0001
0002
0003
0004
0005
0006
0007
0008
0009 #include <linux/module.h>
0010 #include <linux/rtc.h>
0011
0012 #include "rtc-core.h"
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023 static ssize_t
0024 name_show(struct device *dev, struct device_attribute *attr, char *buf)
0025 {
0026 return sprintf(buf, "%s %s\n", dev_driver_string(dev->parent),
0027 dev_name(dev->parent));
0028 }
0029 static DEVICE_ATTR_RO(name);
0030
0031 static ssize_t
0032 date_show(struct device *dev, struct device_attribute *attr, char *buf)
0033 {
0034 ssize_t retval;
0035 struct rtc_time tm;
0036
0037 retval = rtc_read_time(to_rtc_device(dev), &tm);
0038 if (retval)
0039 return retval;
0040
0041 return sprintf(buf, "%ptRd\n", &tm);
0042 }
0043 static DEVICE_ATTR_RO(date);
0044
0045 static ssize_t
0046 time_show(struct device *dev, struct device_attribute *attr, char *buf)
0047 {
0048 ssize_t retval;
0049 struct rtc_time tm;
0050
0051 retval = rtc_read_time(to_rtc_device(dev), &tm);
0052 if (retval)
0053 return retval;
0054
0055 return sprintf(buf, "%ptRt\n", &tm);
0056 }
0057 static DEVICE_ATTR_RO(time);
0058
0059 static ssize_t
0060 since_epoch_show(struct device *dev, struct device_attribute *attr, char *buf)
0061 {
0062 ssize_t retval;
0063 struct rtc_time tm;
0064
0065 retval = rtc_read_time(to_rtc_device(dev), &tm);
0066 if (retval == 0) {
0067 time64_t time;
0068
0069 time = rtc_tm_to_time64(&tm);
0070 retval = sprintf(buf, "%lld\n", time);
0071 }
0072
0073 return retval;
0074 }
0075 static DEVICE_ATTR_RO(since_epoch);
0076
0077 static ssize_t
0078 max_user_freq_show(struct device *dev, struct device_attribute *attr, char *buf)
0079 {
0080 return sprintf(buf, "%d\n", to_rtc_device(dev)->max_user_freq);
0081 }
0082
0083 static ssize_t
0084 max_user_freq_store(struct device *dev, struct device_attribute *attr,
0085 const char *buf, size_t n)
0086 {
0087 struct rtc_device *rtc = to_rtc_device(dev);
0088 unsigned long val;
0089 int err;
0090
0091 err = kstrtoul(buf, 0, &val);
0092 if (err)
0093 return err;
0094
0095 if (val >= 4096 || val == 0)
0096 return -EINVAL;
0097
0098 rtc->max_user_freq = (int)val;
0099
0100 return n;
0101 }
0102 static DEVICE_ATTR_RW(max_user_freq);
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113 static ssize_t
0114 hctosys_show(struct device *dev, struct device_attribute *attr, char *buf)
0115 {
0116 #ifdef CONFIG_RTC_HCTOSYS_DEVICE
0117 if (rtc_hctosys_ret == 0 &&
0118 strcmp(dev_name(&to_rtc_device(dev)->dev),
0119 CONFIG_RTC_HCTOSYS_DEVICE) == 0)
0120 return sprintf(buf, "1\n");
0121 #endif
0122 return sprintf(buf, "0\n");
0123 }
0124 static DEVICE_ATTR_RO(hctosys);
0125
0126 static ssize_t
0127 wakealarm_show(struct device *dev, struct device_attribute *attr, char *buf)
0128 {
0129 ssize_t retval;
0130 time64_t alarm;
0131 struct rtc_wkalrm alm;
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141 retval = rtc_read_alarm(to_rtc_device(dev), &alm);
0142 if (retval == 0 && alm.enabled) {
0143 alarm = rtc_tm_to_time64(&alm.time);
0144 retval = sprintf(buf, "%lld\n", alarm);
0145 }
0146
0147 return retval;
0148 }
0149
0150 static ssize_t
0151 wakealarm_store(struct device *dev, struct device_attribute *attr,
0152 const char *buf, size_t n)
0153 {
0154 ssize_t retval;
0155 time64_t now, alarm;
0156 time64_t push = 0;
0157 struct rtc_wkalrm alm;
0158 struct rtc_device *rtc = to_rtc_device(dev);
0159 const char *buf_ptr;
0160 int adjust = 0;
0161
0162
0163
0164
0165 retval = rtc_read_time(rtc, &alm.time);
0166 if (retval < 0)
0167 return retval;
0168 now = rtc_tm_to_time64(&alm.time);
0169
0170 buf_ptr = buf;
0171 if (*buf_ptr == '+') {
0172 buf_ptr++;
0173 if (*buf_ptr == '=') {
0174 buf_ptr++;
0175 push = 1;
0176 } else {
0177 adjust = 1;
0178 }
0179 }
0180 retval = kstrtos64(buf_ptr, 0, &alarm);
0181 if (retval)
0182 return retval;
0183 if (adjust)
0184 alarm += now;
0185 if (alarm > now || push) {
0186
0187
0188
0189
0190 retval = rtc_read_alarm(rtc, &alm);
0191 if (retval < 0)
0192 return retval;
0193 if (alm.enabled) {
0194 if (push) {
0195 push = rtc_tm_to_time64(&alm.time);
0196 alarm += push;
0197 } else
0198 return -EBUSY;
0199 } else if (push)
0200 return -EINVAL;
0201 alm.enabled = 1;
0202 } else {
0203 alm.enabled = 0;
0204
0205
0206
0207
0208 alarm = now + 300;
0209 }
0210 rtc_time64_to_tm(alarm, &alm.time);
0211
0212 retval = rtc_set_alarm(rtc, &alm);
0213 return (retval < 0) ? retval : n;
0214 }
0215 static DEVICE_ATTR_RW(wakealarm);
0216
0217 static ssize_t
0218 offset_show(struct device *dev, struct device_attribute *attr, char *buf)
0219 {
0220 ssize_t retval;
0221 long offset;
0222
0223 retval = rtc_read_offset(to_rtc_device(dev), &offset);
0224 if (retval == 0)
0225 retval = sprintf(buf, "%ld\n", offset);
0226
0227 return retval;
0228 }
0229
0230 static ssize_t
0231 offset_store(struct device *dev, struct device_attribute *attr,
0232 const char *buf, size_t n)
0233 {
0234 ssize_t retval;
0235 long offset;
0236
0237 retval = kstrtol(buf, 10, &offset);
0238 if (retval == 0)
0239 retval = rtc_set_offset(to_rtc_device(dev), offset);
0240
0241 return (retval < 0) ? retval : n;
0242 }
0243 static DEVICE_ATTR_RW(offset);
0244
0245 static ssize_t
0246 range_show(struct device *dev, struct device_attribute *attr, char *buf)
0247 {
0248 return sprintf(buf, "[%lld,%llu]\n", to_rtc_device(dev)->range_min,
0249 to_rtc_device(dev)->range_max);
0250 }
0251 static DEVICE_ATTR_RO(range);
0252
0253 static struct attribute *rtc_attrs[] = {
0254 &dev_attr_name.attr,
0255 &dev_attr_date.attr,
0256 &dev_attr_time.attr,
0257 &dev_attr_since_epoch.attr,
0258 &dev_attr_max_user_freq.attr,
0259 &dev_attr_hctosys.attr,
0260 &dev_attr_wakealarm.attr,
0261 &dev_attr_offset.attr,
0262 &dev_attr_range.attr,
0263 NULL,
0264 };
0265
0266
0267
0268
0269
0270
0271 static bool rtc_does_wakealarm(struct rtc_device *rtc)
0272 {
0273 if (!device_can_wakeup(rtc->dev.parent))
0274 return false;
0275
0276 return !!test_bit(RTC_FEATURE_ALARM, rtc->features);
0277 }
0278
0279 static umode_t rtc_attr_is_visible(struct kobject *kobj,
0280 struct attribute *attr, int n)
0281 {
0282 struct device *dev = kobj_to_dev(kobj);
0283 struct rtc_device *rtc = to_rtc_device(dev);
0284 umode_t mode = attr->mode;
0285
0286 if (attr == &dev_attr_wakealarm.attr) {
0287 if (!rtc_does_wakealarm(rtc))
0288 mode = 0;
0289 } else if (attr == &dev_attr_offset.attr) {
0290 if (!rtc->ops->set_offset)
0291 mode = 0;
0292 } else if (attr == &dev_attr_range.attr) {
0293 if (!(rtc->range_max - rtc->range_min))
0294 mode = 0;
0295 }
0296
0297 return mode;
0298 }
0299
0300 static struct attribute_group rtc_attr_group = {
0301 .is_visible = rtc_attr_is_visible,
0302 .attrs = rtc_attrs,
0303 };
0304
0305 static const struct attribute_group *rtc_attr_groups[] = {
0306 &rtc_attr_group,
0307 NULL
0308 };
0309
0310 const struct attribute_group **rtc_get_dev_attribute_groups(void)
0311 {
0312 return rtc_attr_groups;
0313 }
0314
0315 int rtc_add_groups(struct rtc_device *rtc, const struct attribute_group **grps)
0316 {
0317 size_t old_cnt = 0, add_cnt = 0, new_cnt;
0318 const struct attribute_group **groups, **old;
0319
0320 if (!grps)
0321 return -EINVAL;
0322
0323 groups = rtc->dev.groups;
0324 if (groups)
0325 for (; *groups; groups++)
0326 old_cnt++;
0327
0328 for (groups = grps; *groups; groups++)
0329 add_cnt++;
0330
0331 new_cnt = old_cnt + add_cnt + 1;
0332 groups = devm_kcalloc(&rtc->dev, new_cnt, sizeof(*groups), GFP_KERNEL);
0333 if (!groups)
0334 return -ENOMEM;
0335 memcpy(groups, rtc->dev.groups, old_cnt * sizeof(*groups));
0336 memcpy(groups + old_cnt, grps, add_cnt * sizeof(*groups));
0337 groups[old_cnt + add_cnt] = NULL;
0338
0339 old = rtc->dev.groups;
0340 rtc->dev.groups = groups;
0341 if (old && old != rtc_attr_groups)
0342 devm_kfree(&rtc->dev, old);
0343
0344 return 0;
0345 }
0346 EXPORT_SYMBOL(rtc_add_groups);
0347
0348 int rtc_add_group(struct rtc_device *rtc, const struct attribute_group *grp)
0349 {
0350 const struct attribute_group *groups[] = { grp, NULL };
0351
0352 return rtc_add_groups(rtc, groups);
0353 }
0354 EXPORT_SYMBOL(rtc_add_group);