals > HPSA_MAX_LUN) {
4136         dev_warn(&h->pdev->dev,
4137             "maximum logical LUNs (%d) exceeded.  "
4138             "%d LUNs ignored.\n", HPSA_MAX_LUN,
4139             *nlogicals - HPSA_MAX_LUN);
4140         *nlogicals = HPSA_MAX_LUN;
4141     }
4142     if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4143         dev_warn(&h->pdev->dev,
4144             "maximum logical + physical LUNs (%d) exceeded. "
4145             "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4146             *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4147         *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4148     }
4149     return 0;
4150 }
4151 
4152 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4153     int i, int nphysicals, int nlogicals,
4154     struct ReportExtendedLUNdata *physdev_list,
4155     struct ReportLUNdata *logdev_list)
4156 {
4157     /* Helper function, figure out where the LUN ID info is coming from
4158      * given index i, lists of physical and logical devices, where in
4159      * the list the raid controller is supposed to appear (first or last)
4160      */
4161 
4162     int logicals_start = nphysicals + (raid_ctlr_position == 0);
4163     int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4164 
4165     if (i == raid_ctlr_position)
4166         return RAID_CTLR_LUNID;
4167 
4168     if (i < logicals_start)
4169         return &physdev_list->LUN[i -
4170                 (raid_ctlr_position == 0)].lunid[0];
4171 
4172     if (i < last_device)
4173         return &logdev_list->LUN[i - nphysicals -
4174             (raid_ctlr_position == 0)][0];
4175     BUG();
4176     return NULL;
4177 }
4178 
4179 /* get physical drive ioaccel handle and queue depth */
4180 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4181         struct hpsa_scsi_dev_t *dev,
4182         struct ReportExtendedLUNdata *rlep, int rle_index,
4183         struct bmic_identify_physical_device *id_phys)
4184 {
4185     int rc;
4186     struct ext_report_lun_entry *rle;
4187 
4188     if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4189         return;
4190 
4191     rle = &rlep->LUN[rle_index];
4192 
4193     dev->ioaccel_handle = rle->ioaccel_handle;
4194     if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4195         dev->hba_ioaccel_enabled = 1;
4196     memset(id_phys, 0, sizeof(*id_phys));
4197     rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4198             GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4199             sizeof(*id_phys));
4200     if (!rc)
4201         /* Reserve space for FW operations */
4202 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4203 #define DRIVE_QUEUE_DEPTH 7
4204         dev->queue_depth =
4205             le16_to_cpu(id_phys->current_queue_depth_limit) -
4206                 DRIVE_CMDS_RESERVED_FOR_FW;
4207     else
4208         dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4209 }
4210 
4211 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4212     struct ReportExtendedLUNdata *rlep, int rle_index,
4213     struct bmic_identify_physical_device *id_phys)
4214 {
4215     struct ext_report_lun_entry *rle;
4216 
4217     if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4218         return;
4219 
4220     rle = &rlep->LUN[rle_index];
4221 
4222     if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4223         this_device->hba_ioaccel_enabled = 1;
4224 
4225     memcpy(&this_device->active_path_index,
4226         &id_phys->active_path_number,
4227         sizeof(this_device->active_path_index));
4228     memcpy(&this_device->path_map,
4229         &id_phys->redundant_path_present_map,
4230         sizeof(this_device->path_map));
4231     memcpy(&this_device->box,
4232         &id_phys->alternate_paths_phys_box_on_port,
4233         sizeof(this_device->box));
4234     memcpy(&this_device->phys_connector,
4235         &id_phys->alternate_paths_phys_connector,
4236         sizeof(this_device->phys_connector));
4237     memcpy(&this_device->bay,
4238         &id_phys->phys_bay_in_box,
4239         sizeof(this_device->bay));
4240 }
4241 
4242 /* get number of local logical disks. */
4243 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4244     struct bmic_identify_controller *id_ctlr,
4245     u32 *nlocals)
4246 {
4247     int rc;
4248 
4249     if (!id_ctlr) {
4250         dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4251             __func__);
4252         return -ENOMEM;
4253     }
4254     memset(id_ctlr, 0, sizeof(*id_ctlr));
4255     rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4256     if (!rc)
4257         if (id_ctlr->configured_logical_drive_count < 255)
4258             *nlocals = id_ctlr->configured_logical_drive_count;
4259         else
4260             *nlocals = le16_to_cpu(
4261                     id_ctlr->extended_logical_unit_count);
4262     else
4263         *nlocals = -1;
4264     return rc;
4265 }
4266 
4267 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4268 {
4269     struct bmic_identify_physical_device *id_phys;
4270     bool is_spare = false;
4271     int rc;
4272 
4273     id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4274     if (!id_phys)
4275         return false;
4276 
4277     rc = hpsa_bmic_id_physical_device(h,
4278                     lunaddrbytes,
4279                     GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4280                     id_phys, sizeof(*id_phys));
4281     if (rc == 0)
4282         is_spare = (id_phys->more_flags >> 6) & 0x01;
4283 
4284     kfree(id_phys);
4285     return is_spare;
4286 }
4287 
4288 #define RPL_DEV_FLAG_NON_DISK                           0x1
4289 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4290 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4291 
4292 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4293 
4294 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4295                 struct ext_report_lun_entry *rle)
4296 {
4297     u8 device_flags;
4298     u8 device_type;
4299 
4300     if (!MASKED_DEVICE(lunaddrbytes))
4301         return false;
4302 
4303     device_flags = rle->device_flags;
4304     device_type = rle->device_type;
4305 
4306     if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4307         if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4308             return false;
4309         return true;
4310     }
4311 
4312     if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4313         return false;
4314 
4315     if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4316         return false;
4317 
4318     /*
4319      * Spares may be spun down, we do not want to
4320      * do an Inquiry to a RAID set spare drive as
4321      * that would have them spun up, that is a
4322      * performance hit because I/O to the RAID device
4323      * stops while the spin up occurs which can take
4324      * over 50 seconds.
4325      */
4326     if (hpsa_is_disk_spare(h, lunaddrbytes))
4327         return true;
4328 
4329     return false;
4330 }
4331 
4332 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4333 {
4334     /* the idea here is we could get notified
4335      * that some devices have changed, so we do a report
4336      * physical luns and report logical luns cmd, and adjust
4337      * our list of devices accordingly.
4338      *
4339      * The scsi3addr's of devices won't change so long as the
4340      * adapter is not reset.  That means we can rescan and
4341      * tell which devices we already know about, vs. new
4342      * devices, vs.  disappearing devices.
4343      */
4344     struct ReportExtendedLUNdata *physdev_list = NULL;
4345     struct ReportLUNdata *logdev_list = NULL;
4346     struct bmic_identify_physical_device *id_phys = NULL;
4347     struct bmic_identify_controller *id_ctlr = NULL;
4348     u32 nphysicals = 0;
4349     u32 nlogicals = 0;
4350     u32 nlocal_logicals = 0;
4351     u32 ndev_allocated = 0;
4352     struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4353     int ncurrent = 0;
4354     int i, ndevs_to_allocate;
4355     int raid_ctlr_position;
4356     bool physical_device;
4357 
4358     currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4359     physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4360     logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4361     tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4362     id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4363     id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4364 
4365     if (!currentsd || !physdev_list || !logdev_list ||
4366         !tmpdevice || !id_phys || !id_ctlr) {
4367         dev_err(&h->pdev->dev, "out of memory\n");
4368         goto out;
4369     }
4370 
4371     h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4372 
4373     if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4374             logdev_list, &nlogicals)) {
4375         h->drv_req_rescan = 1;
4376         goto out;
4377     }
4378 
4379     /* Set number of local logicals (non PTRAID) */
4380     if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4381         dev_warn(&h->pdev->dev,
4382             "%s: Can't determine number of local logical devices.\n",
4383             __func__);
4384     }
4385 
4386     /* We might see up to the maximum number of logical and physical disks
4387      * plus external target devices, and a device for the local RAID
4388      * controller.
4389      */
4390     ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4391 
4392     hpsa_ext_ctrl_present(h, physdev_list);
4393 
4394     /* Allocate the per device structures */
4395     for (i = 0; i < ndevs_to_allocate; i++) {
4396         if (i >= HPSA_MAX_DEVICES) {
4397             dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4398                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4399                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4400             break;
4401         }
4402 
4403         currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4404         if (!currentsd[i]) {
4405             h->drv_req_rescan = 1;
4406             goto out;
4407         }
4408         ndev_allocated++;
4409     }
4410 
4411     if (is_scsi_rev_5(h))
4412         raid_ctlr_position = 0;
4413     else
4414         raid_ctlr_position = nphysicals + nlogicals;
4415 
4416     /* adjust our table of devices */
4417     for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4418         u8 *lunaddrbytes, is_OBDR = 0;
4419         int rc = 0;
4420         int phys_dev_index = i - (raid_ctlr_position == 0);
4421         bool skip_device = false;
4422 
4423         memset(tmpdevice, 0, sizeof(*tmpdevice));
4424 
4425         physical_device = i < nphysicals + (raid_ctlr_position == 0);
4426 
4427         /* Figure out where the LUN ID info is coming from */
4428         lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4429             i, nphysicals, nlogicals, physdev_list, logdev_list);
4430 
4431         /* Determine if this is a lun from an external target array */
4432         tmpdevice->external =
4433             figure_external_status(h, raid_ctlr_position, i,
4434                         nphysicals, nlocal_logicals);
4435 
4436         /*
4437          * Skip over some devices such as a spare.
4438          */
4439         if (phys_dev_index >= 0 && !tmpdevice->external &&
4440             physical_device) {
4441             skip_device = hpsa_skip_device(h, lunaddrbytes,
4442                     &physdev_list->LUN[phys_dev_index]);
4443             if (skip_device)
4444                 continue;
4445         }
4446 
4447         /* Get device type, vendor, model, device id, raid_map */
4448         rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4449                             &is_OBDR);
4450         if (rc == -ENOMEM) {
4451             dev_warn(&h->pdev->dev,
4452                 "Out of memory, rescan deferred.\n");
4453             h->drv_req_rescan = 1;
4454             goto out;
4455         }
4456         if (rc) {
4457             h->drv_req_rescan = 1;
4458             continue;
4459         }
4460 
4461         figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4462         this_device = currentsd[ncurrent];
4463 
4464         *this_device = *tmpdevice;
4465         this_device->physical_device = physical_device;
4466 
4467         /*
4468          * Expose all devices except for physical devices that
4469          * are masked.
4470          */
4471         if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4472             this_device->expose_device = 0;
4473         else
4474             this_device->expose_device = 1;
4475 
4476 
4477         /*
4478          * Get the SAS address for physical devices that are exposed.
4479          */
4480         if (this_device->physical_device && this_device->expose_device)
4481             hpsa_get_sas_address(h, lunaddrbytes, this_device);
4482 
4483         switch (this_device->devtype) {
4484         case TYPE_ROM:
4485             /* We don't *really* support actual CD-ROM devices,
4486              * just "One Button Disaster Recovery" tape drive
4487              * which temporarily pretends to be a CD-ROM drive.
4488              * So we check that the device is really an OBDR tape
4489              * device by checking for "$DR-10" in bytes 43-48 of
4490              * the inquiry data.
4491              */
4492             if (is_OBDR)
4493                 ncurrent++;
4494             break;
4495         case TYPE_DISK:
4496         case TYPE_ZBC:
4497             if (this_device->physical_device) {
4498                 /* The disk is in HBA mode. */
4499                 /* Never use RAID mapper in HBA mode. */
4500                 this_device->offload_enabled = 0;
4501                 hpsa_get_ioaccel_drive_info(h, this_device,
4502                     physdev_list, phys_dev_index, id_phys);
4503                 hpsa_get_path_info(this_device,
4504                     physdev_list, phys_dev_index, id_phys);
4505             }
4506             ncurrent++;
4507             break;
4508         case TYPE_TAPE:
4509         case TYPE_MEDIUM_CHANGER:
4510             ncurrent++;
4511             break;
4512         case TYPE_ENCLOSURE:
4513             if (!this_device->external)
4514                 hpsa_get_enclosure_info(h, lunaddrbytes,
4515                         physdev_list, phys_dev_index,
4516                         this_device);
4517             ncurrent++;
4518             break;
4519         case TYPE_RAID:
4520             /* Only present the Smartarray HBA as a RAID controller.
4521              * If it's a RAID controller other than the HBA itself
4522              * (an external RAID controller, MSA500 or similar)
4523              * don't present it.
4524              */
4525             if (!is_hba_lunid(lunaddrbytes))
4526                 break;
4527             ncurrent++;
4528             break;
4529         default:
4530             break;
4531         }
4532         if (ncurrent >= HPSA_MAX_DEVICES)
4533             break;
4534     }
4535 
4536     if (h->sas_host == NULL) {
4537         int rc = 0;
4538 
4539         rc = hpsa_add_sas_host(h);
4540         if (rc) {
4541             dev_warn(&h->pdev->dev,
4542                 "Could not add sas host %d\n", rc);
4543             goto out;
4544         }
4545     }
4546 
4547     adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4548 out:
4549     kfree(tmpdevice);
4550     for (i = 0; i < ndev_allocated; i++)
4551         kfree(currentsd[i]);
4552     kfree(currentsd);
4553     kfree(physdev_list);
4554     kfree(logdev_list);
4555     kfree(id_ctlr);
4556     kfree(id_phys);
4557 }
4558 
4559 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4560                    struct scatterlist *sg)
4561 {
4562     u64 addr64 = (u64) sg_dma_address(sg);
4563     unsigned int len = sg_dma_len(sg);
4564 
4565     desc->Addr = cpu_to_le64(addr64);
4566     desc->Len = cpu_to_le32(len);
4567     desc->Ext = 0;
4568 }
4569 
4570 /*
4571  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4572  * dma mapping  and fills in the scatter gather entries of the
4573  * hpsa command, cp.
4574  */
4575 static int hpsa_scatter_gather(struct ctlr_info *h,
4576         struct CommandList *cp,
4577         struct scsi_cmnd *cmd)
4578 {
4579     struct scatterlist *sg;
4580     int use_sg, i, sg_limit, chained;
4581     struct SGDescriptor *curr_sg;
4582 
4583     BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4584 
4585     use_sg = scsi_dma_map(cmd);
4586     if (use_sg < 0)
4587         return use_sg;
4588 
4589     if (!use_sg)
4590         goto sglist_finished;
4591 
4592     /*
4593      * If the number of entries is greater than the max for a single list,
4594      * then we have a chained list; we will set up all but one entry in the
4595      * first list (the last entry is saved for link information);
4596      * otherwise, we don't have a chained list and we'll set up at each of
4597      * the entries in the one list.
4598      */
4599     curr_sg = cp->SG;
4600     chained = use_sg > h->max_cmd_sg_entries;
4601     sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4602     scsi_for_each_sg(cmd, sg, sg_limit, i) {
4603         hpsa_set_sg_descriptor(curr_sg, sg);
4604         curr_sg++;
4605     }
4606 
4607     if (chained) {
4608         /*
4609          * Continue with the chained list.  Set curr_sg to the chained
4610          * list.  Modify the limit to the total count less the entries
4611          * we've already set up.  Resume the scan at the list entry
4612          * where the previous loop left off.
4613          */
4614         curr_sg = h->cmd_sg_list[cp->cmdindex];
4615         sg_limit = use_sg - sg_limit;
4616         for_each_sg(sg, sg, sg_limit, i) {
4617             hpsa_set_sg_descriptor(curr_sg, sg);
4618             curr_sg++;
4619         }
4620     }
4621 
4622     /* Back the pointer up to the last entry and mark it as "last". */
4623     (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4624 
4625     if (use_sg + chained > h->maxSG)
4626         h->maxSG = use_sg + chained;
4627 
4628     if (chained) {
4629         cp->Header.SGList = h->max_cmd_sg_entries;
4630         cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4631         if (hpsa_map_sg_chain_block(h, cp)) {
4632             scsi_dma_unmap(cmd);
4633             return -1;
4634         }
4635         return 0;
4636     }
4637 
4638 sglist_finished:
4639 
4640     cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4641     cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4642     return 0;
4643 }
4644 
4645 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4646                         u8 *cdb, int cdb_len,
4647                         const char *func)
4648 {
4649     dev_warn(&h->pdev->dev,
4650          "%s: Blocking zero-length request: CDB:%*phN\n",
4651          func, cdb_len, cdb);
4652 }
4653 
4654 #define IO_ACCEL_INELIGIBLE 1
4655 /* zero-length transfers trigger hardware errors. */
4656 static bool is_zero_length_transfer(u8 *cdb)
4657 {
4658     u32 block_cnt;
4659 
4660     /* Block zero-length transfer sizes on certain commands. */
4661     switch (cdb[0]) {
4662     case READ_10:
4663     case WRITE_10:
4664     case VERIFY:        /* 0x2F */
4665     case WRITE_VERIFY:  /* 0x2E */
4666         block_cnt = get_unaligned_be16(&cdb[7]);
4667         break;
4668     case READ_12:
4669     case WRITE_12:
4670     case VERIFY_12: /* 0xAF */
4671     case WRITE_VERIFY_12:   /* 0xAE */
4672         block_cnt = get_unaligned_be32(&cdb[6]);
4673         break;
4674     case READ_16:
4675     case WRITE_16:
4676     case VERIFY_16:     /* 0x8F */
4677         block_cnt = get_unaligned_be32(&cdb[10]);
4678         break;
4679     default:
4680         return false;
4681     }
4682 
4683     return block_cnt == 0;
4684 }
4685 
4686 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4687 {
4688     int is_write = 0;
4689     u32 block;
4690     u32 block_cnt;
4691 
4692     /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4693     switch (cdb[0]) {
4694     case WRITE_6:
4695     case WRITE_12:
4696         is_write = 1;
4697         fallthrough;
4698     case READ_6:
4699     case READ_12:
4700         if (*cdb_len == 6) {
4701             block = (((cdb[1] & 0x1F) << 16) |
4702                 (cdb[2] << 8) |
4703                 cdb[3]);
4704             block_cnt = cdb[4];
4705             if (block_cnt == 0)
4706                 block_cnt = 256;
4707         } else {
4708             BUG_ON(*cdb_len != 12);
4709             block = get_unaligned_be32(&cdb[2]);
4710             block_cnt = get_unaligned_be32(&cdb[6]);
4711         }
4712         if (block_cnt > 0xffff)
4713             return IO_ACCEL_INELIGIBLE;
4714 
4715         cdb[0] = is_write ? WRITE_10 : READ_10;
4716         cdb[1] = 0;
4717         cdb[2] = (u8) (block >> 24);
4718         cdb[3] = (u8) (block >> 16);
4719         cdb[4] = (u8) (block >> 8);
4720         cdb[5] = (u8) (block);
4721         cdb[6] = 0;
4722         cdb[7] = (u8) (block_cnt >> 8);
4723         cdb[8] = (u8) (block_cnt);
4724         cdb[9] = 0;
4725         *cdb_len = 10;
4726         break;
4727     }
4728     return 0;
4729 }
4730 
4731 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4732     struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4733     u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4734 {
4735     struct scsi_cmnd *cmd = c->scsi_cmd;
4736     struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4737     unsigned int len;
4738     unsigned int total_len = 0;
4739     struct scatterlist *sg;
4740     u64 addr64;
4741     int use_sg, i;
4742     struct SGDescriptor *curr_sg;
4743     u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4744 
4745     /* TODO: implement chaining support */
4746     if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4747         atomic_dec(&phys_disk->ioaccel_cmds_out);
4748         return IO_ACCEL_INELIGIBLE;
4749     }
4750 
4751     BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4752 
4753     if (is_zero_length_transfer(cdb)) {
4754         warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4755         atomic_dec(&phys_disk->ioaccel_cmds_out);
4756         return IO_ACCEL_INELIGIBLE;
4757     }
4758 
4759     if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4760         atomic_dec(&phys_disk->ioaccel_cmds_out);
4761         return IO_ACCEL_INELIGIBLE;
4762     }
4763 
4764     c->cmd_type = CMD_IOACCEL1;
4765 
4766     /* Adjust the DMA address to point to the accelerated command buffer */
4767     c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4768                 (c->cmdindex * sizeof(*cp));
4769     BUG_ON(c->busaddr & 0x0000007F);
4770 
4771     use_sg = scsi_dma_map(cmd);
4772     if (use_sg < 0) {
4773         atomic_dec(&phys_disk->ioaccel_cmds_out);
4774         return use_sg;
4775     }
4776 
4777     if (use_sg) {
4778         curr_sg = cp->SG;
4779         scsi_for_each_sg(cmd, sg, use_sg, i) {
4780             addr64 = (u64) sg_dma_address(sg);
4781             len  = sg_dma_len(sg);
4782             total_len += len;
4783             curr_sg->Addr = cpu_to_le64(addr64);
4784             curr_sg->Len = cpu_to_le32(len);
4785             curr_sg->Ext = cpu_to_le32(0);
4786             curr_sg++;
4787         }
4788         (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4789 
4790         switch (cmd->sc_data_direction) {
4791         case DMA_TO_DEVICE:
4792             control |= IOACCEL1_CONTROL_DATA_OUT;
4793             break;
4794         case DMA_FROM_DEVICE:
4795             control |= IOACCEL1_CONTROL_DATA_IN;
4796             break;
4797         case DMA_NONE:
4798             control |= IOACCEL1_CONTROL_NODATAXFER;
4799             break;
4800         default:
4801             dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4802             cmd->sc_data_direction);
4803             BUG();
4804             break;
4805         }
4806     } else {
4807         control |= IOACCEL1_CONTROL_NODATAXFER;
4808     }
4809 
4810     c->Header.SGList = use_sg;
4811     /* Fill out the command structure to submit */
4812     cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4813     cp->transfer_len = cpu_to_le32(total_len);
4814     cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4815             (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4816     cp->control = cpu_to_le32(control);
4817     memcpy(cp->CDB, cdb, cdb_len);
4818     memcpy(cp->CISS_LUN, scsi3addr, 8);
4819     /* Tag was already set at init time. */
4820     enqueue_cmd_and_start_io(h, c);
4821     return 0;
4822 }
4823 
4824 /*
4825  * Queue a command directly to a device behind the controller using the
4826  * I/O accelerator path.
4827  */
4828 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4829     struct CommandList *c)
4830 {
4831     struct scsi_cmnd *cmd = c->scsi_cmd;
4832     struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4833 
4834     if (!dev)
4835         return -1;
4836 
4837     c->phys_disk = dev;
4838 
4839     if (dev->in_reset)
4840         return -1;
4841 
4842     return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4843         cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4844 }
4845 
4846 /*
4847  * Set encryption parameters for the ioaccel2 request
4848  */
4849 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4850     struct CommandList *c, struct io_accel2_cmd *cp)
4851 {
4852     struct scsi_cmnd *cmd = c->scsi_cmd;
4853     struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4854     struct raid_map_data *map = &dev->raid_map;
4855     u64 first_block;
4856 
4857     /* Are we doing encryption on this device */
4858     if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4859         return;
4860     /* Set the data encryption key index. */
4861     cp->dekindex = map->dekindex;
4862 
4863     /* Set the encryption enable flag, encoded into direction field. */
4864     cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4865 
4866     /* Set encryption tweak values based on logical block address
4867      * If block size is 512, tweak value is LBA.
4868      * For other block sizes, tweak is (LBA * block size)/ 512)
4869      */
4870     switch (cmd->cmnd[0]) {
4871     /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4872     case READ_6:
4873     case WRITE_6:
4874         first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4875                 (cmd->cmnd[2] << 8) |
4876                 cmd->cmnd[3]);
4877         break;
4878     case WRITE_10:
4879     case READ_10:
4880     /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4881     case WRITE_12:
4882     case READ_12:
4883         first_block = get_unaligned_be32(&cmd->cmnd[2]);
4884         break;
4885     case WRITE_16:
4886     case READ_16:
4887         first_block = get_unaligned_be64(&cmd->cmnd[2]);
4888         break;
4889     default:
4890         dev_err(&h->pdev->dev,
4891             "ERROR: %s: size (0x%x) not supported for encryption\n",
4892             __func__, cmd->cmnd[0]);
4893         BUG();
4894         break;
4895     }
4896 
4897     if (le32_to_cpu(map->volume_blk_size) != 512)
4898         first_block = first_block *
4899                 le32_to_cpu(map->volume_blk_size)/512;
4900 
4901     cp->tweak_lower = cpu_to_le32(first_block);
4902     cp->tweak_upper = cpu_to_le32(first_block >> 32);
4903 }
4904 
4905 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4906     struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4907     u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4908 {
4909     struct scsi_cmnd *cmd = c->scsi_cmd;
4910     struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4911     struct ioaccel2_sg_element *curr_sg;
4912     int use_sg, i;
4913     struct scatterlist *sg;
4914     u64 addr64;
4915     u32 len;
4916     u32 total_len = 0;
4917 
4918     if (!cmd->device)
4919         return -1;
4920 
4921     if (!cmd->device->hostdata)
4922         return -1;
4923 
4924     BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4925 
4926     if (is_zero_length_transfer(cdb)) {
4927         warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4928         atomic_dec(&phys_disk->ioaccel_cmds_out);
4929         return IO_ACCEL_INELIGIBLE;
4930     }
4931 
4932     if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4933         atomic_dec(&phys_disk->ioaccel_cmds_out);
4934         return IO_ACCEL_INELIGIBLE;
4935     }
4936 
4937     c->cmd_type = CMD_IOACCEL2;
4938     /* Adjust the DMA address to point to the accelerated command buffer */
4939     c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4940                 (c->cmdindex * sizeof(*cp));
4941     BUG_ON(c->busaddr & 0x0000007F);
4942 
4943     memset(cp, 0, sizeof(*cp));
4944     cp->IU_type = IOACCEL2_IU_TYPE;
4945 
4946     use_sg = scsi_dma_map(cmd);
4947     if (use_sg < 0) {
4948         atomic_dec(&phys_disk->ioaccel_cmds_out);
4949         return use_sg;
4950     }
4951 
4952     if (use_sg) {
4953         curr_sg = cp->sg;
4954         if (use_sg > h->ioaccel_maxsg) {
4955             addr64 = le64_to_cpu(
4956                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4957             curr_sg->address = cpu_to_le64(addr64);
4958             curr_sg->length = 0;
4959             curr_sg->reserved[0] = 0;
4960             curr_sg->reserved[1] = 0;
4961             curr_sg->reserved[2] = 0;
4962             curr_sg->chain_indicator = IOACCEL2_CHAIN;
4963 
4964             curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4965         }
4966         scsi_for_each_sg(cmd, sg, use_sg, i) {
4967             addr64 = (u64) sg_dma_address(sg);
4968             len  = sg_dma_len(sg);
4969             total_len += len;
4970             curr_sg->address = cpu_to_le64(addr64);
4971             curr_sg->length = cpu_to_le32(len);
4972             curr_sg->reserved[0] = 0;
4973             curr_sg->reserved[1] = 0;
4974             curr_sg->reserved[2] = 0;
4975             curr_sg->chain_indicator = 0;
4976             curr_sg++;
4977         }
4978 
4979         /*
4980          * Set the last s/g element bit
4981          */
4982         (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4983 
4984         switch (cmd->sc_data_direction) {
4985         case DMA_TO_DEVICE:
4986             cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4987             cp->direction |= IOACCEL2_DIR_DATA_OUT;
4988             break;
4989         case DMA_FROM_DEVICE:
4990             cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4991             cp->direction |= IOACCEL2_DIR_DATA_IN;
4992             break;
4993         case DMA_NONE:
4994             cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4995             cp->direction |= IOACCEL2_DIR_NO_DATA;
4996             break;
4997         default:
4998             dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4999                 cmd->sc_data_direction);
5000             BUG();
5001             break;
5002         }
5003     } else {
5004         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5005         cp->direction |= IOACCEL2_DIR_NO_DATA;
5006     }
5007 
5008     /* Set encryption parameters, if necessary */
5009     set_encrypt_ioaccel2(h, c, cp);
5010 
5011     cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5012     cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5013     memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5014 
5015     cp->data_len = cpu_to_le32(total_len);
5016     cp->err_ptr = cpu_to_le64(c->busaddr +
5017             offsetof(struct io_accel2_cmd, error_data));
5018     cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5019 
5020     /* fill in sg elements */
5021     if (use_sg > h->ioaccel_maxsg) {
5022         cp->sg_count = 1;
5023         cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5024         if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5025             atomic_dec(&phys_disk->ioaccel_cmds_out);
5026             scsi_dma_unmap(cmd);
5027             return -1;
5028         }
5029     } else
5030         cp->sg_count = (u8) use_sg;
5031 
5032     if (phys_disk->in_reset) {
5033         cmd->result = DID_RESET << 16;
5034         return -1;
5035     }
5036 
5037     enqueue_cmd_and_start_io(h, c);
5038     return 0;
5039 }
5040 
5041 /*
5042  * Queue a command to the correct I/O accelerator path.
5043  */
5044 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5045     struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5046     u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5047 {
5048     if (!c->scsi_cmd->device)
5049         return -1;
5050 
5051     if (!c->scsi_cmd->device->hostdata)
5052         return -1;
5053 
5054     if (phys_disk->in_reset)
5055         return -1;
5056 
5057     /* Try to honor the device's queue depth */
5058     if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5059                     phys_disk->queue_depth) {
5060         atomic_dec(&phys_disk->ioaccel_cmds_out);
5061         return IO_ACCEL_INELIGIBLE;
5062     }
5063     if (h->transMethod & CFGTBL_Trans_io_accel1)
5064         return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5065                         cdb, cdb_len, scsi3addr,
5066                         phys_disk);
5067     else
5068         return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5069                         cdb, cdb_len, scsi3addr,
5070                         phys_disk);
5071 }
5072 
5073 static void raid_map_helper(struct raid_map_data *map,
5074         int offload_to_mirror, u32 *map_index, u32 *current_group)
5075 {
5076     if (offload_to_mirror == 0)  {
5077         /* use physical disk in the first mirrored group. */
5078         *map_index %= le16_to_cpu(map->data_disks_per_row);
5079         return;
5080     }
5081     do {
5082         /* determine mirror group that *map_index indicates */
5083         *current_group = *map_index /
5084             le16_to_cpu(map->data_disks_per_row);
5085         if (offload_to_mirror == *current_group)
5086             continue;
5087         if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5088             /* select map index from next group */
5089             *map_index += le16_to_cpu(map->data_disks_per_row);
5090             (*current_group)++;
5091         } else {
5092             /* select map index from first group */
5093             *map_index %= le16_to_cpu(map->data_disks_per_row);
5094             *current_group = 0;
5095         }
5096     } while (offload_to_mirror != *current_group);
5097 }
5098 
5099 /*
5100  * Attempt to perform offload RAID mapping for a logical volume I/O.
5101  */
5102 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5103     struct CommandList *c)
5104 {
5105     struct scsi_cmnd *cmd = c->scsi_cmd;
5106     struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5107     struct raid_map_data *map = &dev->raid_map;
5108     struct raid_map_disk_data *dd = &map->data[0];
5109     int is_write = 0;
5110     u32 map_index;
5111     u64 first_block, last_block;
5112     u32 block_cnt;
5113     u32 blocks_per_row;
5114     u64 first_row, last_row;
5115     u32 first_row_offset, last_row_offset;
5116     u32 first_column, last_column;
5117     u64 r0_first_row, r0_last_row;
5118     u32 r5or6_blocks_per_row;
5119     u64 r5or6_first_row, r5or6_last_row;
5120     u32 r5or6_first_row_offset, r5or6_last_row_offset;
5121     u32 r5or6_first_column, r5or6_last_column;
5122     u32 total_disks_per_row;
5123     u32 stripesize;
5124     u32 first_group, last_group, current_group;
5125     u32 map_row;
5126     u32 disk_handle;
5127     u64 disk_block;
5128     u32 disk_block_cnt;
5129     u8 cdb[16];
5130     u8 cdb_len;
5131     u16 strip_size;
5132 #if BITS_PER_LONG == 32
5133     u64 tmpdiv;
5134 #endif
5135     int offload_to_mirror;
5136 
5137     if (!dev)
5138         return -1;
5139 
5140     if (dev->in_reset)
5141         return -1;
5142 
5143     /* check for valid opcode, get LBA and block count */
5144     switch (cmd->cmnd[0]) {
5145     case WRITE_6:
5146         is_write = 1;
5147         fallthrough;
5148     case READ_6:
5149         first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5150                 (cmd->cmnd[2] << 8) |
5151                 cmd->cmnd[3]);
5152         block_cnt = cmd->cmnd[4];
5153         if (block_cnt == 0)
5154             block_cnt = 256;
5155         break;
5156     case WRITE_10:
5157         is_write = 1;
5158         fallthrough;
5159     case READ_10:
5160         first_block =
5161             (((u64) cmd->cmnd[2]) << 24) |
5162             (((u64) cmd->cmnd[3]) << 16) |
5163             (((u64) cmd->cmnd[4]) << 8) |
5164             cmd->cmnd[5];
5165         block_cnt =
5166             (((u32) cmd->cmnd[7]) << 8) |
5167             cmd->cmnd[8];
5168         break;
5169     case WRITE_12:
5170         is_write = 1;
5171         fallthrough;
5172     case READ_12:
5173         first_block =
5174             (((u64) cmd->cmnd[2]) << 24) |
5175             (((u64) cmd->cmnd[3]) << 16) |
5176             (((u64) cmd->cmnd[4]) << 8) |
5177             cmd->cmnd[5];
5178         block_cnt =
5179             (((u32) cmd->cmnd[6]) << 24) |
5180             (((u32) cmd->cmnd[7]) << 16) |
5181             (((u32) cmd->cmnd[8]) << 8) |
5182         cmd->cmnd[9];
5183         break;
5184     case WRITE_16:
5185         is_write = 1;
5186         fallthrough;
5187     case READ_16:
5188         first_block =
5189             (((u64) cmd->cmnd[2]) << 56) |
5190             (((u64) cmd->cmnd[3]) << 48) |
5191             (((u64) cmd->cmnd[4]) << 40) |
5192             (((u64) cmd->cmnd[5]) << 32) |
5193             (((u64) cmd->cmnd[6]) << 24) |
5194             (((u64) cmd->cmnd[7]) << 16) |
5195             (((u64) cmd->cmnd[8]) << 8) |
5196             cmd->cmnd[9];
5197         block_cnt =
5198             (((u32) cmd->cmnd[10]) << 24) |
5199             (((u32) cmd->cmnd[11]) << 16) |
5200             (((u32) cmd->cmnd[12]) << 8) |
5201             cmd->cmnd[13];
5202         break;
5203     default:
5204         return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5205     }
5206     last_block = first_block + block_cnt - 1;
5207 
5208     /* check for write to non-RAID-0 */
5209     if (is_write && dev->raid_level != 0)
5210         return IO_ACCEL_INELIGIBLE;
5211 
5212     /* check for invalid block or wraparound */
5213     if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5214         last_block < first_block)
5215         return IO_ACCEL_INELIGIBLE;
5216 
5217     /* calculate stripe information for the request */
5218     blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5219                 le16_to_cpu(map->strip_size);
5220     strip_size = le16_to_cpu(map->strip_size);
5221 #if BITS_PER_LONG == 32
5222     tmpdiv = first_block;
5223     (void) do_div(tmpdiv, blocks_per_row);
5224     first_row = tmpdiv;
5225     tmpdiv = last_block;
5226     (void) do_div(tmpdiv, blocks_per_row);
5227     last_row = tmpdiv;
5228     first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5229     last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5230     tmpdiv = first_row_offset;
5231     (void) do_div(tmpdiv, strip_size);
5232     first_column = tmpdiv;
5233     tmpdiv = last_row_offset;
5234     (void) do_div(tmpdiv, strip_size);
5235     last_column = tmpdiv;
5236 #else
5237     first_row = first_block / blocks_per_row;
5238     last_row = last_block / blocks_per_row;
5239     first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5240     last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5241     first_column = first_row_offset / strip_size;
5242     last_column = last_row_offset / strip_size;
5243 #endif
5244 
5245     /* if this isn't a single row/column then give to the controller */
5246     if ((first_row != last_row) || (first_column != last_column))
5247         return IO_ACCEL_INELIGIBLE;
5248 
5249     /* proceeding with driver mapping */
5250     total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5251                 le16_to_cpu(map->metadata_disks_per_row);
5252     map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5253                 le16_to_cpu(map->row_cnt);
5254     map_index = (map_row * total_disks_per_row) + first_column;
5255 
5256     switch (dev->raid_level) {
5257     case HPSA_RAID_0:
5258         break; /* nothing special to do */
5259     case HPSA_RAID_1:
5260         /* Handles load balance across RAID 1 members.
5261          * (2-drive R1 and R10 with even # of drives.)
5262          * Appropriate for SSDs, not optimal for HDDs
5263          * Ensure we have the correct raid_map.
5264          */
5265         if (le16_to_cpu(map->layout_map_count) != 2) {
5266             hpsa_turn_off_ioaccel_for_device(dev);
5267             return IO_ACCEL_INELIGIBLE;
5268         }
5269         if (dev->offload_to_mirror)
5270             map_index += le16_to_cpu(map->data_disks_per_row);
5271         dev->offload_to_mirror = !dev->offload_to_mirror;
5272         break;
5273     case HPSA_RAID_ADM:
5274         /* Handles N-way mirrors  (R1-ADM)
5275          * and R10 with # of drives divisible by 3.)
5276          * Ensure we have the correct raid_map.
5277          */
5278         if (le16_to_cpu(map->layout_map_count) != 3) {
5279             hpsa_turn_off_ioaccel_for_device(dev);
5280             return IO_ACCEL_INELIGIBLE;
5281         }
5282 
5283         offload_to_mirror = dev->offload_to_mirror;
5284         raid_map_helper(map, offload_to_mirror,
5285                 &map_index, &current_group);
5286         /* set mirror group to use next time */
5287         offload_to_mirror =
5288             (offload_to_mirror >=
5289             le16_to_cpu(map->layout_map_count) - 1)
5290             ? 0 : offload_to_mirror + 1;
5291         dev->offload_to_mirror = offload_to_mirror;
5292         /* Avoid direct use of dev->offload_to_mirror within this
5293          * function since multiple threads might simultaneously
5294          * increment it beyond the range of dev->layout_map_count -1.
5295          */
5296         break;
5297     case HPSA_RAID_5:
5298     case HPSA_RAID_6:
5299         if (le16_to_cpu(map->layout_map_count) <= 1)
5300             break;
5301 
5302         /* Verify first and last block are in same RAID group */
5303         r5or6_blocks_per_row =
5304             le16_to_cpu(map->strip_size) *
5305             le16_to_cpu(map->data_disks_per_row);
5306         if (r5or6_blocks_per_row == 0) {
5307             hpsa_turn_off_ioaccel_for_device(dev);
5308             return IO_ACCEL_INELIGIBLE;
5309         }
5310         stripesize = r5or6_blocks_per_row *
5311             le16_to_cpu(map->layout_map_count);
5312 #if BITS_PER_LONG == 32
5313         tmpdiv = first_block;
5314         first_group = do_div(tmpdiv, stripesize);
5315         tmpdiv = first_group;
5316         (void) do_div(tmpdiv, r5or6_blocks_per_row);
5317         first_group = tmpdiv;
5318         tmpdiv = last_block;
5319         last_group = do_div(tmpdiv, stripesize);
5320         tmpdiv = last_group;
5321         (void) do_div(tmpdiv, r5or6_blocks_per_row);
5322         last_group = tmpdiv;
5323 #else
5324         first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5325         last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5326 #endif
5327         if (first_group != last_group)
5328             return IO_ACCEL_INELIGIBLE;
5329 
5330         /* Verify request is in a single row of RAID 5/6 */
5331 #if BITS_PER_LONG == 32
5332         tmpdiv = first_block;
5333         (void) do_div(tmpdiv, stripesize);
5334         first_row = r5or6_first_row = r0_first_row = tmpdiv;
5335         tmpdiv = last_block;
5336         (void) do_div(tmpdiv, stripesize);
5337         r5or6_last_row = r0_last_row = tmpdiv;
5338 #else
5339         first_row = r5or6_first_row = r0_first_row =
5340                         first_block / stripesize;
5341         r5or6_last_row = r0_last_row = last_block / stripesize;
5342 #endif
5343         if (r5or6_first_row != r5or6_last_row)
5344             return IO_ACCEL_INELIGIBLE;
5345 
5346 
5347         /* Verify request is in a single column */
5348 #if BITS_PER_LONG == 32
5349         tmpdiv = first_block;
5350         first_row_offset = do_div(tmpdiv, stripesize);
5351         tmpdiv = first_row_offset;
5352         first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5353         r5or6_first_row_offset = first_row_offset;
5354         tmpdiv = last_block;
5355         r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5356         tmpdiv = r5or6_last_row_offset;
5357         r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5358         tmpdiv = r5or6_first_row_offset;
5359         (void) do_div(tmpdiv, map->strip_size);
5360         first_column = r5or6_first_column = tmpdiv;
5361         tmpdiv = r5or6_last_row_offset;
5362         (void) do_div(tmpdiv, map->strip_size);
5363         r5or6_last_column = tmpdiv;
5364 #else
5365         first_row_offset = r5or6_first_row_offset =
5366             (u32)((first_block % stripesize) %
5367                         r5or6_blocks_per_row);
5368 
5369         r5or6_last_row_offset =
5370             (u32)((last_block % stripesize) %
5371                         r5or6_blocks_per_row);
5372 
5373         first_column = r5or6_first_column =
5374             r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5375         r5or6_last_column =
5376             r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5377 #endif
5378         if (r5or6_first_column != r5or6_last_column)
5379             return IO_ACCEL_INELIGIBLE;
5380 
5381         /* Request is eligible */
5382         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5383             le16_to_cpu(map->row_cnt);
5384 
5385         map_index = (first_group *
5386             (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5387             (map_row * total_disks_per_row) + first_column;
5388         break;
5389     default:
5390         return IO_ACCEL_INELIGIBLE;
5391     }
5392 
5393     if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5394         return IO_ACCEL_INELIGIBLE;
5395 
5396     c->phys_disk = dev->phys_disk[map_index];
5397     if (!c->phys_disk)
5398         return IO_ACCEL_INELIGIBLE;
5399 
5400     disk_handle = dd[map_index].ioaccel_handle;
5401     disk_block = le64_to_cpu(map->disk_starting_blk) +
5402             first_row * le16_to_cpu(map->strip_size) +
5403             (first_row_offset - first_column *
5404             le16_to_cpu(map->strip_size));
5405     disk_block_cnt = block_cnt;
5406 
5407     /* handle differing logical/physical block sizes */
5408     if (map->phys_blk_shift) {
5409         disk_block <<= map->phys_blk_shift;
5410         disk_block_cnt <<= map->phys_blk_shift;
5411     }
5412     BUG_ON(disk_block_cnt > 0xffff);
5413 
5414     /* build the new CDB for the physical disk I/O */
5415     if (disk_block > 0xffffffff) {
5416         cdb[0] = is_write ? WRITE_16 : READ_16;
5417         cdb[1] = 0;
5418         cdb[2] = (u8) (disk_block >> 56);
5419         cdb[3] = (u8) (disk_block >> 48);
5420         cdb[4] = (u8) (disk_block >> 40);
5421         cdb[5] = (u8) (disk_block >> 32);
5422         cdb[6] = (u8) (disk_block >> 24);
5423         cdb[7] = (u8) (disk_block >> 16);
5424         cdb[8] = (u8) (disk_block >> 8);
5425         cdb[9] = (u8) (disk_block);
5426         cdb[10] = (u8) (disk_block_cnt >> 24);
5427         cdb[11] = (u8) (disk_block_cnt >> 16);
5428         cdb[12] = (u8) (disk_block_cnt >> 8);
5429         cdb[13] = (u8) (disk_block_cnt);
5430         cdb[14] = 0;
5431         cdb[15] = 0;
5432         cdb_len = 16;
5433     } else {
5434         cdb[0] = is_write ? WRITE_10 : READ_10;
5435         cdb[1] = 0;
5436         cdb[2] = (u8) (disk_block >> 24);
5437         cdb[3] = (u8) (disk_block >> 16);
5438         cdb[4] = (u8) (disk_block >> 8);
5439         cdb[5] = (u8) (disk_block);
5440         cdb[6] = 0;
5441         cdb[7] = (u8) (disk_block_cnt >> 8);
5442         cdb[8] = (u8) (disk_block_cnt);
5443         cdb[9] = 0;
5444         cdb_len = 10;
5445     }
5446     return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5447                         dev->scsi3addr,
5448                         dev->phys_disk[map_index]);
5449 }
5450 
5451 /*
5452  * Submit commands down the "normal" RAID stack path
5453  * All callers to hpsa_ciss_submit must check lockup_detected
5454  * beforehand, before (opt.) and after calling cmd_alloc
5455  */
5456 static int hpsa_ciss_submit(struct ctlr_info *h,
5457     struct CommandList *c, struct scsi_cmnd *cmd,
5458     struct hpsa_scsi_dev_t *dev)
5459 {
5460     cmd->host_scribble = (unsigned char *) c;
5461     c->cmd_type = CMD_SCSI;
5462     c->scsi_cmd = cmd;
5463     c->Header.ReplyQueue = 0;  /* unused in simple mode */
5464     memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5465     c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5466 
5467     /* Fill in the request block... */
5468 
5469     c->Request.Timeout = 0;
5470     BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5471     c->Request.CDBLen = cmd->cmd_len;
5472     memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5473     switch (cmd->sc_data_direction) {
5474     case DMA_TO_DEVICE:
5475         c->Request.type_attr_dir =
5476             TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5477         break;
5478     case DMA_FROM_DEVICE:
5479         c->Request.type_attr_dir =
5480             TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5481         break;
5482     case DMA_NONE:
5483         c->Request.type_attr_dir =
5484             TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5485         break;
5486     case DMA_BIDIRECTIONAL:
5487         /* This can happen if a buggy application does a scsi passthru
5488          * and sets both inlen and outlen to non-zero. ( see
5489          * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5490          */
5491 
5492         c->Request.type_attr_dir =
5493             TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5494         /* This is technically wrong, and hpsa controllers should
5495          * reject it with CMD_INVALID, which is the most correct
5496          * response, but non-fibre backends appear to let it
5497          * slide by, and give the same results as if this field
5498          * were set correctly.  Either way is acceptable for
5499          * our purposes here.
5500          */
5501 
5502         break;
5503 
5504     default:
5505         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5506             cmd->sc_data_direction);
5507         BUG();
5508         break;
5509     }
5510 
5511     if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5512         hpsa_cmd_resolve_and_free(h, c);
5513         return SCSI_MLQUEUE_HOST_BUSY;
5514     }
5515 
5516     if (dev->in_reset) {
5517         hpsa_cmd_resolve_and_free(h, c);
5518         return SCSI_MLQUEUE_HOST_BUSY;
5519     }
5520 
5521     c->device = dev;
5522 
5523     enqueue_cmd_and_start_io(h, c);
5524     /* the cmd'll come back via intr handler in complete_scsi_command()  */
5525     return 0;
5526 }
5527 
5528 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5529                 struct CommandList *c)
5530 {
5531     dma_addr_t cmd_dma_handle, err_dma_handle;
5532 
5533     /* Zero out all of commandlist except the last field, refcount */
5534     memset(c, 0, offsetof(struct CommandList, refcount));
5535     c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5536     cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5537     c->err_info = h->errinfo_pool + index;
5538     memset(c->err_info, 0, sizeof(*c->err_info));
5539     err_dma_handle = h->errinfo_pool_dhandle
5540         + index * sizeof(*c->err_info);
5541     c->cmdindex = index;
5542     c->busaddr = (u32) cmd_dma_handle;
5543     c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5544     c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5545     c->h = h;
5546     c->scsi_cmd = SCSI_CMD_IDLE;
5547 }
5548 
5549 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5550 {
5551     int i;
5552 
5553     for (i = 0; i < h->nr_cmds; i++) {
5554         struct CommandList *c = h->cmd_pool + i;
5555 
5556         hpsa_cmd_init(h, i, c);
5557         atomic_set(&c->refcount, 0);
5558     }
5559 }
5560 
5561 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5562                 struct CommandList *c)
5563 {
5564     dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5565 
5566     BUG_ON(c->cmdindex != index);
5567 
5568     memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5569     memset(c->err_info, 0, sizeof(*c->err_info));
5570     c->busaddr = (u32) cmd_dma_handle;
5571 }
5572 
5573 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5574         struct CommandList *c, struct scsi_cmnd *cmd,
5575         bool retry)
5576 {
5577     struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5578     int rc = IO_ACCEL_INELIGIBLE;
5579 
5580     if (!dev)
5581         return SCSI_MLQUEUE_HOST_BUSY;
5582 
5583     if (dev->in_reset)
5584         return SCSI_MLQUEUE_HOST_BUSY;
5585 
5586     if (hpsa_simple_mode)
5587         return IO_ACCEL_INELIGIBLE;
5588 
5589     cmd->host_scribble = (unsigned char *) c;
5590 
5591     if (dev->offload_enabled) {
5592         hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5593         c->cmd_type = CMD_SCSI;
5594         c->scsi_cmd = cmd;
5595         c->device = dev;
5596         if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5597             c->retry_pending = true;
5598         rc = hpsa_scsi_ioaccel_raid_map(h, c);
5599         if (rc < 0)     /* scsi_dma_map failed. */
5600             rc = SCSI_MLQUEUE_HOST_BUSY;
5601     } else if (dev->hba_ioaccel_enabled) {
5602         hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5603         c->cmd_type = CMD_SCSI;
5604         c->scsi_cmd = cmd;
5605         c->device = dev;
5606         if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5607             c->retry_pending = true;
5608         rc = hpsa_scsi_ioaccel_direct_map(h, c);
5609         if (rc < 0)     /* scsi_dma_map failed. */
5610             rc = SCSI_MLQUEUE_HOST_BUSY;
5611     }
5612     return rc;
5613 }
5614 
5615 static void hpsa_command_resubmit_worker(struct work_struct *work)
5616 {
5617     struct scsi_cmnd *cmd;
5618     struct hpsa_scsi_dev_t *dev;
5619     struct CommandList *c = container_of(work, struct CommandList, work);
5620 
5621     cmd = c->scsi_cmd;
5622     dev = cmd->device->hostdata;
5623     if (!dev) {
5624         cmd->result = DID_NO_CONNECT << 16;
5625         return hpsa_cmd_free_and_done(c->h, c, cmd);
5626     }
5627 
5628     if (dev->in_reset) {
5629         cmd->result = DID_RESET << 16;
5630         return hpsa_cmd_free_and_done(c->h, c, cmd);
5631     }
5632 
5633     if (c->cmd_type == CMD_IOACCEL2) {
5634         struct ctlr_info *h = c->h;
5635         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5636         int rc;
5637 
5638         if (c2->error_data.serv_response ==
5639                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5640             /* Resubmit with the retry_pending flag set. */
5641             rc = hpsa_ioaccel_submit(h, c, cmd, true);
5642             if (rc == 0)
5643                 return;
5644             if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5645                 /*
5646                  * If we get here, it means dma mapping failed.
5647                  * Try again via scsi mid layer, which will
5648                  * then get SCSI_MLQUEUE_HOST_BUSY.
5649                  */
5650                 cmd->result = DID_IMM_RETRY << 16;
5651                 return hpsa_cmd_free_and_done(h, c, cmd);
5652             }
5653             /* else, fall thru and resubmit down CISS path */
5654         }
5655     }
5656     hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5657     /*
5658      * Here we have not come in though queue_command, so we
5659      * can set the retry_pending flag to true for a driver initiated
5660      * retry attempt (I.E. not a SML retry).
5661      * I.E. We are submitting a driver initiated retry.
5662      * Note: hpsa_ciss_submit does not zero out the command fields like
5663      *       ioaccel submit does.
5664      */
5665     c->retry_pending = true;
5666     if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5667         /*
5668          * If we get here, it means dma mapping failed. Try
5669          * again via scsi mid layer, which will then get
5670          * SCSI_MLQUEUE_HOST_BUSY.
5671          *
5672          * hpsa_ciss_submit will have already freed c
5673          * if it encountered a dma mapping failure.
5674          */
5675         cmd->result = DID_IMM_RETRY << 16;
5676         scsi_done(cmd);
5677     }
5678 }
5679 
5680 /* Running in struct Scsi_Host->host_lock less mode */
5681 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5682 {
5683     struct ctlr_info *h;
5684     struct hpsa_scsi_dev_t *dev;
5685     struct CommandList *c;
5686     int rc = 0;
5687 
5688     /* Get the ptr to our adapter structure out of cmd->host. */
5689     h = sdev_to_hba(cmd->device);
5690 
5691     BUG_ON(scsi_cmd_to_rq(cmd)->tag < 0);
5692 
5693     dev = cmd->device->hostdata;
5694     if (!dev) {
5695         cmd->result = DID_NO_CONNECT << 16;
5696         scsi_done(cmd);
5697         return 0;
5698     }
5699 
5700     if (dev->removed) {
5701         cmd->result = DID_NO_CONNECT << 16;
5702         scsi_done(cmd);
5703         return 0;
5704     }
5705 
5706     if (unlikely(lockup_detected(h))) {
5707         cmd->result = DID_NO_CONNECT << 16;
5708         scsi_done(cmd);
5709         return 0;
5710     }
5711 
5712     if (dev->in_reset)
5713         return SCSI_MLQUEUE_DEVICE_BUSY;
5714 
5715     c = cmd_tagged_alloc(h, cmd);
5716     if (c == NULL)
5717         return SCSI_MLQUEUE_DEVICE_BUSY;
5718 
5719     /*
5720      * This is necessary because the SML doesn't zero out this field during
5721      * error recovery.
5722      */
5723     cmd->result = 0;
5724 
5725     /*
5726      * Call alternate submit routine for I/O accelerated commands.
5727      * Retries always go down the normal I/O path.
5728      * Note: If cmd->retries is non-zero, then this is a SML
5729      *       initiated retry and not a driver initiated retry.
5730      *       This command has been obtained from cmd_tagged_alloc
5731      *       and is therefore a brand-new command.
5732      */
5733     if (likely(cmd->retries == 0 &&
5734             !blk_rq_is_passthrough(scsi_cmd_to_rq(cmd)) &&
5735             h->acciopath_status)) {
5736         /* Submit with the retry_pending flag unset. */
5737         rc = hpsa_ioaccel_submit(h, c, cmd, false);
5738         if (rc == 0)
5739             return 0;
5740         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5741             hpsa_cmd_resolve_and_free(h, c);
5742             return SCSI_MLQUEUE_HOST_BUSY;
5743         }
5744     }
5745     return hpsa_ciss_submit(h, c, cmd, dev);
5746 }
5747 
5748 static void hpsa_scan_complete(struct ctlr_info *h)
5749 {
5750     unsigned long flags;
5751 
5752     spin_lock_irqsave(&h->scan_lock, flags);
5753     h->scan_finished = 1;
5754     wake_up(&h->scan_wait_queue);
5755     spin_unlock_irqrestore(&h->scan_lock, flags);
5756 }
5757 
5758 static void hpsa_scan_start(struct Scsi_Host *sh)
5759 {
5760     struct ctlr_info *h = shost_to_hba(sh);
5761     unsigned long flags;
5762 
5763     /*
5764      * Don't let rescans be initiated on a controller known to be locked
5765      * up.  If the controller locks up *during* a rescan, that thread is
5766      * probably hosed, but at least we can prevent new rescan threads from
5767      * piling up on a locked up controller.
5768      */
5769     if (unlikely(lockup_detected(h)))
5770         return hpsa_scan_complete(h);
5771 
5772     /*
5773      * If a scan is already waiting to run, no need to add another
5774      */
5775     spin_lock_irqsave(&h->scan_lock, flags);
5776     if (h->scan_waiting) {
5777         spin_unlock_irqrestore(&h->scan_lock, flags);
5778         return;
5779     }
5780 
5781     spin_unlock_irqrestore(&h->scan_lock, flags);
5782 
5783     /* wait until any scan already in progress is finished. */
5784     while (1) {
5785         spin_lock_irqsave(&h->scan_lock, flags);
5786         if (h->scan_finished)
5787             break;
5788         h->scan_waiting = 1;
5789         spin_unlock_irqrestore(&h->scan_lock, flags);
5790         wait_event(h->scan_wait_queue, h->scan_finished);
5791         /* Note: We don't need to worry about a race between this
5792          * thread and driver unload because the midlayer will
5793          * have incremented the reference count, so unload won't
5794          * happen if we're in here.
5795          */
5796     }
5797     h->scan_finished = 0; /* mark scan as in progress */
5798     h->scan_waiting = 0;
5799     spin_unlock_irqrestore(&h->scan_lock, flags);
5800 
5801     if (unlikely(lockup_detected(h)))
5802         return hpsa_scan_complete(h);
5803 
5804     /*
5805      * Do the scan after a reset completion
5806      */
5807     spin_lock_irqsave(&h->reset_lock, flags);
5808     if (h->reset_in_progress) {
5809         h->drv_req_rescan = 1;
5810         spin_unlock_irqrestore(&h->reset_lock, flags);
5811         hpsa_scan_complete(h);
5812         return;
5813     }
5814     spin_unlock_irqrestore(&h->reset_lock, flags);
5815 
5816     hpsa_update_scsi_devices(h);
5817 
5818     hpsa_scan_complete(h);
5819 }
5820 
5821 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5822 {
5823     struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5824 
5825     if (!logical_drive)
5826         return -ENODEV;
5827 
5828     if (qdepth < 1)
5829         qdepth = 1;
5830     else if (qdepth > logical_drive->queue_depth)
5831         qdepth = logical_drive->queue_depth;
5832 
5833     return scsi_change_queue_depth(sdev, qdepth);
5834 }
5835 
5836 static int hpsa_scan_finished(struct Scsi_Host *sh,
5837     unsigned long elapsed_time)
5838 {
5839     struct ctlr_info *h = shost_to_hba(sh);
5840     unsigned long flags;
5841     int finished;
5842 
5843     spin_lock_irqsave(&h->scan_lock, flags);
5844     finished = h->scan_finished;
5845     spin_unlock_irqrestore(&h->scan_lock, flags);
5846     return finished;
5847 }
5848 
5849 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5850 {
5851     struct Scsi_Host *sh;
5852 
5853     sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5854     if (sh == NULL) {
5855         dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5856         return -ENOMEM;
5857     }
5858 
5859     sh->io_port = 0;
5860     sh->n_io_port = 0;
5861     sh->this_id = -1;
5862     sh->max_channel = 3;
5863     sh->max_cmd_len = MAX_COMMAND_SIZE;
5864     sh->max_lun = HPSA_MAX_LUN;
5865     sh->max_id = HPSA_MAX_LUN;
5866     sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5867     sh->cmd_per_lun = sh->can_queue;
5868     sh->sg_tablesize = h->maxsgentries;
5869     sh->transportt = hpsa_sas_transport_template;
5870     sh->hostdata[0] = (unsigned long) h;
5871     sh->irq = pci_irq_vector(h->pdev, 0);
5872     sh->unique_id = sh->irq;
5873 
5874     h->scsi_host = sh;
5875     return 0;
5876 }
5877 
5878 static int hpsa_scsi_add_host(struct ctlr_info *h)
5879 {
5880     int rv;
5881 
5882     rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5883     if (rv) {
5884         dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5885         return rv;
5886     }
5887     scsi_scan_host(h->scsi_host);
5888     return 0;
5889 }
5890 
5891 /*
5892  * The block layer has already gone to the trouble of picking out a unique,
5893  * small-integer tag for this request.  We use an offset from that value as
5894  * an index to select our command block.  (The offset allows us to reserve the
5895  * low-numbered entries for our own uses.)
5896  */
5897 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5898 {
5899     int idx = scsi_cmd_to_rq(scmd)->tag;
5900 
5901     if (idx < 0)
5902         return idx;
5903 
5904     /* Offset to leave space for internal cmds. */
5905     return idx += HPSA_NRESERVED_CMDS;
5906 }
5907 
5908 /*
5909  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5910  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5911  */
5912 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5913                 struct CommandList *c, unsigned char lunaddr[],
5914                 int reply_queue)
5915 {
5916     int rc;
5917 
5918     /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5919     (void) fill_cmd(c, TEST_UNIT_READY, h,
5920             NULL, 0, 0, lunaddr, TYPE_CMD);
5921     rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5922     if (rc)
5923         return rc;
5924     /* no unmap needed here because no data xfer. */
5925 
5926     /* Check if the unit is already ready. */
5927     if (c->err_info->CommandStatus == CMD_SUCCESS)
5928         return 0;
5929 
5930     /*
5931      * The first command sent after reset will receive "unit attention" to
5932      * indicate that the LUN has been reset...this is actually what we're
5933      * looking for (but, success is good too).
5934      */
5935     if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5936         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5937             (c->err_info->SenseInfo[2] == NO_SENSE ||
5938              c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5939         return 0;
5940 
5941     return 1;
5942 }
5943 
5944 /*
5945  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5946  * returns zero when the unit is ready, and non-zero when giving up.
5947  */
5948 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5949                 struct CommandList *c,
5950                 unsigned char lunaddr[], int reply_queue)
5951 {
5952     int rc;
5953     int count = 0;
5954     int waittime = 1; /* seconds */
5955 
5956     /* Send test unit ready until device ready, or give up. */
5957     for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5958 
5959         /*
5960          * Wait for a bit.  do this first, because if we send
5961          * the TUR right away, the reset will just abort it.
5962          */
5963         msleep(1000 * waittime);
5964 
5965         rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5966         if (!rc)
5967             break;
5968 
5969         /* Increase wait time with each try, up to a point. */
5970         if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5971             waittime *= 2;
5972 
5973         dev_warn(&h->pdev->dev,
5974              "waiting %d secs for device to become ready.\n",
5975              waittime);
5976     }
5977 
5978     return rc;
5979 }
5980 
5981 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5982                        unsigned char lunaddr[],
5983                        int reply_queue)
5984 {
5985     int first_queue;
5986     int last_queue;
5987     int rq;
5988     int rc = 0;
5989     struct CommandList *c;
5990 
5991     c = cmd_alloc(h);
5992 
5993     /*
5994      * If no specific reply queue was requested, then send the TUR
5995      * repeatedly, requesting a reply on each reply queue; otherwise execute
5996      * the loop exactly once using only the specified queue.
5997      */
5998     if (reply_queue == DEFAULT_REPLY_QUEUE) {
5999         first_queue = 0;
6000         last_queue = h->nreply_queues - 1;
6001     } else {
6002         first_queue = reply_queue;
6003         last_queue = reply_queue;
6004     }
6005 
6006     for (rq = first_queue; rq <= last_queue; rq++) {
6007         rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
6008         if (rc)
6009             break;
6010     }
6011 
6012     if (rc)
6013         dev_warn(&h->pdev->dev, "giving up on device.\n");
6014     else
6015         dev_warn(&h->pdev->dev, "device is ready.\n");
6016 
6017     cmd_free(h, c);
6018     return rc;
6019 }
6020 
6021 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6022  * complaining.  Doing a host- or bus-reset can't do anything good here.
6023  */
6024 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6025 {
6026     int rc = SUCCESS;
6027     int i;
6028     struct ctlr_info *h;
6029     struct hpsa_scsi_dev_t *dev = NULL;
6030     u8 reset_type;
6031     char msg[48];
6032     unsigned long flags;
6033 
6034     /* find the controller to which the command to be aborted was sent */
6035     h = sdev_to_hba(scsicmd->device);
6036     if (h == NULL) /* paranoia */
6037         return FAILED;
6038 
6039     spin_lock_irqsave(&h->reset_lock, flags);
6040     h->reset_in_progress = 1;
6041     spin_unlock_irqrestore(&h->reset_lock, flags);
6042 
6043     if (lockup_detected(h)) {
6044         rc = FAILED;
6045         goto return_reset_status;
6046     }
6047 
6048     dev = scsicmd->device->hostdata;
6049     if (!dev) {
6050         dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6051         rc = FAILED;
6052         goto return_reset_status;
6053     }
6054 
6055     if (dev->devtype == TYPE_ENCLOSURE) {
6056         rc = SUCCESS;
6057         goto return_reset_status;
6058     }
6059 
6060     /* if controller locked up, we can guarantee command won't complete */
6061     if (lockup_detected(h)) {
6062         snprintf(msg, sizeof(msg),
6063              "cmd %d RESET FAILED, lockup detected",
6064              hpsa_get_cmd_index(scsicmd));
6065         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6066         rc = FAILED;
6067         goto return_reset_status;
6068     }
6069 
6070     /* this reset request might be the result of a lockup; check */
6071     if (detect_controller_lockup(h)) {
6072         snprintf(msg, sizeof(msg),
6073              "cmd %d RESET FAILED, new lockup detected",
6074              hpsa_get_cmd_index(scsicmd));
6075         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6076         rc = FAILED;
6077         goto return_reset_status;
6078     }
6079 
6080     /* Do not attempt on controller */
6081     if (is_hba_lunid(dev->scsi3addr)) {
6082         rc = SUCCESS;
6083         goto return_reset_status;
6084     }
6085 
6086     if (is_logical_dev_addr_mode(dev->scsi3addr))
6087         reset_type = HPSA_DEVICE_RESET_MSG;
6088     else
6089         reset_type = HPSA_PHYS_TARGET_RESET;
6090 
6091     sprintf(msg, "resetting %s",
6092         reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6093     hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6094 
6095     /*
6096      * wait to see if any commands will complete before sending reset
6097      */
6098     dev->in_reset = true; /* block any new cmds from OS for this device */
6099     for (i = 0; i < 10; i++) {
6100         if (atomic_read(&dev->commands_outstanding) > 0)
6101             msleep(1000);
6102         else
6103             break;
6104     }
6105 
6106     /* send a reset to the SCSI LUN which the command was sent to */
6107     rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6108     if (rc == 0)
6109         rc = SUCCESS;
6110     else
6111         rc = FAILED;
6112 
6113     sprintf(msg, "reset %s %s",
6114         reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6115         rc == SUCCESS ? "completed successfully" : "failed");
6116     hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6117 
6118 return_reset_status:
6119     spin_lock_irqsave(&h->reset_lock, flags);
6120     h->reset_in_progress = 0;
6121     if (dev)
6122         dev->in_reset = false;
6123     spin_unlock_irqrestore(&h->reset_lock, flags);
6124     return rc;
6125 }
6126 
6127 /*
6128  * For operations with an associated SCSI command, a command block is allocated
6129  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6130  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6131  * the complement, although cmd_free() may be called instead.
6132  * This function is only called for new requests from queue_command.
6133  */
6134 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6135                         struct scsi_cmnd *scmd)
6136 {
6137     int idx = hpsa_get_cmd_index(scmd);
6138     struct CommandList *c = h->cmd_pool + idx;
6139 
6140     if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6141         dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6142             idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6143         /* The index value comes from the block layer, so if it's out of
6144          * bounds, it's probably not our bug.
6145          */
6146         BUG();
6147     }
6148 
6149     if (unlikely(!hpsa_is_cmd_idle(c))) {
6150         /*
6151          * We expect that the SCSI layer will hand us a unique tag
6152          * value.  Thus, there should never be a collision here between
6153          * two requests...because if the selected command isn't idle
6154          * then someone is going to be very disappointed.
6155          */
6156         if (idx != h->last_collision_tag) { /* Print once per tag */
6157             dev_warn(&h->pdev->dev,
6158                 "%s: tag collision (tag=%d)\n", __func__, idx);
6159             if (scmd)
6160                 scsi_print_command(scmd);
6161             h->last_collision_tag = idx;
6162         }
6163         return NULL;
6164     }
6165 
6166     atomic_inc(&c->refcount);
6167     hpsa_cmd_partial_init(h, idx, c);
6168 
6169     /*
6170      * This is a new command obtained from queue_command so
6171      * there have not been any driver initiated retry attempts.
6172      */
6173     c->retry_pending = false;
6174 
6175     return c;
6176 }
6177 
6178 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6179 {
6180     /*
6181      * Release our reference to the block.  We don't need to do anything
6182      * else to free it, because it is accessed by index.
6183      */
6184     (void)atomic_dec(&c->refcount);
6185 }
6186 
6187 /*
6188  * For operations that cannot sleep, a command block is allocated at init,
6189  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6190  * which ones are free or in use.  Lock must be held when calling this.
6191  * cmd_free() is the complement.
6192  * This function never gives up and returns NULL.  If it hangs,
6193  * another thread must call cmd_free() to free some tags.
6194  */
6195 
6196 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6197 {
6198     struct CommandList *c;
6199     int refcount, i;
6200     int offset = 0;
6201 
6202     /*
6203      * There is some *extremely* small but non-zero chance that that
6204      * multiple threads could get in here, and one thread could
6205      * be scanning through the list of bits looking for a free
6206      * one, but the free ones are always behind him, and other
6207      * threads sneak in behind him and eat them before he can
6208      * get to them, so that while there is always a free one, a
6209      * very unlucky thread might be starved anyway, never able to
6210      * beat the other threads.  In reality, this happens so
6211      * infrequently as to be indistinguishable from never.
6212      *
6213      * Note that we start allocating commands before the SCSI host structure
6214      * is initialized.  Since the search starts at bit zero, this
6215      * all works, since we have at least one command structure available;
6216      * however, it means that the structures with the low indexes have to be
6217      * reserved for driver-initiated requests, while requests from the block
6218      * layer will use the higher indexes.
6219      */
6220 
6221     for (;;) {
6222         i = find_next_zero_bit(h->cmd_pool_bits,
6223                     HPSA_NRESERVED_CMDS,
6224                     offset);
6225         if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6226             offset = 0;
6227             continue;
6228         }
6229         c = h->cmd_pool + i;
6230         refcount = atomic_inc_return(&c->refcount);
6231         if (unlikely(refcount > 1)) {
6232             cmd_free(h, c); /* already in use */
6233             offset = (i + 1) % HPSA_NRESERVED_CMDS;
6234             continue;
6235         }
6236         set_bit(i & (BITS_PER_LONG - 1),
6237             h->cmd_pool_bits + (i / BITS_PER_LONG));
6238         break; /* it's ours now. */
6239     }
6240     hpsa_cmd_partial_init(h, i, c);
6241     c->device = NULL;
6242 
6243     /*
6244      * cmd_alloc is for "internal" commands and they are never
6245      * retried.
6246      */
6247     c->retry_pending = false;
6248 
6249     return c;
6250 }
6251 
6252 /*
6253  * This is the complementary operation to cmd_alloc().  Note, however, in some
6254  * corner cases it may also be used to free blocks allocated by
6255  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6256  * the clear-bit is harmless.
6257  */
6258 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6259 {
6260     if (atomic_dec_and_test(&c->refcount)) {
6261         int i;
6262 
6263         i = c - h->cmd_pool;
6264         clear_bit(i & (BITS_PER_LONG - 1),
6265               h->cmd_pool_bits + (i / BITS_PER_LONG));
6266     }
6267 }
6268 
6269 #ifdef CONFIG_COMPAT
6270 
6271 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6272     void __user *arg)
6273 {
6274     struct ctlr_info *h = sdev_to_hba(dev);
6275     IOCTL32_Command_struct __user *arg32 = arg;
6276     IOCTL_Command_struct arg64;
6277     int err;
6278     u32 cp;
6279 
6280     if (!arg)
6281         return -EINVAL;
6282 
6283     memset(&arg64, 0, sizeof(arg64));
6284     if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6285         return -EFAULT;
6286     if (get_user(cp, &arg32->buf))
6287         return -EFAULT;
6288     arg64.buf = compat_ptr(cp);
6289 
6290     if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6291         return -EAGAIN;
6292     err = hpsa_passthru_ioctl(h, &arg64);
6293     atomic_inc(&h->passthru_cmds_avail);
6294     if (err)
6295         return err;
6296     if (copy_to_user(&arg32->error_info, &arg64.error_info,
6297              sizeof(arg32->error_info)))
6298         return -EFAULT;
6299     return 0;
6300 }
6301 
6302 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6303     unsigned int cmd, void __user *arg)
6304 {
6305     struct ctlr_info *h = sdev_to_hba(dev);
6306     BIG_IOCTL32_Command_struct __user *arg32 = arg;
6307     BIG_IOCTL_Command_struct arg64;
6308     int err;
6309     u32 cp;
6310 
6311     if (!arg)
6312         return -EINVAL;
6313     memset(&arg64, 0, sizeof(arg64));
6314     if (copy_from_user(&arg64, arg32,
6315                offsetof(BIG_IOCTL32_Command_struct, buf)))
6316         return -EFAULT;
6317     if (get_user(cp, &arg32->buf))
6318         return -EFAULT;
6319     arg64.buf = compat_ptr(cp);
6320 
6321     if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6322         return -EAGAIN;
6323     err = hpsa_big_passthru_ioctl(h, &arg64);
6324     atomic_inc(&h->passthru_cmds_avail);
6325     if (err)
6326         return err;
6327     if (copy_to_user(&arg32->error_info, &arg64.error_info,
6328              sizeof(arg32->error_info)))
6329         return -EFAULT;
6330     return 0;
6331 }
6332 
6333 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6334                  void __user *arg)
6335 {
6336     switch (cmd) {
6337     case CCISS_GETPCIINFO:
6338     case CCISS_GETINTINFO:
6339     case CCISS_SETINTINFO:
6340     case CCISS_GETNODENAME:
6341     case CCISS_SETNODENAME:
6342     case CCISS_GETHEARTBEAT:
6343     case CCISS_GETBUSTYPES:
6344     case CCISS_GETFIRMVER:
6345     case CCISS_GETDRIVVER:
6346     case CCISS_REVALIDVOLS:
6347     case CCISS_DEREGDISK:
6348     case CCISS_REGNEWDISK:
6349     case CCISS_REGNEWD:
6350     case CCISS_RESCANDISK:
6351     case CCISS_GETLUNINFO:
6352         return hpsa_ioctl(dev, cmd, arg);
6353 
6354     case CCISS_PASSTHRU32:
6355         return hpsa_ioctl32_passthru(dev, cmd, arg);
6356     case CCISS_BIG_PASSTHRU32:
6357         return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6358 
6359     default:
6360         return -ENOIOCTLCMD;
6361     }
6362 }
6363 #endif
6364 
6365 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6366 {
6367     struct hpsa_pci_info pciinfo;
6368 
6369     if (!argp)
6370         return -EINVAL;
6371     pciinfo.domain = pci_domain_nr(h->pdev->bus);
6372     pciinfo.bus = h->pdev->bus->number;
6373     pciinfo.dev_fn = h->pdev->devfn;
6374     pciinfo.board_id = h->board_id;
6375     if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6376         return -EFAULT;
6377     return 0;
6378 }
6379 
6380 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6381 {
6382     DriverVer_type DriverVer;
6383     unsigned char vmaj, vmin, vsubmin;
6384     int rc;
6385 
6386     rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6387         &vmaj, &vmin, &vsubmin);
6388     if (rc != 3) {
6389         dev_info(&h->pdev->dev, "driver version string '%s' "
6390             "unrecognized.", HPSA_DRIVER_VERSION);
6391         vmaj = 0;
6392         vmin = 0;
6393         vsubmin = 0;
6394     }
6395     DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6396     if (!argp)
6397         return -EINVAL;
6398     if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6399         return -EFAULT;
6400     return 0;
6401 }
6402 
6403 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6404                    IOCTL_Command_struct *iocommand)
6405 {
6406     struct CommandList *c;
6407     char *buff = NULL;
6408     u64 temp64;
6409     int rc = 0;
6410 
6411     if (!capable(CAP_SYS_RAWIO))
6412         return -EPERM;
6413     if ((iocommand->buf_size < 1) &&
6414         (iocommand->Request.Type.Direction != XFER_NONE)) {
6415         return -EINVAL;
6416     }
6417     if (iocommand->buf_size > 0) {
6418         buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6419         if (buff == NULL)
6420             return -ENOMEM;
6421         if (iocommand->Request.Type.Direction & XFER_WRITE) {
6422             /* Copy the data into the buffer we created */
6423             if (copy_from_user(buff, iocommand->buf,
6424                 iocommand->buf_size)) {
6425                 rc = -EFAULT;
6426                 goto out_kfree;
6427             }
6428         } else {
6429             memset(buff, 0, iocommand->buf_size);
6430         }
6431     }
6432     c = cmd_alloc(h);
6433 
6434     /* Fill in the command type */
6435     c->cmd_type = CMD_IOCTL_PEND;
6436     c->scsi_cmd = SCSI_CMD_BUSY;
6437     /* Fill in Command Header */
6438     c->Header.ReplyQueue = 0; /* unused in simple mode */
6439     if (iocommand->buf_size > 0) {  /* buffer to fill */
6440         c->Header.SGList = 1;
6441         c->Header.SGTotal = cpu_to_le16(1);
6442     } else  { /* no buffers to fill */
6443         c->Header.SGList = 0;
6444         c->Header.SGTotal = cpu_to_le16(0);
6445     }
6446     memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6447 
6448     /* Fill in Request block */
6449     memcpy(&c->Request, &iocommand->Request,
6450         sizeof(c->Request));
6451 
6452     /* Fill in the scatter gather information */
6453     if (iocommand->buf_size > 0) {
6454         temp64 = dma_map_single(&h->pdev->dev, buff,
6455             iocommand->buf_size, DMA_BIDIRECTIONAL);
6456         if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6457             c->SG[0].Addr = cpu_to_le64(0);
6458             c->SG[0].Len = cpu_to_le32(0);
6459             rc = -ENOMEM;
6460             goto out;
6461         }
6462         c->SG[0].Addr = cpu_to_le64(temp64);
6463         c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6464         c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6465     }
6466     rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6467                     NO_TIMEOUT);
6468     if (iocommand->buf_size > 0)
6469         hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6470     check_ioctl_unit_attention(h, c);
6471     if (rc) {
6472         rc = -EIO;
6473         goto out;
6474     }
6475 
6476     /* Copy the error information out */
6477     memcpy(&iocommand->error_info, c->err_info,
6478         sizeof(iocommand->error_info));
6479     if ((iocommand->Request.Type.Direction & XFER_READ) &&
6480         iocommand->buf_size > 0) {
6481         /* Copy the data out of the buffer we created */
6482         if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6483             rc = -EFAULT;
6484             goto out;
6485         }
6486     }
6487 out:
6488     cmd_free(h, c);
6489 out_kfree:
6490     kfree(buff);
6491     return rc;
6492 }
6493 
6494 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6495                    BIG_IOCTL_Command_struct *ioc)
6496 {
6497     struct CommandList *c;
6498     unsigned char **buff = NULL;
6499     int *buff_size = NULL;
6500     u64 temp64;
6501     BYTE sg_used = 0;
6502     int status = 0;
6503     u32 left;
6504     u32 sz;
6505     BYTE __user *data_ptr;
6506 
6507     if (!capable(CAP_SYS_RAWIO))
6508         return -EPERM;
6509 
6510     if ((ioc->buf_size < 1) &&
6511         (ioc->Request.Type.Direction != XFER_NONE))
6512         return -EINVAL;
6513     /* Check kmalloc limits  using all SGs */
6514     if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6515         return -EINVAL;
6516     if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6517         return -EINVAL;
6518     buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6519     if (!buff) {
6520         status = -ENOMEM;
6521         goto cleanup1;
6522     }
6523     buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6524     if (!buff_size) {
6525         status = -ENOMEM;
6526         goto cleanup1;
6527     }
6528     left = ioc->buf_size;
6529     data_ptr = ioc->buf;
6530     while (left) {
6531         sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6532         buff_size[sg_used] = sz;
6533         buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6534         if (buff[sg_used] == NULL) {
6535             status = -ENOMEM;
6536             goto cleanup1;
6537         }
6538         if (ioc->Request.Type.Direction & XFER_WRITE) {
6539             if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6540                 status = -EFAULT;
6541                 goto cleanup1;
6542             }
6543         } else
6544             memset(buff[sg_used], 0, sz);
6545         left -= sz;
6546         data_ptr += sz;
6547         sg_used++;
6548     }
6549     c = cmd_alloc(h);
6550 
6551     c->cmd_type = CMD_IOCTL_PEND;
6552     c->scsi_cmd = SCSI_CMD_BUSY;
6553     c->Header.ReplyQueue = 0;
6554     c->Header.SGList = (u8) sg_used;
6555     c->Header.SGTotal = cpu_to_le16(sg_used);
6556     memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6557     memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6558     if (ioc->buf_size > 0) {
6559         int i;
6560         for (i = 0; i < sg_used; i++) {
6561             temp64 = dma_map_single(&h->pdev->dev, buff[i],
6562                     buff_size[i], DMA_BIDIRECTIONAL);
6563             if (dma_mapping_error(&h->pdev->dev,
6564                             (dma_addr_t) temp64)) {
6565                 c->SG[i].Addr = cpu_to_le64(0);
6566                 c->SG[i].Len = cpu_to_le32(0);
6567                 hpsa_pci_unmap(h->pdev, c, i,
6568                     DMA_BIDIRECTIONAL);
6569                 status = -ENOMEM;
6570                 goto cleanup0;
6571             }
6572             c->SG[i].Addr = cpu_to_le64(temp64);
6573             c->SG[i].Len = cpu_to_le32(buff_size[i]);
6574             c->SG[i].Ext = cpu_to_le32(0);
6575         }
6576         c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6577     }
6578     status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6579                         NO_TIMEOUT);
6580     if (sg_used)
6581         hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6582     check_ioctl_unit_attention(h, c);
6583     if (status) {
6584         status = -EIO;
6585         goto cleanup0;
6586     }
6587 
6588     /* Copy the error information out */
6589     memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6590     if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6591         int i;
6592 
6593         /* Copy the data out of the buffer we created */
6594         BYTE __user *ptr = ioc->buf;
6595         for (i = 0; i < sg_used; i++) {
6596             if (copy_to_user(ptr, buff[i], buff_size[i])) {
6597                 status = -EFAULT;
6598                 goto cleanup0;
6599             }
6600             ptr += buff_size[i];
6601         }
6602     }
6603     status = 0;
6604 cleanup0:
6605     cmd_free(h, c);
6606 cleanup1:
6607     if (buff) {
6608         int i;
6609 
6610         for (i = 0; i < sg_used; i++)
6611             kfree(buff[i]);
6612         kfree(buff);
6613     }
6614     kfree(buff_size);
6615     return status;
6616 }
6617 
6618 static void check_ioctl_unit_attention(struct ctlr_info *h,
6619     struct CommandList *c)
6620 {
6621     if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6622             c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6623         (void) check_for_unit_attention(h, c);
6624 }
6625 
6626 /*
6627  * ioctl
6628  */
6629 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6630               void __user *argp)
6631 {
6632     struct ctlr_info *h = sdev_to_hba(dev);
6633     int rc;
6634 
6635     switch (cmd) {
6636     case CCISS_DEREGDISK:
6637     case CCISS_REGNEWDISK:
6638     case CCISS_REGNEWD:
6639         hpsa_scan_start(h->scsi_host);
6640         return 0;
6641     case CCISS_GETPCIINFO:
6642         return hpsa_getpciinfo_ioctl(h, argp);
6643     case CCISS_GETDRIVVER:
6644         return hpsa_getdrivver_ioctl(h, argp);
6645     case CCISS_PASSTHRU: {
6646         IOCTL_Command_struct iocommand;
6647 
6648         if (!argp)
6649             return -EINVAL;
6650         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6651             return -EFAULT;
6652         if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6653             return -EAGAIN;
6654         rc = hpsa_passthru_ioctl(h, &iocommand);
6655         atomic_inc(&h->passthru_cmds_avail);
6656         if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6657             rc = -EFAULT;
6658         return rc;
6659     }
6660     case CCISS_BIG_PASSTHRU: {
6661         BIG_IOCTL_Command_struct ioc;
6662         if (!argp)
6663             return -EINVAL;
6664         if (copy_from_user(&ioc, argp, sizeof(ioc)))
6665             return -EFAULT;
6666         if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6667             return -EAGAIN;
6668         rc = hpsa_big_passthru_ioctl(h, &ioc);
6669         atomic_inc(&h->passthru_cmds_avail);
6670         if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6671             rc = -EFAULT;
6672         return rc;
6673     }
6674     default:
6675         return -ENOTTY;
6676     }
6677 }
6678 
6679 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6680 {
6681     struct CommandList *c;
6682 
6683     c = cmd_alloc(h);
6684 
6685     /* fill_cmd can't fail here, no data buffer to map */
6686     (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6687         RAID_CTLR_LUNID, TYPE_MSG);
6688     c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6689     c->waiting = NULL;
6690     enqueue_cmd_and_start_io(h, c);
6691     /* Don't wait for completion, the reset won't complete.  Don't free
6692      * the command either.  This is the last command we will send before
6693      * re-initializing everything, so it doesn't matter and won't leak.
6694      */
6695     return;
6696 }
6697 
6698 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6699     void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6700     int cmd_type)
6701 {
6702     enum dma_data_direction dir = DMA_NONE;
6703 
6704     c->cmd_type = CMD_IOCTL_PEND;
6705     c->scsi_cmd = SCSI_CMD_BUSY;
6706     c->Header.ReplyQueue = 0;
6707     if (buff != NULL && size > 0) {
6708         c->Header.SGList = 1;
6709         c->Header.SGTotal = cpu_to_le16(1);
6710     } else {
6711         c->Header.SGList = 0;
6712         c->Header.SGTotal = cpu_to_le16(0);
6713     }
6714     memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6715 
6716     if (cmd_type == TYPE_CMD) {
6717         switch (cmd) {
6718         case HPSA_INQUIRY:
6719             /* are we trying to read a vital product page */
6720             if (page_code & VPD_PAGE) {
6721                 c->Request.CDB[1] = 0x01;
6722                 c->Request.CDB[2] = (page_code & 0xff);
6723             }
6724             c->Request.CDBLen = 6;
6725             c->Request.type_attr_dir =
6726                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6727             c->Request.Timeout = 0;
6728             c->Request.CDB[0] = HPSA_INQUIRY;
6729             c->Request.CDB[4] = size & 0xFF;
6730             break;
6731         case RECEIVE_DIAGNOSTIC:
6732             c->Request.CDBLen = 6;
6733             c->Request.type_attr_dir =
6734                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6735             c->Request.Timeout = 0;
6736             c->Request.CDB[0] = cmd;
6737             c->Request.CDB[1] = 1;
6738             c->Request.CDB[2] = 1;
6739             c->Request.CDB[3] = (size >> 8) & 0xFF;
6740             c->Request.CDB[4] = size & 0xFF;
6741             break;
6742         case HPSA_REPORT_LOG:
6743         case HPSA_REPORT_PHYS:
6744             /* Talking to controller so It's a physical command
6745                mode = 00 target = 0.  Nothing to write.
6746              */
6747             c->Request.CDBLen = 12;
6748             c->Request.type_attr_dir =
6749                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6750             c->Request.Timeout = 0;
6751             c->Request.CDB[0] = cmd;
6752             c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6753             c->Request.CDB[7] = (size >> 16) & 0xFF;
6754             c->Request.CDB[8] = (size >> 8) & 0xFF;
6755             c->Request.CDB[9] = size & 0xFF;
6756             break;
6757         case BMIC_SENSE_DIAG_OPTIONS:
6758             c->Request.CDBLen = 16;
6759             c->Request.type_attr_dir =
6760                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6761             c->Request.Timeout = 0;
6762             /* Spec says this should be BMIC_WRITE */
6763             c->Request.CDB[0] = BMIC_READ;
6764             c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6765             break;
6766         case BMIC_SET_DIAG_OPTIONS:
6767             c->Request.CDBLen = 16;
6768             c->Request.type_attr_dir =
6769                     TYPE_ATTR_DIR(cmd_type,
6770                         ATTR_SIMPLE, XFER_WRITE);
6771             c->Request.Timeout = 0;
6772             c->Request.CDB[0] = BMIC_WRITE;
6773             c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6774             break;
6775         case HPSA_CACHE_FLUSH:
6776             c->Request.CDBLen = 12;
6777             c->Request.type_attr_dir =
6778                     TYPE_ATTR_DIR(cmd_type,
6779                         ATTR_SIMPLE, XFER_WRITE);
6780             c->Request.Timeout = 0;
6781             c->Request.CDB[0] = BMIC_WRITE;
6782             c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6783             c->Request.CDB[7] = (size >> 8) & 0xFF;
6784             c->Request.CDB[8] = size & 0xFF;
6785             break;
6786         case TEST_UNIT_READY:
6787             c->Request.CDBLen = 6;
6788             c->Request.type_attr_dir =
6789                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6790             c->Request.Timeout = 0;
6791             break;
6792         case HPSA_GET_RAID_MAP:
6793             c->Request.CDBLen = 12;
6794             c->Request.type_attr_dir =
6795                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6796             c->Request.Timeout = 0;
6797             c->Request.CDB[0] = HPSA_CISS_READ;
6798             c->Request.CDB[1] = cmd;
6799             c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6800             c->Request.CDB[7] = (size >> 16) & 0xFF;
6801             c->Request.CDB[8] = (size >> 8) & 0xFF;
6802             c->Request.CDB[9] = size & 0xFF;
6803             break;
6804         case BMIC_SENSE_CONTROLLER_PARAMETERS:
6805             c->Request.CDBLen = 10;
6806             c->Request.type_attr_dir =
6807                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6808             c->Request.Timeout = 0;
6809             c->Request.CDB[0] = BMIC_READ;
6810             c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6811             c->Request.CDB[7] = (size >> 16) & 0xFF;
6812             c->Request.CDB[8] = (size >> 8) & 0xFF;
6813             break;
6814         case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6815             c->Request.CDBLen = 10;
6816             c->Request.type_attr_dir =
6817                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6818             c->Request.Timeout = 0;
6819             c->Request.CDB[0] = BMIC_READ;
6820             c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6821             c->Request.CDB[7] = (size >> 16) & 0xFF;
6822             c->Request.CDB[8] = (size >> 8) & 0XFF;
6823             break;
6824         case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6825             c->Request.CDBLen = 10;
6826             c->Request.type_attr_dir =
6827                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6828             c->Request.Timeout = 0;
6829             c->Request.CDB[0] = BMIC_READ;
6830             c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6831             c->Request.CDB[7] = (size >> 16) & 0xFF;
6832             c->Request.CDB[8] = (size >> 8) & 0XFF;
6833             break;
6834         case BMIC_SENSE_STORAGE_BOX_PARAMS:
6835             c->Request.CDBLen = 10;
6836             c->Request.type_attr_dir =
6837                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6838             c->Request.Timeout = 0;
6839             c->Request.CDB[0] = BMIC_READ;
6840             c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6841             c->Request.CDB[7] = (size >> 16) & 0xFF;
6842             c->Request.CDB[8] = (size >> 8) & 0XFF;
6843             break;
6844         case BMIC_IDENTIFY_CONTROLLER:
6845             c->Request.CDBLen = 10;
6846             c->Request.type_attr_dir =
6847                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6848             c->Request.Timeout = 0;
6849             c->Request.CDB[0] = BMIC_READ;
6850             c->Request.CDB[1] = 0;
6851             c->Request.CDB[2] = 0;
6852             c->Request.CDB[3] = 0;
6853             c->Request.CDB[4] = 0;
6854             c->Request.CDB[5] = 0;
6855             c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6856             c->Request.CDB[7] = (size >> 16) & 0xFF;
6857             c->Request.CDB[8] = (size >> 8) & 0XFF;
6858             c->Request.CDB[9] = 0;
6859             break;
6860         default:
6861             dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6862             BUG();
6863         }
6864     } else if (cmd_type == TYPE_MSG) {
6865         switch (cmd) {
6866 
6867         case  HPSA_PHYS_TARGET_RESET:
6868             c->Request.CDBLen = 16;
6869             c->Request.type_attr_dir =
6870                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6871             c->Request.Timeout = 0; /* Don't time out */
6872             memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6873             c->Request.CDB[0] = HPSA_RESET;
6874             c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6875             /* Physical target reset needs no control bytes 4-7*/
6876             c->Request.CDB[4] = 0x00;
6877             c->Request.CDB[5] = 0x00;
6878             c->Request.CDB[6] = 0x00;
6879             c->Request.CDB[7] = 0x00;
6880             break;
6881         case  HPSA_DEVICE_RESET_MSG:
6882             c->Request.CDBLen = 16;
6883             c->Request.type_attr_dir =
6884                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6885             c->Request.Timeout = 0; /* Don't time out */
6886             memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6887             c->Request.CDB[0] =  cmd;
6888             c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6889             /* If bytes 4-7 are zero, it means reset the */
6890             /* LunID device */
6891             c->Request.CDB[4] = 0x00;
6892             c->Request.CDB[5] = 0x00;
6893             c->Request.CDB[6] = 0x00;
6894             c->Request.CDB[7] = 0x00;
6895             break;
6896         default:
6897             dev_warn(&h->pdev->dev, "unknown message type %d\n",
6898                 cmd);
6899             BUG();
6900         }
6901     } else {
6902         dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6903         BUG();
6904     }
6905 
6906     switch (GET_DIR(c->Request.type_attr_dir)) {
6907     case XFER_READ:
6908         dir = DMA_FROM_DEVICE;
6909         break;
6910     case XFER_WRITE:
6911         dir = DMA_TO_DEVICE;
6912         break;
6913     case XFER_NONE:
6914         dir = DMA_NONE;
6915         break;
6916     default:
6917         dir = DMA_BIDIRECTIONAL;
6918     }
6919     if (hpsa_map_one(h->pdev, c, buff, size, dir))
6920         return -1;
6921     return 0;
6922 }
6923 
6924 /*
6925  * Map (physical) PCI mem into (virtual) kernel space
6926  */
6927 static void __iomem *remap_pci_mem(ulong base, ulong size)
6928 {
6929     ulong page_base = ((ulong) base) & PAGE_MASK;
6930     ulong page_offs = ((ulong) base) - page_base;
6931     void __iomem *page_remapped = ioremap(page_base,
6932         page_offs + size);
6933 
6934     return page_remapped ? (page_remapped + page_offs) : NULL;
6935 }
6936 
6937 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6938 {
6939     return h->access.command_completed(h, q);
6940 }
6941 
6942 static inline bool interrupt_pending(struct ctlr_info *h)
6943 {
6944     return h->access.intr_pending(h);
6945 }
6946 
6947 static inline long interrupt_not_for_us(struct ctlr_info *h)
6948 {
6949     return (h->access.intr_pending(h) == 0) ||
6950         (h->interrupts_enabled == 0);
6951 }
6952 
6953 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6954     u32 raw_tag)
6955 {
6956     if (unlikely(tag_index >= h->nr_cmds)) {
6957         dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6958         return 1;
6959     }
6960     return 0;
6961 }
6962 
6963 static inline void finish_cmd(struct CommandList *c)
6964 {
6965     dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6966     if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6967             || c->cmd_type == CMD_IOACCEL2))
6968         complete_scsi_command(c);
6969     else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6970         complete(c->waiting);
6971 }
6972 
6973 /* process completion of an indexed ("direct lookup") command */
6974 static inline void process_indexed_cmd(struct ctlr_info *h,
6975     u32 raw_tag)
6976 {
6977     u32 tag_index;
6978     struct CommandList *c;
6979 
6980     tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6981     if (!bad_tag(h, tag_index, raw_tag)) {
6982         c = h->cmd_pool + tag_index;
6983         finish_cmd(c);
6984     }
6985 }
6986 
6987 /* Some controllers, like p400, will give us one interrupt
6988  * after a soft reset, even if we turned interrupts off.
6989  * Only need to check for this in the hpsa_xxx_discard_completions
6990  * functions.
6991  */
6992 static int ignore_bogus_interrupt(struct ctlr_info *h)
6993 {
6994     if (likely(!reset_devices))
6995         return 0;
6996 
6997     if (likely(h->interrupts_enabled))
6998         return 0;
6999 
7000     dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7001         "(known firmware bug.)  Ignoring.\n");
7002 
7003     return 1;
7004 }
7005 
7006 /*
7007  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7008  * Relies on (h-q[x] == x) being true for x such that
7009  * 0 <= x < MAX_REPLY_QUEUES.
7010  */
7011 static struct ctlr_info *queue_to_hba(u8 *queue)
7012 {
7013     return container_of((queue - *queue), struct ctlr_info, q[0]);
7014 }
7015 
7016 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7017 {
7018     struct ctlr_info *h = queue_to_hba(queue);
7019     u8 q = *(u8 *) queue;
7020     u32 raw_tag;
7021 
7022     if (ignore_bogus_interrupt(h))
7023         return IRQ_NONE;
7024 
7025     if (interrupt_not_for_us(h))
7026         return IRQ_NONE;
7027     h->last_intr_timestamp = get_jiffies_64();
7028     while (interrupt_pending(h)) {
7029         raw_tag = get_next_completion(h, q);
7030         while (raw_tag != FIFO_EMPTY)
7031             raw_tag = next_command(h, q);
7032     }
7033     return IRQ_HANDLED;
7034 }
7035 
7036 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7037 {
7038     struct ctlr_info *h = queue_to_hba(queue);
7039     u32 raw_tag;
7040     u8 q = *(u8 *) queue;
7041 
7042     if (ignore_bogus_interrupt(h))
7043         return IRQ_NONE;
7044 
7045     h->last_intr_timestamp = get_jiffies_64();
7046     raw_tag = get_next_completion(h, q);
7047     while (raw_tag != FIFO_EMPTY)
7048         raw_tag = next_command(h, q);
7049     return IRQ_HANDLED;
7050 }
7051 
7052 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7053 {
7054     struct ctlr_info *h = queue_to_hba((u8 *) queue);
7055     u32 raw_tag;
7056     u8 q = *(u8 *) queue;
7057 
7058     if (interrupt_not_for_us(h))
7059         return IRQ_NONE;
7060     h->last_intr_timestamp = get_jiffies_64();
7061     while (interrupt_pending(h)) {
7062         raw_tag = get_next_completion(h, q);
7063         while (raw_tag != FIFO_EMPTY) {
7064             process_indexed_cmd(h, raw_tag);
7065             raw_tag = next_command(h, q);
7066         }
7067     }
7068     return IRQ_HANDLED;
7069 }
7070 
7071 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7072 {
7073     struct ctlr_info *h = queue_to_hba(queue);
7074     u32 raw_tag;
7075     u8 q = *(u8 *) queue;
7076 
7077     h->last_intr_timestamp = get_jiffies_64();
7078     raw_tag = get_next_completion(h, q);
7079     while (raw_tag != FIFO_EMPTY) {
7080         process_indexed_cmd(h, raw_tag);
7081         raw_tag = next_command(h, q);
7082     }
7083     return IRQ_HANDLED;
7084 }
7085 
7086 /* Send a message CDB to the firmware. Careful, this only works
7087  * in simple mode, not performant mode due to the tag lookup.
7088  * We only ever use this immediately after a controller reset.
7089  */
7090 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7091             unsigned char type)
7092 {
7093     struct Command {
7094         struct CommandListHeader CommandHeader;
7095         struct RequestBlock Request;
7096         struct ErrDescriptor ErrorDescriptor;
7097     };
7098     struct Command *cmd;
7099     static const size_t cmd_sz = sizeof(*cmd) +
7100                     sizeof(cmd->ErrorDescriptor);
7101     dma_addr_t paddr64;
7102     __le32 paddr32;
7103     u32 tag;
7104     void __iomem *vaddr;
7105     int i, err;
7106 
7107     vaddr = pci_ioremap_bar(pdev, 0);
7108     if (vaddr == NULL)
7109         return -ENOMEM;
7110 
7111     /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7112      * CCISS commands, so they must be allocated from the lower 4GiB of
7113      * memory.
7114      */
7115     err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7116     if (err) {
7117         iounmap(vaddr);
7118         return err;
7119     }
7120 
7121     cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7122     if (cmd == NULL) {
7123         iounmap(vaddr);
7124         return -ENOMEM;
7125     }
7126 
7127     /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7128      * although there's no guarantee, we assume that the address is at
7129      * least 4-byte aligned (most likely, it's page-aligned).
7130      */
7131     paddr32 = cpu_to_le32(paddr64);
7132 
7133     cmd->CommandHeader.ReplyQueue = 0;
7134     cmd->CommandHeader.SGList = 0;
7135     cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7136     cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7137     memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7138 
7139     cmd->Request.CDBLen = 16;
7140     cmd->Request.type_attr_dir =
7141             TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7142     cmd->Request.Timeout = 0; /* Don't time out */
7143     cmd->Request.CDB[0] = opcode;
7144     cmd->Request.CDB[1] = type;
7145     memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7146     cmd->ErrorDescriptor.Addr =
7147             cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7148     cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7149 
7150     writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7151 
7152     for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7153         tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7154         if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7155             break;
7156         msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7157     }
7158 
7159     iounmap(vaddr);
7160 
7161     /* we leak the DMA buffer here ... no choice since the controller could
7162      *  still complete the command.
7163      */
7164     if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7165         dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7166             opcode, type);
7167         return -ETIMEDOUT;
7168     }
7169 
7170     dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7171 
7172     if (tag & HPSA_ERROR_BIT) {
7173         dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7174             opcode, type);
7175         return -EIO;
7176     }
7177 
7178     dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7179         opcode, type);
7180     return 0;
7181 }
7182 
7183 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7184 
7185 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7186     void __iomem *vaddr, u32 use_doorbell)
7187 {
7188 
7189     if (use_doorbell) {
7190         /* For everything after the P600, the PCI power state method
7191          * of resetting the controller doesn't work, so we have this
7192          * other way using the doorbell register.
7193          */
7194         dev_info(&pdev->dev, "using doorbell to reset controller\n");
7195         writel(use_doorbell, vaddr + SA5_DOORBELL);
7196 
7197         /* PMC hardware guys tell us we need a 10 second delay after
7198          * doorbell reset and before any attempt to talk to the board
7199          * at all to ensure that this actually works and doesn't fall
7200          * over in some weird corner cases.
7201          */
7202         msleep(10000);
7203     } else { /* Try to do it the PCI power state way */
7204 
7205         /* Quoting from the Open CISS Specification: "The Power
7206          * Management Control/Status Register (CSR) controls the power
7207          * state of the device.  The normal operating state is D0,
7208          * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7209          * the controller, place the interface device in D3 then to D0,
7210          * this causes a secondary PCI reset which will reset the
7211          * controller." */
7212 
7213         int rc = 0;
7214 
7215         dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7216 
7217         /* enter the D3hot power management state */
7218         rc = pci_set_power_state(pdev, PCI_D3hot);
7219         if (rc)
7220             return rc;
7221 
7222         msleep(500);
7223 
7224         /* enter the D0 power management state */
7225         rc = pci_set_power_state(pdev, PCI_D0);
7226         if (rc)
7227             return rc;
7228 
7229         /*
7230          * The P600 requires a small delay when changing states.
7231          * Otherwise we may think the board did not reset and we bail.
7232          * This for kdump only and is particular to the P600.
7233          */
7234         msleep(500);
7235     }
7236     return 0;
7237 }
7238 
7239 static void init_driver_version(char *driver_version, int len)
7240 {
7241     memset(driver_version, 0, len);
7242     strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7243 }
7244 
7245 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7246 {
7247     char *driver_version;
7248     int i, size = sizeof(cfgtable->driver_version);
7249 
7250     driver_version = kmalloc(size, GFP_KERNEL);
7251     if (!driver_version)
7252         return -ENOMEM;
7253 
7254     init_driver_version(driver_version, size);
7255     for (i = 0; i < size; i++)
7256         writeb(driver_version[i], &cfgtable->driver_version[i]);
7257     kfree(driver_version);
7258     return 0;
7259 }
7260 
7261 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7262                       unsigned char *driver_ver)
7263 {
7264     int i;
7265 
7266     for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7267         driver_ver[i] = readb(&cfgtable->driver_version[i]);
7268 }
7269 
7270 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7271 {
7272 
7273     char *driver_ver, *old_driver_ver;
7274     int rc, size = sizeof(cfgtable->driver_version);
7275 
7276     old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7277     if (!old_driver_ver)
7278         return -ENOMEM;
7279     driver_ver = old_driver_ver + size;
7280 
7281     /* After a reset, the 32 bytes of "driver version" in the cfgtable
7282      * should have been changed, otherwise we know the reset failed.
7283      */
7284     init_driver_version(old_driver_ver, size);
7285     read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7286     rc = !memcmp(driver_ver, old_driver_ver, size);
7287     kfree(old_driver_ver);
7288     return rc;
7289 }
7290 /* This does a hard reset of the controller using PCI power management
7291  * states or the using the doorbell register.
7292  */
7293 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7294 {
7295     u64 cfg_offset;
7296     u32 cfg_base_addr;
7297     u64 cfg_base_addr_index;
7298     void __iomem *vaddr;
7299     unsigned long paddr;
7300     u32 misc_fw_support;
7301     int rc;
7302     struct CfgTable __iomem *cfgtable;
7303     u32 use_doorbell;
7304     u16 command_register;
7305 
7306     /* For controllers as old as the P600, this is very nearly
7307      * the same thing as
7308      *
7309      * pci_save_state(pci_dev);
7310      * pci_set_power_state(pci_dev, PCI_D3hot);
7311      * pci_set_power_state(pci_dev, PCI_D0);
7312      * pci_restore_state(pci_dev);
7313      *
7314      * For controllers newer than the P600, the pci power state
7315      * method of resetting doesn't work so we have another way
7316      * using the doorbell register.
7317      */
7318 
7319     if (!ctlr_is_resettable(board_id)) {
7320         dev_warn(&pdev->dev, "Controller not resettable\n");
7321         return -ENODEV;
7322     }
7323 
7324     /* if controller is soft- but not hard resettable... */
7325     if (!ctlr_is_hard_resettable(board_id))
7326         return -ENOTSUPP; /* try soft reset later. */
7327 
7328     /* Save the PCI command register */
7329     pci_read_config_word(pdev, 4, &command_register);
7330     pci_save_state(pdev);
7331 
7332     /* find the first memory BAR, so we can find the cfg table */
7333     rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7334     if (rc)
7335         return rc;
7336     vaddr = remap_pci_mem(paddr, 0x250);
7337     if (!vaddr)
7338         return -ENOMEM;
7339 
7340     /* find cfgtable in order to check if reset via doorbell is supported */
7341     rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7342                     &cfg_base_addr_index, &cfg_offset);
7343     if (rc)
7344         goto unmap_vaddr;
7345     cfgtable = remap_pci_mem(pci_resource_start(pdev,
7346                cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7347     if (!cfgtable) {
7348         rc = -ENOMEM;
7349         goto unmap_vaddr;
7350     }
7351     rc = write_driver_ver_to_cfgtable(cfgtable);
7352     if (rc)
7353         goto unmap_cfgtable;
7354 
7355     /* If reset via doorbell register is supported, use that.
7356      * There are two such methods.  Favor the newest method.
7357      */
7358     misc_fw_support = readl(&cfgtable->misc_fw_support);
7359     use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7360     if (use_doorbell) {
7361         use_doorbell = DOORBELL_CTLR_RESET2;
7362     } else {
7363         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7364         if (use_doorbell) {
7365             dev_warn(&pdev->dev,
7366                 "Soft reset not supported. Firmware update is required.\n");
7367             rc = -ENOTSUPP; /* try soft reset */
7368             goto unmap_cfgtable;
7369         }
7370     }
7371 
7372     rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7373     if (rc)
7374         goto unmap_cfgtable;
7375 
7376     pci_restore_state(pdev);
7377     pci_write_config_word(pdev, 4, command_register);
7378 
7379     /* Some devices (notably the HP Smart Array 5i Controller)
7380        need a little pause here */
7381     msleep(HPSA_POST_RESET_PAUSE_MSECS);
7382 
7383     rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7384     if (rc) {
7385         dev_warn(&pdev->dev,
7386             "Failed waiting for board to become ready after hard reset\n");
7387         goto unmap_cfgtable;
7388     }
7389 
7390     rc = controller_reset_failed(vaddr);
7391     if (rc < 0)
7392         goto unmap_cfgtable;
7393     if (rc) {
7394         dev_warn(&pdev->dev, "Unable to successfully reset "
7395             "controller. Will try soft reset.\n");
7396         rc = -ENOTSUPP;
7397     } else {
7398         dev_info(&pdev->dev, "board ready after hard reset.\n");
7399     }
7400 
7401 unmap_cfgtable:
7402     iounmap(cfgtable);
7403 
7404 unmap_vaddr:
7405     iounmap(vaddr);
7406     return rc;
7407 }
7408 
7409 /*
7410  *  We cannot read the structure directly, for portability we must use
7411  *   the io functions.
7412  *   This is for debug only.
7413  */
7414 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7415 {
7416 #ifdef HPSA_DEBUG
7417     int i;
7418     char temp_name[17];
7419 
7420     dev_info(dev, "Controller Configuration information\n");
7421     dev_info(dev, "------------------------------------\n");
7422     for (i = 0; i < 4; i++)
7423         temp_name[i] = readb(&(tb->Signature[i]));
7424     temp_name[4] = '\0';
7425     dev_info(dev, "   Signature = %s\n", temp_name);
7426     dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7427     dev_info(dev, "   Transport methods supported = 0x%x\n",
7428            readl(&(tb->TransportSupport)));
7429     dev_info(dev, "   Transport methods active = 0x%x\n",
7430            readl(&(tb->TransportActive)));
7431     dev_info(dev, "   Requested transport Method = 0x%x\n",
7432            readl(&(tb->HostWrite.TransportRequest)));
7433     dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7434            readl(&(tb->HostWrite.CoalIntDelay)));
7435     dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7436            readl(&(tb->HostWrite.CoalIntCount)));
7437     dev_info(dev, "   Max outstanding commands = %d\n",
7438            readl(&(tb->CmdsOutMax)));
7439     dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7440     for (i = 0; i < 16; i++)
7441         temp_name[i] = readb(&(tb->ServerName[i]));
7442     temp_name[16] = '\0';
7443     dev_info(dev, "   Server Name = %s\n", temp_name);
7444     dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7445         readl(&(tb->HeartBeat)));
7446 #endif              /* HPSA_DEBUG */
7447 }
7448 
7449 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7450 {
7451     int i, offset, mem_type, bar_type;
7452 
7453     if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7454         return 0;
7455     offset = 0;
7456     for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7457         bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7458         if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7459             offset += 4;
7460         else {
7461             mem_type = pci_resource_flags(pdev, i) &
7462                 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7463             switch (mem_type) {
7464             case PCI_BASE_ADDRESS_MEM_TYPE_32:
7465             case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7466                 offset += 4;    /* 32 bit */
7467                 break;
7468             case PCI_BASE_ADDRESS_MEM_TYPE_64:
7469                 offset += 8;
7470                 break;
7471             default:    /* reserved in PCI 2.2 */
7472                 dev_warn(&pdev->dev,
7473                        "base address is invalid\n");
7474                 return -1;
7475             }
7476         }
7477         if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7478             return i + 1;
7479     }
7480     return -1;
7481 }
7482 
7483 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7484 {
7485     pci_free_irq_vectors(h->pdev);
7486     h->msix_vectors = 0;
7487 }
7488 
7489 static void hpsa_setup_reply_map(struct ctlr_info *h)
7490 {
7491     const struct cpumask *mask;
7492     unsigned int queue, cpu;
7493 
7494     for (queue = 0; queue < h->msix_vectors; queue++) {
7495         mask = pci_irq_get_affinity(h->pdev, queue);
7496         if (!mask)
7497             goto fallback;
7498 
7499         for_each_cpu(cpu, mask)
7500             h->reply_map[cpu] = queue;
7501     }
7502     return;
7503 
7504 fallback:
7505     for_each_possible_cpu(cpu)
7506         h->reply_map[cpu] = 0;
7507 }
7508 
7509 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7510  * controllers that are capable. If not, we use legacy INTx mode.
7511  */
7512 static int hpsa_interrupt_mode(struct ctlr_info *h)
7513 {
7514     unsigned int flags = PCI_IRQ_LEGACY;
7515     int ret;
7516 
7517     /* Some boards advertise MSI but don't really support it */
7518     switch (h->board_id) {
7519     case 0x40700E11:
7520     case 0x40800E11:
7521     case 0x40820E11:
7522     case 0x40830E11:
7523         break;
7524     default:
7525         ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7526                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7527         if (ret > 0) {
7528             h->msix_vectors = ret;
7529             return 0;
7530         }
7531 
7532         flags |= PCI_IRQ_MSI;
7533         break;
7534     }
7535 
7536     ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7537     if (ret < 0)
7538         return ret;
7539     return 0;
7540 }
7541 
7542 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7543                 bool *legacy_board)
7544 {
7545     int i;
7546     u32 subsystem_vendor_id, subsystem_device_id;
7547 
7548     subsystem_vendor_id = pdev->subsystem_vendor;
7549     subsystem_device_id = pdev->subsystem_device;
7550     *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7551             subsystem_vendor_id;
7552 
7553     if (legacy_board)
7554         *legacy_board = false;
7555     for (i = 0; i < ARRAY_SIZE(products); i++)
7556         if (*board_id == products[i].board_id) {
7557             if (products[i].access != &SA5A_access &&
7558                 products[i].access != &SA5B_access)
7559                 return i;
7560             dev_warn(&pdev->dev,
7561                  "legacy board ID: 0x%08x\n",
7562                  *board_id);
7563             if (legacy_board)
7564                 *legacy_board = true;
7565             return i;
7566         }
7567 
7568     dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7569     if (legacy_board)
7570         *legacy_board = true;
7571     return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7572 }
7573 
7574 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7575                     unsigned long *memory_bar)
7576 {
7577     int i;
7578 
7579     for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7580         if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7581             /* addressing mode bits already removed */
7582             *memory_bar = pci_resource_start(pdev, i);
7583             dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7584                 *memory_bar);
7585             return 0;
7586         }
7587     dev_warn(&pdev->dev, "no memory BAR found\n");
7588     return -ENODEV;
7589 }
7590 
7591 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7592                      int wait_for_ready)
7593 {
7594     int i, iterations;
7595     u32 scratchpad;
7596     if (wait_for_ready)
7597         iterations = HPSA_BOARD_READY_ITERATIONS;
7598     else
7599         iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7600 
7601     for (i = 0; i < iterations; i++) {
7602         scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7603         if (wait_for_ready) {
7604             if (scratchpad == HPSA_FIRMWARE_READY)
7605                 return 0;
7606         } else {
7607             if (scratchpad != HPSA_FIRMWARE_READY)
7608                 return 0;
7609         }
7610         msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7611     }
7612     dev_warn(&pdev->dev, "board not ready, timed out.\n");
7613     return -ENODEV;
7614 }
7615 
7616 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7617                    u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7618                    u64 *cfg_offset)
7619 {
7620     *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7621     *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7622     *cfg_base_addr &= (u32) 0x0000ffff;
7623     *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7624     if (*cfg_base_addr_index == -1) {
7625         dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7626         return -ENODEV;
7627     }
7628     return 0;
7629 }
7630 
7631 static void hpsa_free_cfgtables(struct ctlr_info *h)
7632 {
7633     if (h->transtable) {
7634         iounmap(h->transtable);
7635         h->transtable = NULL;
7636     }
7637     if (h->cfgtable) {
7638         iounmap(h->cfgtable);
7639         h->cfgtable = NULL;
7640     }
7641 }
7642 
7643 /* Find and map CISS config table and transfer table
7644 + * several items must be unmapped (freed) later
7645 + * */
7646 static int hpsa_find_cfgtables(struct ctlr_info *h)
7647 {
7648     u64 cfg_offset;
7649     u32 cfg_base_addr;
7650     u64 cfg_base_addr_index;
7651     u32 trans_offset;
7652     int rc;
7653 
7654     rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7655         &cfg_base_addr_index, &cfg_offset);
7656     if (rc)
7657         return rc;
7658     h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7659                cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7660     if (!h->cfgtable) {
7661         dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7662         return -ENOMEM;
7663     }
7664     rc = write_driver_ver_to_cfgtable(h->cfgtable);
7665     if (rc)
7666         return rc;
7667     /* Find performant mode table. */
7668     trans_offset = readl(&h->cfgtable->TransMethodOffset);
7669     h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7670                 cfg_base_addr_index)+cfg_offset+trans_offset,
7671                 sizeof(*h->transtable));
7672     if (!h->transtable) {
7673         dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7674         hpsa_free_cfgtables(h);
7675         return -ENOMEM;
7676     }
7677     return 0;
7678 }
7679 
7680 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7681 {
7682 #define MIN_MAX_COMMANDS 16
7683     BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7684 
7685     h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7686 
7687     /* Limit commands in memory limited kdump scenario. */
7688     if (reset_devices && h->max_commands > 32)
7689         h->max_commands = 32;
7690 
7691     if (h->max_commands < MIN_MAX_COMMANDS) {
7692         dev_warn(&h->pdev->dev,
7693             "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7694             h->max_commands,
7695             MIN_MAX_COMMANDS);
7696         h->max_commands = MIN_MAX_COMMANDS;
7697     }
7698 }
7699 
7700 /* If the controller reports that the total max sg entries is greater than 512,
7701  * then we know that chained SG blocks work.  (Original smart arrays did not
7702  * support chained SG blocks and would return zero for max sg entries.)
7703  */
7704 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7705 {
7706     return h->maxsgentries > 512;
7707 }
7708 
7709 /* Interrogate the hardware for some limits:
7710  * max commands, max SG elements without chaining, and with chaining,
7711  * SG chain block size, etc.
7712  */
7713 static void hpsa_find_board_params(struct ctlr_info *h)
7714 {
7715     hpsa_get_max_perf_mode_cmds(h);
7716     h->nr_cmds = h->max_commands;
7717     h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7718     h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7719     if (hpsa_supports_chained_sg_blocks(h)) {
7720         /* Limit in-command s/g elements to 32 save dma'able memory. */
7721         h->max_cmd_sg_entries = 32;
7722         h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7723         h->maxsgentries--; /* save one for chain pointer */
7724     } else {
7725         /*
7726          * Original smart arrays supported at most 31 s/g entries
7727          * embedded inline in the command (trying to use more
7728          * would lock up the controller)
7729          */
7730         h->max_cmd_sg_entries = 31;
7731         h->maxsgentries = 31; /* default to traditional values */
7732         h->chainsize = 0;
7733     }
7734 
7735     /* Find out what task management functions are supported and cache */
7736     h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7737     if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7738         dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7739     if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7740         dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7741     if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7742         dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7743 }
7744 
7745 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7746 {
7747     if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7748         dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7749         return false;
7750     }
7751     return true;
7752 }
7753 
7754 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7755 {
7756     u32 driver_support;
7757 
7758     driver_support = readl(&(h->cfgtable->driver_support));
7759     /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7760 #ifdef CONFIG_X86
7761     driver_support |= ENABLE_SCSI_PREFETCH;
7762 #endif
7763     driver_support |= ENABLE_UNIT_ATTN;
7764     writel(driver_support, &(h->cfgtable->driver_support));
7765 }
7766 
7767 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7768  * in a prefetch beyond physical memory.
7769  */
7770 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7771 {
7772     u32 dma_prefetch;
7773 
7774     if (h->board_id != 0x3225103C)
7775         return;
7776     dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7777     dma_prefetch |= 0x8000;
7778     writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7779 }
7780 
7781 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7782 {
7783     int i;
7784     u32 doorbell_value;
7785     unsigned long flags;
7786     /* wait until the clear_event_notify bit 6 is cleared by controller. */
7787     for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7788         spin_lock_irqsave(&h->lock, flags);
7789         doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7790         spin_unlock_irqrestore(&h->lock, flags);
7791         if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7792             goto done;
7793         /* delay and try again */
7794         msleep(CLEAR_EVENT_WAIT_INTERVAL);
7795     }
7796     return -ENODEV;
7797 done:
7798     return 0;
7799 }
7800 
7801 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7802 {
7803     int i;
7804     u32 doorbell_value;
7805     unsigned long flags;
7806 
7807     /* under certain very rare conditions, this can take awhile.
7808      * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7809      * as we enter this code.)
7810      */
7811     for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7812         if (h->remove_in_progress)
7813             goto done;
7814         spin_lock_irqsave(&h->lock, flags);
7815         doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7816         spin_unlock_irqrestore(&h->lock, flags);
7817         if (!(doorbell_value & CFGTBL_ChangeReq))
7818             goto done;
7819         /* delay and try again */
7820         msleep(MODE_CHANGE_WAIT_INTERVAL);
7821     }
7822     return -ENODEV;
7823 done:
7824     return 0;
7825 }
7826 
7827 /* return -ENODEV or other reason on error, 0 on success */
7828 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7829 {
7830     u32 trans_support;
7831 
7832     trans_support = readl(&(h->cfgtable->TransportSupport));
7833     if (!(trans_support & SIMPLE_MODE))
7834         return -ENOTSUPP;
7835 
7836     h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7837 
7838     /* Update the field, and then ring the doorbell */
7839     writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7840     writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7841     writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7842     if (hpsa_wait_for_mode_change_ack(h))
7843         goto error;
7844     print_cfg_table(&h->pdev->dev, h->cfgtable);
7845     if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7846         goto error;
7847     h->transMethod = CFGTBL_Trans_Simple;
7848     return 0;
7849 error:
7850     dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7851     return -ENODEV;
7852 }
7853 
7854 /* free items allocated or mapped by hpsa_pci_init */
7855 static void hpsa_free_pci_init(struct ctlr_info *h)
7856 {
7857     hpsa_free_cfgtables(h);         /* pci_init 4 */
7858     iounmap(h->vaddr);          /* pci_init 3 */
7859     h->vaddr = NULL;
7860     hpsa_disable_interrupt_mode(h);     /* pci_init 2 */
7861     /*
7862      * call pci_disable_device before pci_release_regions per
7863      * Documentation/driver-api/pci/pci.rst
7864      */
7865     pci_disable_device(h->pdev);        /* pci_init 1 */
7866     pci_release_regions(h->pdev);       /* pci_init 2 */
7867 }
7868 
7869 /* several items must be freed later */
7870 static int hpsa_pci_init(struct ctlr_info *h)
7871 {
7872     int prod_index, err;
7873     bool legacy_board;
7874 
7875     prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7876     if (prod_index < 0)
7877         return prod_index;
7878     h->product_name = products[prod_index].product_name;
7879     h->access = *(products[prod_index].access);
7880     h->legacy_board = legacy_board;
7881     pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7882                    PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7883 
7884     err = pci_enable_device(h->pdev);
7885     if (err) {
7886         dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7887         pci_disable_device(h->pdev);
7888         return err;
7889     }
7890 
7891     err = pci_request_regions(h->pdev, HPSA);
7892     if (err) {
7893         dev_err(&h->pdev->dev,
7894             "failed to obtain PCI resources\n");
7895         pci_disable_device(h->pdev);
7896         return err;
7897     }
7898 
7899     pci_set_master(h->pdev);
7900 
7901     err = hpsa_interrupt_mode(h);
7902     if (err)
7903         goto clean1;
7904 
7905     /* setup mapping between CPU and reply queue */
7906     hpsa_setup_reply_map(h);
7907 
7908     err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7909     if (err)
7910         goto clean2;    /* intmode+region, pci */
7911     h->vaddr = remap_pci_mem(h->paddr, 0x250);
7912     if (!h->vaddr) {
7913         dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7914         err = -ENOMEM;
7915         goto clean2;    /* intmode+region, pci */
7916     }
7917     err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7918     if (err)
7919         goto clean3;    /* vaddr, intmode+region, pci */
7920     err = hpsa_find_cfgtables(h);
7921     if (err)
7922         goto clean3;    /* vaddr, intmode+region, pci */
7923     hpsa_find_board_params(h);
7924 
7925     if (!hpsa_CISS_signature_present(h)) {
7926         err = -ENODEV;
7927         goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7928     }
7929     hpsa_set_driver_support_bits(h);
7930     hpsa_p600_dma_prefetch_quirk(h);
7931     err = hpsa_enter_simple_mode(h);
7932     if (err)
7933         goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7934     return 0;
7935 
7936 clean4: /* cfgtables, vaddr, intmode+region, pci */
7937     hpsa_free_cfgtables(h);
7938 clean3: /* vaddr, intmode+region, pci */
7939     iounmap(h->vaddr);
7940     h->vaddr = NULL;
7941 clean2: /* intmode+region, pci */
7942     hpsa_disable_interrupt_mode(h);
7943 clean1:
7944     /*
7945      * call pci_disable_device before pci_release_regions per
7946      * Documentation/driver-api/pci/pci.rst
7947      */
7948     pci_disable_device(h->pdev);
7949     pci_release_regions(h->pdev);
7950     return err;
7951 }
7952 
7953 static void hpsa_hba_inquiry(struct ctlr_info *h)
7954 {
7955     int rc;
7956 
7957 #define HBA_INQUIRY_BYTE_COUNT 64
7958     h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7959     if (!h->hba_inquiry_data)
7960         return;
7961     rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7962         h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7963     if (rc != 0) {
7964         kfree(h->hba_inquiry_data);
7965         h->hba_inquiry_data = NULL;
7966     }
7967 }
7968 
7969 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7970 {
7971     int rc, i;
7972     void __iomem *vaddr;
7973 
7974     if (!reset_devices)
7975         return 0;
7976 
7977     /* kdump kernel is loading, we don't know in which state is
7978      * the pci interface. The dev->enable_cnt is equal zero
7979      * so we call enable+disable, wait a while and switch it on.
7980      */
7981     rc = pci_enable_device(pdev);
7982     if (rc) {
7983         dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7984         return -ENODEV;
7985     }
7986     pci_disable_device(pdev);
7987     msleep(260);            /* a randomly chosen number */
7988     rc = pci_enable_device(pdev);
7989     if (rc) {
7990         dev_warn(&pdev->dev, "failed to enable device.\n");
7991         return -ENODEV;
7992     }
7993 
7994     pci_set_master(pdev);
7995 
7996     vaddr = pci_ioremap_bar(pdev, 0);
7997     if (vaddr == NULL) {
7998         rc = -ENOMEM;
7999         goto out_disable;
8000     }
8001     writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8002     iounmap(vaddr);
8003 
8004     /* Reset the controller with a PCI power-cycle or via doorbell */
8005     rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8006 
8007     /* -ENOTSUPP here means we cannot reset the controller
8008      * but it's already (and still) up and running in
8009      * "performant mode".  Or, it might be 640x, which can't reset
8010      * due to concerns about shared bbwc between 6402/6404 pair.
8011      */
8012     if (rc)
8013         goto out_disable;
8014 
8015     /* Now try to get the controller to respond to a no-op */
8016     dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8017     for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8018         if (hpsa_noop(pdev) == 0)
8019             break;
8020         else
8021             dev_warn(&pdev->dev, "no-op failed%s\n",
8022                     (i < 11 ? "; re-trying" : ""));
8023     }
8024 
8025 out_disable:
8026 
8027     pci_disable_device(pdev);
8028     return rc;
8029 }
8030 
8031 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8032 {
8033     kfree(h->cmd_pool_bits);
8034     h->cmd_pool_bits = NULL;
8035     if (h->cmd_pool) {
8036         dma_free_coherent(&h->pdev->dev,
8037                 h->nr_cmds * sizeof(struct CommandList),
8038                 h->cmd_pool,
8039                 h->cmd_pool_dhandle);
8040         h->cmd_pool = NULL;
8041         h->cmd_pool_dhandle = 0;
8042     }
8043     if (h->errinfo_pool) {
8044         dma_free_coherent(&h->pdev->dev,
8045                 h->nr_cmds * sizeof(struct ErrorInfo),
8046                 h->errinfo_pool,
8047                 h->errinfo_pool_dhandle);
8048         h->errinfo_pool = NULL;
8049         h->errinfo_pool_dhandle = 0;
8050     }
8051 }
8052 
8053 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8054 {
8055     h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8056                    sizeof(unsigned long),
8057                    GFP_KERNEL);
8058     h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8059             h->nr_cmds * sizeof(*h->cmd_pool),
8060             &h->cmd_pool_dhandle, GFP_KERNEL);
8061     h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8062             h->nr_cmds * sizeof(*h->errinfo_pool),
8063             &h->errinfo_pool_dhandle, GFP_KERNEL);
8064     if ((h->cmd_pool_bits == NULL)
8065         || (h->cmd_pool == NULL)
8066         || (h->errinfo_pool == NULL)) {
8067         dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8068         goto clean_up;
8069     }
8070     hpsa_preinitialize_commands(h);
8071     return 0;
8072 clean_up:
8073     hpsa_free_cmd_pool(h);
8074     return -ENOMEM;
8075 }
8076 
8077 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8078 static void hpsa_free_irqs(struct ctlr_info *h)
8079 {
8080     int i;
8081     int irq_vector = 0;
8082 
8083     if (hpsa_simple_mode)
8084         irq_vector = h->intr_mode;
8085 
8086     if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8087         /* Single reply queue, only one irq to free */
8088         free_irq(pci_irq_vector(h->pdev, irq_vector),
8089                 &h->q[h->intr_mode]);
8090         h->q[h->intr_mode] = 0;
8091         return;
8092     }
8093 
8094     for (i = 0; i < h->msix_vectors; i++) {
8095         free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8096         h->q[i] = 0;
8097     }
8098     for (; i < MAX_REPLY_QUEUES; i++)
8099         h->q[i] = 0;
8100 }
8101 
8102 /* returns 0 on success; cleans up and returns -Enn on error */
8103 static int hpsa_request_irqs(struct ctlr_info *h,
8104     irqreturn_t (*msixhandler)(int, void *),
8105     irqreturn_t (*intxhandler)(int, void *))
8106 {
8107     int rc, i;
8108     int irq_vector = 0;
8109 
8110     if (hpsa_simple_mode)
8111         irq_vector = h->intr_mode;
8112 
8113     /*
8114      * initialize h->q[x] = x so that interrupt handlers know which
8115      * queue to process.
8116      */
8117     for (i = 0; i < MAX_REPLY_QUEUES; i++)
8118         h->q[i] = (u8) i;
8119 
8120     if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8121         /* If performant mode and MSI-X, use multiple reply queues */
8122         for (i = 0; i < h->msix_vectors; i++) {
8123             sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8124             rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8125                     0, h->intrname[i],
8126                     &h->q[i]);
8127             if (rc) {
8128                 int j;
8129 
8130                 dev_err(&h->pdev->dev,
8131                     "failed to get irq %d for %s\n",
8132                        pci_irq_vector(h->pdev, i), h->devname);
8133                 for (j = 0; j < i; j++) {
8134                     free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8135                     h->q[j] = 0;
8136                 }
8137                 for (; j < MAX_REPLY_QUEUES; j++)
8138                     h->q[j] = 0;
8139                 return rc;
8140             }
8141         }
8142     } else {
8143         /* Use single reply pool */
8144         if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8145             sprintf(h->intrname[0], "%s-msi%s", h->devname,
8146                 h->msix_vectors ? "x" : "");
8147             rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8148                 msixhandler, 0,
8149                 h->intrname[0],
8150                 &h->q[h->intr_mode]);
8151         } else {
8152             sprintf(h->intrname[h->intr_mode],
8153                 "%s-intx", h->devname);
8154             rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8155                 intxhandler, IRQF_SHARED,
8156                 h->intrname[0],
8157                 &h->q[h->intr_mode]);
8158         }
8159     }
8160     if (rc) {
8161         dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8162                pci_irq_vector(h->pdev, irq_vector), h->devname);
8163         hpsa_free_irqs(h);
8164         return -ENODEV;
8165     }
8166     return 0;
8167 }
8168 
8169 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8170 {
8171     int rc;
8172     hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8173 
8174     dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8175     rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8176     if (rc) {
8177         dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8178         return rc;
8179     }
8180 
8181     dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8182     rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8183     if (rc) {
8184         dev_warn(&h->pdev->dev, "Board failed to become ready "
8185             "after soft reset.\n");
8186         return rc;
8187     }
8188 
8189     return 0;
8190 }
8191 
8192 static void hpsa_free_reply_queues(struct ctlr_info *h)
8193 {
8194     int i;
8195 
8196     for (i = 0; i < h->nreply_queues; i++) {
8197         if (!h->reply_queue[i].head)
8198             continue;
8199         dma_free_coherent(&h->pdev->dev,
8200                     h->reply_queue_size,
8201                     h->reply_queue[i].head,
8202                     h->reply_queue[i].busaddr);
8203         h->reply_queue[i].head = NULL;
8204         h->reply_queue[i].busaddr = 0;
8205     }
8206     h->reply_queue_size = 0;
8207 }
8208 
8209 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8210 {
8211     hpsa_free_performant_mode(h);       /* init_one 7 */
8212     hpsa_free_sg_chain_blocks(h);       /* init_one 6 */
8213     hpsa_free_cmd_pool(h);          /* init_one 5 */
8214     hpsa_free_irqs(h);          /* init_one 4 */
8215     scsi_host_put(h->scsi_host);        /* init_one 3 */
8216     h->scsi_host = NULL;            /* init_one 3 */
8217     hpsa_free_pci_init(h);          /* init_one 2_5 */
8218     free_percpu(h->lockup_detected);    /* init_one 2 */
8219     h->lockup_detected = NULL;      /* init_one 2 */
8220     if (h->resubmit_wq) {
8221         destroy_workqueue(h->resubmit_wq);  /* init_one 1 */
8222         h->resubmit_wq = NULL;
8223     }
8224     if (h->rescan_ctlr_wq) {
8225         destroy_workqueue(h->rescan_ctlr_wq);
8226         h->rescan_ctlr_wq = NULL;
8227     }
8228     if (h->monitor_ctlr_wq) {
8229         destroy_workqueue(h->monitor_ctlr_wq);
8230         h->monitor_ctlr_wq = NULL;
8231     }
8232 
8233     kfree(h);               /* init_one 1 */
8234 }
8235 
8236 /* Called when controller lockup detected. */
8237 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8238 {
8239     int i, refcount;
8240     struct CommandList *c;
8241     int failcount = 0;
8242 
8243     flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8244     for (i = 0; i < h->nr_cmds; i++) {
8245         c = h->cmd_pool + i;
8246         refcount = atomic_inc_return(&c->refcount);
8247         if (refcount > 1) {
8248             c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8249             finish_cmd(c);
8250             atomic_dec(&h->commands_outstanding);
8251             failcount++;
8252         }
8253         cmd_free(h, c);
8254     }
8255     dev_warn(&h->pdev->dev,
8256         "failed %d commands in fail_all\n", failcount);
8257 }
8258 
8259 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8260 {
8261     int cpu;
8262 
8263     for_each_online_cpu(cpu) {
8264         u32 *lockup_detected;
8265         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8266         *lockup_detected = value;
8267     }
8268     wmb(); /* be sure the per-cpu variables are out to memory */
8269 }
8270 
8271 static void controller_lockup_detected(struct ctlr_info *h)
8272 {
8273     unsigned long flags;
8274     u32 lockup_detected;
8275 
8276     h->access.set_intr_mask(h, HPSA_INTR_OFF);
8277     spin_lock_irqsave(&h->lock, flags);
8278     lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8279     if (!lockup_detected) {
8280         /* no heartbeat, but controller gave us a zero. */
8281         dev_warn(&h->pdev->dev,
8282             "lockup detected after %d but scratchpad register is zero\n",
8283             h->heartbeat_sample_interval / HZ);
8284         lockup_detected = 0xffffffff;
8285     }
8286     set_lockup_detected_for_all_cpus(h, lockup_detected);
8287     spin_unlock_irqrestore(&h->lock, flags);
8288     dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8289             lockup_detected, h->heartbeat_sample_interval / HZ);
8290     if (lockup_detected == 0xffff0000) {
8291         dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8292         writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8293     }
8294     pci_disable_device(h->pdev);
8295     fail_all_outstanding_cmds(h);
8296 }
8297 
8298 static int detect_controller_lockup(struct ctlr_info *h)
8299 {
8300     u64 now;
8301     u32 heartbeat;
8302     unsigned long flags;
8303 
8304     now = get_jiffies_64();
8305     /* If we've received an interrupt recently, we're ok. */
8306     if (time_after64(h->last_intr_timestamp +
8307                 (h->heartbeat_sample_interval), now))
8308         return false;
8309 
8310     /*
8311      * If we've already checked the heartbeat recently, we're ok.
8312      * This could happen if someone sends us a signal. We
8313      * otherwise don't care about signals in this thread.
8314      */
8315     if (time_after64(h->last_heartbeat_timestamp +
8316                 (h->heartbeat_sample_interval), now))
8317         return false;
8318 
8319     /* If heartbeat has not changed since we last looked, we're not ok. */
8320     spin_lock_irqsave(&h->lock, flags);
8321     heartbeat = readl(&h->cfgtable->HeartBeat);
8322     spin_unlock_irqrestore(&h->lock, flags);
8323     if (h->last_heartbeat == heartbeat) {
8324         controller_lockup_detected(h);
8325         return true;
8326     }
8327 
8328     /* We're ok. */
8329     h->last_heartbeat = heartbeat;
8330     h->last_heartbeat_timestamp = now;
8331     return false;
8332 }
8333 
8334 /*
8335  * Set ioaccel status for all ioaccel volumes.
8336  *
8337  * Called from monitor controller worker (hpsa_event_monitor_worker)
8338  *
8339  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8340  * transformation, so we will be turning off ioaccel for all volumes that
8341  * make up the Array.
8342  */
8343 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8344 {
8345     int rc;
8346     int i;
8347     u8 ioaccel_status;
8348     unsigned char *buf;
8349     struct hpsa_scsi_dev_t *device;
8350 
8351     if (!h)
8352         return;
8353 
8354     buf = kmalloc(64, GFP_KERNEL);
8355     if (!buf)
8356         return;
8357 
8358     /*
8359      * Run through current device list used during I/O requests.
8360      */
8361     for (i = 0; i < h->ndevices; i++) {
8362         int offload_to_be_enabled = 0;
8363         int offload_config = 0;
8364 
8365         device = h->dev[i];
8366 
8367         if (!device)
8368             continue;
8369         if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8370                         HPSA_VPD_LV_IOACCEL_STATUS))
8371             continue;
8372 
8373         memset(buf, 0, 64);
8374 
8375         rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8376                     VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8377                     buf, 64);
8378         if (rc != 0)
8379             continue;
8380 
8381         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8382 
8383         /*
8384          * Check if offload is still configured on
8385          */
8386         offload_config =
8387                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8388         /*
8389          * If offload is configured on, check to see if ioaccel
8390          * needs to be enabled.
8391          */
8392         if (offload_config)
8393             offload_to_be_enabled =
8394                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8395 
8396         /*
8397          * If ioaccel is to be re-enabled, re-enable later during the
8398          * scan operation so the driver can get a fresh raidmap
8399          * before turning ioaccel back on.
8400          */
8401         if (offload_to_be_enabled)
8402             continue;
8403 
8404         /*
8405          * Immediately turn off ioaccel for any volume the
8406          * controller tells us to. Some of the reasons could be:
8407          *    transformation - change to the LVs of an Array.
8408          *    degraded volume - component failure
8409          */
8410         hpsa_turn_off_ioaccel_for_device(device);
8411     }
8412 
8413     kfree(buf);
8414 }
8415 
8416 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8417 {
8418     char *event_type;
8419 
8420     if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8421         return;
8422 
8423     /* Ask the controller to clear the events we're handling. */
8424     if ((h->transMethod & (CFGTBL_Trans_io_accel1
8425             | CFGTBL_Trans_io_accel2)) &&
8426         (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8427          h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8428 
8429         if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8430             event_type = "state change";
8431         if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8432             event_type = "configuration change";
8433         /* Stop sending new RAID offload reqs via the IO accelerator */
8434         scsi_block_requests(h->scsi_host);
8435         hpsa_set_ioaccel_status(h);
8436         hpsa_drain_accel_commands(h);
8437         /* Set 'accelerator path config change' bit */
8438         dev_warn(&h->pdev->dev,
8439             "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8440             h->events, event_type);
8441         writel(h->events, &(h->cfgtable->clear_event_notify));
8442         /* Set the "clear event notify field update" bit 6 */
8443         writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8444         /* Wait until ctlr clears 'clear event notify field', bit 6 */
8445         hpsa_wait_for_clear_event_notify_ack(h);
8446         scsi_unblock_requests(h->scsi_host);
8447     } else {
8448         /* Acknowledge controller notification events. */
8449         writel(h->events, &(h->cfgtable->clear_event_notify));
8450         writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8451         hpsa_wait_for_clear_event_notify_ack(h);
8452     }
8453     return;
8454 }
8455 
8456 /* Check a register on the controller to see if there are configuration
8457  * changes (added/changed/removed logical drives, etc.) which mean that
8458  * we should rescan the controller for devices.
8459  * Also check flag for driver-initiated rescan.
8460  */
8461 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8462 {
8463     if (h->drv_req_rescan) {
8464         h->drv_req_rescan = 0;
8465         return 1;
8466     }
8467 
8468     if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8469         return 0;
8470 
8471     h->events = readl(&(h->cfgtable->event_notify));
8472     return h->events & RESCAN_REQUIRED_EVENT_BITS;
8473 }
8474 
8475 /*
8476  * Check if any of the offline devices have become ready
8477  */
8478 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8479 {
8480     unsigned long flags;
8481     struct offline_device_entry *d;
8482     struct list_head *this, *tmp;
8483 
8484     spin_lock_irqsave(&h->offline_device_lock, flags);
8485     list_for_each_safe(this, tmp, &h->offline_device_list) {
8486         d = list_entry(this, struct offline_device_entry,
8487                 offline_list);
8488         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8489         if (!hpsa_volume_offline(h, d->scsi3addr)) {
8490             spin_lock_irqsave(&h->offline_device_lock, flags);
8491             list_del(&d->offline_list);
8492             spin_unlock_irqrestore(&h->offline_device_lock, flags);
8493             return 1;
8494         }
8495         spin_lock_irqsave(&h->offline_device_lock, flags);
8496     }
8497     spin_unlock_irqrestore(&h->offline_device_lock, flags);
8498     return 0;
8499 }
8500 
8501 static int hpsa_luns_changed(struct ctlr_info *h)
8502 {
8503     int rc = 1; /* assume there are changes */
8504     struct ReportLUNdata *logdev = NULL;
8505 
8506     /* if we can't find out if lun data has changed,
8507      * assume that it has.
8508      */
8509 
8510     if (!h->lastlogicals)
8511         return rc;
8512 
8513     logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8514     if (!logdev)
8515         return rc;
8516 
8517     if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8518         dev_warn(&h->pdev->dev,
8519             "report luns failed, can't track lun changes.\n");
8520         goto out;
8521     }
8522     if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8523         dev_info(&h->pdev->dev,
8524             "Lun changes detected.\n");
8525         memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8526         goto out;
8527     } else
8528         rc = 0; /* no changes detected. */
8529 out:
8530     kfree(logdev);
8531     return rc;
8532 }
8533 
8534 static void hpsa_perform_rescan(struct ctlr_info *h)
8535 {
8536     struct Scsi_Host *sh = NULL;
8537     unsigned long flags;
8538 
8539     /*
8540      * Do the scan after the reset
8541      */
8542     spin_lock_irqsave(&h->reset_lock, flags);
8543     if (h->reset_in_progress) {
8544         h->drv_req_rescan = 1;
8545         spin_unlock_irqrestore(&h->reset_lock, flags);
8546         return;
8547     }
8548     spin_unlock_irqrestore(&h->reset_lock, flags);
8549 
8550     sh = scsi_host_get(h->scsi_host);
8551     if (sh != NULL) {
8552         hpsa_scan_start(sh);
8553         scsi_host_put(sh);
8554         h->drv_req_rescan = 0;
8555     }
8556 }
8557 
8558 /*
8559  * watch for controller events
8560  */
8561 static void hpsa_event_monitor_worker(struct work_struct *work)
8562 {
8563     struct ctlr_info *h = container_of(to_delayed_work(work),
8564                     struct ctlr_info, event_monitor_work);
8565     unsigned long flags;
8566 
8567     spin_lock_irqsave(&h->lock, flags);
8568     if (h->remove_in_progress) {
8569         spin_unlock_irqrestore(&h->lock, flags);
8570         return;
8571     }
8572     spin_unlock_irqrestore(&h->lock, flags);
8573 
8574     if (hpsa_ctlr_needs_rescan(h)) {
8575         hpsa_ack_ctlr_events(h);
8576         hpsa_perform_rescan(h);
8577     }
8578 
8579     spin_lock_irqsave(&h->lock, flags);
8580     if (!h->remove_in_progress)
8581         queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8582                 HPSA_EVENT_MONITOR_INTERVAL);
8583     spin_unlock_irqrestore(&h->lock, flags);
8584 }
8585 
8586 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8587 {
8588     unsigned long flags;
8589     struct ctlr_info *h = container_of(to_delayed_work(work),
8590                     struct ctlr_info, rescan_ctlr_work);
8591 
8592     spin_lock_irqsave(&h->lock, flags);
8593     if (h->remove_in_progress) {
8594         spin_unlock_irqrestore(&h->lock, flags);
8595         return;
8596     }
8597     spin_unlock_irqrestore(&h->lock, flags);
8598 
8599     if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8600         hpsa_perform_rescan(h);
8601     } else if (h->discovery_polling) {
8602         if (hpsa_luns_changed(h)) {
8603             dev_info(&h->pdev->dev,
8604                 "driver discovery polling rescan.\n");
8605             hpsa_perform_rescan(h);
8606         }
8607     }
8608     spin_lock_irqsave(&h->lock, flags);
8609     if (!h->remove_in_progress)
8610         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8611                 h->heartbeat_sample_interval);
8612     spin_unlock_irqrestore(&h->lock, flags);
8613 }
8614 
8615 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8616 {
8617     unsigned long flags;
8618     struct ctlr_info *h = container_of(to_delayed_work(work),
8619                     struct ctlr_info, monitor_ctlr_work);
8620 
8621     detect_controller_lockup(h);
8622     if (lockup_detected(h))
8623         return;
8624 
8625     spin_lock_irqsave(&h->lock, flags);
8626     if (!h->remove_in_progress)
8627         queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8628                 h->heartbeat_sample_interval);
8629     spin_unlock_irqrestore(&h->lock, flags);
8630 }
8631 
8632 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8633                         char *name)
8634 {
8635     struct workqueue_struct *wq = NULL;
8636 
8637     wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8638     if (!wq)
8639         dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8640 
8641     return wq;
8642 }
8643 
8644 static void hpda_free_ctlr_info(struct ctlr_info *h)
8645 {
8646     kfree(h->reply_map);
8647     kfree(h);
8648 }
8649 
8650 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8651 {
8652     struct ctlr_info *h;
8653 
8654     h = kzalloc(sizeof(*h), GFP_KERNEL);
8655     if (!h)
8656         return NULL;
8657 
8658     h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8659     if (!h->reply_map) {
8660         kfree(h);
8661         return NULL;
8662     }
8663     return h;
8664 }
8665 
8666 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8667 {
8668     int rc;
8669     struct ctlr_info *h;
8670     int try_soft_reset = 0;
8671     unsigned long flags;
8672     u32 board_id;
8673 
8674     if (number_of_controllers == 0)
8675         printk(KERN_INFO DRIVER_NAME "\n");
8676 
8677     rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8678     if (rc < 0) {
8679         dev_warn(&pdev->dev, "Board ID not found\n");
8680         return rc;
8681     }
8682 
8683     rc = hpsa_init_reset_devices(pdev, board_id);
8684     if (rc) {
8685         if (rc != -ENOTSUPP)
8686             return rc;
8687         /* If the reset fails in a particular way (it has no way to do
8688          * a proper hard reset, so returns -ENOTSUPP) we can try to do
8689          * a soft reset once we get the controller configured up to the
8690          * point that it can accept a command.
8691          */
8692         try_soft_reset = 1;
8693         rc = 0;
8694     }
8695 
8696 reinit_after_soft_reset:
8697 
8698     /* Command structures must be aligned on a 32-byte boundary because
8699      * the 5 lower bits of the address are used by the hardware. and by
8700      * the driver.  See comments in hpsa.h for more info.
8701      */
8702     BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8703     h = hpda_alloc_ctlr_info();
8704     if (!h) {
8705         dev_err(&pdev->dev, "Failed to allocate controller head\n");
8706         return -ENOMEM;
8707     }
8708 
8709     h->pdev = pdev;
8710 
8711     h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8712     INIT_LIST_HEAD(&h->offline_device_list);
8713     spin_lock_init(&h->lock);
8714     spin_lock_init(&h->offline_device_lock);
8715     spin_lock_init(&h->scan_lock);
8716     spin_lock_init(&h->reset_lock);
8717     atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8718 
8719     /* Allocate and clear per-cpu variable lockup_detected */
8720     h->lockup_detected = alloc_percpu(u32);
8721     if (!h->lockup_detected) {
8722         dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8723         rc = -ENOMEM;
8724         goto clean1;    /* aer/h */
8725     }
8726     set_lockup_detected_for_all_cpus(h, 0);
8727 
8728     rc = hpsa_pci_init(h);
8729     if (rc)
8730         goto clean2;    /* lu, aer/h */
8731 
8732     /* relies on h-> settings made by hpsa_pci_init, including
8733      * interrupt_mode h->intr */
8734     rc = hpsa_scsi_host_alloc(h);
8735     if (rc)
8736         goto clean2_5;  /* pci, lu, aer/h */
8737 
8738     sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8739     h->ctlr = number_of_controllers;
8740     number_of_controllers++;
8741 
8742     /* configure PCI DMA stuff */
8743     rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8744     if (rc != 0) {
8745         rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8746         if (rc != 0) {
8747             dev_err(&pdev->dev, "no suitable DMA available\n");
8748             goto clean3;    /* shost, pci, lu, aer/h */
8749         }
8750     }
8751 
8752     /* make sure the board interrupts are off */
8753     h->access.set_intr_mask(h, HPSA_INTR_OFF);
8754 
8755     rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8756     if (rc)
8757         goto clean3;    /* shost, pci, lu, aer/h */
8758     rc = hpsa_alloc_cmd_pool(h);
8759     if (rc)
8760         goto clean4;    /* irq, shost, pci, lu, aer/h */
8761     rc = hpsa_alloc_sg_chain_blocks(h);
8762     if (rc)
8763         goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8764     init_waitqueue_head(&h->scan_wait_queue);
8765     init_waitqueue_head(&h->event_sync_wait_queue);
8766     mutex_init(&h->reset_mutex);
8767     h->scan_finished = 1; /* no scan currently in progress */
8768     h->scan_waiting = 0;
8769 
8770     pci_set_drvdata(pdev, h);
8771     h->ndevices = 0;
8772 
8773     spin_lock_init(&h->devlock);
8774     rc = hpsa_put_ctlr_into_performant_mode(h);
8775     if (rc)
8776         goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8777 
8778     /* create the resubmit workqueue */
8779     h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8780     if (!h->rescan_ctlr_wq) {
8781         rc = -ENOMEM;
8782         goto clean7;
8783     }
8784 
8785     h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8786     if (!h->resubmit_wq) {
8787         rc = -ENOMEM;
8788         goto clean7;    /* aer/h */
8789     }
8790 
8791     h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8792     if (!h->monitor_ctlr_wq) {
8793         rc = -ENOMEM;
8794         goto clean7;
8795     }
8796 
8797     /*
8798      * At this point, the controller is ready to take commands.
8799      * Now, if reset_devices and the hard reset didn't work, try
8800      * the soft reset and see if that works.
8801      */
8802     if (try_soft_reset) {
8803 
8804         /* This is kind of gross.  We may or may not get a completion
8805          * from the soft reset command, and if we do, then the value
8806          * from the fifo may or may not be valid.  So, we wait 10 secs
8807          * after the reset throwing away any completions we get during
8808          * that time.  Unregister the interrupt handler and register
8809          * fake ones to scoop up any residual completions.
8810          */
8811         spin_lock_irqsave(&h->lock, flags);
8812         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8813         spin_unlock_irqrestore(&h->lock, flags);
8814         hpsa_free_irqs(h);
8815         rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8816                     hpsa_intx_discard_completions);
8817         if (rc) {
8818             dev_warn(&h->pdev->dev,
8819                 "Failed to request_irq after soft reset.\n");
8820             /*
8821              * cannot goto clean7 or free_irqs will be called
8822              * again. Instead, do its work
8823              */
8824             hpsa_free_performant_mode(h);   /* clean7 */
8825             hpsa_free_sg_chain_blocks(h);   /* clean6 */
8826             hpsa_free_cmd_pool(h);      /* clean5 */
8827             /*
8828              * skip hpsa_free_irqs(h) clean4 since that
8829              * was just called before request_irqs failed
8830              */
8831             goto clean3;
8832         }
8833 
8834         rc = hpsa_kdump_soft_reset(h);
8835         if (rc)
8836             /* Neither hard nor soft reset worked, we're hosed. */
8837             goto clean7;
8838 
8839         dev_info(&h->pdev->dev, "Board READY.\n");
8840         dev_info(&h->pdev->dev,
8841             "Waiting for stale completions to drain.\n");
8842         h->access.set_intr_mask(h, HPSA_INTR_ON);
8843         msleep(10000);
8844         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8845 
8846         rc = controller_reset_failed(h->cfgtable);
8847         if (rc)
8848             dev_info(&h->pdev->dev,
8849                 "Soft reset appears to have failed.\n");
8850 
8851         /* since the controller's reset, we have to go back and re-init
8852          * everything.  Easiest to just forget what we've done and do it
8853          * all over again.
8854          */
8855         hpsa_undo_allocations_after_kdump_soft_reset(h);
8856         try_soft_reset = 0;
8857         if (rc)
8858             /* don't goto clean, we already unallocated */
8859             return -ENODEV;
8860 
8861         goto reinit_after_soft_reset;
8862     }
8863 
8864     /* Enable Accelerated IO path at driver layer */
8865     h->acciopath_status = 1;
8866     /* Disable discovery polling.*/
8867     h->discovery_polling = 0;
8868 
8869 
8870     /* Turn the interrupts on so we can service requests */
8871     h->access.set_intr_mask(h, HPSA_INTR_ON);
8872 
8873     hpsa_hba_inquiry(h);
8874 
8875     h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8876     if (!h->lastlogicals)
8877         dev_info(&h->pdev->dev,
8878             "Can't track change to report lun data\n");
8879 
8880     /* hook into SCSI subsystem */
8881     rc = hpsa_scsi_add_host(h);
8882     if (rc)
8883         goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8884 
8885     /* Monitor the controller for firmware lockups */
8886     h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8887     INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8888     schedule_delayed_work(&h->monitor_ctlr_work,
8889                 h->heartbeat_sample_interval);
8890     INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8891     queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8892                 h->heartbeat_sample_interval);
8893     INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8894     schedule_delayed_work(&h->event_monitor_work,
8895                 HPSA_EVENT_MONITOR_INTERVAL);
8896     return 0;
8897 
8898 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8899     kfree(h->lastlogicals);
8900 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8901     hpsa_free_performant_mode(h);
8902     h->access.set_intr_mask(h, HPSA_INTR_OFF);
8903 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8904     hpsa_free_sg_chain_blocks(h);
8905 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8906     hpsa_free_cmd_pool(h);
8907 clean4: /* irq, shost, pci, lu, aer/h */
8908     hpsa_free_irqs(h);
8909 clean3: /* shost, pci, lu, aer/h */
8910     scsi_host_put(h->scsi_host);
8911     h->scsi_host = NULL;
8912 clean2_5: /* pci, lu, aer/h */
8913     hpsa_free_pci_init(h);
8914 clean2: /* lu, aer/h */
8915     if (h->lockup_detected) {
8916         free_percpu(h->lockup_detected);
8917         h->lockup_detected = NULL;
8918     }
8919 clean1: /* wq/aer/h */
8920     if (h->resubmit_wq) {
8921         destroy_workqueue(h->resubmit_wq);
8922         h->resubmit_wq = NULL;
8923     }
8924     if (h->rescan_ctlr_wq) {
8925         destroy_workqueue(h->rescan_ctlr_wq);
8926         h->rescan_ctlr_wq = NULL;
8927     }
8928     if (h->monitor_ctlr_wq) {
8929         destroy_workqueue(h->monitor_ctlr_wq);
8930         h->monitor_ctlr_wq = NULL;
8931     }
8932     kfree(h);
8933     return rc;
8934 }
8935 
8936 static void hpsa_flush_cache(struct ctlr_info *h)
8937 {
8938     char *flush_buf;
8939     struct CommandList *c;
8940     int rc;
8941 
8942     if (unlikely(lockup_detected(h)))
8943         return;
8944     flush_buf = kzalloc(4, GFP_KERNEL);
8945     if (!flush_buf)
8946         return;
8947 
8948     c = cmd_alloc(h);
8949 
8950     if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8951         RAID_CTLR_LUNID, TYPE_CMD)) {
8952         goto out;
8953     }
8954     rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8955             DEFAULT_TIMEOUT);
8956     if (rc)
8957         goto out;
8958     if (c->err_info->CommandStatus != 0)
8959 out:
8960         dev_warn(&h->pdev->dev,
8961             "error flushing cache on controller\n");
8962     cmd_free(h, c);
8963     kfree(flush_buf);
8964 }
8965 
8966 /* Make controller gather fresh report lun data each time we
8967  * send down a report luns request
8968  */
8969 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8970 {
8971     u32 *options;
8972     struct CommandList *c;
8973     int rc;
8974 
8975     /* Don't bother trying to set diag options if locked up */
8976     if (unlikely(h->lockup_detected))
8977         return;
8978 
8979     options = kzalloc(sizeof(*options), GFP_KERNEL);
8980     if (!options)
8981         return;
8982 
8983     c = cmd_alloc(h);
8984 
8985     /* first, get the current diag options settings */
8986     if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8987         RAID_CTLR_LUNID, TYPE_CMD))
8988         goto errout;
8989 
8990     rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8991             NO_TIMEOUT);
8992     if ((rc != 0) || (c->err_info->CommandStatus != 0))
8993         goto errout;
8994 
8995     /* Now, set the bit for disabling the RLD caching */
8996     *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8997 
8998     if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8999         RAID_CTLR_LUNID, TYPE_CMD))
9000         goto errout;
9001 
9002     rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
9003             NO_TIMEOUT);
9004     if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9005         goto errout;
9006 
9007     /* Now verify that it got set: */
9008     if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9009         RAID_CTLR_LUNID, TYPE_CMD))
9010         goto errout;
9011 
9012     rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
9013             NO_TIMEOUT);
9014     if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9015         goto errout;
9016 
9017     if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9018         goto out;
9019 
9020 errout:
9021     dev_err(&h->pdev->dev,
9022             "Error: failed to disable report lun data caching.\n");
9023 out:
9024     cmd_free(h, c);
9025     kfree(options);
9026 }
9027 
9028 static void __hpsa_shutdown(struct pci_dev *pdev)
9029 {
9030     struct ctlr_info *h;
9031 
9032     h = pci_get_drvdata(pdev);
9033     /* Turn board interrupts off  and send the flush cache command
9034      * sendcmd will turn off interrupt, and send the flush...
9035      * To write all data in the battery backed cache to disks
9036      */
9037     hpsa_flush_cache(h);
9038     h->access.set_intr_mask(h, HPSA_INTR_OFF);
9039     hpsa_free_irqs(h);          /* init_one 4 */
9040     hpsa_disable_interrupt_mode(h);     /* pci_init 2 */
9041 }
9042 
9043 static void hpsa_shutdown(struct pci_dev *pdev)
9044 {
9045     __hpsa_shutdown(pdev);
9046     pci_disable_device(pdev);
9047 }
9048 
9049 static void hpsa_free_device_info(struct ctlr_info *h)
9050 {
9051     int i;
9052 
9053     for (i = 0; i < h->ndevices; i++) {
9054         kfree(h->dev[i]);
9055         h->dev[i] = NULL;
9056     }
9057 }
9058 
9059 static void hpsa_remove_one(struct pci_dev *pdev)
9060 {
9061     struct ctlr_info *h;
9062     unsigned long flags;
9063 
9064     if (pci_get_drvdata(pdev) == NULL) {
9065         dev_err(&pdev->dev, "unable to remove device\n");
9066         return;
9067     }
9068     h = pci_get_drvdata(pdev);
9069 
9070     /* Get rid of any controller monitoring work items */
9071     spin_lock_irqsave(&h->lock, flags);
9072     h->remove_in_progress = 1;
9073     spin_unlock_irqrestore(&h->lock, flags);
9074     cancel_delayed_work_sync(&h->monitor_ctlr_work);
9075     cancel_delayed_work_sync(&h->rescan_ctlr_work);
9076     cancel_delayed_work_sync(&h->event_monitor_work);
9077     destroy_workqueue(h->rescan_ctlr_wq);
9078     destroy_workqueue(h->resubmit_wq);
9079     destroy_workqueue(h->monitor_ctlr_wq);
9080 
9081     hpsa_delete_sas_host(h);
9082 
9083     /*
9084      * Call before disabling interrupts.
9085      * scsi_remove_host can trigger I/O operations especially
9086      * when multipath is enabled. There can be SYNCHRONIZE CACHE
9087      * operations which cannot complete and will hang the system.
9088      */
9089     if (h->scsi_host)
9090         scsi_remove_host(h->scsi_host);     /* init_one 8 */
9091     /* includes hpsa_free_irqs - init_one 4 */
9092     /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9093     __hpsa_shutdown(pdev);
9094 
9095     hpsa_free_device_info(h);       /* scan */
9096 
9097     kfree(h->hba_inquiry_data);         /* init_one 10 */
9098     h->hba_inquiry_data = NULL;         /* init_one 10 */
9099     hpsa_free_ioaccel2_sg_chain_blocks(h);
9100     hpsa_free_performant_mode(h);           /* init_one 7 */
9101     hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
9102     hpsa_free_cmd_pool(h);              /* init_one 5 */
9103     kfree(h->lastlogicals);
9104 
9105     /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9106 
9107     scsi_host_put(h->scsi_host);            /* init_one 3 */
9108     h->scsi_host = NULL;                /* init_one 3 */
9109 
9110     /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9111     hpsa_free_pci_init(h);              /* init_one 2.5 */
9112 
9113     free_percpu(h->lockup_detected);        /* init_one 2 */
9114     h->lockup_detected = NULL;          /* init_one 2 */
9115     /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9116 
9117     hpda_free_ctlr_info(h);             /* init_one 1 */
9118 }
9119 
9120 static int __maybe_unused hpsa_suspend(
9121     __attribute__((unused)) struct device *dev)
9122 {
9123     return -ENOSYS;
9124 }
9125 
9126 static int __maybe_unused hpsa_resume
9127     (__attribute__((unused)) struct device *dev)
9128 {
9129     return -ENOSYS;
9130 }
9131 
9132 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
9133 
9134 static struct pci_driver hpsa_pci_driver = {
9135     .name = HPSA,
9136     .probe = hpsa_init_one,
9137     .remove = hpsa_remove_one,
9138     .id_table = hpsa_pci_device_id, /* id_table */
9139     .shutdown = hpsa_shutdown,
9140     .driver.pm = &hpsa_pm_ops,
9141 };
9142 
9143 /* Fill in bucket_map[], given nsgs (the max number of
9144  * scatter gather elements supported) and bucket[],
9145  * which is an array of 8 integers.  The bucket[] array
9146  * contains 8 different DMA transfer sizes (in 16
9147  * byte increments) which the controller uses to fetch
9148  * commands.  This function fills in bucket_map[], which
9149  * maps a given number of scatter gather elements to one of
9150  * the 8 DMA transfer sizes.  The point of it is to allow the
9151  * controller to only do as much DMA as needed to fetch the
9152  * command, with the DMA transfer size encoded in the lower
9153  * bits of the command address.
9154  */
9155 static void  calc_bucket_map(int bucket[], int num_buckets,
9156     int nsgs, int min_blocks, u32 *bucket_map)
9157 {
9158     int i, j, b, size;
9159 
9160     /* Note, bucket_map must have nsgs+1 entries. */
9161     for (i = 0; i <= nsgs; i++) {
9162         /* Compute size of a command with i SG entries */
9163         size = i + min_blocks;
9164         b = num_buckets; /* Assume the biggest bucket */
9165         /* Find the bucket that is just big enough */
9166         for (j = 0; j < num_buckets; j++) {
9167             if (bucket[j] >= size) {
9168                 b = j;
9169                 break;
9170             }
9171         }
9172         /* for a command with i SG entries, use bucket b. */
9173         bucket_map[i] = b;
9174     }
9175 }
9176 
9177 /*
9178  * return -ENODEV on err, 0 on success (or no action)
9179  * allocates numerous items that must be freed later
9180  */
9181 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9182 {
9183     int i;
9184     unsigned long register_value;
9185     unsigned long transMethod = CFGTBL_Trans_Performant |
9186             (trans_support & CFGTBL_Trans_use_short_tags) |
9187                 CFGTBL_Trans_enable_directed_msix |
9188             (trans_support & (CFGTBL_Trans_io_accel1 |
9189                 CFGTBL_Trans_io_accel2));
9190     struct access_method access = SA5_performant_access;
9191 
9192     /* This is a bit complicated.  There are 8 registers on
9193      * the controller which we write to to tell it 8 different
9194      * sizes of commands which there may be.  It's a way of
9195      * reducing the DMA done to fetch each command.  Encoded into
9196      * each command's tag are 3 bits which communicate to the controller
9197      * which of the eight sizes that command fits within.  The size of
9198      * each command depends on how many scatter gather entries there are.
9199      * Each SG entry requires 16 bytes.  The eight registers are programmed
9200      * with the number of 16-byte blocks a command of that size requires.
9201      * The smallest command possible requires 5 such 16 byte blocks.
9202      * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9203      * blocks.  Note, this only extends to the SG entries contained
9204      * within the command block, and does not extend to chained blocks
9205      * of SG elements.   bft[] contains the eight values we write to
9206      * the registers.  They are not evenly distributed, but have more
9207      * sizes for small commands, and fewer sizes for larger commands.
9208      */
9209     int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9210 #define MIN_IOACCEL2_BFT_ENTRY 5
9211 #define HPSA_IOACCEL2_HEADER_SZ 4
9212     int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9213             13, 14, 15, 16, 17, 18, 19,
9214             HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9215     BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9216     BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9217     BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9218                  16 * MIN_IOACCEL2_BFT_ENTRY);
9219     BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9220     BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9221     /*  5 = 1 s/g entry or 4k
9222      *  6 = 2 s/g entry or 8k
9223      *  8 = 4 s/g entry or 16k
9224      * 10 = 6 s/g entry or 24k
9225      */
9226 
9227     /* If the controller supports either ioaccel method then
9228      * we can also use the RAID stack submit path that does not
9229      * perform the superfluous readl() after each command submission.
9230      */
9231     if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9232         access = SA5_performant_access_no_read;
9233 
9234     /* Controller spec: zero out this buffer. */
9235     for (i = 0; i < h->nreply_queues; i++)
9236         memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9237 
9238     bft[7] = SG_ENTRIES_IN_CMD + 4;
9239     calc_bucket_map(bft, ARRAY_SIZE(bft),
9240                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9241     for (i = 0; i < 8; i++)
9242         writel(bft[i], &h->transtable->BlockFetch[i]);
9243 
9244     /* size of controller ring buffer */
9245     writel(h->max_commands, &h->transtable->RepQSize);
9246     writel(h->nreply_queues, &h->transtable->RepQCount);
9247     writel(0, &h->transtable->RepQCtrAddrLow32);
9248     writel(0, &h->transtable->RepQCtrAddrHigh32);
9249 
9250     for (i = 0; i < h->nreply_queues; i++) {
9251         writel(0, &h->transtable->RepQAddr[i].upper);
9252         writel(h->reply_queue[i].busaddr,
9253             &h->transtable->RepQAddr[i].lower);
9254     }
9255 
9256     writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9257     writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9258     /*
9259      * enable outbound interrupt coalescing in accelerator mode;
9260      */
9261     if (trans_support & CFGTBL_Trans_io_accel1) {
9262         access = SA5_ioaccel_mode1_access;
9263         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9264         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9265     } else
9266         if (trans_support & CFGTBL_Trans_io_accel2)
9267             access = SA5_ioaccel_mode2_access;
9268     writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9269     if (hpsa_wait_for_mode_change_ack(h)) {
9270         dev_err(&h->pdev->dev,
9271             "performant mode problem - doorbell timeout\n");
9272         return -ENODEV;
9273     }
9274     register_value = readl(&(h->cfgtable->TransportActive));
9275     if (!(register_value & CFGTBL_Trans_Performant)) {
9276         dev_err(&h->pdev->dev,
9277             "performant mode problem - transport not active\n");
9278         return -ENODEV;
9279     }
9280     /* Change the access methods to the performant access methods */
9281     h->access = access;
9282     h->transMethod = transMethod;
9283 
9284     if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9285         (trans_support & CFGTBL_Trans_io_accel2)))
9286         return 0;
9287 
9288     if (trans_support & CFGTBL_Trans_io_accel1) {
9289         /* Set up I/O accelerator mode */
9290         for (i = 0; i < h->nreply_queues; i++) {
9291             writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9292             h->reply_queue[i].current_entry =
9293                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9294         }
9295         bft[7] = h->ioaccel_maxsg + 8;
9296         calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9297                 h->ioaccel1_blockFetchTable);
9298 
9299         /* initialize all reply queue entries to unused */
9300         for (i = 0; i < h->nreply_queues; i++)
9301             memset(h->reply_queue[i].head,
9302                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9303                 h->reply_queue_size);
9304 
9305         /* set all the constant fields in the accelerator command
9306          * frames once at init time to save CPU cycles later.
9307          */
9308         for (i = 0; i < h->nr_cmds; i++) {
9309             struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9310 
9311             cp->function = IOACCEL1_FUNCTION_SCSIIO;
9312             cp->err_info = (u32) (h->errinfo_pool_dhandle +
9313                     (i * sizeof(struct ErrorInfo)));
9314             cp->err_info_len = sizeof(struct ErrorInfo);
9315             cp->sgl_offset = IOACCEL1_SGLOFFSET;
9316             cp->host_context_flags =
9317                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9318             cp->timeout_sec = 0;
9319             cp->ReplyQueue = 0;
9320             cp->tag =
9321                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9322             cp->host_addr =
9323                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9324                     (i * sizeof(struct io_accel1_cmd)));
9325         }
9326     } else if (trans_support & CFGTBL_Trans_io_accel2) {
9327         u64 cfg_offset, cfg_base_addr_index;
9328         u32 bft2_offset, cfg_base_addr;
9329 
9330         hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9331                     &cfg_base_addr_index, &cfg_offset);
9332         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9333         bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9334         calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9335                 4, h->ioaccel2_blockFetchTable);
9336         bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9337         BUILD_BUG_ON(offsetof(struct CfgTable,
9338                 io_accel_request_size_offset) != 0xb8);
9339         h->ioaccel2_bft2_regs =
9340             remap_pci_mem(pci_resource_start(h->pdev,
9341                     cfg_base_addr_index) +
9342                     cfg_offset + bft2_offset,
9343                     ARRAY_SIZE(bft2) *
9344                     sizeof(*h->ioaccel2_bft2_regs));
9345         for (i = 0; i < ARRAY_SIZE(bft2); i++)
9346             writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9347     }
9348     writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9349     if (hpsa_wait_for_mode_change_ack(h)) {
9350         dev_err(&h->pdev->dev,
9351             "performant mode problem - enabling ioaccel mode\n");
9352         return -ENODEV;
9353     }
9354     return 0;
9355 }
9356 
9357 /* Free ioaccel1 mode command blocks and block fetch table */
9358 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9359 {
9360     if (h->ioaccel_cmd_pool) {
9361         dma_free_coherent(&h->pdev->dev,
9362                   h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9363                   h->ioaccel_cmd_pool,
9364                   h->ioaccel_cmd_pool_dhandle);
9365         h->ioaccel_cmd_pool = NULL;
9366         h->ioaccel_cmd_pool_dhandle = 0;
9367     }
9368     kfree(h->ioaccel1_blockFetchTable);
9369     h->ioaccel1_blockFetchTable = NULL;
9370 }
9371 
9372 /* Allocate ioaccel1 mode command blocks and block fetch table */
9373 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9374 {
9375     h->ioaccel_maxsg =
9376         readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9377     if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9378         h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9379 
9380     /* Command structures must be aligned on a 128-byte boundary
9381      * because the 7 lower bits of the address are used by the
9382      * hardware.
9383      */
9384     BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9385             IOACCEL1_COMMANDLIST_ALIGNMENT);
9386     h->ioaccel_cmd_pool =
9387         dma_alloc_coherent(&h->pdev->dev,
9388             h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9389             &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9390 
9391     h->ioaccel1_blockFetchTable =
9392         kmalloc(((h->ioaccel_maxsg + 1) *
9393                 sizeof(u32)), GFP_KERNEL);
9394 
9395     if ((h->ioaccel_cmd_pool == NULL) ||
9396         (h->ioaccel1_blockFetchTable == NULL))
9397         goto clean_up;
9398 
9399     memset(h->ioaccel_cmd_pool, 0,
9400         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9401     return 0;
9402 
9403 clean_up:
9404     hpsa_free_ioaccel1_cmd_and_bft(h);
9405     return -ENOMEM;
9406 }
9407 
9408 /* Free ioaccel2 mode command blocks and block fetch table */
9409 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9410 {
9411     hpsa_free_ioaccel2_sg_chain_blocks(h);
9412 
9413     if (h->ioaccel2_cmd_pool) {
9414         dma_free_coherent(&h->pdev->dev,
9415                   h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9416                   h->ioaccel2_cmd_pool,
9417                   h->ioaccel2_cmd_pool_dhandle);
9418         h->ioaccel2_cmd_pool = NULL;
9419         h->ioaccel2_cmd_pool_dhandle = 0;
9420     }
9421     kfree(h->ioaccel2_blockFetchTable);
9422     h->ioaccel2_blockFetchTable = NULL;
9423 }
9424 
9425 /* Allocate ioaccel2 mode command blocks and block fetch table */
9426 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9427 {
9428     int rc;
9429 
9430     /* Allocate ioaccel2 mode command blocks and block fetch table */
9431 
9432     h->ioaccel_maxsg =
9433         readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9434     if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9435         h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9436 
9437     BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9438             IOACCEL2_COMMANDLIST_ALIGNMENT);
9439     h->ioaccel2_cmd_pool =
9440         dma_alloc_coherent(&h->pdev->dev,
9441             h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9442             &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9443 
9444     h->ioaccel2_blockFetchTable =
9445         kmalloc(((h->ioaccel_maxsg + 1) *
9446                 sizeof(u32)), GFP_KERNEL);
9447 
9448     if ((h->ioaccel2_cmd_pool == NULL) ||
9449         (h->ioaccel2_blockFetchTable == NULL)) {
9450         rc = -ENOMEM;
9451         goto clean_up;
9452     }
9453 
9454     rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9455     if (rc)
9456         goto clean_up;
9457 
9458     memset(h->ioaccel2_cmd_pool, 0,
9459         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9460     return 0;
9461 
9462 clean_up:
9463     hpsa_free_ioaccel2_cmd_and_bft(h);
9464     return rc;
9465 }
9466 
9467 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9468 static void hpsa_free_performant_mode(struct ctlr_info *h)
9469 {
9470     kfree(h->blockFetchTable);
9471     h->blockFetchTable = NULL;
9472     hpsa_free_reply_queues(h);
9473     hpsa_free_ioaccel1_cmd_and_bft(h);
9474     hpsa_free_ioaccel2_cmd_and_bft(h);
9475 }
9476 
9477 /* return -ENODEV on error, 0 on success (or no action)
9478  * allocates numerous items that must be freed later
9479  */
9480 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9481 {
9482     u32 trans_support;
9483     unsigned long transMethod = CFGTBL_Trans_Performant |
9484                     CFGTBL_Trans_use_short_tags;
9485     int i, rc;
9486 
9487     if (hpsa_simple_mode)
9488         return 0;
9489 
9490     trans_support = readl(&(h->cfgtable->TransportSupport));
9491     if (!(trans_support & PERFORMANT_MODE))
9492         return 0;
9493 
9494     /* Check for I/O accelerator mode support */
9495     if (trans_support & CFGTBL_Trans_io_accel1) {
9496         transMethod |= CFGTBL_Trans_io_accel1 |
9497                 CFGTBL_Trans_enable_directed_msix;
9498         rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9499         if (rc)
9500             return rc;
9501     } else if (trans_support & CFGTBL_Trans_io_accel2) {
9502         transMethod |= CFGTBL_Trans_io_accel2 |
9503                 CFGTBL_Trans_enable_directed_msix;
9504         rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9505         if (rc)
9506             return rc;
9507     }
9508 
9509     h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9510     hpsa_get_max_perf_mode_cmds(h);
9511     /* Performant mode ring buffer and supporting data structures */
9512     h->reply_queue_size = h->max_commands * sizeof(u64);
9513 
9514     for (i = 0; i < h->nreply_queues; i++) {
9515         h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9516                         h->reply_queue_size,
9517                         &h->reply_queue[i].busaddr,
9518                         GFP_KERNEL);
9519         if (!h->reply_queue[i].head) {
9520             rc = -ENOMEM;
9521             goto clean1;    /* rq, ioaccel */
9522         }
9523         h->reply_queue[i].size = h->max_commands;
9524         h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9525         h->reply_queue[i].current_entry = 0;
9526     }
9527 
9528     /* Need a block fetch table for performant mode */
9529     h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9530                 sizeof(u32)), GFP_KERNEL);
9531     if (!h->blockFetchTable) {
9532         rc = -ENOMEM;
9533         goto clean1;    /* rq, ioaccel */
9534     }
9535 
9536     rc = hpsa_enter_performant_mode(h, trans_support);
9537     if (rc)
9538         goto clean2;    /* bft, rq, ioaccel */
9539     return 0;
9540 
9541 clean2: /* bft, rq, ioaccel */
9542     kfree(h->blockFetchTable);
9543     h->blockFetchTable = NULL;
9544 clean1: /* rq, ioaccel */
9545     hpsa_free_reply_queues(h);
9546     hpsa_free_ioaccel1_cmd_and_bft(h);
9547     hpsa_free_ioaccel2_cmd_and_bft(h);
9548     return rc;
9549 }
9550 
9551 static int is_accelerated_cmd(struct CommandList *c)
9552 {
9553     return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9554 }
9555 
9556 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9557 {
9558     struct CommandList *c = NULL;
9559     int i, accel_cmds_out;
9560     int refcount;
9561 
9562     do { /* wait for all outstanding ioaccel commands to drain out */
9563         accel_cmds_out = 0;
9564         for (i = 0; i < h->nr_cmds; i++) {
9565             c = h->cmd_pool + i;
9566             refcount = atomic_inc_return(&c->refcount);
9567             if (refcount > 1) /* Command is allocated */
9568                 accel_cmds_out += is_accelerated_cmd(c);
9569             cmd_free(h, c);
9570         }
9571         if (accel_cmds_out <= 0)
9572             break;
9573         msleep(100);
9574     } while (1);
9575 }
9576 
9577 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9578                 struct hpsa_sas_port *hpsa_sas_port)
9579 {
9580     struct hpsa_sas_phy *hpsa_sas_phy;
9581     struct sas_phy *phy;
9582 
9583     hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9584     if (!hpsa_sas_phy)
9585         return NULL;
9586 
9587     phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9588         hpsa_sas_port->next_phy_index);
9589     if (!phy) {
9590         kfree(hpsa_sas_phy);
9591         return NULL;
9592     }
9593 
9594     hpsa_sas_port->next_phy_index++;
9595     hpsa_sas_phy->phy = phy;
9596     hpsa_sas_phy->parent_port = hpsa_sas_port;
9597 
9598     return hpsa_sas_phy;
9599 }
9600 
9601 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9602 {
9603     struct sas_phy *phy = hpsa_sas_phy->phy;
9604 
9605     sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9606     if (hpsa_sas_phy->added_to_port)
9607         list_del(&hpsa_sas_phy->phy_list_entry);
9608     sas_phy_delete(phy);
9609     kfree(hpsa_sas_phy);
9610 }
9611 
9612 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9613 {
9614     int rc;
9615     struct hpsa_sas_port *hpsa_sas_port;
9616     struct sas_phy *phy;
9617     struct sas_identify *identify;
9618 
9619     hpsa_sas_port = hpsa_sas_phy->parent_port;
9620     phy = hpsa_sas_phy->phy;
9621 
9622     identify = &phy->identify;
9623     memset(identify, 0, sizeof(*identify));
9624     identify->sas_address = hpsa_sas_port->sas_address;
9625     identify->device_type = SAS_END_DEVICE;
9626     identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9627     identify->target_port_protocols = SAS_PROTOCOL_STP;
9628     phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9629     phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9630     phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9631     phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9632     phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9633 
9634     rc = sas_phy_add(hpsa_sas_phy->phy);
9635     if (rc)
9636         return rc;
9637 
9638     sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9639     list_add_tail(&hpsa_sas_phy->phy_list_entry,
9640             &hpsa_sas_port->phy_list_head);
9641     hpsa_sas_phy->added_to_port = true;
9642 
9643     return 0;
9644 }
9645 
9646 static int
9647     hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9648                 struct sas_rphy *rphy)
9649 {
9650     struct sas_identify *identify;
9651 
9652     identify = &rphy->identify;
9653     identify->sas_address = hpsa_sas_port->sas_address;
9654     identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9655     identify->target_port_protocols = SAS_PROTOCOL_STP;
9656 
9657     return sas_rphy_add(rphy);
9658 }
9659 
9660 static struct hpsa_sas_port
9661     *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9662                 u64 sas_address)
9663 {
9664     int rc;
9665     struct hpsa_sas_port *hpsa_sas_port;
9666     struct sas_port *port;
9667 
9668     hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9669     if (!hpsa_sas_port)
9670         return NULL;
9671 
9672     INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9673     hpsa_sas_port->parent_node = hpsa_sas_node;
9674 
9675     port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9676     if (!port)
9677         goto free_hpsa_port;
9678 
9679     rc = sas_port_add(port);
9680     if (rc)
9681         goto free_sas_port;
9682 
9683     hpsa_sas_port->port = port;
9684     hpsa_sas_port->sas_address = sas_address;
9685     list_add_tail(&hpsa_sas_port->port_list_entry,
9686             &hpsa_sas_node->port_list_head);
9687 
9688     return hpsa_sas_port;
9689 
9690 free_sas_port:
9691     sas_port_free(port);
9692 free_hpsa_port:
9693     kfree(hpsa_sas_port);
9694 
9695     return NULL;
9696 }
9697 
9698 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9699 {
9700     struct hpsa_sas_phy *hpsa_sas_phy;
9701     struct hpsa_sas_phy *next;
9702 
9703     list_for_each_entry_safe(hpsa_sas_phy, next,
9704             &hpsa_sas_port->phy_list_head, phy_list_entry)
9705         hpsa_free_sas_phy(hpsa_sas_phy);
9706 
9707     sas_port_delete(hpsa_sas_port->port);
9708     list_del(&hpsa_sas_port->port_list_entry);
9709     kfree(hpsa_sas_port);
9710 }
9711 
9712 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9713 {
9714     struct hpsa_sas_node *hpsa_sas_node;
9715 
9716     hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9717     if (hpsa_sas_node) {
9718         hpsa_sas_node->parent_dev = parent_dev;
9719         INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9720     }
9721 
9722     return hpsa_sas_node;
9723 }
9724 
9725 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9726 {
9727     struct hpsa_sas_port *hpsa_sas_port;
9728     struct hpsa_sas_port *next;
9729 
9730     if (!hpsa_sas_node)
9731         return;
9732 
9733     list_for_each_entry_safe(hpsa_sas_port, next,
9734             &hpsa_sas_node->port_list_head, port_list_entry)
9735         hpsa_free_sas_port(hpsa_sas_port);
9736 
9737     kfree(hpsa_sas_node);
9738 }
9739 
9740 static struct hpsa_scsi_dev_t
9741     *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9742                     struct sas_rphy *rphy)
9743 {
9744     int i;
9745     struct hpsa_scsi_dev_t *device;
9746 
9747     for (i = 0; i < h->ndevices; i++) {
9748         device = h->dev[i];
9749         if (!device->sas_port)
9750             continue;
9751         if (device->sas_port->rphy == rphy)
9752             return device;
9753     }
9754 
9755     return NULL;
9756 }
9757 
9758 static int hpsa_add_sas_host(struct ctlr_info *h)
9759 {
9760     int rc;
9761     struct device *parent_dev;
9762     struct hpsa_sas_node *hpsa_sas_node;
9763     struct hpsa_sas_port *hpsa_sas_port;
9764     struct hpsa_sas_phy *hpsa_sas_phy;
9765 
9766     parent_dev = &h->scsi_host->shost_dev;
9767 
9768     hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9769     if (!hpsa_sas_node)
9770         return -ENOMEM;
9771 
9772     hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9773     if (!hpsa_sas_port) {
9774         rc = -ENODEV;
9775         goto free_sas_node;
9776     }
9777 
9778     hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9779     if (!hpsa_sas_phy) {
9780         rc = -ENODEV;
9781         goto free_sas_port;
9782     }
9783 
9784     rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9785     if (rc)
9786         goto free_sas_phy;
9787 
9788     h->sas_host = hpsa_sas_node;
9789 
9790     return 0;
9791 
9792 free_sas_phy:
9793     hpsa_free_sas_phy(hpsa_sas_phy);
9794 free_sas_port:
9795     hpsa_free_sas_port(hpsa_sas_port);
9796 free_sas_node:
9797     hpsa_free_sas_node(hpsa_sas_node);
9798 
9799     return rc;
9800 }
9801 
9802 static void hpsa_delete_sas_host(struct ctlr_info *h)
9803 {
9804     hpsa_free_sas_node(h->sas_host);
9805 }
9806 
9807 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9808                 struct hpsa_scsi_dev_t *device)
9809 {
9810     int rc;
9811     struct hpsa_sas_port *hpsa_sas_port;
9812     struct sas_rphy *rphy;
9813 
9814     hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9815     if (!hpsa_sas_port)
9816         return -ENOMEM;
9817 
9818     rphy = sas_end_device_alloc(hpsa_sas_port->port);
9819     if (!rphy) {
9820         rc = -ENODEV;
9821         goto free_sas_port;
9822     }
9823 
9824     hpsa_sas_port->rphy = rphy;
9825     device->sas_port = hpsa_sas_port;
9826 
9827     rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9828     if (rc)
9829         goto free_sas_port;
9830 
9831     return 0;
9832 
9833 free_sas_port:
9834     hpsa_free_sas_port(hpsa_sas_port);
9835     device->sas_port = NULL;
9836 
9837     return rc;
9838 }
9839 
9840 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9841 {
9842     if (device->sas_port) {
9843         hpsa_free_sas_port(device->sas_port);
9844         device->sas_port = NULL;
9845     }
9846 }
9847 
9848 static int
9849 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9850 {
9851     return 0;
9852 }
9853 
9854 static int
9855 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9856 {
9857     struct Scsi_Host *shost = phy_to_shost(rphy);
9858     struct ctlr_info *h;
9859     struct hpsa_scsi_dev_t *sd;
9860 
9861     if (!shost)
9862         return -ENXIO;
9863 
9864     h = shost_to_hba(shost);
9865 
9866     if (!h)
9867         return -ENXIO;
9868 
9869     sd = hpsa_find_device_by_sas_rphy(h, rphy);
9870     if (!sd)
9871         return -ENXIO;
9872 
9873     *identifier = sd->eli;
9874 
9875     return 0;
9876 }
9877 
9878 static int
9879 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9880 {
9881     return -ENXIO;
9882 }
9883 
9884 static int
9885 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9886 {
9887     return 0;
9888 }
9889 
9890 static int
9891 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9892 {
9893     return 0;
9894 }
9895 
9896 static int
9897 hpsa_sas_phy_setup(struct sas_phy *phy)
9898 {
9899     return 0;
9900 }
9901 
9902 static void
9903 hpsa_sas_phy_release(struct sas_phy *phy)
9904 {
9905 }
9906 
9907 static int
9908 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9909 {
9910     return -EINVAL;
9911 }
9912 
9913 static struct sas_function_template hpsa_sas_transport_functions = {
9914     .get_linkerrors = hpsa_sas_get_linkerrors,
9915     .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9916     .get_bay_identifier = hpsa_sas_get_bay_identifier,
9917     .phy_reset = hpsa_sas_phy_reset,
9918     .phy_enable = hpsa_sas_phy_enable,
9919     .phy_setup = hpsa_sas_phy_setup,
9920     .phy_release = hpsa_sas_phy_release,
9921     .set_phy_speed = hpsa_sas_phy_speed,
9922 };
9923 
9924 /*
9925  *  This is it.  Register the PCI driver information for the cards we control
9926  *  the OS will call our registered routines when it finds one of our cards.
9927  */
9928 static int __init hpsa_init(void)
9929 {
9930     int rc;
9931 
9932     hpsa_sas_transport_template =
9933         sas_attach_transport(&hpsa_sas_transport_functions);
9934     if (!hpsa_sas_transport_template)
9935         return -ENODEV;
9936 
9937     rc = pci_register_driver(&hpsa_pci_driver);
9938 
9939     if (rc)
9940         sas_release_transport(hpsa_sas_transport_template);
9941 
9942     return rc;
9943 }
9944 
9945 static void __exit hpsa_cleanup(void)
9946 {
9947     pci_unregister_driver(&hpsa_pci_driver);
9948     sas_release_transport(hpsa_sas_transport_template);
9949 }
9950 
9951 static void __attribute__((unused)) verify_offsets(void)
9952 {
9953 #define VERIFY_OFFSET(member, offset) \
9954     BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9955 
9956     VERIFY_OFFSET(structure_size, 0);
9957     VERIFY_OFFSET(volume_blk_size, 4);
9958     VERIFY_OFFSET(volume_blk_cnt, 8);
9959     VERIFY_OFFSET(phys_blk_shift, 16);
9960     VERIFY_OFFSET(parity_rotation_shift, 17);
9961     VERIFY_OFFSET(strip_size, 18);
9962     VERIFY_OFFSET(disk_starting_blk, 20);
9963     VERIFY_OFFSET(disk_blk_cnt, 28);
9964     VERIFY_OFFSET(data_disks_per_row, 36);
9965     VERIFY_OFFSET(metadata_disks_per_row, 38);
9966     VERIFY_OFFSET(row_cnt, 40);
9967     VERIFY_OFFSET(layout_map_count, 42);
9968     VERIFY_OFFSET(flags, 44);
9969     VERIFY_OFFSET(dekindex, 46);
9970     /* VERIFY_OFFSET(reserved, 48 */
9971     VERIFY_OFFSET(data, 64);
9972 
9973 #undef VERIFY_OFFSET
9974 
9975 #define VERIFY_OFFSET(member, offset) \
9976     BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9977 
9978     VERIFY_OFFSET(IU_type, 0);
9979     VERIFY_OFFSET(direction, 1);
9980     VERIFY_OFFSET(reply_queue, 2);
9981     /* VERIFY_OFFSET(reserved1, 3);  */
9982     VERIFY_OFFSET(scsi_nexus, 4);
9983     VERIFY_OFFSET(Tag, 8);
9984     VERIFY_OFFSET(cdb, 16);
9985     VERIFY_OFFSET(cciss_lun, 32);
9986     VERIFY_OFFSET(data_len, 40);
9987     VERIFY_OFFSET(cmd_priority_task_attr, 44);
9988     VERIFY_OFFSET(sg_count, 45);
9989     /* VERIFY_OFFSET(reserved3 */
9990     VERIFY_OFFSET(err_ptr, 48);
9991     VERIFY_OFFSET(err_len, 56);
9992     /* VERIFY_OFFSET(reserved4  */
9993     VERIFY_OFFSET(sg, 64);
9994 
9995 #undef VERIFY_OFFSET
9996 
9997 #define VERIFY_OFFSET(member, offset) \
9998     BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9999 
10000     VERIFY_OFFSET(dev_handle, 0x00);
10001     VERIFY_OFFSET(reserved1, 0x02);
10002     VERIFY_OFFSET(function, 0x03);
10003     VERIFY_OFFSET(reserved2, 0x04);
10004     VERIFY_OFFSET(err_info, 0x0C);
10005     VERIFY_OFFSET(reserved3, 0x10);
10006     VERIFY_OFFSET(err_info_len, 0x12);
10007     VERIFY_OFFSET(reserved4, 0x13);
10008     VERIFY_OFFSET(sgl_offset, 0x14);
10009     VERIFY_OFFSET(reserved5, 0x15);
10010     VERIFY_OFFSET(transfer_len, 0x1C);
10011     VERIFY_OFFSET(reserved6, 0x20);
10012     VERIFY_OFFSET(io_flags, 0x24);
10013     VERIFY_OFFSET(reserved7, 0x26);
10014     VERIFY_OFFSET(LUN, 0x34);
10015     VERIFY_OFFSET(control, 0x3C);
10016     VERIFY_OFFSET(CDB, 0x40);
10017     VERIFY_OFFSET(reserved8, 0x50);
10018     VERIFY_OFFSET(host_context_flags, 0x60);
10019     VERIFY_OFFSET(timeout_sec, 0x62);
10020     VERIFY_OFFSET(ReplyQueue, 0x64);
10021     VERIFY_OFFSET(reserved9, 0x65);
10022     VERIFY_OFFSET(tag, 0x68);
10023     VERIFY_OFFSET(host_addr, 0x70);
10024     VERIFY_OFFSET(CISS_LUN, 0x78);
10025     VERIFY_OFFSET(SG, 0x78 + 8);
10026 #undef VERIFY_OFFSET
10027 }
10028 
10029 module_init(hpsa_init);
10030 module_exit(hpsa_cleanup);