Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * CXL Flash Device Driver
0004  *
0005  * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
0006  *             Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
0007  *
0008  * Copyright (C) 2015 IBM Corporation
0009  */
0010 
0011 #include <linux/delay.h>
0012 #include <linux/list.h>
0013 #include <linux/module.h>
0014 #include <linux/pci.h>
0015 
0016 #include <asm/unaligned.h>
0017 
0018 #include <scsi/scsi_cmnd.h>
0019 #include <scsi/scsi_host.h>
0020 #include <uapi/scsi/cxlflash_ioctl.h>
0021 
0022 #include "main.h"
0023 #include "sislite.h"
0024 #include "common.h"
0025 
0026 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
0027 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
0028 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
0029 MODULE_LICENSE("GPL");
0030 
0031 static struct class *cxlflash_class;
0032 static u32 cxlflash_major;
0033 static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
0034 
0035 /**
0036  * process_cmd_err() - command error handler
0037  * @cmd:    AFU command that experienced the error.
0038  * @scp:    SCSI command associated with the AFU command in error.
0039  *
0040  * Translates error bits from AFU command to SCSI command results.
0041  */
0042 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
0043 {
0044     struct afu *afu = cmd->parent;
0045     struct cxlflash_cfg *cfg = afu->parent;
0046     struct device *dev = &cfg->dev->dev;
0047     struct sisl_ioasa *ioasa;
0048     u32 resid;
0049 
0050     ioasa = &(cmd->sa);
0051 
0052     if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
0053         resid = ioasa->resid;
0054         scsi_set_resid(scp, resid);
0055         dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
0056             __func__, cmd, scp, resid);
0057     }
0058 
0059     if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
0060         dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
0061             __func__, cmd, scp);
0062         scp->result = (DID_ERROR << 16);
0063     }
0064 
0065     dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
0066         "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
0067         ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
0068         ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
0069 
0070     if (ioasa->rc.scsi_rc) {
0071         /* We have a SCSI status */
0072         if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
0073             memcpy(scp->sense_buffer, ioasa->sense_data,
0074                    SISL_SENSE_DATA_LEN);
0075             scp->result = ioasa->rc.scsi_rc;
0076         } else
0077             scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
0078     }
0079 
0080     /*
0081      * We encountered an error. Set scp->result based on nature
0082      * of error.
0083      */
0084     if (ioasa->rc.fc_rc) {
0085         /* We have an FC status */
0086         switch (ioasa->rc.fc_rc) {
0087         case SISL_FC_RC_LINKDOWN:
0088             scp->result = (DID_REQUEUE << 16);
0089             break;
0090         case SISL_FC_RC_RESID:
0091             /* This indicates an FCP resid underrun */
0092             if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
0093                 /* If the SISL_RC_FLAGS_OVERRUN flag was set,
0094                  * then we will handle this error else where.
0095                  * If not then we must handle it here.
0096                  * This is probably an AFU bug.
0097                  */
0098                 scp->result = (DID_ERROR << 16);
0099             }
0100             break;
0101         case SISL_FC_RC_RESIDERR:
0102             /* Resid mismatch between adapter and device */
0103         case SISL_FC_RC_TGTABORT:
0104         case SISL_FC_RC_ABORTOK:
0105         case SISL_FC_RC_ABORTFAIL:
0106         case SISL_FC_RC_NOLOGI:
0107         case SISL_FC_RC_ABORTPEND:
0108         case SISL_FC_RC_WRABORTPEND:
0109         case SISL_FC_RC_NOEXP:
0110         case SISL_FC_RC_INUSE:
0111             scp->result = (DID_ERROR << 16);
0112             break;
0113         }
0114     }
0115 
0116     if (ioasa->rc.afu_rc) {
0117         /* We have an AFU error */
0118         switch (ioasa->rc.afu_rc) {
0119         case SISL_AFU_RC_NO_CHANNELS:
0120             scp->result = (DID_NO_CONNECT << 16);
0121             break;
0122         case SISL_AFU_RC_DATA_DMA_ERR:
0123             switch (ioasa->afu_extra) {
0124             case SISL_AFU_DMA_ERR_PAGE_IN:
0125                 /* Retry */
0126                 scp->result = (DID_IMM_RETRY << 16);
0127                 break;
0128             case SISL_AFU_DMA_ERR_INVALID_EA:
0129             default:
0130                 scp->result = (DID_ERROR << 16);
0131             }
0132             break;
0133         case SISL_AFU_RC_OUT_OF_DATA_BUFS:
0134             /* Retry */
0135             scp->result = (DID_ALLOC_FAILURE << 16);
0136             break;
0137         default:
0138             scp->result = (DID_ERROR << 16);
0139         }
0140     }
0141 }
0142 
0143 /**
0144  * cmd_complete() - command completion handler
0145  * @cmd:    AFU command that has completed.
0146  *
0147  * For SCSI commands this routine prepares and submits commands that have
0148  * either completed or timed out to the SCSI stack. For internal commands
0149  * (TMF or AFU), this routine simply notifies the originator that the
0150  * command has completed.
0151  */
0152 static void cmd_complete(struct afu_cmd *cmd)
0153 {
0154     struct scsi_cmnd *scp;
0155     ulong lock_flags;
0156     struct afu *afu = cmd->parent;
0157     struct cxlflash_cfg *cfg = afu->parent;
0158     struct device *dev = &cfg->dev->dev;
0159     struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
0160 
0161     spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
0162     list_del(&cmd->list);
0163     spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
0164 
0165     if (cmd->scp) {
0166         scp = cmd->scp;
0167         if (unlikely(cmd->sa.ioasc))
0168             process_cmd_err(cmd, scp);
0169         else
0170             scp->result = (DID_OK << 16);
0171 
0172         dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
0173                     __func__, scp, scp->result, cmd->sa.ioasc);
0174         scsi_done(scp);
0175     } else if (cmd->cmd_tmf) {
0176         spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
0177         cfg->tmf_active = false;
0178         wake_up_all_locked(&cfg->tmf_waitq);
0179         spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
0180     } else
0181         complete(&cmd->cevent);
0182 }
0183 
0184 /**
0185  * flush_pending_cmds() - flush all pending commands on this hardware queue
0186  * @hwq:    Hardware queue to flush.
0187  *
0188  * The hardware send queue lock associated with this hardware queue must be
0189  * held when calling this routine.
0190  */
0191 static void flush_pending_cmds(struct hwq *hwq)
0192 {
0193     struct cxlflash_cfg *cfg = hwq->afu->parent;
0194     struct afu_cmd *cmd, *tmp;
0195     struct scsi_cmnd *scp;
0196     ulong lock_flags;
0197 
0198     list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) {
0199         /* Bypass command when on a doneq, cmd_complete() will handle */
0200         if (!list_empty(&cmd->queue))
0201             continue;
0202 
0203         list_del(&cmd->list);
0204 
0205         if (cmd->scp) {
0206             scp = cmd->scp;
0207             scp->result = (DID_IMM_RETRY << 16);
0208             scsi_done(scp);
0209         } else {
0210             cmd->cmd_aborted = true;
0211 
0212             if (cmd->cmd_tmf) {
0213                 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
0214                 cfg->tmf_active = false;
0215                 wake_up_all_locked(&cfg->tmf_waitq);
0216                 spin_unlock_irqrestore(&cfg->tmf_slock,
0217                                lock_flags);
0218             } else
0219                 complete(&cmd->cevent);
0220         }
0221     }
0222 }
0223 
0224 /**
0225  * context_reset() - reset context via specified register
0226  * @hwq:    Hardware queue owning the context to be reset.
0227  * @reset_reg:  MMIO register to perform reset.
0228  *
0229  * When the reset is successful, the SISLite specification guarantees that
0230  * the AFU has aborted all currently pending I/O. Accordingly, these commands
0231  * must be flushed.
0232  *
0233  * Return: 0 on success, -errno on failure
0234  */
0235 static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg)
0236 {
0237     struct cxlflash_cfg *cfg = hwq->afu->parent;
0238     struct device *dev = &cfg->dev->dev;
0239     int rc = -ETIMEDOUT;
0240     int nretry = 0;
0241     u64 val = 0x1;
0242     ulong lock_flags;
0243 
0244     dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq);
0245 
0246     spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
0247 
0248     writeq_be(val, reset_reg);
0249     do {
0250         val = readq_be(reset_reg);
0251         if ((val & 0x1) == 0x0) {
0252             rc = 0;
0253             break;
0254         }
0255 
0256         /* Double delay each time */
0257         udelay(1 << nretry);
0258     } while (nretry++ < MC_ROOM_RETRY_CNT);
0259 
0260     if (!rc)
0261         flush_pending_cmds(hwq);
0262 
0263     spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
0264 
0265     dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n",
0266         __func__, rc, val, nretry);
0267     return rc;
0268 }
0269 
0270 /**
0271  * context_reset_ioarrin() - reset context via IOARRIN register
0272  * @hwq:    Hardware queue owning the context to be reset.
0273  *
0274  * Return: 0 on success, -errno on failure
0275  */
0276 static int context_reset_ioarrin(struct hwq *hwq)
0277 {
0278     return context_reset(hwq, &hwq->host_map->ioarrin);
0279 }
0280 
0281 /**
0282  * context_reset_sq() - reset context via SQ_CONTEXT_RESET register
0283  * @hwq:    Hardware queue owning the context to be reset.
0284  *
0285  * Return: 0 on success, -errno on failure
0286  */
0287 static int context_reset_sq(struct hwq *hwq)
0288 {
0289     return context_reset(hwq, &hwq->host_map->sq_ctx_reset);
0290 }
0291 
0292 /**
0293  * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
0294  * @afu:    AFU associated with the host.
0295  * @cmd:    AFU command to send.
0296  *
0297  * Return:
0298  *  0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
0299  */
0300 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
0301 {
0302     struct cxlflash_cfg *cfg = afu->parent;
0303     struct device *dev = &cfg->dev->dev;
0304     struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
0305     int rc = 0;
0306     s64 room;
0307     ulong lock_flags;
0308 
0309     /*
0310      * To avoid the performance penalty of MMIO, spread the update of
0311      * 'room' over multiple commands.
0312      */
0313     spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
0314     if (--hwq->room < 0) {
0315         room = readq_be(&hwq->host_map->cmd_room);
0316         if (room <= 0) {
0317             dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
0318                         "0x%02X, room=0x%016llX\n",
0319                         __func__, cmd->rcb.cdb[0], room);
0320             hwq->room = 0;
0321             rc = SCSI_MLQUEUE_HOST_BUSY;
0322             goto out;
0323         }
0324         hwq->room = room - 1;
0325     }
0326 
0327     list_add(&cmd->list, &hwq->pending_cmds);
0328     writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin);
0329 out:
0330     spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
0331     dev_dbg_ratelimited(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n",
0332         __func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
0333     return rc;
0334 }
0335 
0336 /**
0337  * send_cmd_sq() - sends an AFU command via SQ ring
0338  * @afu:    AFU associated with the host.
0339  * @cmd:    AFU command to send.
0340  *
0341  * Return:
0342  *  0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
0343  */
0344 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
0345 {
0346     struct cxlflash_cfg *cfg = afu->parent;
0347     struct device *dev = &cfg->dev->dev;
0348     struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
0349     int rc = 0;
0350     int newval;
0351     ulong lock_flags;
0352 
0353     newval = atomic_dec_if_positive(&hwq->hsq_credits);
0354     if (newval <= 0) {
0355         rc = SCSI_MLQUEUE_HOST_BUSY;
0356         goto out;
0357     }
0358 
0359     cmd->rcb.ioasa = &cmd->sa;
0360 
0361     spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
0362 
0363     *hwq->hsq_curr = cmd->rcb;
0364     if (hwq->hsq_curr < hwq->hsq_end)
0365         hwq->hsq_curr++;
0366     else
0367         hwq->hsq_curr = hwq->hsq_start;
0368 
0369     list_add(&cmd->list, &hwq->pending_cmds);
0370     writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail);
0371 
0372     spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
0373 out:
0374     dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
0375            "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
0376            cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr,
0377            readq_be(&hwq->host_map->sq_head),
0378            readq_be(&hwq->host_map->sq_tail));
0379     return rc;
0380 }
0381 
0382 /**
0383  * wait_resp() - polls for a response or timeout to a sent AFU command
0384  * @afu:    AFU associated with the host.
0385  * @cmd:    AFU command that was sent.
0386  *
0387  * Return: 0 on success, -errno on failure
0388  */
0389 static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
0390 {
0391     struct cxlflash_cfg *cfg = afu->parent;
0392     struct device *dev = &cfg->dev->dev;
0393     int rc = 0;
0394     ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
0395 
0396     timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
0397     if (!timeout)
0398         rc = -ETIMEDOUT;
0399 
0400     if (cmd->cmd_aborted)
0401         rc = -EAGAIN;
0402 
0403     if (unlikely(cmd->sa.ioasc != 0)) {
0404         dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
0405             __func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
0406         rc = -EIO;
0407     }
0408 
0409     return rc;
0410 }
0411 
0412 /**
0413  * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command
0414  * @host:   SCSI host associated with device.
0415  * @scp:    SCSI command to send.
0416  * @afu:    SCSI command to send.
0417  *
0418  * Hashes a command based upon the hardware queue mode.
0419  *
0420  * Return: Trusted index of target hardware queue
0421  */
0422 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp,
0423                  struct afu *afu)
0424 {
0425     u32 tag;
0426     u32 hwq = 0;
0427 
0428     if (afu->num_hwqs == 1)
0429         return 0;
0430 
0431     switch (afu->hwq_mode) {
0432     case HWQ_MODE_RR:
0433         hwq = afu->hwq_rr_count++ % afu->num_hwqs;
0434         break;
0435     case HWQ_MODE_TAG:
0436         tag = blk_mq_unique_tag(scsi_cmd_to_rq(scp));
0437         hwq = blk_mq_unique_tag_to_hwq(tag);
0438         break;
0439     case HWQ_MODE_CPU:
0440         hwq = smp_processor_id() % afu->num_hwqs;
0441         break;
0442     default:
0443         WARN_ON_ONCE(1);
0444     }
0445 
0446     return hwq;
0447 }
0448 
0449 /**
0450  * send_tmf() - sends a Task Management Function (TMF)
0451  * @cfg:    Internal structure associated with the host.
0452  * @sdev:   SCSI device destined for TMF.
0453  * @tmfcmd: TMF command to send.
0454  *
0455  * Return:
0456  *  0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure
0457  */
0458 static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev,
0459             u64 tmfcmd)
0460 {
0461     struct afu *afu = cfg->afu;
0462     struct afu_cmd *cmd = NULL;
0463     struct device *dev = &cfg->dev->dev;
0464     struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
0465     bool needs_deletion = false;
0466     char *buf = NULL;
0467     ulong lock_flags;
0468     int rc = 0;
0469     ulong to;
0470 
0471     buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
0472     if (unlikely(!buf)) {
0473         dev_err(dev, "%s: no memory for command\n", __func__);
0474         rc = -ENOMEM;
0475         goto out;
0476     }
0477 
0478     cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
0479     INIT_LIST_HEAD(&cmd->queue);
0480 
0481     /* When Task Management Function is active do not send another */
0482     spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
0483     if (cfg->tmf_active)
0484         wait_event_interruptible_lock_irq(cfg->tmf_waitq,
0485                           !cfg->tmf_active,
0486                           cfg->tmf_slock);
0487     cfg->tmf_active = true;
0488     spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
0489 
0490     cmd->parent = afu;
0491     cmd->cmd_tmf = true;
0492     cmd->hwq_index = hwq->index;
0493 
0494     cmd->rcb.ctx_id = hwq->ctx_hndl;
0495     cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
0496     cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel);
0497     cmd->rcb.lun_id = lun_to_lunid(sdev->lun);
0498     cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
0499                   SISL_REQ_FLAGS_SUP_UNDERRUN |
0500                   SISL_REQ_FLAGS_TMF_CMD);
0501     memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
0502 
0503     rc = afu->send_cmd(afu, cmd);
0504     if (unlikely(rc)) {
0505         spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
0506         cfg->tmf_active = false;
0507         spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
0508         goto out;
0509     }
0510 
0511     spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
0512     to = msecs_to_jiffies(5000);
0513     to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
0514                                !cfg->tmf_active,
0515                                cfg->tmf_slock,
0516                                to);
0517     if (!to) {
0518         dev_err(dev, "%s: TMF timed out\n", __func__);
0519         rc = -ETIMEDOUT;
0520         needs_deletion = true;
0521     } else if (cmd->cmd_aborted) {
0522         dev_err(dev, "%s: TMF aborted\n", __func__);
0523         rc = -EAGAIN;
0524     } else if (cmd->sa.ioasc) {
0525         dev_err(dev, "%s: TMF failed ioasc=%08x\n",
0526             __func__, cmd->sa.ioasc);
0527         rc = -EIO;
0528     }
0529     cfg->tmf_active = false;
0530     spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
0531 
0532     if (needs_deletion) {
0533         spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
0534         list_del(&cmd->list);
0535         spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
0536     }
0537 out:
0538     kfree(buf);
0539     return rc;
0540 }
0541 
0542 /**
0543  * cxlflash_driver_info() - information handler for this host driver
0544  * @host:   SCSI host associated with device.
0545  *
0546  * Return: A string describing the device.
0547  */
0548 static const char *cxlflash_driver_info(struct Scsi_Host *host)
0549 {
0550     return CXLFLASH_ADAPTER_NAME;
0551 }
0552 
0553 /**
0554  * cxlflash_queuecommand() - sends a mid-layer request
0555  * @host:   SCSI host associated with device.
0556  * @scp:    SCSI command to send.
0557  *
0558  * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
0559  */
0560 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
0561 {
0562     struct cxlflash_cfg *cfg = shost_priv(host);
0563     struct afu *afu = cfg->afu;
0564     struct device *dev = &cfg->dev->dev;
0565     struct afu_cmd *cmd = sc_to_afuci(scp);
0566     struct scatterlist *sg = scsi_sglist(scp);
0567     int hwq_index = cmd_to_target_hwq(host, scp, afu);
0568     struct hwq *hwq = get_hwq(afu, hwq_index);
0569     u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
0570     ulong lock_flags;
0571     int rc = 0;
0572 
0573     dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
0574                 "cdb=(%08x-%08x-%08x-%08x)\n",
0575                 __func__, scp, host->host_no, scp->device->channel,
0576                 scp->device->id, scp->device->lun,
0577                 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
0578                 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
0579                 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
0580                 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
0581 
0582     /*
0583      * If a Task Management Function is active, wait for it to complete
0584      * before continuing with regular commands.
0585      */
0586     spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
0587     if (cfg->tmf_active) {
0588         spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
0589         rc = SCSI_MLQUEUE_HOST_BUSY;
0590         goto out;
0591     }
0592     spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
0593 
0594     switch (cfg->state) {
0595     case STATE_PROBING:
0596     case STATE_PROBED:
0597     case STATE_RESET:
0598         dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
0599         rc = SCSI_MLQUEUE_HOST_BUSY;
0600         goto out;
0601     case STATE_FAILTERM:
0602         dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
0603         scp->result = (DID_NO_CONNECT << 16);
0604         scsi_done(scp);
0605         rc = 0;
0606         goto out;
0607     default:
0608         atomic_inc(&afu->cmds_active);
0609         break;
0610     }
0611 
0612     if (likely(sg)) {
0613         cmd->rcb.data_len = sg->length;
0614         cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
0615     }
0616 
0617     cmd->scp = scp;
0618     cmd->parent = afu;
0619     cmd->hwq_index = hwq_index;
0620 
0621     cmd->sa.ioasc = 0;
0622     cmd->rcb.ctx_id = hwq->ctx_hndl;
0623     cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
0624     cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
0625     cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
0626 
0627     if (scp->sc_data_direction == DMA_TO_DEVICE)
0628         req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
0629 
0630     cmd->rcb.req_flags = req_flags;
0631     memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
0632 
0633     rc = afu->send_cmd(afu, cmd);
0634     atomic_dec(&afu->cmds_active);
0635 out:
0636     return rc;
0637 }
0638 
0639 /**
0640  * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
0641  * @cfg:    Internal structure associated with the host.
0642  */
0643 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
0644 {
0645     struct pci_dev *pdev = cfg->dev;
0646 
0647     if (pci_channel_offline(pdev))
0648         wait_event_timeout(cfg->reset_waitq,
0649                    !pci_channel_offline(pdev),
0650                    CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
0651 }
0652 
0653 /**
0654  * free_mem() - free memory associated with the AFU
0655  * @cfg:    Internal structure associated with the host.
0656  */
0657 static void free_mem(struct cxlflash_cfg *cfg)
0658 {
0659     struct afu *afu = cfg->afu;
0660 
0661     if (cfg->afu) {
0662         free_pages((ulong)afu, get_order(sizeof(struct afu)));
0663         cfg->afu = NULL;
0664     }
0665 }
0666 
0667 /**
0668  * cxlflash_reset_sync() - synchronizing point for asynchronous resets
0669  * @cfg:    Internal structure associated with the host.
0670  */
0671 static void cxlflash_reset_sync(struct cxlflash_cfg *cfg)
0672 {
0673     if (cfg->async_reset_cookie == 0)
0674         return;
0675 
0676     /* Wait until all async calls prior to this cookie have completed */
0677     async_synchronize_cookie(cfg->async_reset_cookie + 1);
0678     cfg->async_reset_cookie = 0;
0679 }
0680 
0681 /**
0682  * stop_afu() - stops the AFU command timers and unmaps the MMIO space
0683  * @cfg:    Internal structure associated with the host.
0684  *
0685  * Safe to call with AFU in a partially allocated/initialized state.
0686  *
0687  * Cancels scheduled worker threads, waits for any active internal AFU
0688  * commands to timeout, disables IRQ polling and then unmaps the MMIO space.
0689  */
0690 static void stop_afu(struct cxlflash_cfg *cfg)
0691 {
0692     struct afu *afu = cfg->afu;
0693     struct hwq *hwq;
0694     int i;
0695 
0696     cancel_work_sync(&cfg->work_q);
0697     if (!current_is_async())
0698         cxlflash_reset_sync(cfg);
0699 
0700     if (likely(afu)) {
0701         while (atomic_read(&afu->cmds_active))
0702             ssleep(1);
0703 
0704         if (afu_is_irqpoll_enabled(afu)) {
0705             for (i = 0; i < afu->num_hwqs; i++) {
0706                 hwq = get_hwq(afu, i);
0707 
0708                 irq_poll_disable(&hwq->irqpoll);
0709             }
0710         }
0711 
0712         if (likely(afu->afu_map)) {
0713             cfg->ops->psa_unmap(afu->afu_map);
0714             afu->afu_map = NULL;
0715         }
0716     }
0717 }
0718 
0719 /**
0720  * term_intr() - disables all AFU interrupts
0721  * @cfg:    Internal structure associated with the host.
0722  * @level:  Depth of allocation, where to begin waterfall tear down.
0723  * @index:  Index of the hardware queue.
0724  *
0725  * Safe to call with AFU/MC in partially allocated/initialized state.
0726  */
0727 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level,
0728               u32 index)
0729 {
0730     struct afu *afu = cfg->afu;
0731     struct device *dev = &cfg->dev->dev;
0732     struct hwq *hwq;
0733 
0734     if (!afu) {
0735         dev_err(dev, "%s: returning with NULL afu\n", __func__);
0736         return;
0737     }
0738 
0739     hwq = get_hwq(afu, index);
0740 
0741     if (!hwq->ctx_cookie) {
0742         dev_err(dev, "%s: returning with NULL MC\n", __func__);
0743         return;
0744     }
0745 
0746     switch (level) {
0747     case UNMAP_THREE:
0748         /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
0749         if (index == PRIMARY_HWQ)
0750             cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq);
0751         fallthrough;
0752     case UNMAP_TWO:
0753         cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq);
0754         fallthrough;
0755     case UNMAP_ONE:
0756         cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq);
0757         fallthrough;
0758     case FREE_IRQ:
0759         cfg->ops->free_afu_irqs(hwq->ctx_cookie);
0760         fallthrough;
0761     case UNDO_NOOP:
0762         /* No action required */
0763         break;
0764     }
0765 }
0766 
0767 /**
0768  * term_mc() - terminates the master context
0769  * @cfg:    Internal structure associated with the host.
0770  * @index:  Index of the hardware queue.
0771  *
0772  * Safe to call with AFU/MC in partially allocated/initialized state.
0773  */
0774 static void term_mc(struct cxlflash_cfg *cfg, u32 index)
0775 {
0776     struct afu *afu = cfg->afu;
0777     struct device *dev = &cfg->dev->dev;
0778     struct hwq *hwq;
0779     ulong lock_flags;
0780 
0781     if (!afu) {
0782         dev_err(dev, "%s: returning with NULL afu\n", __func__);
0783         return;
0784     }
0785 
0786     hwq = get_hwq(afu, index);
0787 
0788     if (!hwq->ctx_cookie) {
0789         dev_err(dev, "%s: returning with NULL MC\n", __func__);
0790         return;
0791     }
0792 
0793     WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie));
0794     if (index != PRIMARY_HWQ)
0795         WARN_ON(cfg->ops->release_context(hwq->ctx_cookie));
0796     hwq->ctx_cookie = NULL;
0797 
0798     spin_lock_irqsave(&hwq->hrrq_slock, lock_flags);
0799     hwq->hrrq_online = false;
0800     spin_unlock_irqrestore(&hwq->hrrq_slock, lock_flags);
0801 
0802     spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
0803     flush_pending_cmds(hwq);
0804     spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
0805 }
0806 
0807 /**
0808  * term_afu() - terminates the AFU
0809  * @cfg:    Internal structure associated with the host.
0810  *
0811  * Safe to call with AFU/MC in partially allocated/initialized state.
0812  */
0813 static void term_afu(struct cxlflash_cfg *cfg)
0814 {
0815     struct device *dev = &cfg->dev->dev;
0816     int k;
0817 
0818     /*
0819      * Tear down is carefully orchestrated to ensure
0820      * no interrupts can come in when the problem state
0821      * area is unmapped.
0822      *
0823      * 1) Disable all AFU interrupts for each master
0824      * 2) Unmap the problem state area
0825      * 3) Stop each master context
0826      */
0827     for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
0828         term_intr(cfg, UNMAP_THREE, k);
0829 
0830     stop_afu(cfg);
0831 
0832     for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
0833         term_mc(cfg, k);
0834 
0835     dev_dbg(dev, "%s: returning\n", __func__);
0836 }
0837 
0838 /**
0839  * notify_shutdown() - notifies device of pending shutdown
0840  * @cfg:    Internal structure associated with the host.
0841  * @wait:   Whether to wait for shutdown processing to complete.
0842  *
0843  * This function will notify the AFU that the adapter is being shutdown
0844  * and will wait for shutdown processing to complete if wait is true.
0845  * This notification should flush pending I/Os to the device and halt
0846  * further I/Os until the next AFU reset is issued and device restarted.
0847  */
0848 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
0849 {
0850     struct afu *afu = cfg->afu;
0851     struct device *dev = &cfg->dev->dev;
0852     struct dev_dependent_vals *ddv;
0853     __be64 __iomem *fc_port_regs;
0854     u64 reg, status;
0855     int i, retry_cnt = 0;
0856 
0857     ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
0858     if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
0859         return;
0860 
0861     if (!afu || !afu->afu_map) {
0862         dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
0863         return;
0864     }
0865 
0866     /* Notify AFU */
0867     for (i = 0; i < cfg->num_fc_ports; i++) {
0868         fc_port_regs = get_fc_port_regs(cfg, i);
0869 
0870         reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
0871         reg |= SISL_FC_SHUTDOWN_NORMAL;
0872         writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
0873     }
0874 
0875     if (!wait)
0876         return;
0877 
0878     /* Wait up to 1.5 seconds for shutdown processing to complete */
0879     for (i = 0; i < cfg->num_fc_ports; i++) {
0880         fc_port_regs = get_fc_port_regs(cfg, i);
0881         retry_cnt = 0;
0882 
0883         while (true) {
0884             status = readq_be(&fc_port_regs[FC_STATUS / 8]);
0885             if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
0886                 break;
0887             if (++retry_cnt >= MC_RETRY_CNT) {
0888                 dev_dbg(dev, "%s: port %d shutdown processing "
0889                     "not yet completed\n", __func__, i);
0890                 break;
0891             }
0892             msleep(100 * retry_cnt);
0893         }
0894     }
0895 }
0896 
0897 /**
0898  * cxlflash_get_minor() - gets the first available minor number
0899  *
0900  * Return: Unique minor number that can be used to create the character device.
0901  */
0902 static int cxlflash_get_minor(void)
0903 {
0904     int minor;
0905     long bit;
0906 
0907     bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
0908     if (bit >= CXLFLASH_MAX_ADAPTERS)
0909         return -1;
0910 
0911     minor = bit & MINORMASK;
0912     set_bit(minor, cxlflash_minor);
0913     return minor;
0914 }
0915 
0916 /**
0917  * cxlflash_put_minor() - releases the minor number
0918  * @minor:  Minor number that is no longer needed.
0919  */
0920 static void cxlflash_put_minor(int minor)
0921 {
0922     clear_bit(minor, cxlflash_minor);
0923 }
0924 
0925 /**
0926  * cxlflash_release_chrdev() - release the character device for the host
0927  * @cfg:    Internal structure associated with the host.
0928  */
0929 static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg)
0930 {
0931     device_unregister(cfg->chardev);
0932     cfg->chardev = NULL;
0933     cdev_del(&cfg->cdev);
0934     cxlflash_put_minor(MINOR(cfg->cdev.dev));
0935 }
0936 
0937 /**
0938  * cxlflash_remove() - PCI entry point to tear down host
0939  * @pdev:   PCI device associated with the host.
0940  *
0941  * Safe to use as a cleanup in partially allocated/initialized state. Note that
0942  * the reset_waitq is flushed as part of the stop/termination of user contexts.
0943  */
0944 static void cxlflash_remove(struct pci_dev *pdev)
0945 {
0946     struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
0947     struct device *dev = &pdev->dev;
0948     ulong lock_flags;
0949 
0950     if (!pci_is_enabled(pdev)) {
0951         dev_dbg(dev, "%s: Device is disabled\n", __func__);
0952         return;
0953     }
0954 
0955     /* Yield to running recovery threads before continuing with remove */
0956     wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
0957                      cfg->state != STATE_PROBING);
0958     spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
0959     if (cfg->tmf_active)
0960         wait_event_interruptible_lock_irq(cfg->tmf_waitq,
0961                           !cfg->tmf_active,
0962                           cfg->tmf_slock);
0963     spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
0964 
0965     /* Notify AFU and wait for shutdown processing to complete */
0966     notify_shutdown(cfg, true);
0967 
0968     cfg->state = STATE_FAILTERM;
0969     cxlflash_stop_term_user_contexts(cfg);
0970 
0971     switch (cfg->init_state) {
0972     case INIT_STATE_CDEV:
0973         cxlflash_release_chrdev(cfg);
0974         fallthrough;
0975     case INIT_STATE_SCSI:
0976         cxlflash_term_local_luns(cfg);
0977         scsi_remove_host(cfg->host);
0978         fallthrough;
0979     case INIT_STATE_AFU:
0980         term_afu(cfg);
0981         fallthrough;
0982     case INIT_STATE_PCI:
0983         cfg->ops->destroy_afu(cfg->afu_cookie);
0984         pci_disable_device(pdev);
0985         fallthrough;
0986     case INIT_STATE_NONE:
0987         free_mem(cfg);
0988         scsi_host_put(cfg->host);
0989         break;
0990     }
0991 
0992     dev_dbg(dev, "%s: returning\n", __func__);
0993 }
0994 
0995 /**
0996  * alloc_mem() - allocates the AFU and its command pool
0997  * @cfg:    Internal structure associated with the host.
0998  *
0999  * A partially allocated state remains on failure.
1000  *
1001  * Return:
1002  *  0 on success
1003  *  -ENOMEM on failure to allocate memory
1004  */
1005 static int alloc_mem(struct cxlflash_cfg *cfg)
1006 {
1007     int rc = 0;
1008     struct device *dev = &cfg->dev->dev;
1009 
1010     /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
1011     cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1012                         get_order(sizeof(struct afu)));
1013     if (unlikely(!cfg->afu)) {
1014         dev_err(dev, "%s: cannot get %d free pages\n",
1015             __func__, get_order(sizeof(struct afu)));
1016         rc = -ENOMEM;
1017         goto out;
1018     }
1019     cfg->afu->parent = cfg;
1020     cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS;
1021     cfg->afu->afu_map = NULL;
1022 out:
1023     return rc;
1024 }
1025 
1026 /**
1027  * init_pci() - initializes the host as a PCI device
1028  * @cfg:    Internal structure associated with the host.
1029  *
1030  * Return: 0 on success, -errno on failure
1031  */
1032 static int init_pci(struct cxlflash_cfg *cfg)
1033 {
1034     struct pci_dev *pdev = cfg->dev;
1035     struct device *dev = &cfg->dev->dev;
1036     int rc = 0;
1037 
1038     rc = pci_enable_device(pdev);
1039     if (rc || pci_channel_offline(pdev)) {
1040         if (pci_channel_offline(pdev)) {
1041             cxlflash_wait_for_pci_err_recovery(cfg);
1042             rc = pci_enable_device(pdev);
1043         }
1044 
1045         if (rc) {
1046             dev_err(dev, "%s: Cannot enable adapter\n", __func__);
1047             cxlflash_wait_for_pci_err_recovery(cfg);
1048             goto out;
1049         }
1050     }
1051 
1052 out:
1053     dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1054     return rc;
1055 }
1056 
1057 /**
1058  * init_scsi() - adds the host to the SCSI stack and kicks off host scan
1059  * @cfg:    Internal structure associated with the host.
1060  *
1061  * Return: 0 on success, -errno on failure
1062  */
1063 static int init_scsi(struct cxlflash_cfg *cfg)
1064 {
1065     struct pci_dev *pdev = cfg->dev;
1066     struct device *dev = &cfg->dev->dev;
1067     int rc = 0;
1068 
1069     rc = scsi_add_host(cfg->host, &pdev->dev);
1070     if (rc) {
1071         dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
1072         goto out;
1073     }
1074 
1075     scsi_scan_host(cfg->host);
1076 
1077 out:
1078     dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1079     return rc;
1080 }
1081 
1082 /**
1083  * set_port_online() - transitions the specified host FC port to online state
1084  * @fc_regs:    Top of MMIO region defined for specified port.
1085  *
1086  * The provided MMIO region must be mapped prior to call. Online state means
1087  * that the FC link layer has synced, completed the handshaking process, and
1088  * is ready for login to start.
1089  */
1090 static void set_port_online(__be64 __iomem *fc_regs)
1091 {
1092     u64 cmdcfg;
1093 
1094     cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1095     cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
1096     cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE);   /* set ON_LINE */
1097     writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1098 }
1099 
1100 /**
1101  * set_port_offline() - transitions the specified host FC port to offline state
1102  * @fc_regs:    Top of MMIO region defined for specified port.
1103  *
1104  * The provided MMIO region must be mapped prior to call.
1105  */
1106 static void set_port_offline(__be64 __iomem *fc_regs)
1107 {
1108     u64 cmdcfg;
1109 
1110     cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1111     cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE);  /* clear ON_LINE */
1112     cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE);  /* set OFF_LINE */
1113     writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1114 }
1115 
1116 /**
1117  * wait_port_online() - waits for the specified host FC port come online
1118  * @fc_regs:    Top of MMIO region defined for specified port.
1119  * @delay_us:   Number of microseconds to delay between reading port status.
1120  * @nretry: Number of cycles to retry reading port status.
1121  *
1122  * The provided MMIO region must be mapped prior to call. This will timeout
1123  * when the cable is not plugged in.
1124  *
1125  * Return:
1126  *  TRUE (1) when the specified port is online
1127  *  FALSE (0) when the specified port fails to come online after timeout
1128  */
1129 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1130 {
1131     u64 status;
1132 
1133     WARN_ON(delay_us < 1000);
1134 
1135     do {
1136         msleep(delay_us / 1000);
1137         status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1138         if (status == U64_MAX)
1139             nretry /= 2;
1140     } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
1141          nretry--);
1142 
1143     return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
1144 }
1145 
1146 /**
1147  * wait_port_offline() - waits for the specified host FC port go offline
1148  * @fc_regs:    Top of MMIO region defined for specified port.
1149  * @delay_us:   Number of microseconds to delay between reading port status.
1150  * @nretry: Number of cycles to retry reading port status.
1151  *
1152  * The provided MMIO region must be mapped prior to call.
1153  *
1154  * Return:
1155  *  TRUE (1) when the specified port is offline
1156  *  FALSE (0) when the specified port fails to go offline after timeout
1157  */
1158 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1159 {
1160     u64 status;
1161 
1162     WARN_ON(delay_us < 1000);
1163 
1164     do {
1165         msleep(delay_us / 1000);
1166         status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1167         if (status == U64_MAX)
1168             nretry /= 2;
1169     } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1170          nretry--);
1171 
1172     return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1173 }
1174 
1175 /**
1176  * afu_set_wwpn() - configures the WWPN for the specified host FC port
1177  * @afu:    AFU associated with the host that owns the specified FC port.
1178  * @port:   Port number being configured.
1179  * @fc_regs:    Top of MMIO region defined for specified port.
1180  * @wwpn:   The world-wide-port-number previously discovered for port.
1181  *
1182  * The provided MMIO region must be mapped prior to call. As part of the
1183  * sequence to configure the WWPN, the port is toggled offline and then back
1184  * online. This toggling action can cause this routine to delay up to a few
1185  * seconds. When configured to use the internal LUN feature of the AFU, a
1186  * failure to come online is overridden.
1187  */
1188 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1189              u64 wwpn)
1190 {
1191     struct cxlflash_cfg *cfg = afu->parent;
1192     struct device *dev = &cfg->dev->dev;
1193 
1194     set_port_offline(fc_regs);
1195     if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1196                    FC_PORT_STATUS_RETRY_CNT)) {
1197         dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
1198             __func__, port);
1199     }
1200 
1201     writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1202 
1203     set_port_online(fc_regs);
1204     if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1205                   FC_PORT_STATUS_RETRY_CNT)) {
1206         dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
1207             __func__, port);
1208     }
1209 }
1210 
1211 /**
1212  * afu_link_reset() - resets the specified host FC port
1213  * @afu:    AFU associated with the host that owns the specified FC port.
1214  * @port:   Port number being configured.
1215  * @fc_regs:    Top of MMIO region defined for specified port.
1216  *
1217  * The provided MMIO region must be mapped prior to call. The sequence to
1218  * reset the port involves toggling it offline and then back online. This
1219  * action can cause this routine to delay up to a few seconds. An effort
1220  * is made to maintain link with the device by switching to host to use
1221  * the alternate port exclusively while the reset takes place.
1222  * failure to come online is overridden.
1223  */
1224 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
1225 {
1226     struct cxlflash_cfg *cfg = afu->parent;
1227     struct device *dev = &cfg->dev->dev;
1228     u64 port_sel;
1229 
1230     /* first switch the AFU to the other links, if any */
1231     port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1232     port_sel &= ~(1ULL << port);
1233     writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1234     cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1235 
1236     set_port_offline(fc_regs);
1237     if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1238                    FC_PORT_STATUS_RETRY_CNT))
1239         dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1240             __func__, port);
1241 
1242     set_port_online(fc_regs);
1243     if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1244                   FC_PORT_STATUS_RETRY_CNT))
1245         dev_err(dev, "%s: wait on port %d to go online timed out\n",
1246             __func__, port);
1247 
1248     /* switch back to include this port */
1249     port_sel |= (1ULL << port);
1250     writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1251     cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1252 
1253     dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
1254 }
1255 
1256 /**
1257  * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1258  * @afu:    AFU associated with the host.
1259  */
1260 static void afu_err_intr_init(struct afu *afu)
1261 {
1262     struct cxlflash_cfg *cfg = afu->parent;
1263     __be64 __iomem *fc_port_regs;
1264     int i;
1265     struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
1266     u64 reg;
1267 
1268     /* global async interrupts: AFU clears afu_ctrl on context exit
1269      * if async interrupts were sent to that context. This prevents
1270      * the AFU form sending further async interrupts when
1271      * there is
1272      * nobody to receive them.
1273      */
1274 
1275     /* mask all */
1276     writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1277     /* set LISN# to send and point to primary master context */
1278     reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1279 
1280     if (afu->internal_lun)
1281         reg |= 1;   /* Bit 63 indicates local lun */
1282     writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1283     /* clear all */
1284     writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1285     /* unmask bits that are of interest */
1286     /* note: afu can send an interrupt after this step */
1287     writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1288     /* clear again in case a bit came on after previous clear but before */
1289     /* unmask */
1290     writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1291 
1292     /* Clear/Set internal lun bits */
1293     fc_port_regs = get_fc_port_regs(cfg, 0);
1294     reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
1295     reg &= SISL_FC_INTERNAL_MASK;
1296     if (afu->internal_lun)
1297         reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1298     writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
1299 
1300     /* now clear FC errors */
1301     for (i = 0; i < cfg->num_fc_ports; i++) {
1302         fc_port_regs = get_fc_port_regs(cfg, i);
1303 
1304         writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
1305         writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1306     }
1307 
1308     /* sync interrupts for master's IOARRIN write */
1309     /* note that unlike asyncs, there can be no pending sync interrupts */
1310     /* at this time (this is a fresh context and master has not written */
1311     /* IOARRIN yet), so there is nothing to clear. */
1312 
1313     /* set LISN#, it is always sent to the context that wrote IOARRIN */
1314     for (i = 0; i < afu->num_hwqs; i++) {
1315         hwq = get_hwq(afu, i);
1316 
1317         reg = readq_be(&hwq->host_map->ctx_ctrl);
1318         WARN_ON((reg & SISL_CTX_CTRL_LISN_MASK) != 0);
1319         reg |= SISL_MSI_SYNC_ERROR;
1320         writeq_be(reg, &hwq->host_map->ctx_ctrl);
1321         writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask);
1322     }
1323 }
1324 
1325 /**
1326  * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1327  * @irq:    Interrupt number.
1328  * @data:   Private data provided at interrupt registration, the AFU.
1329  *
1330  * Return: Always return IRQ_HANDLED.
1331  */
1332 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1333 {
1334     struct hwq *hwq = (struct hwq *)data;
1335     struct cxlflash_cfg *cfg = hwq->afu->parent;
1336     struct device *dev = &cfg->dev->dev;
1337     u64 reg;
1338     u64 reg_unmasked;
1339 
1340     reg = readq_be(&hwq->host_map->intr_status);
1341     reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1342 
1343     if (reg_unmasked == 0UL) {
1344         dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1345             __func__, reg);
1346         goto cxlflash_sync_err_irq_exit;
1347     }
1348 
1349     dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1350         __func__, reg);
1351 
1352     writeq_be(reg_unmasked, &hwq->host_map->intr_clear);
1353 
1354 cxlflash_sync_err_irq_exit:
1355     return IRQ_HANDLED;
1356 }
1357 
1358 /**
1359  * process_hrrq() - process the read-response queue
1360  * @hwq:    HWQ associated with the host.
1361  * @doneq:  Queue of commands harvested from the RRQ.
1362  * @budget: Threshold of RRQ entries to process.
1363  *
1364  * This routine must be called holding the disabled RRQ spin lock.
1365  *
1366  * Return: The number of entries processed.
1367  */
1368 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget)
1369 {
1370     struct afu *afu = hwq->afu;
1371     struct afu_cmd *cmd;
1372     struct sisl_ioasa *ioasa;
1373     struct sisl_ioarcb *ioarcb;
1374     bool toggle = hwq->toggle;
1375     int num_hrrq = 0;
1376     u64 entry,
1377         *hrrq_start = hwq->hrrq_start,
1378         *hrrq_end = hwq->hrrq_end,
1379         *hrrq_curr = hwq->hrrq_curr;
1380 
1381     /* Process ready RRQ entries up to the specified budget (if any) */
1382     while (true) {
1383         entry = *hrrq_curr;
1384 
1385         if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1386             break;
1387 
1388         entry &= ~SISL_RESP_HANDLE_T_BIT;
1389 
1390         if (afu_is_sq_cmd_mode(afu)) {
1391             ioasa = (struct sisl_ioasa *)entry;
1392             cmd = container_of(ioasa, struct afu_cmd, sa);
1393         } else {
1394             ioarcb = (struct sisl_ioarcb *)entry;
1395             cmd = container_of(ioarcb, struct afu_cmd, rcb);
1396         }
1397 
1398         list_add_tail(&cmd->queue, doneq);
1399 
1400         /* Advance to next entry or wrap and flip the toggle bit */
1401         if (hrrq_curr < hrrq_end)
1402             hrrq_curr++;
1403         else {
1404             hrrq_curr = hrrq_start;
1405             toggle ^= SISL_RESP_HANDLE_T_BIT;
1406         }
1407 
1408         atomic_inc(&hwq->hsq_credits);
1409         num_hrrq++;
1410 
1411         if (budget > 0 && num_hrrq >= budget)
1412             break;
1413     }
1414 
1415     hwq->hrrq_curr = hrrq_curr;
1416     hwq->toggle = toggle;
1417 
1418     return num_hrrq;
1419 }
1420 
1421 /**
1422  * process_cmd_doneq() - process a queue of harvested RRQ commands
1423  * @doneq:  Queue of completed commands.
1424  *
1425  * Note that upon return the queue can no longer be trusted.
1426  */
1427 static void process_cmd_doneq(struct list_head *doneq)
1428 {
1429     struct afu_cmd *cmd, *tmp;
1430 
1431     WARN_ON(list_empty(doneq));
1432 
1433     list_for_each_entry_safe(cmd, tmp, doneq, queue)
1434         cmd_complete(cmd);
1435 }
1436 
1437 /**
1438  * cxlflash_irqpoll() - process a queue of harvested RRQ commands
1439  * @irqpoll:    IRQ poll structure associated with queue to poll.
1440  * @budget: Threshold of RRQ entries to process per poll.
1441  *
1442  * Return: The number of entries processed.
1443  */
1444 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
1445 {
1446     struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll);
1447     unsigned long hrrq_flags;
1448     LIST_HEAD(doneq);
1449     int num_entries = 0;
1450 
1451     spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1452 
1453     num_entries = process_hrrq(hwq, &doneq, budget);
1454     if (num_entries < budget)
1455         irq_poll_complete(irqpoll);
1456 
1457     spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1458 
1459     process_cmd_doneq(&doneq);
1460     return num_entries;
1461 }
1462 
1463 /**
1464  * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1465  * @irq:    Interrupt number.
1466  * @data:   Private data provided at interrupt registration, the AFU.
1467  *
1468  * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
1469  */
1470 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1471 {
1472     struct hwq *hwq = (struct hwq *)data;
1473     struct afu *afu = hwq->afu;
1474     unsigned long hrrq_flags;
1475     LIST_HEAD(doneq);
1476     int num_entries = 0;
1477 
1478     spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1479 
1480     /* Silently drop spurious interrupts when queue is not online */
1481     if (!hwq->hrrq_online) {
1482         spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1483         return IRQ_HANDLED;
1484     }
1485 
1486     if (afu_is_irqpoll_enabled(afu)) {
1487         irq_poll_sched(&hwq->irqpoll);
1488         spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1489         return IRQ_HANDLED;
1490     }
1491 
1492     num_entries = process_hrrq(hwq, &doneq, -1);
1493     spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1494 
1495     if (num_entries == 0)
1496         return IRQ_NONE;
1497 
1498     process_cmd_doneq(&doneq);
1499     return IRQ_HANDLED;
1500 }
1501 
1502 /*
1503  * Asynchronous interrupt information table
1504  *
1505  * NOTE:
1506  *  - Order matters here as this array is indexed by bit position.
1507  *
1508  *  - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
1509  *    as complex and complains due to a lack of parentheses/braces.
1510  */
1511 #define ASTATUS_FC(_a, _b, _c, _d)                   \
1512     { SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
1513 
1514 #define BUILD_SISL_ASTATUS_FC_PORT(_a)                   \
1515     ASTATUS_FC(_a, LINK_UP, "link up", 0),               \
1516     ASTATUS_FC(_a, LINK_DN, "link down", 0),             \
1517     ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST),        \
1518     ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR),        \
1519     ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
1520     ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET),     \
1521     ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0),        \
1522     ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET)
1523 
1524 static const struct asyc_intr_info ainfo[] = {
1525     BUILD_SISL_ASTATUS_FC_PORT(1),
1526     BUILD_SISL_ASTATUS_FC_PORT(0),
1527     BUILD_SISL_ASTATUS_FC_PORT(3),
1528     BUILD_SISL_ASTATUS_FC_PORT(2)
1529 };
1530 
1531 /**
1532  * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1533  * @irq:    Interrupt number.
1534  * @data:   Private data provided at interrupt registration, the AFU.
1535  *
1536  * Return: Always return IRQ_HANDLED.
1537  */
1538 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1539 {
1540     struct hwq *hwq = (struct hwq *)data;
1541     struct afu *afu = hwq->afu;
1542     struct cxlflash_cfg *cfg = afu->parent;
1543     struct device *dev = &cfg->dev->dev;
1544     const struct asyc_intr_info *info;
1545     struct sisl_global_map __iomem *global = &afu->afu_map->global;
1546     __be64 __iomem *fc_port_regs;
1547     u64 reg_unmasked;
1548     u64 reg;
1549     u64 bit;
1550     u8 port;
1551 
1552     reg = readq_be(&global->regs.aintr_status);
1553     reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1554 
1555     if (unlikely(reg_unmasked == 0)) {
1556         dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
1557             __func__, reg);
1558         goto out;
1559     }
1560 
1561     /* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1562     writeq_be(reg_unmasked, &global->regs.aintr_clear);
1563 
1564     /* Check each bit that is on */
1565     for_each_set_bit(bit, (ulong *)&reg_unmasked, BITS_PER_LONG) {
1566         if (unlikely(bit >= ARRAY_SIZE(ainfo))) {
1567             WARN_ON_ONCE(1);
1568             continue;
1569         }
1570 
1571         info = &ainfo[bit];
1572         if (unlikely(info->status != 1ULL << bit)) {
1573             WARN_ON_ONCE(1);
1574             continue;
1575         }
1576 
1577         port = info->port;
1578         fc_port_regs = get_fc_port_regs(cfg, port);
1579 
1580         dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
1581             __func__, port, info->desc,
1582                readq_be(&fc_port_regs[FC_STATUS / 8]));
1583 
1584         /*
1585          * Do link reset first, some OTHER errors will set FC_ERROR
1586          * again if cleared before or w/o a reset
1587          */
1588         if (info->action & LINK_RESET) {
1589             dev_err(dev, "%s: FC Port %d: resetting link\n",
1590                 __func__, port);
1591             cfg->lr_state = LINK_RESET_REQUIRED;
1592             cfg->lr_port = port;
1593             schedule_work(&cfg->work_q);
1594         }
1595 
1596         if (info->action & CLR_FC_ERROR) {
1597             reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
1598 
1599             /*
1600              * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1601              * should be the same and tracing one is sufficient.
1602              */
1603 
1604             dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
1605                 __func__, port, reg);
1606 
1607             writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
1608             writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1609         }
1610 
1611         if (info->action & SCAN_HOST) {
1612             atomic_inc(&cfg->scan_host_needed);
1613             schedule_work(&cfg->work_q);
1614         }
1615     }
1616 
1617 out:
1618     return IRQ_HANDLED;
1619 }
1620 
1621 /**
1622  * read_vpd() - obtains the WWPNs from VPD
1623  * @cfg:    Internal structure associated with the host.
1624  * @wwpn:   Array of size MAX_FC_PORTS to pass back WWPNs
1625  *
1626  * Return: 0 on success, -errno on failure
1627  */
1628 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1629 {
1630     struct device *dev = &cfg->dev->dev;
1631     struct pci_dev *pdev = cfg->dev;
1632     int i, k, rc = 0;
1633     unsigned int kw_size;
1634     ssize_t vpd_size;
1635     char vpd_data[CXLFLASH_VPD_LEN];
1636     char tmp_buf[WWPN_BUF_LEN] = { 0 };
1637     const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *)
1638                         cfg->dev_id->driver_data;
1639     const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED;
1640     const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
1641 
1642     /* Get the VPD data from the device */
1643     vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
1644     if (unlikely(vpd_size <= 0)) {
1645         dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1646             __func__, vpd_size);
1647         rc = -ENODEV;
1648         goto out;
1649     }
1650 
1651     /*
1652      * Find the offset of the WWPN tag within the read only
1653      * VPD data and validate the found field (partials are
1654      * no good to us). Convert the ASCII data to an integer
1655      * value. Note that we must copy to a temporary buffer
1656      * because the conversion service requires that the ASCII
1657      * string be terminated.
1658      *
1659      * Allow for WWPN not being found for all devices, setting
1660      * the returned WWPN to zero when not found. Notify with a
1661      * log error for cards that should have had WWPN keywords
1662      * in the VPD - cards requiring WWPN will not have their
1663      * ports programmed and operate in an undefined state.
1664      */
1665     for (k = 0; k < cfg->num_fc_ports; k++) {
1666         i = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
1667                          wwpn_vpd_tags[k], &kw_size);
1668         if (i == -ENOENT) {
1669             if (wwpn_vpd_required)
1670                 dev_err(dev, "%s: Port %d WWPN not found\n",
1671                     __func__, k);
1672             wwpn[k] = 0ULL;
1673             continue;
1674         }
1675 
1676         if (i < 0 || kw_size != WWPN_LEN) {
1677             dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1678                 __func__, k);
1679             rc = -ENODEV;
1680             goto out;
1681         }
1682 
1683         memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1684         rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1685         if (unlikely(rc)) {
1686             dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1687                 __func__, k);
1688             rc = -ENODEV;
1689             goto out;
1690         }
1691 
1692         dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
1693     }
1694 
1695 out:
1696     dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1697     return rc;
1698 }
1699 
1700 /**
1701  * init_pcr() - initialize the provisioning and control registers
1702  * @cfg:    Internal structure associated with the host.
1703  *
1704  * Also sets up fast access to the mapped registers and initializes AFU
1705  * command fields that never change.
1706  */
1707 static void init_pcr(struct cxlflash_cfg *cfg)
1708 {
1709     struct afu *afu = cfg->afu;
1710     struct sisl_ctrl_map __iomem *ctrl_map;
1711     struct hwq *hwq;
1712     void *cookie;
1713     int i;
1714 
1715     for (i = 0; i < MAX_CONTEXT; i++) {
1716         ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1717         /* Disrupt any clients that could be running */
1718         /* e.g. clients that survived a master restart */
1719         writeq_be(0, &ctrl_map->rht_start);
1720         writeq_be(0, &ctrl_map->rht_cnt_id);
1721         writeq_be(0, &ctrl_map->ctx_cap);
1722     }
1723 
1724     /* Copy frequently used fields into hwq */
1725     for (i = 0; i < afu->num_hwqs; i++) {
1726         hwq = get_hwq(afu, i);
1727         cookie = hwq->ctx_cookie;
1728 
1729         hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie);
1730         hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host;
1731         hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl;
1732 
1733         /* Program the Endian Control for the master context */
1734         writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl);
1735     }
1736 }
1737 
1738 /**
1739  * init_global() - initialize AFU global registers
1740  * @cfg:    Internal structure associated with the host.
1741  */
1742 static int init_global(struct cxlflash_cfg *cfg)
1743 {
1744     struct afu *afu = cfg->afu;
1745     struct device *dev = &cfg->dev->dev;
1746     struct hwq *hwq;
1747     struct sisl_host_map __iomem *hmap;
1748     __be64 __iomem *fc_port_regs;
1749     u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */
1750     int i = 0, num_ports = 0;
1751     int rc = 0;
1752     int j;
1753     void *ctx;
1754     u64 reg;
1755 
1756     rc = read_vpd(cfg, &wwpn[0]);
1757     if (rc) {
1758         dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1759         goto out;
1760     }
1761 
1762     /* Set up RRQ and SQ in HWQ for master issued cmds */
1763     for (i = 0; i < afu->num_hwqs; i++) {
1764         hwq = get_hwq(afu, i);
1765         hmap = hwq->host_map;
1766 
1767         writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start);
1768         writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end);
1769         hwq->hrrq_online = true;
1770 
1771         if (afu_is_sq_cmd_mode(afu)) {
1772             writeq_be((u64)hwq->hsq_start, &hmap->sq_start);
1773             writeq_be((u64)hwq->hsq_end, &hmap->sq_end);
1774         }
1775     }
1776 
1777     /* AFU configuration */
1778     reg = readq_be(&afu->afu_map->global.regs.afu_config);
1779     reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1780     /* enable all auto retry options and control endianness */
1781     /* leave others at default: */
1782     /* CTX_CAP write protected, mbox_r does not clear on read and */
1783     /* checker on if dual afu */
1784     writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1785 
1786     /* Global port select: select either port */
1787     if (afu->internal_lun) {
1788         /* Only use port 0 */
1789         writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1790         num_ports = 0;
1791     } else {
1792         writeq_be(PORT_MASK(cfg->num_fc_ports),
1793               &afu->afu_map->global.regs.afu_port_sel);
1794         num_ports = cfg->num_fc_ports;
1795     }
1796 
1797     for (i = 0; i < num_ports; i++) {
1798         fc_port_regs = get_fc_port_regs(cfg, i);
1799 
1800         /* Unmask all errors (but they are still masked at AFU) */
1801         writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
1802         /* Clear CRC error cnt & set a threshold */
1803         (void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
1804         writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
1805 
1806         /* Set WWPNs. If already programmed, wwpn[i] is 0 */
1807         if (wwpn[i] != 0)
1808             afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
1809         /* Programming WWPN back to back causes additional
1810          * offline/online transitions and a PLOGI
1811          */
1812         msleep(100);
1813     }
1814 
1815     if (afu_is_ocxl_lisn(afu)) {
1816         /* Set up the LISN effective address for each master */
1817         for (i = 0; i < afu->num_hwqs; i++) {
1818             hwq = get_hwq(afu, i);
1819             ctx = hwq->ctx_cookie;
1820 
1821             for (j = 0; j < hwq->num_irqs; j++) {
1822                 reg = cfg->ops->get_irq_objhndl(ctx, j);
1823                 writeq_be(reg, &hwq->ctrl_map->lisn_ea[j]);
1824             }
1825 
1826             reg = hwq->ctx_hndl;
1827             writeq_be(SISL_LISN_PASID(reg, reg),
1828                   &hwq->ctrl_map->lisn_pasid[0]);
1829             writeq_be(SISL_LISN_PASID(0UL, reg),
1830                   &hwq->ctrl_map->lisn_pasid[1]);
1831         }
1832     }
1833 
1834     /* Set up master's own CTX_CAP to allow real mode, host translation */
1835     /* tables, afu cmds and read/write GSCSI cmds. */
1836     /* First, unlock ctx_cap write by reading mbox */
1837     for (i = 0; i < afu->num_hwqs; i++) {
1838         hwq = get_hwq(afu, i);
1839 
1840         (void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */
1841         writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1842             SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1843             SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1844             &hwq->ctrl_map->ctx_cap);
1845     }
1846 
1847     /*
1848      * Determine write-same unmap support for host by evaluating the unmap
1849      * sector support bit of the context control register associated with
1850      * the primary hardware queue. Note that while this status is reflected
1851      * in a context register, the outcome can be assumed to be host-wide.
1852      */
1853     hwq = get_hwq(afu, PRIMARY_HWQ);
1854     reg = readq_be(&hwq->host_map->ctx_ctrl);
1855     if (reg & SISL_CTX_CTRL_UNMAP_SECTOR)
1856         cfg->ws_unmap = true;
1857 
1858     /* Initialize heartbeat */
1859     afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1860 out:
1861     return rc;
1862 }
1863 
1864 /**
1865  * start_afu() - initializes and starts the AFU
1866  * @cfg:    Internal structure associated with the host.
1867  */
1868 static int start_afu(struct cxlflash_cfg *cfg)
1869 {
1870     struct afu *afu = cfg->afu;
1871     struct device *dev = &cfg->dev->dev;
1872     struct hwq *hwq;
1873     int rc = 0;
1874     int i;
1875 
1876     init_pcr(cfg);
1877 
1878     /* Initialize each HWQ */
1879     for (i = 0; i < afu->num_hwqs; i++) {
1880         hwq = get_hwq(afu, i);
1881 
1882         /* After an AFU reset, RRQ entries are stale, clear them */
1883         memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry));
1884 
1885         /* Initialize RRQ pointers */
1886         hwq->hrrq_start = &hwq->rrq_entry[0];
1887         hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1];
1888         hwq->hrrq_curr = hwq->hrrq_start;
1889         hwq->toggle = 1;
1890 
1891         /* Initialize spin locks */
1892         spin_lock_init(&hwq->hrrq_slock);
1893         spin_lock_init(&hwq->hsq_slock);
1894 
1895         /* Initialize SQ */
1896         if (afu_is_sq_cmd_mode(afu)) {
1897             memset(&hwq->sq, 0, sizeof(hwq->sq));
1898             hwq->hsq_start = &hwq->sq[0];
1899             hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1];
1900             hwq->hsq_curr = hwq->hsq_start;
1901 
1902             atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1);
1903         }
1904 
1905         /* Initialize IRQ poll */
1906         if (afu_is_irqpoll_enabled(afu))
1907             irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight,
1908                       cxlflash_irqpoll);
1909 
1910     }
1911 
1912     rc = init_global(cfg);
1913 
1914     dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1915     return rc;
1916 }
1917 
1918 /**
1919  * init_intr() - setup interrupt handlers for the master context
1920  * @cfg:    Internal structure associated with the host.
1921  * @hwq:    Hardware queue to initialize.
1922  *
1923  * Return: 0 on success, -errno on failure
1924  */
1925 static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1926                  struct hwq *hwq)
1927 {
1928     struct device *dev = &cfg->dev->dev;
1929     void *ctx = hwq->ctx_cookie;
1930     int rc = 0;
1931     enum undo_level level = UNDO_NOOP;
1932     bool is_primary_hwq = (hwq->index == PRIMARY_HWQ);
1933     int num_irqs = hwq->num_irqs;
1934 
1935     rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs);
1936     if (unlikely(rc)) {
1937         dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
1938             __func__, rc);
1939         level = UNDO_NOOP;
1940         goto out;
1941     }
1942 
1943     rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq,
1944                    "SISL_MSI_SYNC_ERROR");
1945     if (unlikely(rc <= 0)) {
1946         dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
1947         level = FREE_IRQ;
1948         goto out;
1949     }
1950 
1951     rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq,
1952                    "SISL_MSI_RRQ_UPDATED");
1953     if (unlikely(rc <= 0)) {
1954         dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
1955         level = UNMAP_ONE;
1956         goto out;
1957     }
1958 
1959     /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
1960     if (!is_primary_hwq)
1961         goto out;
1962 
1963     rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq,
1964                    "SISL_MSI_ASYNC_ERROR");
1965     if (unlikely(rc <= 0)) {
1966         dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
1967         level = UNMAP_TWO;
1968         goto out;
1969     }
1970 out:
1971     return level;
1972 }
1973 
1974 /**
1975  * init_mc() - create and register as the master context
1976  * @cfg:    Internal structure associated with the host.
1977  * @index:  HWQ Index of the master context.
1978  *
1979  * Return: 0 on success, -errno on failure
1980  */
1981 static int init_mc(struct cxlflash_cfg *cfg, u32 index)
1982 {
1983     void *ctx;
1984     struct device *dev = &cfg->dev->dev;
1985     struct hwq *hwq = get_hwq(cfg->afu, index);
1986     int rc = 0;
1987     int num_irqs;
1988     enum undo_level level;
1989 
1990     hwq->afu = cfg->afu;
1991     hwq->index = index;
1992     INIT_LIST_HEAD(&hwq->pending_cmds);
1993 
1994     if (index == PRIMARY_HWQ) {
1995         ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie);
1996         num_irqs = 3;
1997     } else {
1998         ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie);
1999         num_irqs = 2;
2000     }
2001     if (IS_ERR_OR_NULL(ctx)) {
2002         rc = -ENOMEM;
2003         goto err1;
2004     }
2005 
2006     WARN_ON(hwq->ctx_cookie);
2007     hwq->ctx_cookie = ctx;
2008     hwq->num_irqs = num_irqs;
2009 
2010     /* Set it up as a master with the CXL */
2011     cfg->ops->set_master(ctx);
2012 
2013     /* Reset AFU when initializing primary context */
2014     if (index == PRIMARY_HWQ) {
2015         rc = cfg->ops->afu_reset(ctx);
2016         if (unlikely(rc)) {
2017             dev_err(dev, "%s: AFU reset failed rc=%d\n",
2018                       __func__, rc);
2019             goto err1;
2020         }
2021     }
2022 
2023     level = init_intr(cfg, hwq);
2024     if (unlikely(level)) {
2025         dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
2026         goto err2;
2027     }
2028 
2029     /* Finally, activate the context by starting it */
2030     rc = cfg->ops->start_context(hwq->ctx_cookie);
2031     if (unlikely(rc)) {
2032         dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
2033         level = UNMAP_THREE;
2034         goto err2;
2035     }
2036 
2037 out:
2038     dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2039     return rc;
2040 err2:
2041     term_intr(cfg, level, index);
2042     if (index != PRIMARY_HWQ)
2043         cfg->ops->release_context(ctx);
2044 err1:
2045     hwq->ctx_cookie = NULL;
2046     goto out;
2047 }
2048 
2049 /**
2050  * get_num_afu_ports() - determines and configures the number of AFU ports
2051  * @cfg:    Internal structure associated with the host.
2052  *
2053  * This routine determines the number of AFU ports by converting the global
2054  * port selection mask. The converted value is only valid following an AFU
2055  * reset (explicit or power-on). This routine must be invoked shortly after
2056  * mapping as other routines are dependent on the number of ports during the
2057  * initialization sequence.
2058  *
2059  * To support legacy AFUs that might not have reflected an initial global
2060  * port mask (value read is 0), default to the number of ports originally
2061  * supported by the cxlflash driver (2) before hardware with other port
2062  * offerings was introduced.
2063  */
2064 static void get_num_afu_ports(struct cxlflash_cfg *cfg)
2065 {
2066     struct afu *afu = cfg->afu;
2067     struct device *dev = &cfg->dev->dev;
2068     u64 port_mask;
2069     int num_fc_ports = LEGACY_FC_PORTS;
2070 
2071     port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
2072     if (port_mask != 0ULL)
2073         num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
2074 
2075     dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
2076         __func__, port_mask, num_fc_ports);
2077 
2078     cfg->num_fc_ports = num_fc_ports;
2079     cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
2080 }
2081 
2082 /**
2083  * init_afu() - setup as master context and start AFU
2084  * @cfg:    Internal structure associated with the host.
2085  *
2086  * This routine is a higher level of control for configuring the
2087  * AFU on probe and reset paths.
2088  *
2089  * Return: 0 on success, -errno on failure
2090  */
2091 static int init_afu(struct cxlflash_cfg *cfg)
2092 {
2093     u64 reg;
2094     int rc = 0;
2095     struct afu *afu = cfg->afu;
2096     struct device *dev = &cfg->dev->dev;
2097     struct hwq *hwq;
2098     int i;
2099 
2100     cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true);
2101 
2102     mutex_init(&afu->sync_active);
2103     afu->num_hwqs = afu->desired_hwqs;
2104     for (i = 0; i < afu->num_hwqs; i++) {
2105         rc = init_mc(cfg, i);
2106         if (rc) {
2107             dev_err(dev, "%s: init_mc failed rc=%d index=%d\n",
2108                 __func__, rc, i);
2109             goto err1;
2110         }
2111     }
2112 
2113     /* Map the entire MMIO space of the AFU using the first context */
2114     hwq = get_hwq(afu, PRIMARY_HWQ);
2115     afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie);
2116     if (!afu->afu_map) {
2117         dev_err(dev, "%s: psa_map failed\n", __func__);
2118         rc = -ENOMEM;
2119         goto err1;
2120     }
2121 
2122     /* No byte reverse on reading afu_version or string will be backwards */
2123     reg = readq(&afu->afu_map->global.regs.afu_version);
2124     memcpy(afu->version, &reg, sizeof(reg));
2125     afu->interface_version =
2126         readq_be(&afu->afu_map->global.regs.interface_version);
2127     if ((afu->interface_version + 1) == 0) {
2128         dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
2129             "interface version %016llx\n", afu->version,
2130                afu->interface_version);
2131         rc = -EINVAL;
2132         goto err1;
2133     }
2134 
2135     if (afu_is_sq_cmd_mode(afu)) {
2136         afu->send_cmd = send_cmd_sq;
2137         afu->context_reset = context_reset_sq;
2138     } else {
2139         afu->send_cmd = send_cmd_ioarrin;
2140         afu->context_reset = context_reset_ioarrin;
2141     }
2142 
2143     dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
2144         afu->version, afu->interface_version);
2145 
2146     get_num_afu_ports(cfg);
2147 
2148     rc = start_afu(cfg);
2149     if (rc) {
2150         dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
2151         goto err1;
2152     }
2153 
2154     afu_err_intr_init(cfg->afu);
2155     for (i = 0; i < afu->num_hwqs; i++) {
2156         hwq = get_hwq(afu, i);
2157 
2158         hwq->room = readq_be(&hwq->host_map->cmd_room);
2159     }
2160 
2161     /* Restore the LUN mappings */
2162     cxlflash_restore_luntable(cfg);
2163 out:
2164     dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2165     return rc;
2166 
2167 err1:
2168     for (i = afu->num_hwqs - 1; i >= 0; i--) {
2169         term_intr(cfg, UNMAP_THREE, i);
2170         term_mc(cfg, i);
2171     }
2172     goto out;
2173 }
2174 
2175 /**
2176  * afu_reset() - resets the AFU
2177  * @cfg:    Internal structure associated with the host.
2178  *
2179  * Return: 0 on success, -errno on failure
2180  */
2181 static int afu_reset(struct cxlflash_cfg *cfg)
2182 {
2183     struct device *dev = &cfg->dev->dev;
2184     int rc = 0;
2185 
2186     /* Stop the context before the reset. Since the context is
2187      * no longer available restart it after the reset is complete
2188      */
2189     term_afu(cfg);
2190 
2191     rc = init_afu(cfg);
2192 
2193     dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2194     return rc;
2195 }
2196 
2197 /**
2198  * drain_ioctls() - wait until all currently executing ioctls have completed
2199  * @cfg:    Internal structure associated with the host.
2200  *
2201  * Obtain write access to read/write semaphore that wraps ioctl
2202  * handling to 'drain' ioctls currently executing.
2203  */
2204 static void drain_ioctls(struct cxlflash_cfg *cfg)
2205 {
2206     down_write(&cfg->ioctl_rwsem);
2207     up_write(&cfg->ioctl_rwsem);
2208 }
2209 
2210 /**
2211  * cxlflash_async_reset_host() - asynchronous host reset handler
2212  * @data:   Private data provided while scheduling reset.
2213  * @cookie: Cookie that can be used for checkpointing.
2214  */
2215 static void cxlflash_async_reset_host(void *data, async_cookie_t cookie)
2216 {
2217     struct cxlflash_cfg *cfg = data;
2218     struct device *dev = &cfg->dev->dev;
2219     int rc = 0;
2220 
2221     if (cfg->state != STATE_RESET) {
2222         dev_dbg(dev, "%s: Not performing a reset, state=%d\n",
2223             __func__, cfg->state);
2224         goto out;
2225     }
2226 
2227     drain_ioctls(cfg);
2228     cxlflash_mark_contexts_error(cfg);
2229     rc = afu_reset(cfg);
2230     if (rc)
2231         cfg->state = STATE_FAILTERM;
2232     else
2233         cfg->state = STATE_NORMAL;
2234     wake_up_all(&cfg->reset_waitq);
2235 
2236 out:
2237     scsi_unblock_requests(cfg->host);
2238 }
2239 
2240 /**
2241  * cxlflash_schedule_async_reset() - schedule an asynchronous host reset
2242  * @cfg:    Internal structure associated with the host.
2243  */
2244 static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg)
2245 {
2246     struct device *dev = &cfg->dev->dev;
2247 
2248     if (cfg->state != STATE_NORMAL) {
2249         dev_dbg(dev, "%s: Not performing reset state=%d\n",
2250             __func__, cfg->state);
2251         return;
2252     }
2253 
2254     cfg->state = STATE_RESET;
2255     scsi_block_requests(cfg->host);
2256     cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host,
2257                          cfg);
2258 }
2259 
2260 /**
2261  * send_afu_cmd() - builds and sends an internal AFU command
2262  * @afu:    AFU associated with the host.
2263  * @rcb:    Pre-populated IOARCB describing command to send.
2264  *
2265  * The AFU can only take one internal AFU command at a time. This limitation is
2266  * enforced by using a mutex to provide exclusive access to the AFU during the
2267  * operation. This design point requires calling threads to not be on interrupt
2268  * context due to the possibility of sleeping during concurrent AFU operations.
2269  *
2270  * The command status is optionally passed back to the caller when the caller
2271  * populates the IOASA field of the IOARCB with a pointer to an IOASA structure.
2272  *
2273  * Return:
2274  *  0 on success, -errno on failure
2275  */
2276 static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb)
2277 {
2278     struct cxlflash_cfg *cfg = afu->parent;
2279     struct device *dev = &cfg->dev->dev;
2280     struct afu_cmd *cmd = NULL;
2281     struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
2282     ulong lock_flags;
2283     char *buf = NULL;
2284     int rc = 0;
2285     int nretry = 0;
2286 
2287     if (cfg->state != STATE_NORMAL) {
2288         dev_dbg(dev, "%s: Sync not required state=%u\n",
2289             __func__, cfg->state);
2290         return 0;
2291     }
2292 
2293     mutex_lock(&afu->sync_active);
2294     atomic_inc(&afu->cmds_active);
2295     buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
2296     if (unlikely(!buf)) {
2297         dev_err(dev, "%s: no memory for command\n", __func__);
2298         rc = -ENOMEM;
2299         goto out;
2300     }
2301 
2302     cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
2303 
2304 retry:
2305     memset(cmd, 0, sizeof(*cmd));
2306     memcpy(&cmd->rcb, rcb, sizeof(*rcb));
2307     INIT_LIST_HEAD(&cmd->queue);
2308     init_completion(&cmd->cevent);
2309     cmd->parent = afu;
2310     cmd->hwq_index = hwq->index;
2311     cmd->rcb.ctx_id = hwq->ctx_hndl;
2312 
2313     dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n",
2314         __func__, afu, cmd, cmd->rcb.cdb[0], nretry);
2315 
2316     rc = afu->send_cmd(afu, cmd);
2317     if (unlikely(rc)) {
2318         rc = -ENOBUFS;
2319         goto out;
2320     }
2321 
2322     rc = wait_resp(afu, cmd);
2323     switch (rc) {
2324     case -ETIMEDOUT:
2325         rc = afu->context_reset(hwq);
2326         if (rc) {
2327             /* Delete the command from pending_cmds list */
2328             spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
2329             list_del(&cmd->list);
2330             spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
2331 
2332             cxlflash_schedule_async_reset(cfg);
2333             break;
2334         }
2335         fallthrough;    /* to retry */
2336     case -EAGAIN:
2337         if (++nretry < 2)
2338             goto retry;
2339         fallthrough;    /* to exit */
2340     default:
2341         break;
2342     }
2343 
2344     if (rcb->ioasa)
2345         *rcb->ioasa = cmd->sa;
2346 out:
2347     atomic_dec(&afu->cmds_active);
2348     mutex_unlock(&afu->sync_active);
2349     kfree(buf);
2350     dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2351     return rc;
2352 }
2353 
2354 /**
2355  * cxlflash_afu_sync() - builds and sends an AFU sync command
2356  * @afu:    AFU associated with the host.
2357  * @ctx:    Identifies context requesting sync.
2358  * @res:    Identifies resource requesting sync.
2359  * @mode:   Type of sync to issue (lightweight, heavyweight, global).
2360  *
2361  * AFU sync operations are only necessary and allowed when the device is
2362  * operating normally. When not operating normally, sync requests can occur as
2363  * part of cleaning up resources associated with an adapter prior to removal.
2364  * In this scenario, these requests are simply ignored (safe due to the AFU
2365  * going away).
2366  *
2367  * Return:
2368  *  0 on success, -errno on failure
2369  */
2370 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode)
2371 {
2372     struct cxlflash_cfg *cfg = afu->parent;
2373     struct device *dev = &cfg->dev->dev;
2374     struct sisl_ioarcb rcb = { 0 };
2375 
2376     dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n",
2377         __func__, afu, ctx, res, mode);
2378 
2379     rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
2380     rcb.msi = SISL_MSI_RRQ_UPDATED;
2381     rcb.timeout = MC_AFU_SYNC_TIMEOUT;
2382 
2383     rcb.cdb[0] = SISL_AFU_CMD_SYNC;
2384     rcb.cdb[1] = mode;
2385     put_unaligned_be16(ctx, &rcb.cdb[2]);
2386     put_unaligned_be32(res, &rcb.cdb[4]);
2387 
2388     return send_afu_cmd(afu, &rcb);
2389 }
2390 
2391 /**
2392  * cxlflash_eh_abort_handler() - abort a SCSI command
2393  * @scp:    SCSI command to abort.
2394  *
2395  * CXL Flash devices do not support a single command abort. Reset the context
2396  * as per SISLite specification. Flush any pending commands in the hardware
2397  * queue before the reset.
2398  *
2399  * Return: SUCCESS/FAILED as defined in scsi/scsi.h
2400  */
2401 static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp)
2402 {
2403     int rc = FAILED;
2404     struct Scsi_Host *host = scp->device->host;
2405     struct cxlflash_cfg *cfg = shost_priv(host);
2406     struct afu_cmd *cmd = sc_to_afuc(scp);
2407     struct device *dev = &cfg->dev->dev;
2408     struct afu *afu = cfg->afu;
2409     struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
2410 
2411     dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2412         "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2413         scp->device->channel, scp->device->id, scp->device->lun,
2414         get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2415         get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2416         get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2417         get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2418 
2419     /* When the state is not normal, another reset/reload is in progress.
2420      * Return failed and the mid-layer will invoke host reset handler.
2421      */
2422     if (cfg->state != STATE_NORMAL) {
2423         dev_dbg(dev, "%s: Invalid state for abort, state=%d\n",
2424             __func__, cfg->state);
2425         goto out;
2426     }
2427 
2428     rc = afu->context_reset(hwq);
2429     if (unlikely(rc))
2430         goto out;
2431 
2432     rc = SUCCESS;
2433 
2434 out:
2435     dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2436     return rc;
2437 }
2438 
2439 /**
2440  * cxlflash_eh_device_reset_handler() - reset a single LUN
2441  * @scp:    SCSI command to send.
2442  *
2443  * Return:
2444  *  SUCCESS as defined in scsi/scsi.h
2445  *  FAILED as defined in scsi/scsi.h
2446  */
2447 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
2448 {
2449     int rc = SUCCESS;
2450     struct scsi_device *sdev = scp->device;
2451     struct Scsi_Host *host = sdev->host;
2452     struct cxlflash_cfg *cfg = shost_priv(host);
2453     struct device *dev = &cfg->dev->dev;
2454     int rcr = 0;
2455 
2456     dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__,
2457         host->host_no, sdev->channel, sdev->id, sdev->lun);
2458 retry:
2459     switch (cfg->state) {
2460     case STATE_NORMAL:
2461         rcr = send_tmf(cfg, sdev, TMF_LUN_RESET);
2462         if (unlikely(rcr))
2463             rc = FAILED;
2464         break;
2465     case STATE_RESET:
2466         wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2467         goto retry;
2468     default:
2469         rc = FAILED;
2470         break;
2471     }
2472 
2473     dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2474     return rc;
2475 }
2476 
2477 /**
2478  * cxlflash_eh_host_reset_handler() - reset the host adapter
2479  * @scp:    SCSI command from stack identifying host.
2480  *
2481  * Following a reset, the state is evaluated again in case an EEH occurred
2482  * during the reset. In such a scenario, the host reset will either yield
2483  * until the EEH recovery is complete or return success or failure based
2484  * upon the current device state.
2485  *
2486  * Return:
2487  *  SUCCESS as defined in scsi/scsi.h
2488  *  FAILED as defined in scsi/scsi.h
2489  */
2490 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
2491 {
2492     int rc = SUCCESS;
2493     int rcr = 0;
2494     struct Scsi_Host *host = scp->device->host;
2495     struct cxlflash_cfg *cfg = shost_priv(host);
2496     struct device *dev = &cfg->dev->dev;
2497 
2498     dev_dbg(dev, "%s: %d\n", __func__, host->host_no);
2499 
2500     switch (cfg->state) {
2501     case STATE_NORMAL:
2502         cfg->state = STATE_RESET;
2503         drain_ioctls(cfg);
2504         cxlflash_mark_contexts_error(cfg);
2505         rcr = afu_reset(cfg);
2506         if (rcr) {
2507             rc = FAILED;
2508             cfg->state = STATE_FAILTERM;
2509         } else
2510             cfg->state = STATE_NORMAL;
2511         wake_up_all(&cfg->reset_waitq);
2512         ssleep(1);
2513         fallthrough;
2514     case STATE_RESET:
2515         wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2516         if (cfg->state == STATE_NORMAL)
2517             break;
2518         fallthrough;
2519     default:
2520         rc = FAILED;
2521         break;
2522     }
2523 
2524     dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2525     return rc;
2526 }
2527 
2528 /**
2529  * cxlflash_change_queue_depth() - change the queue depth for the device
2530  * @sdev:   SCSI device destined for queue depth change.
2531  * @qdepth: Requested queue depth value to set.
2532  *
2533  * The requested queue depth is capped to the maximum supported value.
2534  *
2535  * Return: The actual queue depth set.
2536  */
2537 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2538 {
2539 
2540     if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2541         qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2542 
2543     scsi_change_queue_depth(sdev, qdepth);
2544     return sdev->queue_depth;
2545 }
2546 
2547 /**
2548  * cxlflash_show_port_status() - queries and presents the current port status
2549  * @port:   Desired port for status reporting.
2550  * @cfg:    Internal structure associated with the host.
2551  * @buf:    Buffer of length PAGE_SIZE to report back port status in ASCII.
2552  *
2553  * Return: The size of the ASCII string returned in @buf or -EINVAL.
2554  */
2555 static ssize_t cxlflash_show_port_status(u32 port,
2556                      struct cxlflash_cfg *cfg,
2557                      char *buf)
2558 {
2559     struct device *dev = &cfg->dev->dev;
2560     char *disp_status;
2561     u64 status;
2562     __be64 __iomem *fc_port_regs;
2563 
2564     WARN_ON(port >= MAX_FC_PORTS);
2565 
2566     if (port >= cfg->num_fc_ports) {
2567         dev_info(dev, "%s: Port %d not supported on this card.\n",
2568             __func__, port);
2569         return -EINVAL;
2570     }
2571 
2572     fc_port_regs = get_fc_port_regs(cfg, port);
2573     status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
2574     status &= FC_MTIP_STATUS_MASK;
2575 
2576     if (status == FC_MTIP_STATUS_ONLINE)
2577         disp_status = "online";
2578     else if (status == FC_MTIP_STATUS_OFFLINE)
2579         disp_status = "offline";
2580     else
2581         disp_status = "unknown";
2582 
2583     return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2584 }
2585 
2586 /**
2587  * port0_show() - queries and presents the current status of port 0
2588  * @dev:    Generic device associated with the host owning the port.
2589  * @attr:   Device attribute representing the port.
2590  * @buf:    Buffer of length PAGE_SIZE to report back port status in ASCII.
2591  *
2592  * Return: The size of the ASCII string returned in @buf.
2593  */
2594 static ssize_t port0_show(struct device *dev,
2595               struct device_attribute *attr,
2596               char *buf)
2597 {
2598     struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2599 
2600     return cxlflash_show_port_status(0, cfg, buf);
2601 }
2602 
2603 /**
2604  * port1_show() - queries and presents the current status of port 1
2605  * @dev:    Generic device associated with the host owning the port.
2606  * @attr:   Device attribute representing the port.
2607  * @buf:    Buffer of length PAGE_SIZE to report back port status in ASCII.
2608  *
2609  * Return: The size of the ASCII string returned in @buf.
2610  */
2611 static ssize_t port1_show(struct device *dev,
2612               struct device_attribute *attr,
2613               char *buf)
2614 {
2615     struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2616 
2617     return cxlflash_show_port_status(1, cfg, buf);
2618 }
2619 
2620 /**
2621  * port2_show() - queries and presents the current status of port 2
2622  * @dev:    Generic device associated with the host owning the port.
2623  * @attr:   Device attribute representing the port.
2624  * @buf:    Buffer of length PAGE_SIZE to report back port status in ASCII.
2625  *
2626  * Return: The size of the ASCII string returned in @buf.
2627  */
2628 static ssize_t port2_show(struct device *dev,
2629               struct device_attribute *attr,
2630               char *buf)
2631 {
2632     struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2633 
2634     return cxlflash_show_port_status(2, cfg, buf);
2635 }
2636 
2637 /**
2638  * port3_show() - queries and presents the current status of port 3
2639  * @dev:    Generic device associated with the host owning the port.
2640  * @attr:   Device attribute representing the port.
2641  * @buf:    Buffer of length PAGE_SIZE to report back port status in ASCII.
2642  *
2643  * Return: The size of the ASCII string returned in @buf.
2644  */
2645 static ssize_t port3_show(struct device *dev,
2646               struct device_attribute *attr,
2647               char *buf)
2648 {
2649     struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2650 
2651     return cxlflash_show_port_status(3, cfg, buf);
2652 }
2653 
2654 /**
2655  * lun_mode_show() - presents the current LUN mode of the host
2656  * @dev:    Generic device associated with the host.
2657  * @attr:   Device attribute representing the LUN mode.
2658  * @buf:    Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2659  *
2660  * Return: The size of the ASCII string returned in @buf.
2661  */
2662 static ssize_t lun_mode_show(struct device *dev,
2663                  struct device_attribute *attr, char *buf)
2664 {
2665     struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2666     struct afu *afu = cfg->afu;
2667 
2668     return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2669 }
2670 
2671 /**
2672  * lun_mode_store() - sets the LUN mode of the host
2673  * @dev:    Generic device associated with the host.
2674  * @attr:   Device attribute representing the LUN mode.
2675  * @buf:    Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2676  * @count:  Length of data resizing in @buf.
2677  *
2678  * The CXL Flash AFU supports a dummy LUN mode where the external
2679  * links and storage are not required. Space on the FPGA is used
2680  * to create 1 or 2 small LUNs which are presented to the system
2681  * as if they were a normal storage device. This feature is useful
2682  * during development and also provides manufacturing with a way
2683  * to test the AFU without an actual device.
2684  *
2685  * 0 = external LUN[s] (default)
2686  * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2687  * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2688  * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2689  * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2690  *
2691  * Return: The size of the ASCII string returned in @buf.
2692  */
2693 static ssize_t lun_mode_store(struct device *dev,
2694                   struct device_attribute *attr,
2695                   const char *buf, size_t count)
2696 {
2697     struct Scsi_Host *shost = class_to_shost(dev);
2698     struct cxlflash_cfg *cfg = shost_priv(shost);
2699     struct afu *afu = cfg->afu;
2700     int rc;
2701     u32 lun_mode;
2702 
2703     rc = kstrtouint(buf, 10, &lun_mode);
2704     if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2705         afu->internal_lun = lun_mode;
2706 
2707         /*
2708          * When configured for internal LUN, there is only one channel,
2709          * channel number 0, else there will be one less than the number
2710          * of fc ports for this card.
2711          */
2712         if (afu->internal_lun)
2713             shost->max_channel = 0;
2714         else
2715             shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
2716 
2717         afu_reset(cfg);
2718         scsi_scan_host(cfg->host);
2719     }
2720 
2721     return count;
2722 }
2723 
2724 /**
2725  * ioctl_version_show() - presents the current ioctl version of the host
2726  * @dev:    Generic device associated with the host.
2727  * @attr:   Device attribute representing the ioctl version.
2728  * @buf:    Buffer of length PAGE_SIZE to report back the ioctl version.
2729  *
2730  * Return: The size of the ASCII string returned in @buf.
2731  */
2732 static ssize_t ioctl_version_show(struct device *dev,
2733                   struct device_attribute *attr, char *buf)
2734 {
2735     ssize_t bytes = 0;
2736 
2737     bytes = scnprintf(buf, PAGE_SIZE,
2738               "disk: %u\n", DK_CXLFLASH_VERSION_0);
2739     bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2740                "host: %u\n", HT_CXLFLASH_VERSION_0);
2741 
2742     return bytes;
2743 }
2744 
2745 /**
2746  * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2747  * @port:   Desired port for status reporting.
2748  * @cfg:    Internal structure associated with the host.
2749  * @buf:    Buffer of length PAGE_SIZE to report back port status in ASCII.
2750  *
2751  * Return: The size of the ASCII string returned in @buf or -EINVAL.
2752  */
2753 static ssize_t cxlflash_show_port_lun_table(u32 port,
2754                         struct cxlflash_cfg *cfg,
2755                         char *buf)
2756 {
2757     struct device *dev = &cfg->dev->dev;
2758     __be64 __iomem *fc_port_luns;
2759     int i;
2760     ssize_t bytes = 0;
2761 
2762     WARN_ON(port >= MAX_FC_PORTS);
2763 
2764     if (port >= cfg->num_fc_ports) {
2765         dev_info(dev, "%s: Port %d not supported on this card.\n",
2766             __func__, port);
2767         return -EINVAL;
2768     }
2769 
2770     fc_port_luns = get_fc_port_luns(cfg, port);
2771 
2772     for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2773         bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2774                    "%03d: %016llx\n",
2775                    i, readq_be(&fc_port_luns[i]));
2776     return bytes;
2777 }
2778 
2779 /**
2780  * port0_lun_table_show() - presents the current LUN table of port 0
2781  * @dev:    Generic device associated with the host owning the port.
2782  * @attr:   Device attribute representing the port.
2783  * @buf:    Buffer of length PAGE_SIZE to report back port status in ASCII.
2784  *
2785  * Return: The size of the ASCII string returned in @buf.
2786  */
2787 static ssize_t port0_lun_table_show(struct device *dev,
2788                     struct device_attribute *attr,
2789                     char *buf)
2790 {
2791     struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2792 
2793     return cxlflash_show_port_lun_table(0, cfg, buf);
2794 }
2795 
2796 /**
2797  * port1_lun_table_show() - presents the current LUN table of port 1
2798  * @dev:    Generic device associated with the host owning the port.
2799  * @attr:   Device attribute representing the port.
2800  * @buf:    Buffer of length PAGE_SIZE to report back port status in ASCII.
2801  *
2802  * Return: The size of the ASCII string returned in @buf.
2803  */
2804 static ssize_t port1_lun_table_show(struct device *dev,
2805                     struct device_attribute *attr,
2806                     char *buf)
2807 {
2808     struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2809 
2810     return cxlflash_show_port_lun_table(1, cfg, buf);
2811 }
2812 
2813 /**
2814  * port2_lun_table_show() - presents the current LUN table of port 2
2815  * @dev:    Generic device associated with the host owning the port.
2816  * @attr:   Device attribute representing the port.
2817  * @buf:    Buffer of length PAGE_SIZE to report back port status in ASCII.
2818  *
2819  * Return: The size of the ASCII string returned in @buf.
2820  */
2821 static ssize_t port2_lun_table_show(struct device *dev,
2822                     struct device_attribute *attr,
2823                     char *buf)
2824 {
2825     struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2826 
2827     return cxlflash_show_port_lun_table(2, cfg, buf);
2828 }
2829 
2830 /**
2831  * port3_lun_table_show() - presents the current LUN table of port 3
2832  * @dev:    Generic device associated with the host owning the port.
2833  * @attr:   Device attribute representing the port.
2834  * @buf:    Buffer of length PAGE_SIZE to report back port status in ASCII.
2835  *
2836  * Return: The size of the ASCII string returned in @buf.
2837  */
2838 static ssize_t port3_lun_table_show(struct device *dev,
2839                     struct device_attribute *attr,
2840                     char *buf)
2841 {
2842     struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2843 
2844     return cxlflash_show_port_lun_table(3, cfg, buf);
2845 }
2846 
2847 /**
2848  * irqpoll_weight_show() - presents the current IRQ poll weight for the host
2849  * @dev:    Generic device associated with the host.
2850  * @attr:   Device attribute representing the IRQ poll weight.
2851  * @buf:    Buffer of length PAGE_SIZE to report back the current IRQ poll
2852  *      weight in ASCII.
2853  *
2854  * An IRQ poll weight of 0 indicates polling is disabled.
2855  *
2856  * Return: The size of the ASCII string returned in @buf.
2857  */
2858 static ssize_t irqpoll_weight_show(struct device *dev,
2859                    struct device_attribute *attr, char *buf)
2860 {
2861     struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2862     struct afu *afu = cfg->afu;
2863 
2864     return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
2865 }
2866 
2867 /**
2868  * irqpoll_weight_store() - sets the current IRQ poll weight for the host
2869  * @dev:    Generic device associated with the host.
2870  * @attr:   Device attribute representing the IRQ poll weight.
2871  * @buf:    Buffer of length PAGE_SIZE containing the desired IRQ poll
2872  *      weight in ASCII.
2873  * @count:  Length of data resizing in @buf.
2874  *
2875  * An IRQ poll weight of 0 indicates polling is disabled.
2876  *
2877  * Return: The size of the ASCII string returned in @buf.
2878  */
2879 static ssize_t irqpoll_weight_store(struct device *dev,
2880                     struct device_attribute *attr,
2881                     const char *buf, size_t count)
2882 {
2883     struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2884     struct device *cfgdev = &cfg->dev->dev;
2885     struct afu *afu = cfg->afu;
2886     struct hwq *hwq;
2887     u32 weight;
2888     int rc, i;
2889 
2890     rc = kstrtouint(buf, 10, &weight);
2891     if (rc)
2892         return -EINVAL;
2893 
2894     if (weight > 256) {
2895         dev_info(cfgdev,
2896              "Invalid IRQ poll weight. It must be 256 or less.\n");
2897         return -EINVAL;
2898     }
2899 
2900     if (weight == afu->irqpoll_weight) {
2901         dev_info(cfgdev,
2902              "Current IRQ poll weight has the same weight.\n");
2903         return -EINVAL;
2904     }
2905 
2906     if (afu_is_irqpoll_enabled(afu)) {
2907         for (i = 0; i < afu->num_hwqs; i++) {
2908             hwq = get_hwq(afu, i);
2909 
2910             irq_poll_disable(&hwq->irqpoll);
2911         }
2912     }
2913 
2914     afu->irqpoll_weight = weight;
2915 
2916     if (weight > 0) {
2917         for (i = 0; i < afu->num_hwqs; i++) {
2918             hwq = get_hwq(afu, i);
2919 
2920             irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll);
2921         }
2922     }
2923 
2924     return count;
2925 }
2926 
2927 /**
2928  * num_hwqs_show() - presents the number of hardware queues for the host
2929  * @dev:    Generic device associated with the host.
2930  * @attr:   Device attribute representing the number of hardware queues.
2931  * @buf:    Buffer of length PAGE_SIZE to report back the number of hardware
2932  *      queues in ASCII.
2933  *
2934  * Return: The size of the ASCII string returned in @buf.
2935  */
2936 static ssize_t num_hwqs_show(struct device *dev,
2937                  struct device_attribute *attr, char *buf)
2938 {
2939     struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2940     struct afu *afu = cfg->afu;
2941 
2942     return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs);
2943 }
2944 
2945 /**
2946  * num_hwqs_store() - sets the number of hardware queues for the host
2947  * @dev:    Generic device associated with the host.
2948  * @attr:   Device attribute representing the number of hardware queues.
2949  * @buf:    Buffer of length PAGE_SIZE containing the number of hardware
2950  *      queues in ASCII.
2951  * @count:  Length of data resizing in @buf.
2952  *
2953  * n > 0: num_hwqs = n
2954  * n = 0: num_hwqs = num_online_cpus()
2955  * n < 0: num_online_cpus() / abs(n)
2956  *
2957  * Return: The size of the ASCII string returned in @buf.
2958  */
2959 static ssize_t num_hwqs_store(struct device *dev,
2960                   struct device_attribute *attr,
2961                   const char *buf, size_t count)
2962 {
2963     struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2964     struct afu *afu = cfg->afu;
2965     int rc;
2966     int nhwqs, num_hwqs;
2967 
2968     rc = kstrtoint(buf, 10, &nhwqs);
2969     if (rc)
2970         return -EINVAL;
2971 
2972     if (nhwqs >= 1)
2973         num_hwqs = nhwqs;
2974     else if (nhwqs == 0)
2975         num_hwqs = num_online_cpus();
2976     else
2977         num_hwqs = num_online_cpus() / abs(nhwqs);
2978 
2979     afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS);
2980     WARN_ON_ONCE(afu->desired_hwqs == 0);
2981 
2982 retry:
2983     switch (cfg->state) {
2984     case STATE_NORMAL:
2985         cfg->state = STATE_RESET;
2986         drain_ioctls(cfg);
2987         cxlflash_mark_contexts_error(cfg);
2988         rc = afu_reset(cfg);
2989         if (rc)
2990             cfg->state = STATE_FAILTERM;
2991         else
2992             cfg->state = STATE_NORMAL;
2993         wake_up_all(&cfg->reset_waitq);
2994         break;
2995     case STATE_RESET:
2996         wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2997         if (cfg->state == STATE_NORMAL)
2998             goto retry;
2999         fallthrough;
3000     default:
3001         /* Ideally should not happen */
3002         dev_err(dev, "%s: Device is not ready, state=%d\n",
3003             __func__, cfg->state);
3004         break;
3005     }
3006 
3007     return count;
3008 }
3009 
3010 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" };
3011 
3012 /**
3013  * hwq_mode_show() - presents the HWQ steering mode for the host
3014  * @dev:    Generic device associated with the host.
3015  * @attr:   Device attribute representing the HWQ steering mode.
3016  * @buf:    Buffer of length PAGE_SIZE to report back the HWQ steering mode
3017  *      as a character string.
3018  *
3019  * Return: The size of the ASCII string returned in @buf.
3020  */
3021 static ssize_t hwq_mode_show(struct device *dev,
3022                  struct device_attribute *attr, char *buf)
3023 {
3024     struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
3025     struct afu *afu = cfg->afu;
3026 
3027     return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]);
3028 }
3029 
3030 /**
3031  * hwq_mode_store() - sets the HWQ steering mode for the host
3032  * @dev:    Generic device associated with the host.
3033  * @attr:   Device attribute representing the HWQ steering mode.
3034  * @buf:    Buffer of length PAGE_SIZE containing the HWQ steering mode
3035  *      as a character string.
3036  * @count:  Length of data resizing in @buf.
3037  *
3038  * rr = Round-Robin
3039  * tag = Block MQ Tagging
3040  * cpu = CPU Affinity
3041  *
3042  * Return: The size of the ASCII string returned in @buf.
3043  */
3044 static ssize_t hwq_mode_store(struct device *dev,
3045                   struct device_attribute *attr,
3046                   const char *buf, size_t count)
3047 {
3048     struct Scsi_Host *shost = class_to_shost(dev);
3049     struct cxlflash_cfg *cfg = shost_priv(shost);
3050     struct device *cfgdev = &cfg->dev->dev;
3051     struct afu *afu = cfg->afu;
3052     int i;
3053     u32 mode = MAX_HWQ_MODE;
3054 
3055     for (i = 0; i < MAX_HWQ_MODE; i++) {
3056         if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) {
3057             mode = i;
3058             break;
3059         }
3060     }
3061 
3062     if (mode >= MAX_HWQ_MODE) {
3063         dev_info(cfgdev, "Invalid HWQ steering mode.\n");
3064         return -EINVAL;
3065     }
3066 
3067     afu->hwq_mode = mode;
3068 
3069     return count;
3070 }
3071 
3072 /**
3073  * mode_show() - presents the current mode of the device
3074  * @dev:    Generic device associated with the device.
3075  * @attr:   Device attribute representing the device mode.
3076  * @buf:    Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
3077  *
3078  * Return: The size of the ASCII string returned in @buf.
3079  */
3080 static ssize_t mode_show(struct device *dev,
3081              struct device_attribute *attr, char *buf)
3082 {
3083     struct scsi_device *sdev = to_scsi_device(dev);
3084 
3085     return scnprintf(buf, PAGE_SIZE, "%s\n",
3086              sdev->hostdata ? "superpipe" : "legacy");
3087 }
3088 
3089 /*
3090  * Host attributes
3091  */
3092 static DEVICE_ATTR_RO(port0);
3093 static DEVICE_ATTR_RO(port1);
3094 static DEVICE_ATTR_RO(port2);
3095 static DEVICE_ATTR_RO(port3);
3096 static DEVICE_ATTR_RW(lun_mode);
3097 static DEVICE_ATTR_RO(ioctl_version);
3098 static DEVICE_ATTR_RO(port0_lun_table);
3099 static DEVICE_ATTR_RO(port1_lun_table);
3100 static DEVICE_ATTR_RO(port2_lun_table);
3101 static DEVICE_ATTR_RO(port3_lun_table);
3102 static DEVICE_ATTR_RW(irqpoll_weight);
3103 static DEVICE_ATTR_RW(num_hwqs);
3104 static DEVICE_ATTR_RW(hwq_mode);
3105 
3106 static struct attribute *cxlflash_host_attrs[] = {
3107     &dev_attr_port0.attr,
3108     &dev_attr_port1.attr,
3109     &dev_attr_port2.attr,
3110     &dev_attr_port3.attr,
3111     &dev_attr_lun_mode.attr,
3112     &dev_attr_ioctl_version.attr,
3113     &dev_attr_port0_lun_table.attr,
3114     &dev_attr_port1_lun_table.attr,
3115     &dev_attr_port2_lun_table.attr,
3116     &dev_attr_port3_lun_table.attr,
3117     &dev_attr_irqpoll_weight.attr,
3118     &dev_attr_num_hwqs.attr,
3119     &dev_attr_hwq_mode.attr,
3120     NULL
3121 };
3122 
3123 ATTRIBUTE_GROUPS(cxlflash_host);
3124 
3125 /*
3126  * Device attributes
3127  */
3128 static DEVICE_ATTR_RO(mode);
3129 
3130 static struct attribute *cxlflash_dev_attrs[] = {
3131     &dev_attr_mode.attr,
3132     NULL
3133 };
3134 
3135 ATTRIBUTE_GROUPS(cxlflash_dev);
3136 
3137 /*
3138  * Host template
3139  */
3140 static struct scsi_host_template driver_template = {
3141     .module = THIS_MODULE,
3142     .name = CXLFLASH_ADAPTER_NAME,
3143     .info = cxlflash_driver_info,
3144     .ioctl = cxlflash_ioctl,
3145     .proc_name = CXLFLASH_NAME,
3146     .queuecommand = cxlflash_queuecommand,
3147     .eh_abort_handler = cxlflash_eh_abort_handler,
3148     .eh_device_reset_handler = cxlflash_eh_device_reset_handler,
3149     .eh_host_reset_handler = cxlflash_eh_host_reset_handler,
3150     .change_queue_depth = cxlflash_change_queue_depth,
3151     .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
3152     .can_queue = CXLFLASH_MAX_CMDS,
3153     .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
3154     .this_id = -1,
3155     .sg_tablesize = 1,  /* No scatter gather support */
3156     .max_sectors = CXLFLASH_MAX_SECTORS,
3157     .shost_groups = cxlflash_host_groups,
3158     .sdev_groups = cxlflash_dev_groups,
3159 };
3160 
3161 /*
3162  * Device dependent values
3163  */
3164 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
3165                     CXLFLASH_WWPN_VPD_REQUIRED };
3166 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
3167                     CXLFLASH_NOTIFY_SHUTDOWN };
3168 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
3169                     (CXLFLASH_NOTIFY_SHUTDOWN |
3170                     CXLFLASH_OCXL_DEV) };
3171 
3172 /*
3173  * PCI device binding table
3174  */
3175 static struct pci_device_id cxlflash_pci_table[] = {
3176     {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
3177      PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
3178     {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
3179      PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
3180     {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
3181      PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
3182     {}
3183 };
3184 
3185 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
3186 
3187 /**
3188  * cxlflash_worker_thread() - work thread handler for the AFU
3189  * @work:   Work structure contained within cxlflash associated with host.
3190  *
3191  * Handles the following events:
3192  * - Link reset which cannot be performed on interrupt context due to
3193  * blocking up to a few seconds
3194  * - Rescan the host
3195  */
3196 static void cxlflash_worker_thread(struct work_struct *work)
3197 {
3198     struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
3199                         work_q);
3200     struct afu *afu = cfg->afu;
3201     struct device *dev = &cfg->dev->dev;
3202     __be64 __iomem *fc_port_regs;
3203     int port;
3204     ulong lock_flags;
3205 
3206     /* Avoid MMIO if the device has failed */
3207 
3208     if (cfg->state != STATE_NORMAL)
3209         return;
3210 
3211     spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3212 
3213     if (cfg->lr_state == LINK_RESET_REQUIRED) {
3214         port = cfg->lr_port;
3215         if (port < 0)
3216             dev_err(dev, "%s: invalid port index %d\n",
3217                 __func__, port);
3218         else {
3219             spin_unlock_irqrestore(cfg->host->host_lock,
3220                            lock_flags);
3221 
3222             /* The reset can block... */
3223             fc_port_regs = get_fc_port_regs(cfg, port);
3224             afu_link_reset(afu, port, fc_port_regs);
3225             spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3226         }
3227 
3228         cfg->lr_state = LINK_RESET_COMPLETE;
3229     }
3230 
3231     spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
3232 
3233     if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
3234         scsi_scan_host(cfg->host);
3235 }
3236 
3237 /**
3238  * cxlflash_chr_open() - character device open handler
3239  * @inode:  Device inode associated with this character device.
3240  * @file:   File pointer for this device.
3241  *
3242  * Only users with admin privileges are allowed to open the character device.
3243  *
3244  * Return: 0 on success, -errno on failure
3245  */
3246 static int cxlflash_chr_open(struct inode *inode, struct file *file)
3247 {
3248     struct cxlflash_cfg *cfg;
3249 
3250     if (!capable(CAP_SYS_ADMIN))
3251         return -EACCES;
3252 
3253     cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev);
3254     file->private_data = cfg;
3255 
3256     return 0;
3257 }
3258 
3259 /**
3260  * decode_hioctl() - translates encoded host ioctl to easily identifiable string
3261  * @cmd:        The host ioctl command to decode.
3262  *
3263  * Return: A string identifying the decoded host ioctl.
3264  */
3265 static char *decode_hioctl(unsigned int cmd)
3266 {
3267     switch (cmd) {
3268     case HT_CXLFLASH_LUN_PROVISION:
3269         return __stringify_1(HT_CXLFLASH_LUN_PROVISION);
3270     }
3271 
3272     return "UNKNOWN";
3273 }
3274 
3275 /**
3276  * cxlflash_lun_provision() - host LUN provisioning handler
3277  * @cfg:    Internal structure associated with the host.
3278  * @lunprov:    Kernel copy of userspace ioctl data structure.
3279  *
3280  * Return: 0 on success, -errno on failure
3281  */
3282 static int cxlflash_lun_provision(struct cxlflash_cfg *cfg,
3283                   struct ht_cxlflash_lun_provision *lunprov)
3284 {
3285     struct afu *afu = cfg->afu;
3286     struct device *dev = &cfg->dev->dev;
3287     struct sisl_ioarcb rcb;
3288     struct sisl_ioasa asa;
3289     __be64 __iomem *fc_port_regs;
3290     u16 port = lunprov->port;
3291     u16 scmd = lunprov->hdr.subcmd;
3292     u16 type;
3293     u64 reg;
3294     u64 size;
3295     u64 lun_id;
3296     int rc = 0;
3297 
3298     if (!afu_is_lun_provision(afu)) {
3299         rc = -ENOTSUPP;
3300         goto out;
3301     }
3302 
3303     if (port >= cfg->num_fc_ports) {
3304         rc = -EINVAL;
3305         goto out;
3306     }
3307 
3308     switch (scmd) {
3309     case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN:
3310         type = SISL_AFU_LUN_PROVISION_CREATE;
3311         size = lunprov->size;
3312         lun_id = 0;
3313         break;
3314     case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN:
3315         type = SISL_AFU_LUN_PROVISION_DELETE;
3316         size = 0;
3317         lun_id = lunprov->lun_id;
3318         break;
3319     case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT:
3320         fc_port_regs = get_fc_port_regs(cfg, port);
3321 
3322         reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]);
3323         lunprov->max_num_luns = reg;
3324         reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]);
3325         lunprov->cur_num_luns = reg;
3326         reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]);
3327         lunprov->max_cap_port = reg;
3328         reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]);
3329         lunprov->cur_cap_port = reg;
3330 
3331         goto out;
3332     default:
3333         rc = -EINVAL;
3334         goto out;
3335     }
3336 
3337     memset(&rcb, 0, sizeof(rcb));
3338     memset(&asa, 0, sizeof(asa));
3339     rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
3340     rcb.lun_id = lun_id;
3341     rcb.msi = SISL_MSI_RRQ_UPDATED;
3342     rcb.timeout = MC_LUN_PROV_TIMEOUT;
3343     rcb.ioasa = &asa;
3344 
3345     rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION;
3346     rcb.cdb[1] = type;
3347     rcb.cdb[2] = port;
3348     put_unaligned_be64(size, &rcb.cdb[8]);
3349 
3350     rc = send_afu_cmd(afu, &rcb);
3351     if (rc) {
3352         dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3353             __func__, rc, asa.ioasc, asa.afu_extra);
3354         goto out;
3355     }
3356 
3357     if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) {
3358         lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo;
3359         memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid));
3360     }
3361 out:
3362     dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3363     return rc;
3364 }
3365 
3366 /**
3367  * cxlflash_afu_debug() - host AFU debug handler
3368  * @cfg:    Internal structure associated with the host.
3369  * @afu_dbg:    Kernel copy of userspace ioctl data structure.
3370  *
3371  * For debug requests requiring a data buffer, always provide an aligned
3372  * (cache line) buffer to the AFU to appease any alignment requirements.
3373  *
3374  * Return: 0 on success, -errno on failure
3375  */
3376 static int cxlflash_afu_debug(struct cxlflash_cfg *cfg,
3377                   struct ht_cxlflash_afu_debug *afu_dbg)
3378 {
3379     struct afu *afu = cfg->afu;
3380     struct device *dev = &cfg->dev->dev;
3381     struct sisl_ioarcb rcb;
3382     struct sisl_ioasa asa;
3383     char *buf = NULL;
3384     char *kbuf = NULL;
3385     void __user *ubuf = (__force void __user *)afu_dbg->data_ea;
3386     u16 req_flags = SISL_REQ_FLAGS_AFU_CMD;
3387     u32 ulen = afu_dbg->data_len;
3388     bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE;
3389     int rc = 0;
3390 
3391     if (!afu_is_afu_debug(afu)) {
3392         rc = -ENOTSUPP;
3393         goto out;
3394     }
3395 
3396     if (ulen) {
3397         req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN;
3398 
3399         if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) {
3400             rc = -EINVAL;
3401             goto out;
3402         }
3403 
3404         buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL);
3405         if (unlikely(!buf)) {
3406             rc = -ENOMEM;
3407             goto out;
3408         }
3409 
3410         kbuf = PTR_ALIGN(buf, cache_line_size());
3411 
3412         if (is_write) {
3413             req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
3414 
3415             if (copy_from_user(kbuf, ubuf, ulen)) {
3416                 rc = -EFAULT;
3417                 goto out;
3418             }
3419         }
3420     }
3421 
3422     memset(&rcb, 0, sizeof(rcb));
3423     memset(&asa, 0, sizeof(asa));
3424 
3425     rcb.req_flags = req_flags;
3426     rcb.msi = SISL_MSI_RRQ_UPDATED;
3427     rcb.timeout = MC_AFU_DEBUG_TIMEOUT;
3428     rcb.ioasa = &asa;
3429 
3430     if (ulen) {
3431         rcb.data_len = ulen;
3432         rcb.data_ea = (uintptr_t)kbuf;
3433     }
3434 
3435     rcb.cdb[0] = SISL_AFU_CMD_DEBUG;
3436     memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd,
3437            HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN);
3438 
3439     rc = send_afu_cmd(afu, &rcb);
3440     if (rc) {
3441         dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3442             __func__, rc, asa.ioasc, asa.afu_extra);
3443         goto out;
3444     }
3445 
3446     if (ulen && !is_write) {
3447         if (copy_to_user(ubuf, kbuf, ulen))
3448             rc = -EFAULT;
3449     }
3450 out:
3451     kfree(buf);
3452     dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3453     return rc;
3454 }
3455 
3456 /**
3457  * cxlflash_chr_ioctl() - character device IOCTL handler
3458  * @file:   File pointer for this device.
3459  * @cmd:    IOCTL command.
3460  * @arg:    Userspace ioctl data structure.
3461  *
3462  * A read/write semaphore is used to implement a 'drain' of currently
3463  * running ioctls. The read semaphore is taken at the beginning of each
3464  * ioctl thread and released upon concluding execution. Additionally the
3465  * semaphore should be released and then reacquired in any ioctl execution
3466  * path which will wait for an event to occur that is outside the scope of
3467  * the ioctl (i.e. an adapter reset). To drain the ioctls currently running,
3468  * a thread simply needs to acquire the write semaphore.
3469  *
3470  * Return: 0 on success, -errno on failure
3471  */
3472 static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd,
3473                    unsigned long arg)
3474 {
3475     typedef int (*hioctl) (struct cxlflash_cfg *, void *);
3476 
3477     struct cxlflash_cfg *cfg = file->private_data;
3478     struct device *dev = &cfg->dev->dev;
3479     char buf[sizeof(union cxlflash_ht_ioctls)];
3480     void __user *uarg = (void __user *)arg;
3481     struct ht_cxlflash_hdr *hdr;
3482     size_t size = 0;
3483     bool known_ioctl = false;
3484     int idx = 0;
3485     int rc = 0;
3486     hioctl do_ioctl = NULL;
3487 
3488     static const struct {
3489         size_t size;
3490         hioctl ioctl;
3491     } ioctl_tbl[] = {   /* NOTE: order matters here */
3492     { sizeof(struct ht_cxlflash_lun_provision),
3493         (hioctl)cxlflash_lun_provision },
3494     { sizeof(struct ht_cxlflash_afu_debug),
3495         (hioctl)cxlflash_afu_debug },
3496     };
3497 
3498     /* Hold read semaphore so we can drain if needed */
3499     down_read(&cfg->ioctl_rwsem);
3500 
3501     dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n",
3502         __func__, cmd, idx, sizeof(ioctl_tbl));
3503 
3504     switch (cmd) {
3505     case HT_CXLFLASH_LUN_PROVISION:
3506     case HT_CXLFLASH_AFU_DEBUG:
3507         known_ioctl = true;
3508         idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd);
3509         size = ioctl_tbl[idx].size;
3510         do_ioctl = ioctl_tbl[idx].ioctl;
3511 
3512         if (likely(do_ioctl))
3513             break;
3514 
3515         fallthrough;
3516     default:
3517         rc = -EINVAL;
3518         goto out;
3519     }
3520 
3521     if (unlikely(copy_from_user(&buf, uarg, size))) {
3522         dev_err(dev, "%s: copy_from_user() fail "
3523             "size=%lu cmd=%d (%s) uarg=%p\n",
3524             __func__, size, cmd, decode_hioctl(cmd), uarg);
3525         rc = -EFAULT;
3526         goto out;
3527     }
3528 
3529     hdr = (struct ht_cxlflash_hdr *)&buf;
3530     if (hdr->version != HT_CXLFLASH_VERSION_0) {
3531         dev_dbg(dev, "%s: Version %u not supported for %s\n",
3532             __func__, hdr->version, decode_hioctl(cmd));
3533         rc = -EINVAL;
3534         goto out;
3535     }
3536 
3537     if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) {
3538         dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__);
3539         rc = -EINVAL;
3540         goto out;
3541     }
3542 
3543     rc = do_ioctl(cfg, (void *)&buf);
3544     if (likely(!rc))
3545         if (unlikely(copy_to_user(uarg, &buf, size))) {
3546             dev_err(dev, "%s: copy_to_user() fail "
3547                 "size=%lu cmd=%d (%s) uarg=%p\n",
3548                 __func__, size, cmd, decode_hioctl(cmd), uarg);
3549             rc = -EFAULT;
3550         }
3551 
3552     /* fall through to exit */
3553 
3554 out:
3555     up_read(&cfg->ioctl_rwsem);
3556     if (unlikely(rc && known_ioctl))
3557         dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3558             __func__, decode_hioctl(cmd), cmd, rc);
3559     else
3560         dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3561             __func__, decode_hioctl(cmd), cmd, rc);
3562     return rc;
3563 }
3564 
3565 /*
3566  * Character device file operations
3567  */
3568 static const struct file_operations cxlflash_chr_fops = {
3569     .owner          = THIS_MODULE,
3570     .open           = cxlflash_chr_open,
3571     .unlocked_ioctl = cxlflash_chr_ioctl,
3572     .compat_ioctl   = compat_ptr_ioctl,
3573 };
3574 
3575 /**
3576  * init_chrdev() - initialize the character device for the host
3577  * @cfg:    Internal structure associated with the host.
3578  *
3579  * Return: 0 on success, -errno on failure
3580  */
3581 static int init_chrdev(struct cxlflash_cfg *cfg)
3582 {
3583     struct device *dev = &cfg->dev->dev;
3584     struct device *char_dev;
3585     dev_t devno;
3586     int minor;
3587     int rc = 0;
3588 
3589     minor = cxlflash_get_minor();
3590     if (unlikely(minor < 0)) {
3591         dev_err(dev, "%s: Exhausted allowed adapters\n", __func__);
3592         rc = -ENOSPC;
3593         goto out;
3594     }
3595 
3596     devno = MKDEV(cxlflash_major, minor);
3597     cdev_init(&cfg->cdev, &cxlflash_chr_fops);
3598 
3599     rc = cdev_add(&cfg->cdev, devno, 1);
3600     if (rc) {
3601         dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc);
3602         goto err1;
3603     }
3604 
3605     char_dev = device_create(cxlflash_class, NULL, devno,
3606                  NULL, "cxlflash%d", minor);
3607     if (IS_ERR(char_dev)) {
3608         rc = PTR_ERR(char_dev);
3609         dev_err(dev, "%s: device_create failed rc=%d\n",
3610             __func__, rc);
3611         goto err2;
3612     }
3613 
3614     cfg->chardev = char_dev;
3615 out:
3616     dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3617     return rc;
3618 err2:
3619     cdev_del(&cfg->cdev);
3620 err1:
3621     cxlflash_put_minor(minor);
3622     goto out;
3623 }
3624 
3625 /**
3626  * cxlflash_probe() - PCI entry point to add host
3627  * @pdev:   PCI device associated with the host.
3628  * @dev_id: PCI device id associated with device.
3629  *
3630  * The device will initially start out in a 'probing' state and
3631  * transition to the 'normal' state at the end of a successful
3632  * probe. Should an EEH event occur during probe, the notification
3633  * thread (error_detected()) will wait until the probe handler
3634  * is nearly complete. At that time, the device will be moved to
3635  * a 'probed' state and the EEH thread woken up to drive the slot
3636  * reset and recovery (device moves to 'normal' state). Meanwhile,
3637  * the probe will be allowed to exit successfully.
3638  *
3639  * Return: 0 on success, -errno on failure
3640  */
3641 static int cxlflash_probe(struct pci_dev *pdev,
3642               const struct pci_device_id *dev_id)
3643 {
3644     struct Scsi_Host *host;
3645     struct cxlflash_cfg *cfg = NULL;
3646     struct device *dev = &pdev->dev;
3647     struct dev_dependent_vals *ddv;
3648     int rc = 0;
3649     int k;
3650 
3651     dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
3652         __func__, pdev->irq);
3653 
3654     ddv = (struct dev_dependent_vals *)dev_id->driver_data;
3655     driver_template.max_sectors = ddv->max_sectors;
3656 
3657     host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
3658     if (!host) {
3659         dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
3660         rc = -ENOMEM;
3661         goto out;
3662     }
3663 
3664     host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
3665     host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
3666     host->unique_id = host->host_no;
3667     host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
3668 
3669     cfg = shost_priv(host);
3670     cfg->state = STATE_PROBING;
3671     cfg->host = host;
3672     rc = alloc_mem(cfg);
3673     if (rc) {
3674         dev_err(dev, "%s: alloc_mem failed\n", __func__);
3675         rc = -ENOMEM;
3676         scsi_host_put(cfg->host);
3677         goto out;
3678     }
3679 
3680     cfg->init_state = INIT_STATE_NONE;
3681     cfg->dev = pdev;
3682     cfg->cxl_fops = cxlflash_cxl_fops;
3683     cfg->ops = cxlflash_assign_ops(ddv);
3684     WARN_ON_ONCE(!cfg->ops);
3685 
3686     /*
3687      * Promoted LUNs move to the top of the LUN table. The rest stay on
3688      * the bottom half. The bottom half grows from the end (index = 255),
3689      * whereas the top half grows from the beginning (index = 0).
3690      *
3691      * Initialize the last LUN index for all possible ports.
3692      */
3693     cfg->promote_lun_index = 0;
3694 
3695     for (k = 0; k < MAX_FC_PORTS; k++)
3696         cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
3697 
3698     cfg->dev_id = (struct pci_device_id *)dev_id;
3699 
3700     init_waitqueue_head(&cfg->tmf_waitq);
3701     init_waitqueue_head(&cfg->reset_waitq);
3702 
3703     INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
3704     cfg->lr_state = LINK_RESET_INVALID;
3705     cfg->lr_port = -1;
3706     spin_lock_init(&cfg->tmf_slock);
3707     mutex_init(&cfg->ctx_tbl_list_mutex);
3708     mutex_init(&cfg->ctx_recovery_mutex);
3709     init_rwsem(&cfg->ioctl_rwsem);
3710     INIT_LIST_HEAD(&cfg->ctx_err_recovery);
3711     INIT_LIST_HEAD(&cfg->lluns);
3712 
3713     pci_set_drvdata(pdev, cfg);
3714 
3715     rc = init_pci(cfg);
3716     if (rc) {
3717         dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
3718         goto out_remove;
3719     }
3720     cfg->init_state = INIT_STATE_PCI;
3721 
3722     cfg->afu_cookie = cfg->ops->create_afu(pdev);
3723     if (unlikely(!cfg->afu_cookie)) {
3724         dev_err(dev, "%s: create_afu failed\n", __func__);
3725         rc = -ENOMEM;
3726         goto out_remove;
3727     }
3728 
3729     rc = init_afu(cfg);
3730     if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
3731         dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
3732         goto out_remove;
3733     }
3734     cfg->init_state = INIT_STATE_AFU;
3735 
3736     rc = init_scsi(cfg);
3737     if (rc) {
3738         dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
3739         goto out_remove;
3740     }
3741     cfg->init_state = INIT_STATE_SCSI;
3742 
3743     rc = init_chrdev(cfg);
3744     if (rc) {
3745         dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc);
3746         goto out_remove;
3747     }
3748     cfg->init_state = INIT_STATE_CDEV;
3749 
3750     if (wq_has_sleeper(&cfg->reset_waitq)) {
3751         cfg->state = STATE_PROBED;
3752         wake_up_all(&cfg->reset_waitq);
3753     } else
3754         cfg->state = STATE_NORMAL;
3755 out:
3756     dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3757     return rc;
3758 
3759 out_remove:
3760     cfg->state = STATE_PROBED;
3761     cxlflash_remove(pdev);
3762     goto out;
3763 }
3764 
3765 /**
3766  * cxlflash_pci_error_detected() - called when a PCI error is detected
3767  * @pdev:   PCI device struct.
3768  * @state:  PCI channel state.
3769  *
3770  * When an EEH occurs during an active reset, wait until the reset is
3771  * complete and then take action based upon the device state.
3772  *
3773  * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
3774  */
3775 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
3776                             pci_channel_state_t state)
3777 {
3778     int rc = 0;
3779     struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3780     struct device *dev = &cfg->dev->dev;
3781 
3782     dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
3783 
3784     switch (state) {
3785     case pci_channel_io_frozen:
3786         wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
3787                          cfg->state != STATE_PROBING);
3788         if (cfg->state == STATE_FAILTERM)
3789             return PCI_ERS_RESULT_DISCONNECT;
3790 
3791         cfg->state = STATE_RESET;
3792         scsi_block_requests(cfg->host);
3793         drain_ioctls(cfg);
3794         rc = cxlflash_mark_contexts_error(cfg);
3795         if (unlikely(rc))
3796             dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
3797                 __func__, rc);
3798         term_afu(cfg);
3799         return PCI_ERS_RESULT_NEED_RESET;
3800     case pci_channel_io_perm_failure:
3801         cfg->state = STATE_FAILTERM;
3802         wake_up_all(&cfg->reset_waitq);
3803         scsi_unblock_requests(cfg->host);
3804         return PCI_ERS_RESULT_DISCONNECT;
3805     default:
3806         break;
3807     }
3808     return PCI_ERS_RESULT_NEED_RESET;
3809 }
3810 
3811 /**
3812  * cxlflash_pci_slot_reset() - called when PCI slot has been reset
3813  * @pdev:   PCI device struct.
3814  *
3815  * This routine is called by the pci error recovery code after the PCI
3816  * slot has been reset, just before we should resume normal operations.
3817  *
3818  * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
3819  */
3820 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
3821 {
3822     int rc = 0;
3823     struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3824     struct device *dev = &cfg->dev->dev;
3825 
3826     dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3827 
3828     rc = init_afu(cfg);
3829     if (unlikely(rc)) {
3830         dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
3831         return PCI_ERS_RESULT_DISCONNECT;
3832     }
3833 
3834     return PCI_ERS_RESULT_RECOVERED;
3835 }
3836 
3837 /**
3838  * cxlflash_pci_resume() - called when normal operation can resume
3839  * @pdev:   PCI device struct
3840  */
3841 static void cxlflash_pci_resume(struct pci_dev *pdev)
3842 {
3843     struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3844     struct device *dev = &cfg->dev->dev;
3845 
3846     dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3847 
3848     cfg->state = STATE_NORMAL;
3849     wake_up_all(&cfg->reset_waitq);
3850     scsi_unblock_requests(cfg->host);
3851 }
3852 
3853 /**
3854  * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class
3855  * @dev:    Character device.
3856  * @mode:   Mode that can be used to verify access.
3857  *
3858  * Return: Allocated string describing the devtmpfs structure.
3859  */
3860 static char *cxlflash_devnode(struct device *dev, umode_t *mode)
3861 {
3862     return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev));
3863 }
3864 
3865 /**
3866  * cxlflash_class_init() - create character device class
3867  *
3868  * Return: 0 on success, -errno on failure
3869  */
3870 static int cxlflash_class_init(void)
3871 {
3872     dev_t devno;
3873     int rc = 0;
3874 
3875     rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash");
3876     if (unlikely(rc)) {
3877         pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc);
3878         goto out;
3879     }
3880 
3881     cxlflash_major = MAJOR(devno);
3882 
3883     cxlflash_class = class_create(THIS_MODULE, "cxlflash");
3884     if (IS_ERR(cxlflash_class)) {
3885         rc = PTR_ERR(cxlflash_class);
3886         pr_err("%s: class_create failed rc=%d\n", __func__, rc);
3887         goto err;
3888     }
3889 
3890     cxlflash_class->devnode = cxlflash_devnode;
3891 out:
3892     pr_debug("%s: returning rc=%d\n", __func__, rc);
3893     return rc;
3894 err:
3895     unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3896     goto out;
3897 }
3898 
3899 /**
3900  * cxlflash_class_exit() - destroy character device class
3901  */
3902 static void cxlflash_class_exit(void)
3903 {
3904     dev_t devno = MKDEV(cxlflash_major, 0);
3905 
3906     class_destroy(cxlflash_class);
3907     unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3908 }
3909 
3910 static const struct pci_error_handlers cxlflash_err_handler = {
3911     .error_detected = cxlflash_pci_error_detected,
3912     .slot_reset = cxlflash_pci_slot_reset,
3913     .resume = cxlflash_pci_resume,
3914 };
3915 
3916 /*
3917  * PCI device structure
3918  */
3919 static struct pci_driver cxlflash_driver = {
3920     .name = CXLFLASH_NAME,
3921     .id_table = cxlflash_pci_table,
3922     .probe = cxlflash_probe,
3923     .remove = cxlflash_remove,
3924     .shutdown = cxlflash_remove,
3925     .err_handler = &cxlflash_err_handler,
3926 };
3927 
3928 /**
3929  * init_cxlflash() - module entry point
3930  *
3931  * Return: 0 on success, -errno on failure
3932  */
3933 static int __init init_cxlflash(void)
3934 {
3935     int rc;
3936 
3937     check_sizes();
3938     cxlflash_list_init();
3939     rc = cxlflash_class_init();
3940     if (unlikely(rc))
3941         goto out;
3942 
3943     rc = pci_register_driver(&cxlflash_driver);
3944     if (unlikely(rc))
3945         goto err;
3946 out:
3947     pr_debug("%s: returning rc=%d\n", __func__, rc);
3948     return rc;
3949 err:
3950     cxlflash_class_exit();
3951     goto out;
3952 }
3953 
3954 /**
3955  * exit_cxlflash() - module exit point
3956  */
3957 static void __exit exit_cxlflash(void)
3958 {
3959     cxlflash_term_global_luns();
3960     cxlflash_free_errpage();
3961 
3962     pci_unregister_driver(&cxlflash_driver);
3963     cxlflash_class_exit();
3964 }
3965 
3966 module_init(init_cxlflash);
3967 module_exit(exit_cxlflash);