0001
0002
0003
0004
0005 #include <linux/io.h>
0006 #include <linux/rtc.h>
0007 #include <linux/module.h>
0008 #include <linux/slab.h>
0009 #include <linux/interrupt.h>
0010 #include <linux/platform_device.h>
0011 #include <linux/pm_wakeirq.h>
0012 #include <linux/clk.h>
0013 #include <linux/of.h>
0014 #include <linux/of_device.h>
0015
0016 #define RTC_INPUT_CLK_32768HZ (0x00 << 5)
0017 #define RTC_INPUT_CLK_32000HZ (0x01 << 5)
0018 #define RTC_INPUT_CLK_38400HZ (0x02 << 5)
0019
0020 #define RTC_SW_BIT (1 << 0)
0021 #define RTC_ALM_BIT (1 << 2)
0022 #define RTC_1HZ_BIT (1 << 4)
0023 #define RTC_2HZ_BIT (1 << 7)
0024 #define RTC_SAM0_BIT (1 << 8)
0025 #define RTC_SAM1_BIT (1 << 9)
0026 #define RTC_SAM2_BIT (1 << 10)
0027 #define RTC_SAM3_BIT (1 << 11)
0028 #define RTC_SAM4_BIT (1 << 12)
0029 #define RTC_SAM5_BIT (1 << 13)
0030 #define RTC_SAM6_BIT (1 << 14)
0031 #define RTC_SAM7_BIT (1 << 15)
0032 #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
0033 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
0034 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
0035
0036 #define RTC_ENABLE_BIT (1 << 7)
0037
0038 #define MAX_PIE_NUM 9
0039 #define MAX_PIE_FREQ 512
0040
0041 #define MXC_RTC_TIME 0
0042 #define MXC_RTC_ALARM 1
0043
0044 #define RTC_HOURMIN 0x00
0045 #define RTC_SECOND 0x04
0046 #define RTC_ALRM_HM 0x08
0047 #define RTC_ALRM_SEC 0x0C
0048 #define RTC_RTCCTL 0x10
0049 #define RTC_RTCISR 0x14
0050 #define RTC_RTCIENR 0x18
0051 #define RTC_STPWCH 0x1C
0052 #define RTC_DAYR 0x20
0053 #define RTC_DAYALARM 0x24
0054 #define RTC_TEST1 0x28
0055 #define RTC_TEST2 0x2C
0056 #define RTC_TEST3 0x30
0057
0058 enum imx_rtc_type {
0059 IMX1_RTC,
0060 IMX21_RTC,
0061 };
0062
0063 struct rtc_plat_data {
0064 struct rtc_device *rtc;
0065 void __iomem *ioaddr;
0066 int irq;
0067 struct clk *clk_ref;
0068 struct clk *clk_ipg;
0069 struct rtc_time g_rtc_alarm;
0070 enum imx_rtc_type devtype;
0071 };
0072
0073 static const struct of_device_id imx_rtc_dt_ids[] = {
0074 { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
0075 { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
0076 {}
0077 };
0078 MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
0079
0080 static inline int is_imx1_rtc(struct rtc_plat_data *data)
0081 {
0082 return data->devtype == IMX1_RTC;
0083 }
0084
0085
0086
0087
0088
0089 static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
0090 {
0091 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
0092 void __iomem *ioaddr = pdata->ioaddr;
0093 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
0094
0095 switch (time_alarm) {
0096 case MXC_RTC_TIME:
0097 day = readw(ioaddr + RTC_DAYR);
0098 hr_min = readw(ioaddr + RTC_HOURMIN);
0099 sec = readw(ioaddr + RTC_SECOND);
0100 break;
0101 case MXC_RTC_ALARM:
0102 day = readw(ioaddr + RTC_DAYALARM);
0103 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
0104 sec = readw(ioaddr + RTC_ALRM_SEC);
0105 break;
0106 }
0107
0108 hr = hr_min >> 8;
0109 min = hr_min & 0xff;
0110
0111 return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
0112 }
0113
0114
0115
0116
0117 static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
0118 {
0119 u32 tod, day, hr, min, sec, temp;
0120 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
0121 void __iomem *ioaddr = pdata->ioaddr;
0122
0123 day = div_s64_rem(time, 86400, &tod);
0124
0125
0126 hr = tod / 3600;
0127 tod -= hr * 3600;
0128
0129
0130 min = tod / 60;
0131 sec = tod - min * 60;
0132
0133 temp = (hr << 8) + min;
0134
0135 switch (time_alarm) {
0136 case MXC_RTC_TIME:
0137 writew(day, ioaddr + RTC_DAYR);
0138 writew(sec, ioaddr + RTC_SECOND);
0139 writew(temp, ioaddr + RTC_HOURMIN);
0140 break;
0141 case MXC_RTC_ALARM:
0142 writew(day, ioaddr + RTC_DAYALARM);
0143 writew(sec, ioaddr + RTC_ALRM_SEC);
0144 writew(temp, ioaddr + RTC_ALRM_HM);
0145 break;
0146 }
0147 }
0148
0149
0150
0151
0152
0153 static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
0154 {
0155 time64_t time;
0156 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
0157 void __iomem *ioaddr = pdata->ioaddr;
0158
0159 time = rtc_tm_to_time64(alrm);
0160
0161
0162 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
0163 set_alarm_or_time(dev, MXC_RTC_ALARM, time);
0164 }
0165
0166 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
0167 unsigned int enabled)
0168 {
0169 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
0170 void __iomem *ioaddr = pdata->ioaddr;
0171 u32 reg;
0172 unsigned long flags;
0173
0174 spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
0175 reg = readw(ioaddr + RTC_RTCIENR);
0176
0177 if (enabled)
0178 reg |= bit;
0179 else
0180 reg &= ~bit;
0181
0182 writew(reg, ioaddr + RTC_RTCIENR);
0183 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
0184 }
0185
0186
0187 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
0188 {
0189 struct platform_device *pdev = dev_id;
0190 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
0191 void __iomem *ioaddr = pdata->ioaddr;
0192 u32 status;
0193 u32 events = 0;
0194
0195 spin_lock(&pdata->rtc->irq_lock);
0196 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
0197
0198 writew(status, ioaddr + RTC_RTCISR);
0199
0200
0201 if (status & RTC_ALM_BIT) {
0202 events |= (RTC_AF | RTC_IRQF);
0203
0204 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
0205 }
0206
0207 if (status & PIT_ALL_ON)
0208 events |= (RTC_PF | RTC_IRQF);
0209
0210 rtc_update_irq(pdata->rtc, 1, events);
0211 spin_unlock(&pdata->rtc->irq_lock);
0212
0213 return IRQ_HANDLED;
0214 }
0215
0216 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
0217 {
0218 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
0219 return 0;
0220 }
0221
0222
0223
0224
0225 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
0226 {
0227 time64_t val;
0228
0229
0230 do {
0231 val = get_alarm_or_time(dev, MXC_RTC_TIME);
0232 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
0233
0234 rtc_time64_to_tm(val, tm);
0235
0236 return 0;
0237 }
0238
0239
0240
0241
0242 static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
0243 {
0244 time64_t time = rtc_tm_to_time64(tm);
0245
0246
0247 do {
0248 set_alarm_or_time(dev, MXC_RTC_TIME, time);
0249 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
0250
0251 return 0;
0252 }
0253
0254
0255
0256
0257
0258
0259 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
0260 {
0261 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
0262 void __iomem *ioaddr = pdata->ioaddr;
0263
0264 rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
0265 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
0266
0267 return 0;
0268 }
0269
0270
0271
0272
0273 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
0274 {
0275 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
0276
0277 rtc_update_alarm(dev, &alrm->time);
0278
0279 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
0280 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
0281
0282 return 0;
0283 }
0284
0285
0286 static const struct rtc_class_ops mxc_rtc_ops = {
0287 .read_time = mxc_rtc_read_time,
0288 .set_time = mxc_rtc_set_time,
0289 .read_alarm = mxc_rtc_read_alarm,
0290 .set_alarm = mxc_rtc_set_alarm,
0291 .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
0292 };
0293
0294 static void mxc_rtc_action(void *p)
0295 {
0296 struct rtc_plat_data *pdata = p;
0297
0298 clk_disable_unprepare(pdata->clk_ref);
0299 clk_disable_unprepare(pdata->clk_ipg);
0300 }
0301
0302 static int mxc_rtc_probe(struct platform_device *pdev)
0303 {
0304 struct rtc_device *rtc;
0305 struct rtc_plat_data *pdata = NULL;
0306 u32 reg;
0307 unsigned long rate;
0308 int ret;
0309
0310 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
0311 if (!pdata)
0312 return -ENOMEM;
0313
0314 pdata->devtype = (uintptr_t)of_device_get_match_data(&pdev->dev);
0315
0316 pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0);
0317 if (IS_ERR(pdata->ioaddr))
0318 return PTR_ERR(pdata->ioaddr);
0319
0320 rtc = devm_rtc_allocate_device(&pdev->dev);
0321 if (IS_ERR(rtc))
0322 return PTR_ERR(rtc);
0323
0324 pdata->rtc = rtc;
0325 rtc->ops = &mxc_rtc_ops;
0326 if (is_imx1_rtc(pdata)) {
0327 struct rtc_time tm;
0328
0329
0330 rtc->range_max = (1 << 9) * 86400 - 1;
0331
0332
0333
0334
0335
0336 rtc_time64_to_tm(ktime_get_real_seconds(), &tm);
0337 rtc->start_secs = mktime64(tm.tm_year, 1, 1, 0, 0, 0);
0338 rtc->set_start_time = true;
0339 } else {
0340
0341 rtc->range_max = (1 << 16) * 86400ULL - 1;
0342 }
0343
0344 pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
0345 if (IS_ERR(pdata->clk_ipg)) {
0346 dev_err(&pdev->dev, "unable to get ipg clock!\n");
0347 return PTR_ERR(pdata->clk_ipg);
0348 }
0349
0350 ret = clk_prepare_enable(pdata->clk_ipg);
0351 if (ret)
0352 return ret;
0353
0354 pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
0355 if (IS_ERR(pdata->clk_ref)) {
0356 clk_disable_unprepare(pdata->clk_ipg);
0357 dev_err(&pdev->dev, "unable to get ref clock!\n");
0358 return PTR_ERR(pdata->clk_ref);
0359 }
0360
0361 ret = clk_prepare_enable(pdata->clk_ref);
0362 if (ret) {
0363 clk_disable_unprepare(pdata->clk_ipg);
0364 return ret;
0365 }
0366
0367 ret = devm_add_action_or_reset(&pdev->dev, mxc_rtc_action, pdata);
0368 if (ret)
0369 return ret;
0370
0371 rate = clk_get_rate(pdata->clk_ref);
0372
0373 if (rate == 32768)
0374 reg = RTC_INPUT_CLK_32768HZ;
0375 else if (rate == 32000)
0376 reg = RTC_INPUT_CLK_32000HZ;
0377 else if (rate == 38400)
0378 reg = RTC_INPUT_CLK_38400HZ;
0379 else {
0380 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
0381 return -EINVAL;
0382 }
0383
0384 reg |= RTC_ENABLE_BIT;
0385 writew(reg, (pdata->ioaddr + RTC_RTCCTL));
0386 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
0387 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
0388 return -EIO;
0389 }
0390
0391 platform_set_drvdata(pdev, pdata);
0392
0393
0394 pdata->irq = platform_get_irq(pdev, 0);
0395
0396 if (pdata->irq >= 0 &&
0397 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
0398 IRQF_SHARED, pdev->name, pdev) < 0) {
0399 dev_warn(&pdev->dev, "interrupt not available.\n");
0400 pdata->irq = -1;
0401 }
0402
0403 if (pdata->irq >= 0) {
0404 device_init_wakeup(&pdev->dev, 1);
0405 ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq);
0406 if (ret)
0407 dev_err(&pdev->dev, "failed to enable irq wake\n");
0408 }
0409
0410 ret = devm_rtc_register_device(rtc);
0411
0412 return ret;
0413 }
0414
0415 static struct platform_driver mxc_rtc_driver = {
0416 .driver = {
0417 .name = "mxc_rtc",
0418 .of_match_table = imx_rtc_dt_ids,
0419 },
0420 .probe = mxc_rtc_probe,
0421 };
0422
0423 module_platform_driver(mxc_rtc_driver)
0424
0425 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
0426 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
0427 MODULE_LICENSE("GPL");
0428