Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * This file is part of the Chelsio FCoE driver for Linux.
0003  *
0004  * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
0005  *
0006  * This software is available to you under a choice of one of two
0007  * licenses.  You may choose to be licensed under the terms of the GNU
0008  * General Public License (GPL) Version 2, available from the file
0009  * COPYING in the main directory of this source tree, or the
0010  * OpenIB.org BSD license below:
0011  *
0012  *     Redistribution and use in source and binary forms, with or
0013  *     without modification, are permitted provided that the following
0014  *     conditions are met:
0015  *
0016  *      - Redistributions of source code must retain the above
0017  *        copyright notice, this list of conditions and the following
0018  *        disclaimer.
0019  *
0020  *      - Redistributions in binary form must reproduce the above
0021  *        copyright notice, this list of conditions and the following
0022  *        disclaimer in the documentation and/or other materials
0023  *        provided with the distribution.
0024  *
0025  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
0026  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
0027  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
0028  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
0029  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
0030  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
0031  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
0032  * SOFTWARE.
0033  */
0034 
0035 #include <linux/pci.h>
0036 #include <linux/pci_regs.h>
0037 #include <linux/firmware.h>
0038 #include <linux/stddef.h>
0039 #include <linux/delay.h>
0040 #include <linux/string.h>
0041 #include <linux/compiler.h>
0042 #include <linux/jiffies.h>
0043 #include <linux/kernel.h>
0044 #include <linux/log2.h>
0045 
0046 #include "csio_hw.h"
0047 #include "csio_lnode.h"
0048 #include "csio_rnode.h"
0049 
0050 int csio_dbg_level = 0xFEFF;
0051 unsigned int csio_port_mask = 0xf;
0052 
0053 /* Default FW event queue entries. */
0054 static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
0055 
0056 /* Default MSI param level */
0057 int csio_msi = 2;
0058 
0059 /* FCoE function instances */
0060 static int dev_num;
0061 
0062 /* FCoE Adapter types & its description */
0063 static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
0064     {"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
0065     {"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
0066     {"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"},
0067     {"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
0068     {"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
0069     {"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
0070     {"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
0071     {"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
0072     {"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
0073     {"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
0074     {"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
0075     {"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
0076     {"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
0077     {"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
0078     {"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
0079     {"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
0080     {"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
0081     {"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
0082     {"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
0083     {"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"},
0084     {"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"},
0085     {"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"}
0086 };
0087 
0088 static void csio_mgmtm_cleanup(struct csio_mgmtm *);
0089 static void csio_hw_mbm_cleanup(struct csio_hw *);
0090 
0091 /* State machine forward declarations */
0092 static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
0093 static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
0094 static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
0095 static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
0096 static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
0097 static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
0098 static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
0099 static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
0100 static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
0101 
0102 static void csio_hw_initialize(struct csio_hw *hw);
0103 static void csio_evtq_stop(struct csio_hw *hw);
0104 static void csio_evtq_start(struct csio_hw *hw);
0105 
0106 int csio_is_hw_ready(struct csio_hw *hw)
0107 {
0108     return csio_match_state(hw, csio_hws_ready);
0109 }
0110 
0111 int csio_is_hw_removing(struct csio_hw *hw)
0112 {
0113     return csio_match_state(hw, csio_hws_removing);
0114 }
0115 
0116 
0117 /*
0118  *  csio_hw_wait_op_done_val - wait until an operation is completed
0119  *  @hw: the HW module
0120  *  @reg: the register to check for completion
0121  *  @mask: a single-bit field within @reg that indicates completion
0122  *  @polarity: the value of the field when the operation is completed
0123  *  @attempts: number of check iterations
0124  *  @delay: delay in usecs between iterations
0125  *  @valp: where to store the value of the register at completion time
0126  *
0127  *  Wait until an operation is completed by checking a bit in a register
0128  *  up to @attempts times.  If @valp is not NULL the value of the register
0129  *  at the time it indicated completion is stored there.  Returns 0 if the
0130  *  operation completes and -EAGAIN otherwise.
0131  */
0132 int
0133 csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
0134              int polarity, int attempts, int delay, uint32_t *valp)
0135 {
0136     uint32_t val;
0137     while (1) {
0138         val = csio_rd_reg32(hw, reg);
0139 
0140         if (!!(val & mask) == polarity) {
0141             if (valp)
0142                 *valp = val;
0143             return 0;
0144         }
0145 
0146         if (--attempts == 0)
0147             return -EAGAIN;
0148         if (delay)
0149             udelay(delay);
0150     }
0151 }
0152 
0153 /*
0154  *  csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
0155  *  @hw: the adapter
0156  *  @addr: the indirect TP register address
0157  *  @mask: specifies the field within the register to modify
0158  *  @val: new value for the field
0159  *
0160  *  Sets a field of an indirect TP register to the given value.
0161  */
0162 void
0163 csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
0164             unsigned int mask, unsigned int val)
0165 {
0166     csio_wr_reg32(hw, addr, TP_PIO_ADDR_A);
0167     val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask;
0168     csio_wr_reg32(hw, val, TP_PIO_DATA_A);
0169 }
0170 
0171 void
0172 csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
0173            uint32_t value)
0174 {
0175     uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
0176 
0177     csio_wr_reg32(hw, val | value, reg);
0178     /* Flush */
0179     csio_rd_reg32(hw, reg);
0180 
0181 }
0182 
0183 static int
0184 csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
0185 {
0186     return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
0187                         addr, len, buf, 0);
0188 }
0189 
0190 /*
0191  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
0192  */
0193 #define EEPROM_MAX_RD_POLL  40
0194 #define EEPROM_MAX_WR_POLL  6
0195 #define EEPROM_STAT_ADDR    0x7bfc
0196 #define VPD_BASE        0x400
0197 #define VPD_BASE_OLD        0
0198 #define VPD_LEN         1024
0199 #define VPD_INFO_FLD_HDR_SIZE   3
0200 
0201 /*
0202  *  csio_hw_seeprom_read - read a serial EEPROM location
0203  *  @hw: hw to read
0204  *  @addr: EEPROM virtual address
0205  *  @data: where to store the read data
0206  *
0207  *  Read a 32-bit word from a location in serial EEPROM using the card's PCI
0208  *  VPD capability.  Note that this function must be called with a virtual
0209  *  address.
0210  */
0211 static int
0212 csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
0213 {
0214     uint16_t val = 0;
0215     int attempts = EEPROM_MAX_RD_POLL;
0216     uint32_t base = hw->params.pci.vpd_cap_addr;
0217 
0218     if (addr >= EEPROMVSIZE || (addr & 3))
0219         return -EINVAL;
0220 
0221     pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
0222 
0223     do {
0224         udelay(10);
0225         pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
0226     } while (!(val & PCI_VPD_ADDR_F) && --attempts);
0227 
0228     if (!(val & PCI_VPD_ADDR_F)) {
0229         csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
0230         return -EINVAL;
0231     }
0232 
0233     pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
0234     *data = le32_to_cpu(*(__le32 *)data);
0235 
0236     return 0;
0237 }
0238 
0239 /*
0240  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
0241  * VPD-R sections.
0242  */
0243 struct t4_vpd_hdr {
0244     u8  id_tag;
0245     u8  id_len[2];
0246     u8  id_data[ID_LEN];
0247     u8  vpdr_tag;
0248     u8  vpdr_len[2];
0249 };
0250 
0251 /*
0252  *  csio_hw_get_vpd_keyword_val - Locates an information field keyword in
0253  *                    the VPD
0254  *  @v: Pointer to buffered vpd data structure
0255  *  @kw: The keyword to search for
0256  *
0257  *  Returns the value of the information field keyword or
0258  *  -EINVAL otherwise.
0259  */
0260 static int
0261 csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
0262 {
0263     int32_t i;
0264     int32_t offset , len;
0265     const uint8_t *buf = &v->id_tag;
0266     const uint8_t *vpdr_len = &v->vpdr_tag;
0267     offset = sizeof(struct t4_vpd_hdr);
0268     len =  (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
0269 
0270     if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
0271         return -EINVAL;
0272 
0273     for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
0274         if (memcmp(buf + i , kw, 2) == 0) {
0275             i += VPD_INFO_FLD_HDR_SIZE;
0276             return i;
0277         }
0278 
0279         i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
0280     }
0281 
0282     return -EINVAL;
0283 }
0284 
0285 static int
0286 csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
0287 {
0288     *pos = pci_find_capability(pdev, cap);
0289     if (*pos)
0290         return 0;
0291 
0292     return -1;
0293 }
0294 
0295 /*
0296  *  csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
0297  *  @hw: HW module
0298  *  @p: where to store the parameters
0299  *
0300  *  Reads card parameters stored in VPD EEPROM.
0301  */
0302 static int
0303 csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
0304 {
0305     int i, ret, ec, sn, addr;
0306     uint8_t *vpd, csum;
0307     const struct t4_vpd_hdr *v;
0308     /* To get around compilation warning from strstrip */
0309     char __always_unused *s;
0310 
0311     if (csio_is_valid_vpd(hw))
0312         return 0;
0313 
0314     ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
0315                   &hw->params.pci.vpd_cap_addr);
0316     if (ret)
0317         return -EINVAL;
0318 
0319     vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
0320     if (vpd == NULL)
0321         return -ENOMEM;
0322 
0323     /*
0324      * Card information normally starts at VPD_BASE but early cards had
0325      * it at 0.
0326      */
0327     ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
0328     addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
0329 
0330     for (i = 0; i < VPD_LEN; i += 4) {
0331         ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
0332         if (ret) {
0333             kfree(vpd);
0334             return ret;
0335         }
0336     }
0337 
0338     /* Reset the VPD flag! */
0339     hw->flags &= (~CSIO_HWF_VPD_VALID);
0340 
0341     v = (const struct t4_vpd_hdr *)vpd;
0342 
0343 #define FIND_VPD_KW(var, name) do { \
0344     var = csio_hw_get_vpd_keyword_val(v, name); \
0345     if (var < 0) { \
0346         csio_err(hw, "missing VPD keyword " name "\n"); \
0347         kfree(vpd); \
0348         return -EINVAL; \
0349     } \
0350 } while (0)
0351 
0352     FIND_VPD_KW(i, "RV");
0353     for (csum = 0; i >= 0; i--)
0354         csum += vpd[i];
0355 
0356     if (csum) {
0357         csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
0358         kfree(vpd);
0359         return -EINVAL;
0360     }
0361     FIND_VPD_KW(ec, "EC");
0362     FIND_VPD_KW(sn, "SN");
0363 #undef FIND_VPD_KW
0364 
0365     memcpy(p->id, v->id_data, ID_LEN);
0366     s = strstrip(p->id);
0367     memcpy(p->ec, vpd + ec, EC_LEN);
0368     s = strstrip(p->ec);
0369     i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
0370     memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
0371     s = strstrip(p->sn);
0372 
0373     csio_valid_vpd_copied(hw);
0374 
0375     kfree(vpd);
0376     return 0;
0377 }
0378 
0379 /*
0380  *  csio_hw_sf1_read - read data from the serial flash
0381  *  @hw: the HW module
0382  *  @byte_cnt: number of bytes to read
0383  *  @cont: whether another operation will be chained
0384  *      @lock: whether to lock SF for PL access only
0385  *  @valp: where to store the read data
0386  *
0387  *  Reads up to 4 bytes of data from the serial flash.  The location of
0388  *  the read needs to be specified prior to calling this by issuing the
0389  *  appropriate commands to the serial flash.
0390  */
0391 static int
0392 csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
0393          int32_t lock, uint32_t *valp)
0394 {
0395     int ret;
0396 
0397     if (!byte_cnt || byte_cnt > 4)
0398         return -EINVAL;
0399     if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
0400         return -EBUSY;
0401 
0402     csio_wr_reg32(hw,  SF_LOCK_V(lock) | SF_CONT_V(cont) |
0403               BYTECNT_V(byte_cnt - 1), SF_OP_A);
0404     ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
0405                        10, NULL);
0406     if (!ret)
0407         *valp = csio_rd_reg32(hw, SF_DATA_A);
0408     return ret;
0409 }
0410 
0411 /*
0412  *  csio_hw_sf1_write - write data to the serial flash
0413  *  @hw: the HW module
0414  *  @byte_cnt: number of bytes to write
0415  *  @cont: whether another operation will be chained
0416  *      @lock: whether to lock SF for PL access only
0417  *  @val: value to write
0418  *
0419  *  Writes up to 4 bytes of data to the serial flash.  The location of
0420  *  the write needs to be specified prior to calling this by issuing the
0421  *  appropriate commands to the serial flash.
0422  */
0423 static int
0424 csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
0425           int32_t lock, uint32_t val)
0426 {
0427     if (!byte_cnt || byte_cnt > 4)
0428         return -EINVAL;
0429     if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
0430         return -EBUSY;
0431 
0432     csio_wr_reg32(hw, val, SF_DATA_A);
0433     csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) |
0434               OP_V(1) | SF_LOCK_V(lock), SF_OP_A);
0435 
0436     return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
0437                     10, NULL);
0438 }
0439 
0440 /*
0441  *  csio_hw_flash_wait_op - wait for a flash operation to complete
0442  *  @hw: the HW module
0443  *  @attempts: max number of polls of the status register
0444  *  @delay: delay between polls in ms
0445  *
0446  *  Wait for a flash operation to complete by polling the status register.
0447  */
0448 static int
0449 csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
0450 {
0451     int ret;
0452     uint32_t status;
0453 
0454     while (1) {
0455         ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
0456         if (ret != 0)
0457             return ret;
0458 
0459         ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
0460         if (ret != 0)
0461             return ret;
0462 
0463         if (!(status & 1))
0464             return 0;
0465         if (--attempts == 0)
0466             return -EAGAIN;
0467         if (delay)
0468             msleep(delay);
0469     }
0470 }
0471 
0472 /*
0473  *  csio_hw_read_flash - read words from serial flash
0474  *  @hw: the HW module
0475  *  @addr: the start address for the read
0476  *  @nwords: how many 32-bit words to read
0477  *  @data: where to store the read data
0478  *  @byte_oriented: whether to store data as bytes or as words
0479  *
0480  *  Read the specified number of 32-bit words from the serial flash.
0481  *  If @byte_oriented is set the read data is stored as a byte array
0482  *  (i.e., big-endian), otherwise as 32-bit words in the platform's
0483  *  natural endianess.
0484  */
0485 static int
0486 csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
0487           uint32_t *data, int32_t byte_oriented)
0488 {
0489     int ret;
0490 
0491     if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
0492         return -EINVAL;
0493 
0494     addr = swab32(addr) | SF_RD_DATA_FAST;
0495 
0496     ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
0497     if (ret != 0)
0498         return ret;
0499 
0500     ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
0501     if (ret != 0)
0502         return ret;
0503 
0504     for ( ; nwords; nwords--, data++) {
0505         ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
0506         if (nwords == 1)
0507             csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
0508         if (ret)
0509             return ret;
0510         if (byte_oriented)
0511             *data = (__force __u32) htonl(*data);
0512     }
0513     return 0;
0514 }
0515 
0516 /*
0517  *  csio_hw_write_flash - write up to a page of data to the serial flash
0518  *  @hw: the hw
0519  *  @addr: the start address to write
0520  *  @n: length of data to write in bytes
0521  *  @data: the data to write
0522  *
0523  *  Writes up to a page of data (256 bytes) to the serial flash starting
0524  *  at the given address.  All the data must be written to the same page.
0525  */
0526 static int
0527 csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
0528             uint32_t n, const uint8_t *data)
0529 {
0530     int ret = -EINVAL;
0531     uint32_t buf[64];
0532     uint32_t i, c, left, val, offset = addr & 0xff;
0533 
0534     if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
0535         return -EINVAL;
0536 
0537     val = swab32(addr) | SF_PROG_PAGE;
0538 
0539     ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
0540     if (ret != 0)
0541         goto unlock;
0542 
0543     ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
0544     if (ret != 0)
0545         goto unlock;
0546 
0547     for (left = n; left; left -= c) {
0548         c = min(left, 4U);
0549         for (val = 0, i = 0; i < c; ++i)
0550             val = (val << 8) + *data++;
0551 
0552         ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
0553         if (ret)
0554             goto unlock;
0555     }
0556     ret = csio_hw_flash_wait_op(hw, 8, 1);
0557     if (ret)
0558         goto unlock;
0559 
0560     csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
0561 
0562     /* Read the page to verify the write succeeded */
0563     ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
0564     if (ret)
0565         return ret;
0566 
0567     if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
0568         csio_err(hw,
0569              "failed to correctly write the flash page at %#x\n",
0570              addr);
0571         return -EINVAL;
0572     }
0573 
0574     return 0;
0575 
0576 unlock:
0577     csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
0578     return ret;
0579 }
0580 
0581 /*
0582  *  csio_hw_flash_erase_sectors - erase a range of flash sectors
0583  *  @hw: the HW module
0584  *  @start: the first sector to erase
0585  *  @end: the last sector to erase
0586  *
0587  *  Erases the sectors in the given inclusive range.
0588  */
0589 static int
0590 csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
0591 {
0592     int ret = 0;
0593 
0594     while (start <= end) {
0595 
0596         ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
0597         if (ret != 0)
0598             goto out;
0599 
0600         ret = csio_hw_sf1_write(hw, 4, 0, 1,
0601                     SF_ERASE_SECTOR | (start << 8));
0602         if (ret != 0)
0603             goto out;
0604 
0605         ret = csio_hw_flash_wait_op(hw, 14, 500);
0606         if (ret != 0)
0607             goto out;
0608 
0609         start++;
0610     }
0611 out:
0612     if (ret)
0613         csio_err(hw, "erase of flash sector %d failed, error %d\n",
0614              start, ret);
0615     csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
0616     return 0;
0617 }
0618 
0619 static void
0620 csio_hw_print_fw_version(struct csio_hw *hw, char *str)
0621 {
0622     csio_info(hw, "%s: %u.%u.%u.%u\n", str,
0623             FW_HDR_FW_VER_MAJOR_G(hw->fwrev),
0624             FW_HDR_FW_VER_MINOR_G(hw->fwrev),
0625             FW_HDR_FW_VER_MICRO_G(hw->fwrev),
0626             FW_HDR_FW_VER_BUILD_G(hw->fwrev));
0627 }
0628 
0629 /*
0630  * csio_hw_get_fw_version - read the firmware version
0631  * @hw: HW module
0632  * @vers: where to place the version
0633  *
0634  * Reads the FW version from flash.
0635  */
0636 static int
0637 csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
0638 {
0639     return csio_hw_read_flash(hw, FLASH_FW_START +
0640                   offsetof(struct fw_hdr, fw_ver), 1,
0641                   vers, 0);
0642 }
0643 
0644 /*
0645  *  csio_hw_get_tp_version - read the TP microcode version
0646  *  @hw: HW module
0647  *  @vers: where to place the version
0648  *
0649  *  Reads the TP microcode version from flash.
0650  */
0651 static int
0652 csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
0653 {
0654     return csio_hw_read_flash(hw, FLASH_FW_START +
0655             offsetof(struct fw_hdr, tp_microcode_ver), 1,
0656             vers, 0);
0657 }
0658 
0659 /*
0660  * csio_hw_fw_dload - download firmware.
0661  * @hw: HW module
0662  * @fw_data: firmware image to write.
0663  * @size: image size
0664  *
0665  * Write the supplied firmware image to the card's serial flash.
0666  */
0667 static int
0668 csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
0669 {
0670     uint32_t csum;
0671     int32_t addr;
0672     int ret;
0673     uint32_t i;
0674     uint8_t first_page[SF_PAGE_SIZE];
0675     const __be32 *p = (const __be32 *)fw_data;
0676     struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
0677     uint32_t sf_sec_size;
0678 
0679     if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
0680         csio_err(hw, "Serial Flash data invalid\n");
0681         return -EINVAL;
0682     }
0683 
0684     if (!size) {
0685         csio_err(hw, "FW image has no data\n");
0686         return -EINVAL;
0687     }
0688 
0689     if (size & 511) {
0690         csio_err(hw, "FW image size not multiple of 512 bytes\n");
0691         return -EINVAL;
0692     }
0693 
0694     if (ntohs(hdr->len512) * 512 != size) {
0695         csio_err(hw, "FW image size differs from size in FW header\n");
0696         return -EINVAL;
0697     }
0698 
0699     if (size > FLASH_FW_MAX_SIZE) {
0700         csio_err(hw, "FW image too large, max is %u bytes\n",
0701                 FLASH_FW_MAX_SIZE);
0702         return -EINVAL;
0703     }
0704 
0705     for (csum = 0, i = 0; i < size / sizeof(csum); i++)
0706         csum += ntohl(p[i]);
0707 
0708     if (csum != 0xffffffff) {
0709         csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
0710         return -EINVAL;
0711     }
0712 
0713     sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
0714     i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
0715 
0716     csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
0717               FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1);
0718 
0719     ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC,
0720                       FLASH_FW_START_SEC + i - 1);
0721     if (ret) {
0722         csio_err(hw, "Flash Erase failed\n");
0723         goto out;
0724     }
0725 
0726     /*
0727      * We write the correct version at the end so the driver can see a bad
0728      * version if the FW write fails.  Start by writing a copy of the
0729      * first page with a bad version.
0730      */
0731     memcpy(first_page, fw_data, SF_PAGE_SIZE);
0732     ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
0733     ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page);
0734     if (ret)
0735         goto out;
0736 
0737     csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
0738             FW_IMG_START, FW_IMG_START + size);
0739 
0740     addr = FLASH_FW_START;
0741     for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
0742         addr += SF_PAGE_SIZE;
0743         fw_data += SF_PAGE_SIZE;
0744         ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
0745         if (ret)
0746             goto out;
0747     }
0748 
0749     ret = csio_hw_write_flash(hw,
0750                   FLASH_FW_START +
0751                     offsetof(struct fw_hdr, fw_ver),
0752                   sizeof(hdr->fw_ver),
0753                   (const uint8_t *)&hdr->fw_ver);
0754 
0755 out:
0756     if (ret)
0757         csio_err(hw, "firmware download failed, error %d\n", ret);
0758     return ret;
0759 }
0760 
0761 static int
0762 csio_hw_get_flash_params(struct csio_hw *hw)
0763 {
0764     /* Table for non-Numonix supported flash parts.  Numonix parts are left
0765      * to the preexisting code.  All flash parts have 64KB sectors.
0766      */
0767     static struct flash_desc {
0768         u32 vendor_and_model_id;
0769         u32 size_mb;
0770     } supported_flash[] = {
0771         { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
0772     };
0773 
0774     u32 part, manufacturer;
0775     u32 density, size = 0;
0776     u32 flashid = 0;
0777     int ret;
0778 
0779     ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
0780     if (!ret)
0781         ret = csio_hw_sf1_read(hw, 3, 0, 1, &flashid);
0782     csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
0783     if (ret)
0784         return ret;
0785 
0786     /* Check to see if it's one of our non-standard supported Flash parts.
0787      */
0788     for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
0789         if (supported_flash[part].vendor_and_model_id == flashid) {
0790             hw->params.sf_size = supported_flash[part].size_mb;
0791             hw->params.sf_nsec =
0792                 hw->params.sf_size / SF_SEC_SIZE;
0793             goto found;
0794         }
0795 
0796     /* Decode Flash part size.  The code below looks repetitive with
0797      * common encodings, but that's not guaranteed in the JEDEC
0798      * specification for the Read JEDEC ID command.  The only thing that
0799      * we're guaranteed by the JEDEC specification is where the
0800      * Manufacturer ID is in the returned result.  After that each
0801      * Manufacturer ~could~ encode things completely differently.
0802      * Note, all Flash parts must have 64KB sectors.
0803      */
0804     manufacturer = flashid & 0xff;
0805     switch (manufacturer) {
0806     case 0x20: { /* Micron/Numonix */
0807         /* This Density -> Size decoding table is taken from Micron
0808          * Data Sheets.
0809          */
0810         density = (flashid >> 16) & 0xff;
0811         switch (density) {
0812         case 0x14 ... 0x19: /* 1MB - 32MB */
0813             size = 1 << density;
0814             break;
0815         case 0x20: /* 64MB */
0816             size = 1 << 26;
0817             break;
0818         case 0x21: /* 128MB */
0819             size = 1 << 27;
0820             break;
0821         case 0x22: /* 256MB */
0822             size = 1 << 28;
0823         }
0824         break;
0825     }
0826     case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
0827         /* This Density -> Size decoding table is taken from ISSI
0828          * Data Sheets.
0829          */
0830         density = (flashid >> 16) & 0xff;
0831         switch (density) {
0832         case 0x16: /* 32 MB */
0833             size = 1 << 25;
0834             break;
0835         case 0x17: /* 64MB */
0836             size = 1 << 26;
0837         }
0838         break;
0839     }
0840     case 0xc2: /* Macronix */
0841     case 0xef: /* Winbond */ {
0842         /* This Density -> Size decoding table is taken from
0843          * Macronix and Winbond Data Sheets.
0844          */
0845         density = (flashid >> 16) & 0xff;
0846         switch (density) {
0847         case 0x17: /* 8MB */
0848         case 0x18: /* 16MB */
0849             size = 1 << density;
0850         }
0851     }
0852     }
0853 
0854     /* If we didn't recognize the FLASH part, that's no real issue: the
0855      * Hardware/Software contract says that Hardware will _*ALWAYS*_
0856      * use a FLASH part which is at least 4MB in size and has 64KB
0857      * sectors.  The unrecognized FLASH part is likely to be much larger
0858      * than 4MB, but that's all we really need.
0859      */
0860     if (size == 0) {
0861         csio_warn(hw, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
0862               flashid);
0863         size = 1 << 22;
0864     }
0865 
0866     /* Store decoded Flash size */
0867     hw->params.sf_size = size;
0868     hw->params.sf_nsec = size / SF_SEC_SIZE;
0869 
0870 found:
0871     if (hw->params.sf_size < FLASH_MIN_SIZE)
0872         csio_warn(hw, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
0873               flashid, hw->params.sf_size, FLASH_MIN_SIZE);
0874     return 0;
0875 }
0876 
0877 /*****************************************************************************/
0878 /* HW State machine assists                                                  */
0879 /*****************************************************************************/
0880 
0881 static int
0882 csio_hw_dev_ready(struct csio_hw *hw)
0883 {
0884     uint32_t reg;
0885     int cnt = 6;
0886     int src_pf;
0887 
0888     while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) &&
0889            (--cnt != 0))
0890         mdelay(100);
0891 
0892     if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
0893         src_pf = SOURCEPF_G(reg);
0894     else
0895         src_pf = T6_SOURCEPF_G(reg);
0896 
0897     if ((cnt == 0) && (((int32_t)(src_pf) < 0) ||
0898                (src_pf >= CSIO_MAX_PFN))) {
0899         csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
0900         return -EIO;
0901     }
0902 
0903     hw->pfn = src_pf;
0904 
0905     return 0;
0906 }
0907 
0908 /*
0909  * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
0910  * @hw: HW module
0911  * @state: Device state
0912  *
0913  * FW_HELLO_CMD has to be polled for completion.
0914  */
0915 static int
0916 csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
0917 {
0918     struct csio_mb  *mbp;
0919     int rv = 0;
0920     enum fw_retval retval;
0921     uint8_t mpfn;
0922     char state_str[16];
0923     int retries = FW_CMD_HELLO_RETRIES;
0924 
0925     memset(state_str, 0, sizeof(state_str));
0926 
0927     mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
0928     if (!mbp) {
0929         rv = -ENOMEM;
0930         CSIO_INC_STATS(hw, n_err_nomem);
0931         goto out;
0932     }
0933 
0934 retry:
0935     csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
0936               hw->pfn, CSIO_MASTER_MAY, NULL);
0937 
0938     rv = csio_mb_issue(hw, mbp);
0939     if (rv) {
0940         csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
0941         goto out_free_mb;
0942     }
0943 
0944     csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
0945     if (retval != FW_SUCCESS) {
0946         csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
0947         rv = -EINVAL;
0948         goto out_free_mb;
0949     }
0950 
0951     /* Firmware has designated us to be master */
0952     if (hw->pfn == mpfn) {
0953         hw->flags |= CSIO_HWF_MASTER;
0954     } else if (*state == CSIO_DEV_STATE_UNINIT) {
0955         /*
0956          * If we're not the Master PF then we need to wait around for
0957          * the Master PF Driver to finish setting up the adapter.
0958          *
0959          * Note that we also do this wait if we're a non-Master-capable
0960          * PF and there is no current Master PF; a Master PF may show up
0961          * momentarily and we wouldn't want to fail pointlessly.  (This
0962          * can happen when an OS loads lots of different drivers rapidly
0963          * at the same time). In this case, the Master PF returned by
0964          * the firmware will be PCIE_FW_MASTER_MASK so the test below
0965          * will work ...
0966          */
0967 
0968         int waiting = FW_CMD_HELLO_TIMEOUT;
0969 
0970         /*
0971          * Wait for the firmware to either indicate an error or
0972          * initialized state.  If we see either of these we bail out
0973          * and report the issue to the caller.  If we exhaust the
0974          * "hello timeout" and we haven't exhausted our retries, try
0975          * again.  Otherwise bail with a timeout error.
0976          */
0977         for (;;) {
0978             uint32_t pcie_fw;
0979 
0980             spin_unlock_irq(&hw->lock);
0981             msleep(50);
0982             spin_lock_irq(&hw->lock);
0983             waiting -= 50;
0984 
0985             /*
0986              * If neither Error nor Initialized are indicated
0987              * by the firmware keep waiting till we exhaust our
0988              * timeout ... and then retry if we haven't exhausted
0989              * our retries ...
0990              */
0991             pcie_fw = csio_rd_reg32(hw, PCIE_FW_A);
0992             if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
0993                 if (waiting <= 0) {
0994                     if (retries-- > 0)
0995                         goto retry;
0996 
0997                     rv = -ETIMEDOUT;
0998                     break;
0999                 }
1000                 continue;
1001             }
1002 
1003             /*
1004              * We either have an Error or Initialized condition
1005              * report errors preferentially.
1006              */
1007             if (state) {
1008                 if (pcie_fw & PCIE_FW_ERR_F) {
1009                     *state = CSIO_DEV_STATE_ERR;
1010                     rv = -ETIMEDOUT;
1011                 } else if (pcie_fw & PCIE_FW_INIT_F)
1012                     *state = CSIO_DEV_STATE_INIT;
1013             }
1014 
1015             /*
1016              * If we arrived before a Master PF was selected and
1017              * there's not a valid Master PF, grab its identity
1018              * for our caller.
1019              */
1020             if (mpfn == PCIE_FW_MASTER_M &&
1021                 (pcie_fw & PCIE_FW_MASTER_VLD_F))
1022                 mpfn = PCIE_FW_MASTER_G(pcie_fw);
1023             break;
1024         }
1025         hw->flags &= ~CSIO_HWF_MASTER;
1026     }
1027 
1028     switch (*state) {
1029     case CSIO_DEV_STATE_UNINIT:
1030         strcpy(state_str, "Initializing");
1031         break;
1032     case CSIO_DEV_STATE_INIT:
1033         strcpy(state_str, "Initialized");
1034         break;
1035     case CSIO_DEV_STATE_ERR:
1036         strcpy(state_str, "Error");
1037         break;
1038     default:
1039         strcpy(state_str, "Unknown");
1040         break;
1041     }
1042 
1043     if (hw->pfn == mpfn)
1044         csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
1045             hw->pfn, state_str);
1046     else
1047         csio_info(hw,
1048             "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
1049             hw->pfn, mpfn, state_str);
1050 
1051 out_free_mb:
1052     mempool_free(mbp, hw->mb_mempool);
1053 out:
1054     return rv;
1055 }
1056 
1057 /*
1058  * csio_do_bye - Perform the BYE FW Mailbox command and process response.
1059  * @hw: HW module
1060  *
1061  */
1062 static int
1063 csio_do_bye(struct csio_hw *hw)
1064 {
1065     struct csio_mb  *mbp;
1066     enum fw_retval retval;
1067 
1068     mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1069     if (!mbp) {
1070         CSIO_INC_STATS(hw, n_err_nomem);
1071         return -ENOMEM;
1072     }
1073 
1074     csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1075 
1076     if (csio_mb_issue(hw, mbp)) {
1077         csio_err(hw, "Issue of BYE command failed\n");
1078         mempool_free(mbp, hw->mb_mempool);
1079         return -EINVAL;
1080     }
1081 
1082     retval = csio_mb_fw_retval(mbp);
1083     if (retval != FW_SUCCESS) {
1084         mempool_free(mbp, hw->mb_mempool);
1085         return -EINVAL;
1086     }
1087 
1088     mempool_free(mbp, hw->mb_mempool);
1089 
1090     return 0;
1091 }
1092 
1093 /*
1094  * csio_do_reset- Perform the device reset.
1095  * @hw: HW module
1096  * @fw_rst: FW reset
1097  *
1098  * If fw_rst is set, issues FW reset mbox cmd otherwise
1099  * does PIO reset.
1100  * Performs reset of the function.
1101  */
1102 static int
1103 csio_do_reset(struct csio_hw *hw, bool fw_rst)
1104 {
1105     struct csio_mb  *mbp;
1106     enum fw_retval retval;
1107 
1108     if (!fw_rst) {
1109         /* PIO reset */
1110         csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1111         mdelay(2000);
1112         return 0;
1113     }
1114 
1115     mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1116     if (!mbp) {
1117         CSIO_INC_STATS(hw, n_err_nomem);
1118         return -ENOMEM;
1119     }
1120 
1121     csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1122               PIORSTMODE_F | PIORST_F, 0, NULL);
1123 
1124     if (csio_mb_issue(hw, mbp)) {
1125         csio_err(hw, "Issue of RESET command failed.n");
1126         mempool_free(mbp, hw->mb_mempool);
1127         return -EINVAL;
1128     }
1129 
1130     retval = csio_mb_fw_retval(mbp);
1131     if (retval != FW_SUCCESS) {
1132         csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1133         mempool_free(mbp, hw->mb_mempool);
1134         return -EINVAL;
1135     }
1136 
1137     mempool_free(mbp, hw->mb_mempool);
1138 
1139     return 0;
1140 }
1141 
1142 static int
1143 csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1144 {
1145     struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1146     uint16_t caps;
1147 
1148     caps = ntohs(rsp->fcoecaps);
1149 
1150     if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1151         csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1152         return -EINVAL;
1153     }
1154 
1155     if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1156         csio_err(hw, "No FCoE Control Offload capability\n");
1157         return -EINVAL;
1158     }
1159 
1160     return 0;
1161 }
1162 
1163 /*
1164  *  csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1165  *  @hw: the HW module
1166  *  @mbox: mailbox to use for the FW RESET command (if desired)
1167  *  @force: force uP into RESET even if FW RESET command fails
1168  *
1169  *  Issues a RESET command to firmware (if desired) with a HALT indication
1170  *  and then puts the microprocessor into RESET state.  The RESET command
1171  *  will only be issued if a legitimate mailbox is provided (mbox <=
1172  *  PCIE_FW_MASTER_MASK).
1173  *
1174  *  This is generally used in order for the host to safely manipulate the
1175  *  adapter without fear of conflicting with whatever the firmware might
1176  *  be doing.  The only way out of this state is to RESTART the firmware
1177  *  ...
1178  */
1179 static int
1180 csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1181 {
1182     enum fw_retval retval = 0;
1183 
1184     /*
1185      * If a legitimate mailbox is provided, issue a RESET command
1186      * with a HALT indication.
1187      */
1188     if (mbox <= PCIE_FW_MASTER_M) {
1189         struct csio_mb  *mbp;
1190 
1191         mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1192         if (!mbp) {
1193             CSIO_INC_STATS(hw, n_err_nomem);
1194             return -ENOMEM;
1195         }
1196 
1197         csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1198                   PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F,
1199                   NULL);
1200 
1201         if (csio_mb_issue(hw, mbp)) {
1202             csio_err(hw, "Issue of RESET command failed!\n");
1203             mempool_free(mbp, hw->mb_mempool);
1204             return -EINVAL;
1205         }
1206 
1207         retval = csio_mb_fw_retval(mbp);
1208         mempool_free(mbp, hw->mb_mempool);
1209     }
1210 
1211     /*
1212      * Normally we won't complete the operation if the firmware RESET
1213      * command fails but if our caller insists we'll go ahead and put the
1214      * uP into RESET.  This can be useful if the firmware is hung or even
1215      * missing ...  We'll have to take the risk of putting the uP into
1216      * RESET without the cooperation of firmware in that case.
1217      *
1218      * We also force the firmware's HALT flag to be on in case we bypassed
1219      * the firmware RESET command above or we're dealing with old firmware
1220      * which doesn't have the HALT capability.  This will serve as a flag
1221      * for the incoming firmware to know that it's coming out of a HALT
1222      * rather than a RESET ... if it's new enough to understand that ...
1223      */
1224     if (retval == 0 || force) {
1225         csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
1226         csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F,
1227                    PCIE_FW_HALT_F);
1228     }
1229 
1230     /*
1231      * And we always return the result of the firmware RESET command
1232      * even when we force the uP into RESET ...
1233      */
1234     return retval ? -EINVAL : 0;
1235 }
1236 
1237 /*
1238  *  csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1239  *  @hw: the HW module
1240  *  @reset: if we want to do a RESET to restart things
1241  *
1242  *  Restart firmware previously halted by csio_hw_fw_halt().  On successful
1243  *  return the previous PF Master remains as the new PF Master and there
1244  *  is no need to issue a new HELLO command, etc.
1245  *
1246  *  We do this in two ways:
1247  *
1248  *   1. If we're dealing with newer firmware we'll simply want to take
1249  *      the chip's microprocessor out of RESET.  This will cause the
1250  *      firmware to start up from its start vector.  And then we'll loop
1251  *      until the firmware indicates it's started again (PCIE_FW.HALT
1252  *      reset to 0) or we timeout.
1253  *
1254  *   2. If we're dealing with older firmware then we'll need to RESET
1255  *      the chip since older firmware won't recognize the PCIE_FW.HALT
1256  *      flag and automatically RESET itself on startup.
1257  */
1258 static int
1259 csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1260 {
1261     if (reset) {
1262         /*
1263          * Since we're directing the RESET instead of the firmware
1264          * doing it automatically, we need to clear the PCIE_FW.HALT
1265          * bit.
1266          */
1267         csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0);
1268 
1269         /*
1270          * If we've been given a valid mailbox, first try to get the
1271          * firmware to do the RESET.  If that works, great and we can
1272          * return success.  Otherwise, if we haven't been given a
1273          * valid mailbox or the RESET command failed, fall back to
1274          * hitting the chip with a hammer.
1275          */
1276         if (mbox <= PCIE_FW_MASTER_M) {
1277             csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1278             msleep(100);
1279             if (csio_do_reset(hw, true) == 0)
1280                 return 0;
1281         }
1282 
1283         csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1284         msleep(2000);
1285     } else {
1286         int ms;
1287 
1288         csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1289         for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1290             if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F))
1291                 return 0;
1292             msleep(100);
1293             ms += 100;
1294         }
1295         return -ETIMEDOUT;
1296     }
1297     return 0;
1298 }
1299 
1300 /*
1301  *  csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1302  *  @hw: the HW module
1303  *  @mbox: mailbox to use for the FW RESET command (if desired)
1304  *  @fw_data: the firmware image to write
1305  *  @size: image size
1306  *  @force: force upgrade even if firmware doesn't cooperate
1307  *
1308  *  Perform all of the steps necessary for upgrading an adapter's
1309  *  firmware image.  Normally this requires the cooperation of the
1310  *  existing firmware in order to halt all existing activities
1311  *  but if an invalid mailbox token is passed in we skip that step
1312  *  (though we'll still put the adapter microprocessor into RESET in
1313  *  that case).
1314  *
1315  *  On successful return the new firmware will have been loaded and
1316  *  the adapter will have been fully RESET losing all previous setup
1317  *  state.  On unsuccessful return the adapter may be completely hosed ...
1318  *  positive errno indicates that the adapter is ~probably~ intact, a
1319  *  negative errno indicates that things are looking bad ...
1320  */
1321 static int
1322 csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1323           const u8 *fw_data, uint32_t size, int32_t force)
1324 {
1325     const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1326     int reset, ret;
1327 
1328     ret = csio_hw_fw_halt(hw, mbox, force);
1329     if (ret != 0 && !force)
1330         return ret;
1331 
1332     ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1333     if (ret != 0)
1334         return ret;
1335 
1336     /*
1337      * Older versions of the firmware don't understand the new
1338      * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1339      * restart.  So for newly loaded older firmware we'll have to do the
1340      * RESET for it so it starts up on a clean slate.  We can tell if
1341      * the newly loaded firmware will handle this right by checking
1342      * its header flags to see if it advertises the capability.
1343      */
1344     reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1345     return csio_hw_fw_restart(hw, mbox, reset);
1346 }
1347 
1348 /*
1349  * csio_get_device_params - Get device parameters.
1350  * @hw: HW module
1351  *
1352  */
1353 static int
1354 csio_get_device_params(struct csio_hw *hw)
1355 {
1356     struct csio_wrm *wrm    = csio_hw_to_wrm(hw);
1357     struct csio_mb  *mbp;
1358     enum fw_retval retval;
1359     u32 param[6];
1360     int i, j = 0;
1361 
1362     /* Initialize portids to -1 */
1363     for (i = 0; i < CSIO_MAX_PPORTS; i++)
1364         hw->pport[i].portid = -1;
1365 
1366     mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1367     if (!mbp) {
1368         CSIO_INC_STATS(hw, n_err_nomem);
1369         return -ENOMEM;
1370     }
1371 
1372     /* Get port vec information. */
1373     param[0] = FW_PARAM_DEV(PORTVEC);
1374 
1375     /* Get Core clock. */
1376     param[1] = FW_PARAM_DEV(CCLK);
1377 
1378     /* Get EQ id start and end. */
1379     param[2] = FW_PARAM_PFVF(EQ_START);
1380     param[3] = FW_PARAM_PFVF(EQ_END);
1381 
1382     /* Get IQ id start and end. */
1383     param[4] = FW_PARAM_PFVF(IQFLINT_START);
1384     param[5] = FW_PARAM_PFVF(IQFLINT_END);
1385 
1386     csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1387                ARRAY_SIZE(param), param, NULL, false, NULL);
1388     if (csio_mb_issue(hw, mbp)) {
1389         csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1390         mempool_free(mbp, hw->mb_mempool);
1391         return -EINVAL;
1392     }
1393 
1394     csio_mb_process_read_params_rsp(hw, mbp, &retval,
1395             ARRAY_SIZE(param), param);
1396     if (retval != FW_SUCCESS) {
1397         csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1398                 retval);
1399         mempool_free(mbp, hw->mb_mempool);
1400         return -EINVAL;
1401     }
1402 
1403     /* cache the information. */
1404     hw->port_vec = param[0];
1405     hw->vpd.cclk = param[1];
1406     wrm->fw_eq_start = param[2];
1407     wrm->fw_iq_start = param[4];
1408 
1409     /* Using FW configured max iqs & eqs */
1410     if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1411         !csio_is_hw_master(hw)) {
1412         hw->cfg_niq = param[5] - param[4] + 1;
1413         hw->cfg_neq = param[3] - param[2] + 1;
1414         csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1415             hw->cfg_niq, hw->cfg_neq);
1416     }
1417 
1418     hw->port_vec &= csio_port_mask;
1419 
1420     hw->num_pports  = hweight32(hw->port_vec);
1421 
1422     csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1423             hw->port_vec, hw->num_pports);
1424 
1425     for (i = 0; i < hw->num_pports; i++) {
1426         while ((hw->port_vec & (1 << j)) == 0)
1427             j++;
1428         hw->pport[i].portid = j++;
1429         csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1430     }
1431     mempool_free(mbp, hw->mb_mempool);
1432 
1433     return 0;
1434 }
1435 
1436 
1437 /*
1438  * csio_config_device_caps - Get and set device capabilities.
1439  * @hw: HW module
1440  *
1441  */
1442 static int
1443 csio_config_device_caps(struct csio_hw *hw)
1444 {
1445     struct csio_mb  *mbp;
1446     enum fw_retval retval;
1447     int rv = -EINVAL;
1448 
1449     mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1450     if (!mbp) {
1451         CSIO_INC_STATS(hw, n_err_nomem);
1452         return -ENOMEM;
1453     }
1454 
1455     /* Get device capabilities */
1456     csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1457 
1458     if (csio_mb_issue(hw, mbp)) {
1459         csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1460         goto out;
1461     }
1462 
1463     retval = csio_mb_fw_retval(mbp);
1464     if (retval != FW_SUCCESS) {
1465         csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1466         goto out;
1467     }
1468 
1469     /* Validate device capabilities */
1470     rv = csio_hw_validate_caps(hw, mbp);
1471     if (rv != 0)
1472         goto out;
1473 
1474     /* Don't config device capabilities if already configured */
1475     if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1476         rv = 0;
1477         goto out;
1478     }
1479 
1480     /* Write back desired device capabilities */
1481     csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1482                 false, true, NULL);
1483 
1484     if (csio_mb_issue(hw, mbp)) {
1485         csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1486         goto out;
1487     }
1488 
1489     retval = csio_mb_fw_retval(mbp);
1490     if (retval != FW_SUCCESS) {
1491         csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1492         goto out;
1493     }
1494 
1495     rv = 0;
1496 out:
1497     mempool_free(mbp, hw->mb_mempool);
1498     return rv;
1499 }
1500 
1501 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
1502 {
1503     enum cc_fec cc_fec = 0;
1504 
1505     if (fw_fec & FW_PORT_CAP32_FEC_RS)
1506         cc_fec |= FEC_RS;
1507     if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1508         cc_fec |= FEC_BASER_RS;
1509 
1510     return cc_fec;
1511 }
1512 
1513 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
1514 {
1515     fw_port_cap32_t fw_pause = 0;
1516 
1517     if (cc_pause & PAUSE_RX)
1518         fw_pause |= FW_PORT_CAP32_FC_RX;
1519     if (cc_pause & PAUSE_TX)
1520         fw_pause |= FW_PORT_CAP32_FC_TX;
1521 
1522     return fw_pause;
1523 }
1524 
1525 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
1526 {
1527     fw_port_cap32_t fw_fec = 0;
1528 
1529     if (cc_fec & FEC_RS)
1530         fw_fec |= FW_PORT_CAP32_FEC_RS;
1531     if (cc_fec & FEC_BASER_RS)
1532         fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
1533 
1534     return fw_fec;
1535 }
1536 
1537 /**
1538  * fwcap_to_fwspeed - return highest speed in Port Capabilities
1539  * @acaps: advertised Port Capabilities
1540  *
1541  * Get the highest speed for the port from the advertised Port
1542  * Capabilities.
1543  */
1544 fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
1545 {
1546     #define TEST_SPEED_RETURN(__caps_speed) \
1547         do { \
1548             if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
1549                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
1550         } while (0)
1551 
1552     TEST_SPEED_RETURN(400G);
1553     TEST_SPEED_RETURN(200G);
1554     TEST_SPEED_RETURN(100G);
1555     TEST_SPEED_RETURN(50G);
1556     TEST_SPEED_RETURN(40G);
1557     TEST_SPEED_RETURN(25G);
1558     TEST_SPEED_RETURN(10G);
1559     TEST_SPEED_RETURN(1G);
1560     TEST_SPEED_RETURN(100M);
1561 
1562     #undef TEST_SPEED_RETURN
1563 
1564     return 0;
1565 }
1566 
1567 /**
1568  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
1569  *      @caps16: a 16-bit Port Capabilities value
1570  *
1571  *      Returns the equivalent 32-bit Port Capabilities value.
1572  */
1573 fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
1574 {
1575     fw_port_cap32_t caps32 = 0;
1576 
1577     #define CAP16_TO_CAP32(__cap) \
1578         do { \
1579             if (caps16 & FW_PORT_CAP_##__cap) \
1580                 caps32 |= FW_PORT_CAP32_##__cap; \
1581         } while (0)
1582 
1583     CAP16_TO_CAP32(SPEED_100M);
1584     CAP16_TO_CAP32(SPEED_1G);
1585     CAP16_TO_CAP32(SPEED_25G);
1586     CAP16_TO_CAP32(SPEED_10G);
1587     CAP16_TO_CAP32(SPEED_40G);
1588     CAP16_TO_CAP32(SPEED_100G);
1589     CAP16_TO_CAP32(FC_RX);
1590     CAP16_TO_CAP32(FC_TX);
1591     CAP16_TO_CAP32(ANEG);
1592     CAP16_TO_CAP32(MDIAUTO);
1593     CAP16_TO_CAP32(MDISTRAIGHT);
1594     CAP16_TO_CAP32(FEC_RS);
1595     CAP16_TO_CAP32(FEC_BASER_RS);
1596     CAP16_TO_CAP32(802_3_PAUSE);
1597     CAP16_TO_CAP32(802_3_ASM_DIR);
1598 
1599     #undef CAP16_TO_CAP32
1600 
1601     return caps32;
1602 }
1603 
1604 /**
1605  *  fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
1606  *  @caps32: a 32-bit Port Capabilities value
1607  *
1608  *  Returns the equivalent 16-bit Port Capabilities value.  Note that
1609  *  not all 32-bit Port Capabilities can be represented in the 16-bit
1610  *  Port Capabilities and some fields/values may not make it.
1611  */
1612 fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
1613 {
1614     fw_port_cap16_t caps16 = 0;
1615 
1616     #define CAP32_TO_CAP16(__cap) \
1617         do { \
1618             if (caps32 & FW_PORT_CAP32_##__cap) \
1619                 caps16 |= FW_PORT_CAP_##__cap; \
1620         } while (0)
1621 
1622     CAP32_TO_CAP16(SPEED_100M);
1623     CAP32_TO_CAP16(SPEED_1G);
1624     CAP32_TO_CAP16(SPEED_10G);
1625     CAP32_TO_CAP16(SPEED_25G);
1626     CAP32_TO_CAP16(SPEED_40G);
1627     CAP32_TO_CAP16(SPEED_100G);
1628     CAP32_TO_CAP16(FC_RX);
1629     CAP32_TO_CAP16(FC_TX);
1630     CAP32_TO_CAP16(802_3_PAUSE);
1631     CAP32_TO_CAP16(802_3_ASM_DIR);
1632     CAP32_TO_CAP16(ANEG);
1633     CAP32_TO_CAP16(FORCE_PAUSE);
1634     CAP32_TO_CAP16(MDIAUTO);
1635     CAP32_TO_CAP16(MDISTRAIGHT);
1636     CAP32_TO_CAP16(FEC_RS);
1637     CAP32_TO_CAP16(FEC_BASER_RS);
1638 
1639     #undef CAP32_TO_CAP16
1640 
1641     return caps16;
1642 }
1643 
1644 /**
1645  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
1646  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
1647  *
1648  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
1649  *      32-bit Port Capabilities value.
1650  */
1651 fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
1652 {
1653     fw_port_cap32_t linkattr = 0;
1654 
1655     /* The format of the Link Status in the old
1656      * 16-bit Port Information message isn't the same as the
1657      * 16-bit Port Capabilities bitfield used everywhere else.
1658      */
1659     if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1660         linkattr |= FW_PORT_CAP32_FC_RX;
1661     if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1662         linkattr |= FW_PORT_CAP32_FC_TX;
1663     if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1664         linkattr |= FW_PORT_CAP32_SPEED_100M;
1665     if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1666         linkattr |= FW_PORT_CAP32_SPEED_1G;
1667     if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1668         linkattr |= FW_PORT_CAP32_SPEED_10G;
1669     if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1670         linkattr |= FW_PORT_CAP32_SPEED_25G;
1671     if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1672         linkattr |= FW_PORT_CAP32_SPEED_40G;
1673     if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1674         linkattr |= FW_PORT_CAP32_SPEED_100G;
1675 
1676     return linkattr;
1677 }
1678 
1679 /**
1680  *      csio_init_link_config - initialize a link's SW state
1681  *      @lc: pointer to structure holding the link state
1682  *      @pcaps: link Port Capabilities
1683  *      @acaps: link current Advertised Port Capabilities
1684  *
1685  *      Initializes the SW state maintained for each link, including the link's
1686  *      capabilities and default speed/flow-control/autonegotiation settings.
1687  */
1688 static void csio_init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
1689                   fw_port_cap32_t acaps)
1690 {
1691     lc->pcaps = pcaps;
1692     lc->def_acaps = acaps;
1693     lc->lpacaps = 0;
1694     lc->speed_caps = 0;
1695     lc->speed = 0;
1696     lc->requested_fc = PAUSE_RX | PAUSE_TX;
1697     lc->fc = lc->requested_fc;
1698 
1699     /*
1700      * For Forward Error Control, we default to whatever the Firmware
1701      * tells us the Link is currently advertising.
1702      */
1703     lc->requested_fec = FEC_AUTO;
1704     lc->fec = fwcap_to_cc_fec(lc->def_acaps);
1705 
1706     /* If the Port is capable of Auto-Negtotiation, initialize it as
1707      * "enabled" and copy over all of the Physical Port Capabilities
1708      * to the Advertised Port Capabilities.  Otherwise mark it as
1709      * Auto-Negotiate disabled and select the highest supported speed
1710      * for the link.  Note parallel structure in t4_link_l1cfg_core()
1711      * and t4_handle_get_port_info().
1712      */
1713     if (lc->pcaps & FW_PORT_CAP32_ANEG) {
1714         lc->acaps = lc->pcaps & ADVERT_MASK;
1715         lc->autoneg = AUTONEG_ENABLE;
1716         lc->requested_fc |= PAUSE_AUTONEG;
1717     } else {
1718         lc->acaps = 0;
1719         lc->autoneg = AUTONEG_DISABLE;
1720     }
1721 }
1722 
1723 static void csio_link_l1cfg(struct link_config *lc, uint16_t fw_caps,
1724                 uint32_t *rcaps)
1725 {
1726     unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO);
1727     fw_port_cap32_t fw_fc, cc_fec, fw_fec, lrcap;
1728 
1729     lc->link_ok = 0;
1730 
1731     /*
1732      * Convert driver coding of Pause Frame Flow Control settings into the
1733      * Firmware's API.
1734      */
1735     fw_fc = cc_to_fwcap_pause(lc->requested_fc);
1736 
1737     /*
1738      * Convert Common Code Forward Error Control settings into the
1739      * Firmware's API.  If the current Requested FEC has "Automatic"
1740      * (IEEE 802.3) specified, then we use whatever the Firmware
1741      * sent us as part of it's IEEE 802.3-based interpretation of
1742      * the Transceiver Module EPROM FEC parameters.  Otherwise we
1743      * use whatever is in the current Requested FEC settings.
1744      */
1745     if (lc->requested_fec & FEC_AUTO)
1746         cc_fec = fwcap_to_cc_fec(lc->def_acaps);
1747     else
1748         cc_fec = lc->requested_fec;
1749     fw_fec = cc_to_fwcap_fec(cc_fec);
1750 
1751     /* Figure out what our Requested Port Capabilities are going to be.
1752      * Note parallel structure in t4_handle_get_port_info() and
1753      * init_link_config().
1754      */
1755     if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
1756         lrcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
1757         lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
1758         lc->fec = cc_fec;
1759     } else if (lc->autoneg == AUTONEG_DISABLE) {
1760         lrcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
1761         lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
1762         lc->fec = cc_fec;
1763     } else {
1764         lrcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
1765     }
1766 
1767     *rcaps = lrcap;
1768 }
1769 
1770 /*
1771  * csio_enable_ports - Bring up all available ports.
1772  * @hw: HW module.
1773  *
1774  */
1775 static int
1776 csio_enable_ports(struct csio_hw *hw)
1777 {
1778     struct csio_mb  *mbp;
1779     u16 fw_caps = FW_CAPS_UNKNOWN;
1780     enum fw_retval retval;
1781     uint8_t portid;
1782     fw_port_cap32_t pcaps, acaps, rcaps;
1783     int i;
1784 
1785     mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1786     if (!mbp) {
1787         CSIO_INC_STATS(hw, n_err_nomem);
1788         return -ENOMEM;
1789     }
1790 
1791     for (i = 0; i < hw->num_pports; i++) {
1792         portid = hw->pport[i].portid;
1793 
1794         if (fw_caps == FW_CAPS_UNKNOWN) {
1795             u32 param, val;
1796 
1797             param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
1798              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
1799             val = 1;
1800 
1801             csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO,
1802                        hw->pfn, 0, 1, &param, &val, true,
1803                        NULL);
1804 
1805             if (csio_mb_issue(hw, mbp)) {
1806                 csio_err(hw, "failed to issue FW_PARAMS_CMD(r) port:%d\n",
1807                      portid);
1808                 mempool_free(mbp, hw->mb_mempool);
1809                 return -EINVAL;
1810             }
1811 
1812             csio_mb_process_read_params_rsp(hw, mbp, &retval,
1813                             0, NULL);
1814             fw_caps = retval ? FW_CAPS16 : FW_CAPS32;
1815         }
1816 
1817         /* Read PORT information */
1818         csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1819                  false, 0, fw_caps, NULL);
1820 
1821         if (csio_mb_issue(hw, mbp)) {
1822             csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1823                  portid);
1824             mempool_free(mbp, hw->mb_mempool);
1825             return -EINVAL;
1826         }
1827 
1828         csio_mb_process_read_port_rsp(hw, mbp, &retval, fw_caps,
1829                           &pcaps, &acaps);
1830         if (retval != FW_SUCCESS) {
1831             csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1832                  portid, retval);
1833             mempool_free(mbp, hw->mb_mempool);
1834             return -EINVAL;
1835         }
1836 
1837         csio_init_link_config(&hw->pport[i].link_cfg, pcaps, acaps);
1838 
1839         csio_link_l1cfg(&hw->pport[i].link_cfg, fw_caps, &rcaps);
1840 
1841         /* Write back PORT information */
1842         csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1843                  true, rcaps, fw_caps, NULL);
1844 
1845         if (csio_mb_issue(hw, mbp)) {
1846             csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1847                  portid);
1848             mempool_free(mbp, hw->mb_mempool);
1849             return -EINVAL;
1850         }
1851 
1852         retval = csio_mb_fw_retval(mbp);
1853         if (retval != FW_SUCCESS) {
1854             csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1855                  portid, retval);
1856             mempool_free(mbp, hw->mb_mempool);
1857             return -EINVAL;
1858         }
1859 
1860     } /* For all ports */
1861 
1862     mempool_free(mbp, hw->mb_mempool);
1863 
1864     return 0;
1865 }
1866 
1867 /*
1868  * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1869  * @hw: HW module
1870  * Issued with lock held.
1871  */
1872 static int
1873 csio_get_fcoe_resinfo(struct csio_hw *hw)
1874 {
1875     struct csio_fcoe_res_info *res_info = &hw->fres_info;
1876     struct fw_fcoe_res_info_cmd *rsp;
1877     struct csio_mb  *mbp;
1878     enum fw_retval retval;
1879 
1880     mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1881     if (!mbp) {
1882         CSIO_INC_STATS(hw, n_err_nomem);
1883         return -ENOMEM;
1884     }
1885 
1886     /* Get FCoE FW resource information */
1887     csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1888 
1889     if (csio_mb_issue(hw, mbp)) {
1890         csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1891         mempool_free(mbp, hw->mb_mempool);
1892         return -EINVAL;
1893     }
1894 
1895     rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
1896     retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16));
1897     if (retval != FW_SUCCESS) {
1898         csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1899              retval);
1900         mempool_free(mbp, hw->mb_mempool);
1901         return -EINVAL;
1902     }
1903 
1904     res_info->e_d_tov = ntohs(rsp->e_d_tov);
1905     res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1906     res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1907     res_info->r_r_tov = ntohs(rsp->r_r_tov);
1908     res_info->max_xchgs = ntohl(rsp->max_xchgs);
1909     res_info->max_ssns = ntohl(rsp->max_ssns);
1910     res_info->used_xchgs = ntohl(rsp->used_xchgs);
1911     res_info->used_ssns = ntohl(rsp->used_ssns);
1912     res_info->max_fcfs = ntohl(rsp->max_fcfs);
1913     res_info->max_vnps = ntohl(rsp->max_vnps);
1914     res_info->used_fcfs = ntohl(rsp->used_fcfs);
1915     res_info->used_vnps = ntohl(rsp->used_vnps);
1916 
1917     csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1918                           res_info->max_xchgs);
1919     mempool_free(mbp, hw->mb_mempool);
1920 
1921     return 0;
1922 }
1923 
1924 static int
1925 csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1926 {
1927     struct csio_mb  *mbp;
1928     enum fw_retval retval;
1929     u32 _param[1];
1930 
1931     mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1932     if (!mbp) {
1933         CSIO_INC_STATS(hw, n_err_nomem);
1934         return -ENOMEM;
1935     }
1936 
1937     /*
1938      * Find out whether we're dealing with a version of
1939      * the firmware which has configuration file support.
1940      */
1941     _param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1942              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
1943 
1944     csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1945                ARRAY_SIZE(_param), _param, NULL, false, NULL);
1946     if (csio_mb_issue(hw, mbp)) {
1947         csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1948         mempool_free(mbp, hw->mb_mempool);
1949         return -EINVAL;
1950     }
1951 
1952     csio_mb_process_read_params_rsp(hw, mbp, &retval,
1953             ARRAY_SIZE(_param), _param);
1954     if (retval != FW_SUCCESS) {
1955         csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1956                 retval);
1957         mempool_free(mbp, hw->mb_mempool);
1958         return -EINVAL;
1959     }
1960 
1961     mempool_free(mbp, hw->mb_mempool);
1962     *param = _param[0];
1963 
1964     return 0;
1965 }
1966 
1967 static int
1968 csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1969 {
1970     int ret = 0;
1971     const struct firmware *cf;
1972     struct pci_dev *pci_dev = hw->pdev;
1973     struct device *dev = &pci_dev->dev;
1974     unsigned int mtype = 0, maddr = 0;
1975     uint32_t *cfg_data;
1976     int value_to_add = 0;
1977     const char *fw_cfg_file;
1978 
1979     if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
1980         fw_cfg_file = FW_CFG_NAME_T5;
1981     else
1982         fw_cfg_file = FW_CFG_NAME_T6;
1983 
1984     if (request_firmware(&cf, fw_cfg_file, dev) < 0) {
1985         csio_err(hw, "could not find config file %s, err: %d\n",
1986              fw_cfg_file, ret);
1987         return -ENOENT;
1988     }
1989 
1990     if (cf->size%4 != 0)
1991         value_to_add = 4 - (cf->size % 4);
1992 
1993     cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
1994     if (cfg_data == NULL) {
1995         ret = -ENOMEM;
1996         goto leave;
1997     }
1998 
1999     memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
2000     if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
2001         ret = -EINVAL;
2002         goto leave;
2003     }
2004 
2005     mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
2006     maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
2007 
2008     ret = csio_memory_write(hw, mtype, maddr,
2009                 cf->size + value_to_add, cfg_data);
2010 
2011     if ((ret == 0) && (value_to_add != 0)) {
2012         union {
2013             u32 word;
2014             char buf[4];
2015         } last;
2016         size_t size = cf->size & ~0x3;
2017         int i;
2018 
2019         last.word = cfg_data[size >> 2];
2020         for (i = value_to_add; i < 4; i++)
2021             last.buf[i] = 0;
2022         ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
2023     }
2024     if (ret == 0) {
2025         csio_info(hw, "config file upgraded to %s\n", fw_cfg_file);
2026         snprintf(path, 64, "%s%s", "/lib/firmware/", fw_cfg_file);
2027     }
2028 
2029 leave:
2030     kfree(cfg_data);
2031     release_firmware(cf);
2032     return ret;
2033 }
2034 
2035 /*
2036  * HW initialization: contact FW, obtain config, perform basic init.
2037  *
2038  * If the firmware we're dealing with has Configuration File support, then
2039  * we use that to perform all configuration -- either using the configuration
2040  * file stored in flash on the adapter or using a filesystem-local file
2041  * if available.
2042  *
2043  * If we don't have configuration file support in the firmware, then we'll
2044  * have to set things up the old fashioned way with hard-coded register
2045  * writes and firmware commands ...
2046  */
2047 
2048 /*
2049  * Attempt to initialize the HW via a Firmware Configuration File.
2050  */
2051 static int
2052 csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
2053 {
2054     struct csio_mb  *mbp = NULL;
2055     struct fw_caps_config_cmd *caps_cmd;
2056     unsigned int mtype, maddr;
2057     int rv = -EINVAL;
2058     uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
2059     char path[64];
2060     char *config_name = NULL;
2061 
2062     /*
2063      * Reset device if necessary
2064      */
2065     if (reset) {
2066         rv = csio_do_reset(hw, true);
2067         if (rv != 0)
2068             goto bye;
2069     }
2070 
2071     /*
2072      * If we have a configuration file in host ,
2073      * then use that.  Otherwise, use the configuration file stored
2074      * in the HW flash ...
2075      */
2076     spin_unlock_irq(&hw->lock);
2077     rv = csio_hw_flash_config(hw, fw_cfg_param, path);
2078     spin_lock_irq(&hw->lock);
2079     if (rv != 0) {
2080         /*
2081          * config file was not found. Use default
2082          * config file from flash.
2083          */
2084         config_name = "On FLASH";
2085         mtype = FW_MEMTYPE_CF_FLASH;
2086         maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
2087     } else {
2088         config_name = path;
2089         mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
2090         maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
2091     }
2092 
2093     mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2094     if (!mbp) {
2095         CSIO_INC_STATS(hw, n_err_nomem);
2096         return -ENOMEM;
2097     }
2098     /*
2099      * Tell the firmware to process the indicated Configuration File.
2100      * If there are no errors and the caller has provided return value
2101      * pointers for the [fini] section version, checksum and computed
2102      * checksum, pass those back to the caller.
2103      */
2104     caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
2105     CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
2106     caps_cmd->op_to_write =
2107         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2108               FW_CMD_REQUEST_F |
2109               FW_CMD_READ_F);
2110     caps_cmd->cfvalid_to_len16 =
2111         htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
2112               FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
2113               FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
2114               FW_LEN16(*caps_cmd));
2115 
2116     if (csio_mb_issue(hw, mbp)) {
2117         rv = -EINVAL;
2118         goto bye;
2119     }
2120 
2121     rv = csio_mb_fw_retval(mbp);
2122      /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
2123       * Configuration File in FLASH), our last gasp effort is to use the
2124       * Firmware Configuration File which is embedded in the
2125       * firmware.  A very few early versions of the firmware didn't
2126       * have one embedded but we can ignore those.
2127       */
2128     if (rv == ENOENT) {
2129         CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
2130         caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2131                           FW_CMD_REQUEST_F |
2132                           FW_CMD_READ_F);
2133         caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
2134 
2135         if (csio_mb_issue(hw, mbp)) {
2136             rv = -EINVAL;
2137             goto bye;
2138         }
2139 
2140         rv = csio_mb_fw_retval(mbp);
2141         config_name = "Firmware Default";
2142     }
2143     if (rv != FW_SUCCESS)
2144         goto bye;
2145 
2146     finiver = ntohl(caps_cmd->finiver);
2147     finicsum = ntohl(caps_cmd->finicsum);
2148     cfcsum = ntohl(caps_cmd->cfcsum);
2149 
2150     /*
2151      * And now tell the firmware to use the configuration we just loaded.
2152      */
2153     caps_cmd->op_to_write =
2154         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2155               FW_CMD_REQUEST_F |
2156               FW_CMD_WRITE_F);
2157     caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
2158 
2159     if (csio_mb_issue(hw, mbp)) {
2160         rv = -EINVAL;
2161         goto bye;
2162     }
2163 
2164     rv = csio_mb_fw_retval(mbp);
2165     if (rv != FW_SUCCESS) {
2166         csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
2167         goto bye;
2168     }
2169 
2170     if (finicsum != cfcsum) {
2171         csio_warn(hw,
2172               "Config File checksum mismatch: csum=%#x, computed=%#x\n",
2173               finicsum, cfcsum);
2174     }
2175 
2176     /* Validate device capabilities */
2177     rv = csio_hw_validate_caps(hw, mbp);
2178     if (rv != 0)
2179         goto bye;
2180 
2181     mempool_free(mbp, hw->mb_mempool);
2182     mbp = NULL;
2183 
2184     /*
2185      * Note that we're operating with parameters
2186      * not supplied by the driver, rather than from hard-wired
2187      * initialization constants buried in the driver.
2188      */
2189     hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2190 
2191     /* device parameters */
2192     rv = csio_get_device_params(hw);
2193     if (rv != 0)
2194         goto bye;
2195 
2196     /* Configure SGE */
2197     csio_wr_sge_init(hw);
2198 
2199     /*
2200      * And finally tell the firmware to initialize itself using the
2201      * parameters from the Configuration File.
2202      */
2203     /* Post event to notify completion of configuration */
2204     csio_post_event(&hw->sm, CSIO_HWE_INIT);
2205 
2206     csio_info(hw, "Successfully configure using Firmware "
2207           "Configuration File %s, version %#x, computed checksum %#x\n",
2208           config_name, finiver, cfcsum);
2209     return 0;
2210 
2211     /*
2212      * Something bad happened.  Return the error ...
2213      */
2214 bye:
2215     if (mbp)
2216         mempool_free(mbp, hw->mb_mempool);
2217     hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
2218     csio_warn(hw, "Configuration file error %d\n", rv);
2219     return rv;
2220 }
2221 
2222 /* Is the given firmware API compatible with the one the driver was compiled
2223  * with?
2224  */
2225 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
2226 {
2227 
2228     /* short circuit if it's the exact same firmware version */
2229     if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
2230         return 1;
2231 
2232 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
2233     if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
2234         SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
2235         return 1;
2236 #undef SAME_INTF
2237 
2238     return 0;
2239 }
2240 
2241 /* The firmware in the filesystem is usable, but should it be installed?
2242  * This routine explains itself in detail if it indicates the filesystem
2243  * firmware should be installed.
2244  */
2245 static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable,
2246                 int k, int c)
2247 {
2248     const char *reason;
2249 
2250     if (!card_fw_usable) {
2251         reason = "incompatible or unusable";
2252         goto install;
2253     }
2254 
2255     if (k > c) {
2256         reason = "older than the version supported with this driver";
2257         goto install;
2258     }
2259 
2260     return 0;
2261 
2262 install:
2263     csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, "
2264         "installing firmware %u.%u.%u.%u on card.\n",
2265         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2266         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
2267         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2268         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2269 
2270     return 1;
2271 }
2272 
2273 static struct fw_info fw_info_array[] = {
2274     {
2275         .chip = CHELSIO_T5,
2276         .fs_name = FW_CFG_NAME_T5,
2277         .fw_mod_name = FW_FNAME_T5,
2278         .fw_hdr = {
2279             .chip = FW_HDR_CHIP_T5,
2280             .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
2281             .intfver_nic = FW_INTFVER(T5, NIC),
2282             .intfver_vnic = FW_INTFVER(T5, VNIC),
2283             .intfver_ri = FW_INTFVER(T5, RI),
2284             .intfver_iscsi = FW_INTFVER(T5, ISCSI),
2285             .intfver_fcoe = FW_INTFVER(T5, FCOE),
2286         },
2287     }, {
2288         .chip = CHELSIO_T6,
2289         .fs_name = FW_CFG_NAME_T6,
2290         .fw_mod_name = FW_FNAME_T6,
2291         .fw_hdr = {
2292             .chip = FW_HDR_CHIP_T6,
2293             .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
2294             .intfver_nic = FW_INTFVER(T6, NIC),
2295             .intfver_vnic = FW_INTFVER(T6, VNIC),
2296             .intfver_ri = FW_INTFVER(T6, RI),
2297             .intfver_iscsi = FW_INTFVER(T6, ISCSI),
2298             .intfver_fcoe = FW_INTFVER(T6, FCOE),
2299         },
2300     }
2301 };
2302 
2303 static struct fw_info *find_fw_info(int chip)
2304 {
2305     int i;
2306 
2307     for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
2308         if (fw_info_array[i].chip == chip)
2309             return &fw_info_array[i];
2310     }
2311     return NULL;
2312 }
2313 
2314 static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info,
2315            const u8 *fw_data, unsigned int fw_size,
2316            struct fw_hdr *card_fw, enum csio_dev_state state,
2317            int *reset)
2318 {
2319     int ret, card_fw_usable, fs_fw_usable;
2320     const struct fw_hdr *fs_fw;
2321     const struct fw_hdr *drv_fw;
2322 
2323     drv_fw = &fw_info->fw_hdr;
2324 
2325     /* Read the header of the firmware on the card */
2326     ret = csio_hw_read_flash(hw, FLASH_FW_START,
2327                 sizeof(*card_fw) / sizeof(uint32_t),
2328                 (uint32_t *)card_fw, 1);
2329     if (ret == 0) {
2330         card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
2331     } else {
2332         csio_err(hw,
2333             "Unable to read card's firmware header: %d\n", ret);
2334         card_fw_usable = 0;
2335     }
2336 
2337     if (fw_data != NULL) {
2338         fs_fw = (const void *)fw_data;
2339         fs_fw_usable = fw_compatible(drv_fw, fs_fw);
2340     } else {
2341         fs_fw = NULL;
2342         fs_fw_usable = 0;
2343     }
2344 
2345     if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
2346         (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
2347         /* Common case: the firmware on the card is an exact match and
2348          * the filesystem one is an exact match too, or the filesystem
2349          * one is absent/incompatible.
2350          */
2351     } else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT &&
2352            csio_should_install_fs_fw(hw, card_fw_usable,
2353                     be32_to_cpu(fs_fw->fw_ver),
2354                     be32_to_cpu(card_fw->fw_ver))) {
2355         ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data,
2356                      fw_size, 0);
2357         if (ret != 0) {
2358             csio_err(hw,
2359                 "failed to install firmware: %d\n", ret);
2360             goto bye;
2361         }
2362 
2363         /* Installed successfully, update the cached header too. */
2364         memcpy(card_fw, fs_fw, sizeof(*card_fw));
2365         card_fw_usable = 1;
2366         *reset = 0; /* already reset as part of load_fw */
2367     }
2368 
2369     if (!card_fw_usable) {
2370         uint32_t d, c, k;
2371 
2372         d = be32_to_cpu(drv_fw->fw_ver);
2373         c = be32_to_cpu(card_fw->fw_ver);
2374         k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
2375 
2376         csio_err(hw, "Cannot find a usable firmware: "
2377             "chip state %d, "
2378             "driver compiled with %d.%d.%d.%d, "
2379             "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
2380             state,
2381             FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
2382             FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
2383             FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2384             FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
2385             FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2386             FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2387         ret = -EINVAL;
2388         goto bye;
2389     }
2390 
2391     /* We're using whatever's on the card and it's known to be good. */
2392     hw->fwrev = be32_to_cpu(card_fw->fw_ver);
2393     hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
2394 
2395 bye:
2396     return ret;
2397 }
2398 
2399 /*
2400  * Returns -EINVAL if attempts to flash the firmware failed,
2401  * -ENOMEM if memory allocation failed else returns 0,
2402  * if flashing was not attempted because the card had the
2403  * latest firmware ECANCELED is returned
2404  */
2405 static int
2406 csio_hw_flash_fw(struct csio_hw *hw, int *reset)
2407 {
2408     int ret = -ECANCELED;
2409     const struct firmware *fw;
2410     struct fw_info *fw_info;
2411     struct fw_hdr *card_fw;
2412     struct pci_dev *pci_dev = hw->pdev;
2413     struct device *dev = &pci_dev->dev ;
2414     const u8 *fw_data = NULL;
2415     unsigned int fw_size = 0;
2416     const char *fw_bin_file;
2417 
2418     /* This is the firmware whose headers the driver was compiled
2419      * against
2420      */
2421     fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id));
2422     if (fw_info == NULL) {
2423         csio_err(hw,
2424             "unable to get firmware info for chip %d.\n",
2425             CHELSIO_CHIP_VERSION(hw->chip_id));
2426         return -EINVAL;
2427     }
2428 
2429     /* allocate memory to read the header of the firmware on the
2430      * card
2431      */
2432     card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL);
2433     if (!card_fw)
2434         return -ENOMEM;
2435 
2436     if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
2437         fw_bin_file = FW_FNAME_T5;
2438     else
2439         fw_bin_file = FW_FNAME_T6;
2440 
2441     if (request_firmware(&fw, fw_bin_file, dev) < 0) {
2442         csio_err(hw, "could not find firmware image %s, err: %d\n",
2443              fw_bin_file, ret);
2444     } else {
2445         fw_data = fw->data;
2446         fw_size = fw->size;
2447     }
2448 
2449     /* upgrade FW logic */
2450     ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw,
2451              hw->fw_state, reset);
2452 
2453     /* Cleaning up */
2454     if (fw != NULL)
2455         release_firmware(fw);
2456     kfree(card_fw);
2457     return ret;
2458 }
2459 
2460 static int csio_hw_check_fwver(struct csio_hw *hw)
2461 {
2462     if (csio_is_t6(hw->pdev->device & CSIO_HW_CHIP_MASK) &&
2463         (hw->fwrev < CSIO_MIN_T6_FW)) {
2464         csio_hw_print_fw_version(hw, "T6 unsupported fw");
2465         return -1;
2466     }
2467 
2468     return 0;
2469 }
2470 
2471 /*
2472  * csio_hw_configure - Configure HW
2473  * @hw - HW module
2474  *
2475  */
2476 static void
2477 csio_hw_configure(struct csio_hw *hw)
2478 {
2479     int reset = 1;
2480     int rv;
2481     u32 param[1];
2482 
2483     rv = csio_hw_dev_ready(hw);
2484     if (rv != 0) {
2485         CSIO_INC_STATS(hw, n_err_fatal);
2486         csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2487         goto out;
2488     }
2489 
2490     /* HW version */
2491     hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A);
2492 
2493     /* Needed for FW download */
2494     rv = csio_hw_get_flash_params(hw);
2495     if (rv != 0) {
2496         csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2497         csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2498         goto out;
2499     }
2500 
2501     /* Set PCIe completion timeout to 4 seconds */
2502     if (pci_is_pcie(hw->pdev))
2503         pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2,
2504                 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
2505 
2506     hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
2507 
2508     rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2509     if (rv != 0)
2510         goto out;
2511 
2512     csio_hw_print_fw_version(hw, "Firmware revision");
2513 
2514     rv = csio_do_hello(hw, &hw->fw_state);
2515     if (rv != 0) {
2516         CSIO_INC_STATS(hw, n_err_fatal);
2517         csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2518         goto out;
2519     }
2520 
2521     /* Read vpd */
2522     rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2523     if (rv != 0)
2524         goto out;
2525 
2526     csio_hw_get_fw_version(hw, &hw->fwrev);
2527     csio_hw_get_tp_version(hw, &hw->tp_vers);
2528     if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2529 
2530             /* Do firmware update */
2531         spin_unlock_irq(&hw->lock);
2532         rv = csio_hw_flash_fw(hw, &reset);
2533         spin_lock_irq(&hw->lock);
2534 
2535         if (rv != 0)
2536             goto out;
2537 
2538         rv = csio_hw_check_fwver(hw);
2539         if (rv < 0)
2540             goto out;
2541 
2542         /* If the firmware doesn't support Configuration Files,
2543          * return an error.
2544          */
2545         rv = csio_hw_check_fwconfig(hw, param);
2546         if (rv != 0) {
2547             csio_info(hw, "Firmware doesn't support "
2548                   "Firmware Configuration files\n");
2549             goto out;
2550         }
2551 
2552         /* The firmware provides us with a memory buffer where we can
2553          * load a Configuration File from the host if we want to
2554          * override the Configuration File in flash.
2555          */
2556         rv = csio_hw_use_fwconfig(hw, reset, param);
2557         if (rv == -ENOENT) {
2558             csio_info(hw, "Could not initialize "
2559                   "adapter, error%d\n", rv);
2560             goto out;
2561         }
2562         if (rv != 0) {
2563             csio_info(hw, "Could not initialize "
2564                   "adapter, error%d\n", rv);
2565             goto out;
2566         }
2567 
2568     } else {
2569         rv = csio_hw_check_fwver(hw);
2570         if (rv < 0)
2571             goto out;
2572 
2573         if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2574 
2575             hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2576 
2577             /* device parameters */
2578             rv = csio_get_device_params(hw);
2579             if (rv != 0)
2580                 goto out;
2581 
2582             /* Get device capabilities */
2583             rv = csio_config_device_caps(hw);
2584             if (rv != 0)
2585                 goto out;
2586 
2587             /* Configure SGE */
2588             csio_wr_sge_init(hw);
2589 
2590             /* Post event to notify completion of configuration */
2591             csio_post_event(&hw->sm, CSIO_HWE_INIT);
2592             goto out;
2593         }
2594     } /* if not master */
2595 
2596 out:
2597     return;
2598 }
2599 
2600 /*
2601  * csio_hw_initialize - Initialize HW
2602  * @hw - HW module
2603  *
2604  */
2605 static void
2606 csio_hw_initialize(struct csio_hw *hw)
2607 {
2608     struct csio_mb  *mbp;
2609     enum fw_retval retval;
2610     int rv;
2611     int i;
2612 
2613     if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2614         mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2615         if (!mbp)
2616             goto out;
2617 
2618         csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2619 
2620         if (csio_mb_issue(hw, mbp)) {
2621             csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2622             goto free_and_out;
2623         }
2624 
2625         retval = csio_mb_fw_retval(mbp);
2626         if (retval != FW_SUCCESS) {
2627             csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2628                  retval);
2629             goto free_and_out;
2630         }
2631 
2632         mempool_free(mbp, hw->mb_mempool);
2633     }
2634 
2635     rv = csio_get_fcoe_resinfo(hw);
2636     if (rv != 0) {
2637         csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2638         goto out;
2639     }
2640 
2641     spin_unlock_irq(&hw->lock);
2642     rv = csio_config_queues(hw);
2643     spin_lock_irq(&hw->lock);
2644 
2645     if (rv != 0) {
2646         csio_err(hw, "Config of queues failed!: %d\n", rv);
2647         goto out;
2648     }
2649 
2650     for (i = 0; i < hw->num_pports; i++)
2651         hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2652 
2653     if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2654         rv = csio_enable_ports(hw);
2655         if (rv != 0) {
2656             csio_err(hw, "Failed to enable ports: %d\n", rv);
2657             goto out;
2658         }
2659     }
2660 
2661     csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2662     return;
2663 
2664 free_and_out:
2665     mempool_free(mbp, hw->mb_mempool);
2666 out:
2667     return;
2668 }
2669 
2670 #define PF_INTR_MASK (PFSW_F | PFCIM_F)
2671 
2672 /*
2673  * csio_hw_intr_enable - Enable HW interrupts
2674  * @hw: Pointer to HW module.
2675  *
2676  * Enable interrupts in HW registers.
2677  */
2678 static void
2679 csio_hw_intr_enable(struct csio_hw *hw)
2680 {
2681     uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2682     u32 pf = 0;
2683     uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A);
2684 
2685     if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2686         pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2687     else
2688         pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2689 
2690     /*
2691      * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2692      * by FW, so do nothing for INTX.
2693      */
2694     if (hw->intr_mode == CSIO_IM_MSIX)
2695         csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2696                    AIVEC_V(AIVEC_M), vec);
2697     else if (hw->intr_mode == CSIO_IM_MSI)
2698         csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2699                    AIVEC_V(AIVEC_M), 0);
2700 
2701     csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A));
2702 
2703     /* Turn on MB interrupts - this will internally flush PIO as well */
2704     csio_mb_intr_enable(hw);
2705 
2706     /* These are common registers - only a master can modify them */
2707     if (csio_is_hw_master(hw)) {
2708         /*
2709          * Disable the Serial FLASH interrupt, if enabled!
2710          */
2711         pl &= (~SF_F);
2712         csio_wr_reg32(hw, pl, PL_INT_ENABLE_A);
2713 
2714         csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F |
2715                   EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F |
2716                   ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F |
2717                   ERR_DATA_CPL_ON_HIGH_QID1_F |
2718                   ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
2719                   ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
2720                   ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
2721                   ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F,
2722                   SGE_INT_ENABLE3_A);
2723         csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf);
2724     }
2725 
2726     hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2727 
2728 }
2729 
2730 /*
2731  * csio_hw_intr_disable - Disable HW interrupts
2732  * @hw: Pointer to HW module.
2733  *
2734  * Turn off Mailbox and PCI_PF_CFG interrupts.
2735  */
2736 void
2737 csio_hw_intr_disable(struct csio_hw *hw)
2738 {
2739     u32 pf = 0;
2740 
2741     if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2742         pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2743     else
2744         pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2745 
2746     if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2747         return;
2748 
2749     hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2750 
2751     csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A));
2752     if (csio_is_hw_master(hw))
2753         csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0);
2754 
2755     /* Turn off MB interrupts */
2756     csio_mb_intr_disable(hw);
2757 
2758 }
2759 
2760 void
2761 csio_hw_fatal_err(struct csio_hw *hw)
2762 {
2763     csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2764     csio_hw_intr_disable(hw);
2765 
2766     /* Do not reset HW, we may need FW state for debugging */
2767     csio_fatal(hw, "HW Fatal error encountered!\n");
2768 }
2769 
2770 /*****************************************************************************/
2771 /* START: HW SM                                                              */
2772 /*****************************************************************************/
2773 /*
2774  * csio_hws_uninit - Uninit state
2775  * @hw - HW module
2776  * @evt - Event
2777  *
2778  */
2779 static void
2780 csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2781 {
2782     hw->prev_evt = hw->cur_evt;
2783     hw->cur_evt = evt;
2784     CSIO_INC_STATS(hw, n_evt_sm[evt]);
2785 
2786     switch (evt) {
2787     case CSIO_HWE_CFG:
2788         csio_set_state(&hw->sm, csio_hws_configuring);
2789         csio_hw_configure(hw);
2790         break;
2791 
2792     default:
2793         CSIO_INC_STATS(hw, n_evt_unexp);
2794         break;
2795     }
2796 }
2797 
2798 /*
2799  * csio_hws_configuring - Configuring state
2800  * @hw - HW module
2801  * @evt - Event
2802  *
2803  */
2804 static void
2805 csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2806 {
2807     hw->prev_evt = hw->cur_evt;
2808     hw->cur_evt = evt;
2809     CSIO_INC_STATS(hw, n_evt_sm[evt]);
2810 
2811     switch (evt) {
2812     case CSIO_HWE_INIT:
2813         csio_set_state(&hw->sm, csio_hws_initializing);
2814         csio_hw_initialize(hw);
2815         break;
2816 
2817     case CSIO_HWE_INIT_DONE:
2818         csio_set_state(&hw->sm, csio_hws_ready);
2819         /* Fan out event to all lnode SMs */
2820         csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2821         break;
2822 
2823     case CSIO_HWE_FATAL:
2824         csio_set_state(&hw->sm, csio_hws_uninit);
2825         break;
2826 
2827     case CSIO_HWE_PCI_REMOVE:
2828         csio_do_bye(hw);
2829         break;
2830     default:
2831         CSIO_INC_STATS(hw, n_evt_unexp);
2832         break;
2833     }
2834 }
2835 
2836 /*
2837  * csio_hws_initializing - Initializing state
2838  * @hw - HW module
2839  * @evt - Event
2840  *
2841  */
2842 static void
2843 csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2844 {
2845     hw->prev_evt = hw->cur_evt;
2846     hw->cur_evt = evt;
2847     CSIO_INC_STATS(hw, n_evt_sm[evt]);
2848 
2849     switch (evt) {
2850     case CSIO_HWE_INIT_DONE:
2851         csio_set_state(&hw->sm, csio_hws_ready);
2852 
2853         /* Fan out event to all lnode SMs */
2854         csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2855 
2856         /* Enable interrupts */
2857         csio_hw_intr_enable(hw);
2858         break;
2859 
2860     case CSIO_HWE_FATAL:
2861         csio_set_state(&hw->sm, csio_hws_uninit);
2862         break;
2863 
2864     case CSIO_HWE_PCI_REMOVE:
2865         csio_do_bye(hw);
2866         break;
2867 
2868     default:
2869         CSIO_INC_STATS(hw, n_evt_unexp);
2870         break;
2871     }
2872 }
2873 
2874 /*
2875  * csio_hws_ready - Ready state
2876  * @hw - HW module
2877  * @evt - Event
2878  *
2879  */
2880 static void
2881 csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2882 {
2883     /* Remember the event */
2884     hw->evtflag = evt;
2885 
2886     hw->prev_evt = hw->cur_evt;
2887     hw->cur_evt = evt;
2888     CSIO_INC_STATS(hw, n_evt_sm[evt]);
2889 
2890     switch (evt) {
2891     case CSIO_HWE_HBA_RESET:
2892     case CSIO_HWE_FW_DLOAD:
2893     case CSIO_HWE_SUSPEND:
2894     case CSIO_HWE_PCI_REMOVE:
2895     case CSIO_HWE_PCIERR_DETECTED:
2896         csio_set_state(&hw->sm, csio_hws_quiescing);
2897         /* cleanup all outstanding cmds */
2898         if (evt == CSIO_HWE_HBA_RESET ||
2899             evt == CSIO_HWE_PCIERR_DETECTED)
2900             csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2901         else
2902             csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2903 
2904         csio_hw_intr_disable(hw);
2905         csio_hw_mbm_cleanup(hw);
2906         csio_evtq_stop(hw);
2907         csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2908         csio_evtq_flush(hw);
2909         csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2910         csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2911         break;
2912 
2913     case CSIO_HWE_FATAL:
2914         csio_set_state(&hw->sm, csio_hws_uninit);
2915         break;
2916 
2917     default:
2918         CSIO_INC_STATS(hw, n_evt_unexp);
2919         break;
2920     }
2921 }
2922 
2923 /*
2924  * csio_hws_quiescing - Quiescing state
2925  * @hw - HW module
2926  * @evt - Event
2927  *
2928  */
2929 static void
2930 csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2931 {
2932     hw->prev_evt = hw->cur_evt;
2933     hw->cur_evt = evt;
2934     CSIO_INC_STATS(hw, n_evt_sm[evt]);
2935 
2936     switch (evt) {
2937     case CSIO_HWE_QUIESCED:
2938         switch (hw->evtflag) {
2939         case CSIO_HWE_FW_DLOAD:
2940             csio_set_state(&hw->sm, csio_hws_resetting);
2941             /* Download firmware */
2942             fallthrough;
2943 
2944         case CSIO_HWE_HBA_RESET:
2945             csio_set_state(&hw->sm, csio_hws_resetting);
2946             /* Start reset of the HBA */
2947             csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2948             csio_wr_destroy_queues(hw, false);
2949             csio_do_reset(hw, false);
2950             csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2951             break;
2952 
2953         case CSIO_HWE_PCI_REMOVE:
2954             csio_set_state(&hw->sm, csio_hws_removing);
2955             csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2956             csio_wr_destroy_queues(hw, true);
2957             /* Now send the bye command */
2958             csio_do_bye(hw);
2959             break;
2960 
2961         case CSIO_HWE_SUSPEND:
2962             csio_set_state(&hw->sm, csio_hws_quiesced);
2963             break;
2964 
2965         case CSIO_HWE_PCIERR_DETECTED:
2966             csio_set_state(&hw->sm, csio_hws_pcierr);
2967             csio_wr_destroy_queues(hw, false);
2968             break;
2969 
2970         default:
2971             CSIO_INC_STATS(hw, n_evt_unexp);
2972             break;
2973 
2974         }
2975         break;
2976 
2977     default:
2978         CSIO_INC_STATS(hw, n_evt_unexp);
2979         break;
2980     }
2981 }
2982 
2983 /*
2984  * csio_hws_quiesced - Quiesced state
2985  * @hw - HW module
2986  * @evt - Event
2987  *
2988  */
2989 static void
2990 csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2991 {
2992     hw->prev_evt = hw->cur_evt;
2993     hw->cur_evt = evt;
2994     CSIO_INC_STATS(hw, n_evt_sm[evt]);
2995 
2996     switch (evt) {
2997     case CSIO_HWE_RESUME:
2998         csio_set_state(&hw->sm, csio_hws_configuring);
2999         csio_hw_configure(hw);
3000         break;
3001 
3002     default:
3003         CSIO_INC_STATS(hw, n_evt_unexp);
3004         break;
3005     }
3006 }
3007 
3008 /*
3009  * csio_hws_resetting - HW Resetting state
3010  * @hw - HW module
3011  * @evt - Event
3012  *
3013  */
3014 static void
3015 csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
3016 {
3017     hw->prev_evt = hw->cur_evt;
3018     hw->cur_evt = evt;
3019     CSIO_INC_STATS(hw, n_evt_sm[evt]);
3020 
3021     switch (evt) {
3022     case CSIO_HWE_HBA_RESET_DONE:
3023         csio_evtq_start(hw);
3024         csio_set_state(&hw->sm, csio_hws_configuring);
3025         csio_hw_configure(hw);
3026         break;
3027 
3028     default:
3029         CSIO_INC_STATS(hw, n_evt_unexp);
3030         break;
3031     }
3032 }
3033 
3034 /*
3035  * csio_hws_removing - PCI Hotplug removing state
3036  * @hw - HW module
3037  * @evt - Event
3038  *
3039  */
3040 static void
3041 csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
3042 {
3043     hw->prev_evt = hw->cur_evt;
3044     hw->cur_evt = evt;
3045     CSIO_INC_STATS(hw, n_evt_sm[evt]);
3046 
3047     switch (evt) {
3048     case CSIO_HWE_HBA_RESET:
3049         if (!csio_is_hw_master(hw))
3050             break;
3051         /*
3052          * The BYE should have already been issued, so we can't
3053          * use the mailbox interface. Hence we use the PL_RST
3054          * register directly.
3055          */
3056         csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
3057         csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
3058         mdelay(2000);
3059         break;
3060 
3061     /* Should never receive any new events */
3062     default:
3063         CSIO_INC_STATS(hw, n_evt_unexp);
3064         break;
3065 
3066     }
3067 }
3068 
3069 /*
3070  * csio_hws_pcierr - PCI Error state
3071  * @hw - HW module
3072  * @evt - Event
3073  *
3074  */
3075 static void
3076 csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
3077 {
3078     hw->prev_evt = hw->cur_evt;
3079     hw->cur_evt = evt;
3080     CSIO_INC_STATS(hw, n_evt_sm[evt]);
3081 
3082     switch (evt) {
3083     case CSIO_HWE_PCIERR_SLOT_RESET:
3084         csio_evtq_start(hw);
3085         csio_set_state(&hw->sm, csio_hws_configuring);
3086         csio_hw_configure(hw);
3087         break;
3088 
3089     default:
3090         CSIO_INC_STATS(hw, n_evt_unexp);
3091         break;
3092     }
3093 }
3094 
3095 /*****************************************************************************/
3096 /* END: HW SM                                                                */
3097 /*****************************************************************************/
3098 
3099 /*
3100  *  csio_handle_intr_status - table driven interrupt handler
3101  *  @hw: HW instance
3102  *  @reg: the interrupt status register to process
3103  *  @acts: table of interrupt actions
3104  *
3105  *  A table driven interrupt handler that applies a set of masks to an
3106  *  interrupt status word and performs the corresponding actions if the
3107  *  interrupts described by the mask have occurred.  The actions include
3108  *  optionally emitting a warning or alert message. The table is terminated
3109  *  by an entry specifying mask 0.  Returns the number of fatal interrupt
3110  *  conditions.
3111  */
3112 int
3113 csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
3114                  const struct intr_info *acts)
3115 {
3116     int fatal = 0;
3117     unsigned int mask = 0;
3118     unsigned int status = csio_rd_reg32(hw, reg);
3119 
3120     for ( ; acts->mask; ++acts) {
3121         if (!(status & acts->mask))
3122             continue;
3123         if (acts->fatal) {
3124             fatal++;
3125             csio_fatal(hw, "Fatal %s (0x%x)\n",
3126                     acts->msg, status & acts->mask);
3127         } else if (acts->msg)
3128             csio_info(hw, "%s (0x%x)\n",
3129                     acts->msg, status & acts->mask);
3130         mask |= acts->mask;
3131     }
3132     status &= mask;
3133     if (status)                           /* clear processed interrupts */
3134         csio_wr_reg32(hw, status, reg);
3135     return fatal;
3136 }
3137 
3138 /*
3139  * TP interrupt handler.
3140  */
3141 static void csio_tp_intr_handler(struct csio_hw *hw)
3142 {
3143     static struct intr_info tp_intr_info[] = {
3144         { 0x3fffffff, "TP parity error", -1, 1 },
3145         { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3146         { 0, NULL, 0, 0 }
3147     };
3148 
3149     if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info))
3150         csio_hw_fatal_err(hw);
3151 }
3152 
3153 /*
3154  * SGE interrupt handler.
3155  */
3156 static void csio_sge_intr_handler(struct csio_hw *hw)
3157 {
3158     uint64_t v;
3159 
3160     static struct intr_info sge_intr_info[] = {
3161         { ERR_CPL_EXCEED_IQE_SIZE_F,
3162           "SGE received CPL exceeding IQE size", -1, 1 },
3163         { ERR_INVALID_CIDX_INC_F,
3164           "SGE GTS CIDX increment too large", -1, 0 },
3165         { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3166         { ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 },
3167         { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3168           "SGE IQID > 1023 received CPL for FL", -1, 0 },
3169         { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3170           0 },
3171         { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3172           0 },
3173         { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3174           0 },
3175         { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3176           0 },
3177         { ERR_ING_CTXT_PRIO_F,
3178           "SGE too many priority ingress contexts", -1, 0 },
3179         { ERR_EGR_CTXT_PRIO_F,
3180           "SGE too many priority egress contexts", -1, 0 },
3181         { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3182         { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3183         { 0, NULL, 0, 0 }
3184     };
3185 
3186     v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) |
3187         ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32);
3188     if (v) {
3189         csio_fatal(hw, "SGE parity error (%#llx)\n",
3190                 (unsigned long long)v);
3191         csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
3192                         SGE_INT_CAUSE1_A);
3193         csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A);
3194     }
3195 
3196     v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info);
3197 
3198     if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) ||
3199         v != 0)
3200         csio_hw_fatal_err(hw);
3201 }
3202 
3203 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3204               OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3205 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3206               IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3207 
3208 /*
3209  * CIM interrupt handler.
3210  */
3211 static void csio_cim_intr_handler(struct csio_hw *hw)
3212 {
3213     static struct intr_info cim_intr_info[] = {
3214         { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3215         { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3216         { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3217         { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3218         { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3219         { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3220         { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3221         { 0, NULL, 0, 0 }
3222     };
3223     static struct intr_info cim_upintr_info[] = {
3224         { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3225         { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3226         { ILLWRINT_F, "CIM illegal write", -1, 1 },
3227         { ILLRDINT_F, "CIM illegal read", -1, 1 },
3228         { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3229         { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3230         { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3231         { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3232         { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3233         { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3234         { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3235         { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3236         { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3237         { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3238         { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3239         { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3240         { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3241         { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3242         { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3243         { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3244         { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3245         { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3246         { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3247         { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3248         { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3249         { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3250         { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3251         { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3252         { 0, NULL, 0, 0 }
3253     };
3254 
3255     int fat;
3256 
3257     fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A,
3258                       cim_intr_info) +
3259           csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A,
3260                       cim_upintr_info);
3261     if (fat)
3262         csio_hw_fatal_err(hw);
3263 }
3264 
3265 /*
3266  * ULP RX interrupt handler.
3267  */
3268 static void csio_ulprx_intr_handler(struct csio_hw *hw)
3269 {
3270     static struct intr_info ulprx_intr_info[] = {
3271         { 0x1800000, "ULPRX context error", -1, 1 },
3272         { 0x7fffff, "ULPRX parity error", -1, 1 },
3273         { 0, NULL, 0, 0 }
3274     };
3275 
3276     if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3277         csio_hw_fatal_err(hw);
3278 }
3279 
3280 /*
3281  * ULP TX interrupt handler.
3282  */
3283 static void csio_ulptx_intr_handler(struct csio_hw *hw)
3284 {
3285     static struct intr_info ulptx_intr_info[] = {
3286         { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3287           0 },
3288         { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3289           0 },
3290         { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3291           0 },
3292         { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3293           0 },
3294         { 0xfffffff, "ULPTX parity error", -1, 1 },
3295         { 0, NULL, 0, 0 }
3296     };
3297 
3298     if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3299         csio_hw_fatal_err(hw);
3300 }
3301 
3302 /*
3303  * PM TX interrupt handler.
3304  */
3305 static void csio_pmtx_intr_handler(struct csio_hw *hw)
3306 {
3307     static struct intr_info pmtx_intr_info[] = {
3308         { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
3309         { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
3310         { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
3311         { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
3312         { 0xffffff0, "PMTX framing error", -1, 1 },
3313         { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
3314         { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1,
3315           1 },
3316         { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
3317         { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
3318         { 0, NULL, 0, 0 }
3319     };
3320 
3321     if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info))
3322         csio_hw_fatal_err(hw);
3323 }
3324 
3325 /*
3326  * PM RX interrupt handler.
3327  */
3328 static void csio_pmrx_intr_handler(struct csio_hw *hw)
3329 {
3330     static struct intr_info pmrx_intr_info[] = {
3331         { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
3332         { 0x3ffff0, "PMRX framing error", -1, 1 },
3333         { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
3334         { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1,
3335           1 },
3336         { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
3337         { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
3338         { 0, NULL, 0, 0 }
3339     };
3340 
3341     if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info))
3342         csio_hw_fatal_err(hw);
3343 }
3344 
3345 /*
3346  * CPL switch interrupt handler.
3347  */
3348 static void csio_cplsw_intr_handler(struct csio_hw *hw)
3349 {
3350     static struct intr_info cplsw_intr_info[] = {
3351         { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
3352         { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
3353         { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
3354         { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
3355         { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
3356         { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
3357         { 0, NULL, 0, 0 }
3358     };
3359 
3360     if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info))
3361         csio_hw_fatal_err(hw);
3362 }
3363 
3364 /*
3365  * LE interrupt handler.
3366  */
3367 static void csio_le_intr_handler(struct csio_hw *hw)
3368 {
3369     enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
3370 
3371     static struct intr_info le_intr_info[] = {
3372         { LIPMISS_F, "LE LIP miss", -1, 0 },
3373         { LIP0_F, "LE 0 LIP error", -1, 0 },
3374         { PARITYERR_F, "LE parity error", -1, 1 },
3375         { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3376         { REQQPARERR_F, "LE request queue parity error", -1, 1 },
3377         { 0, NULL, 0, 0 }
3378     };
3379 
3380     static struct intr_info t6_le_intr_info[] = {
3381         { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
3382         { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
3383         { TCAMINTPERR_F, "LE parity error", -1, 1 },
3384         { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3385         { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
3386         { 0, NULL, 0, 0 }
3387     };
3388 
3389     if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A,
3390                     (chip == CHELSIO_T5) ?
3391                     le_intr_info : t6_le_intr_info))
3392         csio_hw_fatal_err(hw);
3393 }
3394 
3395 /*
3396  * MPS interrupt handler.
3397  */
3398 static void csio_mps_intr_handler(struct csio_hw *hw)
3399 {
3400     static struct intr_info mps_rx_intr_info[] = {
3401         { 0xffffff, "MPS Rx parity error", -1, 1 },
3402         { 0, NULL, 0, 0 }
3403     };
3404     static struct intr_info mps_tx_intr_info[] = {
3405         { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
3406         { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3407         { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
3408           -1, 1 },
3409         { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
3410           -1, 1 },
3411         { BUBBLE_F, "MPS Tx underflow", -1, 1 },
3412         { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
3413         { FRMERR_F, "MPS Tx framing error", -1, 1 },
3414         { 0, NULL, 0, 0 }
3415     };
3416     static struct intr_info mps_trc_intr_info[] = {
3417         { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
3418         { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
3419           -1, 1 },
3420         { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
3421         { 0, NULL, 0, 0 }
3422     };
3423     static struct intr_info mps_stat_sram_intr_info[] = {
3424         { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3425         { 0, NULL, 0, 0 }
3426     };
3427     static struct intr_info mps_stat_tx_intr_info[] = {
3428         { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3429         { 0, NULL, 0, 0 }
3430     };
3431     static struct intr_info mps_stat_rx_intr_info[] = {
3432         { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3433         { 0, NULL, 0, 0 }
3434     };
3435     static struct intr_info mps_cls_intr_info[] = {
3436         { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
3437         { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
3438         { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
3439         { 0, NULL, 0, 0 }
3440     };
3441 
3442     int fat;
3443 
3444     fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A,
3445                       mps_rx_intr_info) +
3446           csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A,
3447                       mps_tx_intr_info) +
3448           csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A,
3449                       mps_trc_intr_info) +
3450           csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
3451                       mps_stat_sram_intr_info) +
3452           csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
3453                       mps_stat_tx_intr_info) +
3454           csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
3455                       mps_stat_rx_intr_info) +
3456           csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A,
3457                       mps_cls_intr_info);
3458 
3459     csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A);
3460     csio_rd_reg32(hw, MPS_INT_CAUSE_A);                    /* flush */
3461     if (fat)
3462         csio_hw_fatal_err(hw);
3463 }
3464 
3465 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3466               ECC_UE_INT_CAUSE_F)
3467 
3468 /*
3469  * EDC/MC interrupt handler.
3470  */
3471 static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3472 {
3473     static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3474 
3475     unsigned int addr, cnt_addr, v;
3476 
3477     if (idx <= MEM_EDC1) {
3478         addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3479         cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3480     } else {
3481         addr = MC_INT_CAUSE_A;
3482         cnt_addr = MC_ECC_STATUS_A;
3483     }
3484 
3485     v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3486     if (v & PERR_INT_CAUSE_F)
3487         csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3488     if (v & ECC_CE_INT_CAUSE_F) {
3489         uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr));
3490 
3491         csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr);
3492         csio_warn(hw, "%u %s correctable ECC data error%s\n",
3493                 cnt, name[idx], cnt > 1 ? "s" : "");
3494     }
3495     if (v & ECC_UE_INT_CAUSE_F)
3496         csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3497 
3498     csio_wr_reg32(hw, v, addr);
3499     if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3500         csio_hw_fatal_err(hw);
3501 }
3502 
3503 /*
3504  * MA interrupt handler.
3505  */
3506 static void csio_ma_intr_handler(struct csio_hw *hw)
3507 {
3508     uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A);
3509 
3510     if (status & MEM_PERR_INT_CAUSE_F)
3511         csio_fatal(hw, "MA parity error, parity status %#x\n",
3512                 csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A));
3513     if (status & MEM_WRAP_INT_CAUSE_F) {
3514         v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A);
3515         csio_fatal(hw,
3516            "MA address wrap-around error by client %u to address %#x\n",
3517            MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4);
3518     }
3519     csio_wr_reg32(hw, status, MA_INT_CAUSE_A);
3520     csio_hw_fatal_err(hw);
3521 }
3522 
3523 /*
3524  * SMB interrupt handler.
3525  */
3526 static void csio_smb_intr_handler(struct csio_hw *hw)
3527 {
3528     static struct intr_info smb_intr_info[] = {
3529         { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3530         { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3531         { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3532         { 0, NULL, 0, 0 }
3533     };
3534 
3535     if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info))
3536         csio_hw_fatal_err(hw);
3537 }
3538 
3539 /*
3540  * NC-SI interrupt handler.
3541  */
3542 static void csio_ncsi_intr_handler(struct csio_hw *hw)
3543 {
3544     static struct intr_info ncsi_intr_info[] = {
3545         { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3546         { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3547         { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3548         { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3549         { 0, NULL, 0, 0 }
3550     };
3551 
3552     if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info))
3553         csio_hw_fatal_err(hw);
3554 }
3555 
3556 /*
3557  * XGMAC interrupt handler.
3558  */
3559 static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3560 {
3561     uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3562 
3563     v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3564     if (!v)
3565         return;
3566 
3567     if (v & TXFIFO_PRTY_ERR_F)
3568         csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3569     if (v & RXFIFO_PRTY_ERR_F)
3570         csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3571     csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3572     csio_hw_fatal_err(hw);
3573 }
3574 
3575 /*
3576  * PL interrupt handler.
3577  */
3578 static void csio_pl_intr_handler(struct csio_hw *hw)
3579 {
3580     static struct intr_info pl_intr_info[] = {
3581         { FATALPERR_F, "T4 fatal parity error", -1, 1 },
3582         { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3583         { 0, NULL, 0, 0 }
3584     };
3585 
3586     if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info))
3587         csio_hw_fatal_err(hw);
3588 }
3589 
3590 /*
3591  *  csio_hw_slow_intr_handler - control path interrupt handler
3592  *  @hw: HW module
3593  *
3594  *  Interrupt handler for non-data global interrupt events, e.g., errors.
3595  *  The designation 'slow' is because it involves register reads, while
3596  *  data interrupts typically don't involve any MMIOs.
3597  */
3598 int
3599 csio_hw_slow_intr_handler(struct csio_hw *hw)
3600 {
3601     uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A);
3602 
3603     if (!(cause & CSIO_GLBL_INTR_MASK)) {
3604         CSIO_INC_STATS(hw, n_plint_unexp);
3605         return 0;
3606     }
3607 
3608     csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3609 
3610     CSIO_INC_STATS(hw, n_plint_cnt);
3611 
3612     if (cause & CIM_F)
3613         csio_cim_intr_handler(hw);
3614 
3615     if (cause & MPS_F)
3616         csio_mps_intr_handler(hw);
3617 
3618     if (cause & NCSI_F)
3619         csio_ncsi_intr_handler(hw);
3620 
3621     if (cause & PL_F)
3622         csio_pl_intr_handler(hw);
3623 
3624     if (cause & SMB_F)
3625         csio_smb_intr_handler(hw);
3626 
3627     if (cause & XGMAC0_F)
3628         csio_xgmac_intr_handler(hw, 0);
3629 
3630     if (cause & XGMAC1_F)
3631         csio_xgmac_intr_handler(hw, 1);
3632 
3633     if (cause & XGMAC_KR0_F)
3634         csio_xgmac_intr_handler(hw, 2);
3635 
3636     if (cause & XGMAC_KR1_F)
3637         csio_xgmac_intr_handler(hw, 3);
3638 
3639     if (cause & PCIE_F)
3640         hw->chip_ops->chip_pcie_intr_handler(hw);
3641 
3642     if (cause & MC_F)
3643         csio_mem_intr_handler(hw, MEM_MC);
3644 
3645     if (cause & EDC0_F)
3646         csio_mem_intr_handler(hw, MEM_EDC0);
3647 
3648     if (cause & EDC1_F)
3649         csio_mem_intr_handler(hw, MEM_EDC1);
3650 
3651     if (cause & LE_F)
3652         csio_le_intr_handler(hw);
3653 
3654     if (cause & TP_F)
3655         csio_tp_intr_handler(hw);
3656 
3657     if (cause & MA_F)
3658         csio_ma_intr_handler(hw);
3659 
3660     if (cause & PM_TX_F)
3661         csio_pmtx_intr_handler(hw);
3662 
3663     if (cause & PM_RX_F)
3664         csio_pmrx_intr_handler(hw);
3665 
3666     if (cause & ULP_RX_F)
3667         csio_ulprx_intr_handler(hw);
3668 
3669     if (cause & CPL_SWITCH_F)
3670         csio_cplsw_intr_handler(hw);
3671 
3672     if (cause & SGE_F)
3673         csio_sge_intr_handler(hw);
3674 
3675     if (cause & ULP_TX_F)
3676         csio_ulptx_intr_handler(hw);
3677 
3678     /* Clear the interrupts just processed for which we are the master. */
3679     csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A);
3680     csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */
3681 
3682     return 1;
3683 }
3684 
3685 /*****************************************************************************
3686  * HW <--> mailbox interfacing routines.
3687  ****************************************************************************/
3688 /*
3689  * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3690  *
3691  * @data: Private data pointer.
3692  *
3693  * Called from worker thread context.
3694  */
3695 static void
3696 csio_mberr_worker(void *data)
3697 {
3698     struct csio_hw *hw = (struct csio_hw *)data;
3699     struct csio_mbm *mbm = &hw->mbm;
3700     LIST_HEAD(cbfn_q);
3701     struct csio_mb *mbp_next;
3702     int rv;
3703 
3704     del_timer_sync(&mbm->timer);
3705 
3706     spin_lock_irq(&hw->lock);
3707     if (list_empty(&mbm->cbfn_q)) {
3708         spin_unlock_irq(&hw->lock);
3709         return;
3710     }
3711 
3712     list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3713     mbm->stats.n_cbfnq = 0;
3714 
3715     /* Try to start waiting mailboxes */
3716     if (!list_empty(&mbm->req_q)) {
3717         mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3718         list_del_init(&mbp_next->list);
3719 
3720         rv = csio_mb_issue(hw, mbp_next);
3721         if (rv != 0)
3722             list_add_tail(&mbp_next->list, &mbm->req_q);
3723         else
3724             CSIO_DEC_STATS(mbm, n_activeq);
3725     }
3726     spin_unlock_irq(&hw->lock);
3727 
3728     /* Now callback completions */
3729     csio_mb_completions(hw, &cbfn_q);
3730 }
3731 
3732 /*
3733  * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3734  *
3735  * @data: private data pointer
3736  *
3737  **/
3738 static void
3739 csio_hw_mb_timer(struct timer_list *t)
3740 {
3741     struct csio_mbm *mbm = from_timer(mbm, t, timer);
3742     struct csio_hw *hw = mbm->hw;
3743     struct csio_mb *mbp = NULL;
3744 
3745     spin_lock_irq(&hw->lock);
3746     mbp = csio_mb_tmo_handler(hw);
3747     spin_unlock_irq(&hw->lock);
3748 
3749     /* Call back the function for the timed-out Mailbox */
3750     if (mbp)
3751         mbp->mb_cbfn(hw, mbp);
3752 
3753 }
3754 
3755 /*
3756  * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3757  * @hw: HW module
3758  *
3759  * Called with lock held, should exit with lock held.
3760  * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3761  * into a local queue. Drops lock and calls the completions. Holds
3762  * lock and returns.
3763  */
3764 static void
3765 csio_hw_mbm_cleanup(struct csio_hw *hw)
3766 {
3767     LIST_HEAD(cbfn_q);
3768 
3769     csio_mb_cancel_all(hw, &cbfn_q);
3770 
3771     spin_unlock_irq(&hw->lock);
3772     csio_mb_completions(hw, &cbfn_q);
3773     spin_lock_irq(&hw->lock);
3774 }
3775 
3776 /*****************************************************************************
3777  * Event handling
3778  ****************************************************************************/
3779 int
3780 csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3781             uint16_t len)
3782 {
3783     struct csio_evt_msg *evt_entry = NULL;
3784 
3785     if (type >= CSIO_EVT_MAX)
3786         return -EINVAL;
3787 
3788     if (len > CSIO_EVT_MSG_SIZE)
3789         return -EINVAL;
3790 
3791     if (hw->flags & CSIO_HWF_FWEVT_STOP)
3792         return -EINVAL;
3793 
3794     if (list_empty(&hw->evt_free_q)) {
3795         csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3796              type, len);
3797         return -ENOMEM;
3798     }
3799 
3800     evt_entry = list_first_entry(&hw->evt_free_q,
3801                      struct csio_evt_msg, list);
3802     list_del_init(&evt_entry->list);
3803 
3804     /* copy event msg and queue the event */
3805     evt_entry->type = type;
3806     memcpy((void *)evt_entry->data, evt_msg, len);
3807     list_add_tail(&evt_entry->list, &hw->evt_active_q);
3808 
3809     CSIO_DEC_STATS(hw, n_evt_freeq);
3810     CSIO_INC_STATS(hw, n_evt_activeq);
3811 
3812     return 0;
3813 }
3814 
3815 static int
3816 csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3817             uint16_t len, bool msg_sg)
3818 {
3819     struct csio_evt_msg *evt_entry = NULL;
3820     struct csio_fl_dma_buf *fl_sg;
3821     uint32_t off = 0;
3822     unsigned long flags;
3823     int n, ret = 0;
3824 
3825     if (type >= CSIO_EVT_MAX)
3826         return -EINVAL;
3827 
3828     if (len > CSIO_EVT_MSG_SIZE)
3829         return -EINVAL;
3830 
3831     spin_lock_irqsave(&hw->lock, flags);
3832     if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3833         ret = -EINVAL;
3834         goto out;
3835     }
3836 
3837     if (list_empty(&hw->evt_free_q)) {
3838         csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3839              type, len);
3840         ret = -ENOMEM;
3841         goto out;
3842     }
3843 
3844     evt_entry = list_first_entry(&hw->evt_free_q,
3845                      struct csio_evt_msg, list);
3846     list_del_init(&evt_entry->list);
3847 
3848     /* copy event msg and queue the event */
3849     evt_entry->type = type;
3850 
3851     /* If Payload in SG list*/
3852     if (msg_sg) {
3853         fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3854         for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3855             memcpy((void *)((uintptr_t)evt_entry->data + off),
3856                 fl_sg->flbufs[n].vaddr,
3857                 fl_sg->flbufs[n].len);
3858             off += fl_sg->flbufs[n].len;
3859         }
3860     } else
3861         memcpy((void *)evt_entry->data, evt_msg, len);
3862 
3863     list_add_tail(&evt_entry->list, &hw->evt_active_q);
3864     CSIO_DEC_STATS(hw, n_evt_freeq);
3865     CSIO_INC_STATS(hw, n_evt_activeq);
3866 out:
3867     spin_unlock_irqrestore(&hw->lock, flags);
3868     return ret;
3869 }
3870 
3871 static void
3872 csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3873 {
3874     if (evt_entry) {
3875         spin_lock_irq(&hw->lock);
3876         list_del_init(&evt_entry->list);
3877         list_add_tail(&evt_entry->list, &hw->evt_free_q);
3878         CSIO_DEC_STATS(hw, n_evt_activeq);
3879         CSIO_INC_STATS(hw, n_evt_freeq);
3880         spin_unlock_irq(&hw->lock);
3881     }
3882 }
3883 
3884 void
3885 csio_evtq_flush(struct csio_hw *hw)
3886 {
3887     uint32_t count;
3888     count = 30;
3889     while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3890         spin_unlock_irq(&hw->lock);
3891         msleep(2000);
3892         spin_lock_irq(&hw->lock);
3893     }
3894 
3895     CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3896 }
3897 
3898 static void
3899 csio_evtq_stop(struct csio_hw *hw)
3900 {
3901     hw->flags |= CSIO_HWF_FWEVT_STOP;
3902 }
3903 
3904 static void
3905 csio_evtq_start(struct csio_hw *hw)
3906 {
3907     hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3908 }
3909 
3910 static void
3911 csio_evtq_cleanup(struct csio_hw *hw)
3912 {
3913     struct list_head *evt_entry, *next_entry;
3914 
3915     /* Release outstanding events from activeq to freeq*/
3916     if (!list_empty(&hw->evt_active_q))
3917         list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3918 
3919     hw->stats.n_evt_activeq = 0;
3920     hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3921 
3922     /* Freeup event entry */
3923     list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3924         kfree(evt_entry);
3925         CSIO_DEC_STATS(hw, n_evt_freeq);
3926     }
3927 
3928     hw->stats.n_evt_freeq = 0;
3929 }
3930 
3931 
3932 static void
3933 csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3934               struct csio_fl_dma_buf *flb, void *priv)
3935 {
3936     __u8 op;
3937     void *msg = NULL;
3938     uint32_t msg_len = 0;
3939     bool msg_sg = 0;
3940 
3941     op = ((struct rss_header *) wr)->opcode;
3942     if (op == CPL_FW6_PLD) {
3943         CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3944         if (!flb || !flb->totlen) {
3945             CSIO_INC_STATS(hw, n_cpl_unexp);
3946             return;
3947         }
3948 
3949         msg = (void *) flb;
3950         msg_len = flb->totlen;
3951         msg_sg = 1;
3952     } else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3953 
3954         CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3955         /* skip RSS header */
3956         msg = (void *)((uintptr_t)wr + sizeof(__be64));
3957         msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3958                sizeof(struct cpl_fw4_msg);
3959     } else {
3960         csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3961         CSIO_INC_STATS(hw, n_cpl_unexp);
3962         return;
3963     }
3964 
3965     /*
3966      * Enqueue event to EventQ. Events processing happens
3967      * in Event worker thread context
3968      */
3969     if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3970                   (uint16_t)msg_len, msg_sg))
3971         CSIO_INC_STATS(hw, n_evt_drop);
3972 }
3973 
3974 void
3975 csio_evtq_worker(struct work_struct *work)
3976 {
3977     struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3978     struct list_head *evt_entry, *next_entry;
3979     LIST_HEAD(evt_q);
3980     struct csio_evt_msg *evt_msg;
3981     struct cpl_fw6_msg *msg;
3982     struct csio_rnode *rn;
3983     int rv = 0;
3984     uint8_t evtq_stop = 0;
3985 
3986     csio_dbg(hw, "event worker thread active evts#%d\n",
3987          hw->stats.n_evt_activeq);
3988 
3989     spin_lock_irq(&hw->lock);
3990     while (!list_empty(&hw->evt_active_q)) {
3991         list_splice_tail_init(&hw->evt_active_q, &evt_q);
3992         spin_unlock_irq(&hw->lock);
3993 
3994         list_for_each_safe(evt_entry, next_entry, &evt_q) {
3995             evt_msg = (struct csio_evt_msg *) evt_entry;
3996 
3997             /* Drop events if queue is STOPPED */
3998             spin_lock_irq(&hw->lock);
3999             if (hw->flags & CSIO_HWF_FWEVT_STOP)
4000                 evtq_stop = 1;
4001             spin_unlock_irq(&hw->lock);
4002             if (evtq_stop) {
4003                 CSIO_INC_STATS(hw, n_evt_drop);
4004                 goto free_evt;
4005             }
4006 
4007             switch (evt_msg->type) {
4008             case CSIO_EVT_FW:
4009                 msg = (struct cpl_fw6_msg *)(evt_msg->data);
4010 
4011                 if ((msg->opcode == CPL_FW6_MSG ||
4012                      msg->opcode == CPL_FW4_MSG) &&
4013                     !msg->type) {
4014                     rv = csio_mb_fwevt_handler(hw,
4015                                 msg->data);
4016                     if (!rv)
4017                         break;
4018                     /* Handle any remaining fw events */
4019                     csio_fcoe_fwevt_handler(hw,
4020                             msg->opcode, msg->data);
4021                 } else if (msg->opcode == CPL_FW6_PLD) {
4022 
4023                     csio_fcoe_fwevt_handler(hw,
4024                             msg->opcode, msg->data);
4025                 } else {
4026                     csio_warn(hw,
4027                          "Unhandled FW msg op %x type %x\n",
4028                           msg->opcode, msg->type);
4029                     CSIO_INC_STATS(hw, n_evt_drop);
4030                 }
4031                 break;
4032 
4033             case CSIO_EVT_MBX:
4034                 csio_mberr_worker(hw);
4035                 break;
4036 
4037             case CSIO_EVT_DEV_LOSS:
4038                 memcpy(&rn, evt_msg->data, sizeof(rn));
4039                 csio_rnode_devloss_handler(rn);
4040                 break;
4041 
4042             default:
4043                 csio_warn(hw, "Unhandled event %x on evtq\n",
4044                       evt_msg->type);
4045                 CSIO_INC_STATS(hw, n_evt_unexp);
4046                 break;
4047             }
4048 free_evt:
4049             csio_free_evt(hw, evt_msg);
4050         }
4051 
4052         spin_lock_irq(&hw->lock);
4053     }
4054     hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
4055     spin_unlock_irq(&hw->lock);
4056 }
4057 
4058 int
4059 csio_fwevtq_handler(struct csio_hw *hw)
4060 {
4061     int rv;
4062 
4063     if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
4064         CSIO_INC_STATS(hw, n_int_stray);
4065         return -EINVAL;
4066     }
4067 
4068     rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
4069                csio_process_fwevtq_entry, NULL);
4070     return rv;
4071 }
4072 
4073 /****************************************************************************
4074  * Entry points
4075  ****************************************************************************/
4076 
4077 /* Management module */
4078 /*
4079  * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
4080  * mgmt - mgmt module
4081  * @io_req - io request
4082  *
4083  * Return - 0:if given IO Req exists in active Q.
4084  *          -EINVAL  :if lookup fails.
4085  */
4086 int
4087 csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
4088 {
4089     struct list_head *tmp;
4090 
4091     /* Lookup ioreq in the ACTIVEQ */
4092     list_for_each(tmp, &mgmtm->active_q) {
4093         if (io_req == (struct csio_ioreq *)tmp)
4094             return 0;
4095     }
4096     return -EINVAL;
4097 }
4098 
4099 #define ECM_MIN_TMO 1000    /* Minimum timeout value for req */
4100 
4101 /*
4102  * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
4103  * @data - Event data.
4104  *
4105  * Return - none.
4106  */
4107 static void
4108 csio_mgmt_tmo_handler(struct timer_list *t)
4109 {
4110     struct csio_mgmtm *mgmtm = from_timer(mgmtm, t, mgmt_timer);
4111     struct list_head *tmp;
4112     struct csio_ioreq *io_req;
4113 
4114     csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
4115 
4116     spin_lock_irq(&mgmtm->hw->lock);
4117 
4118     list_for_each(tmp, &mgmtm->active_q) {
4119         io_req = (struct csio_ioreq *) tmp;
4120         io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
4121 
4122         if (!io_req->tmo) {
4123             /* Dequeue the request from retry Q. */
4124             tmp = csio_list_prev(tmp);
4125             list_del_init(&io_req->sm.sm_list);
4126             if (io_req->io_cbfn) {
4127                 /* io_req will be freed by completion handler */
4128                 io_req->wr_status = -ETIMEDOUT;
4129                 io_req->io_cbfn(mgmtm->hw, io_req);
4130             } else {
4131                 CSIO_DB_ASSERT(0);
4132             }
4133         }
4134     }
4135 
4136     /* If retry queue is not empty, re-arm timer */
4137     if (!list_empty(&mgmtm->active_q))
4138         mod_timer(&mgmtm->mgmt_timer,
4139               jiffies + msecs_to_jiffies(ECM_MIN_TMO));
4140     spin_unlock_irq(&mgmtm->hw->lock);
4141 }
4142 
4143 static void
4144 csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
4145 {
4146     struct csio_hw *hw = mgmtm->hw;
4147     struct csio_ioreq *io_req;
4148     struct list_head *tmp;
4149     uint32_t count;
4150 
4151     count = 30;
4152     /* Wait for all outstanding req to complete gracefully */
4153     while ((!list_empty(&mgmtm->active_q)) && count--) {
4154         spin_unlock_irq(&hw->lock);
4155         msleep(2000);
4156         spin_lock_irq(&hw->lock);
4157     }
4158 
4159     /* release outstanding req from ACTIVEQ */
4160     list_for_each(tmp, &mgmtm->active_q) {
4161         io_req = (struct csio_ioreq *) tmp;
4162         tmp = csio_list_prev(tmp);
4163         list_del_init(&io_req->sm.sm_list);
4164         mgmtm->stats.n_active--;
4165         if (io_req->io_cbfn) {
4166             /* io_req will be freed by completion handler */
4167             io_req->wr_status = -ETIMEDOUT;
4168             io_req->io_cbfn(mgmtm->hw, io_req);
4169         }
4170     }
4171 }
4172 
4173 /*
4174  * csio_mgmt_init - Mgmt module init entry point
4175  * @mgmtsm - mgmt module
4176  * @hw   - HW module
4177  *
4178  * Initialize mgmt timer, resource wait queue, active queue,
4179  * completion q. Allocate Egress and Ingress
4180  * WR queues and save off the queue index returned by the WR
4181  * module for future use. Allocate and save off mgmt reqs in the
4182  * mgmt_req_freelist for future use. Make sure their SM is initialized
4183  * to uninit state.
4184  * Returns: 0 - on success
4185  *          -ENOMEM   - on error.
4186  */
4187 static int
4188 csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
4189 {
4190     timer_setup(&mgmtm->mgmt_timer, csio_mgmt_tmo_handler, 0);
4191 
4192     INIT_LIST_HEAD(&mgmtm->active_q);
4193     INIT_LIST_HEAD(&mgmtm->cbfn_q);
4194 
4195     mgmtm->hw = hw;
4196     /*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
4197 
4198     return 0;
4199 }
4200 
4201 /*
4202  * csio_mgmtm_exit - MGMT module exit entry point
4203  * @mgmtsm - mgmt module
4204  *
4205  * This function called during MGMT module uninit.
4206  * Stop timers, free ioreqs allocated.
4207  * Returns: None
4208  *
4209  */
4210 static void
4211 csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
4212 {
4213     del_timer_sync(&mgmtm->mgmt_timer);
4214 }
4215 
4216 
4217 /**
4218  * csio_hw_start - Kicks off the HW State machine
4219  * @hw:     Pointer to HW module.
4220  *
4221  * It is assumed that the initialization is a synchronous operation.
4222  * So when we return after posting the event, the HW SM should be in
4223  * the ready state, if there were no errors during init.
4224  */
4225 int
4226 csio_hw_start(struct csio_hw *hw)
4227 {
4228     spin_lock_irq(&hw->lock);
4229     csio_post_event(&hw->sm, CSIO_HWE_CFG);
4230     spin_unlock_irq(&hw->lock);
4231 
4232     if (csio_is_hw_ready(hw))
4233         return 0;
4234     else if (csio_match_state(hw, csio_hws_uninit))
4235         return -EINVAL;
4236     else
4237         return -ENODEV;
4238 }
4239 
4240 int
4241 csio_hw_stop(struct csio_hw *hw)
4242 {
4243     csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
4244 
4245     if (csio_is_hw_removing(hw))
4246         return 0;
4247     else
4248         return -EINVAL;
4249 }
4250 
4251 /* Max reset retries */
4252 #define CSIO_MAX_RESET_RETRIES  3
4253 
4254 /**
4255  * csio_hw_reset - Reset the hardware
4256  * @hw:     HW module.
4257  *
4258  * Caller should hold lock across this function.
4259  */
4260 int
4261 csio_hw_reset(struct csio_hw *hw)
4262 {
4263     if (!csio_is_hw_master(hw))
4264         return -EPERM;
4265 
4266     if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
4267         csio_dbg(hw, "Max hw reset attempts reached..");
4268         return -EINVAL;
4269     }
4270 
4271     hw->rst_retries++;
4272     csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
4273 
4274     if (csio_is_hw_ready(hw)) {
4275         hw->rst_retries = 0;
4276         hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
4277         return 0;
4278     } else
4279         return -EINVAL;
4280 }
4281 
4282 /*
4283  * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
4284  * @hw: HW module.
4285  */
4286 static void
4287 csio_hw_get_device_id(struct csio_hw *hw)
4288 {
4289     /* Is the adapter device id cached already ?*/
4290     if (csio_is_dev_id_cached(hw))
4291         return;
4292 
4293     /* Get the PCI vendor & device id */
4294     pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
4295                  &hw->params.pci.vendor_id);
4296     pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
4297                  &hw->params.pci.device_id);
4298 
4299     csio_dev_id_cached(hw);
4300     hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
4301 
4302 } /* csio_hw_get_device_id */
4303 
4304 /*
4305  * csio_hw_set_description - Set the model, description of the hw.
4306  * @hw: HW module.
4307  * @ven_id: PCI Vendor ID
4308  * @dev_id: PCI Device ID
4309  */
4310 static void
4311 csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
4312 {
4313     uint32_t adap_type, prot_type;
4314 
4315     if (ven_id == CSIO_VENDOR_ID) {
4316         prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
4317         adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
4318 
4319         if (prot_type == CSIO_T5_FCOE_ASIC) {
4320             memcpy(hw->hw_ver,
4321                    csio_t5_fcoe_adapters[adap_type].model_no, 16);
4322             memcpy(hw->model_desc,
4323                    csio_t5_fcoe_adapters[adap_type].description,
4324                    32);
4325         } else {
4326             char tempName[32] = "Chelsio FCoE Controller";
4327             memcpy(hw->model_desc, tempName, 32);
4328         }
4329     }
4330 } /* csio_hw_set_description */
4331 
4332 /**
4333  * csio_hw_init - Initialize HW module.
4334  * @hw:     Pointer to HW module.
4335  *
4336  * Initialize the members of the HW module.
4337  */
4338 int
4339 csio_hw_init(struct csio_hw *hw)
4340 {
4341     int rv = -EINVAL;
4342     uint32_t i;
4343     uint16_t ven_id, dev_id;
4344     struct csio_evt_msg *evt_entry;
4345 
4346     INIT_LIST_HEAD(&hw->sm.sm_list);
4347     csio_init_state(&hw->sm, csio_hws_uninit);
4348     spin_lock_init(&hw->lock);
4349     INIT_LIST_HEAD(&hw->sln_head);
4350 
4351     /* Get the PCI vendor & device id */
4352     csio_hw_get_device_id(hw);
4353 
4354     strcpy(hw->name, CSIO_HW_NAME);
4355 
4356     /* Initialize the HW chip ops T5 specific ops */
4357     hw->chip_ops = &t5_ops;
4358 
4359     /* Set the model & its description */
4360 
4361     ven_id = hw->params.pci.vendor_id;
4362     dev_id = hw->params.pci.device_id;
4363 
4364     csio_hw_set_description(hw, ven_id, dev_id);
4365 
4366     /* Initialize default log level */
4367     hw->params.log_level = (uint32_t) csio_dbg_level;
4368 
4369     csio_set_fwevt_intr_idx(hw, -1);
4370     csio_set_nondata_intr_idx(hw, -1);
4371 
4372     /* Init all the modules: Mailbox, WorkRequest and Transport */
4373     if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
4374         goto err;
4375 
4376     rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
4377     if (rv)
4378         goto err_mbm_exit;
4379 
4380     rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
4381     if (rv)
4382         goto err_wrm_exit;
4383 
4384     rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
4385     if (rv)
4386         goto err_scsim_exit;
4387     /* Pre-allocate evtq and initialize them */
4388     INIT_LIST_HEAD(&hw->evt_active_q);
4389     INIT_LIST_HEAD(&hw->evt_free_q);
4390     for (i = 0; i < csio_evtq_sz; i++) {
4391 
4392         evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
4393         if (!evt_entry) {
4394             rv = -ENOMEM;
4395             csio_err(hw, "Failed to initialize eventq");
4396             goto err_evtq_cleanup;
4397         }
4398 
4399         list_add_tail(&evt_entry->list, &hw->evt_free_q);
4400         CSIO_INC_STATS(hw, n_evt_freeq);
4401     }
4402 
4403     hw->dev_num = dev_num;
4404     dev_num++;
4405 
4406     return 0;
4407 
4408 err_evtq_cleanup:
4409     csio_evtq_cleanup(hw);
4410     csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4411 err_scsim_exit:
4412     csio_scsim_exit(csio_hw_to_scsim(hw));
4413 err_wrm_exit:
4414     csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4415 err_mbm_exit:
4416     csio_mbm_exit(csio_hw_to_mbm(hw));
4417 err:
4418     return rv;
4419 }
4420 
4421 /**
4422  * csio_hw_exit - Un-initialize HW module.
4423  * @hw:     Pointer to HW module.
4424  *
4425  */
4426 void
4427 csio_hw_exit(struct csio_hw *hw)
4428 {
4429     csio_evtq_cleanup(hw);
4430     csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4431     csio_scsim_exit(csio_hw_to_scsim(hw));
4432     csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4433     csio_mbm_exit(csio_hw_to_mbm(hw));
4434 }