Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
0004  *
0005  * Copyright (c) 1995-2000 Advanced System Products, Inc.
0006  * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
0007  * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
0008  * Copyright (c) 2014 Hannes Reinecke <hare@suse.de>
0009  * All Rights Reserved.
0010  */
0011 
0012 /*
0013  * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
0014  * changed its name to ConnectCom Solutions, Inc.
0015  * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
0016  */
0017 
0018 #include <linux/module.h>
0019 #include <linux/string.h>
0020 #include <linux/kernel.h>
0021 #include <linux/types.h>
0022 #include <linux/ioport.h>
0023 #include <linux/interrupt.h>
0024 #include <linux/delay.h>
0025 #include <linux/slab.h>
0026 #include <linux/mm.h>
0027 #include <linux/proc_fs.h>
0028 #include <linux/init.h>
0029 #include <linux/blkdev.h>
0030 #include <linux/isa.h>
0031 #include <linux/eisa.h>
0032 #include <linux/pci.h>
0033 #include <linux/spinlock.h>
0034 #include <linux/dma-mapping.h>
0035 #include <linux/firmware.h>
0036 #include <linux/dmapool.h>
0037 
0038 #include <asm/io.h>
0039 #include <asm/dma.h>
0040 
0041 #include <scsi/scsi_cmnd.h>
0042 #include <scsi/scsi_device.h>
0043 #include <scsi/scsi_tcq.h>
0044 #include <scsi/scsi.h>
0045 #include <scsi/scsi_host.h>
0046 
0047 #define DRV_NAME "advansys"
0048 #define ASC_VERSION "3.5"   /* AdvanSys Driver Version */
0049 
0050 /* FIXME:
0051  *
0052  *  1. Use scsi_transport_spi
0053  *  2. advansys_info is not safe against multiple simultaneous callers
0054  *  3. Add module_param to override ISA/VLB ioport array
0055  */
0056 
0057 /* Enable driver /proc statistics. */
0058 #define ADVANSYS_STATS
0059 
0060 /* Enable driver tracing. */
0061 #undef ADVANSYS_DEBUG
0062 
0063 typedef unsigned char uchar;
0064 
0065 #define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
0066 
0067 #define PCI_VENDOR_ID_ASP       0x10cd
0068 #define PCI_DEVICE_ID_ASP_1200A     0x1100
0069 #define PCI_DEVICE_ID_ASP_ABP940    0x1200
0070 #define PCI_DEVICE_ID_ASP_ABP940U   0x1300
0071 #define PCI_DEVICE_ID_ASP_ABP940UW  0x2300
0072 #define PCI_DEVICE_ID_38C0800_REV1  0x2500
0073 #define PCI_DEVICE_ID_38C1600_REV1  0x2700
0074 
0075 #define PortAddr                 unsigned int   /* port address size  */
0076 #define inp(port)                inb(port)
0077 #define outp(port, byte)         outb((byte), (port))
0078 
0079 #define inpw(port)               inw(port)
0080 #define outpw(port, word)        outw((word), (port))
0081 
0082 #define ASC_MAX_SG_QUEUE    7
0083 #define ASC_MAX_SG_LIST     255
0084 
0085 #define ASC_CS_TYPE  unsigned short
0086 
0087 #define ASC_IS_EISA         (0x0002)
0088 #define ASC_IS_PCI          (0x0004)
0089 #define ASC_IS_PCI_ULTRA    (0x0104)
0090 #define ASC_IS_PCMCIA       (0x0008)
0091 #define ASC_IS_MCA          (0x0020)
0092 #define ASC_IS_VL           (0x0040)
0093 #define ASC_IS_WIDESCSI_16  (0x0100)
0094 #define ASC_IS_WIDESCSI_32  (0x0200)
0095 #define ASC_IS_BIG_ENDIAN   (0x8000)
0096 
0097 #define ASC_CHIP_MIN_VER_VL      (0x01)
0098 #define ASC_CHIP_MAX_VER_VL      (0x07)
0099 #define ASC_CHIP_MIN_VER_PCI     (0x09)
0100 #define ASC_CHIP_MAX_VER_PCI     (0x0F)
0101 #define ASC_CHIP_VER_PCI_BIT     (0x08)
0102 #define ASC_CHIP_VER_ASYN_BUG    (0x21)
0103 #define ASC_CHIP_VER_PCI             0x08
0104 #define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
0105 #define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
0106 #define ASC_CHIP_MIN_VER_EISA (0x41)
0107 #define ASC_CHIP_MAX_VER_EISA (0x47)
0108 #define ASC_CHIP_VER_EISA_BIT (0x40)
0109 #define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
0110 #define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
0111 #define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
0112 
0113 #define ASC_SCSI_ID_BITS  3
0114 #define ASC_SCSI_TIX_TYPE     uchar
0115 #define ASC_ALL_DEVICE_BIT_SET  0xFF
0116 #define ASC_SCSI_BIT_ID_TYPE  uchar
0117 #define ASC_MAX_TID       7
0118 #define ASC_MAX_LUN       7
0119 #define ASC_SCSI_WIDTH_BIT_SET  0xFF
0120 #define ASC_MAX_SENSE_LEN   32
0121 #define ASC_MIN_SENSE_LEN   14
0122 #define ASC_SCSI_RESET_HOLD_TIME_US  60
0123 
0124 /*
0125  * Narrow boards only support 12-byte commands, while wide boards
0126  * extend to 16-byte commands.
0127  */
0128 #define ASC_MAX_CDB_LEN     12
0129 #define ADV_MAX_CDB_LEN     16
0130 
0131 #define MS_SDTR_LEN    0x03
0132 #define MS_WDTR_LEN    0x02
0133 
0134 #define ASC_SG_LIST_PER_Q   7
0135 #define QS_FREE        0x00
0136 #define QS_READY       0x01
0137 #define QS_DISC1       0x02
0138 #define QS_DISC2       0x04
0139 #define QS_BUSY        0x08
0140 #define QS_ABORTED     0x40
0141 #define QS_DONE        0x80
0142 #define QC_NO_CALLBACK   0x01
0143 #define QC_SG_SWAP_QUEUE 0x02
0144 #define QC_SG_HEAD       0x04
0145 #define QC_DATA_IN       0x08
0146 #define QC_DATA_OUT      0x10
0147 #define QC_URGENT        0x20
0148 #define QC_MSG_OUT       0x40
0149 #define QC_REQ_SENSE     0x80
0150 #define QCSG_SG_XFER_LIST  0x02
0151 #define QCSG_SG_XFER_MORE  0x04
0152 #define QCSG_SG_XFER_END   0x08
0153 #define QD_IN_PROGRESS       0x00
0154 #define QD_NO_ERROR          0x01
0155 #define QD_ABORTED_BY_HOST   0x02
0156 #define QD_WITH_ERROR        0x04
0157 #define QD_INVALID_REQUEST   0x80
0158 #define QD_INVALID_HOST_NUM  0x81
0159 #define QD_INVALID_DEVICE    0x82
0160 #define QD_ERR_INTERNAL      0xFF
0161 #define QHSTA_NO_ERROR               0x00
0162 #define QHSTA_M_SEL_TIMEOUT          0x11
0163 #define QHSTA_M_DATA_OVER_RUN        0x12
0164 #define QHSTA_M_DATA_UNDER_RUN       0x12
0165 #define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
0166 #define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
0167 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
0168 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
0169 #define QHSTA_D_HOST_ABORT_FAILED       0x23
0170 #define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
0171 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
0172 #define QHSTA_D_ASPI_NO_BUF_POOL        0x26
0173 #define QHSTA_M_WTM_TIMEOUT         0x41
0174 #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
0175 #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
0176 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
0177 #define QHSTA_M_TARGET_STATUS_BUSY  0x45
0178 #define QHSTA_M_BAD_TAG_CODE        0x46
0179 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
0180 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
0181 #define QHSTA_D_LRAM_CMP_ERROR        0x81
0182 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
0183 #define ASC_FLAG_SCSIQ_REQ        0x01
0184 #define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
0185 #define ASC_FLAG_BIOS_ASYNC_IO    0x04
0186 #define ASC_FLAG_SRB_LINEAR_ADDR  0x08
0187 #define ASC_FLAG_WIN16            0x10
0188 #define ASC_FLAG_WIN32            0x20
0189 #define ASC_FLAG_DOS_VM_CALLBACK  0x80
0190 #define ASC_TAG_FLAG_EXTRA_BYTES               0x10
0191 #define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
0192 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
0193 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
0194 #define ASC_SCSIQ_CPY_BEG              4
0195 #define ASC_SCSIQ_SGHD_CPY_BEG         2
0196 #define ASC_SCSIQ_B_FWD                0
0197 #define ASC_SCSIQ_B_BWD                1
0198 #define ASC_SCSIQ_B_STATUS             2
0199 #define ASC_SCSIQ_B_QNO                3
0200 #define ASC_SCSIQ_B_CNTL               4
0201 #define ASC_SCSIQ_B_SG_QUEUE_CNT       5
0202 #define ASC_SCSIQ_D_DATA_ADDR          8
0203 #define ASC_SCSIQ_D_DATA_CNT          12
0204 #define ASC_SCSIQ_B_SENSE_LEN         20
0205 #define ASC_SCSIQ_DONE_INFO_BEG       22
0206 #define ASC_SCSIQ_D_SRBPTR            22
0207 #define ASC_SCSIQ_B_TARGET_IX         26
0208 #define ASC_SCSIQ_B_CDB_LEN           28
0209 #define ASC_SCSIQ_B_TAG_CODE          29
0210 #define ASC_SCSIQ_W_VM_ID             30
0211 #define ASC_SCSIQ_DONE_STATUS         32
0212 #define ASC_SCSIQ_HOST_STATUS         33
0213 #define ASC_SCSIQ_SCSI_STATUS         34
0214 #define ASC_SCSIQ_CDB_BEG             36
0215 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
0216 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
0217 #define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
0218 #define ASC_SCSIQ_B_SG_WK_QP          49
0219 #define ASC_SCSIQ_B_SG_WK_IX          50
0220 #define ASC_SCSIQ_W_ALT_DC1           52
0221 #define ASC_SCSIQ_B_LIST_CNT          6
0222 #define ASC_SCSIQ_B_CUR_LIST_CNT      7
0223 #define ASC_SGQ_B_SG_CNTL             4
0224 #define ASC_SGQ_B_SG_HEAD_QP          5
0225 #define ASC_SGQ_B_SG_LIST_CNT         6
0226 #define ASC_SGQ_B_SG_CUR_LIST_CNT     7
0227 #define ASC_SGQ_LIST_BEG              8
0228 #define ASC_DEF_SCSI1_QNG    4
0229 #define ASC_MAX_SCSI1_QNG    4
0230 #define ASC_DEF_SCSI2_QNG    16
0231 #define ASC_MAX_SCSI2_QNG    32
0232 #define ASC_TAG_CODE_MASK    0x23
0233 #define ASC_STOP_REQ_RISC_STOP      0x01
0234 #define ASC_STOP_ACK_RISC_STOP      0x03
0235 #define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
0236 #define ASC_STOP_CLEAN_UP_DISC_Q    0x20
0237 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
0238 #define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
0239 #define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
0240 #define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
0241 #define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
0242 #define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
0243 #define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
0244 #define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
0245 
0246 typedef struct asc_scsiq_1 {
0247     uchar status;
0248     uchar q_no;
0249     uchar cntl;
0250     uchar sg_queue_cnt;
0251     uchar target_id;
0252     uchar target_lun;
0253     __le32 data_addr;
0254     __le32 data_cnt;
0255     __le32 sense_addr;
0256     uchar sense_len;
0257     uchar extra_bytes;
0258 } ASC_SCSIQ_1;
0259 
0260 typedef struct asc_scsiq_2 {
0261     u32 srb_tag;
0262     uchar target_ix;
0263     uchar flag;
0264     uchar cdb_len;
0265     uchar tag_code;
0266     ushort vm_id;
0267 } ASC_SCSIQ_2;
0268 
0269 typedef struct asc_scsiq_3 {
0270     uchar done_stat;
0271     uchar host_stat;
0272     uchar scsi_stat;
0273     uchar scsi_msg;
0274 } ASC_SCSIQ_3;
0275 
0276 typedef struct asc_scsiq_4 {
0277     uchar cdb[ASC_MAX_CDB_LEN];
0278     uchar y_first_sg_list_qp;
0279     uchar y_working_sg_qp;
0280     uchar y_working_sg_ix;
0281     uchar y_res;
0282     ushort x_req_count;
0283     ushort x_reconnect_rtn;
0284     __le32 x_saved_data_addr;
0285     __le32 x_saved_data_cnt;
0286 } ASC_SCSIQ_4;
0287 
0288 typedef struct asc_q_done_info {
0289     ASC_SCSIQ_2 d2;
0290     ASC_SCSIQ_3 d3;
0291     uchar q_status;
0292     uchar q_no;
0293     uchar cntl;
0294     uchar sense_len;
0295     uchar extra_bytes;
0296     uchar res;
0297     u32 remain_bytes;
0298 } ASC_QDONE_INFO;
0299 
0300 typedef struct asc_sg_list {
0301     __le32 addr;
0302     __le32 bytes;
0303 } ASC_SG_LIST;
0304 
0305 typedef struct asc_sg_head {
0306     ushort entry_cnt;
0307     ushort queue_cnt;
0308     ushort entry_to_copy;
0309     ushort res;
0310     ASC_SG_LIST sg_list[];
0311 } ASC_SG_HEAD;
0312 
0313 typedef struct asc_scsi_q {
0314     ASC_SCSIQ_1 q1;
0315     ASC_SCSIQ_2 q2;
0316     uchar *cdbptr;
0317     ASC_SG_HEAD *sg_head;
0318     ushort remain_sg_entry_cnt;
0319     ushort next_sg_index;
0320 } ASC_SCSI_Q;
0321 
0322 typedef struct asc_scsi_bios_req_q {
0323     ASC_SCSIQ_1 r1;
0324     ASC_SCSIQ_2 r2;
0325     uchar *cdbptr;
0326     ASC_SG_HEAD *sg_head;
0327     uchar *sense_ptr;
0328     ASC_SCSIQ_3 r3;
0329     uchar cdb[ASC_MAX_CDB_LEN];
0330     uchar sense[ASC_MIN_SENSE_LEN];
0331 } ASC_SCSI_BIOS_REQ_Q;
0332 
0333 typedef struct asc_risc_q {
0334     uchar fwd;
0335     uchar bwd;
0336     ASC_SCSIQ_1 i1;
0337     ASC_SCSIQ_2 i2;
0338     ASC_SCSIQ_3 i3;
0339     ASC_SCSIQ_4 i4;
0340 } ASC_RISC_Q;
0341 
0342 typedef struct asc_sg_list_q {
0343     uchar seq_no;
0344     uchar q_no;
0345     uchar cntl;
0346     uchar sg_head_qp;
0347     uchar sg_list_cnt;
0348     uchar sg_cur_list_cnt;
0349 } ASC_SG_LIST_Q;
0350 
0351 typedef struct asc_risc_sg_list_q {
0352     uchar fwd;
0353     uchar bwd;
0354     ASC_SG_LIST_Q sg;
0355     ASC_SG_LIST sg_list[7];
0356 } ASC_RISC_SG_LIST_Q;
0357 
0358 #define ASCQ_ERR_Q_STATUS             0x0D
0359 #define ASCQ_ERR_CUR_QNG              0x17
0360 #define ASCQ_ERR_SG_Q_LINKS           0x18
0361 #define ASCQ_ERR_ISR_RE_ENTRY         0x1A
0362 #define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
0363 #define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
0364 
0365 /*
0366  * Warning code values are set in ASC_DVC_VAR  'warn_code'.
0367  */
0368 #define ASC_WARN_NO_ERROR             0x0000
0369 #define ASC_WARN_IO_PORT_ROTATE       0x0001
0370 #define ASC_WARN_EEPROM_CHKSUM        0x0002
0371 #define ASC_WARN_IRQ_MODIFIED         0x0004
0372 #define ASC_WARN_AUTO_CONFIG          0x0008
0373 #define ASC_WARN_CMD_QNG_CONFLICT     0x0010
0374 #define ASC_WARN_EEPROM_RECOVER       0x0020
0375 #define ASC_WARN_CFG_MSW_RECOVER      0x0040
0376 
0377 /*
0378  * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
0379  */
0380 #define ASC_IERR_NO_CARRIER     0x0001  /* No more carrier memory */
0381 #define ASC_IERR_MCODE_CHKSUM       0x0002  /* micro code check sum error */
0382 #define ASC_IERR_SET_PC_ADDR        0x0004
0383 #define ASC_IERR_START_STOP_CHIP    0x0008  /* start/stop chip failed */
0384 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010  /* Illegal cable connection */
0385 #define ASC_IERR_SINGLE_END_DEVICE  0x0020  /* SE device on DIFF bus */
0386 #define ASC_IERR_REVERSED_CABLE     0x0040  /* Narrow flat cable reversed */
0387 #define ASC_IERR_SET_SCSI_ID        0x0080  /* set SCSI ID failed */
0388 #define ASC_IERR_HVD_DEVICE     0x0100  /* HVD device on LVD port */
0389 #define ASC_IERR_BAD_SIGNATURE      0x0200  /* signature not found */
0390 #define ASC_IERR_NO_BUS_TYPE        0x0400
0391 #define ASC_IERR_BIST_PRE_TEST      0x0800  /* BIST pre-test error */
0392 #define ASC_IERR_BIST_RAM_TEST      0x1000  /* BIST RAM test error */
0393 #define ASC_IERR_BAD_CHIPTYPE       0x2000  /* Invalid chip_type setting */
0394 
0395 #define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
0396 #define ASC_MIN_TAG_Q_PER_DVC   (0x04)
0397 #define ASC_MIN_FREE_Q        (0x02)
0398 #define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
0399 #define ASC_MAX_TOTAL_QNG 240
0400 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
0401 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
0402 #define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
0403 #define ASC_MAX_INRAM_TAG_QNG   16
0404 #define ASC_IOADR_GAP   0x10
0405 #define ASC_SYN_MAX_OFFSET         0x0F
0406 #define ASC_DEF_SDTR_OFFSET        0x0F
0407 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
0408 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
0409 
0410 /* The narrow chip only supports a limited selection of transfer rates.
0411  * These are encoded in the range 0..7 or 0..15 depending whether the chip
0412  * is Ultra-capable or not.  These tables let us convert from one to the other.
0413  */
0414 static const unsigned char asc_syn_xfer_period[8] = {
0415     25, 30, 35, 40, 50, 60, 70, 85
0416 };
0417 
0418 static const unsigned char asc_syn_ultra_xfer_period[16] = {
0419     12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
0420 };
0421 
0422 typedef struct ext_msg {
0423     uchar msg_type;
0424     uchar msg_len;
0425     uchar msg_req;
0426     union {
0427         struct {
0428             uchar sdtr_xfer_period;
0429             uchar sdtr_req_ack_offset;
0430         } sdtr;
0431         struct {
0432             uchar wdtr_width;
0433         } wdtr;
0434         struct {
0435             uchar mdp_b3;
0436             uchar mdp_b2;
0437             uchar mdp_b1;
0438             uchar mdp_b0;
0439         } mdp;
0440     } u_ext_msg;
0441     uchar res;
0442 } EXT_MSG;
0443 
0444 #define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
0445 #define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
0446 #define wdtr_width      u_ext_msg.wdtr.wdtr_width
0447 #define mdp_b3          u_ext_msg.mdp_b3
0448 #define mdp_b2          u_ext_msg.mdp_b2
0449 #define mdp_b1          u_ext_msg.mdp_b1
0450 #define mdp_b0          u_ext_msg.mdp_b0
0451 
0452 typedef struct asc_dvc_cfg {
0453     ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
0454     ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
0455     ASC_SCSI_BIT_ID_TYPE disc_enable;
0456     ASC_SCSI_BIT_ID_TYPE sdtr_enable;
0457     uchar chip_scsi_id;
0458     uchar chip_version;
0459     ushort mcode_date;
0460     ushort mcode_version;
0461     uchar max_tag_qng[ASC_MAX_TID + 1];
0462     uchar sdtr_period_offset[ASC_MAX_TID + 1];
0463     uchar adapter_info[6];
0464 } ASC_DVC_CFG;
0465 
0466 #define ASC_DEF_DVC_CNTL       0xFFFF
0467 #define ASC_DEF_CHIP_SCSI_ID   7
0468 #define ASC_DEF_ISA_DMA_SPEED  4
0469 #define ASC_INIT_STATE_BEG_GET_CFG   0x0001
0470 #define ASC_INIT_STATE_END_GET_CFG   0x0002
0471 #define ASC_INIT_STATE_BEG_SET_CFG   0x0004
0472 #define ASC_INIT_STATE_END_SET_CFG   0x0008
0473 #define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
0474 #define ASC_INIT_STATE_END_LOAD_MC   0x0020
0475 #define ASC_INIT_STATE_BEG_INQUIRY   0x0040
0476 #define ASC_INIT_STATE_END_INQUIRY   0x0080
0477 #define ASC_INIT_RESET_SCSI_DONE     0x0100
0478 #define ASC_INIT_STATE_WITHOUT_EEP   0x8000
0479 #define ASC_BUG_FIX_IF_NOT_DWB       0x0001
0480 #define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
0481 #define ASC_MIN_TAGGED_CMD  7
0482 #define ASC_MAX_SCSI_RESET_WAIT      30
0483 #define ASC_OVERRUN_BSIZE       64
0484 
0485 struct asc_dvc_var;     /* Forward Declaration. */
0486 
0487 typedef struct asc_dvc_var {
0488     PortAddr iop_base;
0489     ushort err_code;
0490     ushort dvc_cntl;
0491     ushort bug_fix_cntl;
0492     ushort bus_type;
0493     ASC_SCSI_BIT_ID_TYPE init_sdtr;
0494     ASC_SCSI_BIT_ID_TYPE sdtr_done;
0495     ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
0496     ASC_SCSI_BIT_ID_TYPE unit_not_ready;
0497     ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
0498     ASC_SCSI_BIT_ID_TYPE start_motor;
0499     uchar *overrun_buf;
0500     dma_addr_t overrun_dma;
0501     uchar scsi_reset_wait;
0502     uchar chip_no;
0503     bool is_in_int;
0504     uchar max_total_qng;
0505     uchar cur_total_qng;
0506     uchar in_critical_cnt;
0507     uchar last_q_shortage;
0508     ushort init_state;
0509     uchar cur_dvc_qng[ASC_MAX_TID + 1];
0510     uchar max_dvc_qng[ASC_MAX_TID + 1];
0511     ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
0512     ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
0513     const uchar *sdtr_period_tbl;
0514     ASC_DVC_CFG *cfg;
0515     ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
0516     char redo_scam;
0517     ushort res2;
0518     uchar dos_int13_table[ASC_MAX_TID + 1];
0519     unsigned int max_dma_count;
0520     ASC_SCSI_BIT_ID_TYPE no_scam;
0521     ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
0522     uchar min_sdtr_index;
0523     uchar max_sdtr_index;
0524     struct asc_board *drv_ptr;
0525     unsigned int uc_break;
0526 } ASC_DVC_VAR;
0527 
0528 typedef struct asc_dvc_inq_info {
0529     uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
0530 } ASC_DVC_INQ_INFO;
0531 
0532 typedef struct asc_cap_info {
0533     u32 lba;
0534     u32 blk_size;
0535 } ASC_CAP_INFO;
0536 
0537 typedef struct asc_cap_info_array {
0538     ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
0539 } ASC_CAP_INFO_ARRAY;
0540 
0541 #define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
0542 #define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
0543 #define ASC_CNTL_INITIATOR         (ushort)0x0001
0544 #define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
0545 #define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
0546 #define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
0547 #define ASC_CNTL_NO_SCAM           (ushort)0x0010
0548 #define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
0549 #define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
0550 #define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
0551 #define ASC_CNTL_RESET_SCSI        (ushort)0x0200
0552 #define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
0553 #define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
0554 #define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
0555 #define ASC_CNTL_BURST_MODE        (ushort)0x2000
0556 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
0557 #define ASC_EEP_DVC_CFG_BEG_VL    2
0558 #define ASC_EEP_MAX_DVC_ADDR_VL   15
0559 #define ASC_EEP_DVC_CFG_BEG      32
0560 #define ASC_EEP_MAX_DVC_ADDR     45
0561 #define ASC_EEP_MAX_RETRY        20
0562 
0563 /*
0564  * These macros keep the chip SCSI id  bitfields in board order. C bitfields
0565  * aren't portable between big and little-endian platforms so they are not used.
0566  */
0567 
0568 #define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
0569 #define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
0570 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
0571    ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
0572 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
0573    ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
0574 
0575 typedef struct asceep_config {
0576     ushort cfg_lsw;
0577     ushort cfg_msw;
0578     uchar init_sdtr;
0579     uchar disc_enable;
0580     uchar use_cmd_qng;
0581     uchar start_motor;
0582     uchar max_total_qng;
0583     uchar max_tag_qng;
0584     uchar bios_scan;
0585     uchar power_up_wait;
0586     uchar no_scam;
0587     uchar id_speed;     /* low order 4 bits is chip scsi id */
0588     /* high order 4 bits is isa dma speed */
0589     uchar dos_int13_table[ASC_MAX_TID + 1];
0590     uchar adapter_info[6];
0591     ushort cntl;
0592     ushort chksum;
0593 } ASCEEP_CONFIG;
0594 
0595 #define ASC_EEP_CMD_READ          0x80
0596 #define ASC_EEP_CMD_WRITE         0x40
0597 #define ASC_EEP_CMD_WRITE_ABLE    0x30
0598 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
0599 #define ASCV_MSGOUT_BEG         0x0000
0600 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
0601 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
0602 #define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
0603 #define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
0604 #define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
0605 #define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
0606 #define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
0607 #define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
0608 #define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
0609 #define ASCV_BREAK_ADDR           (ushort)0x0028
0610 #define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
0611 #define ASCV_BREAK_CONTROL        (ushort)0x002C
0612 #define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
0613 
0614 #define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
0615 #define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
0616 #define ASCV_MCODE_SIZE_W     (ushort)0x0034
0617 #define ASCV_STOP_CODE_B      (ushort)0x0036
0618 #define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
0619 #define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
0620 #define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
0621 #define ASCV_HALTCODE_W       (ushort)0x0040
0622 #define ASCV_CHKSUM_W         (ushort)0x0042
0623 #define ASCV_MC_DATE_W        (ushort)0x0044
0624 #define ASCV_MC_VER_W         (ushort)0x0046
0625 #define ASCV_NEXTRDY_B        (ushort)0x0048
0626 #define ASCV_DONENEXT_B       (ushort)0x0049
0627 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
0628 #define ASCV_SCSIBUSY_B       (ushort)0x004B
0629 #define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
0630 #define ASCV_CURCDB_B         (ushort)0x004D
0631 #define ASCV_RCLUN_B          (ushort)0x004E
0632 #define ASCV_BUSY_QHEAD_B     (ushort)0x004F
0633 #define ASCV_DISC1_QHEAD_B    (ushort)0x0050
0634 #define ASCV_DISC_ENABLE_B    (ushort)0x0052
0635 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
0636 #define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
0637 #define ASCV_MCODE_CNTL_B     (ushort)0x0056
0638 #define ASCV_NULL_TARGET_B    (ushort)0x0057
0639 #define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
0640 #define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
0641 #define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
0642 #define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
0643 #define ASCV_HOST_FLAG_B      (ushort)0x005D
0644 #define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
0645 #define ASCV_VER_SERIAL_B     (ushort)0x0065
0646 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
0647 #define ASCV_WTM_FLAG_B       (ushort)0x0068
0648 #define ASCV_RISC_FLAG_B      (ushort)0x006A
0649 #define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
0650 #define ASC_HOST_FLAG_IN_ISR        0x01
0651 #define ASC_HOST_FLAG_ACK_INT       0x02
0652 #define ASC_RISC_FLAG_GEN_INT      0x01
0653 #define ASC_RISC_FLAG_REQ_SG_LIST  0x02
0654 #define IOP_CTRL         (0x0F)
0655 #define IOP_STATUS       (0x0E)
0656 #define IOP_INT_ACK      IOP_STATUS
0657 #define IOP_REG_IFC      (0x0D)
0658 #define IOP_SYN_OFFSET    (0x0B)
0659 #define IOP_EXTRA_CONTROL (0x0D)
0660 #define IOP_REG_PC        (0x0C)
0661 #define IOP_RAM_ADDR      (0x0A)
0662 #define IOP_RAM_DATA      (0x08)
0663 #define IOP_EEP_DATA      (0x06)
0664 #define IOP_EEP_CMD       (0x07)
0665 #define IOP_VERSION       (0x03)
0666 #define IOP_CONFIG_HIGH   (0x04)
0667 #define IOP_CONFIG_LOW    (0x02)
0668 #define IOP_SIG_BYTE      (0x01)
0669 #define IOP_SIG_WORD      (0x00)
0670 #define IOP_REG_DC1      (0x0E)
0671 #define IOP_REG_DC0      (0x0C)
0672 #define IOP_REG_SB       (0x0B)
0673 #define IOP_REG_DA1      (0x0A)
0674 #define IOP_REG_DA0      (0x08)
0675 #define IOP_REG_SC       (0x09)
0676 #define IOP_DMA_SPEED    (0x07)
0677 #define IOP_REG_FLAG     (0x07)
0678 #define IOP_FIFO_H       (0x06)
0679 #define IOP_FIFO_L       (0x04)
0680 #define IOP_REG_ID       (0x05)
0681 #define IOP_REG_QP       (0x03)
0682 #define IOP_REG_IH       (0x02)
0683 #define IOP_REG_IX       (0x01)
0684 #define IOP_REG_AX       (0x00)
0685 #define IFC_REG_LOCK      (0x00)
0686 #define IFC_REG_UNLOCK    (0x09)
0687 #define IFC_WR_EN_FILTER  (0x10)
0688 #define IFC_RD_NO_EEPROM  (0x10)
0689 #define IFC_SLEW_RATE     (0x20)
0690 #define IFC_ACT_NEG       (0x40)
0691 #define IFC_INP_FILTER    (0x80)
0692 #define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
0693 #define SC_SEL   (uchar)(0x80)
0694 #define SC_BSY   (uchar)(0x40)
0695 #define SC_ACK   (uchar)(0x20)
0696 #define SC_REQ   (uchar)(0x10)
0697 #define SC_ATN   (uchar)(0x08)
0698 #define SC_IO    (uchar)(0x04)
0699 #define SC_CD    (uchar)(0x02)
0700 #define SC_MSG   (uchar)(0x01)
0701 #define SEC_SCSI_CTL         (uchar)(0x80)
0702 #define SEC_ACTIVE_NEGATE    (uchar)(0x40)
0703 #define SEC_SLEW_RATE        (uchar)(0x20)
0704 #define SEC_ENABLE_FILTER    (uchar)(0x10)
0705 #define ASC_HALT_EXTMSG_IN     (ushort)0x8000
0706 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
0707 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
0708 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
0709 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
0710 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
0711 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
0712 #define ASC_MAX_QNO        0xF8
0713 #define ASC_DATA_SEC_BEG   (ushort)0x0080
0714 #define ASC_DATA_SEC_END   (ushort)0x0080
0715 #define ASC_CODE_SEC_BEG   (ushort)0x0080
0716 #define ASC_CODE_SEC_END   (ushort)0x0080
0717 #define ASC_QADR_BEG       (0x4000)
0718 #define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
0719 #define ASC_QADR_END       (ushort)0x7FFF
0720 #define ASC_QLAST_ADR      (ushort)0x7FC0
0721 #define ASC_QBLK_SIZE      0x40
0722 #define ASC_BIOS_DATA_QBEG 0xF8
0723 #define ASC_MIN_ACTIVE_QNO 0x01
0724 #define ASC_QLINK_END      0xFF
0725 #define ASC_EEPROM_WORDS   0x10
0726 #define ASC_MAX_MGS_LEN    0x10
0727 #define ASC_BIOS_ADDR_DEF  0xDC00
0728 #define ASC_BIOS_SIZE      0x3800
0729 #define ASC_BIOS_RAM_OFF   0x3800
0730 #define ASC_BIOS_RAM_SIZE  0x800
0731 #define ASC_BIOS_MIN_ADDR  0xC000
0732 #define ASC_BIOS_MAX_ADDR  0xEC00
0733 #define ASC_BIOS_BANK_SIZE 0x0400
0734 #define ASC_MCODE_START_ADDR  0x0080
0735 #define ASC_CFG0_HOST_INT_ON    0x0020
0736 #define ASC_CFG0_BIOS_ON        0x0040
0737 #define ASC_CFG0_VERA_BURST_ON  0x0080
0738 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
0739 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
0740 #define ASC_CFG1_LRAM_8BITS_ON  0x0800
0741 #define ASC_CFG_MSW_CLR_MASK    0x3080
0742 #define CSW_TEST1             (ASC_CS_TYPE)0x8000
0743 #define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
0744 #define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
0745 #define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
0746 #define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
0747 #define CSW_TEST2             (ASC_CS_TYPE)0x0400
0748 #define CSW_TEST3             (ASC_CS_TYPE)0x0200
0749 #define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
0750 #define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
0751 #define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
0752 #define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
0753 #define CSW_HALTED            (ASC_CS_TYPE)0x0010
0754 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
0755 #define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
0756 #define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
0757 #define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
0758 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
0759 #define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
0760 #define CIW_TEST1        (ASC_CS_TYPE)0x0200
0761 #define CIW_TEST2        (ASC_CS_TYPE)0x0400
0762 #define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
0763 #define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
0764 #define CC_CHIP_RESET   (uchar)0x80
0765 #define CC_SCSI_RESET   (uchar)0x40
0766 #define CC_HALT         (uchar)0x20
0767 #define CC_SINGLE_STEP  (uchar)0x10
0768 #define CC_DMA_ABLE     (uchar)0x08
0769 #define CC_TEST         (uchar)0x04
0770 #define CC_BANK_ONE     (uchar)0x02
0771 #define CC_DIAG         (uchar)0x01
0772 #define ASC_1000_ID0W      0x04C1
0773 #define ASC_1000_ID0W_FIX  0x00C1
0774 #define ASC_1000_ID1B      0x25
0775 #define ASC_EISA_REV_IOP_MASK  (0x0C83)
0776 #define ASC_EISA_CFG_IOP_MASK  (0x0C86)
0777 #define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
0778 #define INS_HALTINT        (ushort)0x6281
0779 #define INS_HALT           (ushort)0x6280
0780 #define INS_SINT           (ushort)0x6200
0781 #define INS_RFLAG_WTM      (ushort)0x7380
0782 #define ASC_MC_SAVE_CODE_WSIZE  0x500
0783 #define ASC_MC_SAVE_DATA_WSIZE  0x40
0784 
0785 typedef struct asc_mc_saved {
0786     ushort data[ASC_MC_SAVE_DATA_WSIZE];
0787     ushort code[ASC_MC_SAVE_CODE_WSIZE];
0788 } ASC_MC_SAVED;
0789 
0790 #define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
0791 #define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
0792 #define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
0793 #define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
0794 #define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
0795 #define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
0796 #define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
0797 #define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
0798 #define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
0799 #define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
0800 #define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
0801 #define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
0802 #define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
0803 #define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
0804 #define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
0805 #define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
0806 #define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
0807 #define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
0808 #define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
0809 #define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
0810 #define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
0811 #define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
0812 #define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
0813 #define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
0814 #define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
0815 #define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
0816 #define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
0817 #define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
0818 #define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
0819 #define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
0820 #define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
0821 #define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
0822 #define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
0823 #define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
0824 #define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
0825 #define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
0826 #define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
0827 #define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
0828 #define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
0829 #define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
0830 #define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
0831 #define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
0832 #define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
0833 #define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
0834 #define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
0835 #define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
0836 #define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
0837 #define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
0838 #define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
0839 #define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
0840 #define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
0841 #define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
0842 #define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
0843 #define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
0844 #define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
0845 #define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
0846 #define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
0847 #define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
0848 #define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
0849 #define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
0850 #define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
0851 #define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
0852 #define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
0853 #define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
0854 #define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
0855 #define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
0856 #define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
0857 
0858 #define AdvPortAddr  void __iomem * /* Virtual memory address size */
0859 
0860 /*
0861  * Define Adv Library required memory access macros.
0862  */
0863 #define ADV_MEM_READB(addr) readb(addr)
0864 #define ADV_MEM_READW(addr) readw(addr)
0865 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
0866 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
0867 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
0868 
0869 /*
0870  * Define total number of simultaneous maximum element scatter-gather
0871  * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
0872  * maximum number of outstanding commands per wide host adapter. Each
0873  * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
0874  * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
0875  * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
0876  * structures or 255 scatter-gather elements.
0877  */
0878 #define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
0879 
0880 /*
0881  * Define maximum number of scatter-gather elements per request.
0882  */
0883 #define ADV_MAX_SG_LIST         255
0884 #define NO_OF_SG_PER_BLOCK              15
0885 
0886 #define ADV_EEP_DVC_CFG_BEGIN           (0x00)
0887 #define ADV_EEP_DVC_CFG_END             (0x15)
0888 #define ADV_EEP_DVC_CTL_BEGIN           (0x16)  /* location of OEM name */
0889 #define ADV_EEP_MAX_WORD_ADDR           (0x1E)
0890 
0891 #define ADV_EEP_DELAY_MS                100
0892 
0893 #define ADV_EEPROM_BIG_ENDIAN          0x8000   /* EEPROM Bit 15 */
0894 #define ADV_EEPROM_BIOS_ENABLE         0x4000   /* EEPROM Bit 14 */
0895 /*
0896  * For the ASC3550 Bit 13 is Termination Polarity control bit.
0897  * For later ICs Bit 13 controls whether the CIS (Card Information
0898  * Service Section) is loaded from EEPROM.
0899  */
0900 #define ADV_EEPROM_TERM_POL            0x2000   /* EEPROM Bit 13 */
0901 #define ADV_EEPROM_CIS_LD              0x2000   /* EEPROM Bit 13 */
0902 /*
0903  * ASC38C1600 Bit 11
0904  *
0905  * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
0906  * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
0907  * Function 0 will specify INT B.
0908  *
0909  * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
0910  * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
0911  * Function 1 will specify INT A.
0912  */
0913 #define ADV_EEPROM_INTAB               0x0800   /* EEPROM Bit 11 */
0914 
0915 typedef struct adveep_3550_config {
0916     /* Word Offset, Description */
0917 
0918     ushort cfg_lsw;     /* 00 power up initialization */
0919     /*  bit 13 set - Term Polarity Control */
0920     /*  bit 14 set - BIOS Enable */
0921     /*  bit 15 set - Big Endian Mode */
0922     ushort cfg_msw;     /* 01 unused      */
0923     ushort disc_enable; /* 02 disconnect enable */
0924     ushort wdtr_able;   /* 03 Wide DTR able */
0925     ushort sdtr_able;   /* 04 Synchronous DTR able */
0926     ushort start_motor; /* 05 send start up motor */
0927     ushort tagqng_able; /* 06 tag queuing able */
0928     ushort bios_scan;   /* 07 BIOS device control */
0929     ushort scam_tolerant;   /* 08 no scam */
0930 
0931     uchar adapter_scsi_id;  /* 09 Host Adapter ID */
0932     uchar bios_boot_delay;  /*    power up wait */
0933 
0934     uchar scsi_reset_delay; /* 10 reset delay */
0935     uchar bios_id_lun;  /*    first boot device scsi id & lun */
0936     /*    high nibble is lun */
0937     /*    low nibble is scsi id */
0938 
0939     uchar termination;  /* 11 0 - automatic */
0940     /*    1 - low off / high off */
0941     /*    2 - low off / high on */
0942     /*    3 - low on  / high on */
0943     /*    There is no low on  / high off */
0944 
0945     uchar reserved1;    /*    reserved byte (not used) */
0946 
0947     ushort bios_ctrl;   /* 12 BIOS control bits */
0948     /*  bit 0  BIOS don't act as initiator. */
0949     /*  bit 1  BIOS > 1 GB support */
0950     /*  bit 2  BIOS > 2 Disk Support */
0951     /*  bit 3  BIOS don't support removables */
0952     /*  bit 4  BIOS support bootable CD */
0953     /*  bit 5  BIOS scan enabled */
0954     /*  bit 6  BIOS support multiple LUNs */
0955     /*  bit 7  BIOS display of message */
0956     /*  bit 8  SCAM disabled */
0957     /*  bit 9  Reset SCSI bus during init. */
0958     /*  bit 10 */
0959     /*  bit 11 No verbose initialization. */
0960     /*  bit 12 SCSI parity enabled */
0961     /*  bit 13 */
0962     /*  bit 14 */
0963     /*  bit 15 */
0964     ushort ultra_able;  /* 13 ULTRA speed able */
0965     ushort reserved2;   /* 14 reserved */
0966     uchar max_host_qng; /* 15 maximum host queuing */
0967     uchar max_dvc_qng;  /*    maximum per device queuing */
0968     ushort dvc_cntl;    /* 16 control bit for driver */
0969     ushort bug_fix;     /* 17 control bit for bug fix */
0970     ushort serial_number_word1; /* 18 Board serial number word 1 */
0971     ushort serial_number_word2; /* 19 Board serial number word 2 */
0972     ushort serial_number_word3; /* 20 Board serial number word 3 */
0973     ushort check_sum;   /* 21 EEP check sum */
0974     uchar oem_name[16]; /* 22 OEM name */
0975     ushort dvc_err_code;    /* 30 last device driver error code */
0976     ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
0977     ushort adv_err_addr;    /* 32 last uc error address */
0978     ushort saved_dvc_err_code;  /* 33 saved last dev. driver error code   */
0979     ushort saved_adv_err_code;  /* 34 saved last uc and Adv Lib error code */
0980     ushort saved_adv_err_addr;  /* 35 saved last uc error address         */
0981     ushort num_of_err;  /* 36 number of error */
0982 } ADVEEP_3550_CONFIG;
0983 
0984 typedef struct adveep_38C0800_config {
0985     /* Word Offset, Description */
0986 
0987     ushort cfg_lsw;     /* 00 power up initialization */
0988     /*  bit 13 set - Load CIS */
0989     /*  bit 14 set - BIOS Enable */
0990     /*  bit 15 set - Big Endian Mode */
0991     ushort cfg_msw;     /* 01 unused      */
0992     ushort disc_enable; /* 02 disconnect enable */
0993     ushort wdtr_able;   /* 03 Wide DTR able */
0994     ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
0995     ushort start_motor; /* 05 send start up motor */
0996     ushort tagqng_able; /* 06 tag queuing able */
0997     ushort bios_scan;   /* 07 BIOS device control */
0998     ushort scam_tolerant;   /* 08 no scam */
0999 
1000     uchar adapter_scsi_id;  /* 09 Host Adapter ID */
1001     uchar bios_boot_delay;  /*    power up wait */
1002 
1003     uchar scsi_reset_delay; /* 10 reset delay */
1004     uchar bios_id_lun;  /*    first boot device scsi id & lun */
1005     /*    high nibble is lun */
1006     /*    low nibble is scsi id */
1007 
1008     uchar termination_se;   /* 11 0 - automatic */
1009     /*    1 - low off / high off */
1010     /*    2 - low off / high on */
1011     /*    3 - low on  / high on */
1012     /*    There is no low on  / high off */
1013 
1014     uchar termination_lvd;  /* 11 0 - automatic */
1015     /*    1 - low off / high off */
1016     /*    2 - low off / high on */
1017     /*    3 - low on  / high on */
1018     /*    There is no low on  / high off */
1019 
1020     ushort bios_ctrl;   /* 12 BIOS control bits */
1021     /*  bit 0  BIOS don't act as initiator. */
1022     /*  bit 1  BIOS > 1 GB support */
1023     /*  bit 2  BIOS > 2 Disk Support */
1024     /*  bit 3  BIOS don't support removables */
1025     /*  bit 4  BIOS support bootable CD */
1026     /*  bit 5  BIOS scan enabled */
1027     /*  bit 6  BIOS support multiple LUNs */
1028     /*  bit 7  BIOS display of message */
1029     /*  bit 8  SCAM disabled */
1030     /*  bit 9  Reset SCSI bus during init. */
1031     /*  bit 10 */
1032     /*  bit 11 No verbose initialization. */
1033     /*  bit 12 SCSI parity enabled */
1034     /*  bit 13 */
1035     /*  bit 14 */
1036     /*  bit 15 */
1037     ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1038     ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1039     uchar max_host_qng; /* 15 maximum host queueing */
1040     uchar max_dvc_qng;  /*    maximum per device queuing */
1041     ushort dvc_cntl;    /* 16 control bit for driver */
1042     ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1043     ushort serial_number_word1; /* 18 Board serial number word 1 */
1044     ushort serial_number_word2; /* 19 Board serial number word 2 */
1045     ushort serial_number_word3; /* 20 Board serial number word 3 */
1046     ushort check_sum;   /* 21 EEP check sum */
1047     uchar oem_name[16]; /* 22 OEM name */
1048     ushort dvc_err_code;    /* 30 last device driver error code */
1049     ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
1050     ushort adv_err_addr;    /* 32 last uc error address */
1051     ushort saved_dvc_err_code;  /* 33 saved last dev. driver error code   */
1052     ushort saved_adv_err_code;  /* 34 saved last uc and Adv Lib error code */
1053     ushort saved_adv_err_addr;  /* 35 saved last uc error address         */
1054     ushort reserved36;  /* 36 reserved */
1055     ushort reserved37;  /* 37 reserved */
1056     ushort reserved38;  /* 38 reserved */
1057     ushort reserved39;  /* 39 reserved */
1058     ushort reserved40;  /* 40 reserved */
1059     ushort reserved41;  /* 41 reserved */
1060     ushort reserved42;  /* 42 reserved */
1061     ushort reserved43;  /* 43 reserved */
1062     ushort reserved44;  /* 44 reserved */
1063     ushort reserved45;  /* 45 reserved */
1064     ushort reserved46;  /* 46 reserved */
1065     ushort reserved47;  /* 47 reserved */
1066     ushort reserved48;  /* 48 reserved */
1067     ushort reserved49;  /* 49 reserved */
1068     ushort reserved50;  /* 50 reserved */
1069     ushort reserved51;  /* 51 reserved */
1070     ushort reserved52;  /* 52 reserved */
1071     ushort reserved53;  /* 53 reserved */
1072     ushort reserved54;  /* 54 reserved */
1073     ushort reserved55;  /* 55 reserved */
1074     ushort cisptr_lsw;  /* 56 CIS PTR LSW */
1075     ushort cisprt_msw;  /* 57 CIS PTR MSW */
1076     ushort subsysvid;   /* 58 SubSystem Vendor ID */
1077     ushort subsysid;    /* 59 SubSystem ID */
1078     ushort reserved60;  /* 60 reserved */
1079     ushort reserved61;  /* 61 reserved */
1080     ushort reserved62;  /* 62 reserved */
1081     ushort reserved63;  /* 63 reserved */
1082 } ADVEEP_38C0800_CONFIG;
1083 
1084 typedef struct adveep_38C1600_config {
1085     /* Word Offset, Description */
1086 
1087     ushort cfg_lsw;     /* 00 power up initialization */
1088     /*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
1089     /*       clear - Func. 0 INTA, Func. 1 INTB */
1090     /*  bit 13 set - Load CIS */
1091     /*  bit 14 set - BIOS Enable */
1092     /*  bit 15 set - Big Endian Mode */
1093     ushort cfg_msw;     /* 01 unused */
1094     ushort disc_enable; /* 02 disconnect enable */
1095     ushort wdtr_able;   /* 03 Wide DTR able */
1096     ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
1097     ushort start_motor; /* 05 send start up motor */
1098     ushort tagqng_able; /* 06 tag queuing able */
1099     ushort bios_scan;   /* 07 BIOS device control */
1100     ushort scam_tolerant;   /* 08 no scam */
1101 
1102     uchar adapter_scsi_id;  /* 09 Host Adapter ID */
1103     uchar bios_boot_delay;  /*    power up wait */
1104 
1105     uchar scsi_reset_delay; /* 10 reset delay */
1106     uchar bios_id_lun;  /*    first boot device scsi id & lun */
1107     /*    high nibble is lun */
1108     /*    low nibble is scsi id */
1109 
1110     uchar termination_se;   /* 11 0 - automatic */
1111     /*    1 - low off / high off */
1112     /*    2 - low off / high on */
1113     /*    3 - low on  / high on */
1114     /*    There is no low on  / high off */
1115 
1116     uchar termination_lvd;  /* 11 0 - automatic */
1117     /*    1 - low off / high off */
1118     /*    2 - low off / high on */
1119     /*    3 - low on  / high on */
1120     /*    There is no low on  / high off */
1121 
1122     ushort bios_ctrl;   /* 12 BIOS control bits */
1123     /*  bit 0  BIOS don't act as initiator. */
1124     /*  bit 1  BIOS > 1 GB support */
1125     /*  bit 2  BIOS > 2 Disk Support */
1126     /*  bit 3  BIOS don't support removables */
1127     /*  bit 4  BIOS support bootable CD */
1128     /*  bit 5  BIOS scan enabled */
1129     /*  bit 6  BIOS support multiple LUNs */
1130     /*  bit 7  BIOS display of message */
1131     /*  bit 8  SCAM disabled */
1132     /*  bit 9  Reset SCSI bus during init. */
1133     /*  bit 10 Basic Integrity Checking disabled */
1134     /*  bit 11 No verbose initialization. */
1135     /*  bit 12 SCSI parity enabled */
1136     /*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1137     /*  bit 14 */
1138     /*  bit 15 */
1139     ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1140     ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1141     uchar max_host_qng; /* 15 maximum host queueing */
1142     uchar max_dvc_qng;  /*    maximum per device queuing */
1143     ushort dvc_cntl;    /* 16 control bit for driver */
1144     ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1145     ushort serial_number_word1; /* 18 Board serial number word 1 */
1146     ushort serial_number_word2; /* 19 Board serial number word 2 */
1147     ushort serial_number_word3; /* 20 Board serial number word 3 */
1148     ushort check_sum;   /* 21 EEP check sum */
1149     uchar oem_name[16]; /* 22 OEM name */
1150     ushort dvc_err_code;    /* 30 last device driver error code */
1151     ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
1152     ushort adv_err_addr;    /* 32 last uc error address */
1153     ushort saved_dvc_err_code;  /* 33 saved last dev. driver error code   */
1154     ushort saved_adv_err_code;  /* 34 saved last uc and Adv Lib error code */
1155     ushort saved_adv_err_addr;  /* 35 saved last uc error address         */
1156     ushort reserved36;  /* 36 reserved */
1157     ushort reserved37;  /* 37 reserved */
1158     ushort reserved38;  /* 38 reserved */
1159     ushort reserved39;  /* 39 reserved */
1160     ushort reserved40;  /* 40 reserved */
1161     ushort reserved41;  /* 41 reserved */
1162     ushort reserved42;  /* 42 reserved */
1163     ushort reserved43;  /* 43 reserved */
1164     ushort reserved44;  /* 44 reserved */
1165     ushort reserved45;  /* 45 reserved */
1166     ushort reserved46;  /* 46 reserved */
1167     ushort reserved47;  /* 47 reserved */
1168     ushort reserved48;  /* 48 reserved */
1169     ushort reserved49;  /* 49 reserved */
1170     ushort reserved50;  /* 50 reserved */
1171     ushort reserved51;  /* 51 reserved */
1172     ushort reserved52;  /* 52 reserved */
1173     ushort reserved53;  /* 53 reserved */
1174     ushort reserved54;  /* 54 reserved */
1175     ushort reserved55;  /* 55 reserved */
1176     ushort cisptr_lsw;  /* 56 CIS PTR LSW */
1177     ushort cisprt_msw;  /* 57 CIS PTR MSW */
1178     ushort subsysvid;   /* 58 SubSystem Vendor ID */
1179     ushort subsysid;    /* 59 SubSystem ID */
1180     ushort reserved60;  /* 60 reserved */
1181     ushort reserved61;  /* 61 reserved */
1182     ushort reserved62;  /* 62 reserved */
1183     ushort reserved63;  /* 63 reserved */
1184 } ADVEEP_38C1600_CONFIG;
1185 
1186 /*
1187  * EEPROM Commands
1188  */
1189 #define ASC_EEP_CMD_DONE             0x0200
1190 
1191 /* bios_ctrl */
1192 #define BIOS_CTRL_BIOS               0x0001
1193 #define BIOS_CTRL_EXTENDED_XLAT      0x0002
1194 #define BIOS_CTRL_GT_2_DISK          0x0004
1195 #define BIOS_CTRL_BIOS_REMOVABLE     0x0008
1196 #define BIOS_CTRL_BOOTABLE_CD        0x0010
1197 #define BIOS_CTRL_MULTIPLE_LUN       0x0040
1198 #define BIOS_CTRL_DISPLAY_MSG        0x0080
1199 #define BIOS_CTRL_NO_SCAM            0x0100
1200 #define BIOS_CTRL_RESET_SCSI_BUS     0x0200
1201 #define BIOS_CTRL_INIT_VERBOSE       0x0800
1202 #define BIOS_CTRL_SCSI_PARITY        0x1000
1203 #define BIOS_CTRL_AIPP_DIS           0x2000
1204 
1205 #define ADV_3550_MEMSIZE   0x2000   /* 8 KB Internal Memory */
1206 
1207 #define ADV_38C0800_MEMSIZE  0x4000 /* 16 KB Internal Memory */
1208 
1209 /*
1210  * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1211  * a special 16K Adv Library and Microcode version. After the issue is
1212  * resolved, should restore 32K support.
1213  *
1214  * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
1215  */
1216 #define ADV_38C1600_MEMSIZE  0x4000 /* 16 KB Internal Memory */
1217 
1218 /*
1219  * Byte I/O register address from base of 'iop_base'.
1220  */
1221 #define IOPB_INTR_STATUS_REG    0x00
1222 #define IOPB_CHIP_ID_1          0x01
1223 #define IOPB_INTR_ENABLES       0x02
1224 #define IOPB_CHIP_TYPE_REV      0x03
1225 #define IOPB_RES_ADDR_4         0x04
1226 #define IOPB_RES_ADDR_5         0x05
1227 #define IOPB_RAM_DATA           0x06
1228 #define IOPB_RES_ADDR_7         0x07
1229 #define IOPB_FLAG_REG           0x08
1230 #define IOPB_RES_ADDR_9         0x09
1231 #define IOPB_RISC_CSR           0x0A
1232 #define IOPB_RES_ADDR_B         0x0B
1233 #define IOPB_RES_ADDR_C         0x0C
1234 #define IOPB_RES_ADDR_D         0x0D
1235 #define IOPB_SOFT_OVER_WR       0x0E
1236 #define IOPB_RES_ADDR_F         0x0F
1237 #define IOPB_MEM_CFG            0x10
1238 #define IOPB_RES_ADDR_11        0x11
1239 #define IOPB_GPIO_DATA          0x12
1240 #define IOPB_RES_ADDR_13        0x13
1241 #define IOPB_FLASH_PAGE         0x14
1242 #define IOPB_RES_ADDR_15        0x15
1243 #define IOPB_GPIO_CNTL          0x16
1244 #define IOPB_RES_ADDR_17        0x17
1245 #define IOPB_FLASH_DATA         0x18
1246 #define IOPB_RES_ADDR_19        0x19
1247 #define IOPB_RES_ADDR_1A        0x1A
1248 #define IOPB_RES_ADDR_1B        0x1B
1249 #define IOPB_RES_ADDR_1C        0x1C
1250 #define IOPB_RES_ADDR_1D        0x1D
1251 #define IOPB_RES_ADDR_1E        0x1E
1252 #define IOPB_RES_ADDR_1F        0x1F
1253 #define IOPB_DMA_CFG0           0x20
1254 #define IOPB_DMA_CFG1           0x21
1255 #define IOPB_TICKLE             0x22
1256 #define IOPB_DMA_REG_WR         0x23
1257 #define IOPB_SDMA_STATUS        0x24
1258 #define IOPB_SCSI_BYTE_CNT      0x25
1259 #define IOPB_HOST_BYTE_CNT      0x26
1260 #define IOPB_BYTE_LEFT_TO_XFER  0x27
1261 #define IOPB_BYTE_TO_XFER_0     0x28
1262 #define IOPB_BYTE_TO_XFER_1     0x29
1263 #define IOPB_BYTE_TO_XFER_2     0x2A
1264 #define IOPB_BYTE_TO_XFER_3     0x2B
1265 #define IOPB_ACC_GRP            0x2C
1266 #define IOPB_RES_ADDR_2D        0x2D
1267 #define IOPB_DEV_ID             0x2E
1268 #define IOPB_RES_ADDR_2F        0x2F
1269 #define IOPB_SCSI_DATA          0x30
1270 #define IOPB_RES_ADDR_31        0x31
1271 #define IOPB_RES_ADDR_32        0x32
1272 #define IOPB_SCSI_DATA_HSHK     0x33
1273 #define IOPB_SCSI_CTRL          0x34
1274 #define IOPB_RES_ADDR_35        0x35
1275 #define IOPB_RES_ADDR_36        0x36
1276 #define IOPB_RES_ADDR_37        0x37
1277 #define IOPB_RAM_BIST           0x38
1278 #define IOPB_PLL_TEST           0x39
1279 #define IOPB_PCI_INT_CFG        0x3A
1280 #define IOPB_RES_ADDR_3B        0x3B
1281 #define IOPB_RFIFO_CNT          0x3C
1282 #define IOPB_RES_ADDR_3D        0x3D
1283 #define IOPB_RES_ADDR_3E        0x3E
1284 #define IOPB_RES_ADDR_3F        0x3F
1285 
1286 /*
1287  * Word I/O register address from base of 'iop_base'.
1288  */
1289 #define IOPW_CHIP_ID_0          0x00    /* CID0  */
1290 #define IOPW_CTRL_REG           0x02    /* CC    */
1291 #define IOPW_RAM_ADDR           0x04    /* LA    */
1292 #define IOPW_RAM_DATA           0x06    /* LD    */
1293 #define IOPW_RES_ADDR_08        0x08
1294 #define IOPW_RISC_CSR           0x0A    /* CSR   */
1295 #define IOPW_SCSI_CFG0          0x0C    /* CFG0  */
1296 #define IOPW_SCSI_CFG1          0x0E    /* CFG1  */
1297 #define IOPW_RES_ADDR_10        0x10
1298 #define IOPW_SEL_MASK           0x12    /* SM    */
1299 #define IOPW_RES_ADDR_14        0x14
1300 #define IOPW_FLASH_ADDR         0x16    /* FA    */
1301 #define IOPW_RES_ADDR_18        0x18
1302 #define IOPW_EE_CMD             0x1A    /* EC    */
1303 #define IOPW_EE_DATA            0x1C    /* ED    */
1304 #define IOPW_SFIFO_CNT          0x1E    /* SFC   */
1305 #define IOPW_RES_ADDR_20        0x20
1306 #define IOPW_Q_BASE             0x22    /* QB    */
1307 #define IOPW_QP                 0x24    /* QP    */
1308 #define IOPW_IX                 0x26    /* IX    */
1309 #define IOPW_SP                 0x28    /* SP    */
1310 #define IOPW_PC                 0x2A    /* PC    */
1311 #define IOPW_RES_ADDR_2C        0x2C
1312 #define IOPW_RES_ADDR_2E        0x2E
1313 #define IOPW_SCSI_DATA          0x30    /* SD    */
1314 #define IOPW_SCSI_DATA_HSHK     0x32    /* SDH   */
1315 #define IOPW_SCSI_CTRL          0x34    /* SC    */
1316 #define IOPW_HSHK_CFG           0x36    /* HCFG  */
1317 #define IOPW_SXFR_STATUS        0x36    /* SXS   */
1318 #define IOPW_SXFR_CNTL          0x38    /* SXL   */
1319 #define IOPW_SXFR_CNTH          0x3A    /* SXH   */
1320 #define IOPW_RES_ADDR_3C        0x3C
1321 #define IOPW_RFIFO_DATA         0x3E    /* RFD   */
1322 
1323 /*
1324  * Doubleword I/O register address from base of 'iop_base'.
1325  */
1326 #define IOPDW_RES_ADDR_0         0x00
1327 #define IOPDW_RAM_DATA           0x04
1328 #define IOPDW_RES_ADDR_8         0x08
1329 #define IOPDW_RES_ADDR_C         0x0C
1330 #define IOPDW_RES_ADDR_10        0x10
1331 #define IOPDW_COMMA              0x14
1332 #define IOPDW_COMMB              0x18
1333 #define IOPDW_RES_ADDR_1C        0x1C
1334 #define IOPDW_SDMA_ADDR0         0x20
1335 #define IOPDW_SDMA_ADDR1         0x24
1336 #define IOPDW_SDMA_COUNT         0x28
1337 #define IOPDW_SDMA_ERROR         0x2C
1338 #define IOPDW_RDMA_ADDR0         0x30
1339 #define IOPDW_RDMA_ADDR1         0x34
1340 #define IOPDW_RDMA_COUNT         0x38
1341 #define IOPDW_RDMA_ERROR         0x3C
1342 
1343 #define ADV_CHIP_ID_BYTE         0x25
1344 #define ADV_CHIP_ID_WORD         0x04C1
1345 
1346 #define ADV_INTR_ENABLE_HOST_INTR                   0x01
1347 #define ADV_INTR_ENABLE_SEL_INTR                    0x02
1348 #define ADV_INTR_ENABLE_DPR_INTR                    0x04
1349 #define ADV_INTR_ENABLE_RTA_INTR                    0x08
1350 #define ADV_INTR_ENABLE_RMA_INTR                    0x10
1351 #define ADV_INTR_ENABLE_RST_INTR                    0x20
1352 #define ADV_INTR_ENABLE_DPE_INTR                    0x40
1353 #define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
1354 
1355 #define ADV_INTR_STATUS_INTRA            0x01
1356 #define ADV_INTR_STATUS_INTRB            0x02
1357 #define ADV_INTR_STATUS_INTRC            0x04
1358 
1359 #define ADV_RISC_CSR_STOP           (0x0000)
1360 #define ADV_RISC_TEST_COND          (0x2000)
1361 #define ADV_RISC_CSR_RUN            (0x4000)
1362 #define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
1363 
1364 #define ADV_CTRL_REG_HOST_INTR      0x0100
1365 #define ADV_CTRL_REG_SEL_INTR       0x0200
1366 #define ADV_CTRL_REG_DPR_INTR       0x0400
1367 #define ADV_CTRL_REG_RTA_INTR       0x0800
1368 #define ADV_CTRL_REG_RMA_INTR       0x1000
1369 #define ADV_CTRL_REG_RES_BIT14      0x2000
1370 #define ADV_CTRL_REG_DPE_INTR       0x4000
1371 #define ADV_CTRL_REG_POWER_DONE     0x8000
1372 #define ADV_CTRL_REG_ANY_INTR       0xFF00
1373 
1374 #define ADV_CTRL_REG_CMD_RESET             0x00C6
1375 #define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
1376 #define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
1377 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
1378 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
1379 
1380 #define ADV_TICKLE_NOP                      0x00
1381 #define ADV_TICKLE_A                        0x01
1382 #define ADV_TICKLE_B                        0x02
1383 #define ADV_TICKLE_C                        0x03
1384 
1385 #define AdvIsIntPending(port) \
1386     (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1387 
1388 /*
1389  * SCSI_CFG0 Register bit definitions
1390  */
1391 #define TIMER_MODEAB    0xC000  /* Watchdog, Second, and Select. Timer Ctrl. */
1392 #define PARITY_EN       0x2000  /* Enable SCSI Parity Error detection */
1393 #define EVEN_PARITY     0x1000  /* Select Even Parity */
1394 #define WD_LONG         0x0800  /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1395 #define QUEUE_128       0x0400  /* Queue Size, 1: 128 byte, 0: 64 byte */
1396 #define PRIM_MODE       0x0100  /* Primitive SCSI mode */
1397 #define SCAM_EN         0x0080  /* Enable SCAM selection */
1398 #define SEL_TMO_LONG    0x0040  /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1399 #define CFRM_ID         0x0020  /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1400 #define OUR_ID_EN       0x0010  /* Enable OUR_ID bits */
1401 #define OUR_ID          0x000F  /* SCSI ID */
1402 
1403 /*
1404  * SCSI_CFG1 Register bit definitions
1405  */
1406 #define BIG_ENDIAN      0x8000  /* Enable Big Endian Mode MIO:15, EEP:15 */
1407 #define TERM_POL        0x2000  /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1408 #define SLEW_RATE       0x1000  /* SCSI output buffer slew rate */
1409 #define FILTER_SEL      0x0C00  /* Filter Period Selection */
1410 #define  FLTR_DISABLE    0x0000 /* Input Filtering Disabled */
1411 #define  FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1412 #define  FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1413 #define ACTIVE_DBL      0x0200  /* Disable Active Negation */
1414 #define DIFF_MODE       0x0100  /* SCSI differential Mode (Read-Only) */
1415 #define DIFF_SENSE      0x0080  /* 1: No SE cables, 0: SE cable (Read-Only) */
1416 #define TERM_CTL_SEL    0x0040  /* Enable TERM_CTL_H and TERM_CTL_L */
1417 #define TERM_CTL        0x0030  /* External SCSI Termination Bits */
1418 #define  TERM_CTL_H      0x0020 /* Enable External SCSI Upper Termination */
1419 #define  TERM_CTL_L      0x0010 /* Enable External SCSI Lower Termination */
1420 #define CABLE_DETECT    0x000F  /* External SCSI Cable Connection Status */
1421 
1422 /*
1423  * Addendum for ASC-38C0800 Chip
1424  *
1425  * The ASC-38C1600 Chip uses the same definitions except that the
1426  * bus mode override bits [12:10] have been moved to byte register
1427  * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1428  * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1429  * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1430  * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1431  * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1432  */
1433 #define DIS_TERM_DRV    0x4000  /* 1: Read c_det[3:0], 0: cannot read */
1434 #define HVD_LVD_SE      0x1C00  /* Device Detect Bits */
1435 #define  HVD             0x1000 /* HVD Device Detect */
1436 #define  LVD             0x0800 /* LVD Device Detect */
1437 #define  SE              0x0400 /* SE Device Detect */
1438 #define TERM_LVD        0x00C0  /* LVD Termination Bits */
1439 #define  TERM_LVD_HI     0x0080 /* Enable LVD Upper Termination */
1440 #define  TERM_LVD_LO     0x0040 /* Enable LVD Lower Termination */
1441 #define TERM_SE         0x0030  /* SE Termination Bits */
1442 #define  TERM_SE_HI      0x0020 /* Enable SE Upper Termination */
1443 #define  TERM_SE_LO      0x0010 /* Enable SE Lower Termination */
1444 #define C_DET_LVD       0x000C  /* LVD Cable Detect Bits */
1445 #define  C_DET3          0x0008 /* Cable Detect for LVD External Wide */
1446 #define  C_DET2          0x0004 /* Cable Detect for LVD Internal Wide */
1447 #define C_DET_SE        0x0003  /* SE Cable Detect Bits */
1448 #define  C_DET1          0x0002 /* Cable Detect for SE Internal Wide */
1449 #define  C_DET0          0x0001 /* Cable Detect for SE Internal Narrow */
1450 
1451 #define CABLE_ILLEGAL_A 0x7
1452     /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
1453 
1454 #define CABLE_ILLEGAL_B 0xB
1455     /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
1456 
1457 /*
1458  * MEM_CFG Register bit definitions
1459  */
1460 #define BIOS_EN         0x40    /* BIOS Enable MIO:14,EEP:14 */
1461 #define FAST_EE_CLK     0x20    /* Diagnostic Bit */
1462 #define RAM_SZ          0x1C    /* Specify size of RAM to RISC */
1463 #define  RAM_SZ_2KB      0x00   /* 2 KB */
1464 #define  RAM_SZ_4KB      0x04   /* 4 KB */
1465 #define  RAM_SZ_8KB      0x08   /* 8 KB */
1466 #define  RAM_SZ_16KB     0x0C   /* 16 KB */
1467 #define  RAM_SZ_32KB     0x10   /* 32 KB */
1468 #define  RAM_SZ_64KB     0x14   /* 64 KB */
1469 
1470 /*
1471  * DMA_CFG0 Register bit definitions
1472  *
1473  * This register is only accessible to the host.
1474  */
1475 #define BC_THRESH_ENB   0x80    /* PCI DMA Start Conditions */
1476 #define FIFO_THRESH     0x70    /* PCI DMA FIFO Threshold */
1477 #define  FIFO_THRESH_16B  0x00  /* 16 bytes */
1478 #define  FIFO_THRESH_32B  0x20  /* 32 bytes */
1479 #define  FIFO_THRESH_48B  0x30  /* 48 bytes */
1480 #define  FIFO_THRESH_64B  0x40  /* 64 bytes */
1481 #define  FIFO_THRESH_80B  0x50  /* 80 bytes (default) */
1482 #define  FIFO_THRESH_96B  0x60  /* 96 bytes */
1483 #define  FIFO_THRESH_112B 0x70  /* 112 bytes */
1484 #define START_CTL       0x0C    /* DMA start conditions */
1485 #define  START_CTL_TH    0x00   /* Wait threshold level (default) */
1486 #define  START_CTL_ID    0x04   /* Wait SDMA/SBUS idle */
1487 #define  START_CTL_THID  0x08   /* Wait threshold and SDMA/SBUS idle */
1488 #define  START_CTL_EMFU  0x0C   /* Wait SDMA FIFO empty/full */
1489 #define READ_CMD        0x03    /* Memory Read Method */
1490 #define  READ_CMD_MR     0x00   /* Memory Read */
1491 #define  READ_CMD_MRL    0x02   /* Memory Read Long */
1492 #define  READ_CMD_MRM    0x03   /* Memory Read Multiple (default) */
1493 
1494 /*
1495  * ASC-38C0800 RAM BIST Register bit definitions
1496  */
1497 #define RAM_TEST_MODE         0x80
1498 #define PRE_TEST_MODE         0x40
1499 #define NORMAL_MODE           0x00
1500 #define RAM_TEST_DONE         0x10
1501 #define RAM_TEST_STATUS       0x0F
1502 #define  RAM_TEST_HOST_ERROR   0x08
1503 #define  RAM_TEST_INTRAM_ERROR 0x04
1504 #define  RAM_TEST_RISC_ERROR   0x02
1505 #define  RAM_TEST_SCSI_ERROR   0x01
1506 #define  RAM_TEST_SUCCESS      0x00
1507 #define PRE_TEST_VALUE        0x05
1508 #define NORMAL_VALUE          0x00
1509 
1510 /*
1511  * ASC38C1600 Definitions
1512  *
1513  * IOPB_PCI_INT_CFG Bit Field Definitions
1514  */
1515 
1516 #define INTAB_LD        0x80    /* Value loaded from EEPROM Bit 11. */
1517 
1518 /*
1519  * Bit 1 can be set to change the interrupt for the Function to operate in
1520  * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1521  * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1522  * mode, otherwise the operating mode is undefined.
1523  */
1524 #define TOTEMPOLE       0x02
1525 
1526 /*
1527  * Bit 0 can be used to change the Int Pin for the Function. The value is
1528  * 0 by default for both Functions with Function 0 using INT A and Function
1529  * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1530  * INT A is used.
1531  *
1532  * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1533  * value specified in the PCI Configuration Space.
1534  */
1535 #define INTAB           0x01
1536 
1537 /*
1538  * Adv Library Status Definitions
1539  */
1540 #define ADV_TRUE        1
1541 #define ADV_FALSE       0
1542 #define ADV_SUCCESS     1
1543 #define ADV_BUSY        0
1544 #define ADV_ERROR       (-1)
1545 
1546 /*
1547  * ADV_DVC_VAR 'warn_code' values
1548  */
1549 #define ASC_WARN_BUSRESET_ERROR         0x0001  /* SCSI Bus Reset error */
1550 #define ASC_WARN_EEPROM_CHKSUM          0x0002  /* EEP check sum error */
1551 #define ASC_WARN_EEPROM_TERMINATION     0x0004  /* EEP termination bad field */
1552 #define ASC_WARN_ERROR                  0xFFFF  /* ADV_ERROR return */
1553 
1554 #define ADV_MAX_TID                     15  /* max. target identifier */
1555 #define ADV_MAX_LUN                     7   /* max. logical unit number */
1556 
1557 /*
1558  * Fixed locations of microcode operating variables.
1559  */
1560 #define ASC_MC_CODE_BEGIN_ADDR          0x0028  /* microcode start address */
1561 #define ASC_MC_CODE_END_ADDR            0x002A  /* microcode end address */
1562 #define ASC_MC_CODE_CHK_SUM             0x002C  /* microcode code checksum */
1563 #define ASC_MC_VERSION_DATE             0x0038  /* microcode version */
1564 #define ASC_MC_VERSION_NUM              0x003A  /* microcode number */
1565 #define ASC_MC_BIOSMEM                  0x0040  /* BIOS RISC Memory Start */
1566 #define ASC_MC_BIOSLEN                  0x0050  /* BIOS RISC Memory Length */
1567 #define ASC_MC_BIOS_SIGNATURE           0x0058  /* BIOS Signature 0x55AA */
1568 #define ASC_MC_BIOS_VERSION             0x005A  /* BIOS Version (2 bytes) */
1569 #define ASC_MC_SDTR_SPEED1              0x0090  /* SDTR Speed for TID 0-3 */
1570 #define ASC_MC_SDTR_SPEED2              0x0092  /* SDTR Speed for TID 4-7 */
1571 #define ASC_MC_SDTR_SPEED3              0x0094  /* SDTR Speed for TID 8-11 */
1572 #define ASC_MC_SDTR_SPEED4              0x0096  /* SDTR Speed for TID 12-15 */
1573 #define ASC_MC_CHIP_TYPE                0x009A
1574 #define ASC_MC_INTRB_CODE               0x009B
1575 #define ASC_MC_WDTR_ABLE                0x009C
1576 #define ASC_MC_SDTR_ABLE                0x009E
1577 #define ASC_MC_TAGQNG_ABLE              0x00A0
1578 #define ASC_MC_DISC_ENABLE              0x00A2
1579 #define ASC_MC_IDLE_CMD_STATUS          0x00A4
1580 #define ASC_MC_IDLE_CMD                 0x00A6
1581 #define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
1582 #define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
1583 #define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
1584 #define ASC_MC_DEFAULT_MEM_CFG          0x00B0
1585 #define ASC_MC_DEFAULT_SEL_MASK         0x00B2
1586 #define ASC_MC_SDTR_DONE                0x00B6
1587 #define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
1588 #define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
1589 #define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
1590 #define ASC_MC_CONTROL_FLAG             0x0122  /* Microcode control flag. */
1591 #define ASC_MC_WDTR_DONE                0x0124
1592 #define ASC_MC_CAM_MODE_MASK            0x015E  /* CAM mode TID bitmask. */
1593 #define ASC_MC_ICQ                      0x0160
1594 #define ASC_MC_IRQ                      0x0164
1595 #define ASC_MC_PPR_ABLE                 0x017A
1596 
1597 /*
1598  * BIOS LRAM variable absolute offsets.
1599  */
1600 #define BIOS_CODESEG    0x54
1601 #define BIOS_CODELEN    0x56
1602 #define BIOS_SIGNATURE  0x58
1603 #define BIOS_VERSION    0x5A
1604 
1605 /*
1606  * Microcode Control Flags
1607  *
1608  * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1609  * and handled by the microcode.
1610  */
1611 #define CONTROL_FLAG_IGNORE_PERR        0x0001  /* Ignore DMA Parity Errors */
1612 #define CONTROL_FLAG_ENABLE_AIPP        0x0002  /* Enabled AIPP checking. */
1613 
1614 /*
1615  * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1616  */
1617 #define HSHK_CFG_WIDE_XFR       0x8000
1618 #define HSHK_CFG_RATE           0x0F00
1619 #define HSHK_CFG_OFFSET         0x001F
1620 
1621 #define ASC_DEF_MAX_HOST_QNG    0xFD    /* Max. number of host commands (253) */
1622 #define ASC_DEF_MIN_HOST_QNG    0x10    /* Min. number of host commands (16) */
1623 #define ASC_DEF_MAX_DVC_QNG     0x3F    /* Max. number commands per device (63) */
1624 #define ASC_DEF_MIN_DVC_QNG     0x04    /* Min. number commands per device (4) */
1625 
1626 #define ASC_QC_DATA_CHECK  0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1627 #define ASC_QC_DATA_OUT    0x02 /* Data out DMA transfer. */
1628 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1629 #define ASC_QC_NO_OVERRUN  0x08 /* Don't report overrun. */
1630 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1631 
1632 #define ASC_QSC_NO_DISC     0x01    /* Don't allow disconnect for request. */
1633 #define ASC_QSC_NO_TAGMSG   0x02    /* Don't allow tag queuing for request. */
1634 #define ASC_QSC_NO_SYNC     0x04    /* Don't use Synch. transfer on request. */
1635 #define ASC_QSC_NO_WIDE     0x08    /* Don't use Wide transfer on request. */
1636 #define ASC_QSC_REDO_DTR    0x10    /* Renegotiate WDTR/SDTR before request. */
1637 /*
1638  * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1639  * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1640  */
1641 #define ASC_QSC_HEAD_TAG    0x40    /* Use Head Tag Message (0x21). */
1642 #define ASC_QSC_ORDERED_TAG 0x80    /* Use Ordered Tag Message (0x22). */
1643 
1644 /*
1645  * All fields here are accessed by the board microcode and need to be
1646  * little-endian.
1647  */
1648 typedef struct adv_carr_t {
1649     __le32 carr_va; /* Carrier Virtual Address */
1650     __le32 carr_pa; /* Carrier Physical Address */
1651     __le32 areq_vpa;    /* ADV_SCSI_REQ_Q Virtual or Physical Address */
1652     /*
1653      * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
1654      *
1655      * next_vpa [3:1]             Reserved Bits
1656      * next_vpa [0]               Done Flag set in Response Queue.
1657      */
1658     __le32 next_vpa;
1659 } ADV_CARR_T;
1660 
1661 /*
1662  * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1663  */
1664 #define ADV_NEXT_VPA_MASK       0xFFFFFFF0
1665 
1666 #define ADV_RQ_DONE             0x00000001
1667 #define ADV_RQ_GOOD             0x00000002
1668 #define ADV_CQ_STOPPER          0x00000000
1669 
1670 #define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK)
1671 
1672 /*
1673  * Each carrier is 64 bytes, and we need three additional
1674  * carrier for icq, irq, and the termination carrier.
1675  */
1676 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3)
1677 
1678 #define ADV_CARRIER_BUFSIZE \
1679     (ADV_CARRIER_COUNT * sizeof(ADV_CARR_T))
1680 
1681 #define ADV_CHIP_ASC3550          0x01  /* Ultra-Wide IC */
1682 #define ADV_CHIP_ASC38C0800       0x02  /* Ultra2-Wide/LVD IC */
1683 #define ADV_CHIP_ASC38C1600       0x03  /* Ultra3-Wide/LVD2 IC */
1684 
1685 /*
1686  * Adapter temporary configuration structure
1687  *
1688  * This structure can be discarded after initialization. Don't add
1689  * fields here needed after initialization.
1690  *
1691  * Field naming convention:
1692  *
1693  *  *_enable indicates the field enables or disables a feature. The
1694  *  value of the field is never reset.
1695  */
1696 typedef struct adv_dvc_cfg {
1697     ushort disc_enable; /* enable disconnection */
1698     uchar chip_version; /* chip version */
1699     uchar termination;  /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1700     ushort control_flag;    /* Microcode Control Flag */
1701     ushort mcode_date;  /* Microcode date */
1702     ushort mcode_version;   /* Microcode version */
1703     ushort serial1;     /* EEPROM serial number word 1 */
1704     ushort serial2;     /* EEPROM serial number word 2 */
1705     ushort serial3;     /* EEPROM serial number word 3 */
1706 } ADV_DVC_CFG;
1707 
1708 struct adv_dvc_var;
1709 struct adv_scsi_req_q;
1710 
1711 typedef struct adv_sg_block {
1712     uchar reserved1;
1713     uchar reserved2;
1714     uchar reserved3;
1715     uchar sg_cnt;       /* Valid entries in block. */
1716     __le32 sg_ptr;  /* Pointer to next sg block. */
1717     struct {
1718         __le32 sg_addr; /* SG element address. */
1719         __le32 sg_count;    /* SG element count. */
1720     } sg_list[NO_OF_SG_PER_BLOCK];
1721 } ADV_SG_BLOCK;
1722 
1723 /*
1724  * ADV_SCSI_REQ_Q - microcode request structure
1725  *
1726  * All fields in this structure up to byte 60 are used by the microcode.
1727  * The microcode makes assumptions about the size and ordering of fields
1728  * in this structure. Do not change the structure definition here without
1729  * coordinating the change with the microcode.
1730  *
1731  * All fields accessed by microcode must be maintained in little_endian
1732  * order.
1733  */
1734 typedef struct adv_scsi_req_q {
1735     uchar cntl;     /* Ucode flags and state (ASC_MC_QC_*). */
1736     uchar target_cmd;
1737     uchar target_id;    /* Device target identifier. */
1738     uchar target_lun;   /* Device target logical unit number. */
1739     __le32 data_addr;   /* Data buffer physical address. */
1740     __le32 data_cnt;    /* Data count. Ucode sets to residual. */
1741     __le32 sense_addr;
1742     __le32 carr_pa;
1743     uchar mflag;
1744     uchar sense_len;
1745     uchar cdb_len;      /* SCSI CDB length. Must <= 16 bytes. */
1746     uchar scsi_cntl;
1747     uchar done_status;  /* Completion status. */
1748     uchar scsi_status;  /* SCSI status byte. */
1749     uchar host_status;  /* Ucode host status. */
1750     uchar sg_working_ix;
1751     uchar cdb[12];      /* SCSI CDB bytes 0-11. */
1752     __le32 sg_real_addr;    /* SG list physical address. */
1753     __le32 scsiq_rptr;
1754     uchar cdb16[4];     /* SCSI CDB bytes 12-15. */
1755     __le32 scsiq_ptr;
1756     __le32 carr_va;
1757     /*
1758      * End of microcode structure - 60 bytes. The rest of the structure
1759      * is used by the Adv Library and ignored by the microcode.
1760      */
1761     u32 srb_tag;
1762     ADV_SG_BLOCK *sg_list_ptr;  /* SG list virtual address. */
1763 } ADV_SCSI_REQ_Q;
1764 
1765 /*
1766  * The following two structures are used to process Wide Board requests.
1767  *
1768  * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1769  * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the
1770  * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points
1771  * to the Mid-Level SCSI request structure.
1772  *
1773  * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1774  * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1775  * up to 255 scatter-gather elements may be used per request or
1776  * ADV_SCSI_REQ_Q.
1777  *
1778  * Both structures must be 32 byte aligned.
1779  */
1780 typedef struct adv_sgblk {
1781     ADV_SG_BLOCK sg_block;  /* Sgblock structure. */
1782     dma_addr_t sg_addr; /* Physical address */
1783     struct adv_sgblk *next_sgblkp;  /* Next scatter-gather structure. */
1784 } adv_sgblk_t;
1785 
1786 typedef struct adv_req {
1787     ADV_SCSI_REQ_Q scsi_req_q;  /* Adv Library request structure. */
1788     uchar align[24];    /* Request structure padding. */
1789     struct scsi_cmnd *cmndp;    /* Mid-Level SCSI command pointer. */
1790     dma_addr_t req_addr;
1791     adv_sgblk_t *sgblkp;    /* Adv Library scatter-gather pointer. */
1792 } adv_req_t __aligned(32);
1793 
1794 /*
1795  * Adapter operation variable structure.
1796  *
1797  * One structure is required per host adapter.
1798  *
1799  * Field naming convention:
1800  *
1801  *  *_able indicates both whether a feature should be enabled or disabled
1802  *  and whether a device is capable of the feature. At initialization
1803  *  this field may be set, but later if a device is found to be incapable
1804  *  of the feature, the field is cleared.
1805  */
1806 typedef struct adv_dvc_var {
1807     AdvPortAddr iop_base;   /* I/O port address */
1808     ushort err_code;    /* fatal error code */
1809     ushort bios_ctrl;   /* BIOS control word, EEPROM word 12 */
1810     ushort wdtr_able;   /* try WDTR for a device */
1811     ushort sdtr_able;   /* try SDTR for a device */
1812     ushort ultra_able;  /* try SDTR Ultra speed for a device */
1813     ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3   */
1814     ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7   */
1815     ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11  */
1816     ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */
1817     ushort tagqng_able; /* try tagged queuing with a device */
1818     ushort ppr_able;    /* PPR message capable per TID bitmask. */
1819     uchar max_dvc_qng;  /* maximum number of tagged commands per device */
1820     ushort start_motor; /* start motor command allowed */
1821     uchar scsi_reset_wait;  /* delay in seconds after scsi bus reset */
1822     uchar chip_no;      /* should be assigned by caller */
1823     uchar max_host_qng; /* maximum number of Q'ed command allowed */
1824     ushort no_scam;     /* scam_tolerant of EEPROM */
1825     struct asc_board *drv_ptr;  /* driver pointer to private structure */
1826     uchar chip_scsi_id; /* chip SCSI target ID */
1827     uchar chip_type;
1828     uchar bist_err_code;
1829     ADV_CARR_T *carrier;
1830     ADV_CARR_T *carr_freelist;  /* Carrier free list. */
1831     dma_addr_t carrier_addr;
1832     ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */
1833     ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */
1834     ushort carr_pending_cnt;    /* Count of pending carriers. */
1835     /*
1836      * Note: The following fields will not be used after initialization. The
1837      * driver may discard the buffer after initialization is done.
1838      */
1839     ADV_DVC_CFG *cfg;   /* temporary configuration structure  */
1840 } ADV_DVC_VAR;
1841 
1842 /*
1843  * Microcode idle loop commands
1844  */
1845 #define IDLE_CMD_COMPLETED           0
1846 #define IDLE_CMD_STOP_CHIP           0x0001
1847 #define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
1848 #define IDLE_CMD_SEND_INT            0x0004
1849 #define IDLE_CMD_ABORT               0x0008
1850 #define IDLE_CMD_DEVICE_RESET        0x0010
1851 #define IDLE_CMD_SCSI_RESET_START    0x0020 /* Assert SCSI Bus Reset */
1852 #define IDLE_CMD_SCSI_RESET_END      0x0040 /* Deassert SCSI Bus Reset */
1853 #define IDLE_CMD_SCSIREQ             0x0080
1854 
1855 #define IDLE_CMD_STATUS_SUCCESS      0x0001
1856 #define IDLE_CMD_STATUS_FAILURE      0x0002
1857 
1858 /*
1859  * AdvSendIdleCmd() flag definitions.
1860  */
1861 #define ADV_NOWAIT     0x01
1862 
1863 /*
1864  * Wait loop time out values.
1865  */
1866 #define SCSI_WAIT_100_MSEC           100UL  /* 100 milliseconds */
1867 #define SCSI_US_PER_MSEC             1000   /* microseconds per millisecond */
1868 #define SCSI_MAX_RETRY               10 /* retry count */
1869 
1870 #define ADV_ASYNC_RDMA_FAILURE          0x01    /* Fatal RDMA failure. */
1871 #define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02    /* Detected SCSI Bus Reset. */
1872 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03    /* Carrier Ready failure. */
1873 #define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04    /* RDMAed-in data invalid. */
1874 
1875 #define ADV_HOST_SCSI_BUS_RESET      0x80   /* Host Initiated SCSI Bus Reset. */
1876 
1877 /* Read byte from a register. */
1878 #define AdvReadByteRegister(iop_base, reg_off) \
1879      (ADV_MEM_READB((iop_base) + (reg_off)))
1880 
1881 /* Write byte to a register. */
1882 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1883      (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1884 
1885 /* Read word (2 bytes) from a register. */
1886 #define AdvReadWordRegister(iop_base, reg_off) \
1887      (ADV_MEM_READW((iop_base) + (reg_off)))
1888 
1889 /* Write word (2 bytes) to a register. */
1890 #define AdvWriteWordRegister(iop_base, reg_off, word) \
1891      (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
1892 
1893 /* Write dword (4 bytes) to a register. */
1894 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
1895      (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
1896 
1897 /* Read byte from LRAM. */
1898 #define AdvReadByteLram(iop_base, addr, byte) \
1899 do { \
1900     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1901     (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
1902 } while (0)
1903 
1904 /* Write byte to LRAM. */
1905 #define AdvWriteByteLram(iop_base, addr, byte) \
1906     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1907      ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
1908 
1909 /* Read word (2 bytes) from LRAM. */
1910 #define AdvReadWordLram(iop_base, addr, word) \
1911 do { \
1912     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1913     (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
1914 } while (0)
1915 
1916 /* Write word (2 bytes) to LRAM. */
1917 #define AdvWriteWordLram(iop_base, addr, word) \
1918     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1919      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1920 
1921 /* Write little-endian double word (4 bytes) to LRAM */
1922 /* Because of unspecified C language ordering don't use auto-increment. */
1923 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
1924     ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1925       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1926                      cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
1927      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
1928       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1929                      cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
1930 
1931 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
1932 #define AdvReadWordAutoIncLram(iop_base) \
1933      (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
1934 
1935 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
1936 #define AdvWriteWordAutoIncLram(iop_base, word) \
1937      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1938 
1939 /*
1940  * Define macro to check for Condor signature.
1941  *
1942  * Evaluate to ADV_TRUE if a Condor chip is found the specified port
1943  * address 'iop_base'. Otherwise evalue to ADV_FALSE.
1944  */
1945 #define AdvFindSignature(iop_base) \
1946     (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
1947     ADV_CHIP_ID_BYTE) && \
1948      (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
1949     ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
1950 
1951 /*
1952  * Define macro to Return the version number of the chip at 'iop_base'.
1953  *
1954  * The second parameter 'bus_type' is currently unused.
1955  */
1956 #define AdvGetChipVersion(iop_base, bus_type) \
1957     AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
1958 
1959 /*
1960  * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must
1961  * match the ADV_SCSI_REQ_Q 'srb_tag' field.
1962  *
1963  * If the request has not yet been sent to the device it will simply be
1964  * aborted from RISC memory. If the request is disconnected it will be
1965  * aborted on reselection by sending an Abort Message to the target ID.
1966  *
1967  * Return value:
1968  *      ADV_TRUE(1) - Queue was successfully aborted.
1969  *      ADV_FALSE(0) - Queue was not found on the active queue list.
1970  */
1971 #define AdvAbortQueue(asc_dvc, srb_tag) \
1972      AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
1973             (ADV_DCNT) (srb_tag))
1974 
1975 /*
1976  * Send a Bus Device Reset Message to the specified target ID.
1977  *
1978  * All outstanding commands will be purged if sending the
1979  * Bus Device Reset Message is successful.
1980  *
1981  * Return Value:
1982  *      ADV_TRUE(1) - All requests on the target are purged.
1983  *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
1984  *                     are not purged.
1985  */
1986 #define AdvResetDevice(asc_dvc, target_id) \
1987      AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET,  \
1988             (ADV_DCNT) (target_id))
1989 
1990 /*
1991  * SCSI Wide Type definition.
1992  */
1993 #define ADV_SCSI_BIT_ID_TYPE   ushort
1994 
1995 /*
1996  * AdvInitScsiTarget() 'cntl_flag' options.
1997  */
1998 #define ADV_SCAN_LUN           0x01
1999 #define ADV_CAPINFO_NOLUN      0x02
2000 
2001 /*
2002  * Convert target id to target id bit mask.
2003  */
2004 #define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
2005 
2006 /*
2007  * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2008  */
2009 
2010 #define QD_NO_STATUS         0x00   /* Request not completed yet. */
2011 #define QD_NO_ERROR          0x01
2012 #define QD_ABORTED_BY_HOST   0x02
2013 #define QD_WITH_ERROR        0x04
2014 
2015 #define QHSTA_NO_ERROR              0x00
2016 #define QHSTA_M_SEL_TIMEOUT         0x11
2017 #define QHSTA_M_DATA_OVER_RUN       0x12
2018 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2019 #define QHSTA_M_QUEUE_ABORTED       0x15
2020 #define QHSTA_M_SXFR_SDMA_ERR       0x16    /* SXFR_STATUS SCSI DMA Error */
2021 #define QHSTA_M_SXFR_SXFR_PERR      0x17    /* SXFR_STATUS SCSI Bus Parity Error */
2022 #define QHSTA_M_RDMA_PERR           0x18    /* RISC PCI DMA parity error */
2023 #define QHSTA_M_SXFR_OFF_UFLW       0x19    /* SXFR_STATUS Offset Underflow */
2024 #define QHSTA_M_SXFR_OFF_OFLW       0x20    /* SXFR_STATUS Offset Overflow */
2025 #define QHSTA_M_SXFR_WD_TMO         0x21    /* SXFR_STATUS Watchdog Timeout */
2026 #define QHSTA_M_SXFR_DESELECTED     0x22    /* SXFR_STATUS Deselected */
2027 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2028 #define QHSTA_M_SXFR_XFR_OFLW       0x12    /* SXFR_STATUS Transfer Overflow */
2029 #define QHSTA_M_SXFR_XFR_PH_ERR     0x24    /* SXFR_STATUS Transfer Phase Error */
2030 #define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25    /* SXFR_STATUS Unknown Error */
2031 #define QHSTA_M_SCSI_BUS_RESET      0x30    /* Request aborted from SBR */
2032 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31   /* Request aborted from unsol. SBR */
2033 #define QHSTA_M_BUS_DEVICE_RESET    0x32    /* Request aborted from BDR */
2034 #define QHSTA_M_DIRECTION_ERR       0x35    /* Data Phase mismatch */
2035 #define QHSTA_M_DIRECTION_ERR_HUNG  0x36    /* Data Phase mismatch and bus hang */
2036 #define QHSTA_M_WTM_TIMEOUT         0x41
2037 #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
2038 #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
2039 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2040 #define QHSTA_M_INVALID_DEVICE      0x45    /* Bad target ID */
2041 #define QHSTA_M_FROZEN_TIDQ         0x46    /* TID Queue frozen. */
2042 #define QHSTA_M_SGBACKUP_ERROR      0x47    /* Scatter-Gather backup error */
2043 
2044 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2045 #define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
2046 
2047 /*
2048  * Total contiguous memory needed for driver SG blocks.
2049  *
2050  * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2051  * number of scatter-gather elements the driver supports in a
2052  * single request.
2053  */
2054 
2055 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2056          (sizeof(ADV_SG_BLOCK) * \
2057           ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2058 
2059 /* struct asc_board flags */
2060 #define ASC_IS_WIDE_BOARD       0x04    /* AdvanSys Wide Board */
2061 
2062 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2063 
2064 #define NO_ISA_DMA              0xff    /* No ISA DMA Channel Used */
2065 
2066 #define ASC_INFO_SIZE           128 /* advansys_info() line size */
2067 
2068 /* Asc Library return codes */
2069 #define ASC_TRUE        1
2070 #define ASC_FALSE       0
2071 #define ASC_NOERROR     1
2072 #define ASC_BUSY        0
2073 #define ASC_ERROR       (-1)
2074 
2075 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2076 #ifndef ADVANSYS_STATS
2077 #define ASC_STATS_ADD(shost, counter, count)
2078 #else /* ADVANSYS_STATS */
2079 #define ASC_STATS_ADD(shost, counter, count) \
2080     (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2081 #endif /* ADVANSYS_STATS */
2082 
2083 /* If the result wraps when calculating tenths, return 0. */
2084 #define ASC_TENTHS(num, den) \
2085     (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2086     0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2087 
2088 /*
2089  * Display a message to the console.
2090  */
2091 #define ASC_PRINT(s) \
2092     { \
2093         printk("advansys: "); \
2094         printk(s); \
2095     }
2096 
2097 #define ASC_PRINT1(s, a1) \
2098     { \
2099         printk("advansys: "); \
2100         printk((s), (a1)); \
2101     }
2102 
2103 #define ASC_PRINT2(s, a1, a2) \
2104     { \
2105         printk("advansys: "); \
2106         printk((s), (a1), (a2)); \
2107     }
2108 
2109 #define ASC_PRINT3(s, a1, a2, a3) \
2110     { \
2111         printk("advansys: "); \
2112         printk((s), (a1), (a2), (a3)); \
2113     }
2114 
2115 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2116     { \
2117         printk("advansys: "); \
2118         printk((s), (a1), (a2), (a3), (a4)); \
2119     }
2120 
2121 #ifndef ADVANSYS_DEBUG
2122 
2123 #define ASC_DBG(lvl, s...)
2124 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2125 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2126 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2127 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2128 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2129 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2130 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2131 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2132 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2133 
2134 #else /* ADVANSYS_DEBUG */
2135 
2136 /*
2137  * Debugging Message Levels:
2138  * 0: Errors Only
2139  * 1: High-Level Tracing
2140  * 2-N: Verbose Tracing
2141  */
2142 
2143 #define ASC_DBG(lvl, format, arg...) {                  \
2144     if (asc_dbglvl >= (lvl))                    \
2145         printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,      \
2146             __func__ , ## arg);             \
2147 }
2148 
2149 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2150     { \
2151         if (asc_dbglvl >= (lvl)) { \
2152             asc_prt_scsi_host(s); \
2153         } \
2154     }
2155 
2156 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2157     { \
2158         if (asc_dbglvl >= (lvl)) { \
2159             asc_prt_asc_scsi_q(scsiqp); \
2160         } \
2161     }
2162 
2163 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2164     { \
2165         if (asc_dbglvl >= (lvl)) { \
2166             asc_prt_asc_qdone_info(qdone); \
2167         } \
2168     }
2169 
2170 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2171     { \
2172         if (asc_dbglvl >= (lvl)) { \
2173             asc_prt_adv_scsi_req_q(scsiqp); \
2174         } \
2175     }
2176 
2177 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2178     { \
2179         if (asc_dbglvl >= (lvl)) { \
2180             asc_prt_hex((name), (start), (length)); \
2181         } \
2182     }
2183 
2184 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2185         ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2186 
2187 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2188         ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2189 
2190 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2191         ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2192 #endif /* ADVANSYS_DEBUG */
2193 
2194 #ifdef ADVANSYS_STATS
2195 
2196 /* Per board statistics structure */
2197 struct asc_stats {
2198     /* Driver Entrypoint Statistics */
2199     unsigned int queuecommand;  /* # calls to advansys_queuecommand() */
2200     unsigned int reset;     /* # calls to advansys_eh_bus_reset() */
2201     unsigned int biosparam; /* # calls to advansys_biosparam() */
2202     unsigned int interrupt; /* # advansys_interrupt() calls */
2203     unsigned int callback;  /* # calls to asc/adv_isr_callback() */
2204     unsigned int done;      /* # calls to request's scsi_done function */
2205     unsigned int build_error;   /* # asc/adv_build_req() ASC_ERROR returns. */
2206     unsigned int adv_build_noreq;   /* # adv_build_req() adv_req_t alloc. fail. */
2207     unsigned int adv_build_nosg;    /* # adv_build_req() adv_sgblk_t alloc. fail. */
2208     /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2209     unsigned int exe_noerror;   /* # ASC_NOERROR returns. */
2210     unsigned int exe_busy;  /* # ASC_BUSY returns. */
2211     unsigned int exe_error; /* # ASC_ERROR returns. */
2212     unsigned int exe_unknown;   /* # unknown returns. */
2213     /* Data Transfer Statistics */
2214     unsigned int xfer_cnt;  /* # I/O requests received */
2215     unsigned int xfer_elem; /* # scatter-gather elements */
2216     unsigned int xfer_sect; /* # 512-byte blocks */
2217 };
2218 #endif /* ADVANSYS_STATS */
2219 
2220 /*
2221  * Structure allocated for each board.
2222  *
2223  * This structure is allocated by scsi_host_alloc() at the end
2224  * of the 'Scsi_Host' structure starting at the 'hostdata'
2225  * field. It is guaranteed to be allocated from DMA-able memory.
2226  */
2227 struct asc_board {
2228     struct device *dev;
2229     struct Scsi_Host *shost;
2230     uint flags;     /* Board flags */
2231     unsigned int irq;
2232     union {
2233         ASC_DVC_VAR asc_dvc_var;    /* Narrow board */
2234         ADV_DVC_VAR adv_dvc_var;    /* Wide board */
2235     } dvc_var;
2236     union {
2237         ASC_DVC_CFG asc_dvc_cfg;    /* Narrow board */
2238         ADV_DVC_CFG adv_dvc_cfg;    /* Wide board */
2239     } dvc_cfg;
2240     ushort asc_n_io_port;   /* Number I/O ports. */
2241     ADV_SCSI_BIT_ID_TYPE init_tidmask;  /* Target init./valid mask */
2242     ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */
2243     ADV_SCSI_BIT_ID_TYPE queue_full;    /* Queue full mask */
2244     ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */
2245     union {
2246         ASCEEP_CONFIG asc_eep;  /* Narrow EEPROM config. */
2247         ADVEEP_3550_CONFIG adv_3550_eep;    /* 3550 EEPROM config. */
2248         ADVEEP_38C0800_CONFIG adv_38C0800_eep;  /* 38C0800 EEPROM config. */
2249         ADVEEP_38C1600_CONFIG adv_38C1600_eep;  /* 38C1600 EEPROM config. */
2250     } eep_config;
2251     /* /proc/scsi/advansys/[0...] */
2252 #ifdef ADVANSYS_STATS
2253     struct asc_stats asc_stats; /* Board statistics */
2254 #endif              /* ADVANSYS_STATS */
2255     /*
2256      * The following fields are used only for Narrow Boards.
2257      */
2258     uchar sdtr_data[ASC_MAX_TID + 1];   /* SDTR information */
2259     /*
2260      * The following fields are used only for Wide Boards.
2261      */
2262     void __iomem *ioremap_addr; /* I/O Memory remap address. */
2263     ushort ioport;      /* I/O Port address. */
2264     adv_req_t *adv_reqp;    /* Request structures. */
2265     dma_addr_t adv_reqp_addr;
2266     size_t adv_reqp_size;
2267     struct dma_pool *adv_sgblk_pool;    /* Scatter-gather structures. */
2268     ushort bios_signature;  /* BIOS Signature. */
2269     ushort bios_version;    /* BIOS Version. */
2270     ushort bios_codeseg;    /* BIOS Code Segment. */
2271     ushort bios_codelen;    /* BIOS Code Segment Length. */
2272 };
2273 
2274 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2275                             dvc_var.asc_dvc_var)
2276 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2277                             dvc_var.adv_dvc_var)
2278 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2279 
2280 struct advansys_cmd {
2281     dma_addr_t dma_handle;
2282 };
2283 
2284 static struct advansys_cmd *advansys_cmd(struct scsi_cmnd *cmd)
2285 {
2286     return scsi_cmd_priv(cmd);
2287 }
2288 
2289 #ifdef ADVANSYS_DEBUG
2290 static int asc_dbglvl = 3;
2291 
2292 /*
2293  * asc_prt_asc_dvc_var()
2294  */
2295 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2296 {
2297     printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2298 
2299     printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2300            "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2301 
2302     printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2303         (unsigned)h->init_sdtr);
2304 
2305     printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2306            "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2307            (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2308            (unsigned)h->chip_no);
2309 
2310     printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2311            "%u,\n", (unsigned)h->queue_full_or_busy,
2312            (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2313 
2314     printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2315            "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2316            (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2317            (unsigned)h->in_critical_cnt);
2318 
2319     printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2320            "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2321            (unsigned)h->init_state, (unsigned)h->no_scam,
2322            (unsigned)h->pci_fix_asyn_xfer);
2323 
2324     printk(" cfg 0x%lx\n", (ulong)h->cfg);
2325 }
2326 
2327 /*
2328  * asc_prt_asc_dvc_cfg()
2329  */
2330 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2331 {
2332     printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2333 
2334     printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2335            h->can_tagged_qng, h->cmd_qng_enabled);
2336     printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2337            h->disc_enable, h->sdtr_enable);
2338 
2339     printk(" chip_scsi_id %d, chip_version %d,\n",
2340            h->chip_scsi_id, h->chip_version);
2341 
2342     printk(" mcode_date 0x%x, mcode_version %d\n",
2343         h->mcode_date, h->mcode_version);
2344 }
2345 
2346 /*
2347  * asc_prt_adv_dvc_var()
2348  *
2349  * Display an ADV_DVC_VAR structure.
2350  */
2351 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2352 {
2353     printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2354 
2355     printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2356            (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2357 
2358     printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
2359            (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2360 
2361     printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
2362            (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2363 
2364     printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n",
2365            (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2366            h->carr_freelist);
2367 
2368     printk("  icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp);
2369 
2370     printk("  no_scam 0x%x, tagqng_able 0x%x\n",
2371            (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2372 
2373     printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
2374            (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2375 }
2376 
2377 /*
2378  * asc_prt_adv_dvc_cfg()
2379  *
2380  * Display an ADV_DVC_CFG structure.
2381  */
2382 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2383 {
2384     printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2385 
2386     printk("  disc_enable 0x%x, termination 0x%x\n",
2387            h->disc_enable, h->termination);
2388 
2389     printk("  chip_version 0x%x, mcode_date 0x%x\n",
2390            h->chip_version, h->mcode_date);
2391 
2392     printk("  mcode_version 0x%x, control_flag 0x%x\n",
2393            h->mcode_version, h->control_flag);
2394 }
2395 
2396 /*
2397  * asc_prt_scsi_host()
2398  */
2399 static void asc_prt_scsi_host(struct Scsi_Host *s)
2400 {
2401     struct asc_board *boardp = shost_priv(s);
2402 
2403     printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2404     printk(" host_busy %d, host_no %d,\n",
2405            scsi_host_busy(s), s->host_no);
2406 
2407     printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2408            (ulong)s->base, (ulong)s->io_port, boardp->irq);
2409 
2410     printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2411            s->dma_channel, s->this_id, s->can_queue);
2412 
2413     printk(" cmd_per_lun %d, sg_tablesize %d\n",
2414            s->cmd_per_lun, s->sg_tablesize);
2415 
2416     if (ASC_NARROW_BOARD(boardp)) {
2417         asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2418         asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2419     } else {
2420         asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2421         asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2422     }
2423 }
2424 
2425 /*
2426  * asc_prt_hex()
2427  *
2428  * Print hexadecimal output in 4 byte groupings 32 bytes
2429  * or 8 double-words per line.
2430  */
2431 static void asc_prt_hex(char *f, uchar *s, int l)
2432 {
2433     int i;
2434     int j;
2435     int k;
2436     int m;
2437 
2438     printk("%s: (%d bytes)\n", f, l);
2439 
2440     for (i = 0; i < l; i += 32) {
2441 
2442         /* Display a maximum of 8 double-words per line. */
2443         if ((k = (l - i) / 4) >= 8) {
2444             k = 8;
2445             m = 0;
2446         } else {
2447             m = (l - i) % 4;
2448         }
2449 
2450         for (j = 0; j < k; j++) {
2451             printk(" %2.2X%2.2X%2.2X%2.2X",
2452                    (unsigned)s[i + (j * 4)],
2453                    (unsigned)s[i + (j * 4) + 1],
2454                    (unsigned)s[i + (j * 4) + 2],
2455                    (unsigned)s[i + (j * 4) + 3]);
2456         }
2457 
2458         switch (m) {
2459         case 0:
2460         default:
2461             break;
2462         case 1:
2463             printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2464             break;
2465         case 2:
2466             printk(" %2.2X%2.2X",
2467                    (unsigned)s[i + (j * 4)],
2468                    (unsigned)s[i + (j * 4) + 1]);
2469             break;
2470         case 3:
2471             printk(" %2.2X%2.2X%2.2X",
2472                    (unsigned)s[i + (j * 4) + 1],
2473                    (unsigned)s[i + (j * 4) + 2],
2474                    (unsigned)s[i + (j * 4) + 3]);
2475             break;
2476         }
2477 
2478         printk("\n");
2479     }
2480 }
2481 
2482 /*
2483  * asc_prt_asc_scsi_q()
2484  */
2485 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2486 {
2487     ASC_SG_HEAD *sgp;
2488     int i;
2489 
2490     printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2491 
2492     printk
2493         (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n",
2494          q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag,
2495          q->q2.tag_code);
2496 
2497     printk
2498         (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2499          (ulong)le32_to_cpu(q->q1.data_addr),
2500          (ulong)le32_to_cpu(q->q1.data_cnt),
2501          (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2502 
2503     printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2504            (ulong)q->cdbptr, q->q2.cdb_len,
2505            (ulong)q->sg_head, q->q1.sg_queue_cnt);
2506 
2507     if (q->sg_head) {
2508         sgp = q->sg_head;
2509         printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2510         printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2511                sgp->queue_cnt);
2512         for (i = 0; i < sgp->entry_cnt; i++) {
2513             printk(" [%u]: addr 0x%lx, bytes %lu\n",
2514                    i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2515                    (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2516         }
2517 
2518     }
2519 }
2520 
2521 /*
2522  * asc_prt_asc_qdone_info()
2523  */
2524 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2525 {
2526     printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2527     printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n",
2528            q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len,
2529            q->d2.tag_code);
2530     printk
2531         (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2532          q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2533 }
2534 
2535 /*
2536  * asc_prt_adv_sgblock()
2537  *
2538  * Display an ADV_SG_BLOCK structure.
2539  */
2540 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2541 {
2542     int i;
2543 
2544     printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2545            (ulong)b, sgblockno);
2546     printk("  sg_cnt %u, sg_ptr 0x%x\n",
2547            b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr));
2548     BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2549     if (b->sg_ptr != 0)
2550         BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2551     for (i = 0; i < b->sg_cnt; i++) {
2552         printk("  [%u]: sg_addr 0x%x, sg_count 0x%x\n",
2553                i, (u32)le32_to_cpu(b->sg_list[i].sg_addr),
2554                (u32)le32_to_cpu(b->sg_list[i].sg_count));
2555     }
2556 }
2557 
2558 /*
2559  * asc_prt_adv_scsi_req_q()
2560  *
2561  * Display an ADV_SCSI_REQ_Q structure.
2562  */
2563 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2564 {
2565     int sg_blk_cnt;
2566     struct adv_sg_block *sg_ptr;
2567     adv_sgblk_t *sgblkp;
2568 
2569     printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2570 
2571     printk("  target_id %u, target_lun %u, srb_tag 0x%x\n",
2572            q->target_id, q->target_lun, q->srb_tag);
2573 
2574     printk("  cntl 0x%x, data_addr 0x%lx\n",
2575            q->cntl, (ulong)le32_to_cpu(q->data_addr));
2576 
2577     printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2578            (ulong)le32_to_cpu(q->data_cnt),
2579            (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2580 
2581     printk
2582         ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2583          q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2584 
2585     printk("  sg_working_ix 0x%x, target_cmd %u\n",
2586            q->sg_working_ix, q->target_cmd);
2587 
2588     printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2589            (ulong)le32_to_cpu(q->scsiq_rptr),
2590            (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2591 
2592     /* Display the request's ADV_SG_BLOCK structures. */
2593     if (q->sg_list_ptr != NULL) {
2594         sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block);
2595         sg_blk_cnt = 0;
2596         while (sgblkp) {
2597             sg_ptr = &sgblkp->sg_block;
2598             asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2599             if (sg_ptr->sg_ptr == 0) {
2600                 break;
2601             }
2602             sgblkp = sgblkp->next_sgblkp;
2603             sg_blk_cnt++;
2604         }
2605     }
2606 }
2607 #endif /* ADVANSYS_DEBUG */
2608 
2609 /*
2610  * advansys_info()
2611  *
2612  * Return suitable for printing on the console with the argument
2613  * adapter's configuration information.
2614  *
2615  * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2616  * otherwise the static 'info' array will be overrun.
2617  */
2618 static const char *advansys_info(struct Scsi_Host *shost)
2619 {
2620     static char info[ASC_INFO_SIZE];
2621     struct asc_board *boardp = shost_priv(shost);
2622     ASC_DVC_VAR *asc_dvc_varp;
2623     ADV_DVC_VAR *adv_dvc_varp;
2624     char *busname;
2625     char *widename = NULL;
2626 
2627     if (ASC_NARROW_BOARD(boardp)) {
2628         asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2629         ASC_DBG(1, "begin\n");
2630 
2631         if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2632             busname = "VL";
2633         } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2634             busname = "EISA";
2635         } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2636             if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2637                 == ASC_IS_PCI_ULTRA) {
2638                 busname = "PCI Ultra";
2639             } else {
2640                 busname = "PCI";
2641             }
2642         } else {
2643             busname = "?";
2644             shost_printk(KERN_ERR, shost, "unknown bus "
2645                 "type %d\n", asc_dvc_varp->bus_type);
2646         }
2647         sprintf(info,
2648             "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2649             ASC_VERSION, busname, (ulong)shost->io_port,
2650             (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2651             boardp->irq);
2652     } else {
2653         /*
2654          * Wide Adapter Information
2655          *
2656          * Memory-mapped I/O is used instead of I/O space to access
2657          * the adapter, but display the I/O Port range. The Memory
2658          * I/O address is displayed through the driver /proc file.
2659          */
2660         adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2661         if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2662             widename = "Ultra-Wide";
2663         } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2664             widename = "Ultra2-Wide";
2665         } else {
2666             widename = "Ultra3-Wide";
2667         }
2668         sprintf(info,
2669             "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2670             ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2671             (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2672     }
2673     BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2674     ASC_DBG(1, "end\n");
2675     return info;
2676 }
2677 
2678 #ifdef CONFIG_PROC_FS
2679 
2680 /*
2681  * asc_prt_board_devices()
2682  *
2683  * Print driver information for devices attached to the board.
2684  */
2685 static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2686 {
2687     struct asc_board *boardp = shost_priv(shost);
2688     int chip_scsi_id;
2689     int i;
2690 
2691     seq_printf(m,
2692            "\nDevice Information for AdvanSys SCSI Host %d:\n",
2693            shost->host_no);
2694 
2695     if (ASC_NARROW_BOARD(boardp)) {
2696         chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2697     } else {
2698         chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2699     }
2700 
2701     seq_puts(m, "Target IDs Detected:");
2702     for (i = 0; i <= ADV_MAX_TID; i++) {
2703         if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2704             seq_printf(m, " %X,", i);
2705     }
2706     seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2707 }
2708 
2709 /*
2710  * Display Wide Board BIOS Information.
2711  */
2712 static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2713 {
2714     struct asc_board *boardp = shost_priv(shost);
2715     ushort major, minor, letter;
2716 
2717     seq_puts(m, "\nROM BIOS Version: ");
2718 
2719     /*
2720      * If the BIOS saved a valid signature, then fill in
2721      * the BIOS code segment base address.
2722      */
2723     if (boardp->bios_signature != 0x55AA) {
2724         seq_puts(m, "Disabled or Pre-3.1\n"
2725             "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2726             "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2727     } else {
2728         major = (boardp->bios_version >> 12) & 0xF;
2729         minor = (boardp->bios_version >> 8) & 0xF;
2730         letter = (boardp->bios_version & 0xFF);
2731 
2732         seq_printf(m, "%d.%d%c\n",
2733                    major, minor,
2734                    letter >= 26 ? '?' : letter + 'A');
2735         /*
2736          * Current available ROM BIOS release is 3.1I for UW
2737          * and 3.2I for U2W. This code doesn't differentiate
2738          * UW and U2W boards.
2739          */
2740         if (major < 3 || (major <= 3 && minor < 1) ||
2741             (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2742             seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2743                 "ftp://ftp.connectcom.net/pub\n");
2744         }
2745     }
2746 }
2747 
2748 /*
2749  * Add serial number to information bar if signature AAh
2750  * is found in at bit 15-9 (7 bits) of word 1.
2751  *
2752  * Serial Number consists fo 12 alpha-numeric digits.
2753  *
2754  *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
2755  *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
2756  *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
2757  *       5 - Product revision (A-J)    Word0:  "         "
2758  *
2759  *           Signature                 Word1: 15-9 (7 bits)
2760  *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2761  *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
2762  *
2763  *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2764  *
2765  * Note 1: Only production cards will have a serial number.
2766  *
2767  * Note 2: Signature is most significant 7 bits (0xFE).
2768  *
2769  * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2770  */
2771 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2772 {
2773     ushort w, num;
2774 
2775     if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2776         return ASC_FALSE;
2777     } else {
2778         /*
2779          * First word - 6 digits.
2780          */
2781         w = serialnum[0];
2782 
2783         /* Product type - 1st digit. */
2784         if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2785             /* Product type is P=Prototype */
2786             *cp += 0x8;
2787         }
2788         cp++;
2789 
2790         /* Manufacturing location - 2nd digit. */
2791         *cp++ = 'A' + ((w & 0x1C00) >> 10);
2792 
2793         /* Product ID - 3rd, 4th digits. */
2794         num = w & 0x3FF;
2795         *cp++ = '0' + (num / 100);
2796         num %= 100;
2797         *cp++ = '0' + (num / 10);
2798 
2799         /* Product revision - 5th digit. */
2800         *cp++ = 'A' + (num % 10);
2801 
2802         /*
2803          * Second word
2804          */
2805         w = serialnum[1];
2806 
2807         /*
2808          * Year - 6th digit.
2809          *
2810          * If bit 15 of third word is set, then the
2811          * last digit of the year is greater than 7.
2812          */
2813         if (serialnum[2] & 0x8000) {
2814             *cp++ = '8' + ((w & 0x1C0) >> 6);
2815         } else {
2816             *cp++ = '0' + ((w & 0x1C0) >> 6);
2817         }
2818 
2819         /* Week of year - 7th, 8th digits. */
2820         num = w & 0x003F;
2821         *cp++ = '0' + num / 10;
2822         num %= 10;
2823         *cp++ = '0' + num;
2824 
2825         /*
2826          * Third word
2827          */
2828         w = serialnum[2] & 0x7FFF;
2829 
2830         /* Serial number - 9th digit. */
2831         *cp++ = 'A' + (w / 1000);
2832 
2833         /* 10th, 11th, 12th digits. */
2834         num = w % 1000;
2835         *cp++ = '0' + num / 100;
2836         num %= 100;
2837         *cp++ = '0' + num / 10;
2838         num %= 10;
2839         *cp++ = '0' + num;
2840 
2841         *cp = '\0'; /* Null Terminate the string. */
2842         return ASC_TRUE;
2843     }
2844 }
2845 
2846 /*
2847  * asc_prt_asc_board_eeprom()
2848  *
2849  * Print board EEPROM configuration.
2850  */
2851 static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2852 {
2853     struct asc_board *boardp = shost_priv(shost);
2854     ASCEEP_CONFIG *ep;
2855     int i;
2856     uchar serialstr[13];
2857 
2858     ep = &boardp->eep_config.asc_eep;
2859 
2860     seq_printf(m,
2861            "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2862            shost->host_no);
2863 
2864     if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
2865         == ASC_TRUE)
2866         seq_printf(m, " Serial Number: %s\n", serialstr);
2867     else if (ep->adapter_info[5] == 0xBB)
2868         seq_puts(m,
2869              " Default Settings Used for EEPROM-less Adapter.\n");
2870     else
2871         seq_puts(m, " Serial Number Signature Not Present.\n");
2872 
2873     seq_printf(m,
2874            " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2875            ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
2876            ep->max_tag_qng);
2877 
2878     seq_printf(m,
2879            " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
2880 
2881     seq_puts(m, " Target ID:           ");
2882     for (i = 0; i <= ASC_MAX_TID; i++)
2883         seq_printf(m, " %d", i);
2884 
2885     seq_puts(m, "\n Disconnects:         ");
2886     for (i = 0; i <= ASC_MAX_TID; i++)
2887         seq_printf(m, " %c",
2888                (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2889 
2890     seq_puts(m, "\n Command Queuing:     ");
2891     for (i = 0; i <= ASC_MAX_TID; i++)
2892         seq_printf(m, " %c",
2893                (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2894 
2895     seq_puts(m, "\n Start Motor:         ");
2896     for (i = 0; i <= ASC_MAX_TID; i++)
2897         seq_printf(m, " %c",
2898                (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2899 
2900     seq_puts(m, "\n Synchronous Transfer:");
2901     for (i = 0; i <= ASC_MAX_TID; i++)
2902         seq_printf(m, " %c",
2903                (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2904     seq_putc(m, '\n');
2905 }
2906 
2907 /*
2908  * asc_prt_adv_board_eeprom()
2909  *
2910  * Print board EEPROM configuration.
2911  */
2912 static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2913 {
2914     struct asc_board *boardp = shost_priv(shost);
2915     ADV_DVC_VAR *adv_dvc_varp;
2916     int i;
2917     char *termstr;
2918     uchar serialstr[13];
2919     ADVEEP_3550_CONFIG *ep_3550 = NULL;
2920     ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
2921     ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
2922     ushort word;
2923     ushort *wordp;
2924     ushort sdtr_speed = 0;
2925 
2926     adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2927     if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2928         ep_3550 = &boardp->eep_config.adv_3550_eep;
2929     } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2930         ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
2931     } else {
2932         ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
2933     }
2934 
2935     seq_printf(m,
2936            "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2937            shost->host_no);
2938 
2939     if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2940         wordp = &ep_3550->serial_number_word1;
2941     } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2942         wordp = &ep_38C0800->serial_number_word1;
2943     } else {
2944         wordp = &ep_38C1600->serial_number_word1;
2945     }
2946 
2947     if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
2948         seq_printf(m, " Serial Number: %s\n", serialstr);
2949     else
2950         seq_puts(m, " Serial Number Signature Not Present.\n");
2951 
2952     if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
2953         seq_printf(m,
2954                " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2955                ep_3550->adapter_scsi_id,
2956                ep_3550->max_host_qng, ep_3550->max_dvc_qng);
2957     else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
2958         seq_printf(m,
2959                " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2960                ep_38C0800->adapter_scsi_id,
2961                ep_38C0800->max_host_qng,
2962                ep_38C0800->max_dvc_qng);
2963     else
2964         seq_printf(m,
2965                " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2966                ep_38C1600->adapter_scsi_id,
2967                ep_38C1600->max_host_qng,
2968                ep_38C1600->max_dvc_qng);
2969     if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2970         word = ep_3550->termination;
2971     } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2972         word = ep_38C0800->termination_lvd;
2973     } else {
2974         word = ep_38C1600->termination_lvd;
2975     }
2976     switch (word) {
2977     case 1:
2978         termstr = "Low Off/High Off";
2979         break;
2980     case 2:
2981         termstr = "Low Off/High On";
2982         break;
2983     case 3:
2984         termstr = "Low On/High On";
2985         break;
2986     default:
2987     case 0:
2988         termstr = "Automatic";
2989         break;
2990     }
2991 
2992     if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
2993         seq_printf(m,
2994                " termination: %u (%s), bios_ctrl: 0x%x\n",
2995                ep_3550->termination, termstr,
2996                ep_3550->bios_ctrl);
2997     else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
2998         seq_printf(m,
2999                " termination: %u (%s), bios_ctrl: 0x%x\n",
3000                ep_38C0800->termination_lvd, termstr,
3001                ep_38C0800->bios_ctrl);
3002     else
3003         seq_printf(m,
3004                " termination: %u (%s), bios_ctrl: 0x%x\n",
3005                ep_38C1600->termination_lvd, termstr,
3006                ep_38C1600->bios_ctrl);
3007 
3008     seq_puts(m, " Target ID:           ");
3009     for (i = 0; i <= ADV_MAX_TID; i++)
3010         seq_printf(m, " %X", i);
3011     seq_putc(m, '\n');
3012 
3013     if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3014         word = ep_3550->disc_enable;
3015     } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3016         word = ep_38C0800->disc_enable;
3017     } else {
3018         word = ep_38C1600->disc_enable;
3019     }
3020     seq_puts(m, " Disconnects:         ");
3021     for (i = 0; i <= ADV_MAX_TID; i++)
3022         seq_printf(m, " %c",
3023                (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3024     seq_putc(m, '\n');
3025 
3026     if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3027         word = ep_3550->tagqng_able;
3028     } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3029         word = ep_38C0800->tagqng_able;
3030     } else {
3031         word = ep_38C1600->tagqng_able;
3032     }
3033     seq_puts(m, " Command Queuing:     ");
3034     for (i = 0; i <= ADV_MAX_TID; i++)
3035         seq_printf(m, " %c",
3036                (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3037     seq_putc(m, '\n');
3038 
3039     if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3040         word = ep_3550->start_motor;
3041     } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3042         word = ep_38C0800->start_motor;
3043     } else {
3044         word = ep_38C1600->start_motor;
3045     }
3046     seq_puts(m, " Start Motor:         ");
3047     for (i = 0; i <= ADV_MAX_TID; i++)
3048         seq_printf(m, " %c",
3049                (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3050     seq_putc(m, '\n');
3051 
3052     if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3053         seq_puts(m, " Synchronous Transfer:");
3054         for (i = 0; i <= ADV_MAX_TID; i++)
3055             seq_printf(m, " %c",
3056                    (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3057                    'Y' : 'N');
3058         seq_putc(m, '\n');
3059     }
3060 
3061     if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3062         seq_puts(m, " Ultra Transfer:      ");
3063         for (i = 0; i <= ADV_MAX_TID; i++)
3064             seq_printf(m, " %c",
3065                    (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3066                    ? 'Y' : 'N');
3067         seq_putc(m, '\n');
3068     }
3069 
3070     if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3071         word = ep_3550->wdtr_able;
3072     } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3073         word = ep_38C0800->wdtr_able;
3074     } else {
3075         word = ep_38C1600->wdtr_able;
3076     }
3077     seq_puts(m, " Wide Transfer:       ");
3078     for (i = 0; i <= ADV_MAX_TID; i++)
3079         seq_printf(m, " %c",
3080                (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3081     seq_putc(m, '\n');
3082 
3083     if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3084         adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3085         seq_puts(m, " Synchronous Transfer Speed (Mhz):\n  ");
3086         for (i = 0; i <= ADV_MAX_TID; i++) {
3087             char *speed_str;
3088 
3089             if (i == 0) {
3090                 sdtr_speed = adv_dvc_varp->sdtr_speed1;
3091             } else if (i == 4) {
3092                 sdtr_speed = adv_dvc_varp->sdtr_speed2;
3093             } else if (i == 8) {
3094                 sdtr_speed = adv_dvc_varp->sdtr_speed3;
3095             } else if (i == 12) {
3096                 sdtr_speed = adv_dvc_varp->sdtr_speed4;
3097             }
3098             switch (sdtr_speed & ADV_MAX_TID) {
3099             case 0:
3100                 speed_str = "Off";
3101                 break;
3102             case 1:
3103                 speed_str = "  5";
3104                 break;
3105             case 2:
3106                 speed_str = " 10";
3107                 break;
3108             case 3:
3109                 speed_str = " 20";
3110                 break;
3111             case 4:
3112                 speed_str = " 40";
3113                 break;
3114             case 5:
3115                 speed_str = " 80";
3116                 break;
3117             default:
3118                 speed_str = "Unk";
3119                 break;
3120             }
3121             seq_printf(m, "%X:%s ", i, speed_str);
3122             if (i == 7)
3123                 seq_puts(m, "\n  ");
3124             sdtr_speed >>= 4;
3125         }
3126         seq_putc(m, '\n');
3127     }
3128 }
3129 
3130 /*
3131  * asc_prt_driver_conf()
3132  */
3133 static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3134 {
3135     struct asc_board *boardp = shost_priv(shost);
3136 
3137     seq_printf(m,
3138         "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3139         shost->host_no);
3140 
3141     seq_printf(m,
3142            " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n",
3143            scsi_host_busy(shost), shost->max_id,
3144            shost->max_lun, shost->max_channel);
3145 
3146     seq_printf(m,
3147            " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3148            shost->unique_id, shost->can_queue, shost->this_id,
3149            shost->sg_tablesize, shost->cmd_per_lun);
3150 
3151     seq_printf(m,
3152            " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3153            boardp->flags, shost->last_reset, jiffies,
3154            boardp->asc_n_io_port);
3155 
3156     seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3157 }
3158 
3159 /*
3160  * asc_prt_asc_board_info()
3161  *
3162  * Print dynamic board configuration information.
3163  */
3164 static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3165 {
3166     struct asc_board *boardp = shost_priv(shost);
3167     int chip_scsi_id;
3168     ASC_DVC_VAR *v;
3169     ASC_DVC_CFG *c;
3170     int i;
3171     int renegotiate = 0;
3172 
3173     v = &boardp->dvc_var.asc_dvc_var;
3174     c = &boardp->dvc_cfg.asc_dvc_cfg;
3175     chip_scsi_id = c->chip_scsi_id;
3176 
3177     seq_printf(m,
3178            "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3179            shost->host_no);
3180 
3181     seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3182            "mcode_version 0x%x, err_code %u\n",
3183            c->chip_version, c->mcode_date, c->mcode_version,
3184            v->err_code);
3185 
3186     /* Current number of commands waiting for the host. */
3187     seq_printf(m,
3188            " Total Command Pending: %d\n", v->cur_total_qng);
3189 
3190     seq_puts(m, " Command Queuing:");
3191     for (i = 0; i <= ASC_MAX_TID; i++) {
3192         if ((chip_scsi_id == i) ||
3193             ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3194             continue;
3195         }
3196         seq_printf(m, " %X:%c",
3197                i,
3198                (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3199     }
3200 
3201     /* Current number of commands waiting for a device. */
3202     seq_puts(m, "\n Command Queue Pending:");
3203     for (i = 0; i <= ASC_MAX_TID; i++) {
3204         if ((chip_scsi_id == i) ||
3205             ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3206             continue;
3207         }
3208         seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3209     }
3210 
3211     /* Current limit on number of commands that can be sent to a device. */
3212     seq_puts(m, "\n Command Queue Limit:");
3213     for (i = 0; i <= ASC_MAX_TID; i++) {
3214         if ((chip_scsi_id == i) ||
3215             ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3216             continue;
3217         }
3218         seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3219     }
3220 
3221     /* Indicate whether the device has returned queue full status. */
3222     seq_puts(m, "\n Command Queue Full:");
3223     for (i = 0; i <= ASC_MAX_TID; i++) {
3224         if ((chip_scsi_id == i) ||
3225             ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3226             continue;
3227         }
3228         if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3229             seq_printf(m, " %X:Y-%d",
3230                    i, boardp->queue_full_cnt[i]);
3231         else
3232             seq_printf(m, " %X:N", i);
3233     }
3234 
3235     seq_puts(m, "\n Synchronous Transfer:");
3236     for (i = 0; i <= ASC_MAX_TID; i++) {
3237         if ((chip_scsi_id == i) ||
3238             ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3239             continue;
3240         }
3241         seq_printf(m, " %X:%c",
3242                i,
3243                (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3244     }
3245     seq_putc(m, '\n');
3246 
3247     for (i = 0; i <= ASC_MAX_TID; i++) {
3248         uchar syn_period_ix;
3249 
3250         if ((chip_scsi_id == i) ||
3251             ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3252             ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3253             continue;
3254         }
3255 
3256         seq_printf(m, "  %X:", i);
3257 
3258         if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3259             seq_puts(m, " Asynchronous");
3260         } else {
3261             syn_period_ix =
3262                 (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3263                                1);
3264 
3265             seq_printf(m,
3266                    " Transfer Period Factor: %d (%d.%d Mhz),",
3267                    v->sdtr_period_tbl[syn_period_ix],
3268                    250 / v->sdtr_period_tbl[syn_period_ix],
3269                    ASC_TENTHS(250,
3270                           v->sdtr_period_tbl[syn_period_ix]));
3271 
3272             seq_printf(m, " REQ/ACK Offset: %d",
3273                    boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3274         }
3275 
3276         if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3277             seq_puts(m, "*\n");
3278             renegotiate = 1;
3279         } else {
3280             seq_putc(m, '\n');
3281         }
3282     }
3283 
3284     if (renegotiate) {
3285         seq_puts(m, " * = Re-negotiation pending before next command.\n");
3286     }
3287 }
3288 
3289 /*
3290  * asc_prt_adv_board_info()
3291  *
3292  * Print dynamic board configuration information.
3293  */
3294 static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3295 {
3296     struct asc_board *boardp = shost_priv(shost);
3297     int i;
3298     ADV_DVC_VAR *v;
3299     ADV_DVC_CFG *c;
3300     AdvPortAddr iop_base;
3301     ushort chip_scsi_id;
3302     ushort lramword;
3303     uchar lrambyte;
3304     ushort tagqng_able;
3305     ushort sdtr_able, wdtr_able;
3306     ushort wdtr_done, sdtr_done;
3307     ushort period = 0;
3308     int renegotiate = 0;
3309 
3310     v = &boardp->dvc_var.adv_dvc_var;
3311     c = &boardp->dvc_cfg.adv_dvc_cfg;
3312     iop_base = v->iop_base;
3313     chip_scsi_id = v->chip_scsi_id;
3314 
3315     seq_printf(m,
3316            "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3317            shost->host_no);
3318 
3319     seq_printf(m,
3320            " iop_base 0x%p, cable_detect: %X, err_code %u\n",
3321            v->iop_base,
3322            AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3323            v->err_code);
3324 
3325     seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3326            "mcode_version 0x%x\n", c->chip_version,
3327            c->mcode_date, c->mcode_version);
3328 
3329     AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3330     seq_puts(m, " Queuing Enabled:");
3331     for (i = 0; i <= ADV_MAX_TID; i++) {
3332         if ((chip_scsi_id == i) ||
3333             ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3334             continue;
3335         }
3336 
3337         seq_printf(m, " %X:%c",
3338                i,
3339                (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3340     }
3341 
3342     seq_puts(m, "\n Queue Limit:");
3343     for (i = 0; i <= ADV_MAX_TID; i++) {
3344         if ((chip_scsi_id == i) ||
3345             ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3346             continue;
3347         }
3348 
3349         AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3350                 lrambyte);
3351 
3352         seq_printf(m, " %X:%d", i, lrambyte);
3353     }
3354 
3355     seq_puts(m, "\n Command Pending:");
3356     for (i = 0; i <= ADV_MAX_TID; i++) {
3357         if ((chip_scsi_id == i) ||
3358             ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3359             continue;
3360         }
3361 
3362         AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3363                 lrambyte);
3364 
3365         seq_printf(m, " %X:%d", i, lrambyte);
3366     }
3367     seq_putc(m, '\n');
3368 
3369     AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3370     seq_puts(m, " Wide Enabled:");
3371     for (i = 0; i <= ADV_MAX_TID; i++) {
3372         if ((chip_scsi_id == i) ||
3373             ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3374             continue;
3375         }
3376 
3377         seq_printf(m, " %X:%c",
3378                i,
3379                (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3380     }
3381     seq_putc(m, '\n');
3382 
3383     AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3384     seq_puts(m, " Transfer Bit Width:");
3385     for (i = 0; i <= ADV_MAX_TID; i++) {
3386         if ((chip_scsi_id == i) ||
3387             ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3388             continue;
3389         }
3390 
3391         AdvReadWordLram(iop_base,
3392                 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3393                 lramword);
3394 
3395         seq_printf(m, " %X:%d",
3396                i, (lramword & 0x8000) ? 16 : 8);
3397 
3398         if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3399             (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3400             seq_putc(m, '*');
3401             renegotiate = 1;
3402         }
3403     }
3404     seq_putc(m, '\n');
3405 
3406     AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3407     seq_puts(m, " Synchronous Enabled:");
3408     for (i = 0; i <= ADV_MAX_TID; i++) {
3409         if ((chip_scsi_id == i) ||
3410             ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3411             continue;
3412         }
3413 
3414         seq_printf(m, " %X:%c",
3415                i,
3416                (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3417     }
3418     seq_putc(m, '\n');
3419 
3420     AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3421     for (i = 0; i <= ADV_MAX_TID; i++) {
3422 
3423         AdvReadWordLram(iop_base,
3424                 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3425                 lramword);
3426         lramword &= ~0x8000;
3427 
3428         if ((chip_scsi_id == i) ||
3429             ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3430             ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3431             continue;
3432         }
3433 
3434         seq_printf(m, "  %X:", i);
3435 
3436         if ((lramword & 0x1F) == 0) {   /* Check for REQ/ACK Offset 0. */
3437             seq_puts(m, " Asynchronous");
3438         } else {
3439             seq_puts(m, " Transfer Period Factor: ");
3440 
3441             if ((lramword & 0x1F00) == 0x1100) {    /* 80 Mhz */
3442                 seq_puts(m, "9 (80.0 Mhz),");
3443             } else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */
3444                 seq_puts(m, "10 (40.0 Mhz),");
3445             } else {    /* 20 Mhz or below. */
3446 
3447                 period = (((lramword >> 8) * 25) + 50) / 4;
3448 
3449                 if (period == 0) {  /* Should never happen. */
3450                     seq_printf(m, "%d (? Mhz), ", period);
3451                 } else {
3452                     seq_printf(m,
3453                            "%d (%d.%d Mhz),",
3454                            period, 250 / period,
3455                            ASC_TENTHS(250, period));
3456                 }
3457             }
3458 
3459             seq_printf(m, " REQ/ACK Offset: %d",
3460                    lramword & 0x1F);
3461         }
3462 
3463         if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3464             seq_puts(m, "*\n");
3465             renegotiate = 1;
3466         } else {
3467             seq_putc(m, '\n');
3468         }
3469     }
3470 
3471     if (renegotiate) {
3472         seq_puts(m, " * = Re-negotiation pending before next command.\n");
3473     }
3474 }
3475 
3476 #ifdef ADVANSYS_STATS
3477 /*
3478  * asc_prt_board_stats()
3479  */
3480 static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3481 {
3482     struct asc_board *boardp = shost_priv(shost);
3483     struct asc_stats *s = &boardp->asc_stats;
3484 
3485     seq_printf(m,
3486            "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3487            shost->host_no);
3488 
3489     seq_printf(m,
3490            " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3491            s->queuecommand, s->reset, s->biosparam,
3492            s->interrupt);
3493 
3494     seq_printf(m,
3495            " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3496            s->callback, s->done, s->build_error,
3497            s->adv_build_noreq, s->adv_build_nosg);
3498 
3499     seq_printf(m,
3500            " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3501            s->exe_noerror, s->exe_busy, s->exe_error,
3502            s->exe_unknown);
3503 
3504     /*
3505      * Display data transfer statistics.
3506      */
3507     if (s->xfer_cnt > 0) {
3508         seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3509                s->xfer_cnt, s->xfer_elem);
3510 
3511         seq_printf(m, "xfer_bytes %u.%01u kb\n",
3512                s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3513 
3514         /* Scatter gather transfer statistics */
3515         seq_printf(m, " avg_num_elem %u.%01u, ",
3516                s->xfer_elem / s->xfer_cnt,
3517                ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3518 
3519         seq_printf(m, "avg_elem_size %u.%01u kb, ",
3520                (s->xfer_sect / 2) / s->xfer_elem,
3521                ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3522 
3523         seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3524                (s->xfer_sect / 2) / s->xfer_cnt,
3525                ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3526     }
3527 }
3528 #endif /* ADVANSYS_STATS */
3529 
3530 /*
3531  * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3532  *
3533  * m: seq_file to print into
3534  * shost: Scsi_Host
3535  *
3536  * Return the number of bytes read from or written to a
3537  * /proc/scsi/advansys/[0...] file.
3538  */
3539 static int
3540 advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3541 {
3542     struct asc_board *boardp = shost_priv(shost);
3543 
3544     ASC_DBG(1, "begin\n");
3545 
3546     /*
3547      * User read of /proc/scsi/advansys/[0...] file.
3548      */
3549 
3550     /*
3551      * Get board configuration information.
3552      *
3553      * advansys_info() returns the board string from its own static buffer.
3554      */
3555     /* Copy board information. */
3556     seq_printf(m, "%s\n", (char *)advansys_info(shost));
3557     /*
3558      * Display Wide Board BIOS Information.
3559      */
3560     if (!ASC_NARROW_BOARD(boardp))
3561         asc_prt_adv_bios(m, shost);
3562 
3563     /*
3564      * Display driver information for each device attached to the board.
3565      */
3566     asc_prt_board_devices(m, shost);
3567 
3568     /*
3569      * Display EEPROM configuration for the board.
3570      */
3571     if (ASC_NARROW_BOARD(boardp))
3572         asc_prt_asc_board_eeprom(m, shost);
3573     else
3574         asc_prt_adv_board_eeprom(m, shost);
3575 
3576     /*
3577      * Display driver configuration and information for the board.
3578      */
3579     asc_prt_driver_conf(m, shost);
3580 
3581 #ifdef ADVANSYS_STATS
3582     /*
3583      * Display driver statistics for the board.
3584      */
3585     asc_prt_board_stats(m, shost);
3586 #endif /* ADVANSYS_STATS */
3587 
3588     /*
3589      * Display Asc Library dynamic configuration information
3590      * for the board.
3591      */
3592     if (ASC_NARROW_BOARD(boardp))
3593         asc_prt_asc_board_info(m, shost);
3594     else
3595         asc_prt_adv_board_info(m, shost);
3596     return 0;
3597 }
3598 #endif /* CONFIG_PROC_FS */
3599 
3600 static void asc_scsi_done(struct scsi_cmnd *scp)
3601 {
3602     scsi_dma_unmap(scp);
3603     ASC_STATS(scp->device->host, done);
3604     scsi_done(scp);
3605 }
3606 
3607 static void AscSetBank(PortAddr iop_base, uchar bank)
3608 {
3609     uchar val;
3610 
3611     val = AscGetChipControl(iop_base) &
3612         (~
3613          (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3614           CC_CHIP_RESET));
3615     if (bank == 1) {
3616         val |= CC_BANK_ONE;
3617     } else if (bank == 2) {
3618         val |= CC_DIAG | CC_BANK_ONE;
3619     } else {
3620         val &= ~CC_BANK_ONE;
3621     }
3622     AscSetChipControl(iop_base, val);
3623 }
3624 
3625 static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3626 {
3627     AscSetBank(iop_base, 1);
3628     AscWriteChipIH(iop_base, ins_code);
3629     AscSetBank(iop_base, 0);
3630 }
3631 
3632 static int AscStartChip(PortAddr iop_base)
3633 {
3634     AscSetChipControl(iop_base, 0);
3635     if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3636         return (0);
3637     }
3638     return (1);
3639 }
3640 
3641 static bool AscStopChip(PortAddr iop_base)
3642 {
3643     uchar cc_val;
3644 
3645     cc_val =
3646         AscGetChipControl(iop_base) &
3647         (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3648     AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3649     AscSetChipIH(iop_base, INS_HALT);
3650     AscSetChipIH(iop_base, INS_RFLAG_WTM);
3651     if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3652         return false;
3653     }
3654     return true;
3655 }
3656 
3657 static bool AscIsChipHalted(PortAddr iop_base)
3658 {
3659     if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3660         if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3661             return true;
3662         }
3663     }
3664     return false;
3665 }
3666 
3667 static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3668 {
3669     PortAddr iop_base;
3670     int i = 10;
3671 
3672     iop_base = asc_dvc->iop_base;
3673     while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3674            && (i-- > 0)) {
3675         mdelay(100);
3676     }
3677     AscStopChip(iop_base);
3678     AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3679     udelay(60);
3680     AscSetChipIH(iop_base, INS_RFLAG_WTM);
3681     AscSetChipIH(iop_base, INS_HALT);
3682     AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3683     AscSetChipControl(iop_base, CC_HALT);
3684     mdelay(200);
3685     AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3686     AscSetChipStatus(iop_base, 0);
3687     return (AscIsChipHalted(iop_base));
3688 }
3689 
3690 static int AscFindSignature(PortAddr iop_base)
3691 {
3692     ushort sig_word;
3693 
3694     ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3695          iop_base, AscGetChipSignatureByte(iop_base));
3696     if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3697         ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3698              iop_base, AscGetChipSignatureWord(iop_base));
3699         sig_word = AscGetChipSignatureWord(iop_base);
3700         if ((sig_word == (ushort)ASC_1000_ID0W) ||
3701             (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3702             return (1);
3703         }
3704     }
3705     return (0);
3706 }
3707 
3708 static void AscEnableInterrupt(PortAddr iop_base)
3709 {
3710     ushort cfg;
3711 
3712     cfg = AscGetChipCfgLsw(iop_base);
3713     AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3714 }
3715 
3716 static void AscDisableInterrupt(PortAddr iop_base)
3717 {
3718     ushort cfg;
3719 
3720     cfg = AscGetChipCfgLsw(iop_base);
3721     AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3722 }
3723 
3724 static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3725 {
3726     unsigned char byte_data;
3727     unsigned short word_data;
3728 
3729     if (isodd_word(addr)) {
3730         AscSetChipLramAddr(iop_base, addr - 1);
3731         word_data = AscGetChipLramData(iop_base);
3732         byte_data = (word_data >> 8) & 0xFF;
3733     } else {
3734         AscSetChipLramAddr(iop_base, addr);
3735         word_data = AscGetChipLramData(iop_base);
3736         byte_data = word_data & 0xFF;
3737     }
3738     return byte_data;
3739 }
3740 
3741 static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3742 {
3743     ushort word_data;
3744 
3745     AscSetChipLramAddr(iop_base, addr);
3746     word_data = AscGetChipLramData(iop_base);
3747     return (word_data);
3748 }
3749 
3750 static void
3751 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3752 {
3753     int i;
3754 
3755     AscSetChipLramAddr(iop_base, s_addr);
3756     for (i = 0; i < words; i++) {
3757         AscSetChipLramData(iop_base, set_wval);
3758     }
3759 }
3760 
3761 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
3762 {
3763     AscSetChipLramAddr(iop_base, addr);
3764     AscSetChipLramData(iop_base, word_val);
3765 }
3766 
3767 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
3768 {
3769     ushort word_data;
3770 
3771     if (isodd_word(addr)) {
3772         addr--;
3773         word_data = AscReadLramWord(iop_base, addr);
3774         word_data &= 0x00FF;
3775         word_data |= (((ushort)byte_val << 8) & 0xFF00);
3776     } else {
3777         word_data = AscReadLramWord(iop_base, addr);
3778         word_data &= 0xFF00;
3779         word_data |= ((ushort)byte_val & 0x00FF);
3780     }
3781     AscWriteLramWord(iop_base, addr, word_data);
3782 }
3783 
3784 /*
3785  * Copy 2 bytes to LRAM.
3786  *
3787  * The source data is assumed to be in little-endian order in memory
3788  * and is maintained in little-endian order when written to LRAM.
3789  */
3790 static void
3791 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
3792             const uchar *s_buffer, int words)
3793 {
3794     int i;
3795 
3796     AscSetChipLramAddr(iop_base, s_addr);
3797     for (i = 0; i < 2 * words; i += 2) {
3798         /*
3799          * On a little-endian system the second argument below
3800          * produces a little-endian ushort which is written to
3801          * LRAM in little-endian order. On a big-endian system
3802          * the second argument produces a big-endian ushort which
3803          * is "transparently" byte-swapped by outpw() and written
3804          * in little-endian order to LRAM.
3805          */
3806         outpw(iop_base + IOP_RAM_DATA,
3807               ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
3808     }
3809 }
3810 
3811 /*
3812  * Copy 4 bytes to LRAM.
3813  *
3814  * The source data is assumed to be in little-endian order in memory
3815  * and is maintained in little-endian order when written to LRAM.
3816  */
3817 static void
3818 AscMemDWordCopyPtrToLram(PortAddr iop_base,
3819              ushort s_addr, uchar *s_buffer, int dwords)
3820 {
3821     int i;
3822 
3823     AscSetChipLramAddr(iop_base, s_addr);
3824     for (i = 0; i < 4 * dwords; i += 4) {
3825         outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);   /* LSW */
3826         outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);   /* MSW */
3827     }
3828 }
3829 
3830 /*
3831  * Copy 2 bytes from LRAM.
3832  *
3833  * The source data is assumed to be in little-endian order in LRAM
3834  * and is maintained in little-endian order when written to memory.
3835  */
3836 static void
3837 AscMemWordCopyPtrFromLram(PortAddr iop_base,
3838               ushort s_addr, uchar *d_buffer, int words)
3839 {
3840     int i;
3841     ushort word;
3842 
3843     AscSetChipLramAddr(iop_base, s_addr);
3844     for (i = 0; i < 2 * words; i += 2) {
3845         word = inpw(iop_base + IOP_RAM_DATA);
3846         d_buffer[i] = word & 0xff;
3847         d_buffer[i + 1] = (word >> 8) & 0xff;
3848     }
3849 }
3850 
3851 static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
3852 {
3853     u32 sum = 0;
3854     int i;
3855 
3856     for (i = 0; i < words; i++, s_addr += 2) {
3857         sum += AscReadLramWord(iop_base, s_addr);
3858     }
3859     return (sum);
3860 }
3861 
3862 static void AscInitLram(ASC_DVC_VAR *asc_dvc)
3863 {
3864     uchar i;
3865     ushort s_addr;
3866     PortAddr iop_base;
3867 
3868     iop_base = asc_dvc->iop_base;
3869     AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
3870               (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
3871                     64) >> 1));
3872     i = ASC_MIN_ACTIVE_QNO;
3873     s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
3874     AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3875              (uchar)(i + 1));
3876     AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3877              (uchar)(asc_dvc->max_total_qng));
3878     AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3879              (uchar)i);
3880     i++;
3881     s_addr += ASC_QBLK_SIZE;
3882     for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
3883         AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3884                  (uchar)(i + 1));
3885         AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3886                  (uchar)(i - 1));
3887         AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3888                  (uchar)i);
3889     }
3890     AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3891              (uchar)ASC_QLINK_END);
3892     AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3893              (uchar)(asc_dvc->max_total_qng - 1));
3894     AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3895              (uchar)asc_dvc->max_total_qng);
3896     i++;
3897     s_addr += ASC_QBLK_SIZE;
3898     for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
3899          i++, s_addr += ASC_QBLK_SIZE) {
3900         AscWriteLramByte(iop_base,
3901                  (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
3902         AscWriteLramByte(iop_base,
3903                  (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
3904         AscWriteLramByte(iop_base,
3905                  (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
3906     }
3907 }
3908 
3909 static u32
3910 AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
3911          const uchar *mcode_buf, ushort mcode_size)
3912 {
3913     u32 chksum;
3914     ushort mcode_word_size;
3915     ushort mcode_chksum;
3916 
3917     /* Write the microcode buffer starting at LRAM address 0. */
3918     mcode_word_size = (ushort)(mcode_size >> 1);
3919     AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
3920     AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
3921 
3922     chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
3923     ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
3924     mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
3925                          (ushort)ASC_CODE_SEC_BEG,
3926                          (ushort)((mcode_size -
3927                                s_addr - (ushort)
3928                                ASC_CODE_SEC_BEG) /
3929                               2));
3930     ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
3931     AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
3932     AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
3933     return chksum;
3934 }
3935 
3936 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
3937 {
3938     PortAddr iop_base;
3939     int i;
3940     ushort lram_addr;
3941 
3942     iop_base = asc_dvc->iop_base;
3943     AscPutRiscVarFreeQHead(iop_base, 1);
3944     AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3945     AscPutVarFreeQHead(iop_base, 1);
3946     AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3947     AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
3948              (uchar)((int)asc_dvc->max_total_qng + 1));
3949     AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
3950              (uchar)((int)asc_dvc->max_total_qng + 2));
3951     AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
3952              asc_dvc->max_total_qng);
3953     AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
3954     AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
3955     AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
3956     AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
3957     AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
3958     AscPutQDoneInProgress(iop_base, 0);
3959     lram_addr = ASC_QADR_BEG;
3960     for (i = 0; i < 32; i++, lram_addr += 2) {
3961         AscWriteLramWord(iop_base, lram_addr, 0);
3962     }
3963 }
3964 
3965 static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
3966 {
3967     int i;
3968     int warn_code;
3969     PortAddr iop_base;
3970     __le32 phy_addr;
3971     __le32 phy_size;
3972     struct asc_board *board = asc_dvc_to_board(asc_dvc);
3973 
3974     iop_base = asc_dvc->iop_base;
3975     warn_code = 0;
3976     for (i = 0; i <= ASC_MAX_TID; i++) {
3977         AscPutMCodeInitSDTRAtID(iop_base, i,
3978                     asc_dvc->cfg->sdtr_period_offset[i]);
3979     }
3980 
3981     AscInitQLinkVar(asc_dvc);
3982     AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
3983              asc_dvc->cfg->disc_enable);
3984     AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
3985              ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
3986 
3987     /* Ensure overrun buffer is aligned on an 8 byte boundary. */
3988     BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
3989     asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
3990                     ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
3991     if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
3992         warn_code = -ENOMEM;
3993         goto err_dma_map;
3994     }
3995     phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
3996     AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
3997                  (uchar *)&phy_addr, 1);
3998     phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
3999     AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4000                  (uchar *)&phy_size, 1);
4001 
4002     asc_dvc->cfg->mcode_date =
4003         AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4004     asc_dvc->cfg->mcode_version =
4005         AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4006 
4007     AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4008     if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4009         asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4010         warn_code = -EINVAL;
4011         goto err_mcode_start;
4012     }
4013     if (AscStartChip(iop_base) != 1) {
4014         asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4015         warn_code = -EIO;
4016         goto err_mcode_start;
4017     }
4018 
4019     return warn_code;
4020 
4021 err_mcode_start:
4022     dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4023              ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4024 err_dma_map:
4025     asc_dvc->overrun_dma = 0;
4026     return warn_code;
4027 }
4028 
4029 static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4030 {
4031     const struct firmware *fw;
4032     const char fwname[] = "advansys/mcode.bin";
4033     int err;
4034     unsigned long chksum;
4035     int warn_code;
4036     PortAddr iop_base;
4037 
4038     iop_base = asc_dvc->iop_base;
4039     warn_code = 0;
4040     if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4041         !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4042         AscResetChipAndScsiBus(asc_dvc);
4043         mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4044     }
4045     asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4046     if (asc_dvc->err_code != 0)
4047         return ASC_ERROR;
4048     if (!AscFindSignature(asc_dvc->iop_base)) {
4049         asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4050         return warn_code;
4051     }
4052     AscDisableInterrupt(iop_base);
4053     AscInitLram(asc_dvc);
4054 
4055     err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4056     if (err) {
4057         printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4058                fwname, err);
4059         asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4060         return err;
4061     }
4062     if (fw->size < 4) {
4063         printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4064                fw->size, fwname);
4065         release_firmware(fw);
4066         asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4067         return -EINVAL;
4068     }
4069     chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4070          (fw->data[1] << 8) | fw->data[0];
4071     ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4072     if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4073                  fw->size - 4) != chksum) {
4074         asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4075         release_firmware(fw);
4076         return warn_code;
4077     }
4078     release_firmware(fw);
4079     warn_code |= AscInitMicroCodeVar(asc_dvc);
4080     if (!asc_dvc->overrun_dma)
4081         return warn_code;
4082     asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4083     AscEnableInterrupt(iop_base);
4084     return warn_code;
4085 }
4086 
4087 /*
4088  * Load the Microcode
4089  *
4090  * Write the microcode image to RISC memory starting at address 0.
4091  *
4092  * The microcode is stored compressed in the following format:
4093  *
4094  *  254 word (508 byte) table indexed by byte code followed
4095  *  by the following byte codes:
4096  *
4097  *    1-Byte Code:
4098  *      00: Emit word 0 in table.
4099  *      01: Emit word 1 in table.
4100  *      .
4101  *      FD: Emit word 253 in table.
4102  *
4103  *    Multi-Byte Code:
4104  *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4105  *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4106  *
4107  * Returns 0 or an error if the checksum doesn't match
4108  */
4109 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4110                 int size, int memsize, int chksum)
4111 {
4112     int i, j, end, len = 0;
4113     u32 sum;
4114 
4115     AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4116 
4117     for (i = 253 * 2; i < size; i++) {
4118         if (buf[i] == 0xff) {
4119             unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4120             for (j = 0; j < buf[i + 1]; j++) {
4121                 AdvWriteWordAutoIncLram(iop_base, word);
4122                 len += 2;
4123             }
4124             i += 3;
4125         } else if (buf[i] == 0xfe) {
4126             unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4127             AdvWriteWordAutoIncLram(iop_base, word);
4128             i += 2;
4129             len += 2;
4130         } else {
4131             unsigned int off = buf[i] * 2;
4132             unsigned short word = (buf[off + 1] << 8) | buf[off];
4133             AdvWriteWordAutoIncLram(iop_base, word);
4134             len += 2;
4135         }
4136     }
4137 
4138     end = len;
4139 
4140     while (len < memsize) {
4141         AdvWriteWordAutoIncLram(iop_base, 0);
4142         len += 2;
4143     }
4144 
4145     /* Verify the microcode checksum. */
4146     sum = 0;
4147     AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4148 
4149     for (len = 0; len < end; len += 2) {
4150         sum += AdvReadWordAutoIncLram(iop_base);
4151     }
4152 
4153     if (sum != chksum)
4154         return ASC_IERR_MCODE_CHKSUM;
4155 
4156     return 0;
4157 }
4158 
4159 static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc)
4160 {
4161     off_t carr_offset = 0, next_offset;
4162     dma_addr_t carr_paddr;
4163     int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i;
4164 
4165     for (i = 0; i < carr_num; i++) {
4166         carr_offset = i * sizeof(ADV_CARR_T);
4167         /* Get physical address of the carrier 'carrp'. */
4168         carr_paddr = adv_dvc->carrier_addr + carr_offset;
4169 
4170         adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr);
4171         adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset);
4172         adv_dvc->carrier[i].areq_vpa = 0;
4173         next_offset = carr_offset + sizeof(ADV_CARR_T);
4174         if (i == carr_num)
4175             next_offset = ~0;
4176         adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset);
4177     }
4178     /*
4179      * We cannot have a carrier with 'carr_va' of '0', as
4180      * a reference to this carrier would be interpreted as
4181      * list termination.
4182      * So start at carrier 1 with the freelist.
4183      */
4184     adv_dvc->carr_freelist = &adv_dvc->carrier[1];
4185 }
4186 
4187 static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset)
4188 {
4189     int index;
4190 
4191     BUG_ON(offset > ADV_CARRIER_BUFSIZE);
4192 
4193     index = offset / sizeof(ADV_CARR_T);
4194     return &adv_dvc->carrier[index];
4195 }
4196 
4197 static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc)
4198 {
4199     ADV_CARR_T *carrp = adv_dvc->carr_freelist;
4200     u32 next_vpa = le32_to_cpu(carrp->next_vpa);
4201 
4202     if (next_vpa == 0 || next_vpa == ~0) {
4203         ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa);
4204         return NULL;
4205     }
4206 
4207     adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa);
4208     /*
4209      * insert stopper carrier to terminate list
4210      */
4211     carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER);
4212 
4213     return carrp;
4214 }
4215 
4216 /*
4217  * 'offset' is the index in the request pointer array
4218  */
4219 static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset)
4220 {
4221     struct asc_board *boardp = adv_dvc->drv_ptr;
4222 
4223     BUG_ON(offset > adv_dvc->max_host_qng);
4224     return &boardp->adv_reqp[offset];
4225 }
4226 
4227 /*
4228  * Send an idle command to the chip and wait for completion.
4229  *
4230  * Command completion is polled for once per microsecond.
4231  *
4232  * The function can be called from anywhere including an interrupt handler.
4233  * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4234  * functions to prevent reentrancy.
4235  *
4236  * Return Values:
4237  *   ADV_TRUE - command completed successfully
4238  *   ADV_FALSE - command failed
4239  *   ADV_ERROR - command timed out
4240  */
4241 static int
4242 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4243            ushort idle_cmd, u32 idle_cmd_parameter)
4244 {
4245     int result, i, j;
4246     AdvPortAddr iop_base;
4247 
4248     iop_base = asc_dvc->iop_base;
4249 
4250     /*
4251      * Clear the idle command status which is set by the microcode
4252      * to a non-zero value to indicate when the command is completed.
4253      * The non-zero result is one of the IDLE_CMD_STATUS_* values
4254      */
4255     AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4256 
4257     /*
4258      * Write the idle command value after the idle command parameter
4259      * has been written to avoid a race condition. If the order is not
4260      * followed, the microcode may process the idle command before the
4261      * parameters have been written to LRAM.
4262      */
4263     AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4264                 cpu_to_le32(idle_cmd_parameter));
4265     AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4266 
4267     /*
4268      * Tickle the RISC to tell it to process the idle command.
4269      */
4270     AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4271     if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4272         /*
4273          * Clear the tickle value. In the ASC-3550 the RISC flag
4274          * command 'clr_tickle_b' does not work unless the host
4275          * value is cleared.
4276          */
4277         AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4278     }
4279 
4280     /* Wait for up to 100 millisecond for the idle command to timeout. */
4281     for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4282         /* Poll once each microsecond for command completion. */
4283         for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4284             AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4285                     result);
4286             if (result != 0)
4287                 return result;
4288             udelay(1);
4289         }
4290     }
4291 
4292     BUG();      /* The idle command should never timeout. */
4293     return ADV_ERROR;
4294 }
4295 
4296 /*
4297  * Reset SCSI Bus and purge all outstanding requests.
4298  *
4299  * Return Value:
4300  *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
4301  *      ADV_FALSE(0) -  Microcode command failed.
4302  *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4303  *                      may be hung which requires driver recovery.
4304  */
4305 static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4306 {
4307     int status;
4308 
4309     /*
4310      * Send the SCSI Bus Reset idle start idle command which asserts
4311      * the SCSI Bus Reset signal.
4312      */
4313     status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4314     if (status != ADV_TRUE) {
4315         return status;
4316     }
4317 
4318     /*
4319      * Delay for the specified SCSI Bus Reset hold time.
4320      *
4321      * The hold time delay is done on the host because the RISC has no
4322      * microsecond accurate timer.
4323      */
4324     udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4325 
4326     /*
4327      * Send the SCSI Bus Reset end idle command which de-asserts
4328      * the SCSI Bus Reset signal and purges any pending requests.
4329      */
4330     status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4331     if (status != ADV_TRUE) {
4332         return status;
4333     }
4334 
4335     mdelay(asc_dvc->scsi_reset_wait * 1000);    /* XXX: msleep? */
4336 
4337     return status;
4338 }
4339 
4340 /*
4341  * Initialize the ASC-3550.
4342  *
4343  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4344  *
4345  * For a non-fatal error return a warning code. If there are no warnings
4346  * then 0 is returned.
4347  *
4348  * Needed after initialization for error recovery.
4349  */
4350 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4351 {
4352     const struct firmware *fw;
4353     const char fwname[] = "advansys/3550.bin";
4354     AdvPortAddr iop_base;
4355     ushort warn_code;
4356     int begin_addr;
4357     int end_addr;
4358     ushort code_sum;
4359     int word;
4360     int i;
4361     int err;
4362     unsigned long chksum;
4363     ushort scsi_cfg1;
4364     uchar tid;
4365     ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
4366     ushort wdtr_able = 0, sdtr_able, tagqng_able;
4367     uchar max_cmd[ADV_MAX_TID + 1];
4368 
4369     /* If there is already an error, don't continue. */
4370     if (asc_dvc->err_code != 0)
4371         return ADV_ERROR;
4372 
4373     /*
4374      * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4375      */
4376     if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4377         asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4378         return ADV_ERROR;
4379     }
4380 
4381     warn_code = 0;
4382     iop_base = asc_dvc->iop_base;
4383 
4384     /*
4385      * Save the RISC memory BIOS region before writing the microcode.
4386      * The BIOS may already be loaded and using its RISC LRAM region
4387      * so its region must be saved and restored.
4388      *
4389      * Note: This code makes the assumption, which is currently true,
4390      * that a chip reset does not clear RISC LRAM.
4391      */
4392     for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4393         AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4394                 bios_mem[i]);
4395     }
4396 
4397     /*
4398      * Save current per TID negotiated values.
4399      */
4400     if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4401         ushort bios_version, major, minor;
4402 
4403         bios_version =
4404             bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4405         major = (bios_version >> 12) & 0xF;
4406         minor = (bios_version >> 8) & 0xF;
4407         if (major < 3 || (major == 3 && minor == 1)) {
4408             /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4409             AdvReadWordLram(iop_base, 0x120, wdtr_able);
4410         } else {
4411             AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4412         }
4413     }
4414     AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4415     AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4416     for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4417         AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4418                 max_cmd[tid]);
4419     }
4420 
4421     err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4422     if (err) {
4423         printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4424                fwname, err);
4425         asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4426         return err;
4427     }
4428     if (fw->size < 4) {
4429         printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4430                fw->size, fwname);
4431         release_firmware(fw);
4432         asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4433         return -EINVAL;
4434     }
4435     chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4436          (fw->data[1] << 8) | fw->data[0];
4437     asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4438                          fw->size - 4, ADV_3550_MEMSIZE,
4439                          chksum);
4440     release_firmware(fw);
4441     if (asc_dvc->err_code)
4442         return ADV_ERROR;
4443 
4444     /*
4445      * Restore the RISC memory BIOS region.
4446      */
4447     for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4448         AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4449                  bios_mem[i]);
4450     }
4451 
4452     /*
4453      * Calculate and write the microcode code checksum to the microcode
4454      * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4455      */
4456     AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4457     AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4458     code_sum = 0;
4459     AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4460     for (word = begin_addr; word < end_addr; word += 2) {
4461         code_sum += AdvReadWordAutoIncLram(iop_base);
4462     }
4463     AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4464 
4465     /*
4466      * Read and save microcode version and date.
4467      */
4468     AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4469             asc_dvc->cfg->mcode_date);
4470     AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4471             asc_dvc->cfg->mcode_version);
4472 
4473     /*
4474      * Set the chip type to indicate the ASC3550.
4475      */
4476     AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4477 
4478     /*
4479      * If the PCI Configuration Command Register "Parity Error Response
4480      * Control" Bit was clear (0), then set the microcode variable
4481      * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4482      * to ignore DMA parity errors.
4483      */
4484     if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4485         AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4486         word |= CONTROL_FLAG_IGNORE_PERR;
4487         AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4488     }
4489 
4490     /*
4491      * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4492      * threshold of 128 bytes. This register is only accessible to the host.
4493      */
4494     AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4495                  START_CTL_EMFU | READ_CMD_MRM);
4496 
4497     /*
4498      * Microcode operating variables for WDTR, SDTR, and command tag
4499      * queuing will be set in slave_configure() based on what a
4500      * device reports it is capable of in Inquiry byte 7.
4501      *
4502      * If SCSI Bus Resets have been disabled, then directly set
4503      * SDTR and WDTR from the EEPROM configuration. This will allow
4504      * the BIOS and warm boot to work without a SCSI bus hang on
4505      * the Inquiry caused by host and target mismatched DTR values.
4506      * Without the SCSI Bus Reset, before an Inquiry a device can't
4507      * be assumed to be in Asynchronous, Narrow mode.
4508      */
4509     if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4510         AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4511                  asc_dvc->wdtr_able);
4512         AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4513                  asc_dvc->sdtr_able);
4514     }
4515 
4516     /*
4517      * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4518      * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4519      * bitmask. These values determine the maximum SDTR speed negotiated
4520      * with a device.
4521      *
4522      * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4523      * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4524      * without determining here whether the device supports SDTR.
4525      *
4526      * 4-bit speed  SDTR speed name
4527      * ===========  ===============
4528      * 0000b (0x0)  SDTR disabled
4529      * 0001b (0x1)  5 Mhz
4530      * 0010b (0x2)  10 Mhz
4531      * 0011b (0x3)  20 Mhz (Ultra)
4532      * 0100b (0x4)  40 Mhz (LVD/Ultra2)
4533      * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
4534      * 0110b (0x6)  Undefined
4535      * .
4536      * 1111b (0xF)  Undefined
4537      */
4538     word = 0;
4539     for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4540         if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4541             /* Set Ultra speed for TID 'tid'. */
4542             word |= (0x3 << (4 * (tid % 4)));
4543         } else {
4544             /* Set Fast speed for TID 'tid'. */
4545             word |= (0x2 << (4 * (tid % 4)));
4546         }
4547         if (tid == 3) { /* Check if done with sdtr_speed1. */
4548             AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4549             word = 0;
4550         } else if (tid == 7) {  /* Check if done with sdtr_speed2. */
4551             AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4552             word = 0;
4553         } else if (tid == 11) { /* Check if done with sdtr_speed3. */
4554             AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4555             word = 0;
4556         } else if (tid == 15) { /* Check if done with sdtr_speed4. */
4557             AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4558             /* End of loop. */
4559         }
4560     }
4561 
4562     /*
4563      * Set microcode operating variable for the disconnect per TID bitmask.
4564      */
4565     AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4566              asc_dvc->cfg->disc_enable);
4567 
4568     /*
4569      * Set SCSI_CFG0 Microcode Default Value.
4570      *
4571      * The microcode will set the SCSI_CFG0 register using this value
4572      * after it is started below.
4573      */
4574     AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4575              PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4576              asc_dvc->chip_scsi_id);
4577 
4578     /*
4579      * Determine SCSI_CFG1 Microcode Default Value.
4580      *
4581      * The microcode will set the SCSI_CFG1 register using this value
4582      * after it is started below.
4583      */
4584 
4585     /* Read current SCSI_CFG1 Register value. */
4586     scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4587 
4588     /*
4589      * If all three connectors are in use, return an error.
4590      */
4591     if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4592         (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4593         asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4594         return ADV_ERROR;
4595     }
4596 
4597     /*
4598      * If the internal narrow cable is reversed all of the SCSI_CTRL
4599      * register signals will be set. Check for and return an error if
4600      * this condition is found.
4601      */
4602     if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4603         asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4604         return ADV_ERROR;
4605     }
4606 
4607     /*
4608      * If this is a differential board and a single-ended device
4609      * is attached to one of the connectors, return an error.
4610      */
4611     if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4612         asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4613         return ADV_ERROR;
4614     }
4615 
4616     /*
4617      * If automatic termination control is enabled, then set the
4618      * termination value based on a table listed in a_condor.h.
4619      *
4620      * If manual termination was specified with an EEPROM setting
4621      * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4622      * is ready to be 'ored' into SCSI_CFG1.
4623      */
4624     if (asc_dvc->cfg->termination == 0) {
4625         /*
4626          * The software always controls termination by setting TERM_CTL_SEL.
4627          * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4628          */
4629         asc_dvc->cfg->termination |= TERM_CTL_SEL;
4630 
4631         switch (scsi_cfg1 & CABLE_DETECT) {
4632             /* TERM_CTL_H: on, TERM_CTL_L: on */
4633         case 0x3:
4634         case 0x7:
4635         case 0xB:
4636         case 0xD:
4637         case 0xE:
4638         case 0xF:
4639             asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4640             break;
4641 
4642             /* TERM_CTL_H: on, TERM_CTL_L: off */
4643         case 0x1:
4644         case 0x5:
4645         case 0x9:
4646         case 0xA:
4647         case 0xC:
4648             asc_dvc->cfg->termination |= TERM_CTL_H;
4649             break;
4650 
4651             /* TERM_CTL_H: off, TERM_CTL_L: off */
4652         case 0x2:
4653         case 0x6:
4654             break;
4655         }
4656     }
4657 
4658     /*
4659      * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4660      */
4661     scsi_cfg1 &= ~TERM_CTL;
4662 
4663     /*
4664      * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4665      * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4666      * referenced, because the hardware internally inverts
4667      * the Termination High and Low bits if TERM_POL is set.
4668      */
4669     scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4670 
4671     /*
4672      * Set SCSI_CFG1 Microcode Default Value
4673      *
4674      * Set filter value and possibly modified termination control
4675      * bits in the Microcode SCSI_CFG1 Register Value.
4676      *
4677      * The microcode will set the SCSI_CFG1 register using this value
4678      * after it is started below.
4679      */
4680     AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4681              FLTR_DISABLE | scsi_cfg1);
4682 
4683     /*
4684      * Set MEM_CFG Microcode Default Value
4685      *
4686      * The microcode will set the MEM_CFG register using this value
4687      * after it is started below.
4688      *
4689      * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4690      * are defined.
4691      *
4692      * ASC-3550 has 8KB internal memory.
4693      */
4694     AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4695              BIOS_EN | RAM_SZ_8KB);
4696 
4697     /*
4698      * Set SEL_MASK Microcode Default Value
4699      *
4700      * The microcode will set the SEL_MASK register using this value
4701      * after it is started below.
4702      */
4703     AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4704              ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4705 
4706     AdvBuildCarrierFreelist(asc_dvc);
4707 
4708     /*
4709      * Set-up the Host->RISC Initiator Command Queue (ICQ).
4710      */
4711 
4712     asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
4713     if (!asc_dvc->icq_sp) {
4714         asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4715         return ADV_ERROR;
4716     }
4717 
4718     /*
4719      * Set RISC ICQ physical address start value.
4720      */
4721     AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4722 
4723     /*
4724      * Set-up the RISC->Host Initiator Response Queue (IRQ).
4725      */
4726     asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
4727     if (!asc_dvc->irq_sp) {
4728         asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4729         return ADV_ERROR;
4730     }
4731 
4732     /*
4733      * Set RISC IRQ physical address start value.
4734      */
4735     AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4736     asc_dvc->carr_pending_cnt = 0;
4737 
4738     AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4739                  (ADV_INTR_ENABLE_HOST_INTR |
4740                   ADV_INTR_ENABLE_GLOBAL_INTR));
4741 
4742     AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4743     AdvWriteWordRegister(iop_base, IOPW_PC, word);
4744 
4745     /* finally, finally, gentlemen, start your engine */
4746     AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4747 
4748     /*
4749      * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4750      * Resets should be performed. The RISC has to be running
4751      * to issue a SCSI Bus Reset.
4752      */
4753     if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4754         /*
4755          * If the BIOS Signature is present in memory, restore the
4756          * BIOS Handshake Configuration Table and do not perform
4757          * a SCSI Bus Reset.
4758          */
4759         if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4760             0x55AA) {
4761             /*
4762              * Restore per TID negotiated values.
4763              */
4764             AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4765             AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4766             AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4767                      tagqng_able);
4768             for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4769                 AdvWriteByteLram(iop_base,
4770                          ASC_MC_NUMBER_OF_MAX_CMD + tid,
4771                          max_cmd[tid]);
4772             }
4773         } else {
4774             if (AdvResetSB(asc_dvc) != ADV_TRUE) {
4775                 warn_code = ASC_WARN_BUSRESET_ERROR;
4776             }
4777         }
4778     }
4779 
4780     return warn_code;
4781 }
4782 
4783 /*
4784  * Initialize the ASC-38C0800.
4785  *
4786  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4787  *
4788  * For a non-fatal error return a warning code. If there are no warnings
4789  * then 0 is returned.
4790  *
4791  * Needed after initialization for error recovery.
4792  */
4793 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
4794 {
4795     const struct firmware *fw;
4796     const char fwname[] = "advansys/38C0800.bin";
4797     AdvPortAddr iop_base;
4798     ushort warn_code;
4799     int begin_addr;
4800     int end_addr;
4801     ushort code_sum;
4802     int word;
4803     int i;
4804     int err;
4805     unsigned long chksum;
4806     ushort scsi_cfg1;
4807     uchar byte;
4808     uchar tid;
4809     ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
4810     ushort wdtr_able, sdtr_able, tagqng_able;
4811     uchar max_cmd[ADV_MAX_TID + 1];
4812 
4813     /* If there is already an error, don't continue. */
4814     if (asc_dvc->err_code != 0)
4815         return ADV_ERROR;
4816 
4817     /*
4818      * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
4819      */
4820     if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
4821         asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4822         return ADV_ERROR;
4823     }
4824 
4825     warn_code = 0;
4826     iop_base = asc_dvc->iop_base;
4827 
4828     /*
4829      * Save the RISC memory BIOS region before writing the microcode.
4830      * The BIOS may already be loaded and using its RISC LRAM region
4831      * so its region must be saved and restored.
4832      *
4833      * Note: This code makes the assumption, which is currently true,
4834      * that a chip reset does not clear RISC LRAM.
4835      */
4836     for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4837         AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4838                 bios_mem[i]);
4839     }
4840 
4841     /*
4842      * Save current per TID negotiated values.
4843      */
4844     AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4845     AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4846     AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4847     for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4848         AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4849                 max_cmd[tid]);
4850     }
4851 
4852     /*
4853      * RAM BIST (RAM Built-In Self Test)
4854      *
4855      * Address : I/O base + offset 0x38h register (byte).
4856      * Function: Bit 7-6(RW) : RAM mode
4857      *                          Normal Mode   : 0x00
4858      *                          Pre-test Mode : 0x40
4859      *                          RAM Test Mode : 0x80
4860      *           Bit 5       : unused
4861      *           Bit 4(RO)   : Done bit
4862      *           Bit 3-0(RO) : Status
4863      *                          Host Error    : 0x08
4864      *                          Int_RAM Error : 0x04
4865      *                          RISC Error    : 0x02
4866      *                          SCSI Error    : 0x01
4867      *                          No Error      : 0x00
4868      *
4869      * Note: RAM BIST code should be put right here, before loading the
4870      * microcode and after saving the RISC memory BIOS region.
4871      */
4872 
4873     /*
4874      * LRAM Pre-test
4875      *
4876      * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
4877      * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
4878      * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
4879      * to NORMAL_MODE, return an error too.
4880      */
4881     for (i = 0; i < 2; i++) {
4882         AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
4883         mdelay(10); /* Wait for 10ms before reading back. */
4884         byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4885         if ((byte & RAM_TEST_DONE) == 0
4886             || (byte & 0x0F) != PRE_TEST_VALUE) {
4887             asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4888             return ADV_ERROR;
4889         }
4890 
4891         AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4892         mdelay(10); /* Wait for 10ms before reading back. */
4893         if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
4894             != NORMAL_VALUE) {
4895             asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4896             return ADV_ERROR;
4897         }
4898     }
4899 
4900     /*
4901      * LRAM Test - It takes about 1.5 ms to run through the test.
4902      *
4903      * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
4904      * If Done bit not set or Status not 0, save register byte, set the
4905      * err_code, and return an error.
4906      */
4907     AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
4908     mdelay(10); /* Wait for 10ms before checking status. */
4909 
4910     byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4911     if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
4912         /* Get here if Done bit not set or Status not 0. */
4913         asc_dvc->bist_err_code = byte;  /* for BIOS display message */
4914         asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
4915         return ADV_ERROR;
4916     }
4917 
4918     /* We need to reset back to normal mode after LRAM test passes. */
4919     AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4920 
4921     err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4922     if (err) {
4923         printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4924                fwname, err);
4925         asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4926         return err;
4927     }
4928     if (fw->size < 4) {
4929         printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4930                fw->size, fwname);
4931         release_firmware(fw);
4932         asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4933         return -EINVAL;
4934     }
4935     chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4936          (fw->data[1] << 8) | fw->data[0];
4937     asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4938                          fw->size - 4, ADV_38C0800_MEMSIZE,
4939                          chksum);
4940     release_firmware(fw);
4941     if (asc_dvc->err_code)
4942         return ADV_ERROR;
4943 
4944     /*
4945      * Restore the RISC memory BIOS region.
4946      */
4947     for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4948         AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4949                  bios_mem[i]);
4950     }
4951 
4952     /*
4953      * Calculate and write the microcode code checksum to the microcode
4954      * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4955      */
4956     AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4957     AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4958     code_sum = 0;
4959     AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4960     for (word = begin_addr; word < end_addr; word += 2) {
4961         code_sum += AdvReadWordAutoIncLram(iop_base);
4962     }
4963     AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4964 
4965     /*
4966      * Read microcode version and date.
4967      */
4968     AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4969             asc_dvc->cfg->mcode_date);
4970     AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4971             asc_dvc->cfg->mcode_version);
4972 
4973     /*
4974      * Set the chip type to indicate the ASC38C0800.
4975      */
4976     AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
4977 
4978     /*
4979      * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
4980      * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
4981      * cable detection and then we are able to read C_DET[3:0].
4982      *
4983      * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
4984      * Microcode Default Value' section below.
4985      */
4986     scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4987     AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
4988                  scsi_cfg1 | DIS_TERM_DRV);
4989 
4990     /*
4991      * If the PCI Configuration Command Register "Parity Error Response
4992      * Control" Bit was clear (0), then set the microcode variable
4993      * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4994      * to ignore DMA parity errors.
4995      */
4996     if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4997         AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4998         word |= CONTROL_FLAG_IGNORE_PERR;
4999         AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5000     }
5001 
5002     /*
5003      * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5004      * bits for the default FIFO threshold.
5005      *
5006      * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5007      *
5008      * For DMA Errata #4 set the BC_THRESH_ENB bit.
5009      */
5010     AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5011                  BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5012                  READ_CMD_MRM);
5013 
5014     /*
5015      * Microcode operating variables for WDTR, SDTR, and command tag
5016      * queuing will be set in slave_configure() based on what a
5017      * device reports it is capable of in Inquiry byte 7.
5018      *
5019      * If SCSI Bus Resets have been disabled, then directly set
5020      * SDTR and WDTR from the EEPROM configuration. This will allow
5021      * the BIOS and warm boot to work without a SCSI bus hang on
5022      * the Inquiry caused by host and target mismatched DTR values.
5023      * Without the SCSI Bus Reset, before an Inquiry a device can't
5024      * be assumed to be in Asynchronous, Narrow mode.
5025      */
5026     if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5027         AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5028                  asc_dvc->wdtr_able);
5029         AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5030                  asc_dvc->sdtr_able);
5031     }
5032 
5033     /*
5034      * Set microcode operating variables for DISC and SDTR_SPEED1,
5035      * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5036      * configuration values.
5037      *
5038      * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5039      * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5040      * without determining here whether the device supports SDTR.
5041      */
5042     AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5043              asc_dvc->cfg->disc_enable);
5044     AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5045     AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5046     AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5047     AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5048 
5049     /*
5050      * Set SCSI_CFG0 Microcode Default Value.
5051      *
5052      * The microcode will set the SCSI_CFG0 register using this value
5053      * after it is started below.
5054      */
5055     AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5056              PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5057              asc_dvc->chip_scsi_id);
5058 
5059     /*
5060      * Determine SCSI_CFG1 Microcode Default Value.
5061      *
5062      * The microcode will set the SCSI_CFG1 register using this value
5063      * after it is started below.
5064      */
5065 
5066     /* Read current SCSI_CFG1 Register value. */
5067     scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5068 
5069     /*
5070      * If the internal narrow cable is reversed all of the SCSI_CTRL
5071      * register signals will be set. Check for and return an error if
5072      * this condition is found.
5073      */
5074     if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5075         asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5076         return ADV_ERROR;
5077     }
5078 
5079     /*
5080      * All kind of combinations of devices attached to one of four
5081      * connectors are acceptable except HVD device attached. For example,
5082      * LVD device can be attached to SE connector while SE device attached
5083      * to LVD connector.  If LVD device attached to SE connector, it only
5084      * runs up to Ultra speed.
5085      *
5086      * If an HVD device is attached to one of LVD connectors, return an
5087      * error.  However, there is no way to detect HVD device attached to
5088      * SE connectors.
5089      */
5090     if (scsi_cfg1 & HVD) {
5091         asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5092         return ADV_ERROR;
5093     }
5094 
5095     /*
5096      * If either SE or LVD automatic termination control is enabled, then
5097      * set the termination value based on a table listed in a_condor.h.
5098      *
5099      * If manual termination was specified with an EEPROM setting then
5100      * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5101      * to be 'ored' into SCSI_CFG1.
5102      */
5103     if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5104         /* SE automatic termination control is enabled. */
5105         switch (scsi_cfg1 & C_DET_SE) {
5106             /* TERM_SE_HI: on, TERM_SE_LO: on */
5107         case 0x1:
5108         case 0x2:
5109         case 0x3:
5110             asc_dvc->cfg->termination |= TERM_SE;
5111             break;
5112 
5113             /* TERM_SE_HI: on, TERM_SE_LO: off */
5114         case 0x0:
5115             asc_dvc->cfg->termination |= TERM_SE_HI;
5116             break;
5117         }
5118     }
5119 
5120     if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5121         /* LVD automatic termination control is enabled. */
5122         switch (scsi_cfg1 & C_DET_LVD) {
5123             /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5124         case 0x4:
5125         case 0x8:
5126         case 0xC:
5127             asc_dvc->cfg->termination |= TERM_LVD;
5128             break;
5129 
5130             /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5131         case 0x0:
5132             break;
5133         }
5134     }
5135 
5136     /*
5137      * Clear any set TERM_SE and TERM_LVD bits.
5138      */
5139     scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5140 
5141     /*
5142      * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5143      */
5144     scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5145 
5146     /*
5147      * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5148      * bits and set possibly modified termination control bits in the
5149      * Microcode SCSI_CFG1 Register Value.
5150      */
5151     scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5152 
5153     /*
5154      * Set SCSI_CFG1 Microcode Default Value
5155      *
5156      * Set possibly modified termination control and reset DIS_TERM_DRV
5157      * bits in the Microcode SCSI_CFG1 Register Value.
5158      *
5159      * The microcode will set the SCSI_CFG1 register using this value
5160      * after it is started below.
5161      */
5162     AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5163 
5164     /*
5165      * Set MEM_CFG Microcode Default Value
5166      *
5167      * The microcode will set the MEM_CFG register using this value
5168      * after it is started below.
5169      *
5170      * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5171      * are defined.
5172      *
5173      * ASC-38C0800 has 16KB internal memory.
5174      */
5175     AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5176              BIOS_EN | RAM_SZ_16KB);
5177 
5178     /*
5179      * Set SEL_MASK Microcode Default Value
5180      *
5181      * The microcode will set the SEL_MASK register using this value
5182      * after it is started below.
5183      */
5184     AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5185              ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5186 
5187     AdvBuildCarrierFreelist(asc_dvc);
5188 
5189     /*
5190      * Set-up the Host->RISC Initiator Command Queue (ICQ).
5191      */
5192 
5193     asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5194     if (!asc_dvc->icq_sp) {
5195         ASC_DBG(0, "Failed to get ICQ carrier\n");
5196         asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5197         return ADV_ERROR;
5198     }
5199 
5200     /*
5201      * Set RISC ICQ physical address start value.
5202      * carr_pa is LE, must be native before write
5203      */
5204     AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5205 
5206     /*
5207      * Set-up the RISC->Host Initiator Response Queue (IRQ).
5208      */
5209     asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5210     if (!asc_dvc->irq_sp) {
5211         ASC_DBG(0, "Failed to get IRQ carrier\n");
5212         asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5213         return ADV_ERROR;
5214     }
5215 
5216     /*
5217      * Set RISC IRQ physical address start value.
5218      *
5219      * carr_pa is LE, must be native before write *
5220      */
5221     AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5222     asc_dvc->carr_pending_cnt = 0;
5223 
5224     AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5225                  (ADV_INTR_ENABLE_HOST_INTR |
5226                   ADV_INTR_ENABLE_GLOBAL_INTR));
5227 
5228     AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5229     AdvWriteWordRegister(iop_base, IOPW_PC, word);
5230 
5231     /* finally, finally, gentlemen, start your engine */
5232     AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5233 
5234     /*
5235      * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5236      * Resets should be performed. The RISC has to be running
5237      * to issue a SCSI Bus Reset.
5238      */
5239     if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5240         /*
5241          * If the BIOS Signature is present in memory, restore the
5242          * BIOS Handshake Configuration Table and do not perform
5243          * a SCSI Bus Reset.
5244          */
5245         if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5246             0x55AA) {
5247             /*
5248              * Restore per TID negotiated values.
5249              */
5250             AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5251             AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5252             AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5253                      tagqng_able);
5254             for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5255                 AdvWriteByteLram(iop_base,
5256                          ASC_MC_NUMBER_OF_MAX_CMD + tid,
5257                          max_cmd[tid]);
5258             }
5259         } else {
5260             if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5261                 warn_code = ASC_WARN_BUSRESET_ERROR;
5262             }
5263         }
5264     }
5265 
5266     return warn_code;
5267 }
5268 
5269 /*
5270  * Initialize the ASC-38C1600.
5271  *
5272  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5273  *
5274  * For a non-fatal error return a warning code. If there are no warnings
5275  * then 0 is returned.
5276  *
5277  * Needed after initialization for error recovery.
5278  */
5279 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5280 {
5281     const struct firmware *fw;
5282     const char fwname[] = "advansys/38C1600.bin";
5283     AdvPortAddr iop_base;
5284     ushort warn_code;
5285     int begin_addr;
5286     int end_addr;
5287     ushort code_sum;
5288     long word;
5289     int i;
5290     int err;
5291     unsigned long chksum;
5292     ushort scsi_cfg1;
5293     uchar byte;
5294     uchar tid;
5295     ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
5296     ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5297     uchar max_cmd[ASC_MAX_TID + 1];
5298 
5299     /* If there is already an error, don't continue. */
5300     if (asc_dvc->err_code != 0) {
5301         return ADV_ERROR;
5302     }
5303 
5304     /*
5305      * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5306      */
5307     if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5308         asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5309         return ADV_ERROR;
5310     }
5311 
5312     warn_code = 0;
5313     iop_base = asc_dvc->iop_base;
5314 
5315     /*
5316      * Save the RISC memory BIOS region before writing the microcode.
5317      * The BIOS may already be loaded and using its RISC LRAM region
5318      * so its region must be saved and restored.
5319      *
5320      * Note: This code makes the assumption, which is currently true,
5321      * that a chip reset does not clear RISC LRAM.
5322      */
5323     for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5324         AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5325                 bios_mem[i]);
5326     }
5327 
5328     /*
5329      * Save current per TID negotiated values.
5330      */
5331     AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5332     AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5333     AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5334     AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5335     for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5336         AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5337                 max_cmd[tid]);
5338     }
5339 
5340     /*
5341      * RAM BIST (Built-In Self Test)
5342      *
5343      * Address : I/O base + offset 0x38h register (byte).
5344      * Function: Bit 7-6(RW) : RAM mode
5345      *                          Normal Mode   : 0x00
5346      *                          Pre-test Mode : 0x40
5347      *                          RAM Test Mode : 0x80
5348      *           Bit 5       : unused
5349      *           Bit 4(RO)   : Done bit
5350      *           Bit 3-0(RO) : Status
5351      *                          Host Error    : 0x08
5352      *                          Int_RAM Error : 0x04
5353      *                          RISC Error    : 0x02
5354      *                          SCSI Error    : 0x01
5355      *                          No Error      : 0x00
5356      *
5357      * Note: RAM BIST code should be put right here, before loading the
5358      * microcode and after saving the RISC memory BIOS region.
5359      */
5360 
5361     /*
5362      * LRAM Pre-test
5363      *
5364      * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5365      * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5366      * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5367      * to NORMAL_MODE, return an error too.
5368      */
5369     for (i = 0; i < 2; i++) {
5370         AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5371         mdelay(10); /* Wait for 10ms before reading back. */
5372         byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5373         if ((byte & RAM_TEST_DONE) == 0
5374             || (byte & 0x0F) != PRE_TEST_VALUE) {
5375             asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5376             return ADV_ERROR;
5377         }
5378 
5379         AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5380         mdelay(10); /* Wait for 10ms before reading back. */
5381         if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5382             != NORMAL_VALUE) {
5383             asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5384             return ADV_ERROR;
5385         }
5386     }
5387 
5388     /*
5389      * LRAM Test - It takes about 1.5 ms to run through the test.
5390      *
5391      * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5392      * If Done bit not set or Status not 0, save register byte, set the
5393      * err_code, and return an error.
5394      */
5395     AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5396     mdelay(10); /* Wait for 10ms before checking status. */
5397 
5398     byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5399     if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5400         /* Get here if Done bit not set or Status not 0. */
5401         asc_dvc->bist_err_code = byte;  /* for BIOS display message */
5402         asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5403         return ADV_ERROR;
5404     }
5405 
5406     /* We need to reset back to normal mode after LRAM test passes. */
5407     AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5408 
5409     err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5410     if (err) {
5411         printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5412                fwname, err);
5413         asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5414         return err;
5415     }
5416     if (fw->size < 4) {
5417         printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5418                fw->size, fwname);
5419         release_firmware(fw);
5420         asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5421         return -EINVAL;
5422     }
5423     chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5424          (fw->data[1] << 8) | fw->data[0];
5425     asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5426                          fw->size - 4, ADV_38C1600_MEMSIZE,
5427                          chksum);
5428     release_firmware(fw);
5429     if (asc_dvc->err_code)
5430         return ADV_ERROR;
5431 
5432     /*
5433      * Restore the RISC memory BIOS region.
5434      */
5435     for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5436         AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5437                  bios_mem[i]);
5438     }
5439 
5440     /*
5441      * Calculate and write the microcode code checksum to the microcode
5442      * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5443      */
5444     AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5445     AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5446     code_sum = 0;
5447     AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5448     for (word = begin_addr; word < end_addr; word += 2) {
5449         code_sum += AdvReadWordAutoIncLram(iop_base);
5450     }
5451     AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5452 
5453     /*
5454      * Read microcode version and date.
5455      */
5456     AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5457             asc_dvc->cfg->mcode_date);
5458     AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5459             asc_dvc->cfg->mcode_version);
5460 
5461     /*
5462      * Set the chip type to indicate the ASC38C1600.
5463      */
5464     AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5465 
5466     /*
5467      * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5468      * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5469      * cable detection and then we are able to read C_DET[3:0].
5470      *
5471      * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5472      * Microcode Default Value' section below.
5473      */
5474     scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5475     AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5476                  scsi_cfg1 | DIS_TERM_DRV);
5477 
5478     /*
5479      * If the PCI Configuration Command Register "Parity Error Response
5480      * Control" Bit was clear (0), then set the microcode variable
5481      * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5482      * to ignore DMA parity errors.
5483      */
5484     if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5485         AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5486         word |= CONTROL_FLAG_IGNORE_PERR;
5487         AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5488     }
5489 
5490     /*
5491      * If the BIOS control flag AIPP (Asynchronous Information
5492      * Phase Protection) disable bit is not set, then set the firmware
5493      * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5494      * AIPP checking and encoding.
5495      */
5496     if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5497         AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5498         word |= CONTROL_FLAG_ENABLE_AIPP;
5499         AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5500     }
5501 
5502     /*
5503      * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5504      * and START_CTL_TH [3:2].
5505      */
5506     AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5507                  FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5508 
5509     /*
5510      * Microcode operating variables for WDTR, SDTR, and command tag
5511      * queuing will be set in slave_configure() based on what a
5512      * device reports it is capable of in Inquiry byte 7.
5513      *
5514      * If SCSI Bus Resets have been disabled, then directly set
5515      * SDTR and WDTR from the EEPROM configuration. This will allow
5516      * the BIOS and warm boot to work without a SCSI bus hang on
5517      * the Inquiry caused by host and target mismatched DTR values.
5518      * Without the SCSI Bus Reset, before an Inquiry a device can't
5519      * be assumed to be in Asynchronous, Narrow mode.
5520      */
5521     if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5522         AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5523                  asc_dvc->wdtr_able);
5524         AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5525                  asc_dvc->sdtr_able);
5526     }
5527 
5528     /*
5529      * Set microcode operating variables for DISC and SDTR_SPEED1,
5530      * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5531      * configuration values.
5532      *
5533      * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5534      * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5535      * without determining here whether the device supports SDTR.
5536      */
5537     AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5538              asc_dvc->cfg->disc_enable);
5539     AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5540     AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5541     AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5542     AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5543 
5544     /*
5545      * Set SCSI_CFG0 Microcode Default Value.
5546      *
5547      * The microcode will set the SCSI_CFG0 register using this value
5548      * after it is started below.
5549      */
5550     AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5551              PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5552              asc_dvc->chip_scsi_id);
5553 
5554     /*
5555      * Calculate SCSI_CFG1 Microcode Default Value.
5556      *
5557      * The microcode will set the SCSI_CFG1 register using this value
5558      * after it is started below.
5559      *
5560      * Each ASC-38C1600 function has only two cable detect bits.
5561      * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5562      */
5563     scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5564 
5565     /*
5566      * If the cable is reversed all of the SCSI_CTRL register signals
5567      * will be set. Check for and return an error if this condition is
5568      * found.
5569      */
5570     if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5571         asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5572         return ADV_ERROR;
5573     }
5574 
5575     /*
5576      * Each ASC-38C1600 function has two connectors. Only an HVD device
5577      * can not be connected to either connector. An LVD device or SE device
5578      * may be connected to either connecor. If an SE device is connected,
5579      * then at most Ultra speed (20 Mhz) can be used on both connectors.
5580      *
5581      * If an HVD device is attached, return an error.
5582      */
5583     if (scsi_cfg1 & HVD) {
5584         asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5585         return ADV_ERROR;
5586     }
5587 
5588     /*
5589      * Each function in the ASC-38C1600 uses only the SE cable detect and
5590      * termination because there are two connectors for each function. Each
5591      * function may use either LVD or SE mode. Corresponding the SE automatic
5592      * termination control EEPROM bits are used for each function. Each
5593      * function has its own EEPROM. If SE automatic control is enabled for
5594      * the function, then set the termination value based on a table listed
5595      * in a_condor.h.
5596      *
5597      * If manual termination is specified in the EEPROM for the function,
5598      * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5599      * ready to be 'ored' into SCSI_CFG1.
5600      */
5601     if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5602         struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5603         /* SE automatic termination control is enabled. */
5604         switch (scsi_cfg1 & C_DET_SE) {
5605             /* TERM_SE_HI: on, TERM_SE_LO: on */
5606         case 0x1:
5607         case 0x2:
5608         case 0x3:
5609             asc_dvc->cfg->termination |= TERM_SE;
5610             break;
5611 
5612         case 0x0:
5613             if (PCI_FUNC(pdev->devfn) == 0) {
5614                 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5615             } else {
5616                 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5617                 asc_dvc->cfg->termination |= TERM_SE_HI;
5618             }
5619             break;
5620         }
5621     }
5622 
5623     /*
5624      * Clear any set TERM_SE bits.
5625      */
5626     scsi_cfg1 &= ~TERM_SE;
5627 
5628     /*
5629      * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5630      */
5631     scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5632 
5633     /*
5634      * Clear Big Endian and Terminator Polarity bits and set possibly
5635      * modified termination control bits in the Microcode SCSI_CFG1
5636      * Register Value.
5637      *
5638      * Big Endian bit is not used even on big endian machines.
5639      */
5640     scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5641 
5642     /*
5643      * Set SCSI_CFG1 Microcode Default Value
5644      *
5645      * Set possibly modified termination control bits in the Microcode
5646      * SCSI_CFG1 Register Value.
5647      *
5648      * The microcode will set the SCSI_CFG1 register using this value
5649      * after it is started below.
5650      */
5651     AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5652 
5653     /*
5654      * Set MEM_CFG Microcode Default Value
5655      *
5656      * The microcode will set the MEM_CFG register using this value
5657      * after it is started below.
5658      *
5659      * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5660      * are defined.
5661      *
5662      * ASC-38C1600 has 32KB internal memory.
5663      *
5664      * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5665      * out a special 16K Adv Library and Microcode version. After the issue
5666      * resolved, we should turn back to the 32K support. Both a_condor.h and
5667      * mcode.sas files also need to be updated.
5668      *
5669      * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5670      *  BIOS_EN | RAM_SZ_32KB);
5671      */
5672     AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5673              BIOS_EN | RAM_SZ_16KB);
5674 
5675     /*
5676      * Set SEL_MASK Microcode Default Value
5677      *
5678      * The microcode will set the SEL_MASK register using this value
5679      * after it is started below.
5680      */
5681     AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5682              ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5683 
5684     AdvBuildCarrierFreelist(asc_dvc);
5685 
5686     /*
5687      * Set-up the Host->RISC Initiator Command Queue (ICQ).
5688      */
5689     asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5690     if (!asc_dvc->icq_sp) {
5691         asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5692         return ADV_ERROR;
5693     }
5694 
5695     /*
5696      * Set RISC ICQ physical address start value. Initialize the
5697      * COMMA register to the same value otherwise the RISC will
5698      * prematurely detect a command is available.
5699      */
5700     AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5701     AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5702                   le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5703 
5704     /*
5705      * Set-up the RISC->Host Initiator Response Queue (IRQ).
5706      */
5707     asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5708     if (!asc_dvc->irq_sp) {
5709         asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5710         return ADV_ERROR;
5711     }
5712 
5713     /*
5714      * Set RISC IRQ physical address start value.
5715      */
5716     AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5717     asc_dvc->carr_pending_cnt = 0;
5718 
5719     AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5720                  (ADV_INTR_ENABLE_HOST_INTR |
5721                   ADV_INTR_ENABLE_GLOBAL_INTR));
5722     AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5723     AdvWriteWordRegister(iop_base, IOPW_PC, word);
5724 
5725     /* finally, finally, gentlemen, start your engine */
5726     AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5727 
5728     /*
5729      * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5730      * Resets should be performed. The RISC has to be running
5731      * to issue a SCSI Bus Reset.
5732      */
5733     if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5734         /*
5735          * If the BIOS Signature is present in memory, restore the
5736          * per TID microcode operating variables.
5737          */
5738         if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5739             0x55AA) {
5740             /*
5741              * Restore per TID negotiated values.
5742              */
5743             AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5744             AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5745             AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5746             AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5747                      tagqng_able);
5748             for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5749                 AdvWriteByteLram(iop_base,
5750                          ASC_MC_NUMBER_OF_MAX_CMD + tid,
5751                          max_cmd[tid]);
5752             }
5753         } else {
5754             if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5755                 warn_code = ASC_WARN_BUSRESET_ERROR;
5756             }
5757         }
5758     }
5759 
5760     return warn_code;
5761 }
5762 
5763 /*
5764  * Reset chip and SCSI Bus.
5765  *
5766  * Return Value:
5767  *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
5768  *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
5769  */
5770 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
5771 {
5772     int status;
5773     ushort wdtr_able, sdtr_able, tagqng_able;
5774     ushort ppr_able = 0;
5775     uchar tid, max_cmd[ADV_MAX_TID + 1];
5776     AdvPortAddr iop_base;
5777     ushort bios_sig;
5778 
5779     iop_base = asc_dvc->iop_base;
5780 
5781     /*
5782      * Save current per TID negotiated values.
5783      */
5784     AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5785     AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5786     if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5787         AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5788     }
5789     AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5790     for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5791         AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5792                 max_cmd[tid]);
5793     }
5794 
5795     /*
5796      * Force the AdvInitAsc3550/38C0800Driver() function to
5797      * perform a SCSI Bus Reset by clearing the BIOS signature word.
5798      * The initialization functions assumes a SCSI Bus Reset is not
5799      * needed if the BIOS signature word is present.
5800      */
5801     AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5802     AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
5803 
5804     /*
5805      * Stop chip and reset it.
5806      */
5807     AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
5808     AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
5809     mdelay(100);
5810     AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
5811                  ADV_CTRL_REG_CMD_WR_IO_REG);
5812 
5813     /*
5814      * Reset Adv Library error code, if any, and try
5815      * re-initializing the chip.
5816      */
5817     asc_dvc->err_code = 0;
5818     if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5819         status = AdvInitAsc38C1600Driver(asc_dvc);
5820     } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
5821         status = AdvInitAsc38C0800Driver(asc_dvc);
5822     } else {
5823         status = AdvInitAsc3550Driver(asc_dvc);
5824     }
5825 
5826     /* Translate initialization return value to status value. */
5827     if (status == 0) {
5828         status = ADV_TRUE;
5829     } else {
5830         status = ADV_FALSE;
5831     }
5832 
5833     /*
5834      * Restore the BIOS signature word.
5835      */
5836     AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5837 
5838     /*
5839      * Restore per TID negotiated values.
5840      */
5841     AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5842     AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5843     if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5844         AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5845     }
5846     AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5847     for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5848         AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5849                  max_cmd[tid]);
5850     }
5851 
5852     return status;
5853 }
5854 
5855 /*
5856  * adv_async_callback() - Adv Library asynchronous event callback function.
5857  */
5858 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
5859 {
5860     switch (code) {
5861     case ADV_ASYNC_SCSI_BUS_RESET_DET:
5862         /*
5863          * The firmware detected a SCSI Bus reset.
5864          */
5865         ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
5866         break;
5867 
5868     case ADV_ASYNC_RDMA_FAILURE:
5869         /*
5870          * Handle RDMA failure by resetting the SCSI Bus and
5871          * possibly the chip if it is unresponsive. Log the error
5872          * with a unique code.
5873          */
5874         ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
5875         AdvResetChipAndSB(adv_dvc_varp);
5876         break;
5877 
5878     case ADV_HOST_SCSI_BUS_RESET:
5879         /*
5880          * Host generated SCSI bus reset occurred.
5881          */
5882         ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
5883         break;
5884 
5885     default:
5886         ASC_DBG(0, "unknown code 0x%x\n", code);
5887         break;
5888     }
5889 }
5890 
5891 /*
5892  * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
5893  *
5894  * Callback function for the Wide SCSI Adv Library.
5895  */
5896 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
5897 {
5898     struct asc_board *boardp = adv_dvc_varp->drv_ptr;
5899     adv_req_t *reqp;
5900     adv_sgblk_t *sgblkp;
5901     struct scsi_cmnd *scp;
5902     u32 resid_cnt;
5903     dma_addr_t sense_addr;
5904 
5905     ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n",
5906         adv_dvc_varp, scsiqp);
5907     ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
5908 
5909     /*
5910      * Get the adv_req_t structure for the command that has been
5911      * completed. The adv_req_t structure actually contains the
5912      * completed ADV_SCSI_REQ_Q structure.
5913      */
5914     scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag);
5915 
5916     ASC_DBG(1, "scp 0x%p\n", scp);
5917     if (scp == NULL) {
5918         ASC_PRINT
5919             ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
5920         return;
5921     }
5922     ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
5923 
5924     reqp = (adv_req_t *)scp->host_scribble;
5925     ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
5926     if (reqp == NULL) {
5927         ASC_PRINT("adv_isr_callback: reqp is NULL\n");
5928         return;
5929     }
5930     /*
5931      * Remove backreferences to avoid duplicate
5932      * command completions.
5933      */
5934     scp->host_scribble = NULL;
5935     reqp->cmndp = NULL;
5936 
5937     ASC_STATS(boardp->shost, callback);
5938     ASC_DBG(1, "shost 0x%p\n", boardp->shost);
5939 
5940     sense_addr = le32_to_cpu(scsiqp->sense_addr);
5941     dma_unmap_single(boardp->dev, sense_addr,
5942              SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
5943 
5944     /*
5945      * 'done_status' contains the command's ending status.
5946      */
5947     scp->result = 0;
5948     switch (scsiqp->done_status) {
5949     case QD_NO_ERROR:
5950         ASC_DBG(2, "QD_NO_ERROR\n");
5951 
5952         /*
5953          * Check for an underrun condition.
5954          *
5955          * If there was no error and an underrun condition, then
5956          * then return the number of underrun bytes.
5957          */
5958         resid_cnt = le32_to_cpu(scsiqp->data_cnt);
5959         if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
5960             resid_cnt <= scsi_bufflen(scp)) {
5961             ASC_DBG(1, "underrun condition %lu bytes\n",
5962                  (ulong)resid_cnt);
5963             scsi_set_resid(scp, resid_cnt);
5964         }
5965         break;
5966 
5967     case QD_WITH_ERROR:
5968         ASC_DBG(2, "QD_WITH_ERROR\n");
5969         switch (scsiqp->host_status) {
5970         case QHSTA_NO_ERROR:
5971             set_status_byte(scp, scsiqp->scsi_status);
5972             if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
5973                 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
5974                 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
5975                           SCSI_SENSE_BUFFERSIZE);
5976             }
5977             break;
5978 
5979         default:
5980             /* Some other QHSTA error occurred. */
5981             ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
5982             set_host_byte(scp, DID_BAD_TARGET);
5983             break;
5984         }
5985         break;
5986 
5987     case QD_ABORTED_BY_HOST:
5988         ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
5989         set_status_byte(scp, scsiqp->scsi_status);
5990         set_host_byte(scp, DID_ABORT);
5991         break;
5992 
5993     default:
5994         ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
5995         set_status_byte(scp, scsiqp->scsi_status);
5996         set_host_byte(scp, DID_ERROR);
5997         break;
5998     }
5999 
6000     /*
6001      * If the 'init_tidmask' bit isn't already set for the target and the
6002      * current request finished normally, then set the bit for the target
6003      * to indicate that a device is present.
6004      */
6005     if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6006         scsiqp->done_status == QD_NO_ERROR &&
6007         scsiqp->host_status == QHSTA_NO_ERROR) {
6008         boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6009     }
6010 
6011     asc_scsi_done(scp);
6012 
6013     /*
6014      * Free all 'adv_sgblk_t' structures allocated for the request.
6015      */
6016     while ((sgblkp = reqp->sgblkp) != NULL) {
6017         /* Remove 'sgblkp' from the request list. */
6018         reqp->sgblkp = sgblkp->next_sgblkp;
6019 
6020         dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
6021                   sgblkp->sg_addr);
6022     }
6023 
6024     ASC_DBG(1, "done\n");
6025 }
6026 
6027 /*
6028  * Adv Library Interrupt Service Routine
6029  *
6030  *  This function is called by a driver's interrupt service routine.
6031  *  The function disables and re-enables interrupts.
6032  *
6033  *  When a microcode idle command is completed, the ADV_DVC_VAR
6034  *  'idle_cmd_done' field is set to ADV_TRUE.
6035  *
6036  *  Note: AdvISR() can be called when interrupts are disabled or even
6037  *  when there is no hardware interrupt condition present. It will
6038  *  always check for completed idle commands and microcode requests.
6039  *  This is an important feature that shouldn't be changed because it
6040  *  allows commands to be completed from polling mode loops.
6041  *
6042  * Return:
6043  *   ADV_TRUE(1) - interrupt was pending
6044  *   ADV_FALSE(0) - no interrupt was pending
6045  */
6046 static int AdvISR(ADV_DVC_VAR *asc_dvc)
6047 {
6048     AdvPortAddr iop_base;
6049     uchar int_stat;
6050     ADV_CARR_T *free_carrp;
6051     __le32 irq_next_vpa;
6052     ADV_SCSI_REQ_Q *scsiq;
6053     adv_req_t *reqp;
6054 
6055     iop_base = asc_dvc->iop_base;
6056 
6057     /* Reading the register clears the interrupt. */
6058     int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6059 
6060     if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6061              ADV_INTR_STATUS_INTRC)) == 0) {
6062         return ADV_FALSE;
6063     }
6064 
6065     /*
6066      * Notify the driver of an asynchronous microcode condition by
6067      * calling the adv_async_callback function. The function
6068      * is passed the microcode ASC_MC_INTRB_CODE byte value.
6069      */
6070     if (int_stat & ADV_INTR_STATUS_INTRB) {
6071         uchar intrb_code;
6072 
6073         AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6074 
6075         if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6076             asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6077             if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6078                 asc_dvc->carr_pending_cnt != 0) {
6079                 AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6080                              ADV_TICKLE_A);
6081                 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6082                     AdvWriteByteRegister(iop_base,
6083                                  IOPB_TICKLE,
6084                                  ADV_TICKLE_NOP);
6085                 }
6086             }
6087         }
6088 
6089         adv_async_callback(asc_dvc, intrb_code);
6090     }
6091 
6092     /*
6093      * Check if the IRQ stopper carrier contains a completed request.
6094      */
6095     while (((irq_next_vpa =
6096          le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) {
6097         /*
6098          * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6099          * The RISC will have set 'areq_vpa' to a virtual address.
6100          *
6101          * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr
6102          * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6103          * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr'
6104          * in AdvExeScsiQueue().
6105          */
6106         u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa);
6107         ASC_DBG(1, "irq_sp %p areq_vpa %u\n",
6108             asc_dvc->irq_sp, pa_offset);
6109         reqp = adv_get_reqp(asc_dvc, pa_offset);
6110         scsiq = &reqp->scsi_req_q;
6111 
6112         /*
6113          * Request finished with good status and the queue was not
6114          * DMAed to host memory by the firmware. Set all status fields
6115          * to indicate good status.
6116          */
6117         if ((irq_next_vpa & ADV_RQ_GOOD) != 0) {
6118             scsiq->done_status = QD_NO_ERROR;
6119             scsiq->host_status = scsiq->scsi_status = 0;
6120             scsiq->data_cnt = 0L;
6121         }
6122 
6123         /*
6124          * Advance the stopper pointer to the next carrier
6125          * ignoring the lower four bits. Free the previous
6126          * stopper carrier.
6127          */
6128         free_carrp = asc_dvc->irq_sp;
6129         asc_dvc->irq_sp = adv_get_carrier(asc_dvc,
6130                           ADV_GET_CARRP(irq_next_vpa));
6131 
6132         free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va;
6133         asc_dvc->carr_freelist = free_carrp;
6134         asc_dvc->carr_pending_cnt--;
6135 
6136         /*
6137          * Clear request microcode control flag.
6138          */
6139         scsiq->cntl = 0;
6140 
6141         /*
6142          * Notify the driver of the completed request by passing
6143          * the ADV_SCSI_REQ_Q pointer to its callback function.
6144          */
6145         adv_isr_callback(asc_dvc, scsiq);
6146         /*
6147          * Note: After the driver callback function is called, 'scsiq'
6148          * can no longer be referenced.
6149          *
6150          * Fall through and continue processing other completed
6151          * requests...
6152          */
6153     }
6154     return ADV_TRUE;
6155 }
6156 
6157 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6158 {
6159     if (asc_dvc->err_code == 0) {
6160         asc_dvc->err_code = err_code;
6161         AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6162                  err_code);
6163     }
6164     return err_code;
6165 }
6166 
6167 static void AscAckInterrupt(PortAddr iop_base)
6168 {
6169     uchar host_flag;
6170     uchar risc_flag;
6171     ushort loop;
6172 
6173     loop = 0;
6174     do {
6175         risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6176         if (loop++ > 0x7FFF) {
6177             break;
6178         }
6179     } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6180     host_flag =
6181         AscReadLramByte(iop_base,
6182                 ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6183     AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6184              (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6185     AscSetChipStatus(iop_base, CIW_INT_ACK);
6186     loop = 0;
6187     while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6188         AscSetChipStatus(iop_base, CIW_INT_ACK);
6189         if (loop++ > 3) {
6190             break;
6191         }
6192     }
6193     AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6194 }
6195 
6196 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6197 {
6198     const uchar *period_table;
6199     int max_index;
6200     int min_index;
6201     int i;
6202 
6203     period_table = asc_dvc->sdtr_period_tbl;
6204     max_index = (int)asc_dvc->max_sdtr_index;
6205     min_index = (int)asc_dvc->min_sdtr_index;
6206     if ((syn_time <= period_table[max_index])) {
6207         for (i = min_index; i < (max_index - 1); i++) {
6208             if (syn_time <= period_table[i]) {
6209                 return (uchar)i;
6210             }
6211         }
6212         return (uchar)max_index;
6213     } else {
6214         return (uchar)(max_index + 1);
6215     }
6216 }
6217 
6218 static uchar
6219 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6220 {
6221     PortAddr iop_base = asc_dvc->iop_base;
6222     uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6223     EXT_MSG sdtr_buf = {
6224         .msg_type = EXTENDED_MESSAGE,
6225         .msg_len = MS_SDTR_LEN,
6226         .msg_req = EXTENDED_SDTR,
6227         .xfer_period = sdtr_period,
6228         .req_ack_offset = sdtr_offset,
6229     };
6230     sdtr_offset &= ASC_SYN_MAX_OFFSET;
6231 
6232     if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6233         AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6234                     (uchar *)&sdtr_buf,
6235                     sizeof(EXT_MSG) >> 1);
6236         return ((sdtr_period_index << 4) | sdtr_offset);
6237     } else {
6238         sdtr_buf.req_ack_offset = 0;
6239         AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6240                     (uchar *)&sdtr_buf,
6241                     sizeof(EXT_MSG) >> 1);
6242         return 0;
6243     }
6244 }
6245 
6246 static uchar
6247 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6248 {
6249     uchar byte;
6250     uchar sdtr_period_ix;
6251 
6252     sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6253     if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6254         return 0xFF;
6255     byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6256     return byte;
6257 }
6258 
6259 static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6260 {
6261     ASC_SCSI_BIT_ID_TYPE org_id;
6262     int i;
6263     bool sta = true;
6264 
6265     AscSetBank(iop_base, 1);
6266     org_id = AscReadChipDvcID(iop_base);
6267     for (i = 0; i <= ASC_MAX_TID; i++) {
6268         if (org_id == (0x01 << i))
6269             break;
6270     }
6271     org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6272     AscWriteChipDvcID(iop_base, id);
6273     if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6274         AscSetBank(iop_base, 0);
6275         AscSetChipSyn(iop_base, sdtr_data);
6276         if (AscGetChipSyn(iop_base) != sdtr_data) {
6277             sta = false;
6278         }
6279     } else {
6280         sta = false;
6281     }
6282     AscSetBank(iop_base, 1);
6283     AscWriteChipDvcID(iop_base, org_id);
6284     AscSetBank(iop_base, 0);
6285     return (sta);
6286 }
6287 
6288 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6289 {
6290     AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6291     AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6292 }
6293 
6294 static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6295 {
6296     EXT_MSG ext_msg;
6297     EXT_MSG out_msg;
6298     ushort halt_q_addr;
6299     bool sdtr_accept;
6300     ushort int_halt_code;
6301     ASC_SCSI_BIT_ID_TYPE scsi_busy;
6302     ASC_SCSI_BIT_ID_TYPE target_id;
6303     PortAddr iop_base;
6304     uchar tag_code;
6305     uchar q_status;
6306     uchar halt_qp;
6307     uchar sdtr_data;
6308     uchar target_ix;
6309     uchar q_cntl, tid_no;
6310     uchar cur_dvc_qng;
6311     uchar asyn_sdtr;
6312     uchar scsi_status;
6313     struct asc_board *boardp;
6314 
6315     BUG_ON(!asc_dvc->drv_ptr);
6316     boardp = asc_dvc->drv_ptr;
6317 
6318     iop_base = asc_dvc->iop_base;
6319     int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6320 
6321     halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6322     halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6323     target_ix = AscReadLramByte(iop_base,
6324                     (ushort)(halt_q_addr +
6325                          (ushort)ASC_SCSIQ_B_TARGET_IX));
6326     q_cntl = AscReadLramByte(iop_base,
6327                 (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6328     tid_no = ASC_TIX_TO_TID(target_ix);
6329     target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6330     if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6331         asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6332     } else {
6333         asyn_sdtr = 0;
6334     }
6335     if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6336         if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6337             AscSetChipSDTR(iop_base, 0, tid_no);
6338             boardp->sdtr_data[tid_no] = 0;
6339         }
6340         AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6341         return;
6342     } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6343         if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6344             AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6345             boardp->sdtr_data[tid_no] = asyn_sdtr;
6346         }
6347         AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6348         return;
6349     } else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6350         AscMemWordCopyPtrFromLram(iop_base,
6351                       ASCV_MSGIN_BEG,
6352                       (uchar *)&ext_msg,
6353                       sizeof(EXT_MSG) >> 1);
6354 
6355         if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6356             ext_msg.msg_req == EXTENDED_SDTR &&
6357             ext_msg.msg_len == MS_SDTR_LEN) {
6358             sdtr_accept = true;
6359             if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6360 
6361                 sdtr_accept = false;
6362                 ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6363             }
6364             if ((ext_msg.xfer_period <
6365                  asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6366                 || (ext_msg.xfer_period >
6367                 asc_dvc->sdtr_period_tbl[asc_dvc->
6368                              max_sdtr_index])) {
6369                 sdtr_accept = false;
6370                 ext_msg.xfer_period =
6371                     asc_dvc->sdtr_period_tbl[asc_dvc->
6372                                  min_sdtr_index];
6373             }
6374             if (sdtr_accept) {
6375                 sdtr_data =
6376                     AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6377                            ext_msg.req_ack_offset);
6378                 if (sdtr_data == 0xFF) {
6379 
6380                     q_cntl |= QC_MSG_OUT;
6381                     asc_dvc->init_sdtr &= ~target_id;
6382                     asc_dvc->sdtr_done &= ~target_id;
6383                     AscSetChipSDTR(iop_base, asyn_sdtr,
6384                                tid_no);
6385                     boardp->sdtr_data[tid_no] = asyn_sdtr;
6386                 }
6387             }
6388             if (ext_msg.req_ack_offset == 0) {
6389 
6390                 q_cntl &= ~QC_MSG_OUT;
6391                 asc_dvc->init_sdtr &= ~target_id;
6392                 asc_dvc->sdtr_done &= ~target_id;
6393                 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6394             } else {
6395                 if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6396                     q_cntl &= ~QC_MSG_OUT;
6397                     asc_dvc->sdtr_done |= target_id;
6398                     asc_dvc->init_sdtr |= target_id;
6399                     asc_dvc->pci_fix_asyn_xfer &=
6400                         ~target_id;
6401                     sdtr_data =
6402                         AscCalSDTRData(asc_dvc,
6403                                ext_msg.xfer_period,
6404                                ext_msg.
6405                                req_ack_offset);
6406                     AscSetChipSDTR(iop_base, sdtr_data,
6407                                tid_no);
6408                     boardp->sdtr_data[tid_no] = sdtr_data;
6409                 } else {
6410                     q_cntl |= QC_MSG_OUT;
6411                     AscMsgOutSDTR(asc_dvc,
6412                               ext_msg.xfer_period,
6413                               ext_msg.req_ack_offset);
6414                     asc_dvc->pci_fix_asyn_xfer &=
6415                         ~target_id;
6416                     sdtr_data =
6417                         AscCalSDTRData(asc_dvc,
6418                                ext_msg.xfer_period,
6419                                ext_msg.
6420                                req_ack_offset);
6421                     AscSetChipSDTR(iop_base, sdtr_data,
6422                                tid_no);
6423                     boardp->sdtr_data[tid_no] = sdtr_data;
6424                     asc_dvc->sdtr_done |= target_id;
6425                     asc_dvc->init_sdtr |= target_id;
6426                 }
6427             }
6428 
6429             AscWriteLramByte(iop_base,
6430                      (ushort)(halt_q_addr +
6431                           (ushort)ASC_SCSIQ_B_CNTL),
6432                      q_cntl);
6433             AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6434             return;
6435         } else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6436                ext_msg.msg_req == EXTENDED_WDTR &&
6437                ext_msg.msg_len == MS_WDTR_LEN) {
6438 
6439             ext_msg.wdtr_width = 0;
6440             AscMemWordCopyPtrToLram(iop_base,
6441                         ASCV_MSGOUT_BEG,
6442                         (uchar *)&ext_msg,
6443                         sizeof(EXT_MSG) >> 1);
6444             q_cntl |= QC_MSG_OUT;
6445             AscWriteLramByte(iop_base,
6446                      (ushort)(halt_q_addr +
6447                           (ushort)ASC_SCSIQ_B_CNTL),
6448                      q_cntl);
6449             AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6450             return;
6451         } else {
6452 
6453             ext_msg.msg_type = MESSAGE_REJECT;
6454             AscMemWordCopyPtrToLram(iop_base,
6455                         ASCV_MSGOUT_BEG,
6456                         (uchar *)&ext_msg,
6457                         sizeof(EXT_MSG) >> 1);
6458             q_cntl |= QC_MSG_OUT;
6459             AscWriteLramByte(iop_base,
6460                      (ushort)(halt_q_addr +
6461                           (ushort)ASC_SCSIQ_B_CNTL),
6462                      q_cntl);
6463             AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6464             return;
6465         }
6466     } else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6467 
6468         q_cntl |= QC_REQ_SENSE;
6469 
6470         if ((asc_dvc->init_sdtr & target_id) != 0) {
6471 
6472             asc_dvc->sdtr_done &= ~target_id;
6473 
6474             sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6475             q_cntl |= QC_MSG_OUT;
6476             AscMsgOutSDTR(asc_dvc,
6477                       asc_dvc->
6478                       sdtr_period_tbl[(sdtr_data >> 4) &
6479                               (uchar)(asc_dvc->
6480                                   max_sdtr_index -
6481                                   1)],
6482                       (uchar)(sdtr_data & (uchar)
6483                           ASC_SYN_MAX_OFFSET));
6484         }
6485 
6486         AscWriteLramByte(iop_base,
6487                  (ushort)(halt_q_addr +
6488                       (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6489 
6490         tag_code = AscReadLramByte(iop_base,
6491                        (ushort)(halt_q_addr + (ushort)
6492                             ASC_SCSIQ_B_TAG_CODE));
6493         tag_code &= 0xDC;
6494         if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6495             && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6496             ) {
6497 
6498             tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6499                      | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6500 
6501         }
6502         AscWriteLramByte(iop_base,
6503                  (ushort)(halt_q_addr +
6504                       (ushort)ASC_SCSIQ_B_TAG_CODE),
6505                  tag_code);
6506 
6507         q_status = AscReadLramByte(iop_base,
6508                        (ushort)(halt_q_addr + (ushort)
6509                             ASC_SCSIQ_B_STATUS));
6510         q_status |= (QS_READY | QS_BUSY);
6511         AscWriteLramByte(iop_base,
6512                  (ushort)(halt_q_addr +
6513                       (ushort)ASC_SCSIQ_B_STATUS),
6514                  q_status);
6515 
6516         scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6517         scsi_busy &= ~target_id;
6518         AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6519 
6520         AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6521         return;
6522     } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6523 
6524         AscMemWordCopyPtrFromLram(iop_base,
6525                       ASCV_MSGOUT_BEG,
6526                       (uchar *)&out_msg,
6527                       sizeof(EXT_MSG) >> 1);
6528 
6529         if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6530             (out_msg.msg_len == MS_SDTR_LEN) &&
6531             (out_msg.msg_req == EXTENDED_SDTR)) {
6532 
6533             asc_dvc->init_sdtr &= ~target_id;
6534             asc_dvc->sdtr_done &= ~target_id;
6535             AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6536             boardp->sdtr_data[tid_no] = asyn_sdtr;
6537         }
6538         q_cntl &= ~QC_MSG_OUT;
6539         AscWriteLramByte(iop_base,
6540                  (ushort)(halt_q_addr +
6541                       (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6542         AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6543         return;
6544     } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6545 
6546         scsi_status = AscReadLramByte(iop_base,
6547                           (ushort)((ushort)halt_q_addr +
6548                                (ushort)
6549                                ASC_SCSIQ_SCSI_STATUS));
6550         cur_dvc_qng =
6551             AscReadLramByte(iop_base,
6552                     (ushort)((ushort)ASC_QADR_BEG +
6553                          (ushort)target_ix));
6554         if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6555 
6556             scsi_busy = AscReadLramByte(iop_base,
6557                             (ushort)ASCV_SCSIBUSY_B);
6558             scsi_busy |= target_id;
6559             AscWriteLramByte(iop_base,
6560                      (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6561             asc_dvc->queue_full_or_busy |= target_id;
6562 
6563             if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6564                 if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6565                     cur_dvc_qng -= 1;
6566                     asc_dvc->max_dvc_qng[tid_no] =
6567                         cur_dvc_qng;
6568 
6569                     AscWriteLramByte(iop_base,
6570                              (ushort)((ushort)
6571                                   ASCV_MAX_DVC_QNG_BEG
6572                                   + (ushort)
6573                                   tid_no),
6574                              cur_dvc_qng);
6575 
6576                     /*
6577                      * Set the device queue depth to the
6578                      * number of active requests when the
6579                      * QUEUE FULL condition was encountered.
6580                      */
6581                     boardp->queue_full |= target_id;
6582                     boardp->queue_full_cnt[tid_no] =
6583                         cur_dvc_qng;
6584                 }
6585             }
6586         }
6587         AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6588         return;
6589     }
6590     return;
6591 }
6592 
6593 /*
6594  * void
6595  * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6596  *
6597  * Calling/Exit State:
6598  *    none
6599  *
6600  * Description:
6601  *     Input an ASC_QDONE_INFO structure from the chip
6602  */
6603 static void
6604 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6605 {
6606     int i;
6607     ushort word;
6608 
6609     AscSetChipLramAddr(iop_base, s_addr);
6610     for (i = 0; i < 2 * words; i += 2) {
6611         if (i == 10) {
6612             continue;
6613         }
6614         word = inpw(iop_base + IOP_RAM_DATA);
6615         inbuf[i] = word & 0xff;
6616         inbuf[i + 1] = (word >> 8) & 0xff;
6617     }
6618     ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
6619 }
6620 
6621 static uchar
6622 _AscCopyLramScsiDoneQ(PortAddr iop_base,
6623               ushort q_addr,
6624               ASC_QDONE_INFO *scsiq, unsigned int max_dma_count)
6625 {
6626     ushort _val;
6627     uchar sg_queue_cnt;
6628 
6629     DvcGetQinfo(iop_base,
6630             q_addr + ASC_SCSIQ_DONE_INFO_BEG,
6631             (uchar *)scsiq,
6632             (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
6633 
6634     _val = AscReadLramWord(iop_base,
6635                    (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
6636     scsiq->q_status = (uchar)_val;
6637     scsiq->q_no = (uchar)(_val >> 8);
6638     _val = AscReadLramWord(iop_base,
6639                    (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6640     scsiq->cntl = (uchar)_val;
6641     sg_queue_cnt = (uchar)(_val >> 8);
6642     _val = AscReadLramWord(iop_base,
6643                    (ushort)(q_addr +
6644                     (ushort)ASC_SCSIQ_B_SENSE_LEN));
6645     scsiq->sense_len = (uchar)_val;
6646     scsiq->extra_bytes = (uchar)(_val >> 8);
6647 
6648     /*
6649      * Read high word of remain bytes from alternate location.
6650      */
6651     scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base,
6652                              (ushort)(q_addr +
6653                                   (ushort)
6654                                   ASC_SCSIQ_W_ALT_DC1)))
6655                    << 16);
6656     /*
6657      * Read low word of remain bytes from original location.
6658      */
6659     scsiq->remain_bytes += AscReadLramWord(iop_base,
6660                            (ushort)(q_addr + (ushort)
6661                             ASC_SCSIQ_DW_REMAIN_XFER_CNT));
6662 
6663     scsiq->remain_bytes &= max_dma_count;
6664     return sg_queue_cnt;
6665 }
6666 
6667 /*
6668  * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
6669  *
6670  * Interrupt callback function for the Narrow SCSI Asc Library.
6671  */
6672 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
6673 {
6674     struct asc_board *boardp = asc_dvc_varp->drv_ptr;
6675     u32 srb_tag;
6676     struct scsi_cmnd *scp;
6677 
6678     ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
6679     ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
6680 
6681     /*
6682      * Decrease the srb_tag by 1 to find the SCSI command
6683      */
6684     srb_tag = qdonep->d2.srb_tag - 1;
6685     scp = scsi_host_find_tag(boardp->shost, srb_tag);
6686     if (!scp)
6687         return;
6688 
6689     ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6690 
6691     ASC_STATS(boardp->shost, callback);
6692 
6693     dma_unmap_single(boardp->dev, advansys_cmd(scp)->dma_handle,
6694              SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
6695     /*
6696      * 'qdonep' contains the command's ending status.
6697      */
6698     scp->result = 0;
6699     switch (qdonep->d3.done_stat) {
6700     case QD_NO_ERROR:
6701         ASC_DBG(2, "QD_NO_ERROR\n");
6702 
6703         /*
6704          * Check for an underrun condition.
6705          *
6706          * If there was no error and an underrun condition, then
6707          * return the number of underrun bytes.
6708          */
6709         if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
6710             qdonep->remain_bytes <= scsi_bufflen(scp)) {
6711             ASC_DBG(1, "underrun condition %u bytes\n",
6712                  (unsigned)qdonep->remain_bytes);
6713             scsi_set_resid(scp, qdonep->remain_bytes);
6714         }
6715         break;
6716 
6717     case QD_WITH_ERROR:
6718         ASC_DBG(2, "QD_WITH_ERROR\n");
6719         switch (qdonep->d3.host_stat) {
6720         case QHSTA_NO_ERROR:
6721             set_status_byte(scp, qdonep->d3.scsi_stat);
6722             if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
6723                 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6724                 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6725                           SCSI_SENSE_BUFFERSIZE);
6726             }
6727             break;
6728 
6729         default:
6730             /* QHSTA error occurred */
6731             ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
6732             set_host_byte(scp, DID_BAD_TARGET);
6733             break;
6734         }
6735         break;
6736 
6737     case QD_ABORTED_BY_HOST:
6738         ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6739         set_status_byte(scp, qdonep->d3.scsi_stat);
6740         set_host_byte(scp, DID_ABORT);
6741         break;
6742 
6743     default:
6744         ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
6745         set_status_byte(scp, qdonep->d3.scsi_stat);
6746         set_host_byte(scp, DID_ERROR);
6747         break;
6748     }
6749 
6750     /*
6751      * If the 'init_tidmask' bit isn't already set for the target and the
6752      * current request finished normally, then set the bit for the target
6753      * to indicate that a device is present.
6754      */
6755     if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6756         qdonep->d3.done_stat == QD_NO_ERROR &&
6757         qdonep->d3.host_stat == QHSTA_NO_ERROR) {
6758         boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6759     }
6760 
6761     asc_scsi_done(scp);
6762 }
6763 
6764 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
6765 {
6766     uchar next_qp;
6767     uchar n_q_used;
6768     uchar sg_list_qp;
6769     uchar sg_queue_cnt;
6770     uchar q_cnt;
6771     uchar done_q_tail;
6772     uchar tid_no;
6773     ASC_SCSI_BIT_ID_TYPE scsi_busy;
6774     ASC_SCSI_BIT_ID_TYPE target_id;
6775     PortAddr iop_base;
6776     ushort q_addr;
6777     ushort sg_q_addr;
6778     uchar cur_target_qng;
6779     ASC_QDONE_INFO scsiq_buf;
6780     ASC_QDONE_INFO *scsiq;
6781     bool false_overrun;
6782 
6783     iop_base = asc_dvc->iop_base;
6784     n_q_used = 1;
6785     scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
6786     done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
6787     q_addr = ASC_QNO_TO_QADDR(done_q_tail);
6788     next_qp = AscReadLramByte(iop_base,
6789                   (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
6790     if (next_qp != ASC_QLINK_END) {
6791         AscPutVarDoneQTail(iop_base, next_qp);
6792         q_addr = ASC_QNO_TO_QADDR(next_qp);
6793         sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
6794                              asc_dvc->max_dma_count);
6795         AscWriteLramByte(iop_base,
6796                  (ushort)(q_addr +
6797                       (ushort)ASC_SCSIQ_B_STATUS),
6798                  (uchar)(scsiq->
6799                      q_status & (uchar)~(QS_READY |
6800                                  QS_ABORTED)));
6801         tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
6802         target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
6803         if ((scsiq->cntl & QC_SG_HEAD) != 0) {
6804             sg_q_addr = q_addr;
6805             sg_list_qp = next_qp;
6806             for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
6807                 sg_list_qp = AscReadLramByte(iop_base,
6808                                  (ushort)(sg_q_addr
6809                                       + (ushort)
6810                                       ASC_SCSIQ_B_FWD));
6811                 sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
6812                 if (sg_list_qp == ASC_QLINK_END) {
6813                     AscSetLibErrorCode(asc_dvc,
6814                                ASCQ_ERR_SG_Q_LINKS);
6815                     scsiq->d3.done_stat = QD_WITH_ERROR;
6816                     scsiq->d3.host_stat =
6817                         QHSTA_D_QDONE_SG_LIST_CORRUPTED;
6818                     goto FATAL_ERR_QDONE;
6819                 }
6820                 AscWriteLramByte(iop_base,
6821                          (ushort)(sg_q_addr + (ushort)
6822                               ASC_SCSIQ_B_STATUS),
6823                          QS_FREE);
6824             }
6825             n_q_used = sg_queue_cnt + 1;
6826             AscPutVarDoneQTail(iop_base, sg_list_qp);
6827         }
6828         if (asc_dvc->queue_full_or_busy & target_id) {
6829             cur_target_qng = AscReadLramByte(iop_base,
6830                              (ushort)((ushort)
6831                                   ASC_QADR_BEG
6832                                   + (ushort)
6833                                   scsiq->d2.
6834                                   target_ix));
6835             if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
6836                 scsi_busy = AscReadLramByte(iop_base, (ushort)
6837                                 ASCV_SCSIBUSY_B);
6838                 scsi_busy &= ~target_id;
6839                 AscWriteLramByte(iop_base,
6840                          (ushort)ASCV_SCSIBUSY_B,
6841                          scsi_busy);
6842                 asc_dvc->queue_full_or_busy &= ~target_id;
6843             }
6844         }
6845         if (asc_dvc->cur_total_qng >= n_q_used) {
6846             asc_dvc->cur_total_qng -= n_q_used;
6847             if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
6848                 asc_dvc->cur_dvc_qng[tid_no]--;
6849             }
6850         } else {
6851             AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
6852             scsiq->d3.done_stat = QD_WITH_ERROR;
6853             goto FATAL_ERR_QDONE;
6854         }
6855         if ((scsiq->d2.srb_tag == 0UL) ||
6856             ((scsiq->q_status & QS_ABORTED) != 0)) {
6857             return (0x11);
6858         } else if (scsiq->q_status == QS_DONE) {
6859             /*
6860              * This is also curious.
6861              * false_overrun will _always_ be set to 'false'
6862              */
6863             false_overrun = false;
6864             if (scsiq->extra_bytes != 0) {
6865                 scsiq->remain_bytes += scsiq->extra_bytes;
6866             }
6867             if (scsiq->d3.done_stat == QD_WITH_ERROR) {
6868                 if (scsiq->d3.host_stat ==
6869                     QHSTA_M_DATA_OVER_RUN) {
6870                     if ((scsiq->
6871                          cntl & (QC_DATA_IN | QC_DATA_OUT))
6872                         == 0) {
6873                         scsiq->d3.done_stat =
6874                             QD_NO_ERROR;
6875                         scsiq->d3.host_stat =
6876                             QHSTA_NO_ERROR;
6877                     } else if (false_overrun) {
6878                         scsiq->d3.done_stat =
6879                             QD_NO_ERROR;
6880                         scsiq->d3.host_stat =
6881                             QHSTA_NO_ERROR;
6882                     }
6883                 } else if (scsiq->d3.host_stat ==
6884                        QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
6885                     AscStopChip(iop_base);
6886                     AscSetChipControl(iop_base,
6887                               (uchar)(CC_SCSI_RESET
6888                                   | CC_HALT));
6889                     udelay(60);
6890                     AscSetChipControl(iop_base, CC_HALT);
6891                     AscSetChipStatus(iop_base,
6892                              CIW_CLR_SCSI_RESET_INT);
6893                     AscSetChipStatus(iop_base, 0);
6894                     AscSetChipControl(iop_base, 0);
6895                 }
6896             }
6897             if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6898                 asc_isr_callback(asc_dvc, scsiq);
6899             } else {
6900                 if ((AscReadLramByte(iop_base,
6901                              (ushort)(q_addr + (ushort)
6902                                   ASC_SCSIQ_CDB_BEG))
6903                      == START_STOP)) {
6904                     asc_dvc->unit_not_ready &= ~target_id;
6905                     if (scsiq->d3.done_stat != QD_NO_ERROR) {
6906                         asc_dvc->start_motor &=
6907                             ~target_id;
6908                     }
6909                 }
6910             }
6911             return (1);
6912         } else {
6913             AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
6914  FATAL_ERR_QDONE:
6915             if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6916                 asc_isr_callback(asc_dvc, scsiq);
6917             }
6918             return (0x80);
6919         }
6920     }
6921     return (0);
6922 }
6923 
6924 static int AscISR(ASC_DVC_VAR *asc_dvc)
6925 {
6926     ASC_CS_TYPE chipstat;
6927     PortAddr iop_base;
6928     ushort saved_ram_addr;
6929     uchar ctrl_reg;
6930     uchar saved_ctrl_reg;
6931     int int_pending;
6932     int status;
6933     uchar host_flag;
6934 
6935     iop_base = asc_dvc->iop_base;
6936     int_pending = ASC_FALSE;
6937 
6938     if (AscIsIntPending(iop_base) == 0)
6939         return int_pending;
6940 
6941     if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
6942         return ASC_ERROR;
6943     }
6944     if (asc_dvc->in_critical_cnt != 0) {
6945         AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
6946         return ASC_ERROR;
6947     }
6948     if (asc_dvc->is_in_int) {
6949         AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
6950         return ASC_ERROR;
6951     }
6952     asc_dvc->is_in_int = true;
6953     ctrl_reg = AscGetChipControl(iop_base);
6954     saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
6955                        CC_SINGLE_STEP | CC_DIAG | CC_TEST));
6956     chipstat = AscGetChipStatus(iop_base);
6957     if (chipstat & CSW_SCSI_RESET_LATCH) {
6958         if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
6959             int i = 10;
6960             int_pending = ASC_TRUE;
6961             asc_dvc->sdtr_done = 0;
6962             saved_ctrl_reg &= (uchar)(~CC_HALT);
6963             while ((AscGetChipStatus(iop_base) &
6964                 CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
6965                 mdelay(100);
6966             }
6967             AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
6968             AscSetChipControl(iop_base, CC_HALT);
6969             AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
6970             AscSetChipStatus(iop_base, 0);
6971             chipstat = AscGetChipStatus(iop_base);
6972         }
6973     }
6974     saved_ram_addr = AscGetChipLramAddr(iop_base);
6975     host_flag = AscReadLramByte(iop_base,
6976                     ASCV_HOST_FLAG_B) &
6977         (uchar)(~ASC_HOST_FLAG_IN_ISR);
6978     AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6979              (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
6980     if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
6981         AscAckInterrupt(iop_base);
6982         int_pending = ASC_TRUE;
6983         if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
6984             AscIsrChipHalted(asc_dvc);
6985             saved_ctrl_reg &= (uchar)(~CC_HALT);
6986         } else {
6987             if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
6988                 while (((status =
6989                      AscIsrQDone(asc_dvc)) & 0x01) != 0) {
6990                 }
6991             } else {
6992                 do {
6993                     if ((status =
6994                          AscIsrQDone(asc_dvc)) == 1) {
6995                         break;
6996                     }
6997                 } while (status == 0x11);
6998             }
6999             if ((status & 0x80) != 0)
7000                 int_pending = ASC_ERROR;
7001         }
7002     }
7003     AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7004     AscSetChipLramAddr(iop_base, saved_ram_addr);
7005     AscSetChipControl(iop_base, saved_ctrl_reg);
7006     asc_dvc->is_in_int = false;
7007     return int_pending;
7008 }
7009 
7010 /*
7011  * advansys_reset()
7012  *
7013  * Reset the host associated with the command 'scp'.
7014  *
7015  * This function runs its own thread. Interrupts must be blocked but
7016  * sleeping is allowed and no locking other than for host structures is
7017  * required. Returns SUCCESS or FAILED.
7018  */
7019 static int advansys_reset(struct scsi_cmnd *scp)
7020 {
7021     struct Scsi_Host *shost = scp->device->host;
7022     struct asc_board *boardp = shost_priv(shost);
7023     unsigned long flags;
7024     int status;
7025     int ret = SUCCESS;
7026 
7027     ASC_DBG(1, "0x%p\n", scp);
7028 
7029     ASC_STATS(shost, reset);
7030 
7031     scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n");
7032 
7033     if (ASC_NARROW_BOARD(boardp)) {
7034         ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7035 
7036         /* Reset the chip and SCSI bus. */
7037         ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7038         status = AscInitAsc1000Driver(asc_dvc);
7039 
7040         /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7041         if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7042             scmd_printk(KERN_INFO, scp, "SCSI host reset error: "
7043                     "0x%x, status: 0x%x\n", asc_dvc->err_code,
7044                     status);
7045             ret = FAILED;
7046         } else if (status) {
7047             scmd_printk(KERN_INFO, scp, "SCSI host reset warning: "
7048                     "0x%x\n", status);
7049         } else {
7050             scmd_printk(KERN_INFO, scp, "SCSI host reset "
7051                     "successful\n");
7052         }
7053 
7054         ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7055     } else {
7056         /*
7057          * If the suggest reset bus flags are set, then reset the bus.
7058          * Otherwise only reset the device.
7059          */
7060         ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7061 
7062         /*
7063          * Reset the chip and SCSI bus.
7064          */
7065         ASC_DBG(1, "before AdvResetChipAndSB()\n");
7066         switch (AdvResetChipAndSB(adv_dvc)) {
7067         case ASC_TRUE:
7068             scmd_printk(KERN_INFO, scp, "SCSI host reset "
7069                     "successful\n");
7070             break;
7071         case ASC_FALSE:
7072         default:
7073             scmd_printk(KERN_INFO, scp, "SCSI host reset error\n");
7074             ret = FAILED;
7075             break;
7076         }
7077         spin_lock_irqsave(shost->host_lock, flags);
7078         AdvISR(adv_dvc);
7079         spin_unlock_irqrestore(shost->host_lock, flags);
7080     }
7081 
7082     ASC_DBG(1, "ret %d\n", ret);
7083 
7084     return ret;
7085 }
7086 
7087 /*
7088  * advansys_biosparam()
7089  *
7090  * Translate disk drive geometry if the "BIOS greater than 1 GB"
7091  * support is enabled for a drive.
7092  *
7093  * ip (information pointer) is an int array with the following definition:
7094  * ip[0]: heads
7095  * ip[1]: sectors
7096  * ip[2]: cylinders
7097  */
7098 static int
7099 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7100            sector_t capacity, int ip[])
7101 {
7102     struct asc_board *boardp = shost_priv(sdev->host);
7103 
7104     ASC_DBG(1, "begin\n");
7105     ASC_STATS(sdev->host, biosparam);
7106     if (ASC_NARROW_BOARD(boardp)) {
7107         if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7108              ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7109             ip[0] = 255;
7110             ip[1] = 63;
7111         } else {
7112             ip[0] = 64;
7113             ip[1] = 32;
7114         }
7115     } else {
7116         if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7117              BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7118             ip[0] = 255;
7119             ip[1] = 63;
7120         } else {
7121             ip[0] = 64;
7122             ip[1] = 32;
7123         }
7124     }
7125     ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7126     ASC_DBG(1, "end\n");
7127     return 0;
7128 }
7129 
7130 /*
7131  * First-level interrupt handler.
7132  *
7133  * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7134  */
7135 static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7136 {
7137     struct Scsi_Host *shost = dev_id;
7138     struct asc_board *boardp = shost_priv(shost);
7139     irqreturn_t result = IRQ_NONE;
7140     unsigned long flags;
7141 
7142     ASC_DBG(2, "boardp 0x%p\n", boardp);
7143     spin_lock_irqsave(shost->host_lock, flags);
7144     if (ASC_NARROW_BOARD(boardp)) {
7145         if (AscIsIntPending(shost->io_port)) {
7146             result = IRQ_HANDLED;
7147             ASC_STATS(shost, interrupt);
7148             ASC_DBG(1, "before AscISR()\n");
7149             AscISR(&boardp->dvc_var.asc_dvc_var);
7150         }
7151     } else {
7152         ASC_DBG(1, "before AdvISR()\n");
7153         if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7154             result = IRQ_HANDLED;
7155             ASC_STATS(shost, interrupt);
7156         }
7157     }
7158     spin_unlock_irqrestore(shost->host_lock, flags);
7159 
7160     ASC_DBG(1, "end\n");
7161     return result;
7162 }
7163 
7164 static bool AscHostReqRiscHalt(PortAddr iop_base)
7165 {
7166     int count = 0;
7167     bool sta = false;
7168     uchar saved_stop_code;
7169 
7170     if (AscIsChipHalted(iop_base))
7171         return true;
7172     saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7173     AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7174              ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7175     do {
7176         if (AscIsChipHalted(iop_base)) {
7177             sta = true;
7178             break;
7179         }
7180         mdelay(100);
7181     } while (count++ < 20);
7182     AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7183     return sta;
7184 }
7185 
7186 static bool
7187 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7188 {
7189     bool sta = false;
7190 
7191     if (AscHostReqRiscHalt(iop_base)) {
7192         sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7193         AscStartChip(iop_base);
7194     }
7195     return sta;
7196 }
7197 
7198 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7199 {
7200     char type = sdev->type;
7201     ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7202 
7203     if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7204         return;
7205     if (asc_dvc->init_sdtr & tid_bits)
7206         return;
7207 
7208     if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7209         asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7210 
7211     asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7212     if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7213         (type == TYPE_ROM) || (type == TYPE_TAPE))
7214         asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7215 
7216     if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7217         AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7218                     ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7219 }
7220 
7221 static void
7222 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7223 {
7224     ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7225     ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7226 
7227     if (sdev->lun == 0) {
7228         ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7229         if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7230             asc_dvc->init_sdtr |= tid_bit;
7231         } else {
7232             asc_dvc->init_sdtr &= ~tid_bit;
7233         }
7234 
7235         if (orig_init_sdtr != asc_dvc->init_sdtr)
7236             AscAsyncFix(asc_dvc, sdev);
7237     }
7238 
7239     if (sdev->tagged_supported) {
7240         if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7241             if (sdev->lun == 0) {
7242                 asc_dvc->cfg->can_tagged_qng |= tid_bit;
7243                 asc_dvc->use_tagged_qng |= tid_bit;
7244             }
7245             scsi_change_queue_depth(sdev, 
7246                         asc_dvc->max_dvc_qng[sdev->id]);
7247         }
7248     } else {
7249         if (sdev->lun == 0) {
7250             asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7251             asc_dvc->use_tagged_qng &= ~tid_bit;
7252         }
7253     }
7254 
7255     if ((sdev->lun == 0) &&
7256         (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7257         AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7258                  asc_dvc->cfg->disc_enable);
7259         AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7260                  asc_dvc->use_tagged_qng);
7261         AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7262                  asc_dvc->cfg->can_tagged_qng);
7263 
7264         asc_dvc->max_dvc_qng[sdev->id] =
7265                     asc_dvc->cfg->max_tag_qng[sdev->id];
7266         AscWriteLramByte(asc_dvc->iop_base,
7267                  (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7268                  asc_dvc->max_dvc_qng[sdev->id]);
7269     }
7270 }
7271 
7272 /*
7273  * Wide Transfers
7274  *
7275  * If the EEPROM enabled WDTR for the device and the device supports wide
7276  * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7277  * write the new value to the microcode.
7278  */
7279 static void
7280 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7281 {
7282     unsigned short cfg_word;
7283     AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7284     if ((cfg_word & tidmask) != 0)
7285         return;
7286 
7287     cfg_word |= tidmask;
7288     AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7289 
7290     /*
7291      * Clear the microcode SDTR and WDTR negotiation done indicators for
7292      * the target to cause it to negotiate with the new setting set above.
7293      * WDTR when accepted causes the target to enter asynchronous mode, so
7294      * SDTR must be negotiated.
7295      */
7296     AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7297     cfg_word &= ~tidmask;
7298     AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7299     AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7300     cfg_word &= ~tidmask;
7301     AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7302 }
7303 
7304 /*
7305  * Synchronous Transfers
7306  *
7307  * If the EEPROM enabled SDTR for the device and the device
7308  * supports synchronous transfers, then turn on the device's
7309  * 'sdtr_able' bit. Write the new value to the microcode.
7310  */
7311 static void
7312 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7313 {
7314     unsigned short cfg_word;
7315     AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7316     if ((cfg_word & tidmask) != 0)
7317         return;
7318 
7319     cfg_word |= tidmask;
7320     AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7321 
7322     /*
7323      * Clear the microcode "SDTR negotiation" done indicator for the
7324      * target to cause it to negotiate with the new setting set above.
7325      */
7326     AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7327     cfg_word &= ~tidmask;
7328     AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7329 }
7330 
7331 /*
7332  * PPR (Parallel Protocol Request) Capable
7333  *
7334  * If the device supports DT mode, then it must be PPR capable.
7335  * The PPR message will be used in place of the SDTR and WDTR
7336  * messages to negotiate synchronous speed and offset, transfer
7337  * width, and protocol options.
7338  */
7339 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7340                 AdvPortAddr iop_base, unsigned short tidmask)
7341 {
7342     AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7343     adv_dvc->ppr_able |= tidmask;
7344     AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7345 }
7346 
7347 static void
7348 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7349 {
7350     AdvPortAddr iop_base = adv_dvc->iop_base;
7351     unsigned short tidmask = 1 << sdev->id;
7352 
7353     if (sdev->lun == 0) {
7354         /*
7355          * Handle WDTR, SDTR, and Tag Queuing. If the feature
7356          * is enabled in the EEPROM and the device supports the
7357          * feature, then enable it in the microcode.
7358          */
7359 
7360         if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7361             advansys_wide_enable_wdtr(iop_base, tidmask);
7362         if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7363             advansys_wide_enable_sdtr(iop_base, tidmask);
7364         if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7365             advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7366 
7367         /*
7368          * Tag Queuing is disabled for the BIOS which runs in polled
7369          * mode and would see no benefit from Tag Queuing. Also by
7370          * disabling Tag Queuing in the BIOS devices with Tag Queuing
7371          * bugs will at least work with the BIOS.
7372          */
7373         if ((adv_dvc->tagqng_able & tidmask) &&
7374             sdev->tagged_supported) {
7375             unsigned short cfg_word;
7376             AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7377             cfg_word |= tidmask;
7378             AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7379                      cfg_word);
7380             AdvWriteByteLram(iop_base,
7381                      ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7382                      adv_dvc->max_dvc_qng);
7383         }
7384     }
7385 
7386     if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
7387         scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
7388 }
7389 
7390 /*
7391  * Set the number of commands to queue per device for the
7392  * specified host adapter.
7393  */
7394 static int advansys_slave_configure(struct scsi_device *sdev)
7395 {
7396     struct asc_board *boardp = shost_priv(sdev->host);
7397 
7398     if (ASC_NARROW_BOARD(boardp))
7399         advansys_narrow_slave_configure(sdev,
7400                         &boardp->dvc_var.asc_dvc_var);
7401     else
7402         advansys_wide_slave_configure(sdev,
7403                         &boardp->dvc_var.adv_dvc_var);
7404 
7405     return 0;
7406 }
7407 
7408 static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp)
7409 {
7410     struct asc_board *board = shost_priv(scp->device->host);
7411     struct advansys_cmd *acmd = advansys_cmd(scp);
7412 
7413     acmd->dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7414                     SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7415     if (dma_mapping_error(board->dev, acmd->dma_handle)) {
7416         ASC_DBG(1, "failed to map sense buffer\n");
7417         return 0;
7418     }
7419     return cpu_to_le32(acmd->dma_handle);
7420 }
7421 
7422 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7423             struct asc_scsi_q *asc_scsi_q)
7424 {
7425     struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7426     int use_sg;
7427     u32 srb_tag;
7428 
7429     memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7430 
7431     /*
7432      * Set the srb_tag to the command tag + 1, as
7433      * srb_tag '0' is used internally by the chip.
7434      */
7435     srb_tag = scsi_cmd_to_rq(scp)->tag + 1;
7436     asc_scsi_q->q2.srb_tag = srb_tag;
7437 
7438     /*
7439      * Build the ASC_SCSI_Q request.
7440      */
7441     asc_scsi_q->cdbptr = &scp->cmnd[0];
7442     asc_scsi_q->q2.cdb_len = scp->cmd_len;
7443     asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7444     asc_scsi_q->q1.target_lun = scp->device->lun;
7445     asc_scsi_q->q2.target_ix =
7446         ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7447     asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp);
7448     asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7449     if (!asc_scsi_q->q1.sense_addr)
7450         return ASC_BUSY;
7451 
7452     /*
7453      * If there are any outstanding requests for the current target,
7454      * then every 255th request send an ORDERED request. This heuristic
7455      * tries to retain the benefit of request sorting while preventing
7456      * request starvation. 255 is the max number of tags or pending commands
7457      * a device may have outstanding.
7458      *
7459      * The request count is incremented below for every successfully
7460      * started request.
7461      *
7462      */
7463     if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7464         (boardp->reqcnt[scp->device->id] % 255) == 0) {
7465         asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
7466     } else {
7467         asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
7468     }
7469 
7470     /* Build ASC_SCSI_Q */
7471     use_sg = scsi_dma_map(scp);
7472     if (use_sg < 0) {
7473         ASC_DBG(1, "failed to map sglist\n");
7474         return ASC_BUSY;
7475     } else if (use_sg > 0) {
7476         int sgcnt;
7477         struct scatterlist *slp;
7478         struct asc_sg_head *asc_sg_head;
7479 
7480         if (use_sg > scp->device->host->sg_tablesize) {
7481             scmd_printk(KERN_ERR, scp, "use_sg %d > "
7482                 "sg_tablesize %d\n", use_sg,
7483                 scp->device->host->sg_tablesize);
7484             scsi_dma_unmap(scp);
7485             set_host_byte(scp, DID_ERROR);
7486             return ASC_ERROR;
7487         }
7488 
7489         asc_sg_head = kzalloc(struct_size(asc_sg_head, sg_list, use_sg),
7490                       GFP_ATOMIC);
7491         if (!asc_sg_head) {
7492             scsi_dma_unmap(scp);
7493             set_host_byte(scp, DID_SOFT_ERROR);
7494             return ASC_ERROR;
7495         }
7496 
7497         asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7498         asc_scsi_q->sg_head = asc_sg_head;
7499         asc_scsi_q->q1.data_cnt = 0;
7500         asc_scsi_q->q1.data_addr = 0;
7501         /* This is a byte value, otherwise it would need to be swapped. */
7502         asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7503         ASC_STATS_ADD(scp->device->host, xfer_elem,
7504                   asc_sg_head->entry_cnt);
7505 
7506         /*
7507          * Convert scatter-gather list into ASC_SG_HEAD list.
7508          */
7509         scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7510             asc_sg_head->sg_list[sgcnt].addr =
7511                 cpu_to_le32(sg_dma_address(slp));
7512             asc_sg_head->sg_list[sgcnt].bytes =
7513                 cpu_to_le32(sg_dma_len(slp));
7514             ASC_STATS_ADD(scp->device->host, xfer_sect,
7515                       DIV_ROUND_UP(sg_dma_len(slp), 512));
7516         }
7517     }
7518 
7519     ASC_STATS(scp->device->host, xfer_cnt);
7520 
7521     ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7522     ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7523 
7524     return ASC_NOERROR;
7525 }
7526 
7527 /*
7528  * Build scatter-gather list for Adv Library (Wide Board).
7529  *
7530  * Additional ADV_SG_BLOCK structures will need to be allocated
7531  * if the total number of scatter-gather elements exceeds
7532  * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7533  * assumed to be physically contiguous.
7534  *
7535  * Return:
7536  *      ADV_SUCCESS(1) - SG List successfully created
7537  *      ADV_ERROR(-1) - SG List creation failed
7538  */
7539 static int
7540 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp,
7541            ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg)
7542 {
7543     adv_sgblk_t *sgblkp, *prev_sgblkp;
7544     struct scatterlist *slp;
7545     int sg_elem_cnt;
7546     ADV_SG_BLOCK *sg_block, *prev_sg_block;
7547     dma_addr_t sgblk_paddr;
7548     int i;
7549 
7550     slp = scsi_sglist(scp);
7551     sg_elem_cnt = use_sg;
7552     prev_sgblkp = NULL;
7553     prev_sg_block = NULL;
7554     reqp->sgblkp = NULL;
7555 
7556     for (;;) {
7557         /*
7558          * Allocate a 'adv_sgblk_t' structure from the board free
7559          * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7560          * (15) scatter-gather elements.
7561          */
7562         sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC,
7563                     &sgblk_paddr);
7564         if (!sgblkp) {
7565             ASC_DBG(1, "no free adv_sgblk_t\n");
7566             ASC_STATS(scp->device->host, adv_build_nosg);
7567 
7568             /*
7569              * Allocation failed. Free 'adv_sgblk_t' structures
7570              * already allocated for the request.
7571              */
7572             while ((sgblkp = reqp->sgblkp) != NULL) {
7573                 /* Remove 'sgblkp' from the request list. */
7574                 reqp->sgblkp = sgblkp->next_sgblkp;
7575                 sgblkp->next_sgblkp = NULL;
7576                 dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
7577                           sgblkp->sg_addr);
7578             }
7579             return ASC_BUSY;
7580         }
7581         /* Complete 'adv_sgblk_t' board allocation. */
7582         sgblkp->sg_addr = sgblk_paddr;
7583         sgblkp->next_sgblkp = NULL;
7584         sg_block = &sgblkp->sg_block;
7585 
7586         /*
7587          * Check if this is the first 'adv_sgblk_t' for the
7588          * request.
7589          */
7590         if (reqp->sgblkp == NULL) {
7591             /* Request's first scatter-gather block. */
7592             reqp->sgblkp = sgblkp;
7593 
7594             /*
7595              * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
7596              * address pointers.
7597              */
7598             scsiqp->sg_list_ptr = sg_block;
7599             scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr);
7600         } else {
7601             /* Request's second or later scatter-gather block. */
7602             prev_sgblkp->next_sgblkp = sgblkp;
7603 
7604             /*
7605              * Point the previous ADV_SG_BLOCK structure to
7606              * the newly allocated ADV_SG_BLOCK structure.
7607              */
7608             prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr);
7609         }
7610 
7611         for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
7612             sg_block->sg_list[i].sg_addr =
7613                     cpu_to_le32(sg_dma_address(slp));
7614             sg_block->sg_list[i].sg_count =
7615                     cpu_to_le32(sg_dma_len(slp));
7616             ASC_STATS_ADD(scp->device->host, xfer_sect,
7617                       DIV_ROUND_UP(sg_dma_len(slp), 512));
7618 
7619             if (--sg_elem_cnt == 0) {
7620                 /*
7621                  * Last ADV_SG_BLOCK and scatter-gather entry.
7622                  */
7623                 sg_block->sg_cnt = i + 1;
7624                 sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
7625                 return ADV_SUCCESS;
7626             }
7627             slp = sg_next(slp);
7628         }
7629         sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
7630         prev_sg_block = sg_block;
7631         prev_sgblkp = sgblkp;
7632     }
7633 }
7634 
7635 /*
7636  * Build a request structure for the Adv Library (Wide Board).
7637  *
7638  * If an adv_req_t can not be allocated to issue the request,
7639  * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
7640  *
7641  * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the
7642  * microcode for DMA addresses or math operations are byte swapped
7643  * to little-endian order.
7644  */
7645 static int
7646 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7647           adv_req_t **adv_reqpp)
7648 {
7649     u32 srb_tag = scsi_cmd_to_rq(scp)->tag;
7650     adv_req_t *reqp;
7651     ADV_SCSI_REQ_Q *scsiqp;
7652     int ret;
7653     int use_sg;
7654     dma_addr_t sense_addr;
7655 
7656     /*
7657      * Allocate an adv_req_t structure from the board to execute
7658      * the command.
7659      */
7660     reqp = &boardp->adv_reqp[srb_tag];
7661     if (reqp->cmndp && reqp->cmndp != scp ) {
7662         ASC_DBG(1, "no free adv_req_t\n");
7663         ASC_STATS(scp->device->host, adv_build_noreq);
7664         return ASC_BUSY;
7665     }
7666 
7667     reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t));
7668 
7669     scsiqp = &reqp->scsi_req_q;
7670 
7671     /*
7672      * Initialize the structure.
7673      */
7674     scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
7675 
7676     /*
7677      * Set the srb_tag to the command tag.
7678      */
7679     scsiqp->srb_tag = srb_tag;
7680 
7681     /*
7682      * Set 'host_scribble' to point to the adv_req_t structure.
7683      */
7684     reqp->cmndp = scp;
7685     scp->host_scribble = (void *)reqp;
7686 
7687     /*
7688      * Build the ADV_SCSI_REQ_Q request.
7689      */
7690 
7691     /* Set CDB length and copy it to the request structure.  */
7692     scsiqp->cdb_len = scp->cmd_len;
7693     /* Copy first 12 CDB bytes to cdb[]. */
7694     memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12);
7695     /* Copy last 4 CDB bytes, if present, to cdb16[]. */
7696     if (scp->cmd_len > 12) {
7697         int cdb16_len = scp->cmd_len - 12;
7698 
7699         memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len);
7700     }
7701 
7702     scsiqp->target_id = scp->device->id;
7703     scsiqp->target_lun = scp->device->lun;
7704 
7705     sense_addr = dma_map_single(boardp->dev, scp->sense_buffer,
7706                     SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7707     if (dma_mapping_error(boardp->dev, sense_addr)) {
7708         ASC_DBG(1, "failed to map sense buffer\n");
7709         ASC_STATS(scp->device->host, adv_build_noreq);
7710         return ASC_BUSY;
7711     }
7712     scsiqp->sense_addr = cpu_to_le32(sense_addr);
7713     scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
7714 
7715     /* Build ADV_SCSI_REQ_Q */
7716 
7717     use_sg = scsi_dma_map(scp);
7718     if (use_sg < 0) {
7719         ASC_DBG(1, "failed to map SG list\n");
7720         ASC_STATS(scp->device->host, adv_build_noreq);
7721         return ASC_BUSY;
7722     } else if (use_sg == 0) {
7723         /* Zero-length transfer */
7724         reqp->sgblkp = NULL;
7725         scsiqp->data_cnt = 0;
7726 
7727         scsiqp->data_addr = 0;
7728         scsiqp->sg_list_ptr = NULL;
7729         scsiqp->sg_real_addr = 0;
7730     } else {
7731         if (use_sg > ADV_MAX_SG_LIST) {
7732             scmd_printk(KERN_ERR, scp, "use_sg %d > "
7733                    "ADV_MAX_SG_LIST %d\n", use_sg,
7734                    scp->device->host->sg_tablesize);
7735             scsi_dma_unmap(scp);
7736             set_host_byte(scp, DID_ERROR);
7737             reqp->cmndp = NULL;
7738             scp->host_scribble = NULL;
7739 
7740             return ASC_ERROR;
7741         }
7742 
7743         scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
7744 
7745         ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg);
7746         if (ret != ADV_SUCCESS) {
7747             scsi_dma_unmap(scp);
7748             set_host_byte(scp, DID_ERROR);
7749             reqp->cmndp = NULL;
7750             scp->host_scribble = NULL;
7751 
7752             return ret;
7753         }
7754 
7755         ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
7756     }
7757 
7758     ASC_STATS(scp->device->host, xfer_cnt);
7759 
7760     ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
7761     ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7762 
7763     *adv_reqpp = reqp;
7764 
7765     return ASC_NOERROR;
7766 }
7767 
7768 static int AscSgListToQueue(int sg_list)
7769 {
7770     int n_sg_list_qs;
7771 
7772     n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
7773     if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
7774         n_sg_list_qs++;
7775     return n_sg_list_qs + 1;
7776 }
7777 
7778 static uint
7779 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
7780 {
7781     uint cur_used_qs;
7782     uint cur_free_qs;
7783     ASC_SCSI_BIT_ID_TYPE target_id;
7784     uchar tid_no;
7785 
7786     target_id = ASC_TIX_TO_TARGET_ID(target_ix);
7787     tid_no = ASC_TIX_TO_TID(target_ix);
7788     if ((asc_dvc->unit_not_ready & target_id) ||
7789         (asc_dvc->queue_full_or_busy & target_id)) {
7790         return 0;
7791     }
7792     if (n_qs == 1) {
7793         cur_used_qs = (uint) asc_dvc->cur_total_qng +
7794             (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
7795     } else {
7796         cur_used_qs = (uint) asc_dvc->cur_total_qng +
7797             (uint) ASC_MIN_FREE_Q;
7798     }
7799     if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
7800         cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
7801         if (asc_dvc->cur_dvc_qng[tid_no] >=
7802             asc_dvc->max_dvc_qng[tid_no]) {
7803             return 0;
7804         }
7805         return cur_free_qs;
7806     }
7807     if (n_qs > 1) {
7808         if ((n_qs > asc_dvc->last_q_shortage)
7809             && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
7810             asc_dvc->last_q_shortage = n_qs;
7811         }
7812     }
7813     return 0;
7814 }
7815 
7816 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
7817 {
7818     ushort q_addr;
7819     uchar next_qp;
7820     uchar q_status;
7821 
7822     q_addr = ASC_QNO_TO_QADDR(free_q_head);
7823     q_status = (uchar)AscReadLramByte(iop_base,
7824                       (ushort)(q_addr +
7825                            ASC_SCSIQ_B_STATUS));
7826     next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
7827     if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
7828         return next_qp;
7829     return ASC_QLINK_END;
7830 }
7831 
7832 static uchar
7833 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
7834 {
7835     uchar i;
7836 
7837     for (i = 0; i < n_free_q; i++) {
7838         free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
7839         if (free_q_head == ASC_QLINK_END)
7840             break;
7841     }
7842     return free_q_head;
7843 }
7844 
7845 /*
7846  * void
7847  * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7848  *
7849  * Calling/Exit State:
7850  *    none
7851  *
7852  * Description:
7853  *     Output an ASC_SCSI_Q structure to the chip
7854  */
7855 static void
7856 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7857 {
7858     int i;
7859 
7860     ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
7861     AscSetChipLramAddr(iop_base, s_addr);
7862     for (i = 0; i < 2 * words; i += 2) {
7863         if (i == 4 || i == 20) {
7864             continue;
7865         }
7866         outpw(iop_base + IOP_RAM_DATA,
7867               ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
7868     }
7869 }
7870 
7871 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7872 {
7873     ushort q_addr;
7874     uchar tid_no;
7875     uchar sdtr_data;
7876     uchar syn_period_ix;
7877     uchar syn_offset;
7878     PortAddr iop_base;
7879 
7880     iop_base = asc_dvc->iop_base;
7881     if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
7882         ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
7883         tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
7884         sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7885         syn_period_ix =
7886             (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
7887         syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
7888         AscMsgOutSDTR(asc_dvc,
7889                   asc_dvc->sdtr_period_tbl[syn_period_ix],
7890                   syn_offset);
7891         scsiq->q1.cntl |= QC_MSG_OUT;
7892     }
7893     q_addr = ASC_QNO_TO_QADDR(q_no);
7894     if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
7895         scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
7896     }
7897     scsiq->q1.status = QS_FREE;
7898     AscMemWordCopyPtrToLram(iop_base,
7899                 q_addr + ASC_SCSIQ_CDB_BEG,
7900                 (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
7901 
7902     DvcPutScsiQ(iop_base,
7903             q_addr + ASC_SCSIQ_CPY_BEG,
7904             (uchar *)&scsiq->q1.cntl,
7905             ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
7906     AscWriteLramWord(iop_base,
7907              (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
7908              (ushort)(((ushort)scsiq->q1.
7909                    q_no << 8) | (ushort)QS_READY));
7910     return 1;
7911 }
7912 
7913 static int
7914 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7915 {
7916     int sta;
7917     int i;
7918     ASC_SG_HEAD *sg_head;
7919     ASC_SG_LIST_Q scsi_sg_q;
7920     __le32 saved_data_addr;
7921     __le32 saved_data_cnt;
7922     PortAddr iop_base;
7923     ushort sg_list_dwords;
7924     ushort sg_index;
7925     ushort sg_entry_cnt;
7926     ushort q_addr;
7927     uchar next_qp;
7928 
7929     iop_base = asc_dvc->iop_base;
7930     sg_head = scsiq->sg_head;
7931     saved_data_addr = scsiq->q1.data_addr;
7932     saved_data_cnt = scsiq->q1.data_cnt;
7933     scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
7934     scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
7935     /*
7936      * Set sg_entry_cnt to be the number of SG elements that
7937      * will fit in the allocated SG queues. It is minus 1, because
7938      * the first SG element is handled above.
7939      */
7940     sg_entry_cnt = sg_head->entry_cnt - 1;
7941 
7942     if (sg_entry_cnt != 0) {
7943         scsiq->q1.cntl |= QC_SG_HEAD;
7944         q_addr = ASC_QNO_TO_QADDR(q_no);
7945         sg_index = 1;
7946         scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
7947         scsi_sg_q.sg_head_qp = q_no;
7948         scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
7949         for (i = 0; i < sg_head->queue_cnt; i++) {
7950             scsi_sg_q.seq_no = i + 1;
7951             if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
7952                 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
7953                 sg_entry_cnt -= ASC_SG_LIST_PER_Q;
7954                 if (i == 0) {
7955                     scsi_sg_q.sg_list_cnt =
7956                         ASC_SG_LIST_PER_Q;
7957                     scsi_sg_q.sg_cur_list_cnt =
7958                         ASC_SG_LIST_PER_Q;
7959                 } else {
7960                     scsi_sg_q.sg_list_cnt =
7961                         ASC_SG_LIST_PER_Q - 1;
7962                     scsi_sg_q.sg_cur_list_cnt =
7963                         ASC_SG_LIST_PER_Q - 1;
7964                 }
7965             } else {
7966                 scsi_sg_q.cntl |= QCSG_SG_XFER_END;
7967                 sg_list_dwords = sg_entry_cnt << 1;
7968                 if (i == 0) {
7969                     scsi_sg_q.sg_list_cnt = sg_entry_cnt;
7970                     scsi_sg_q.sg_cur_list_cnt =
7971                         sg_entry_cnt;
7972                 } else {
7973                     scsi_sg_q.sg_list_cnt =
7974                         sg_entry_cnt - 1;
7975                     scsi_sg_q.sg_cur_list_cnt =
7976                         sg_entry_cnt - 1;
7977                 }
7978                 sg_entry_cnt = 0;
7979             }
7980             next_qp = AscReadLramByte(iop_base,
7981                           (ushort)(q_addr +
7982                                ASC_SCSIQ_B_FWD));
7983             scsi_sg_q.q_no = next_qp;
7984             q_addr = ASC_QNO_TO_QADDR(next_qp);
7985             AscMemWordCopyPtrToLram(iop_base,
7986                         q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
7987                         (uchar *)&scsi_sg_q,
7988                         sizeof(ASC_SG_LIST_Q) >> 1);
7989             AscMemDWordCopyPtrToLram(iop_base,
7990                          q_addr + ASC_SGQ_LIST_BEG,
7991                          (uchar *)&sg_head->
7992                          sg_list[sg_index],
7993                          sg_list_dwords);
7994             sg_index += ASC_SG_LIST_PER_Q;
7995             scsiq->next_sg_index = sg_index;
7996         }
7997     } else {
7998         scsiq->q1.cntl &= ~QC_SG_HEAD;
7999     }
8000     sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8001     scsiq->q1.data_addr = saved_data_addr;
8002     scsiq->q1.data_cnt = saved_data_cnt;
8003     return (sta);
8004 }
8005 
8006 static int
8007 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8008 {
8009     PortAddr iop_base;
8010     uchar free_q_head;
8011     uchar next_qp;
8012     uchar tid_no;
8013     uchar target_ix;
8014     int sta;
8015 
8016     iop_base = asc_dvc->iop_base;
8017     target_ix = scsiq->q2.target_ix;
8018     tid_no = ASC_TIX_TO_TID(target_ix);
8019     sta = 0;
8020     free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8021     if (n_q_required > 1) {
8022         next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8023                             (uchar)n_q_required);
8024         if (next_qp != ASC_QLINK_END) {
8025             asc_dvc->last_q_shortage = 0;
8026             scsiq->sg_head->queue_cnt = n_q_required - 1;
8027             scsiq->q1.q_no = free_q_head;
8028             sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8029                              free_q_head);
8030         }
8031     } else if (n_q_required == 1) {
8032         next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8033         if (next_qp != ASC_QLINK_END) {
8034             scsiq->q1.q_no = free_q_head;
8035             sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8036         }
8037     }
8038     if (sta == 1) {
8039         AscPutVarFreeQHead(iop_base, next_qp);
8040         asc_dvc->cur_total_qng += n_q_required;
8041         asc_dvc->cur_dvc_qng[tid_no]++;
8042     }
8043     return sta;
8044 }
8045 
8046 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
8047 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8048     INQUIRY,
8049     REQUEST_SENSE,
8050     READ_CAPACITY,
8051     READ_TOC,
8052     MODE_SELECT,
8053     MODE_SENSE,
8054     MODE_SELECT_10,
8055     MODE_SENSE_10,
8056     0xFF,
8057     0xFF,
8058     0xFF,
8059     0xFF,
8060     0xFF,
8061     0xFF,
8062     0xFF,
8063     0xFF
8064 };
8065 
8066 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8067 {
8068     PortAddr iop_base;
8069     int sta;
8070     int n_q_required;
8071     bool disable_syn_offset_one_fix;
8072     int i;
8073     u32 addr;
8074     ushort sg_entry_cnt = 0;
8075     ushort sg_entry_cnt_minus_one = 0;
8076     uchar target_ix;
8077     uchar tid_no;
8078     uchar sdtr_data;
8079     uchar extra_bytes;
8080     uchar scsi_cmd;
8081     uchar disable_cmd;
8082     ASC_SG_HEAD *sg_head;
8083     unsigned long data_cnt;
8084 
8085     iop_base = asc_dvc->iop_base;
8086     sg_head = scsiq->sg_head;
8087     if (asc_dvc->err_code != 0)
8088         return ASC_ERROR;
8089     scsiq->q1.q_no = 0;
8090     if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8091         scsiq->q1.extra_bytes = 0;
8092     }
8093     sta = 0;
8094     target_ix = scsiq->q2.target_ix;
8095     tid_no = ASC_TIX_TO_TID(target_ix);
8096     n_q_required = 1;
8097     if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8098         if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8099             asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8100             sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8101             AscMsgOutSDTR(asc_dvc,
8102                       asc_dvc->
8103                       sdtr_period_tbl[(sdtr_data >> 4) &
8104                               (uchar)(asc_dvc->
8105                                   max_sdtr_index -
8106                                   1)],
8107                       (uchar)(sdtr_data & (uchar)
8108                           ASC_SYN_MAX_OFFSET));
8109             scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8110         }
8111     }
8112     if (asc_dvc->in_critical_cnt != 0) {
8113         AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8114         return ASC_ERROR;
8115     }
8116     asc_dvc->in_critical_cnt++;
8117     if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8118         if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8119             asc_dvc->in_critical_cnt--;
8120             return ASC_ERROR;
8121         }
8122         if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8123             asc_dvc->in_critical_cnt--;
8124             return ASC_ERROR;
8125         }
8126         if (sg_entry_cnt == 1) {
8127             scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8128             scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8129             scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8130         }
8131         sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8132     }
8133     scsi_cmd = scsiq->cdbptr[0];
8134     disable_syn_offset_one_fix = false;
8135     if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8136         !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8137         if (scsiq->q1.cntl & QC_SG_HEAD) {
8138             data_cnt = 0;
8139             for (i = 0; i < sg_entry_cnt; i++) {
8140                 data_cnt += le32_to_cpu(sg_head->sg_list[i].
8141                             bytes);
8142             }
8143         } else {
8144             data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8145         }
8146         if (data_cnt != 0UL) {
8147             if (data_cnt < 512UL) {
8148                 disable_syn_offset_one_fix = true;
8149             } else {
8150                 for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8151                      i++) {
8152                     disable_cmd =
8153                         _syn_offset_one_disable_cmd[i];
8154                     if (disable_cmd == 0xFF) {
8155                         break;
8156                     }
8157                     if (scsi_cmd == disable_cmd) {
8158                         disable_syn_offset_one_fix =
8159                             true;
8160                         break;
8161                     }
8162                 }
8163             }
8164         }
8165     }
8166     if (disable_syn_offset_one_fix) {
8167         scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8168         scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8169                        ASC_TAG_FLAG_DISABLE_DISCONNECT);
8170     } else {
8171         scsiq->q2.tag_code &= 0x27;
8172     }
8173     if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8174         if (asc_dvc->bug_fix_cntl) {
8175             if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8176                 if ((scsi_cmd == READ_6) ||
8177                     (scsi_cmd == READ_10)) {
8178                     addr = le32_to_cpu(sg_head->
8179                                    sg_list
8180                                    [sg_entry_cnt_minus_one].
8181                                    addr) +
8182                         le32_to_cpu(sg_head->
8183                                   sg_list
8184                                   [sg_entry_cnt_minus_one].
8185                                   bytes);
8186                     extra_bytes =
8187                         (uchar)((ushort)addr & 0x0003);
8188                     if ((extra_bytes != 0)
8189                         &&
8190                         ((scsiq->q2.
8191                           tag_code &
8192                           ASC_TAG_FLAG_EXTRA_BYTES)
8193                          == 0)) {
8194                         scsiq->q2.tag_code |=
8195                             ASC_TAG_FLAG_EXTRA_BYTES;
8196                         scsiq->q1.extra_bytes =
8197                             extra_bytes;
8198                         data_cnt =
8199                             le32_to_cpu(sg_head->
8200                                 sg_list
8201                                 [sg_entry_cnt_minus_one].
8202                                 bytes);
8203                         data_cnt -= extra_bytes;
8204                         sg_head->
8205                             sg_list
8206                             [sg_entry_cnt_minus_one].
8207                             bytes =
8208                             cpu_to_le32(data_cnt);
8209                     }
8210                 }
8211             }
8212         }
8213         sg_head->entry_to_copy = sg_head->entry_cnt;
8214         n_q_required = AscSgListToQueue(sg_entry_cnt);
8215         if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8216              (uint) n_q_required)
8217             || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8218             if ((sta =
8219                  AscSendScsiQueue(asc_dvc, scsiq,
8220                           n_q_required)) == 1) {
8221                 asc_dvc->in_critical_cnt--;
8222                 return (sta);
8223             }
8224         }
8225     } else {
8226         if (asc_dvc->bug_fix_cntl) {
8227             if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8228                 if ((scsi_cmd == READ_6) ||
8229                     (scsi_cmd == READ_10)) {
8230                     addr =
8231                         le32_to_cpu(scsiq->q1.data_addr) +
8232                         le32_to_cpu(scsiq->q1.data_cnt);
8233                     extra_bytes =
8234                         (uchar)((ushort)addr & 0x0003);
8235                     if ((extra_bytes != 0)
8236                         &&
8237                         ((scsiq->q2.
8238                           tag_code &
8239                           ASC_TAG_FLAG_EXTRA_BYTES)
8240                          == 0)) {
8241                         data_cnt =
8242                             le32_to_cpu(scsiq->q1.
8243                                 data_cnt);
8244                         if (((ushort)data_cnt & 0x01FF)
8245                             == 0) {
8246                             scsiq->q2.tag_code |=
8247                                 ASC_TAG_FLAG_EXTRA_BYTES;
8248                             data_cnt -= extra_bytes;
8249                             scsiq->q1.data_cnt =
8250                                 cpu_to_le32
8251                                 (data_cnt);
8252                             scsiq->q1.extra_bytes =
8253                                 extra_bytes;
8254                         }
8255                     }
8256                 }
8257             }
8258         }
8259         n_q_required = 1;
8260         if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8261             ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8262             if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8263                             n_q_required)) == 1) {
8264                 asc_dvc->in_critical_cnt--;
8265                 return (sta);
8266             }
8267         }
8268     }
8269     asc_dvc->in_critical_cnt--;
8270     return (sta);
8271 }
8272 
8273 /*
8274  * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8275  *
8276  *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8277  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
8278  *   RISC to notify it a new command is ready to be executed.
8279  *
8280  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8281  * set to SCSI_MAX_RETRY.
8282  *
8283  * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode
8284  * for DMA addresses or math operations are byte swapped to little-endian
8285  * order.
8286  *
8287  * Return:
8288  *      ADV_SUCCESS(1) - The request was successfully queued.
8289  *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
8290  *                       request completes.
8291  *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
8292  *                       host IC error.
8293  */
8294 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp)
8295 {
8296     AdvPortAddr iop_base;
8297     ADV_CARR_T *new_carrp;
8298     ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q;
8299 
8300     /*
8301      * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8302      */
8303     if (scsiq->target_id > ADV_MAX_TID) {
8304         scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8305         scsiq->done_status = QD_WITH_ERROR;
8306         return ADV_ERROR;
8307     }
8308 
8309     iop_base = asc_dvc->iop_base;
8310 
8311     /*
8312      * Allocate a carrier ensuring at least one carrier always
8313      * remains on the freelist and initialize fields.
8314      */
8315     new_carrp = adv_get_next_carrier(asc_dvc);
8316     if (!new_carrp) {
8317         ASC_DBG(1, "No free carriers\n");
8318         return ADV_BUSY;
8319     }
8320 
8321     asc_dvc->carr_pending_cnt++;
8322 
8323     /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8324     scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag);
8325     scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr);
8326 
8327     scsiq->carr_va = asc_dvc->icq_sp->carr_va;
8328     scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8329 
8330     /*
8331      * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8332      * the microcode. The newly allocated stopper will become the new
8333      * stopper.
8334      */
8335     asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr;
8336 
8337     /*
8338      * Set the 'next_vpa' pointer for the old stopper to be the
8339      * physical address of the new stopper. The RISC can only
8340      * follow physical addresses.
8341      */
8342     asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8343 
8344     /*
8345      * Set the host adapter stopper pointer to point to the new carrier.
8346      */
8347     asc_dvc->icq_sp = new_carrp;
8348 
8349     if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8350         asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8351         /*
8352          * Tickle the RISC to tell it to read its Command Queue Head pointer.
8353          */
8354         AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8355         if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8356             /*
8357              * Clear the tickle value. In the ASC-3550 the RISC flag
8358              * command 'clr_tickle_a' does not work unless the host
8359              * value is cleared.
8360              */
8361             AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8362                          ADV_TICKLE_NOP);
8363         }
8364     } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8365         /*
8366          * Notify the RISC a carrier is ready by writing the physical
8367          * address of the new carrier stopper to the COMMA register.
8368          */
8369         AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8370                       le32_to_cpu(new_carrp->carr_pa));
8371     }
8372 
8373     return ADV_SUCCESS;
8374 }
8375 
8376 /*
8377  * Execute a single 'struct scsi_cmnd'.
8378  */
8379 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8380 {
8381     int ret, err_code;
8382     struct asc_board *boardp = shost_priv(scp->device->host);
8383 
8384     ASC_DBG(1, "scp 0x%p\n", scp);
8385 
8386     if (ASC_NARROW_BOARD(boardp)) {
8387         ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8388         struct asc_scsi_q asc_scsi_q;
8389 
8390         ret = asc_build_req(boardp, scp, &asc_scsi_q);
8391         if (ret != ASC_NOERROR) {
8392             ASC_STATS(scp->device->host, build_error);
8393             return ret;
8394         }
8395 
8396         ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8397         kfree(asc_scsi_q.sg_head);
8398         err_code = asc_dvc->err_code;
8399     } else {
8400         ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8401         adv_req_t *adv_reqp;
8402 
8403         switch (adv_build_req(boardp, scp, &adv_reqp)) {
8404         case ASC_NOERROR:
8405             ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8406             break;
8407         case ASC_BUSY:
8408             ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8409             /*
8410              * The asc_stats fields 'adv_build_noreq' and
8411              * 'adv_build_nosg' count wide board busy conditions.
8412              * They are updated in adv_build_req and
8413              * adv_get_sglist, respectively.
8414              */
8415             return ASC_BUSY;
8416         case ASC_ERROR:
8417         default:
8418             ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8419             ASC_STATS(scp->device->host, build_error);
8420             return ASC_ERROR;
8421         }
8422 
8423         ret = AdvExeScsiQueue(adv_dvc, adv_reqp);
8424         err_code = adv_dvc->err_code;
8425     }
8426 
8427     switch (ret) {
8428     case ASC_NOERROR:
8429         ASC_STATS(scp->device->host, exe_noerror);
8430         /*
8431          * Increment monotonically increasing per device
8432          * successful request counter. Wrapping doesn't matter.
8433          */
8434         boardp->reqcnt[scp->device->id]++;
8435         ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8436         break;
8437     case ASC_BUSY:
8438         ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n");
8439         ASC_STATS(scp->device->host, exe_busy);
8440         break;
8441     case ASC_ERROR:
8442         scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8443             "err_code 0x%x\n", err_code);
8444         ASC_STATS(scp->device->host, exe_error);
8445         set_host_byte(scp, DID_ERROR);
8446         break;
8447     default:
8448         scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8449             "err_code 0x%x\n", err_code);
8450         ASC_STATS(scp->device->host, exe_unknown);
8451         set_host_byte(scp, DID_ERROR);
8452         break;
8453     }
8454 
8455     ASC_DBG(1, "end\n");
8456     return ret;
8457 }
8458 
8459 /*
8460  * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8461  *
8462  * This function always returns 0. Command return status is saved
8463  * in the 'scp' result field.
8464  */
8465 static int advansys_queuecommand_lck(struct scsi_cmnd *scp)
8466 {
8467     struct Scsi_Host *shost = scp->device->host;
8468     int asc_res, result = 0;
8469 
8470     ASC_STATS(shost, queuecommand);
8471 
8472     asc_res = asc_execute_scsi_cmnd(scp);
8473 
8474     switch (asc_res) {
8475     case ASC_NOERROR:
8476         break;
8477     case ASC_BUSY:
8478         result = SCSI_MLQUEUE_HOST_BUSY;
8479         break;
8480     case ASC_ERROR:
8481     default:
8482         asc_scsi_done(scp);
8483         break;
8484     }
8485 
8486     return result;
8487 }
8488 
8489 static DEF_SCSI_QCMD(advansys_queuecommand)
8490 
8491 static ushort AscGetEisaChipCfg(PortAddr iop_base)
8492 {
8493     PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8494         (PortAddr) (ASC_EISA_CFG_IOP_MASK);
8495     return inpw(eisa_cfg_iop);
8496 }
8497 
8498 /*
8499  * Return the BIOS address of the adapter at the specified
8500  * I/O port and with the specified bus type.
8501  */
8502 static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
8503                         unsigned short bus_type)
8504 {
8505     unsigned short cfg_lsw;
8506     unsigned short bios_addr;
8507 
8508     /*
8509      * The PCI BIOS is re-located by the motherboard BIOS. Because
8510      * of this the driver can not determine where a PCI BIOS is
8511      * loaded and executes.
8512      */
8513     if (bus_type & ASC_IS_PCI)
8514         return 0;
8515 
8516     if ((bus_type & ASC_IS_EISA) != 0) {
8517         cfg_lsw = AscGetEisaChipCfg(iop_base);
8518         cfg_lsw &= 0x000F;
8519         bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
8520         return bios_addr;
8521     }
8522 
8523     cfg_lsw = AscGetChipCfgLsw(iop_base);
8524     bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
8525     return bios_addr;
8526 }
8527 
8528 static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
8529 {
8530     ushort cfg_lsw;
8531 
8532     if (AscGetChipScsiID(iop_base) == new_host_id) {
8533         return (new_host_id);
8534     }
8535     cfg_lsw = AscGetChipCfgLsw(iop_base);
8536     cfg_lsw &= 0xF8FF;
8537     cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
8538     AscSetChipCfgLsw(iop_base, cfg_lsw);
8539     return (AscGetChipScsiID(iop_base));
8540 }
8541 
8542 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
8543 {
8544     unsigned char sc;
8545 
8546     AscSetBank(iop_base, 1);
8547     sc = inp(iop_base + IOP_REG_SC);
8548     AscSetBank(iop_base, 0);
8549     return sc;
8550 }
8551 
8552 static unsigned char AscGetChipVersion(PortAddr iop_base,
8553                        unsigned short bus_type)
8554 {
8555     if (bus_type & ASC_IS_EISA) {
8556         PortAddr eisa_iop;
8557         unsigned char revision;
8558         eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8559             (PortAddr) ASC_EISA_REV_IOP_MASK;
8560         revision = inp(eisa_iop);
8561         return ASC_CHIP_MIN_VER_EISA - 1 + revision;
8562     }
8563     return AscGetChipVerNo(iop_base);
8564 }
8565 
8566 static int AscStopQueueExe(PortAddr iop_base)
8567 {
8568     int count = 0;
8569 
8570     if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
8571         AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8572                  ASC_STOP_REQ_RISC_STOP);
8573         do {
8574             if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
8575                 ASC_STOP_ACK_RISC_STOP) {
8576                 return (1);
8577             }
8578             mdelay(100);
8579         } while (count++ < 20);
8580     }
8581     return (0);
8582 }
8583 
8584 static unsigned int AscGetMaxDmaCount(ushort bus_type)
8585 {
8586     if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
8587         return ASC_MAX_VL_DMA_COUNT;
8588     return ASC_MAX_PCI_DMA_COUNT;
8589 }
8590 
8591 static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
8592 {
8593     int i;
8594     PortAddr iop_base;
8595     uchar chip_version;
8596 
8597     iop_base = asc_dvc->iop_base;
8598     asc_dvc->err_code = 0;
8599     if ((asc_dvc->bus_type &
8600          (ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
8601         asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
8602     }
8603     AscSetChipControl(iop_base, CC_HALT);
8604     AscSetChipStatus(iop_base, 0);
8605     asc_dvc->bug_fix_cntl = 0;
8606     asc_dvc->pci_fix_asyn_xfer = 0;
8607     asc_dvc->pci_fix_asyn_xfer_always = 0;
8608     /* asc_dvc->init_state initialized in AscInitGetConfig(). */
8609     asc_dvc->sdtr_done = 0;
8610     asc_dvc->cur_total_qng = 0;
8611     asc_dvc->is_in_int = false;
8612     asc_dvc->in_critical_cnt = 0;
8613     asc_dvc->last_q_shortage = 0;
8614     asc_dvc->use_tagged_qng = 0;
8615     asc_dvc->no_scam = 0;
8616     asc_dvc->unit_not_ready = 0;
8617     asc_dvc->queue_full_or_busy = 0;
8618     asc_dvc->redo_scam = 0;
8619     asc_dvc->res2 = 0;
8620     asc_dvc->min_sdtr_index = 0;
8621     asc_dvc->cfg->can_tagged_qng = 0;
8622     asc_dvc->cfg->cmd_qng_enabled = 0;
8623     asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
8624     asc_dvc->init_sdtr = 0;
8625     asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
8626     asc_dvc->scsi_reset_wait = 3;
8627     asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
8628     asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
8629     asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
8630     asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
8631     asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
8632     chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
8633     asc_dvc->cfg->chip_version = chip_version;
8634     asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
8635     asc_dvc->max_sdtr_index = 7;
8636     if ((asc_dvc->bus_type & ASC_IS_PCI) &&
8637         (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
8638         asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
8639         asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
8640         asc_dvc->max_sdtr_index = 15;
8641         if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
8642             AscSetExtraControl(iop_base,
8643                        (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8644         } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
8645             AscSetExtraControl(iop_base,
8646                        (SEC_ACTIVE_NEGATE |
8647                         SEC_ENABLE_FILTER));
8648         }
8649     }
8650     if (asc_dvc->bus_type == ASC_IS_PCI) {
8651         AscSetExtraControl(iop_base,
8652                    (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8653     }
8654 
8655     for (i = 0; i <= ASC_MAX_TID; i++) {
8656         asc_dvc->cur_dvc_qng[i] = 0;
8657         asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
8658         asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
8659         asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
8660         asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
8661     }
8662 }
8663 
8664 static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
8665 {
8666     int retry;
8667 
8668     for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
8669         unsigned char read_back;
8670         AscSetChipEEPCmd(iop_base, cmd_reg);
8671         mdelay(1);
8672         read_back = AscGetChipEEPCmd(iop_base);
8673         if (read_back == cmd_reg)
8674             return 1;
8675     }
8676     return 0;
8677 }
8678 
8679 static void AscWaitEEPRead(void)
8680 {
8681     mdelay(1);
8682 }
8683 
8684 static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
8685 {
8686     ushort read_wval;
8687     uchar cmd_reg;
8688 
8689     AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8690     AscWaitEEPRead();
8691     cmd_reg = addr | ASC_EEP_CMD_READ;
8692     AscWriteEEPCmdReg(iop_base, cmd_reg);
8693     AscWaitEEPRead();
8694     read_wval = AscGetChipEEPData(iop_base);
8695     AscWaitEEPRead();
8696     return read_wval;
8697 }
8698 
8699 static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8700                   ushort bus_type)
8701 {
8702     ushort wval;
8703     ushort sum;
8704     ushort *wbuf;
8705     int cfg_beg;
8706     int cfg_end;
8707     int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8708     int s_addr;
8709 
8710     wbuf = (ushort *)cfg_buf;
8711     sum = 0;
8712     /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
8713     for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8714         *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8715         sum += *wbuf;
8716     }
8717     if (bus_type & ASC_IS_VL) {
8718         cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8719         cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8720     } else {
8721         cfg_beg = ASC_EEP_DVC_CFG_BEG;
8722         cfg_end = ASC_EEP_MAX_DVC_ADDR;
8723     }
8724     for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8725         wval = AscReadEEPWord(iop_base, (uchar)s_addr);
8726         if (s_addr <= uchar_end_in_config) {
8727             /*
8728              * Swap all char fields - must unswap bytes already swapped
8729              * by AscReadEEPWord().
8730              */
8731             *wbuf = le16_to_cpu(wval);
8732         } else {
8733             /* Don't swap word field at the end - cntl field. */
8734             *wbuf = wval;
8735         }
8736         sum += wval;    /* Checksum treats all EEPROM data as words. */
8737     }
8738     /*
8739      * Read the checksum word which will be compared against 'sum'
8740      * by the caller. Word field already swapped.
8741      */
8742     *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8743     return sum;
8744 }
8745 
8746 static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
8747 {
8748     PortAddr iop_base;
8749     ushort q_addr;
8750     ushort saved_word;
8751     int sta;
8752 
8753     iop_base = asc_dvc->iop_base;
8754     sta = 0;
8755     q_addr = ASC_QNO_TO_QADDR(241);
8756     saved_word = AscReadLramWord(iop_base, q_addr);
8757     AscSetChipLramAddr(iop_base, q_addr);
8758     AscSetChipLramData(iop_base, 0x55AA);
8759     mdelay(10);
8760     AscSetChipLramAddr(iop_base, q_addr);
8761     if (AscGetChipLramData(iop_base) == 0x55AA) {
8762         sta = 1;
8763         AscWriteLramWord(iop_base, q_addr, saved_word);
8764     }
8765     return (sta);
8766 }
8767 
8768 static void AscWaitEEPWrite(void)
8769 {
8770     mdelay(20);
8771 }
8772 
8773 static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
8774 {
8775     ushort read_back;
8776     int retry;
8777 
8778     retry = 0;
8779     while (true) {
8780         AscSetChipEEPData(iop_base, data_reg);
8781         mdelay(1);
8782         read_back = AscGetChipEEPData(iop_base);
8783         if (read_back == data_reg) {
8784             return (1);
8785         }
8786         if (retry++ > ASC_EEP_MAX_RETRY) {
8787             return (0);
8788         }
8789     }
8790 }
8791 
8792 static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
8793 {
8794     ushort read_wval;
8795 
8796     read_wval = AscReadEEPWord(iop_base, addr);
8797     if (read_wval != word_val) {
8798         AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
8799         AscWaitEEPRead();
8800         AscWriteEEPDataReg(iop_base, word_val);
8801         AscWaitEEPRead();
8802         AscWriteEEPCmdReg(iop_base,
8803                   (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
8804         AscWaitEEPWrite();
8805         AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8806         AscWaitEEPRead();
8807         return (AscReadEEPWord(iop_base, addr));
8808     }
8809     return (read_wval);
8810 }
8811 
8812 static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8813                    ushort bus_type)
8814 {
8815     int n_error;
8816     ushort *wbuf;
8817     ushort word;
8818     ushort sum;
8819     int s_addr;
8820     int cfg_beg;
8821     int cfg_end;
8822     int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8823 
8824     wbuf = (ushort *)cfg_buf;
8825     n_error = 0;
8826     sum = 0;
8827     /* Write two config words; AscWriteEEPWord() will swap bytes. */
8828     for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8829         sum += *wbuf;
8830         if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
8831             n_error++;
8832         }
8833     }
8834     if (bus_type & ASC_IS_VL) {
8835         cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8836         cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8837     } else {
8838         cfg_beg = ASC_EEP_DVC_CFG_BEG;
8839         cfg_end = ASC_EEP_MAX_DVC_ADDR;
8840     }
8841     for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8842         if (s_addr <= uchar_end_in_config) {
8843             /*
8844              * This is a char field. Swap char fields before they are
8845              * swapped again by AscWriteEEPWord().
8846              */
8847             word = cpu_to_le16(*wbuf);
8848             if (word !=
8849                 AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
8850                 n_error++;
8851             }
8852         } else {
8853             /* Don't swap word field at the end - cntl field. */
8854             if (*wbuf !=
8855                 AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
8856                 n_error++;
8857             }
8858         }
8859         sum += *wbuf;   /* Checksum calculated from word values. */
8860     }
8861     /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
8862     *wbuf = sum;
8863     if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
8864         n_error++;
8865     }
8866 
8867     /* Read EEPROM back again. */
8868     wbuf = (ushort *)cfg_buf;
8869     /*
8870      * Read two config words; Byte-swapping done by AscReadEEPWord().
8871      */
8872     for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8873         if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
8874             n_error++;
8875         }
8876     }
8877     if (bus_type & ASC_IS_VL) {
8878         cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8879         cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8880     } else {
8881         cfg_beg = ASC_EEP_DVC_CFG_BEG;
8882         cfg_end = ASC_EEP_MAX_DVC_ADDR;
8883     }
8884     for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8885         if (s_addr <= uchar_end_in_config) {
8886             /*
8887              * Swap all char fields. Must unswap bytes already swapped
8888              * by AscReadEEPWord().
8889              */
8890             word =
8891                 le16_to_cpu(AscReadEEPWord
8892                     (iop_base, (uchar)s_addr));
8893         } else {
8894             /* Don't swap word field at the end - cntl field. */
8895             word = AscReadEEPWord(iop_base, (uchar)s_addr);
8896         }
8897         if (*wbuf != word) {
8898             n_error++;
8899         }
8900     }
8901     /* Read checksum; Byte swapping not needed. */
8902     if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
8903         n_error++;
8904     }
8905     return n_error;
8906 }
8907 
8908 static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8909                ushort bus_type)
8910 {
8911     int retry;
8912     int n_error;
8913 
8914     retry = 0;
8915     while (true) {
8916         if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
8917                            bus_type)) == 0) {
8918             break;
8919         }
8920         if (++retry > ASC_EEP_MAX_RETRY) {
8921             break;
8922         }
8923     }
8924     return n_error;
8925 }
8926 
8927 static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
8928 {
8929     ASCEEP_CONFIG eep_config_buf;
8930     ASCEEP_CONFIG *eep_config;
8931     PortAddr iop_base;
8932     ushort chksum;
8933     ushort warn_code;
8934     ushort cfg_msw, cfg_lsw;
8935     int i;
8936     int write_eep = 0;
8937 
8938     iop_base = asc_dvc->iop_base;
8939     warn_code = 0;
8940     AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
8941     AscStopQueueExe(iop_base);
8942     if ((AscStopChip(iop_base)) ||
8943         (AscGetChipScsiCtrl(iop_base) != 0)) {
8944         asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
8945         AscResetChipAndScsiBus(asc_dvc);
8946         mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
8947     }
8948     if (!AscIsChipHalted(iop_base)) {
8949         asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
8950         return (warn_code);
8951     }
8952     AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
8953     if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
8954         asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
8955         return (warn_code);
8956     }
8957     eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
8958     cfg_msw = AscGetChipCfgMsw(iop_base);
8959     cfg_lsw = AscGetChipCfgLsw(iop_base);
8960     if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
8961         cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
8962         warn_code |= ASC_WARN_CFG_MSW_RECOVER;
8963         AscSetChipCfgMsw(iop_base, cfg_msw);
8964     }
8965     chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
8966     ASC_DBG(1, "chksum 0x%x\n", chksum);
8967     if (chksum == 0) {
8968         chksum = 0xaa55;
8969     }
8970     if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
8971         warn_code |= ASC_WARN_AUTO_CONFIG;
8972         if (asc_dvc->cfg->chip_version == 3) {
8973             if (eep_config->cfg_lsw != cfg_lsw) {
8974                 warn_code |= ASC_WARN_EEPROM_RECOVER;
8975                 eep_config->cfg_lsw =
8976                     AscGetChipCfgLsw(iop_base);
8977             }
8978             if (eep_config->cfg_msw != cfg_msw) {
8979                 warn_code |= ASC_WARN_EEPROM_RECOVER;
8980                 eep_config->cfg_msw =
8981                     AscGetChipCfgMsw(iop_base);
8982             }
8983         }
8984     }
8985     eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
8986     eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
8987     ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
8988     if (chksum != eep_config->chksum) {
8989         if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
8990             ASC_CHIP_VER_PCI_ULTRA_3050) {
8991             ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
8992             eep_config->init_sdtr = 0xFF;
8993             eep_config->disc_enable = 0xFF;
8994             eep_config->start_motor = 0xFF;
8995             eep_config->use_cmd_qng = 0;
8996             eep_config->max_total_qng = 0xF0;
8997             eep_config->max_tag_qng = 0x20;
8998             eep_config->cntl = 0xBFFF;
8999             ASC_EEP_SET_CHIP_ID(eep_config, 7);
9000             eep_config->no_scam = 0;
9001             eep_config->adapter_info[0] = 0;
9002             eep_config->adapter_info[1] = 0;
9003             eep_config->adapter_info[2] = 0;
9004             eep_config->adapter_info[3] = 0;
9005             eep_config->adapter_info[4] = 0;
9006             /* Indicate EEPROM-less board. */
9007             eep_config->adapter_info[5] = 0xBB;
9008         } else {
9009             ASC_PRINT
9010                 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9011             write_eep = 1;
9012             warn_code |= ASC_WARN_EEPROM_CHKSUM;
9013         }
9014     }
9015     asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9016     asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9017     asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9018     asc_dvc->start_motor = eep_config->start_motor;
9019     asc_dvc->dvc_cntl = eep_config->cntl;
9020     asc_dvc->no_scam = eep_config->no_scam;
9021     asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9022     asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9023     asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9024     asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9025     asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9026     asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9027     if (!AscTestExternalLram(asc_dvc)) {
9028         if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9029              ASC_IS_PCI_ULTRA)) {
9030             eep_config->max_total_qng =
9031                 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9032             eep_config->max_tag_qng =
9033                 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9034         } else {
9035             eep_config->cfg_msw |= 0x0800;
9036             cfg_msw |= 0x0800;
9037             AscSetChipCfgMsw(iop_base, cfg_msw);
9038             eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9039             eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9040         }
9041     } else {
9042     }
9043     if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9044         eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9045     }
9046     if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9047         eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9048     }
9049     if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9050         eep_config->max_tag_qng = eep_config->max_total_qng;
9051     }
9052     if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9053         eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9054     }
9055     asc_dvc->max_total_qng = eep_config->max_total_qng;
9056     if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9057         eep_config->use_cmd_qng) {
9058         eep_config->disc_enable = eep_config->use_cmd_qng;
9059         warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9060     }
9061     ASC_EEP_SET_CHIP_ID(eep_config,
9062                 ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9063     asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9064     if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9065         !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9066         asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9067     }
9068 
9069     for (i = 0; i <= ASC_MAX_TID; i++) {
9070         asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9071         asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9072         asc_dvc->cfg->sdtr_period_offset[i] =
9073             (uchar)(ASC_DEF_SDTR_OFFSET |
9074                 (asc_dvc->min_sdtr_index << 4));
9075     }
9076     eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9077     if (write_eep) {
9078         if ((i = AscSetEEPConfig(iop_base, eep_config,
9079                      asc_dvc->bus_type)) != 0) {
9080             ASC_PRINT1
9081                 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9082                  i);
9083         } else {
9084             ASC_PRINT
9085                 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9086         }
9087     }
9088     return (warn_code);
9089 }
9090 
9091 static int AscInitGetConfig(struct Scsi_Host *shost)
9092 {
9093     struct asc_board *board = shost_priv(shost);
9094     ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9095     unsigned short warn_code = 0;
9096 
9097     asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9098     if (asc_dvc->err_code != 0)
9099         return asc_dvc->err_code;
9100 
9101     if (AscFindSignature(asc_dvc->iop_base)) {
9102         AscInitAscDvcVar(asc_dvc);
9103         warn_code = AscInitFromEEP(asc_dvc);
9104         asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9105         if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9106             asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9107     } else {
9108         asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9109     }
9110 
9111     switch (warn_code) {
9112     case 0: /* No error */
9113         break;
9114     case ASC_WARN_IO_PORT_ROTATE:
9115         shost_printk(KERN_WARNING, shost, "I/O port address "
9116                 "modified\n");
9117         break;
9118     case ASC_WARN_AUTO_CONFIG:
9119         shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9120                 "enabled\n");
9121         break;
9122     case ASC_WARN_EEPROM_CHKSUM:
9123         shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9124         break;
9125     case ASC_WARN_IRQ_MODIFIED:
9126         shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9127         break;
9128     case ASC_WARN_CMD_QNG_CONFLICT:
9129         shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9130                 "disconnects\n");
9131         break;
9132     default:
9133         shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9134                 warn_code);
9135         break;
9136     }
9137 
9138     if (asc_dvc->err_code != 0)
9139         shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9140             "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9141 
9142     return asc_dvc->err_code;
9143 }
9144 
9145 static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9146 {
9147     struct asc_board *board = shost_priv(shost);
9148     ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9149     PortAddr iop_base = asc_dvc->iop_base;
9150     unsigned short cfg_msw;
9151     unsigned short warn_code = 0;
9152 
9153     asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9154     if (asc_dvc->err_code != 0)
9155         return asc_dvc->err_code;
9156     if (!AscFindSignature(asc_dvc->iop_base)) {
9157         asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9158         return asc_dvc->err_code;
9159     }
9160 
9161     cfg_msw = AscGetChipCfgMsw(iop_base);
9162     if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9163         cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9164         warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9165         AscSetChipCfgMsw(iop_base, cfg_msw);
9166     }
9167     if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9168         asc_dvc->cfg->cmd_qng_enabled) {
9169         asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9170         warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9171     }
9172     if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9173         warn_code |= ASC_WARN_AUTO_CONFIG;
9174     }
9175 #ifdef CONFIG_PCI
9176     if (asc_dvc->bus_type & ASC_IS_PCI) {
9177         cfg_msw &= 0xFFC0;
9178         AscSetChipCfgMsw(iop_base, cfg_msw);
9179         if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9180         } else {
9181             if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9182                 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9183                 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9184                 asc_dvc->bug_fix_cntl |=
9185                     ASC_BUG_FIX_ASYN_USE_SYN;
9186             }
9187         }
9188     } else
9189 #endif /* CONFIG_PCI */
9190     if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9191         asc_dvc->cfg->chip_scsi_id) {
9192         asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9193     }
9194 
9195     asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9196 
9197     switch (warn_code) {
9198     case 0: /* No error. */
9199         break;
9200     case ASC_WARN_IO_PORT_ROTATE:
9201         shost_printk(KERN_WARNING, shost, "I/O port address "
9202                 "modified\n");
9203         break;
9204     case ASC_WARN_AUTO_CONFIG:
9205         shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9206                 "enabled\n");
9207         break;
9208     case ASC_WARN_EEPROM_CHKSUM:
9209         shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9210         break;
9211     case ASC_WARN_IRQ_MODIFIED:
9212         shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9213         break;
9214     case ASC_WARN_CMD_QNG_CONFLICT:
9215         shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9216                 "disconnects\n");
9217         break;
9218     default:
9219         shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9220                 warn_code);
9221         break;
9222     }
9223 
9224     if (asc_dvc->err_code != 0)
9225         shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9226             "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9227 
9228     return asc_dvc->err_code;
9229 }
9230 
9231 /*
9232  * EEPROM Configuration.
9233  *
9234  * All drivers should use this structure to set the default EEPROM
9235  * configuration. The BIOS now uses this structure when it is built.
9236  * Additional structure information can be found in a_condor.h where
9237  * the structure is defined.
9238  *
9239  * The *_Field_IsChar structs are needed to correct for endianness.
9240  * These values are read from the board 16 bits at a time directly
9241  * into the structs. Because some fields are char, the values will be
9242  * in the wrong order. The *_Field_IsChar tells when to flip the
9243  * bytes. Data read and written to PCI memory is automatically swapped
9244  * on big-endian platforms so char fields read as words are actually being
9245  * unswapped on big-endian platforms.
9246  */
9247 #ifdef CONFIG_PCI
9248 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9249     ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */
9250     0x0000,         /* cfg_msw */
9251     0xFFFF,         /* disc_enable */
9252     0xFFFF,         /* wdtr_able */
9253     0xFFFF,         /* sdtr_able */
9254     0xFFFF,         /* start_motor */
9255     0xFFFF,         /* tagqng_able */
9256     0xFFFF,         /* bios_scan */
9257     0,          /* scam_tolerant */
9258     7,          /* adapter_scsi_id */
9259     0,          /* bios_boot_delay */
9260     3,          /* scsi_reset_delay */
9261     0,          /* bios_id_lun */
9262     0,          /* termination */
9263     0,          /* reserved1 */
9264     0xFFE7,         /* bios_ctrl */
9265     0xFFFF,         /* ultra_able */
9266     0,          /* reserved2 */
9267     ASC_DEF_MAX_HOST_QNG,   /* max_host_qng */
9268     ASC_DEF_MAX_DVC_QNG,    /* max_dvc_qng */
9269     0,          /* dvc_cntl */
9270     0,          /* bug_fix */
9271     0,          /* serial_number_word1 */
9272     0,          /* serial_number_word2 */
9273     0,          /* serial_number_word3 */
9274     0,          /* check_sum */
9275     {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9276     ,           /* oem_name[16] */
9277     0,          /* dvc_err_code */
9278     0,          /* adv_err_code */
9279     0,          /* adv_err_addr */
9280     0,          /* saved_dvc_err_code */
9281     0,          /* saved_adv_err_code */
9282     0,          /* saved_adv_err_addr */
9283     0           /* num_of_err */
9284 };
9285 
9286 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9287     0,          /* cfg_lsw */
9288     0,          /* cfg_msw */
9289     0,          /* -disc_enable */
9290     0,          /* wdtr_able */
9291     0,          /* sdtr_able */
9292     0,          /* start_motor */
9293     0,          /* tagqng_able */
9294     0,          /* bios_scan */
9295     0,          /* scam_tolerant */
9296     1,          /* adapter_scsi_id */
9297     1,          /* bios_boot_delay */
9298     1,          /* scsi_reset_delay */
9299     1,          /* bios_id_lun */
9300     1,          /* termination */
9301     1,          /* reserved1 */
9302     0,          /* bios_ctrl */
9303     0,          /* ultra_able */
9304     0,          /* reserved2 */
9305     1,          /* max_host_qng */
9306     1,          /* max_dvc_qng */
9307     0,          /* dvc_cntl */
9308     0,          /* bug_fix */
9309     0,          /* serial_number_word1 */
9310     0,          /* serial_number_word2 */
9311     0,          /* serial_number_word3 */
9312     0,          /* check_sum */
9313     {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9314     ,           /* oem_name[16] */
9315     0,          /* dvc_err_code */
9316     0,          /* adv_err_code */
9317     0,          /* adv_err_addr */
9318     0,          /* saved_dvc_err_code */
9319     0,          /* saved_adv_err_code */
9320     0,          /* saved_adv_err_addr */
9321     0           /* num_of_err */
9322 };
9323 
9324 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9325     ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
9326     0x0000,         /* 01 cfg_msw */
9327     0xFFFF,         /* 02 disc_enable */
9328     0xFFFF,         /* 03 wdtr_able */
9329     0x4444,         /* 04 sdtr_speed1 */
9330     0xFFFF,         /* 05 start_motor */
9331     0xFFFF,         /* 06 tagqng_able */
9332     0xFFFF,         /* 07 bios_scan */
9333     0,          /* 08 scam_tolerant */
9334     7,          /* 09 adapter_scsi_id */
9335     0,          /*    bios_boot_delay */
9336     3,          /* 10 scsi_reset_delay */
9337     0,          /*    bios_id_lun */
9338     0,          /* 11 termination_se */
9339     0,          /*    termination_lvd */
9340     0xFFE7,         /* 12 bios_ctrl */
9341     0x4444,         /* 13 sdtr_speed2 */
9342     0x4444,         /* 14 sdtr_speed3 */
9343     ASC_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
9344     ASC_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
9345     0,          /* 16 dvc_cntl */
9346     0x4444,         /* 17 sdtr_speed4 */
9347     0,          /* 18 serial_number_word1 */
9348     0,          /* 19 serial_number_word2 */
9349     0,          /* 20 serial_number_word3 */
9350     0,          /* 21 check_sum */
9351     {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9352     ,           /* 22-29 oem_name[16] */
9353     0,          /* 30 dvc_err_code */
9354     0,          /* 31 adv_err_code */
9355     0,          /* 32 adv_err_addr */
9356     0,          /* 33 saved_dvc_err_code */
9357     0,          /* 34 saved_adv_err_code */
9358     0,          /* 35 saved_adv_err_addr */
9359     0,          /* 36 reserved */
9360     0,          /* 37 reserved */
9361     0,          /* 38 reserved */
9362     0,          /* 39 reserved */
9363     0,          /* 40 reserved */
9364     0,          /* 41 reserved */
9365     0,          /* 42 reserved */
9366     0,          /* 43 reserved */
9367     0,          /* 44 reserved */
9368     0,          /* 45 reserved */
9369     0,          /* 46 reserved */
9370     0,          /* 47 reserved */
9371     0,          /* 48 reserved */
9372     0,          /* 49 reserved */
9373     0,          /* 50 reserved */
9374     0,          /* 51 reserved */
9375     0,          /* 52 reserved */
9376     0,          /* 53 reserved */
9377     0,          /* 54 reserved */
9378     0,          /* 55 reserved */
9379     0,          /* 56 cisptr_lsw */
9380     0,          /* 57 cisprt_msw */
9381     PCI_VENDOR_ID_ASP,  /* 58 subsysvid */
9382     PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */
9383     0,          /* 60 reserved */
9384     0,          /* 61 reserved */
9385     0,          /* 62 reserved */
9386     0           /* 63 reserved */
9387 };
9388 
9389 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
9390     0,          /* 00 cfg_lsw */
9391     0,          /* 01 cfg_msw */
9392     0,          /* 02 disc_enable */
9393     0,          /* 03 wdtr_able */
9394     0,          /* 04 sdtr_speed1 */
9395     0,          /* 05 start_motor */
9396     0,          /* 06 tagqng_able */
9397     0,          /* 07 bios_scan */
9398     0,          /* 08 scam_tolerant */
9399     1,          /* 09 adapter_scsi_id */
9400     1,          /*    bios_boot_delay */
9401     1,          /* 10 scsi_reset_delay */
9402     1,          /*    bios_id_lun */
9403     1,          /* 11 termination_se */
9404     1,          /*    termination_lvd */
9405     0,          /* 12 bios_ctrl */
9406     0,          /* 13 sdtr_speed2 */
9407     0,          /* 14 sdtr_speed3 */
9408     1,          /* 15 max_host_qng */
9409     1,          /*    max_dvc_qng */
9410     0,          /* 16 dvc_cntl */
9411     0,          /* 17 sdtr_speed4 */
9412     0,          /* 18 serial_number_word1 */
9413     0,          /* 19 serial_number_word2 */
9414     0,          /* 20 serial_number_word3 */
9415     0,          /* 21 check_sum */
9416     {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9417     ,           /* 22-29 oem_name[16] */
9418     0,          /* 30 dvc_err_code */
9419     0,          /* 31 adv_err_code */
9420     0,          /* 32 adv_err_addr */
9421     0,          /* 33 saved_dvc_err_code */
9422     0,          /* 34 saved_adv_err_code */
9423     0,          /* 35 saved_adv_err_addr */
9424     0,          /* 36 reserved */
9425     0,          /* 37 reserved */
9426     0,          /* 38 reserved */
9427     0,          /* 39 reserved */
9428     0,          /* 40 reserved */
9429     0,          /* 41 reserved */
9430     0,          /* 42 reserved */
9431     0,          /* 43 reserved */
9432     0,          /* 44 reserved */
9433     0,          /* 45 reserved */
9434     0,          /* 46 reserved */
9435     0,          /* 47 reserved */
9436     0,          /* 48 reserved */
9437     0,          /* 49 reserved */
9438     0,          /* 50 reserved */
9439     0,          /* 51 reserved */
9440     0,          /* 52 reserved */
9441     0,          /* 53 reserved */
9442     0,          /* 54 reserved */
9443     0,          /* 55 reserved */
9444     0,          /* 56 cisptr_lsw */
9445     0,          /* 57 cisprt_msw */
9446     0,          /* 58 subsysvid */
9447     0,          /* 59 subsysid */
9448     0,          /* 60 reserved */
9449     0,          /* 61 reserved */
9450     0,          /* 62 reserved */
9451     0           /* 63 reserved */
9452 };
9453 
9454 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
9455     ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
9456     0x0000,         /* 01 cfg_msw */
9457     0xFFFF,         /* 02 disc_enable */
9458     0xFFFF,         /* 03 wdtr_able */
9459     0x5555,         /* 04 sdtr_speed1 */
9460     0xFFFF,         /* 05 start_motor */
9461     0xFFFF,         /* 06 tagqng_able */
9462     0xFFFF,         /* 07 bios_scan */
9463     0,          /* 08 scam_tolerant */
9464     7,          /* 09 adapter_scsi_id */
9465     0,          /*    bios_boot_delay */
9466     3,          /* 10 scsi_reset_delay */
9467     0,          /*    bios_id_lun */
9468     0,          /* 11 termination_se */
9469     0,          /*    termination_lvd */
9470     0xFFE7,         /* 12 bios_ctrl */
9471     0x5555,         /* 13 sdtr_speed2 */
9472     0x5555,         /* 14 sdtr_speed3 */
9473     ASC_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
9474     ASC_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
9475     0,          /* 16 dvc_cntl */
9476     0x5555,         /* 17 sdtr_speed4 */
9477     0,          /* 18 serial_number_word1 */
9478     0,          /* 19 serial_number_word2 */
9479     0,          /* 20 serial_number_word3 */
9480     0,          /* 21 check_sum */
9481     {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9482     ,           /* 22-29 oem_name[16] */
9483     0,          /* 30 dvc_err_code */
9484     0,          /* 31 adv_err_code */
9485     0,          /* 32 adv_err_addr */
9486     0,          /* 33 saved_dvc_err_code */
9487     0,          /* 34 saved_adv_err_code */
9488     0,          /* 35 saved_adv_err_addr */
9489     0,          /* 36 reserved */
9490     0,          /* 37 reserved */
9491     0,          /* 38 reserved */
9492     0,          /* 39 reserved */
9493     0,          /* 40 reserved */
9494     0,          /* 41 reserved */
9495     0,          /* 42 reserved */
9496     0,          /* 43 reserved */
9497     0,          /* 44 reserved */
9498     0,          /* 45 reserved */
9499     0,          /* 46 reserved */
9500     0,          /* 47 reserved */
9501     0,          /* 48 reserved */
9502     0,          /* 49 reserved */
9503     0,          /* 50 reserved */
9504     0,          /* 51 reserved */
9505     0,          /* 52 reserved */
9506     0,          /* 53 reserved */
9507     0,          /* 54 reserved */
9508     0,          /* 55 reserved */
9509     0,          /* 56 cisptr_lsw */
9510     0,          /* 57 cisprt_msw */
9511     PCI_VENDOR_ID_ASP,  /* 58 subsysvid */
9512     PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */
9513     0,          /* 60 reserved */
9514     0,          /* 61 reserved */
9515     0,          /* 62 reserved */
9516     0           /* 63 reserved */
9517 };
9518 
9519 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
9520     0,          /* 00 cfg_lsw */
9521     0,          /* 01 cfg_msw */
9522     0,          /* 02 disc_enable */
9523     0,          /* 03 wdtr_able */
9524     0,          /* 04 sdtr_speed1 */
9525     0,          /* 05 start_motor */
9526     0,          /* 06 tagqng_able */
9527     0,          /* 07 bios_scan */
9528     0,          /* 08 scam_tolerant */
9529     1,          /* 09 adapter_scsi_id */
9530     1,          /*    bios_boot_delay */
9531     1,          /* 10 scsi_reset_delay */
9532     1,          /*    bios_id_lun */
9533     1,          /* 11 termination_se */
9534     1,          /*    termination_lvd */
9535     0,          /* 12 bios_ctrl */
9536     0,          /* 13 sdtr_speed2 */
9537     0,          /* 14 sdtr_speed3 */
9538     1,          /* 15 max_host_qng */
9539     1,          /*    max_dvc_qng */
9540     0,          /* 16 dvc_cntl */
9541     0,          /* 17 sdtr_speed4 */
9542     0,          /* 18 serial_number_word1 */
9543     0,          /* 19 serial_number_word2 */
9544     0,          /* 20 serial_number_word3 */
9545     0,          /* 21 check_sum */
9546     {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9547     ,           /* 22-29 oem_name[16] */
9548     0,          /* 30 dvc_err_code */
9549     0,          /* 31 adv_err_code */
9550     0,          /* 32 adv_err_addr */
9551     0,          /* 33 saved_dvc_err_code */
9552     0,          /* 34 saved_adv_err_code */
9553     0,          /* 35 saved_adv_err_addr */
9554     0,          /* 36 reserved */
9555     0,          /* 37 reserved */
9556     0,          /* 38 reserved */
9557     0,          /* 39 reserved */
9558     0,          /* 40 reserved */
9559     0,          /* 41 reserved */
9560     0,          /* 42 reserved */
9561     0,          /* 43 reserved */
9562     0,          /* 44 reserved */
9563     0,          /* 45 reserved */
9564     0,          /* 46 reserved */
9565     0,          /* 47 reserved */
9566     0,          /* 48 reserved */
9567     0,          /* 49 reserved */
9568     0,          /* 50 reserved */
9569     0,          /* 51 reserved */
9570     0,          /* 52 reserved */
9571     0,          /* 53 reserved */
9572     0,          /* 54 reserved */
9573     0,          /* 55 reserved */
9574     0,          /* 56 cisptr_lsw */
9575     0,          /* 57 cisprt_msw */
9576     0,          /* 58 subsysvid */
9577     0,          /* 59 subsysid */
9578     0,          /* 60 reserved */
9579     0,          /* 61 reserved */
9580     0,          /* 62 reserved */
9581     0           /* 63 reserved */
9582 };
9583 
9584 /*
9585  * Wait for EEPROM command to complete
9586  */
9587 static void AdvWaitEEPCmd(AdvPortAddr iop_base)
9588 {
9589     int eep_delay_ms;
9590 
9591     for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
9592         if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
9593             ASC_EEP_CMD_DONE) {
9594             break;
9595         }
9596         mdelay(1);
9597     }
9598     if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
9599         0)
9600         BUG();
9601 }
9602 
9603 /*
9604  * Read the EEPROM from specified location
9605  */
9606 static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
9607 {
9608     AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9609                  ASC_EEP_CMD_READ | eep_word_addr);
9610     AdvWaitEEPCmd(iop_base);
9611     return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
9612 }
9613 
9614 /*
9615  * Write the EEPROM from 'cfg_buf'.
9616  */
9617 static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
9618                 ADVEEP_3550_CONFIG *cfg_buf)
9619 {
9620     ushort *wbuf;
9621     ushort addr, chksum;
9622     ushort *charfields;
9623 
9624     wbuf = (ushort *)cfg_buf;
9625     charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
9626     chksum = 0;
9627 
9628     AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9629     AdvWaitEEPCmd(iop_base);
9630 
9631     /*
9632      * Write EEPROM from word 0 to word 20.
9633      */
9634     for (addr = ADV_EEP_DVC_CFG_BEGIN;
9635          addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9636         ushort word;
9637 
9638         if (*charfields++) {
9639             word = cpu_to_le16(*wbuf);
9640         } else {
9641             word = *wbuf;
9642         }
9643         chksum += *wbuf;    /* Checksum is calculated from word values. */
9644         AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9645         AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9646                      ASC_EEP_CMD_WRITE | addr);
9647         AdvWaitEEPCmd(iop_base);
9648         mdelay(ADV_EEP_DELAY_MS);
9649     }
9650 
9651     /*
9652      * Write EEPROM checksum at word 21.
9653      */
9654     AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9655     AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9656     AdvWaitEEPCmd(iop_base);
9657     wbuf++;
9658     charfields++;
9659 
9660     /*
9661      * Write EEPROM OEM name at words 22 to 29.
9662      */
9663     for (addr = ADV_EEP_DVC_CTL_BEGIN;
9664          addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9665         ushort word;
9666 
9667         if (*charfields++) {
9668             word = cpu_to_le16(*wbuf);
9669         } else {
9670             word = *wbuf;
9671         }
9672         AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9673         AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9674                      ASC_EEP_CMD_WRITE | addr);
9675         AdvWaitEEPCmd(iop_base);
9676     }
9677     AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9678     AdvWaitEEPCmd(iop_base);
9679 }
9680 
9681 /*
9682  * Write the EEPROM from 'cfg_buf'.
9683  */
9684 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
9685                    ADVEEP_38C0800_CONFIG *cfg_buf)
9686 {
9687     ushort *wbuf;
9688     ushort *charfields;
9689     ushort addr, chksum;
9690 
9691     wbuf = (ushort *)cfg_buf;
9692     charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
9693     chksum = 0;
9694 
9695     AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9696     AdvWaitEEPCmd(iop_base);
9697 
9698     /*
9699      * Write EEPROM from word 0 to word 20.
9700      */
9701     for (addr = ADV_EEP_DVC_CFG_BEGIN;
9702          addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9703         ushort word;
9704 
9705         if (*charfields++) {
9706             word = cpu_to_le16(*wbuf);
9707         } else {
9708             word = *wbuf;
9709         }
9710         chksum += *wbuf;    /* Checksum is calculated from word values. */
9711         AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9712         AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9713                      ASC_EEP_CMD_WRITE | addr);
9714         AdvWaitEEPCmd(iop_base);
9715         mdelay(ADV_EEP_DELAY_MS);
9716     }
9717 
9718     /*
9719      * Write EEPROM checksum at word 21.
9720      */
9721     AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9722     AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9723     AdvWaitEEPCmd(iop_base);
9724     wbuf++;
9725     charfields++;
9726 
9727     /*
9728      * Write EEPROM OEM name at words 22 to 29.
9729      */
9730     for (addr = ADV_EEP_DVC_CTL_BEGIN;
9731          addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9732         ushort word;
9733 
9734         if (*charfields++) {
9735             word = cpu_to_le16(*wbuf);
9736         } else {
9737             word = *wbuf;
9738         }
9739         AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9740         AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9741                      ASC_EEP_CMD_WRITE | addr);
9742         AdvWaitEEPCmd(iop_base);
9743     }
9744     AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9745     AdvWaitEEPCmd(iop_base);
9746 }
9747 
9748 /*
9749  * Write the EEPROM from 'cfg_buf'.
9750  */
9751 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
9752                    ADVEEP_38C1600_CONFIG *cfg_buf)
9753 {
9754     ushort *wbuf;
9755     ushort *charfields;
9756     ushort addr, chksum;
9757 
9758     wbuf = (ushort *)cfg_buf;
9759     charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
9760     chksum = 0;
9761 
9762     AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9763     AdvWaitEEPCmd(iop_base);
9764 
9765     /*
9766      * Write EEPROM from word 0 to word 20.
9767      */
9768     for (addr = ADV_EEP_DVC_CFG_BEGIN;
9769          addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9770         ushort word;
9771 
9772         if (*charfields++) {
9773             word = cpu_to_le16(*wbuf);
9774         } else {
9775             word = *wbuf;
9776         }
9777         chksum += *wbuf;    /* Checksum is calculated from word values. */
9778         AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9779         AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9780                      ASC_EEP_CMD_WRITE | addr);
9781         AdvWaitEEPCmd(iop_base);
9782         mdelay(ADV_EEP_DELAY_MS);
9783     }
9784 
9785     /*
9786      * Write EEPROM checksum at word 21.
9787      */
9788     AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9789     AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9790     AdvWaitEEPCmd(iop_base);
9791     wbuf++;
9792     charfields++;
9793 
9794     /*
9795      * Write EEPROM OEM name at words 22 to 29.
9796      */
9797     for (addr = ADV_EEP_DVC_CTL_BEGIN;
9798          addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9799         ushort word;
9800 
9801         if (*charfields++) {
9802             word = cpu_to_le16(*wbuf);
9803         } else {
9804             word = *wbuf;
9805         }
9806         AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9807         AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9808                      ASC_EEP_CMD_WRITE | addr);
9809         AdvWaitEEPCmd(iop_base);
9810     }
9811     AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9812     AdvWaitEEPCmd(iop_base);
9813 }
9814 
9815 /*
9816  * Read EEPROM configuration into the specified buffer.
9817  *
9818  * Return a checksum based on the EEPROM configuration read.
9819  */
9820 static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
9821                   ADVEEP_3550_CONFIG *cfg_buf)
9822 {
9823     ushort wval, chksum;
9824     ushort *wbuf;
9825     int eep_addr;
9826     ushort *charfields;
9827 
9828     charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
9829     wbuf = (ushort *)cfg_buf;
9830     chksum = 0;
9831 
9832     for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
9833          eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
9834         wval = AdvReadEEPWord(iop_base, eep_addr);
9835         chksum += wval; /* Checksum is calculated from word values. */
9836         if (*charfields++) {
9837             *wbuf = le16_to_cpu(wval);
9838         } else {
9839             *wbuf = wval;
9840         }
9841     }
9842     /* Read checksum word. */
9843     *wbuf = AdvReadEEPWord(iop_base, eep_addr);
9844     wbuf++;
9845     charfields++;
9846 
9847     /* Read rest of EEPROM not covered by the checksum. */
9848     for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
9849          eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
9850         *wbuf = AdvReadEEPWord(iop_base, eep_addr);
9851         if (*charfields++) {
9852             *wbuf = le16_to_cpu(*wbuf);
9853         }
9854     }
9855     return chksum;
9856 }
9857 
9858 /*
9859  * Read EEPROM configuration into the specified buffer.
9860  *
9861  * Return a checksum based on the EEPROM configuration read.
9862  */
9863 static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
9864                      ADVEEP_38C0800_CONFIG *cfg_buf)
9865 {
9866     ushort wval, chksum;
9867     ushort *wbuf;
9868     int eep_addr;
9869     ushort *charfields;
9870 
9871     charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
9872     wbuf = (ushort *)cfg_buf;
9873     chksum = 0;
9874 
9875     for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
9876          eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
9877         wval = AdvReadEEPWord(iop_base, eep_addr);
9878         chksum += wval; /* Checksum is calculated from word values. */
9879         if (*charfields++) {
9880             *wbuf = le16_to_cpu(wval);
9881         } else {
9882             *wbuf = wval;
9883         }
9884     }
9885     /* Read checksum word. */
9886     *wbuf = AdvReadEEPWord(iop_base, eep_addr);
9887     wbuf++;
9888     charfields++;
9889 
9890     /* Read rest of EEPROM not covered by the checksum. */
9891     for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
9892          eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
9893         *wbuf = AdvReadEEPWord(iop_base, eep_addr);
9894         if (*charfields++) {
9895             *wbuf = le16_to_cpu(*wbuf);
9896         }
9897     }
9898     return chksum;
9899 }
9900 
9901 /*
9902  * Read EEPROM configuration into the specified buffer.
9903  *
9904  * Return a checksum based on the EEPROM configuration read.
9905  */
9906 static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
9907                      ADVEEP_38C1600_CONFIG *cfg_buf)
9908 {
9909     ushort wval, chksum;
9910     ushort *wbuf;
9911     int eep_addr;
9912     ushort *charfields;
9913 
9914     charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
9915     wbuf = (ushort *)cfg_buf;
9916     chksum = 0;
9917 
9918     for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
9919          eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
9920         wval = AdvReadEEPWord(iop_base, eep_addr);
9921         chksum += wval; /* Checksum is calculated from word values. */
9922         if (*charfields++) {
9923             *wbuf = le16_to_cpu(wval);
9924         } else {
9925             *wbuf = wval;
9926         }
9927     }
9928     /* Read checksum word. */
9929     *wbuf = AdvReadEEPWord(iop_base, eep_addr);
9930     wbuf++;
9931     charfields++;
9932 
9933     /* Read rest of EEPROM not covered by the checksum. */
9934     for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
9935          eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
9936         *wbuf = AdvReadEEPWord(iop_base, eep_addr);
9937         if (*charfields++) {
9938             *wbuf = le16_to_cpu(*wbuf);
9939         }
9940     }
9941     return chksum;
9942 }
9943 
9944 /*
9945  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
9946  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
9947  * all of this is done.
9948  *
9949  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
9950  *
9951  * For a non-fatal error return a warning code. If there are no warnings
9952  * then 0 is returned.
9953  *
9954  * Note: Chip is stopped on entry.
9955  */
9956 static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
9957 {
9958     AdvPortAddr iop_base;
9959     ushort warn_code;
9960     ADVEEP_3550_CONFIG eep_config;
9961 
9962     iop_base = asc_dvc->iop_base;
9963 
9964     warn_code = 0;
9965 
9966     /*
9967      * Read the board's EEPROM configuration.
9968      *
9969      * Set default values if a bad checksum is found.
9970      */
9971     if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
9972         warn_code |= ASC_WARN_EEPROM_CHKSUM;
9973 
9974         /*
9975          * Set EEPROM default values.
9976          */
9977         memcpy(&eep_config, &Default_3550_EEPROM_Config,
9978             sizeof(ADVEEP_3550_CONFIG));
9979 
9980         /*
9981          * Assume the 6 byte board serial number that was read from
9982          * EEPROM is correct even if the EEPROM checksum failed.
9983          */
9984         eep_config.serial_number_word3 =
9985             AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
9986 
9987         eep_config.serial_number_word2 =
9988             AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
9989 
9990         eep_config.serial_number_word1 =
9991             AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
9992 
9993         AdvSet3550EEPConfig(iop_base, &eep_config);
9994     }
9995     /*
9996      * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
9997      * EEPROM configuration that was read.
9998      *
9999      * This is the mapping of EEPROM fields to Adv Library fields.
10000      */
10001     asc_dvc->wdtr_able = eep_config.wdtr_able;
10002     asc_dvc->sdtr_able = eep_config.sdtr_able;
10003     asc_dvc->ultra_able = eep_config.ultra_able;
10004     asc_dvc->tagqng_able = eep_config.tagqng_able;
10005     asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10006     asc_dvc->max_host_qng = eep_config.max_host_qng;
10007     asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10008     asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10009     asc_dvc->start_motor = eep_config.start_motor;
10010     asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10011     asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10012     asc_dvc->no_scam = eep_config.scam_tolerant;
10013     asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10014     asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10015     asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10016 
10017     /*
10018      * Set the host maximum queuing (max. 253, min. 16) and the per device
10019      * maximum queuing (max. 63, min. 4).
10020      */
10021     if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10022         eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10023     } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10024         /* If the value is zero, assume it is uninitialized. */
10025         if (eep_config.max_host_qng == 0) {
10026             eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10027         } else {
10028             eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10029         }
10030     }
10031 
10032     if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10033         eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10034     } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10035         /* If the value is zero, assume it is uninitialized. */
10036         if (eep_config.max_dvc_qng == 0) {
10037             eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10038         } else {
10039             eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10040         }
10041     }
10042 
10043     /*
10044      * If 'max_dvc_qng' is greater than 'max_host_qng', then
10045      * set 'max_dvc_qng' to 'max_host_qng'.
10046      */
10047     if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10048         eep_config.max_dvc_qng = eep_config.max_host_qng;
10049     }
10050 
10051     /*
10052      * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10053      * values based on possibly adjusted EEPROM values.
10054      */
10055     asc_dvc->max_host_qng = eep_config.max_host_qng;
10056     asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10057 
10058     /*
10059      * If the EEPROM 'termination' field is set to automatic (0), then set
10060      * the ADV_DVC_CFG 'termination' field to automatic also.
10061      *
10062      * If the termination is specified with a non-zero 'termination'
10063      * value check that a legal value is set and set the ADV_DVC_CFG
10064      * 'termination' field appropriately.
10065      */
10066     if (eep_config.termination == 0) {
10067         asc_dvc->cfg->termination = 0;  /* auto termination */
10068     } else {
10069         /* Enable manual control with low off / high off. */
10070         if (eep_config.termination == 1) {
10071             asc_dvc->cfg->termination = TERM_CTL_SEL;
10072 
10073             /* Enable manual control with low off / high on. */
10074         } else if (eep_config.termination == 2) {
10075             asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10076 
10077             /* Enable manual control with low on / high on. */
10078         } else if (eep_config.termination == 3) {
10079             asc_dvc->cfg->termination =
10080                 TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10081         } else {
10082             /*
10083              * The EEPROM 'termination' field contains a bad value. Use
10084              * automatic termination instead.
10085              */
10086             asc_dvc->cfg->termination = 0;
10087             warn_code |= ASC_WARN_EEPROM_TERMINATION;
10088         }
10089     }
10090 
10091     return warn_code;
10092 }
10093 
10094 /*
10095  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10096  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10097  * all of this is done.
10098  *
10099  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10100  *
10101  * For a non-fatal error return a warning code. If there are no warnings
10102  * then 0 is returned.
10103  *
10104  * Note: Chip is stopped on entry.
10105  */
10106 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10107 {
10108     AdvPortAddr iop_base;
10109     ushort warn_code;
10110     ADVEEP_38C0800_CONFIG eep_config;
10111     uchar tid, termination;
10112     ushort sdtr_speed = 0;
10113 
10114     iop_base = asc_dvc->iop_base;
10115 
10116     warn_code = 0;
10117 
10118     /*
10119      * Read the board's EEPROM configuration.
10120      *
10121      * Set default values if a bad checksum is found.
10122      */
10123     if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10124         eep_config.check_sum) {
10125         warn_code |= ASC_WARN_EEPROM_CHKSUM;
10126 
10127         /*
10128          * Set EEPROM default values.
10129          */
10130         memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10131             sizeof(ADVEEP_38C0800_CONFIG));
10132 
10133         /*
10134          * Assume the 6 byte board serial number that was read from
10135          * EEPROM is correct even if the EEPROM checksum failed.
10136          */
10137         eep_config.serial_number_word3 =
10138             AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10139 
10140         eep_config.serial_number_word2 =
10141             AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10142 
10143         eep_config.serial_number_word1 =
10144             AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10145 
10146         AdvSet38C0800EEPConfig(iop_base, &eep_config);
10147     }
10148     /*
10149      * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10150      * EEPROM configuration that was read.
10151      *
10152      * This is the mapping of EEPROM fields to Adv Library fields.
10153      */
10154     asc_dvc->wdtr_able = eep_config.wdtr_able;
10155     asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10156     asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10157     asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10158     asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10159     asc_dvc->tagqng_able = eep_config.tagqng_able;
10160     asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10161     asc_dvc->max_host_qng = eep_config.max_host_qng;
10162     asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10163     asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10164     asc_dvc->start_motor = eep_config.start_motor;
10165     asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10166     asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10167     asc_dvc->no_scam = eep_config.scam_tolerant;
10168     asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10169     asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10170     asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10171 
10172     /*
10173      * For every Target ID if any of its 'sdtr_speed[1234]' bits
10174      * are set, then set an 'sdtr_able' bit for it.
10175      */
10176     asc_dvc->sdtr_able = 0;
10177     for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10178         if (tid == 0) {
10179             sdtr_speed = asc_dvc->sdtr_speed1;
10180         } else if (tid == 4) {
10181             sdtr_speed = asc_dvc->sdtr_speed2;
10182         } else if (tid == 8) {
10183             sdtr_speed = asc_dvc->sdtr_speed3;
10184         } else if (tid == 12) {
10185             sdtr_speed = asc_dvc->sdtr_speed4;
10186         }
10187         if (sdtr_speed & ADV_MAX_TID) {
10188             asc_dvc->sdtr_able |= (1 << tid);
10189         }
10190         sdtr_speed >>= 4;
10191     }
10192 
10193     /*
10194      * Set the host maximum queuing (max. 253, min. 16) and the per device
10195      * maximum queuing (max. 63, min. 4).
10196      */
10197     if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10198         eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10199     } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10200         /* If the value is zero, assume it is uninitialized. */
10201         if (eep_config.max_host_qng == 0) {
10202             eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10203         } else {
10204             eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10205         }
10206     }
10207 
10208     if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10209         eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10210     } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10211         /* If the value is zero, assume it is uninitialized. */
10212         if (eep_config.max_dvc_qng == 0) {
10213             eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10214         } else {
10215             eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10216         }
10217     }
10218 
10219     /*
10220      * If 'max_dvc_qng' is greater than 'max_host_qng', then
10221      * set 'max_dvc_qng' to 'max_host_qng'.
10222      */
10223     if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10224         eep_config.max_dvc_qng = eep_config.max_host_qng;
10225     }
10226 
10227     /*
10228      * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10229      * values based on possibly adjusted EEPROM values.
10230      */
10231     asc_dvc->max_host_qng = eep_config.max_host_qng;
10232     asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10233 
10234     /*
10235      * If the EEPROM 'termination' field is set to automatic (0), then set
10236      * the ADV_DVC_CFG 'termination' field to automatic also.
10237      *
10238      * If the termination is specified with a non-zero 'termination'
10239      * value check that a legal value is set and set the ADV_DVC_CFG
10240      * 'termination' field appropriately.
10241      */
10242     if (eep_config.termination_se == 0) {
10243         termination = 0;    /* auto termination for SE */
10244     } else {
10245         /* Enable manual control with low off / high off. */
10246         if (eep_config.termination_se == 1) {
10247             termination = 0;
10248 
10249             /* Enable manual control with low off / high on. */
10250         } else if (eep_config.termination_se == 2) {
10251             termination = TERM_SE_HI;
10252 
10253             /* Enable manual control with low on / high on. */
10254         } else if (eep_config.termination_se == 3) {
10255             termination = TERM_SE;
10256         } else {
10257             /*
10258              * The EEPROM 'termination_se' field contains a bad value.
10259              * Use automatic termination instead.
10260              */
10261             termination = 0;
10262             warn_code |= ASC_WARN_EEPROM_TERMINATION;
10263         }
10264     }
10265 
10266     if (eep_config.termination_lvd == 0) {
10267         asc_dvc->cfg->termination = termination;    /* auto termination for LVD */
10268     } else {
10269         /* Enable manual control with low off / high off. */
10270         if (eep_config.termination_lvd == 1) {
10271             asc_dvc->cfg->termination = termination;
10272 
10273             /* Enable manual control with low off / high on. */
10274         } else if (eep_config.termination_lvd == 2) {
10275             asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10276 
10277             /* Enable manual control with low on / high on. */
10278         } else if (eep_config.termination_lvd == 3) {
10279             asc_dvc->cfg->termination = termination | TERM_LVD;
10280         } else {
10281             /*
10282              * The EEPROM 'termination_lvd' field contains a bad value.
10283              * Use automatic termination instead.
10284              */
10285             asc_dvc->cfg->termination = termination;
10286             warn_code |= ASC_WARN_EEPROM_TERMINATION;
10287         }
10288     }
10289 
10290     return warn_code;
10291 }
10292 
10293 /*
10294  * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10295  * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10296  * all of this is done.
10297  *
10298  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10299  *
10300  * For a non-fatal error return a warning code. If there are no warnings
10301  * then 0 is returned.
10302  *
10303  * Note: Chip is stopped on entry.
10304  */
10305 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10306 {
10307     AdvPortAddr iop_base;
10308     ushort warn_code;
10309     ADVEEP_38C1600_CONFIG eep_config;
10310     uchar tid, termination;
10311     ushort sdtr_speed = 0;
10312 
10313     iop_base = asc_dvc->iop_base;
10314 
10315     warn_code = 0;
10316 
10317     /*
10318      * Read the board's EEPROM configuration.
10319      *
10320      * Set default values if a bad checksum is found.
10321      */
10322     if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10323         eep_config.check_sum) {
10324         struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10325         warn_code |= ASC_WARN_EEPROM_CHKSUM;
10326 
10327         /*
10328          * Set EEPROM default values.
10329          */
10330         memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10331             sizeof(ADVEEP_38C1600_CONFIG));
10332 
10333         if (PCI_FUNC(pdev->devfn) != 0) {
10334             u8 ints;
10335             /*
10336              * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10337              * and old Mac system booting problem. The Expansion
10338              * ROM must be disabled in Function 1 for these systems
10339              */
10340             eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10341             /*
10342              * Clear the INTAB (bit 11) if the GPIO 0 input
10343              * indicates the Function 1 interrupt line is wired
10344              * to INTB.
10345              *
10346              * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10347              *   1 - Function 1 interrupt line wired to INT A.
10348              *   0 - Function 1 interrupt line wired to INT B.
10349              *
10350              * Note: Function 0 is always wired to INTA.
10351              * Put all 5 GPIO bits in input mode and then read
10352              * their input values.
10353              */
10354             AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
10355             ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
10356             if ((ints & 0x01) == 0)
10357                 eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
10358         }
10359 
10360         /*
10361          * Assume the 6 byte board serial number that was read from
10362          * EEPROM is correct even if the EEPROM checksum failed.
10363          */
10364         eep_config.serial_number_word3 =
10365             AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10366         eep_config.serial_number_word2 =
10367             AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10368         eep_config.serial_number_word1 =
10369             AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10370 
10371         AdvSet38C1600EEPConfig(iop_base, &eep_config);
10372     }
10373 
10374     /*
10375      * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10376      * EEPROM configuration that was read.
10377      *
10378      * This is the mapping of EEPROM fields to Adv Library fields.
10379      */
10380     asc_dvc->wdtr_able = eep_config.wdtr_able;
10381     asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10382     asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10383     asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10384     asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10385     asc_dvc->ppr_able = 0;
10386     asc_dvc->tagqng_able = eep_config.tagqng_able;
10387     asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10388     asc_dvc->max_host_qng = eep_config.max_host_qng;
10389     asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10390     asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
10391     asc_dvc->start_motor = eep_config.start_motor;
10392     asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10393     asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10394     asc_dvc->no_scam = eep_config.scam_tolerant;
10395 
10396     /*
10397      * For every Target ID if any of its 'sdtr_speed[1234]' bits
10398      * are set, then set an 'sdtr_able' bit for it.
10399      */
10400     asc_dvc->sdtr_able = 0;
10401     for (tid = 0; tid <= ASC_MAX_TID; tid++) {
10402         if (tid == 0) {
10403             sdtr_speed = asc_dvc->sdtr_speed1;
10404         } else if (tid == 4) {
10405             sdtr_speed = asc_dvc->sdtr_speed2;
10406         } else if (tid == 8) {
10407             sdtr_speed = asc_dvc->sdtr_speed3;
10408         } else if (tid == 12) {
10409             sdtr_speed = asc_dvc->sdtr_speed4;
10410         }
10411         if (sdtr_speed & ASC_MAX_TID) {
10412             asc_dvc->sdtr_able |= (1 << tid);
10413         }
10414         sdtr_speed >>= 4;
10415     }
10416 
10417     /*
10418      * Set the host maximum queuing (max. 253, min. 16) and the per device
10419      * maximum queuing (max. 63, min. 4).
10420      */
10421     if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10422         eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10423     } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10424         /* If the value is zero, assume it is uninitialized. */
10425         if (eep_config.max_host_qng == 0) {
10426             eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10427         } else {
10428             eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10429         }
10430     }
10431 
10432     if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10433         eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10434     } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10435         /* If the value is zero, assume it is uninitialized. */
10436         if (eep_config.max_dvc_qng == 0) {
10437             eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10438         } else {
10439             eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10440         }
10441     }
10442 
10443     /*
10444      * If 'max_dvc_qng' is greater than 'max_host_qng', then
10445      * set 'max_dvc_qng' to 'max_host_qng'.
10446      */
10447     if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10448         eep_config.max_dvc_qng = eep_config.max_host_qng;
10449     }
10450 
10451     /*
10452      * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
10453      * values based on possibly adjusted EEPROM values.
10454      */
10455     asc_dvc->max_host_qng = eep_config.max_host_qng;
10456     asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10457 
10458     /*
10459      * If the EEPROM 'termination' field is set to automatic (0), then set
10460      * the ASC_DVC_CFG 'termination' field to automatic also.
10461      *
10462      * If the termination is specified with a non-zero 'termination'
10463      * value check that a legal value is set and set the ASC_DVC_CFG
10464      * 'termination' field appropriately.
10465      */
10466     if (eep_config.termination_se == 0) {
10467         termination = 0;    /* auto termination for SE */
10468     } else {
10469         /* Enable manual control with low off / high off. */
10470         if (eep_config.termination_se == 1) {
10471             termination = 0;
10472 
10473             /* Enable manual control with low off / high on. */
10474         } else if (eep_config.termination_se == 2) {
10475             termination = TERM_SE_HI;
10476 
10477             /* Enable manual control with low on / high on. */
10478         } else if (eep_config.termination_se == 3) {
10479             termination = TERM_SE;
10480         } else {
10481             /*
10482              * The EEPROM 'termination_se' field contains a bad value.
10483              * Use automatic termination instead.
10484              */
10485             termination = 0;
10486             warn_code |= ASC_WARN_EEPROM_TERMINATION;
10487         }
10488     }
10489 
10490     if (eep_config.termination_lvd == 0) {
10491         asc_dvc->cfg->termination = termination;    /* auto termination for LVD */
10492     } else {
10493         /* Enable manual control with low off / high off. */
10494         if (eep_config.termination_lvd == 1) {
10495             asc_dvc->cfg->termination = termination;
10496 
10497             /* Enable manual control with low off / high on. */
10498         } else if (eep_config.termination_lvd == 2) {
10499             asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10500 
10501             /* Enable manual control with low on / high on. */
10502         } else if (eep_config.termination_lvd == 3) {
10503             asc_dvc->cfg->termination = termination | TERM_LVD;
10504         } else {
10505             /*
10506              * The EEPROM 'termination_lvd' field contains a bad value.
10507              * Use automatic termination instead.
10508              */
10509             asc_dvc->cfg->termination = termination;
10510             warn_code |= ASC_WARN_EEPROM_TERMINATION;
10511         }
10512     }
10513 
10514     return warn_code;
10515 }
10516 
10517 /*
10518  * Initialize the ADV_DVC_VAR structure.
10519  *
10520  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10521  *
10522  * For a non-fatal error return a warning code. If there are no warnings
10523  * then 0 is returned.
10524  */
10525 static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10526 {
10527     struct asc_board *board = shost_priv(shost);
10528     ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
10529     unsigned short warn_code = 0;
10530     AdvPortAddr iop_base = asc_dvc->iop_base;
10531     u16 cmd;
10532     int status;
10533 
10534     asc_dvc->err_code = 0;
10535 
10536     /*
10537      * Save the state of the PCI Configuration Command Register
10538      * "Parity Error Response Control" Bit. If the bit is clear (0),
10539      * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
10540      * DMA parity errors.
10541      */
10542     asc_dvc->cfg->control_flag = 0;
10543     pci_read_config_word(pdev, PCI_COMMAND, &cmd);
10544     if ((cmd & PCI_COMMAND_PARITY) == 0)
10545         asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
10546 
10547     asc_dvc->cfg->chip_version =
10548         AdvGetChipVersion(iop_base, asc_dvc->bus_type);
10549 
10550     ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
10551          (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
10552          (ushort)ADV_CHIP_ID_BYTE);
10553 
10554     ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
10555          (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
10556          (ushort)ADV_CHIP_ID_WORD);
10557 
10558     /*
10559      * Reset the chip to start and allow register writes.
10560      */
10561     if (AdvFindSignature(iop_base) == 0) {
10562         asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10563         return ADV_ERROR;
10564     } else {
10565         /*
10566          * The caller must set 'chip_type' to a valid setting.
10567          */
10568         if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
10569             asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
10570             asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
10571             asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
10572             return ADV_ERROR;
10573         }
10574 
10575         /*
10576          * Reset Chip.
10577          */
10578         AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10579                      ADV_CTRL_REG_CMD_RESET);
10580         mdelay(100);
10581         AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10582                      ADV_CTRL_REG_CMD_WR_IO_REG);
10583 
10584         if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
10585             status = AdvInitFrom38C1600EEP(asc_dvc);
10586         } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10587             status = AdvInitFrom38C0800EEP(asc_dvc);
10588         } else {
10589             status = AdvInitFrom3550EEP(asc_dvc);
10590         }
10591         warn_code |= status;
10592     }
10593 
10594     if (warn_code != 0)
10595         shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
10596 
10597     if (asc_dvc->err_code)
10598         shost_printk(KERN_ERR, shost, "error code 0x%x\n",
10599                 asc_dvc->err_code);
10600 
10601     return asc_dvc->err_code;
10602 }
10603 #endif
10604 
10605 static struct scsi_host_template advansys_template = {
10606     .proc_name = DRV_NAME,
10607 #ifdef CONFIG_PROC_FS
10608     .show_info = advansys_show_info,
10609 #endif
10610     .name = DRV_NAME,
10611     .info = advansys_info,
10612     .queuecommand = advansys_queuecommand,
10613     .eh_host_reset_handler = advansys_reset,
10614     .bios_param = advansys_biosparam,
10615     .slave_configure = advansys_slave_configure,
10616     .cmd_size = sizeof(struct advansys_cmd),
10617 };
10618 
10619 static int advansys_wide_init_chip(struct Scsi_Host *shost)
10620 {
10621     struct asc_board *board = shost_priv(shost);
10622     struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10623     size_t sgblk_pool_size;
10624     int warn_code, err_code;
10625 
10626     /*
10627      * Allocate buffer carrier structures. The total size
10628      * is about 8 KB, so allocate all at once.
10629      */
10630     adv_dvc->carrier = dma_alloc_coherent(board->dev,
10631         ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL);
10632     ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier);
10633 
10634     if (!adv_dvc->carrier)
10635         goto kmalloc_failed;
10636 
10637     /*
10638      * Allocate up to 'max_host_qng' request structures for the Wide
10639      * board. The total size is about 16 KB, so allocate all at once.
10640      * If the allocation fails decrement and try again.
10641      */
10642     board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t);
10643     if (board->adv_reqp_size & 0x1f) {
10644         ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t));
10645         board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size);
10646     }
10647     board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size,
10648         &board->adv_reqp_addr, GFP_KERNEL);
10649 
10650     if (!board->adv_reqp)
10651         goto kmalloc_failed;
10652 
10653     ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp,
10654         adv_dvc->max_host_qng, board->adv_reqp_size);
10655 
10656     /*
10657      * Allocate up to ADV_TOT_SG_BLOCK request structures for
10658      * the Wide board. Each structure is about 136 bytes.
10659      */
10660     sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK;
10661     board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev,
10662                         sgblk_pool_size, 32, 0);
10663 
10664     ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK,
10665         sizeof(adv_sgblk_t), sgblk_pool_size);
10666 
10667     if (!board->adv_sgblk_pool)
10668         goto kmalloc_failed;
10669 
10670     if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
10671         ASC_DBG(2, "AdvInitAsc3550Driver()\n");
10672         warn_code = AdvInitAsc3550Driver(adv_dvc);
10673     } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10674         ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
10675         warn_code = AdvInitAsc38C0800Driver(adv_dvc);
10676     } else {
10677         ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
10678         warn_code = AdvInitAsc38C1600Driver(adv_dvc);
10679     }
10680     err_code = adv_dvc->err_code;
10681 
10682     if (warn_code || err_code) {
10683         shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
10684             "0x%x\n", warn_code, err_code);
10685     }
10686 
10687     goto exit;
10688 
10689  kmalloc_failed:
10690     shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
10691     err_code = ADV_ERROR;
10692  exit:
10693     return err_code;
10694 }
10695 
10696 static void advansys_wide_free_mem(struct asc_board *board)
10697 {
10698     struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10699 
10700     if (adv_dvc->carrier) {
10701         dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE,
10702                   adv_dvc->carrier, adv_dvc->carrier_addr);
10703         adv_dvc->carrier = NULL;
10704     }
10705     if (board->adv_reqp) {
10706         dma_free_coherent(board->dev, board->adv_reqp_size,
10707                   board->adv_reqp, board->adv_reqp_addr);
10708         board->adv_reqp = NULL;
10709     }
10710     if (board->adv_sgblk_pool) {
10711         dma_pool_destroy(board->adv_sgblk_pool);
10712         board->adv_sgblk_pool = NULL;
10713     }
10714 }
10715 
10716 static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
10717                 int bus_type)
10718 {
10719     struct pci_dev *pdev;
10720     struct asc_board *boardp = shost_priv(shost);
10721     ASC_DVC_VAR *asc_dvc_varp = NULL;
10722     ADV_DVC_VAR *adv_dvc_varp = NULL;
10723     int share_irq, warn_code, ret;
10724 
10725     pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
10726 
10727     if (ASC_NARROW_BOARD(boardp)) {
10728         ASC_DBG(1, "narrow board\n");
10729         asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
10730         asc_dvc_varp->bus_type = bus_type;
10731         asc_dvc_varp->drv_ptr = boardp;
10732         asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
10733         asc_dvc_varp->iop_base = iop;
10734     } else {
10735 #ifdef CONFIG_PCI
10736         adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
10737         adv_dvc_varp->drv_ptr = boardp;
10738         adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
10739         if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
10740             ASC_DBG(1, "wide board ASC-3550\n");
10741             adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
10742         } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
10743             ASC_DBG(1, "wide board ASC-38C0800\n");
10744             adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
10745         } else {
10746             ASC_DBG(1, "wide board ASC-38C1600\n");
10747             adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
10748         }
10749 
10750         boardp->asc_n_io_port = pci_resource_len(pdev, 1);
10751         boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
10752         if (!boardp->ioremap_addr) {
10753             shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
10754                     "returned NULL\n",
10755                     (long)pci_resource_start(pdev, 1),
10756                     boardp->asc_n_io_port);
10757             ret = -ENODEV;
10758             goto err_shost;
10759         }
10760         adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
10761         ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
10762 
10763         /*
10764          * Even though it isn't used to access wide boards, other
10765          * than for the debug line below, save I/O Port address so
10766          * that it can be reported.
10767          */
10768         boardp->ioport = iop;
10769 
10770         ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
10771                 (ushort)inp(iop + 1), (ushort)inpw(iop));
10772 #endif /* CONFIG_PCI */
10773     }
10774 
10775     if (ASC_NARROW_BOARD(boardp)) {
10776         /*
10777          * Set the board bus type and PCI IRQ before
10778          * calling AscInitGetConfig().
10779          */
10780         switch (asc_dvc_varp->bus_type) {
10781 #ifdef CONFIG_ISA
10782         case ASC_IS_VL:
10783             share_irq = 0;
10784             break;
10785         case ASC_IS_EISA:
10786             share_irq = IRQF_SHARED;
10787             break;
10788 #endif /* CONFIG_ISA */
10789 #ifdef CONFIG_PCI
10790         case ASC_IS_PCI:
10791             share_irq = IRQF_SHARED;
10792             break;
10793 #endif /* CONFIG_PCI */
10794         default:
10795             shost_printk(KERN_ERR, shost, "unknown adapter type: "
10796                     "%d\n", asc_dvc_varp->bus_type);
10797             share_irq = 0;
10798             break;
10799         }
10800 
10801         /*
10802          * NOTE: AscInitGetConfig() may change the board's
10803          * bus_type value. The bus_type value should no
10804          * longer be used. If the bus_type field must be
10805          * referenced only use the bit-wise AND operator "&".
10806          */
10807         ASC_DBG(2, "AscInitGetConfig()\n");
10808         ret = AscInitGetConfig(shost) ? -ENODEV : 0;
10809     } else {
10810 #ifdef CONFIG_PCI
10811         /*
10812          * For Wide boards set PCI information before calling
10813          * AdvInitGetConfig().
10814          */
10815         share_irq = IRQF_SHARED;
10816         ASC_DBG(2, "AdvInitGetConfig()\n");
10817 
10818         ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
10819 #else
10820         share_irq = 0;
10821         ret = -ENODEV;
10822 #endif /* CONFIG_PCI */
10823     }
10824 
10825     if (ret)
10826         goto err_unmap;
10827 
10828     /*
10829      * Save the EEPROM configuration so that it can be displayed
10830      * from /proc/scsi/advansys/[0...].
10831      */
10832     if (ASC_NARROW_BOARD(boardp)) {
10833 
10834         ASCEEP_CONFIG *ep;
10835 
10836         /*
10837          * Set the adapter's target id bit in the 'init_tidmask' field.
10838          */
10839         boardp->init_tidmask |=
10840             ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
10841 
10842         /*
10843          * Save EEPROM settings for the board.
10844          */
10845         ep = &boardp->eep_config.asc_eep;
10846 
10847         ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
10848         ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
10849         ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
10850         ASC_EEP_SET_DMA_SPD(ep, ASC_DEF_ISA_DMA_SPEED);
10851         ep->start_motor = asc_dvc_varp->start_motor;
10852         ep->cntl = asc_dvc_varp->dvc_cntl;
10853         ep->no_scam = asc_dvc_varp->no_scam;
10854         ep->max_total_qng = asc_dvc_varp->max_total_qng;
10855         ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
10856         /* 'max_tag_qng' is set to the same value for every device. */
10857         ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
10858         ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
10859         ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
10860         ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
10861         ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
10862         ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
10863         ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
10864 
10865         /*
10866          * Modify board configuration.
10867          */
10868         ASC_DBG(2, "AscInitSetConfig()\n");
10869         ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
10870         if (ret)
10871             goto err_unmap;
10872     } else {
10873         ADVEEP_3550_CONFIG *ep_3550;
10874         ADVEEP_38C0800_CONFIG *ep_38C0800;
10875         ADVEEP_38C1600_CONFIG *ep_38C1600;
10876 
10877         /*
10878          * Save Wide EEP Configuration Information.
10879          */
10880         if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
10881             ep_3550 = &boardp->eep_config.adv_3550_eep;
10882 
10883             ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
10884             ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
10885             ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
10886             ep_3550->termination = adv_dvc_varp->cfg->termination;
10887             ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
10888             ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
10889             ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
10890             ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
10891             ep_3550->ultra_able = adv_dvc_varp->ultra_able;
10892             ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
10893             ep_3550->start_motor = adv_dvc_varp->start_motor;
10894             ep_3550->scsi_reset_delay =
10895                 adv_dvc_varp->scsi_reset_wait;
10896             ep_3550->serial_number_word1 =
10897                 adv_dvc_varp->cfg->serial1;
10898             ep_3550->serial_number_word2 =
10899                 adv_dvc_varp->cfg->serial2;
10900             ep_3550->serial_number_word3 =
10901                 adv_dvc_varp->cfg->serial3;
10902         } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
10903             ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
10904 
10905             ep_38C0800->adapter_scsi_id =
10906                 adv_dvc_varp->chip_scsi_id;
10907             ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
10908             ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
10909             ep_38C0800->termination_lvd =
10910                 adv_dvc_varp->cfg->termination;
10911             ep_38C0800->disc_enable =
10912                 adv_dvc_varp->cfg->disc_enable;
10913             ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
10914             ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
10915             ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
10916             ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
10917             ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
10918             ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
10919             ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
10920             ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
10921             ep_38C0800->start_motor = adv_dvc_varp->start_motor;
10922             ep_38C0800->scsi_reset_delay =
10923                 adv_dvc_varp->scsi_reset_wait;
10924             ep_38C0800->serial_number_word1 =
10925                 adv_dvc_varp->cfg->serial1;
10926             ep_38C0800->serial_number_word2 =
10927                 adv_dvc_varp->cfg->serial2;
10928             ep_38C0800->serial_number_word3 =
10929                 adv_dvc_varp->cfg->serial3;
10930         } else {
10931             ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
10932 
10933             ep_38C1600->adapter_scsi_id =
10934                 adv_dvc_varp->chip_scsi_id;
10935             ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
10936             ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
10937             ep_38C1600->termination_lvd =
10938                 adv_dvc_varp->cfg->termination;
10939             ep_38C1600->disc_enable =
10940                 adv_dvc_varp->cfg->disc_enable;
10941             ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
10942             ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
10943             ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
10944             ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
10945             ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
10946             ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
10947             ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
10948             ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
10949             ep_38C1600->start_motor = adv_dvc_varp->start_motor;
10950             ep_38C1600->scsi_reset_delay =
10951                 adv_dvc_varp->scsi_reset_wait;
10952             ep_38C1600->serial_number_word1 =
10953                 adv_dvc_varp->cfg->serial1;
10954             ep_38C1600->serial_number_word2 =
10955                 adv_dvc_varp->cfg->serial2;
10956             ep_38C1600->serial_number_word3 =
10957                 adv_dvc_varp->cfg->serial3;
10958         }
10959 
10960         /*
10961          * Set the adapter's target id bit in the 'init_tidmask' field.
10962          */
10963         boardp->init_tidmask |=
10964             ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
10965     }
10966 
10967     /*
10968      * Channels are numbered beginning with 0. For AdvanSys one host
10969      * structure supports one channel. Multi-channel boards have a
10970      * separate host structure for each channel.
10971      */
10972     shost->max_channel = 0;
10973     if (ASC_NARROW_BOARD(boardp)) {
10974         shost->max_id = ASC_MAX_TID + 1;
10975         shost->max_lun = ASC_MAX_LUN + 1;
10976         shost->max_cmd_len = ASC_MAX_CDB_LEN;
10977 
10978         shost->io_port = asc_dvc_varp->iop_base;
10979         boardp->asc_n_io_port = ASC_IOADR_GAP;
10980         shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
10981 
10982         /* Set maximum number of queues the adapter can handle. */
10983         shost->can_queue = asc_dvc_varp->max_total_qng;
10984     } else {
10985         shost->max_id = ADV_MAX_TID + 1;
10986         shost->max_lun = ADV_MAX_LUN + 1;
10987         shost->max_cmd_len = ADV_MAX_CDB_LEN;
10988 
10989         /*
10990          * Save the I/O Port address and length even though
10991          * I/O ports are not used to access Wide boards.
10992          * Instead the Wide boards are accessed with
10993          * PCI Memory Mapped I/O.
10994          */
10995         shost->io_port = iop;
10996 
10997         shost->this_id = adv_dvc_varp->chip_scsi_id;
10998 
10999         /* Set maximum number of queues the adapter can handle. */
11000         shost->can_queue = adv_dvc_varp->max_host_qng;
11001     }
11002 
11003     /*
11004      * Set the maximum number of scatter-gather elements the
11005      * adapter can handle.
11006      */
11007     if (ASC_NARROW_BOARD(boardp)) {
11008         /*
11009          * Allow two commands with 'sg_tablesize' scatter-gather
11010          * elements to be executed simultaneously. This value is
11011          * the theoretical hardware limit. It may be decreased
11012          * below.
11013          */
11014         shost->sg_tablesize =
11015             (((asc_dvc_varp->max_total_qng - 2) / 2) *
11016              ASC_SG_LIST_PER_Q) + 1;
11017     } else {
11018         shost->sg_tablesize = ADV_MAX_SG_LIST;
11019     }
11020 
11021     /*
11022      * The value of 'sg_tablesize' can not exceed the SCSI
11023      * mid-level driver definition of SG_ALL. SG_ALL also
11024      * must not be exceeded, because it is used to define the
11025      * size of the scatter-gather table in 'struct asc_sg_head'.
11026      */
11027     if (shost->sg_tablesize > SG_ALL) {
11028         shost->sg_tablesize = SG_ALL;
11029     }
11030 
11031     ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11032 
11033     /* BIOS start address. */
11034     if (ASC_NARROW_BOARD(boardp)) {
11035         shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11036                             asc_dvc_varp->bus_type);
11037     } else {
11038         /*
11039          * Fill-in BIOS board variables. The Wide BIOS saves
11040          * information in LRAM that is used by the driver.
11041          */
11042         AdvReadWordLram(adv_dvc_varp->iop_base,
11043                 BIOS_SIGNATURE, boardp->bios_signature);
11044         AdvReadWordLram(adv_dvc_varp->iop_base,
11045                 BIOS_VERSION, boardp->bios_version);
11046         AdvReadWordLram(adv_dvc_varp->iop_base,
11047                 BIOS_CODESEG, boardp->bios_codeseg);
11048         AdvReadWordLram(adv_dvc_varp->iop_base,
11049                 BIOS_CODELEN, boardp->bios_codelen);
11050 
11051         ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11052              boardp->bios_signature, boardp->bios_version);
11053 
11054         ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11055              boardp->bios_codeseg, boardp->bios_codelen);
11056 
11057         /*
11058          * If the BIOS saved a valid signature, then fill in
11059          * the BIOS code segment base address.
11060          */
11061         if (boardp->bios_signature == 0x55AA) {
11062             /*
11063              * Convert x86 realmode code segment to a linear
11064              * address by shifting left 4.
11065              */
11066             shost->base = ((ulong)boardp->bios_codeseg << 4);
11067         } else {
11068             shost->base = 0;
11069         }
11070     }
11071 
11072     /*
11073      * Register Board Resources - I/O Port, DMA, IRQ
11074      */
11075 
11076     /* Register DMA Channel for Narrow boards. */
11077     shost->dma_channel = NO_ISA_DMA;    /* Default to no ISA DMA. */
11078 
11079     /* Register IRQ Number. */
11080     ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11081 
11082     ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11083               DRV_NAME, shost);
11084 
11085     if (ret) {
11086         if (ret == -EBUSY) {
11087             shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11088                     "already in use\n", boardp->irq);
11089         } else if (ret == -EINVAL) {
11090             shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11091                     "not valid\n", boardp->irq);
11092         } else {
11093             shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11094                     "failed with %d\n", boardp->irq, ret);
11095         }
11096         goto err_unmap;
11097     }
11098 
11099     /*
11100      * Initialize board RISC chip and enable interrupts.
11101      */
11102     if (ASC_NARROW_BOARD(boardp)) {
11103         ASC_DBG(2, "AscInitAsc1000Driver()\n");
11104 
11105         asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11106         if (!asc_dvc_varp->overrun_buf) {
11107             ret = -ENOMEM;
11108             goto err_free_irq;
11109         }
11110         warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11111 
11112         if (warn_code || asc_dvc_varp->err_code) {
11113             shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11114                     "warn 0x%x, error 0x%x\n",
11115                     asc_dvc_varp->init_state, warn_code,
11116                     asc_dvc_varp->err_code);
11117             if (!asc_dvc_varp->overrun_dma) {
11118                 ret = -ENODEV;
11119                 goto err_free_mem;
11120             }
11121         }
11122     } else {
11123         if (advansys_wide_init_chip(shost)) {
11124             ret = -ENODEV;
11125             goto err_free_mem;
11126         }
11127     }
11128 
11129     ASC_DBG_PRT_SCSI_HOST(2, shost);
11130 
11131     ret = scsi_add_host(shost, boardp->dev);
11132     if (ret)
11133         goto err_free_mem;
11134 
11135     scsi_scan_host(shost);
11136     return 0;
11137 
11138  err_free_mem:
11139     if (ASC_NARROW_BOARD(boardp)) {
11140         if (asc_dvc_varp->overrun_dma)
11141             dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11142                      ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11143         kfree(asc_dvc_varp->overrun_buf);
11144     } else
11145         advansys_wide_free_mem(boardp);
11146  err_free_irq:
11147     free_irq(boardp->irq, shost);
11148  err_unmap:
11149     if (boardp->ioremap_addr)
11150         iounmap(boardp->ioremap_addr);
11151 #ifdef CONFIG_PCI
11152  err_shost:
11153 #endif
11154     return ret;
11155 }
11156 
11157 /*
11158  * advansys_release()
11159  *
11160  * Release resources allocated for a single AdvanSys adapter.
11161  */
11162 static int advansys_release(struct Scsi_Host *shost)
11163 {
11164     struct asc_board *board = shost_priv(shost);
11165     ASC_DBG(1, "begin\n");
11166     scsi_remove_host(shost);
11167     free_irq(board->irq, shost);
11168 
11169     if (ASC_NARROW_BOARD(board)) {
11170         dma_unmap_single(board->dev,
11171                     board->dvc_var.asc_dvc_var.overrun_dma,
11172                     ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11173         kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11174     } else {
11175         iounmap(board->ioremap_addr);
11176         advansys_wide_free_mem(board);
11177     }
11178     scsi_host_put(shost);
11179     ASC_DBG(1, "end\n");
11180     return 0;
11181 }
11182 
11183 #define ASC_IOADR_TABLE_MAX_IX  11
11184 
11185 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11186     0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11187     0x0210, 0x0230, 0x0250, 0x0330
11188 };
11189 
11190 static void advansys_vlb_remove(struct device *dev, unsigned int id)
11191 {
11192     int ioport = _asc_def_iop_base[id];
11193     advansys_release(dev_get_drvdata(dev));
11194     release_region(ioport, ASC_IOADR_GAP);
11195 }
11196 
11197 /*
11198  * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
11199  * 000: invalid
11200  * 001: 10
11201  * 010: 11
11202  * 011: 12
11203  * 100: invalid
11204  * 101: 14
11205  * 110: 15
11206  * 111: invalid
11207  */
11208 static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11209 {
11210     unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11211     unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
11212     if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
11213         return 0;
11214     return chip_irq;
11215 }
11216 
11217 static int advansys_vlb_probe(struct device *dev, unsigned int id)
11218 {
11219     int err = -ENODEV;
11220     PortAddr iop_base = _asc_def_iop_base[id];
11221     struct Scsi_Host *shost;
11222     struct asc_board *board;
11223 
11224     if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11225         ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11226         return -ENODEV;
11227     }
11228     ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11229     if (!AscFindSignature(iop_base))
11230         goto release_region;
11231     /*
11232      * I don't think this condition can actually happen, but the old
11233      * driver did it, and the chances of finding a VLB setup in 2007
11234      * to do testing with is slight to none.
11235      */
11236     if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
11237         goto release_region;
11238 
11239     err = -ENOMEM;
11240     shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11241     if (!shost)
11242         goto release_region;
11243 
11244     board = shost_priv(shost);
11245     board->irq = advansys_vlb_irq_no(iop_base);
11246     board->dev = dev;
11247     board->shost = shost;
11248 
11249     err = advansys_board_found(shost, iop_base, ASC_IS_VL);
11250     if (err)
11251         goto free_host;
11252 
11253     dev_set_drvdata(dev, shost);
11254     return 0;
11255 
11256  free_host:
11257     scsi_host_put(shost);
11258  release_region:
11259     release_region(iop_base, ASC_IOADR_GAP);
11260     return -ENODEV;
11261 }
11262 
11263 static struct isa_driver advansys_vlb_driver = {
11264     .probe      = advansys_vlb_probe,
11265     .remove     = advansys_vlb_remove,
11266     .driver = {
11267         .owner  = THIS_MODULE,
11268         .name   = "advansys_vlb",
11269     },
11270 };
11271 
11272 static struct eisa_device_id advansys_eisa_table[] = {
11273     { "ABP7401" },
11274     { "ABP7501" },
11275     { "" }
11276 };
11277 
11278 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
11279 
11280 /*
11281  * EISA is a little more tricky than PCI; each EISA device may have two
11282  * channels, and this driver is written to make each channel its own Scsi_Host
11283  */
11284 struct eisa_scsi_data {
11285     struct Scsi_Host *host[2];
11286 };
11287 
11288 /*
11289  * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
11290  * 000: 10
11291  * 001: 11
11292  * 010: 12
11293  * 011: invalid
11294  * 100: 14
11295  * 101: 15
11296  * 110: invalid
11297  * 111: invalid
11298  */
11299 static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
11300 {
11301     unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
11302     unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
11303     if ((chip_irq == 13) || (chip_irq > 15))
11304         return 0;
11305     return chip_irq;
11306 }
11307 
11308 static int advansys_eisa_probe(struct device *dev)
11309 {
11310     int i, ioport, irq = 0;
11311     int err;
11312     struct eisa_device *edev = to_eisa_device(dev);
11313     struct eisa_scsi_data *data;
11314 
11315     err = -ENOMEM;
11316     data = kzalloc(sizeof(*data), GFP_KERNEL);
11317     if (!data)
11318         goto fail;
11319     ioport = edev->base_addr + 0xc30;
11320 
11321     err = -ENODEV;
11322     for (i = 0; i < 2; i++, ioport += 0x20) {
11323         struct asc_board *board;
11324         struct Scsi_Host *shost;
11325         if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
11326             printk(KERN_WARNING "Region %x-%x busy\n", ioport,
11327                    ioport + ASC_IOADR_GAP - 1);
11328             continue;
11329         }
11330         if (!AscFindSignature(ioport)) {
11331             release_region(ioport, ASC_IOADR_GAP);
11332             continue;
11333         }
11334 
11335         /*
11336          * I don't know why we need to do this for EISA chips, but
11337          * not for any others.  It looks to be equivalent to
11338          * AscGetChipCfgMsw, but I may have overlooked something,
11339          * so I'm not converting it until I get an EISA board to
11340          * test with.
11341          */
11342         inw(ioport + 4);
11343 
11344         if (!irq)
11345             irq = advansys_eisa_irq_no(edev);
11346 
11347         err = -ENOMEM;
11348         shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11349         if (!shost)
11350             goto release_region;
11351 
11352         board = shost_priv(shost);
11353         board->irq = irq;
11354         board->dev = dev;
11355         board->shost = shost;
11356 
11357         err = advansys_board_found(shost, ioport, ASC_IS_EISA);
11358         if (!err) {
11359             data->host[i] = shost;
11360             continue;
11361         }
11362 
11363         scsi_host_put(shost);
11364  release_region:
11365         release_region(ioport, ASC_IOADR_GAP);
11366         break;
11367     }
11368 
11369     if (err)
11370         goto free_data;
11371     dev_set_drvdata(dev, data);
11372     return 0;
11373 
11374  free_data:
11375     kfree(data->host[0]);
11376     kfree(data->host[1]);
11377     kfree(data);
11378  fail:
11379     return err;
11380 }
11381 
11382 static int advansys_eisa_remove(struct device *dev)
11383 {
11384     int i;
11385     struct eisa_scsi_data *data = dev_get_drvdata(dev);
11386 
11387     for (i = 0; i < 2; i++) {
11388         int ioport;
11389         struct Scsi_Host *shost = data->host[i];
11390         if (!shost)
11391             continue;
11392         ioport = shost->io_port;
11393         advansys_release(shost);
11394         release_region(ioport, ASC_IOADR_GAP);
11395     }
11396 
11397     kfree(data);
11398     return 0;
11399 }
11400 
11401 static struct eisa_driver advansys_eisa_driver = {
11402     .id_table =     advansys_eisa_table,
11403     .driver = {
11404         .name =     DRV_NAME,
11405         .probe =    advansys_eisa_probe,
11406         .remove =   advansys_eisa_remove,
11407     }
11408 };
11409 
11410 /* PCI Devices supported by this driver */
11411 static struct pci_device_id advansys_pci_tbl[] = {
11412     {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
11413      PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11414     {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
11415      PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11416     {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
11417      PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11418     {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
11419      PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11420     {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
11421      PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11422     {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
11423      PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11424     {}
11425 };
11426 
11427 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
11428 
11429 static void advansys_set_latency(struct pci_dev *pdev)
11430 {
11431     if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
11432         (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
11433         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
11434     } else {
11435         u8 latency;
11436         pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
11437         if (latency < 0x20)
11438             pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
11439     }
11440 }
11441 
11442 static int advansys_pci_probe(struct pci_dev *pdev,
11443                   const struct pci_device_id *ent)
11444 {
11445     int err, ioport;
11446     struct Scsi_Host *shost;
11447     struct asc_board *board;
11448 
11449     err = pci_enable_device(pdev);
11450     if (err)
11451         goto fail;
11452     err = pci_request_regions(pdev, DRV_NAME);
11453     if (err)
11454         goto disable_device;
11455     pci_set_master(pdev);
11456     advansys_set_latency(pdev);
11457 
11458     err = -ENODEV;
11459     if (pci_resource_len(pdev, 0) == 0)
11460         goto release_region;
11461 
11462     ioport = pci_resource_start(pdev, 0);
11463 
11464     err = -ENOMEM;
11465     shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11466     if (!shost)
11467         goto release_region;
11468 
11469     board = shost_priv(shost);
11470     board->irq = pdev->irq;
11471     board->dev = &pdev->dev;
11472     board->shost = shost;
11473 
11474     if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
11475         pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
11476         pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
11477         board->flags |= ASC_IS_WIDE_BOARD;
11478     }
11479 
11480     err = advansys_board_found(shost, ioport, ASC_IS_PCI);
11481     if (err)
11482         goto free_host;
11483 
11484     pci_set_drvdata(pdev, shost);
11485     return 0;
11486 
11487  free_host:
11488     scsi_host_put(shost);
11489  release_region:
11490     pci_release_regions(pdev);
11491  disable_device:
11492     pci_disable_device(pdev);
11493  fail:
11494     return err;
11495 }
11496 
11497 static void advansys_pci_remove(struct pci_dev *pdev)
11498 {
11499     advansys_release(pci_get_drvdata(pdev));
11500     pci_release_regions(pdev);
11501     pci_disable_device(pdev);
11502 }
11503 
11504 static struct pci_driver advansys_pci_driver = {
11505     .name =     DRV_NAME,
11506     .id_table = advansys_pci_tbl,
11507     .probe =    advansys_pci_probe,
11508     .remove =   advansys_pci_remove,
11509 };
11510 
11511 static int __init advansys_init(void)
11512 {
11513     int error;
11514 
11515     error = isa_register_driver(&advansys_vlb_driver,
11516                     ASC_IOADR_TABLE_MAX_IX);
11517     if (error)
11518         goto fail;
11519 
11520     error = eisa_driver_register(&advansys_eisa_driver);
11521     if (error)
11522         goto unregister_vlb;
11523 
11524     error = pci_register_driver(&advansys_pci_driver);
11525     if (error)
11526         goto unregister_eisa;
11527 
11528     return 0;
11529 
11530  unregister_eisa:
11531     eisa_driver_unregister(&advansys_eisa_driver);
11532  unregister_vlb:
11533     isa_unregister_driver(&advansys_vlb_driver);
11534  fail:
11535     return error;
11536 }
11537 
11538 static void __exit advansys_exit(void)
11539 {
11540     pci_unregister_driver(&advansys_pci_driver);
11541     eisa_driver_unregister(&advansys_eisa_driver);
11542     isa_unregister_driver(&advansys_vlb_driver);
11543 }
11544 
11545 module_init(advansys_init);
11546 module_exit(advansys_exit);
11547 
11548 MODULE_LICENSE("GPL");
11549 MODULE_FIRMWARE("advansys/mcode.bin");
11550 MODULE_FIRMWARE("advansys/3550.bin");
11551 MODULE_FIRMWARE("advansys/38C0800.bin");
11552 MODULE_FIRMWARE("advansys/38C1600.bin");