0001
0002
0003
0004
0005
0006
0007
0008
0009 #include <linux/bcd.h>
0010 #include <linux/init.h>
0011 #include <linux/io.h>
0012 #include <linux/kernel.h>
0013 #include <linux/module.h>
0014 #include <linux/of.h>
0015 #include <linux/rtc.h>
0016 #include <linux/spi/spi.h>
0017
0018 #define RTC_CMD_READ 0x81
0019 #define RTC_CMD_WRITE 0x80
0020
0021 #define RTC_CMD_WRITE_ENABLE 0x00
0022 #define RTC_CMD_WRITE_DISABLE 0x80
0023
0024 #define RTC_ADDR_RAM0 0x20
0025 #define RTC_ADDR_TCR 0x08
0026 #define RTC_CLCK_BURST 0x1F
0027 #define RTC_CLCK_LEN 0x08
0028 #define RTC_ADDR_CTRL 0x07
0029 #define RTC_ADDR_YEAR 0x06
0030 #define RTC_ADDR_DAY 0x05
0031 #define RTC_ADDR_MON 0x04
0032 #define RTC_ADDR_DATE 0x03
0033 #define RTC_ADDR_HOUR 0x02
0034 #define RTC_ADDR_MIN 0x01
0035 #define RTC_ADDR_SEC 0x00
0036
0037 static int ds1302_rtc_set_time(struct device *dev, struct rtc_time *time)
0038 {
0039 struct spi_device *spi = dev_get_drvdata(dev);
0040 u8 buf[1 + RTC_CLCK_LEN];
0041 u8 *bp;
0042 int status;
0043
0044
0045 bp = buf;
0046 *bp++ = RTC_ADDR_CTRL << 1 | RTC_CMD_WRITE;
0047 *bp++ = RTC_CMD_WRITE_ENABLE;
0048
0049 status = spi_write_then_read(spi, buf, 2,
0050 NULL, 0);
0051 if (status)
0052 return status;
0053
0054
0055 bp = buf;
0056 *bp++ = RTC_CLCK_BURST << 1 | RTC_CMD_WRITE;
0057
0058 *bp++ = bin2bcd(time->tm_sec);
0059 *bp++ = bin2bcd(time->tm_min);
0060 *bp++ = bin2bcd(time->tm_hour);
0061 *bp++ = bin2bcd(time->tm_mday);
0062 *bp++ = bin2bcd(time->tm_mon + 1);
0063 *bp++ = time->tm_wday + 1;
0064 *bp++ = bin2bcd(time->tm_year % 100);
0065 *bp++ = RTC_CMD_WRITE_DISABLE;
0066
0067
0068 return spi_write_then_read(spi, buf, sizeof(buf),
0069 NULL, 0);
0070 }
0071
0072 static int ds1302_rtc_get_time(struct device *dev, struct rtc_time *time)
0073 {
0074 struct spi_device *spi = dev_get_drvdata(dev);
0075 u8 addr = RTC_CLCK_BURST << 1 | RTC_CMD_READ;
0076 u8 buf[RTC_CLCK_LEN - 1];
0077 int status;
0078
0079
0080
0081
0082 status = spi_write_then_read(spi, &addr, sizeof(addr),
0083 buf, sizeof(buf));
0084 if (status < 0)
0085 return status;
0086
0087
0088 time->tm_sec = bcd2bin(buf[RTC_ADDR_SEC]);
0089 time->tm_min = bcd2bin(buf[RTC_ADDR_MIN]);
0090 time->tm_hour = bcd2bin(buf[RTC_ADDR_HOUR]);
0091 time->tm_wday = buf[RTC_ADDR_DAY] - 1;
0092 time->tm_mday = bcd2bin(buf[RTC_ADDR_DATE]);
0093 time->tm_mon = bcd2bin(buf[RTC_ADDR_MON]) - 1;
0094 time->tm_year = bcd2bin(buf[RTC_ADDR_YEAR]) + 100;
0095
0096 return 0;
0097 }
0098
0099 static const struct rtc_class_ops ds1302_rtc_ops = {
0100 .read_time = ds1302_rtc_get_time,
0101 .set_time = ds1302_rtc_set_time,
0102 };
0103
0104 static int ds1302_probe(struct spi_device *spi)
0105 {
0106 struct rtc_device *rtc;
0107 u8 addr;
0108 u8 buf[4];
0109 u8 *bp;
0110 int status;
0111
0112
0113
0114
0115
0116 if (spi->bits_per_word && (spi->bits_per_word != 8)) {
0117 dev_err(&spi->dev, "bad word length\n");
0118 return -EINVAL;
0119 } else if (spi->max_speed_hz > 2000000) {
0120 dev_err(&spi->dev, "speed is too high\n");
0121 return -EINVAL;
0122 } else if (spi->mode & SPI_CPHA) {
0123 dev_err(&spi->dev, "bad mode\n");
0124 return -EINVAL;
0125 }
0126
0127 addr = RTC_ADDR_CTRL << 1 | RTC_CMD_READ;
0128 status = spi_write_then_read(spi, &addr, sizeof(addr), buf, 1);
0129 if (status < 0) {
0130 dev_err(&spi->dev, "control register read error %d\n",
0131 status);
0132 return status;
0133 }
0134
0135 if ((buf[0] & ~RTC_CMD_WRITE_DISABLE) != 0) {
0136 status = spi_write_then_read(spi, &addr, sizeof(addr), buf, 1);
0137 if (status < 0) {
0138 dev_err(&spi->dev, "control register read error %d\n",
0139 status);
0140 return status;
0141 }
0142
0143 if ((buf[0] & ~RTC_CMD_WRITE_DISABLE) != 0) {
0144 dev_err(&spi->dev, "junk in control register\n");
0145 return -ENODEV;
0146 }
0147 }
0148 if (buf[0] == 0) {
0149 bp = buf;
0150 *bp++ = RTC_ADDR_CTRL << 1 | RTC_CMD_WRITE;
0151 *bp++ = RTC_CMD_WRITE_DISABLE;
0152
0153 status = spi_write_then_read(spi, buf, 2, NULL, 0);
0154 if (status < 0) {
0155 dev_err(&spi->dev, "control register write error %d\n",
0156 status);
0157 return status;
0158 }
0159
0160 addr = RTC_ADDR_CTRL << 1 | RTC_CMD_READ;
0161 status = spi_write_then_read(spi, &addr, sizeof(addr), buf, 1);
0162 if (status < 0) {
0163 dev_err(&spi->dev,
0164 "error %d reading control register\n",
0165 status);
0166 return status;
0167 }
0168
0169 if (buf[0] != RTC_CMD_WRITE_DISABLE) {
0170 dev_err(&spi->dev, "failed to detect chip\n");
0171 return -ENODEV;
0172 }
0173 }
0174
0175 spi_set_drvdata(spi, spi);
0176
0177 rtc = devm_rtc_device_register(&spi->dev, "ds1302",
0178 &ds1302_rtc_ops, THIS_MODULE);
0179 if (IS_ERR(rtc)) {
0180 status = PTR_ERR(rtc);
0181 dev_err(&spi->dev, "error %d registering rtc\n", status);
0182 return status;
0183 }
0184
0185 return 0;
0186 }
0187
0188 static void ds1302_remove(struct spi_device *spi)
0189 {
0190 spi_set_drvdata(spi, NULL);
0191 }
0192
0193 #ifdef CONFIG_OF
0194 static const struct of_device_id ds1302_dt_ids[] = {
0195 { .compatible = "maxim,ds1302", },
0196 { }
0197 };
0198 MODULE_DEVICE_TABLE(of, ds1302_dt_ids);
0199 #endif
0200
0201 static const struct spi_device_id ds1302_spi_ids[] = {
0202 { .name = "ds1302", },
0203 { }
0204 };
0205 MODULE_DEVICE_TABLE(spi, ds1302_spi_ids);
0206
0207 static struct spi_driver ds1302_driver = {
0208 .driver.name = "rtc-ds1302",
0209 .driver.of_match_table = of_match_ptr(ds1302_dt_ids),
0210 .probe = ds1302_probe,
0211 .remove = ds1302_remove,
0212 .id_table = ds1302_spi_ids,
0213 };
0214
0215 module_spi_driver(ds1302_driver);
0216
0217 MODULE_DESCRIPTION("Dallas DS1302 RTC driver");
0218 MODULE_AUTHOR("Paul Mundt, David McCullough");
0219 MODULE_LICENSE("GPL v2");