Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Remote Processor Framework
0004  *
0005  * Copyright (C) 2011 Texas Instruments, Inc.
0006  * Copyright (C) 2011 Google, Inc.
0007  *
0008  * Ohad Ben-Cohen <ohad@wizery.com>
0009  * Brian Swetland <swetland@google.com>
0010  * Mark Grosen <mgrosen@ti.com>
0011  * Fernando Guzman Lugo <fernando.lugo@ti.com>
0012  * Suman Anna <s-anna@ti.com>
0013  * Robert Tivy <rtivy@ti.com>
0014  * Armando Uribe De Leon <x0095078@ti.com>
0015  */
0016 
0017 #define pr_fmt(fmt)    "%s: " fmt, __func__
0018 
0019 #include <linux/delay.h>
0020 #include <linux/kernel.h>
0021 #include <linux/module.h>
0022 #include <linux/device.h>
0023 #include <linux/panic_notifier.h>
0024 #include <linux/slab.h>
0025 #include <linux/mutex.h>
0026 #include <linux/dma-map-ops.h>
0027 #include <linux/dma-mapping.h>
0028 #include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */
0029 #include <linux/firmware.h>
0030 #include <linux/string.h>
0031 #include <linux/debugfs.h>
0032 #include <linux/rculist.h>
0033 #include <linux/remoteproc.h>
0034 #include <linux/iommu.h>
0035 #include <linux/idr.h>
0036 #include <linux/elf.h>
0037 #include <linux/crc32.h>
0038 #include <linux/of_reserved_mem.h>
0039 #include <linux/virtio_ids.h>
0040 #include <linux/virtio_ring.h>
0041 #include <asm/byteorder.h>
0042 #include <linux/platform_device.h>
0043 
0044 #include "remoteproc_internal.h"
0045 
0046 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
0047 
0048 static DEFINE_MUTEX(rproc_list_mutex);
0049 static LIST_HEAD(rproc_list);
0050 static struct notifier_block rproc_panic_nb;
0051 
0052 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
0053                  void *, int offset, int avail);
0054 
0055 static int rproc_alloc_carveout(struct rproc *rproc,
0056                 struct rproc_mem_entry *mem);
0057 static int rproc_release_carveout(struct rproc *rproc,
0058                   struct rproc_mem_entry *mem);
0059 
0060 /* Unique indices for remoteproc devices */
0061 static DEFINE_IDA(rproc_dev_index);
0062 static struct workqueue_struct *rproc_recovery_wq;
0063 
0064 static const char * const rproc_crash_names[] = {
0065     [RPROC_MMUFAULT]    = "mmufault",
0066     [RPROC_WATCHDOG]    = "watchdog",
0067     [RPROC_FATAL_ERROR] = "fatal error",
0068 };
0069 
0070 /* translate rproc_crash_type to string */
0071 static const char *rproc_crash_to_string(enum rproc_crash_type type)
0072 {
0073     if (type < ARRAY_SIZE(rproc_crash_names))
0074         return rproc_crash_names[type];
0075     return "unknown";
0076 }
0077 
0078 /*
0079  * This is the IOMMU fault handler we register with the IOMMU API
0080  * (when relevant; not all remote processors access memory through
0081  * an IOMMU).
0082  *
0083  * IOMMU core will invoke this handler whenever the remote processor
0084  * will try to access an unmapped device address.
0085  */
0086 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
0087                  unsigned long iova, int flags, void *token)
0088 {
0089     struct rproc *rproc = token;
0090 
0091     dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
0092 
0093     rproc_report_crash(rproc, RPROC_MMUFAULT);
0094 
0095     /*
0096      * Let the iommu core know we're not really handling this fault;
0097      * we just used it as a recovery trigger.
0098      */
0099     return -ENOSYS;
0100 }
0101 
0102 static int rproc_enable_iommu(struct rproc *rproc)
0103 {
0104     struct iommu_domain *domain;
0105     struct device *dev = rproc->dev.parent;
0106     int ret;
0107 
0108     if (!rproc->has_iommu) {
0109         dev_dbg(dev, "iommu not present\n");
0110         return 0;
0111     }
0112 
0113     domain = iommu_domain_alloc(dev->bus);
0114     if (!domain) {
0115         dev_err(dev, "can't alloc iommu domain\n");
0116         return -ENOMEM;
0117     }
0118 
0119     iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
0120 
0121     ret = iommu_attach_device(domain, dev);
0122     if (ret) {
0123         dev_err(dev, "can't attach iommu device: %d\n", ret);
0124         goto free_domain;
0125     }
0126 
0127     rproc->domain = domain;
0128 
0129     return 0;
0130 
0131 free_domain:
0132     iommu_domain_free(domain);
0133     return ret;
0134 }
0135 
0136 static void rproc_disable_iommu(struct rproc *rproc)
0137 {
0138     struct iommu_domain *domain = rproc->domain;
0139     struct device *dev = rproc->dev.parent;
0140 
0141     if (!domain)
0142         return;
0143 
0144     iommu_detach_device(domain, dev);
0145     iommu_domain_free(domain);
0146 }
0147 
0148 phys_addr_t rproc_va_to_pa(void *cpu_addr)
0149 {
0150     /*
0151      * Return physical address according to virtual address location
0152      * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
0153      * - in kernel: if region allocated in generic dma memory pool
0154      */
0155     if (is_vmalloc_addr(cpu_addr)) {
0156         return page_to_phys(vmalloc_to_page(cpu_addr)) +
0157                     offset_in_page(cpu_addr);
0158     }
0159 
0160     WARN_ON(!virt_addr_valid(cpu_addr));
0161     return virt_to_phys(cpu_addr);
0162 }
0163 EXPORT_SYMBOL(rproc_va_to_pa);
0164 
0165 /**
0166  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
0167  * @rproc: handle of a remote processor
0168  * @da: remoteproc device address to translate
0169  * @len: length of the memory region @da is pointing to
0170  * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
0171  *
0172  * Some remote processors will ask us to allocate them physically contiguous
0173  * memory regions (which we call "carveouts"), and map them to specific
0174  * device addresses (which are hardcoded in the firmware). They may also have
0175  * dedicated memory regions internal to the processors, and use them either
0176  * exclusively or alongside carveouts.
0177  *
0178  * They may then ask us to copy objects into specific device addresses (e.g.
0179  * code/data sections) or expose us certain symbols in other device address
0180  * (e.g. their trace buffer).
0181  *
0182  * This function is a helper function with which we can go over the allocated
0183  * carveouts and translate specific device addresses to kernel virtual addresses
0184  * so we can access the referenced memory. This function also allows to perform
0185  * translations on the internal remoteproc memory regions through a platform
0186  * implementation specific da_to_va ops, if present.
0187  *
0188  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
0189  * but only on kernel direct mapped RAM memory. Instead, we're just using
0190  * here the output of the DMA API for the carveouts, which should be more
0191  * correct.
0192  *
0193  * Return: a valid kernel address on success or NULL on failure
0194  */
0195 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
0196 {
0197     struct rproc_mem_entry *carveout;
0198     void *ptr = NULL;
0199 
0200     if (rproc->ops->da_to_va) {
0201         ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
0202         if (ptr)
0203             goto out;
0204     }
0205 
0206     list_for_each_entry(carveout, &rproc->carveouts, node) {
0207         int offset = da - carveout->da;
0208 
0209         /*  Verify that carveout is allocated */
0210         if (!carveout->va)
0211             continue;
0212 
0213         /* try next carveout if da is too small */
0214         if (offset < 0)
0215             continue;
0216 
0217         /* try next carveout if da is too large */
0218         if (offset + len > carveout->len)
0219             continue;
0220 
0221         ptr = carveout->va + offset;
0222 
0223         if (is_iomem)
0224             *is_iomem = carveout->is_iomem;
0225 
0226         break;
0227     }
0228 
0229 out:
0230     return ptr;
0231 }
0232 EXPORT_SYMBOL(rproc_da_to_va);
0233 
0234 /**
0235  * rproc_find_carveout_by_name() - lookup the carveout region by a name
0236  * @rproc: handle of a remote processor
0237  * @name: carveout name to find (format string)
0238  * @...: optional parameters matching @name string
0239  *
0240  * Platform driver has the capability to register some pre-allacoted carveout
0241  * (physically contiguous memory regions) before rproc firmware loading and
0242  * associated resource table analysis. These regions may be dedicated memory
0243  * regions internal to the coprocessor or specified DDR region with specific
0244  * attributes
0245  *
0246  * This function is a helper function with which we can go over the
0247  * allocated carveouts and return associated region characteristics like
0248  * coprocessor address, length or processor virtual address.
0249  *
0250  * Return: a valid pointer on carveout entry on success or NULL on failure.
0251  */
0252 __printf(2, 3)
0253 struct rproc_mem_entry *
0254 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
0255 {
0256     va_list args;
0257     char _name[32];
0258     struct rproc_mem_entry *carveout, *mem = NULL;
0259 
0260     if (!name)
0261         return NULL;
0262 
0263     va_start(args, name);
0264     vsnprintf(_name, sizeof(_name), name, args);
0265     va_end(args);
0266 
0267     list_for_each_entry(carveout, &rproc->carveouts, node) {
0268         /* Compare carveout and requested names */
0269         if (!strcmp(carveout->name, _name)) {
0270             mem = carveout;
0271             break;
0272         }
0273     }
0274 
0275     return mem;
0276 }
0277 
0278 /**
0279  * rproc_check_carveout_da() - Check specified carveout da configuration
0280  * @rproc: handle of a remote processor
0281  * @mem: pointer on carveout to check
0282  * @da: area device address
0283  * @len: associated area size
0284  *
0285  * This function is a helper function to verify requested device area (couple
0286  * da, len) is part of specified carveout.
0287  * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
0288  * checked.
0289  *
0290  * Return: 0 if carveout matches request else error
0291  */
0292 static int rproc_check_carveout_da(struct rproc *rproc,
0293                    struct rproc_mem_entry *mem, u32 da, u32 len)
0294 {
0295     struct device *dev = &rproc->dev;
0296     int delta;
0297 
0298     /* Check requested resource length */
0299     if (len > mem->len) {
0300         dev_err(dev, "Registered carveout doesn't fit len request\n");
0301         return -EINVAL;
0302     }
0303 
0304     if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
0305         /* Address doesn't match registered carveout configuration */
0306         return -EINVAL;
0307     } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
0308         delta = da - mem->da;
0309 
0310         /* Check requested resource belongs to registered carveout */
0311         if (delta < 0) {
0312             dev_err(dev,
0313                 "Registered carveout doesn't fit da request\n");
0314             return -EINVAL;
0315         }
0316 
0317         if (delta + len > mem->len) {
0318             dev_err(dev,
0319                 "Registered carveout doesn't fit len request\n");
0320             return -EINVAL;
0321         }
0322     }
0323 
0324     return 0;
0325 }
0326 
0327 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
0328 {
0329     struct rproc *rproc = rvdev->rproc;
0330     struct device *dev = &rproc->dev;
0331     struct rproc_vring *rvring = &rvdev->vring[i];
0332     struct fw_rsc_vdev *rsc;
0333     int ret, notifyid;
0334     struct rproc_mem_entry *mem;
0335     size_t size;
0336 
0337     /* actual size of vring (in bytes) */
0338     size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
0339 
0340     rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
0341 
0342     /* Search for pre-registered carveout */
0343     mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
0344                       i);
0345     if (mem) {
0346         if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
0347             return -ENOMEM;
0348     } else {
0349         /* Register carveout in in list */
0350         mem = rproc_mem_entry_init(dev, NULL, 0,
0351                        size, rsc->vring[i].da,
0352                        rproc_alloc_carveout,
0353                        rproc_release_carveout,
0354                        "vdev%dvring%d",
0355                        rvdev->index, i);
0356         if (!mem) {
0357             dev_err(dev, "Can't allocate memory entry structure\n");
0358             return -ENOMEM;
0359         }
0360 
0361         rproc_add_carveout(rproc, mem);
0362     }
0363 
0364     /*
0365      * Assign an rproc-wide unique index for this vring
0366      * TODO: assign a notifyid for rvdev updates as well
0367      * TODO: support predefined notifyids (via resource table)
0368      */
0369     ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
0370     if (ret < 0) {
0371         dev_err(dev, "idr_alloc failed: %d\n", ret);
0372         return ret;
0373     }
0374     notifyid = ret;
0375 
0376     /* Potentially bump max_notifyid */
0377     if (notifyid > rproc->max_notifyid)
0378         rproc->max_notifyid = notifyid;
0379 
0380     rvring->notifyid = notifyid;
0381 
0382     /* Let the rproc know the notifyid of this vring.*/
0383     rsc->vring[i].notifyid = notifyid;
0384     return 0;
0385 }
0386 
0387 static int
0388 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
0389 {
0390     struct rproc *rproc = rvdev->rproc;
0391     struct device *dev = &rproc->dev;
0392     struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
0393     struct rproc_vring *rvring = &rvdev->vring[i];
0394 
0395     dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
0396         i, vring->da, vring->num, vring->align);
0397 
0398     /* verify queue size and vring alignment are sane */
0399     if (!vring->num || !vring->align) {
0400         dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
0401             vring->num, vring->align);
0402         return -EINVAL;
0403     }
0404 
0405     rvring->num = vring->num;
0406     rvring->align = vring->align;
0407     rvring->rvdev = rvdev;
0408 
0409     return 0;
0410 }
0411 
0412 void rproc_free_vring(struct rproc_vring *rvring)
0413 {
0414     struct rproc *rproc = rvring->rvdev->rproc;
0415     int idx = rvring - rvring->rvdev->vring;
0416     struct fw_rsc_vdev *rsc;
0417 
0418     idr_remove(&rproc->notifyids, rvring->notifyid);
0419 
0420     /*
0421      * At this point rproc_stop() has been called and the installed resource
0422      * table in the remote processor memory may no longer be accessible. As
0423      * such and as per rproc_stop(), rproc->table_ptr points to the cached
0424      * resource table (rproc->cached_table).  The cached resource table is
0425      * only available when a remote processor has been booted by the
0426      * remoteproc core, otherwise it is NULL.
0427      *
0428      * Based on the above, reset the virtio device section in the cached
0429      * resource table only if there is one to work with.
0430      */
0431     if (rproc->table_ptr) {
0432         rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
0433         rsc->vring[idx].da = 0;
0434         rsc->vring[idx].notifyid = -1;
0435     }
0436 }
0437 
0438 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
0439 {
0440     struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
0441 
0442     return rproc_add_virtio_dev(rvdev, rvdev->id);
0443 }
0444 
0445 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
0446 {
0447     struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
0448     int ret;
0449 
0450     ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
0451     if (ret)
0452         dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
0453 }
0454 
0455 /**
0456  * rproc_rvdev_release() - release the existence of a rvdev
0457  *
0458  * @dev: the subdevice's dev
0459  */
0460 static void rproc_rvdev_release(struct device *dev)
0461 {
0462     struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
0463 
0464     of_reserved_mem_device_release(dev);
0465     dma_release_coherent_memory(dev);
0466 
0467     kfree(rvdev);
0468 }
0469 
0470 static int copy_dma_range_map(struct device *to, struct device *from)
0471 {
0472     const struct bus_dma_region *map = from->dma_range_map, *new_map, *r;
0473     int num_ranges = 0;
0474 
0475     if (!map)
0476         return 0;
0477 
0478     for (r = map; r->size; r++)
0479         num_ranges++;
0480 
0481     new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)),
0482               GFP_KERNEL);
0483     if (!new_map)
0484         return -ENOMEM;
0485     to->dma_range_map = new_map;
0486     return 0;
0487 }
0488 
0489 /**
0490  * rproc_handle_vdev() - handle a vdev fw resource
0491  * @rproc: the remote processor
0492  * @ptr: the vring resource descriptor
0493  * @offset: offset of the resource entry
0494  * @avail: size of available data (for sanity checking the image)
0495  *
0496  * This resource entry requests the host to statically register a virtio
0497  * device (vdev), and setup everything needed to support it. It contains
0498  * everything needed to make it possible: the virtio device id, virtio
0499  * device features, vrings information, virtio config space, etc...
0500  *
0501  * Before registering the vdev, the vrings are allocated from non-cacheable
0502  * physically contiguous memory. Currently we only support two vrings per
0503  * remote processor (temporary limitation). We might also want to consider
0504  * doing the vring allocation only later when ->find_vqs() is invoked, and
0505  * then release them upon ->del_vqs().
0506  *
0507  * Note: @da is currently not really handled correctly: we dynamically
0508  * allocate it using the DMA API, ignoring requested hard coded addresses,
0509  * and we don't take care of any required IOMMU programming. This is all
0510  * going to be taken care of when the generic iommu-based DMA API will be
0511  * merged. Meanwhile, statically-addressed iommu-based firmware images should
0512  * use RSC_DEVMEM resource entries to map their required @da to the physical
0513  * address of their base CMA region (ouch, hacky!).
0514  *
0515  * Return: 0 on success, or an appropriate error code otherwise
0516  */
0517 static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
0518                  int offset, int avail)
0519 {
0520     struct fw_rsc_vdev *rsc = ptr;
0521     struct device *dev = &rproc->dev;
0522     struct rproc_vdev *rvdev;
0523     int i, ret;
0524     char name[16];
0525 
0526     /* make sure resource isn't truncated */
0527     if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
0528             avail) {
0529         dev_err(dev, "vdev rsc is truncated\n");
0530         return -EINVAL;
0531     }
0532 
0533     /* make sure reserved bytes are zeroes */
0534     if (rsc->reserved[0] || rsc->reserved[1]) {
0535         dev_err(dev, "vdev rsc has non zero reserved bytes\n");
0536         return -EINVAL;
0537     }
0538 
0539     dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
0540         rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
0541 
0542     /* we currently support only two vrings per rvdev */
0543     if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
0544         dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
0545         return -EINVAL;
0546     }
0547 
0548     rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
0549     if (!rvdev)
0550         return -ENOMEM;
0551 
0552     kref_init(&rvdev->refcount);
0553 
0554     rvdev->id = rsc->id;
0555     rvdev->rproc = rproc;
0556     rvdev->index = rproc->nb_vdev++;
0557 
0558     /* Initialise vdev subdevice */
0559     snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
0560     rvdev->dev.parent = &rproc->dev;
0561     rvdev->dev.release = rproc_rvdev_release;
0562     dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
0563     dev_set_drvdata(&rvdev->dev, rvdev);
0564 
0565     ret = device_register(&rvdev->dev);
0566     if (ret) {
0567         put_device(&rvdev->dev);
0568         return ret;
0569     }
0570 
0571     ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent);
0572     if (ret)
0573         goto free_rvdev;
0574 
0575     /* Make device dma capable by inheriting from parent's capabilities */
0576     set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
0577 
0578     ret = dma_coerce_mask_and_coherent(&rvdev->dev,
0579                        dma_get_mask(rproc->dev.parent));
0580     if (ret) {
0581         dev_warn(dev,
0582              "Failed to set DMA mask %llx. Trying to continue... (%pe)\n",
0583              dma_get_mask(rproc->dev.parent), ERR_PTR(ret));
0584     }
0585 
0586     /* parse the vrings */
0587     for (i = 0; i < rsc->num_of_vrings; i++) {
0588         ret = rproc_parse_vring(rvdev, rsc, i);
0589         if (ret)
0590             goto free_rvdev;
0591     }
0592 
0593     /* remember the resource offset*/
0594     rvdev->rsc_offset = offset;
0595 
0596     /* allocate the vring resources */
0597     for (i = 0; i < rsc->num_of_vrings; i++) {
0598         ret = rproc_alloc_vring(rvdev, i);
0599         if (ret)
0600             goto unwind_vring_allocations;
0601     }
0602 
0603     list_add_tail(&rvdev->node, &rproc->rvdevs);
0604 
0605     rvdev->subdev.start = rproc_vdev_do_start;
0606     rvdev->subdev.stop = rproc_vdev_do_stop;
0607 
0608     rproc_add_subdev(rproc, &rvdev->subdev);
0609 
0610     return 0;
0611 
0612 unwind_vring_allocations:
0613     for (i--; i >= 0; i--)
0614         rproc_free_vring(&rvdev->vring[i]);
0615 free_rvdev:
0616     device_unregister(&rvdev->dev);
0617     return ret;
0618 }
0619 
0620 void rproc_vdev_release(struct kref *ref)
0621 {
0622     struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
0623     struct rproc_vring *rvring;
0624     struct rproc *rproc = rvdev->rproc;
0625     int id;
0626 
0627     for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
0628         rvring = &rvdev->vring[id];
0629         rproc_free_vring(rvring);
0630     }
0631 
0632     rproc_remove_subdev(rproc, &rvdev->subdev);
0633     list_del(&rvdev->node);
0634     device_unregister(&rvdev->dev);
0635 }
0636 
0637 /**
0638  * rproc_handle_trace() - handle a shared trace buffer resource
0639  * @rproc: the remote processor
0640  * @ptr: the trace resource descriptor
0641  * @offset: offset of the resource entry
0642  * @avail: size of available data (for sanity checking the image)
0643  *
0644  * In case the remote processor dumps trace logs into memory,
0645  * export it via debugfs.
0646  *
0647  * Currently, the 'da' member of @rsc should contain the device address
0648  * where the remote processor is dumping the traces. Later we could also
0649  * support dynamically allocating this address using the generic
0650  * DMA API (but currently there isn't a use case for that).
0651  *
0652  * Return: 0 on success, or an appropriate error code otherwise
0653  */
0654 static int rproc_handle_trace(struct rproc *rproc, void *ptr,
0655                   int offset, int avail)
0656 {
0657     struct fw_rsc_trace *rsc = ptr;
0658     struct rproc_debug_trace *trace;
0659     struct device *dev = &rproc->dev;
0660     char name[15];
0661 
0662     if (sizeof(*rsc) > avail) {
0663         dev_err(dev, "trace rsc is truncated\n");
0664         return -EINVAL;
0665     }
0666 
0667     /* make sure reserved bytes are zeroes */
0668     if (rsc->reserved) {
0669         dev_err(dev, "trace rsc has non zero reserved bytes\n");
0670         return -EINVAL;
0671     }
0672 
0673     trace = kzalloc(sizeof(*trace), GFP_KERNEL);
0674     if (!trace)
0675         return -ENOMEM;
0676 
0677     /* set the trace buffer dma properties */
0678     trace->trace_mem.len = rsc->len;
0679     trace->trace_mem.da = rsc->da;
0680 
0681     /* set pointer on rproc device */
0682     trace->rproc = rproc;
0683 
0684     /* make sure snprintf always null terminates, even if truncating */
0685     snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
0686 
0687     /* create the debugfs entry */
0688     trace->tfile = rproc_create_trace_file(name, rproc, trace);
0689 
0690     list_add_tail(&trace->node, &rproc->traces);
0691 
0692     rproc->num_traces++;
0693 
0694     dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
0695         name, rsc->da, rsc->len);
0696 
0697     return 0;
0698 }
0699 
0700 /**
0701  * rproc_handle_devmem() - handle devmem resource entry
0702  * @rproc: remote processor handle
0703  * @ptr: the devmem resource entry
0704  * @offset: offset of the resource entry
0705  * @avail: size of available data (for sanity checking the image)
0706  *
0707  * Remote processors commonly need to access certain on-chip peripherals.
0708  *
0709  * Some of these remote processors access memory via an iommu device,
0710  * and might require us to configure their iommu before they can access
0711  * the on-chip peripherals they need.
0712  *
0713  * This resource entry is a request to map such a peripheral device.
0714  *
0715  * These devmem entries will contain the physical address of the device in
0716  * the 'pa' member. If a specific device address is expected, then 'da' will
0717  * contain it (currently this is the only use case supported). 'len' will
0718  * contain the size of the physical region we need to map.
0719  *
0720  * Currently we just "trust" those devmem entries to contain valid physical
0721  * addresses, but this is going to change: we want the implementations to
0722  * tell us ranges of physical addresses the firmware is allowed to request,
0723  * and not allow firmwares to request access to physical addresses that
0724  * are outside those ranges.
0725  *
0726  * Return: 0 on success, or an appropriate error code otherwise
0727  */
0728 static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
0729                    int offset, int avail)
0730 {
0731     struct fw_rsc_devmem *rsc = ptr;
0732     struct rproc_mem_entry *mapping;
0733     struct device *dev = &rproc->dev;
0734     int ret;
0735 
0736     /* no point in handling this resource without a valid iommu domain */
0737     if (!rproc->domain)
0738         return -EINVAL;
0739 
0740     if (sizeof(*rsc) > avail) {
0741         dev_err(dev, "devmem rsc is truncated\n");
0742         return -EINVAL;
0743     }
0744 
0745     /* make sure reserved bytes are zeroes */
0746     if (rsc->reserved) {
0747         dev_err(dev, "devmem rsc has non zero reserved bytes\n");
0748         return -EINVAL;
0749     }
0750 
0751     mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
0752     if (!mapping)
0753         return -ENOMEM;
0754 
0755     ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
0756     if (ret) {
0757         dev_err(dev, "failed to map devmem: %d\n", ret);
0758         goto out;
0759     }
0760 
0761     /*
0762      * We'll need this info later when we'll want to unmap everything
0763      * (e.g. on shutdown).
0764      *
0765      * We can't trust the remote processor not to change the resource
0766      * table, so we must maintain this info independently.
0767      */
0768     mapping->da = rsc->da;
0769     mapping->len = rsc->len;
0770     list_add_tail(&mapping->node, &rproc->mappings);
0771 
0772     dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
0773         rsc->pa, rsc->da, rsc->len);
0774 
0775     return 0;
0776 
0777 out:
0778     kfree(mapping);
0779     return ret;
0780 }
0781 
0782 /**
0783  * rproc_alloc_carveout() - allocated specified carveout
0784  * @rproc: rproc handle
0785  * @mem: the memory entry to allocate
0786  *
0787  * This function allocate specified memory entry @mem using
0788  * dma_alloc_coherent() as default allocator
0789  *
0790  * Return: 0 on success, or an appropriate error code otherwise
0791  */
0792 static int rproc_alloc_carveout(struct rproc *rproc,
0793                 struct rproc_mem_entry *mem)
0794 {
0795     struct rproc_mem_entry *mapping = NULL;
0796     struct device *dev = &rproc->dev;
0797     dma_addr_t dma;
0798     void *va;
0799     int ret;
0800 
0801     va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
0802     if (!va) {
0803         dev_err(dev->parent,
0804             "failed to allocate dma memory: len 0x%zx\n",
0805             mem->len);
0806         return -ENOMEM;
0807     }
0808 
0809     dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
0810         va, &dma, mem->len);
0811 
0812     if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
0813         /*
0814          * Check requested da is equal to dma address
0815          * and print a warn message in case of missalignment.
0816          * Don't stop rproc_start sequence as coprocessor may
0817          * build pa to da translation on its side.
0818          */
0819         if (mem->da != (u32)dma)
0820             dev_warn(dev->parent,
0821                  "Allocated carveout doesn't fit device address request\n");
0822     }
0823 
0824     /*
0825      * Ok, this is non-standard.
0826      *
0827      * Sometimes we can't rely on the generic iommu-based DMA API
0828      * to dynamically allocate the device address and then set the IOMMU
0829      * tables accordingly, because some remote processors might
0830      * _require_ us to use hard coded device addresses that their
0831      * firmware was compiled with.
0832      *
0833      * In this case, we must use the IOMMU API directly and map
0834      * the memory to the device address as expected by the remote
0835      * processor.
0836      *
0837      * Obviously such remote processor devices should not be configured
0838      * to use the iommu-based DMA API: we expect 'dma' to contain the
0839      * physical address in this case.
0840      */
0841     if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
0842         mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
0843         if (!mapping) {
0844             ret = -ENOMEM;
0845             goto dma_free;
0846         }
0847 
0848         ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
0849                 mem->flags);
0850         if (ret) {
0851             dev_err(dev, "iommu_map failed: %d\n", ret);
0852             goto free_mapping;
0853         }
0854 
0855         /*
0856          * We'll need this info later when we'll want to unmap
0857          * everything (e.g. on shutdown).
0858          *
0859          * We can't trust the remote processor not to change the
0860          * resource table, so we must maintain this info independently.
0861          */
0862         mapping->da = mem->da;
0863         mapping->len = mem->len;
0864         list_add_tail(&mapping->node, &rproc->mappings);
0865 
0866         dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
0867             mem->da, &dma);
0868     }
0869 
0870     if (mem->da == FW_RSC_ADDR_ANY) {
0871         /* Update device address as undefined by requester */
0872         if ((u64)dma & HIGH_BITS_MASK)
0873             dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
0874 
0875         mem->da = (u32)dma;
0876     }
0877 
0878     mem->dma = dma;
0879     mem->va = va;
0880 
0881     return 0;
0882 
0883 free_mapping:
0884     kfree(mapping);
0885 dma_free:
0886     dma_free_coherent(dev->parent, mem->len, va, dma);
0887     return ret;
0888 }
0889 
0890 /**
0891  * rproc_release_carveout() - release acquired carveout
0892  * @rproc: rproc handle
0893  * @mem: the memory entry to release
0894  *
0895  * This function releases specified memory entry @mem allocated via
0896  * rproc_alloc_carveout() function by @rproc.
0897  *
0898  * Return: 0 on success, or an appropriate error code otherwise
0899  */
0900 static int rproc_release_carveout(struct rproc *rproc,
0901                   struct rproc_mem_entry *mem)
0902 {
0903     struct device *dev = &rproc->dev;
0904 
0905     /* clean up carveout allocations */
0906     dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
0907     return 0;
0908 }
0909 
0910 /**
0911  * rproc_handle_carveout() - handle phys contig memory allocation requests
0912  * @rproc: rproc handle
0913  * @ptr: the resource entry
0914  * @offset: offset of the resource entry
0915  * @avail: size of available data (for image validation)
0916  *
0917  * This function will handle firmware requests for allocation of physically
0918  * contiguous memory regions.
0919  *
0920  * These request entries should come first in the firmware's resource table,
0921  * as other firmware entries might request placing other data objects inside
0922  * these memory regions (e.g. data/code segments, trace resource entries, ...).
0923  *
0924  * Allocating memory this way helps utilizing the reserved physical memory
0925  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
0926  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
0927  * pressure is important; it may have a substantial impact on performance.
0928  *
0929  * Return: 0 on success, or an appropriate error code otherwise
0930  */
0931 static int rproc_handle_carveout(struct rproc *rproc,
0932                  void *ptr, int offset, int avail)
0933 {
0934     struct fw_rsc_carveout *rsc = ptr;
0935     struct rproc_mem_entry *carveout;
0936     struct device *dev = &rproc->dev;
0937 
0938     if (sizeof(*rsc) > avail) {
0939         dev_err(dev, "carveout rsc is truncated\n");
0940         return -EINVAL;
0941     }
0942 
0943     /* make sure reserved bytes are zeroes */
0944     if (rsc->reserved) {
0945         dev_err(dev, "carveout rsc has non zero reserved bytes\n");
0946         return -EINVAL;
0947     }
0948 
0949     dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
0950         rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
0951 
0952     /*
0953      * Check carveout rsc already part of a registered carveout,
0954      * Search by name, then check the da and length
0955      */
0956     carveout = rproc_find_carveout_by_name(rproc, rsc->name);
0957 
0958     if (carveout) {
0959         if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
0960             dev_err(dev,
0961                 "Carveout already associated to resource table\n");
0962             return -ENOMEM;
0963         }
0964 
0965         if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
0966             return -ENOMEM;
0967 
0968         /* Update memory carveout with resource table info */
0969         carveout->rsc_offset = offset;
0970         carveout->flags = rsc->flags;
0971 
0972         return 0;
0973     }
0974 
0975     /* Register carveout in list */
0976     carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
0977                     rproc_alloc_carveout,
0978                     rproc_release_carveout, rsc->name);
0979     if (!carveout) {
0980         dev_err(dev, "Can't allocate memory entry structure\n");
0981         return -ENOMEM;
0982     }
0983 
0984     carveout->flags = rsc->flags;
0985     carveout->rsc_offset = offset;
0986     rproc_add_carveout(rproc, carveout);
0987 
0988     return 0;
0989 }
0990 
0991 /**
0992  * rproc_add_carveout() - register an allocated carveout region
0993  * @rproc: rproc handle
0994  * @mem: memory entry to register
0995  *
0996  * This function registers specified memory entry in @rproc carveouts list.
0997  * Specified carveout should have been allocated before registering.
0998  */
0999 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
1000 {
1001     list_add_tail(&mem->node, &rproc->carveouts);
1002 }
1003 EXPORT_SYMBOL(rproc_add_carveout);
1004 
1005 /**
1006  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1007  * @dev: pointer on device struct
1008  * @va: virtual address
1009  * @dma: dma address
1010  * @len: memory carveout length
1011  * @da: device address
1012  * @alloc: memory carveout allocation function
1013  * @release: memory carveout release function
1014  * @name: carveout name
1015  *
1016  * This function allocates a rproc_mem_entry struct and fill it with parameters
1017  * provided by client.
1018  *
1019  * Return: a valid pointer on success, or NULL on failure
1020  */
1021 __printf(8, 9)
1022 struct rproc_mem_entry *
1023 rproc_mem_entry_init(struct device *dev,
1024              void *va, dma_addr_t dma, size_t len, u32 da,
1025              int (*alloc)(struct rproc *, struct rproc_mem_entry *),
1026              int (*release)(struct rproc *, struct rproc_mem_entry *),
1027              const char *name, ...)
1028 {
1029     struct rproc_mem_entry *mem;
1030     va_list args;
1031 
1032     mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1033     if (!mem)
1034         return mem;
1035 
1036     mem->va = va;
1037     mem->dma = dma;
1038     mem->da = da;
1039     mem->len = len;
1040     mem->alloc = alloc;
1041     mem->release = release;
1042     mem->rsc_offset = FW_RSC_ADDR_ANY;
1043     mem->of_resm_idx = -1;
1044 
1045     va_start(args, name);
1046     vsnprintf(mem->name, sizeof(mem->name), name, args);
1047     va_end(args);
1048 
1049     return mem;
1050 }
1051 EXPORT_SYMBOL(rproc_mem_entry_init);
1052 
1053 /**
1054  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1055  * from a reserved memory phandle
1056  * @dev: pointer on device struct
1057  * @of_resm_idx: reserved memory phandle index in "memory-region"
1058  * @len: memory carveout length
1059  * @da: device address
1060  * @name: carveout name
1061  *
1062  * This function allocates a rproc_mem_entry struct and fill it with parameters
1063  * provided by client.
1064  *
1065  * Return: a valid pointer on success, or NULL on failure
1066  */
1067 __printf(5, 6)
1068 struct rproc_mem_entry *
1069 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
1070                  u32 da, const char *name, ...)
1071 {
1072     struct rproc_mem_entry *mem;
1073     va_list args;
1074 
1075     mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1076     if (!mem)
1077         return mem;
1078 
1079     mem->da = da;
1080     mem->len = len;
1081     mem->rsc_offset = FW_RSC_ADDR_ANY;
1082     mem->of_resm_idx = of_resm_idx;
1083 
1084     va_start(args, name);
1085     vsnprintf(mem->name, sizeof(mem->name), name, args);
1086     va_end(args);
1087 
1088     return mem;
1089 }
1090 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1091 
1092 /**
1093  * rproc_of_parse_firmware() - parse and return the firmware-name
1094  * @dev: pointer on device struct representing a rproc
1095  * @index: index to use for the firmware-name retrieval
1096  * @fw_name: pointer to a character string, in which the firmware
1097  *           name is returned on success and unmodified otherwise.
1098  *
1099  * This is an OF helper function that parses a device's DT node for
1100  * the "firmware-name" property and returns the firmware name pointer
1101  * in @fw_name on success.
1102  *
1103  * Return: 0 on success, or an appropriate failure.
1104  */
1105 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
1106 {
1107     int ret;
1108 
1109     ret = of_property_read_string_index(dev->of_node, "firmware-name",
1110                         index, fw_name);
1111     return ret ? ret : 0;
1112 }
1113 EXPORT_SYMBOL(rproc_of_parse_firmware);
1114 
1115 /*
1116  * A lookup table for resource handlers. The indices are defined in
1117  * enum fw_resource_type.
1118  */
1119 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1120     [RSC_CARVEOUT] = rproc_handle_carveout,
1121     [RSC_DEVMEM] = rproc_handle_devmem,
1122     [RSC_TRACE] = rproc_handle_trace,
1123     [RSC_VDEV] = rproc_handle_vdev,
1124 };
1125 
1126 /* handle firmware resource entries before booting the remote processor */
1127 static int rproc_handle_resources(struct rproc *rproc,
1128                   rproc_handle_resource_t handlers[RSC_LAST])
1129 {
1130     struct device *dev = &rproc->dev;
1131     rproc_handle_resource_t handler;
1132     int ret = 0, i;
1133 
1134     if (!rproc->table_ptr)
1135         return 0;
1136 
1137     for (i = 0; i < rproc->table_ptr->num; i++) {
1138         int offset = rproc->table_ptr->offset[i];
1139         struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1140         int avail = rproc->table_sz - offset - sizeof(*hdr);
1141         void *rsc = (void *)hdr + sizeof(*hdr);
1142 
1143         /* make sure table isn't truncated */
1144         if (avail < 0) {
1145             dev_err(dev, "rsc table is truncated\n");
1146             return -EINVAL;
1147         }
1148 
1149         dev_dbg(dev, "rsc: type %d\n", hdr->type);
1150 
1151         if (hdr->type >= RSC_VENDOR_START &&
1152             hdr->type <= RSC_VENDOR_END) {
1153             ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1154                            offset + sizeof(*hdr), avail);
1155             if (ret == RSC_HANDLED)
1156                 continue;
1157             else if (ret < 0)
1158                 break;
1159 
1160             dev_warn(dev, "unsupported vendor resource %d\n",
1161                  hdr->type);
1162             continue;
1163         }
1164 
1165         if (hdr->type >= RSC_LAST) {
1166             dev_warn(dev, "unsupported resource %d\n", hdr->type);
1167             continue;
1168         }
1169 
1170         handler = handlers[hdr->type];
1171         if (!handler)
1172             continue;
1173 
1174         ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1175         if (ret)
1176             break;
1177     }
1178 
1179     return ret;
1180 }
1181 
1182 static int rproc_prepare_subdevices(struct rproc *rproc)
1183 {
1184     struct rproc_subdev *subdev;
1185     int ret;
1186 
1187     list_for_each_entry(subdev, &rproc->subdevs, node) {
1188         if (subdev->prepare) {
1189             ret = subdev->prepare(subdev);
1190             if (ret)
1191                 goto unroll_preparation;
1192         }
1193     }
1194 
1195     return 0;
1196 
1197 unroll_preparation:
1198     list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1199         if (subdev->unprepare)
1200             subdev->unprepare(subdev);
1201     }
1202 
1203     return ret;
1204 }
1205 
1206 static int rproc_start_subdevices(struct rproc *rproc)
1207 {
1208     struct rproc_subdev *subdev;
1209     int ret;
1210 
1211     list_for_each_entry(subdev, &rproc->subdevs, node) {
1212         if (subdev->start) {
1213             ret = subdev->start(subdev);
1214             if (ret)
1215                 goto unroll_registration;
1216         }
1217     }
1218 
1219     return 0;
1220 
1221 unroll_registration:
1222     list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1223         if (subdev->stop)
1224             subdev->stop(subdev, true);
1225     }
1226 
1227     return ret;
1228 }
1229 
1230 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1231 {
1232     struct rproc_subdev *subdev;
1233 
1234     list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1235         if (subdev->stop)
1236             subdev->stop(subdev, crashed);
1237     }
1238 }
1239 
1240 static void rproc_unprepare_subdevices(struct rproc *rproc)
1241 {
1242     struct rproc_subdev *subdev;
1243 
1244     list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1245         if (subdev->unprepare)
1246             subdev->unprepare(subdev);
1247     }
1248 }
1249 
1250 /**
1251  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1252  * in the list
1253  * @rproc: the remote processor handle
1254  *
1255  * This function parses registered carveout list, performs allocation
1256  * if alloc() ops registered and updates resource table information
1257  * if rsc_offset set.
1258  *
1259  * Return: 0 on success
1260  */
1261 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1262 {
1263     struct rproc_mem_entry *entry, *tmp;
1264     struct fw_rsc_carveout *rsc;
1265     struct device *dev = &rproc->dev;
1266     u64 pa;
1267     int ret;
1268 
1269     list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1270         if (entry->alloc) {
1271             ret = entry->alloc(rproc, entry);
1272             if (ret) {
1273                 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1274                     entry->name, ret);
1275                 return -ENOMEM;
1276             }
1277         }
1278 
1279         if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1280             /* update resource table */
1281             rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1282 
1283             /*
1284              * Some remote processors might need to know the pa
1285              * even though they are behind an IOMMU. E.g., OMAP4's
1286              * remote M3 processor needs this so it can control
1287              * on-chip hardware accelerators that are not behind
1288              * the IOMMU, and therefor must know the pa.
1289              *
1290              * Generally we don't want to expose physical addresses
1291              * if we don't have to (remote processors are generally
1292              * _not_ trusted), so we might want to do this only for
1293              * remote processor that _must_ have this (e.g. OMAP4's
1294              * dual M3 subsystem).
1295              *
1296              * Non-IOMMU processors might also want to have this info.
1297              * In this case, the device address and the physical address
1298              * are the same.
1299              */
1300 
1301             /* Use va if defined else dma to generate pa */
1302             if (entry->va)
1303                 pa = (u64)rproc_va_to_pa(entry->va);
1304             else
1305                 pa = (u64)entry->dma;
1306 
1307             if (((u64)pa) & HIGH_BITS_MASK)
1308                 dev_warn(dev,
1309                      "Physical address cast in 32bit to fit resource table format\n");
1310 
1311             rsc->pa = (u32)pa;
1312             rsc->da = entry->da;
1313             rsc->len = entry->len;
1314         }
1315     }
1316 
1317     return 0;
1318 }
1319 
1320 
1321 /**
1322  * rproc_resource_cleanup() - clean up and free all acquired resources
1323  * @rproc: rproc handle
1324  *
1325  * This function will free all resources acquired for @rproc, and it
1326  * is called whenever @rproc either shuts down or fails to boot.
1327  */
1328 void rproc_resource_cleanup(struct rproc *rproc)
1329 {
1330     struct rproc_mem_entry *entry, *tmp;
1331     struct rproc_debug_trace *trace, *ttmp;
1332     struct rproc_vdev *rvdev, *rvtmp;
1333     struct device *dev = &rproc->dev;
1334 
1335     /* clean up debugfs trace entries */
1336     list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1337         rproc_remove_trace_file(trace->tfile);
1338         rproc->num_traces--;
1339         list_del(&trace->node);
1340         kfree(trace);
1341     }
1342 
1343     /* clean up iommu mapping entries */
1344     list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1345         size_t unmapped;
1346 
1347         unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1348         if (unmapped != entry->len) {
1349             /* nothing much to do besides complaining */
1350             dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1351                 unmapped);
1352         }
1353 
1354         list_del(&entry->node);
1355         kfree(entry);
1356     }
1357 
1358     /* clean up carveout allocations */
1359     list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1360         if (entry->release)
1361             entry->release(rproc, entry);
1362         list_del(&entry->node);
1363         kfree(entry);
1364     }
1365 
1366     /* clean up remote vdev entries */
1367     list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1368         kref_put(&rvdev->refcount, rproc_vdev_release);
1369 
1370     rproc_coredump_cleanup(rproc);
1371 }
1372 EXPORT_SYMBOL(rproc_resource_cleanup);
1373 
1374 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1375 {
1376     struct resource_table *loaded_table;
1377     struct device *dev = &rproc->dev;
1378     int ret;
1379 
1380     /* load the ELF segments to memory */
1381     ret = rproc_load_segments(rproc, fw);
1382     if (ret) {
1383         dev_err(dev, "Failed to load program segments: %d\n", ret);
1384         return ret;
1385     }
1386 
1387     /*
1388      * The starting device has been given the rproc->cached_table as the
1389      * resource table. The address of the vring along with the other
1390      * allocated resources (carveouts etc) is stored in cached_table.
1391      * In order to pass this information to the remote device we must copy
1392      * this information to device memory. We also update the table_ptr so
1393      * that any subsequent changes will be applied to the loaded version.
1394      */
1395     loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1396     if (loaded_table) {
1397         memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1398         rproc->table_ptr = loaded_table;
1399     }
1400 
1401     ret = rproc_prepare_subdevices(rproc);
1402     if (ret) {
1403         dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1404             rproc->name, ret);
1405         goto reset_table_ptr;
1406     }
1407 
1408     /* power up the remote processor */
1409     ret = rproc->ops->start(rproc);
1410     if (ret) {
1411         dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1412         goto unprepare_subdevices;
1413     }
1414 
1415     /* Start any subdevices for the remote processor */
1416     ret = rproc_start_subdevices(rproc);
1417     if (ret) {
1418         dev_err(dev, "failed to probe subdevices for %s: %d\n",
1419             rproc->name, ret);
1420         goto stop_rproc;
1421     }
1422 
1423     rproc->state = RPROC_RUNNING;
1424 
1425     dev_info(dev, "remote processor %s is now up\n", rproc->name);
1426 
1427     return 0;
1428 
1429 stop_rproc:
1430     rproc->ops->stop(rproc);
1431 unprepare_subdevices:
1432     rproc_unprepare_subdevices(rproc);
1433 reset_table_ptr:
1434     rproc->table_ptr = rproc->cached_table;
1435 
1436     return ret;
1437 }
1438 
1439 static int __rproc_attach(struct rproc *rproc)
1440 {
1441     struct device *dev = &rproc->dev;
1442     int ret;
1443 
1444     ret = rproc_prepare_subdevices(rproc);
1445     if (ret) {
1446         dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1447             rproc->name, ret);
1448         goto out;
1449     }
1450 
1451     /* Attach to the remote processor */
1452     ret = rproc_attach_device(rproc);
1453     if (ret) {
1454         dev_err(dev, "can't attach to rproc %s: %d\n",
1455             rproc->name, ret);
1456         goto unprepare_subdevices;
1457     }
1458 
1459     /* Start any subdevices for the remote processor */
1460     ret = rproc_start_subdevices(rproc);
1461     if (ret) {
1462         dev_err(dev, "failed to probe subdevices for %s: %d\n",
1463             rproc->name, ret);
1464         goto stop_rproc;
1465     }
1466 
1467     rproc->state = RPROC_ATTACHED;
1468 
1469     dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1470 
1471     return 0;
1472 
1473 stop_rproc:
1474     rproc->ops->stop(rproc);
1475 unprepare_subdevices:
1476     rproc_unprepare_subdevices(rproc);
1477 out:
1478     return ret;
1479 }
1480 
1481 /*
1482  * take a firmware and boot a remote processor with it.
1483  */
1484 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1485 {
1486     struct device *dev = &rproc->dev;
1487     const char *name = rproc->firmware;
1488     int ret;
1489 
1490     ret = rproc_fw_sanity_check(rproc, fw);
1491     if (ret)
1492         return ret;
1493 
1494     dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1495 
1496     /*
1497      * if enabling an IOMMU isn't relevant for this rproc, this is
1498      * just a nop
1499      */
1500     ret = rproc_enable_iommu(rproc);
1501     if (ret) {
1502         dev_err(dev, "can't enable iommu: %d\n", ret);
1503         return ret;
1504     }
1505 
1506     /* Prepare rproc for firmware loading if needed */
1507     ret = rproc_prepare_device(rproc);
1508     if (ret) {
1509         dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1510         goto disable_iommu;
1511     }
1512 
1513     rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1514 
1515     /* Load resource table, core dump segment list etc from the firmware */
1516     ret = rproc_parse_fw(rproc, fw);
1517     if (ret)
1518         goto unprepare_rproc;
1519 
1520     /* reset max_notifyid */
1521     rproc->max_notifyid = -1;
1522 
1523     /* reset handled vdev */
1524     rproc->nb_vdev = 0;
1525 
1526     /* handle fw resources which are required to boot rproc */
1527     ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1528     if (ret) {
1529         dev_err(dev, "Failed to process resources: %d\n", ret);
1530         goto clean_up_resources;
1531     }
1532 
1533     /* Allocate carveout resources associated to rproc */
1534     ret = rproc_alloc_registered_carveouts(rproc);
1535     if (ret) {
1536         dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1537             ret);
1538         goto clean_up_resources;
1539     }
1540 
1541     ret = rproc_start(rproc, fw);
1542     if (ret)
1543         goto clean_up_resources;
1544 
1545     return 0;
1546 
1547 clean_up_resources:
1548     rproc_resource_cleanup(rproc);
1549     kfree(rproc->cached_table);
1550     rproc->cached_table = NULL;
1551     rproc->table_ptr = NULL;
1552 unprepare_rproc:
1553     /* release HW resources if needed */
1554     rproc_unprepare_device(rproc);
1555 disable_iommu:
1556     rproc_disable_iommu(rproc);
1557     return ret;
1558 }
1559 
1560 static int rproc_set_rsc_table(struct rproc *rproc)
1561 {
1562     struct resource_table *table_ptr;
1563     struct device *dev = &rproc->dev;
1564     size_t table_sz;
1565     int ret;
1566 
1567     table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1568     if (!table_ptr) {
1569         /* Not having a resource table is acceptable */
1570         return 0;
1571     }
1572 
1573     if (IS_ERR(table_ptr)) {
1574         ret = PTR_ERR(table_ptr);
1575         dev_err(dev, "can't load resource table: %d\n", ret);
1576         return ret;
1577     }
1578 
1579     /*
1580      * If it is possible to detach the remote processor, keep an untouched
1581      * copy of the resource table.  That way we can start fresh again when
1582      * the remote processor is re-attached, that is:
1583      *
1584      *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1585      *
1586      * Free'd in rproc_reset_rsc_table_on_detach() and
1587      * rproc_reset_rsc_table_on_stop().
1588      */
1589     if (rproc->ops->detach) {
1590         rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1591         if (!rproc->clean_table)
1592             return -ENOMEM;
1593     } else {
1594         rproc->clean_table = NULL;
1595     }
1596 
1597     rproc->cached_table = NULL;
1598     rproc->table_ptr = table_ptr;
1599     rproc->table_sz = table_sz;
1600 
1601     return 0;
1602 }
1603 
1604 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1605 {
1606     struct resource_table *table_ptr;
1607 
1608     /* A resource table was never retrieved, nothing to do here */
1609     if (!rproc->table_ptr)
1610         return 0;
1611 
1612     /*
1613      * If we made it to this point a clean_table _must_ have been
1614      * allocated in rproc_set_rsc_table().  If one isn't present
1615      * something went really wrong and we must complain.
1616      */
1617     if (WARN_ON(!rproc->clean_table))
1618         return -EINVAL;
1619 
1620     /* Remember where the external entity installed the resource table */
1621     table_ptr = rproc->table_ptr;
1622 
1623     /*
1624      * If we made it here the remote processor was started by another
1625      * entity and a cache table doesn't exist.  As such make a copy of
1626      * the resource table currently used by the remote processor and
1627      * use that for the rest of the shutdown process.  The memory
1628      * allocated here is free'd in rproc_detach().
1629      */
1630     rproc->cached_table = kmemdup(rproc->table_ptr,
1631                       rproc->table_sz, GFP_KERNEL);
1632     if (!rproc->cached_table)
1633         return -ENOMEM;
1634 
1635     /*
1636      * Use a copy of the resource table for the remainder of the
1637      * shutdown process.
1638      */
1639     rproc->table_ptr = rproc->cached_table;
1640 
1641     /*
1642      * Reset the memory area where the firmware loaded the resource table
1643      * to its original value.  That way when we re-attach the remote
1644      * processor the resource table is clean and ready to be used again.
1645      */
1646     memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1647 
1648     /*
1649      * The clean resource table is no longer needed.  Allocated in
1650      * rproc_set_rsc_table().
1651      */
1652     kfree(rproc->clean_table);
1653 
1654     return 0;
1655 }
1656 
1657 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1658 {
1659     /* A resource table was never retrieved, nothing to do here */
1660     if (!rproc->table_ptr)
1661         return 0;
1662 
1663     /*
1664      * If a cache table exists the remote processor was started by
1665      * the remoteproc core.  That cache table should be used for
1666      * the rest of the shutdown process.
1667      */
1668     if (rproc->cached_table)
1669         goto out;
1670 
1671     /*
1672      * If we made it here the remote processor was started by another
1673      * entity and a cache table doesn't exist.  As such make a copy of
1674      * the resource table currently used by the remote processor and
1675      * use that for the rest of the shutdown process.  The memory
1676      * allocated here is free'd in rproc_shutdown().
1677      */
1678     rproc->cached_table = kmemdup(rproc->table_ptr,
1679                       rproc->table_sz, GFP_KERNEL);
1680     if (!rproc->cached_table)
1681         return -ENOMEM;
1682 
1683     /*
1684      * Since the remote processor is being switched off the clean table
1685      * won't be needed.  Allocated in rproc_set_rsc_table().
1686      */
1687     kfree(rproc->clean_table);
1688 
1689 out:
1690     /*
1691      * Use a copy of the resource table for the remainder of the
1692      * shutdown process.
1693      */
1694     rproc->table_ptr = rproc->cached_table;
1695     return 0;
1696 }
1697 
1698 /*
1699  * Attach to remote processor - similar to rproc_fw_boot() but without
1700  * the steps that deal with the firmware image.
1701  */
1702 static int rproc_attach(struct rproc *rproc)
1703 {
1704     struct device *dev = &rproc->dev;
1705     int ret;
1706 
1707     /*
1708      * if enabling an IOMMU isn't relevant for this rproc, this is
1709      * just a nop
1710      */
1711     ret = rproc_enable_iommu(rproc);
1712     if (ret) {
1713         dev_err(dev, "can't enable iommu: %d\n", ret);
1714         return ret;
1715     }
1716 
1717     /* Do anything that is needed to boot the remote processor */
1718     ret = rproc_prepare_device(rproc);
1719     if (ret) {
1720         dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1721         goto disable_iommu;
1722     }
1723 
1724     ret = rproc_set_rsc_table(rproc);
1725     if (ret) {
1726         dev_err(dev, "can't load resource table: %d\n", ret);
1727         goto unprepare_device;
1728     }
1729 
1730     /* reset max_notifyid */
1731     rproc->max_notifyid = -1;
1732 
1733     /* reset handled vdev */
1734     rproc->nb_vdev = 0;
1735 
1736     /*
1737      * Handle firmware resources required to attach to a remote processor.
1738      * Because we are attaching rather than booting the remote processor,
1739      * we expect the platform driver to properly set rproc->table_ptr.
1740      */
1741     ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1742     if (ret) {
1743         dev_err(dev, "Failed to process resources: %d\n", ret);
1744         goto unprepare_device;
1745     }
1746 
1747     /* Allocate carveout resources associated to rproc */
1748     ret = rproc_alloc_registered_carveouts(rproc);
1749     if (ret) {
1750         dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1751             ret);
1752         goto clean_up_resources;
1753     }
1754 
1755     ret = __rproc_attach(rproc);
1756     if (ret)
1757         goto clean_up_resources;
1758 
1759     return 0;
1760 
1761 clean_up_resources:
1762     rproc_resource_cleanup(rproc);
1763 unprepare_device:
1764     /* release HW resources if needed */
1765     rproc_unprepare_device(rproc);
1766 disable_iommu:
1767     rproc_disable_iommu(rproc);
1768     return ret;
1769 }
1770 
1771 /*
1772  * take a firmware and boot it up.
1773  *
1774  * Note: this function is called asynchronously upon registration of the
1775  * remote processor (so we must wait until it completes before we try
1776  * to unregister the device. one other option is just to use kref here,
1777  * that might be cleaner).
1778  */
1779 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1780 {
1781     struct rproc *rproc = context;
1782 
1783     rproc_boot(rproc);
1784 
1785     release_firmware(fw);
1786 }
1787 
1788 static int rproc_trigger_auto_boot(struct rproc *rproc)
1789 {
1790     int ret;
1791 
1792     /*
1793      * Since the remote processor is in a detached state, it has already
1794      * been booted by another entity.  As such there is no point in waiting
1795      * for a firmware image to be loaded, we can simply initiate the process
1796      * of attaching to it immediately.
1797      */
1798     if (rproc->state == RPROC_DETACHED)
1799         return rproc_boot(rproc);
1800 
1801     /*
1802      * We're initiating an asynchronous firmware loading, so we can
1803      * be built-in kernel code, without hanging the boot process.
1804      */
1805     ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1806                       rproc->firmware, &rproc->dev, GFP_KERNEL,
1807                       rproc, rproc_auto_boot_callback);
1808     if (ret < 0)
1809         dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1810 
1811     return ret;
1812 }
1813 
1814 static int rproc_stop(struct rproc *rproc, bool crashed)
1815 {
1816     struct device *dev = &rproc->dev;
1817     int ret;
1818 
1819     /* No need to continue if a stop() operation has not been provided */
1820     if (!rproc->ops->stop)
1821         return -EINVAL;
1822 
1823     /* Stop any subdevices for the remote processor */
1824     rproc_stop_subdevices(rproc, crashed);
1825 
1826     /* the installed resource table is no longer accessible */
1827     ret = rproc_reset_rsc_table_on_stop(rproc);
1828     if (ret) {
1829         dev_err(dev, "can't reset resource table: %d\n", ret);
1830         return ret;
1831     }
1832 
1833 
1834     /* power off the remote processor */
1835     ret = rproc->ops->stop(rproc);
1836     if (ret) {
1837         dev_err(dev, "can't stop rproc: %d\n", ret);
1838         return ret;
1839     }
1840 
1841     rproc_unprepare_subdevices(rproc);
1842 
1843     rproc->state = RPROC_OFFLINE;
1844 
1845     dev_info(dev, "stopped remote processor %s\n", rproc->name);
1846 
1847     return 0;
1848 }
1849 
1850 /*
1851  * __rproc_detach(): Does the opposite of __rproc_attach()
1852  */
1853 static int __rproc_detach(struct rproc *rproc)
1854 {
1855     struct device *dev = &rproc->dev;
1856     int ret;
1857 
1858     /* No need to continue if a detach() operation has not been provided */
1859     if (!rproc->ops->detach)
1860         return -EINVAL;
1861 
1862     /* Stop any subdevices for the remote processor */
1863     rproc_stop_subdevices(rproc, false);
1864 
1865     /* the installed resource table is no longer accessible */
1866     ret = rproc_reset_rsc_table_on_detach(rproc);
1867     if (ret) {
1868         dev_err(dev, "can't reset resource table: %d\n", ret);
1869         return ret;
1870     }
1871 
1872     /* Tell the remote processor the core isn't available anymore */
1873     ret = rproc->ops->detach(rproc);
1874     if (ret) {
1875         dev_err(dev, "can't detach from rproc: %d\n", ret);
1876         return ret;
1877     }
1878 
1879     rproc_unprepare_subdevices(rproc);
1880 
1881     rproc->state = RPROC_DETACHED;
1882 
1883     dev_info(dev, "detached remote processor %s\n", rproc->name);
1884 
1885     return 0;
1886 }
1887 
1888 /**
1889  * rproc_trigger_recovery() - recover a remoteproc
1890  * @rproc: the remote processor
1891  *
1892  * The recovery is done by resetting all the virtio devices, that way all the
1893  * rpmsg drivers will be reseted along with the remote processor making the
1894  * remoteproc functional again.
1895  *
1896  * This function can sleep, so it cannot be called from atomic context.
1897  *
1898  * Return: 0 on success or a negative value upon failure
1899  */
1900 int rproc_trigger_recovery(struct rproc *rproc)
1901 {
1902     const struct firmware *firmware_p;
1903     struct device *dev = &rproc->dev;
1904     int ret;
1905 
1906     ret = mutex_lock_interruptible(&rproc->lock);
1907     if (ret)
1908         return ret;
1909 
1910     /* State could have changed before we got the mutex */
1911     if (rproc->state != RPROC_CRASHED)
1912         goto unlock_mutex;
1913 
1914     dev_err(dev, "recovering %s\n", rproc->name);
1915 
1916     ret = rproc_stop(rproc, true);
1917     if (ret)
1918         goto unlock_mutex;
1919 
1920     /* generate coredump */
1921     rproc->ops->coredump(rproc);
1922 
1923     /* load firmware */
1924     ret = request_firmware(&firmware_p, rproc->firmware, dev);
1925     if (ret < 0) {
1926         dev_err(dev, "request_firmware failed: %d\n", ret);
1927         goto unlock_mutex;
1928     }
1929 
1930     /* boot the remote processor up again */
1931     ret = rproc_start(rproc, firmware_p);
1932 
1933     release_firmware(firmware_p);
1934 
1935 unlock_mutex:
1936     mutex_unlock(&rproc->lock);
1937     return ret;
1938 }
1939 
1940 /**
1941  * rproc_crash_handler_work() - handle a crash
1942  * @work: work treating the crash
1943  *
1944  * This function needs to handle everything related to a crash, like cpu
1945  * registers and stack dump, information to help to debug the fatal error, etc.
1946  */
1947 static void rproc_crash_handler_work(struct work_struct *work)
1948 {
1949     struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1950     struct device *dev = &rproc->dev;
1951 
1952     dev_dbg(dev, "enter %s\n", __func__);
1953 
1954     mutex_lock(&rproc->lock);
1955 
1956     if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1957         /* handle only the first crash detected */
1958         mutex_unlock(&rproc->lock);
1959         return;
1960     }
1961 
1962     rproc->state = RPROC_CRASHED;
1963     dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1964         rproc->name);
1965 
1966     mutex_unlock(&rproc->lock);
1967 
1968     if (!rproc->recovery_disabled)
1969         rproc_trigger_recovery(rproc);
1970 
1971     pm_relax(rproc->dev.parent);
1972 }
1973 
1974 /**
1975  * rproc_boot() - boot a remote processor
1976  * @rproc: handle of a remote processor
1977  *
1978  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1979  *
1980  * If the remote processor is already powered on, this function immediately
1981  * returns (successfully).
1982  *
1983  * Return: 0 on success, and an appropriate error value otherwise
1984  */
1985 int rproc_boot(struct rproc *rproc)
1986 {
1987     const struct firmware *firmware_p;
1988     struct device *dev;
1989     int ret;
1990 
1991     if (!rproc) {
1992         pr_err("invalid rproc handle\n");
1993         return -EINVAL;
1994     }
1995 
1996     dev = &rproc->dev;
1997 
1998     ret = mutex_lock_interruptible(&rproc->lock);
1999     if (ret) {
2000         dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2001         return ret;
2002     }
2003 
2004     if (rproc->state == RPROC_DELETED) {
2005         ret = -ENODEV;
2006         dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
2007         goto unlock_mutex;
2008     }
2009 
2010     /* skip the boot or attach process if rproc is already powered up */
2011     if (atomic_inc_return(&rproc->power) > 1) {
2012         ret = 0;
2013         goto unlock_mutex;
2014     }
2015 
2016     if (rproc->state == RPROC_DETACHED) {
2017         dev_info(dev, "attaching to %s\n", rproc->name);
2018 
2019         ret = rproc_attach(rproc);
2020     } else {
2021         dev_info(dev, "powering up %s\n", rproc->name);
2022 
2023         /* load firmware */
2024         ret = request_firmware(&firmware_p, rproc->firmware, dev);
2025         if (ret < 0) {
2026             dev_err(dev, "request_firmware failed: %d\n", ret);
2027             goto downref_rproc;
2028         }
2029 
2030         ret = rproc_fw_boot(rproc, firmware_p);
2031 
2032         release_firmware(firmware_p);
2033     }
2034 
2035 downref_rproc:
2036     if (ret)
2037         atomic_dec(&rproc->power);
2038 unlock_mutex:
2039     mutex_unlock(&rproc->lock);
2040     return ret;
2041 }
2042 EXPORT_SYMBOL(rproc_boot);
2043 
2044 /**
2045  * rproc_shutdown() - power off the remote processor
2046  * @rproc: the remote processor
2047  *
2048  * Power off a remote processor (previously booted with rproc_boot()).
2049  *
2050  * In case @rproc is still being used by an additional user(s), then
2051  * this function will just decrement the power refcount and exit,
2052  * without really powering off the device.
2053  *
2054  * Every call to rproc_boot() must (eventually) be accompanied by a call
2055  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
2056  *
2057  * Notes:
2058  * - we're not decrementing the rproc's refcount, only the power refcount.
2059  *   which means that the @rproc handle stays valid even after rproc_shutdown()
2060  *   returns, and users can still use it with a subsequent rproc_boot(), if
2061  *   needed.
2062  *
2063  * Return: 0 on success, and an appropriate error value otherwise
2064  */
2065 int rproc_shutdown(struct rproc *rproc)
2066 {
2067     struct device *dev = &rproc->dev;
2068     int ret = 0;
2069 
2070     ret = mutex_lock_interruptible(&rproc->lock);
2071     if (ret) {
2072         dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2073         return ret;
2074     }
2075 
2076     if (rproc->state != RPROC_RUNNING &&
2077         rproc->state != RPROC_ATTACHED) {
2078         ret = -EINVAL;
2079         goto out;
2080     }
2081 
2082     /* if the remote proc is still needed, bail out */
2083     if (!atomic_dec_and_test(&rproc->power))
2084         goto out;
2085 
2086     ret = rproc_stop(rproc, false);
2087     if (ret) {
2088         atomic_inc(&rproc->power);
2089         goto out;
2090     }
2091 
2092     /* clean up all acquired resources */
2093     rproc_resource_cleanup(rproc);
2094 
2095     /* release HW resources if needed */
2096     rproc_unprepare_device(rproc);
2097 
2098     rproc_disable_iommu(rproc);
2099 
2100     /* Free the copy of the resource table */
2101     kfree(rproc->cached_table);
2102     rproc->cached_table = NULL;
2103     rproc->table_ptr = NULL;
2104 out:
2105     mutex_unlock(&rproc->lock);
2106     return ret;
2107 }
2108 EXPORT_SYMBOL(rproc_shutdown);
2109 
2110 /**
2111  * rproc_detach() - Detach the remote processor from the
2112  * remoteproc core
2113  *
2114  * @rproc: the remote processor
2115  *
2116  * Detach a remote processor (previously attached to with rproc_attach()).
2117  *
2118  * In case @rproc is still being used by an additional user(s), then
2119  * this function will just decrement the power refcount and exit,
2120  * without disconnecting the device.
2121  *
2122  * Function rproc_detach() calls __rproc_detach() in order to let a remote
2123  * processor know that services provided by the application processor are
2124  * no longer available.  From there it should be possible to remove the
2125  * platform driver and even power cycle the application processor (if the HW
2126  * supports it) without needing to switch off the remote processor.
2127  *
2128  * Return: 0 on success, and an appropriate error value otherwise
2129  */
2130 int rproc_detach(struct rproc *rproc)
2131 {
2132     struct device *dev = &rproc->dev;
2133     int ret;
2134 
2135     ret = mutex_lock_interruptible(&rproc->lock);
2136     if (ret) {
2137         dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2138         return ret;
2139     }
2140 
2141     if (rproc->state != RPROC_ATTACHED) {
2142         ret = -EINVAL;
2143         goto out;
2144     }
2145 
2146     /* if the remote proc is still needed, bail out */
2147     if (!atomic_dec_and_test(&rproc->power)) {
2148         ret = 0;
2149         goto out;
2150     }
2151 
2152     ret = __rproc_detach(rproc);
2153     if (ret) {
2154         atomic_inc(&rproc->power);
2155         goto out;
2156     }
2157 
2158     /* clean up all acquired resources */
2159     rproc_resource_cleanup(rproc);
2160 
2161     /* release HW resources if needed */
2162     rproc_unprepare_device(rproc);
2163 
2164     rproc_disable_iommu(rproc);
2165 
2166     /* Free the copy of the resource table */
2167     kfree(rproc->cached_table);
2168     rproc->cached_table = NULL;
2169     rproc->table_ptr = NULL;
2170 out:
2171     mutex_unlock(&rproc->lock);
2172     return ret;
2173 }
2174 EXPORT_SYMBOL(rproc_detach);
2175 
2176 /**
2177  * rproc_get_by_phandle() - find a remote processor by phandle
2178  * @phandle: phandle to the rproc
2179  *
2180  * Finds an rproc handle using the remote processor's phandle, and then
2181  * return a handle to the rproc.
2182  *
2183  * This function increments the remote processor's refcount, so always
2184  * use rproc_put() to decrement it back once rproc isn't needed anymore.
2185  *
2186  * Return: rproc handle on success, and NULL on failure
2187  */
2188 #ifdef CONFIG_OF
2189 struct rproc *rproc_get_by_phandle(phandle phandle)
2190 {
2191     struct rproc *rproc = NULL, *r;
2192     struct device_node *np;
2193 
2194     np = of_find_node_by_phandle(phandle);
2195     if (!np)
2196         return NULL;
2197 
2198     rcu_read_lock();
2199     list_for_each_entry_rcu(r, &rproc_list, node) {
2200         if (r->dev.parent && r->dev.parent->of_node == np) {
2201             /* prevent underlying implementation from being removed */
2202             if (!try_module_get(r->dev.parent->driver->owner)) {
2203                 dev_err(&r->dev, "can't get owner\n");
2204                 break;
2205             }
2206 
2207             rproc = r;
2208             get_device(&rproc->dev);
2209             break;
2210         }
2211     }
2212     rcu_read_unlock();
2213 
2214     of_node_put(np);
2215 
2216     return rproc;
2217 }
2218 #else
2219 struct rproc *rproc_get_by_phandle(phandle phandle)
2220 {
2221     return NULL;
2222 }
2223 #endif
2224 EXPORT_SYMBOL(rproc_get_by_phandle);
2225 
2226 /**
2227  * rproc_set_firmware() - assign a new firmware
2228  * @rproc: rproc handle to which the new firmware is being assigned
2229  * @fw_name: new firmware name to be assigned
2230  *
2231  * This function allows remoteproc drivers or clients to configure a custom
2232  * firmware name that is different from the default name used during remoteproc
2233  * registration. The function does not trigger a remote processor boot,
2234  * only sets the firmware name used for a subsequent boot. This function
2235  * should also be called only when the remote processor is offline.
2236  *
2237  * This allows either the userspace to configure a different name through
2238  * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2239  * a specific firmware when it is controlling the boot and shutdown of the
2240  * remote processor.
2241  *
2242  * Return: 0 on success or a negative value upon failure
2243  */
2244 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2245 {
2246     struct device *dev;
2247     int ret, len;
2248     char *p;
2249 
2250     if (!rproc || !fw_name)
2251         return -EINVAL;
2252 
2253     dev = rproc->dev.parent;
2254 
2255     ret = mutex_lock_interruptible(&rproc->lock);
2256     if (ret) {
2257         dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2258         return -EINVAL;
2259     }
2260 
2261     if (rproc->state != RPROC_OFFLINE) {
2262         dev_err(dev, "can't change firmware while running\n");
2263         ret = -EBUSY;
2264         goto out;
2265     }
2266 
2267     len = strcspn(fw_name, "\n");
2268     if (!len) {
2269         dev_err(dev, "can't provide empty string for firmware name\n");
2270         ret = -EINVAL;
2271         goto out;
2272     }
2273 
2274     p = kstrndup(fw_name, len, GFP_KERNEL);
2275     if (!p) {
2276         ret = -ENOMEM;
2277         goto out;
2278     }
2279 
2280     kfree_const(rproc->firmware);
2281     rproc->firmware = p;
2282 
2283 out:
2284     mutex_unlock(&rproc->lock);
2285     return ret;
2286 }
2287 EXPORT_SYMBOL(rproc_set_firmware);
2288 
2289 static int rproc_validate(struct rproc *rproc)
2290 {
2291     switch (rproc->state) {
2292     case RPROC_OFFLINE:
2293         /*
2294          * An offline processor without a start()
2295          * function makes no sense.
2296          */
2297         if (!rproc->ops->start)
2298             return -EINVAL;
2299         break;
2300     case RPROC_DETACHED:
2301         /*
2302          * A remote processor in a detached state without an
2303          * attach() function makes not sense.
2304          */
2305         if (!rproc->ops->attach)
2306             return -EINVAL;
2307         /*
2308          * When attaching to a remote processor the device memory
2309          * is already available and as such there is no need to have a
2310          * cached table.
2311          */
2312         if (rproc->cached_table)
2313             return -EINVAL;
2314         break;
2315     default:
2316         /*
2317          * When adding a remote processor, the state of the device
2318          * can be offline or detached, nothing else.
2319          */
2320         return -EINVAL;
2321     }
2322 
2323     return 0;
2324 }
2325 
2326 /**
2327  * rproc_add() - register a remote processor
2328  * @rproc: the remote processor handle to register
2329  *
2330  * Registers @rproc with the remoteproc framework, after it has been
2331  * allocated with rproc_alloc().
2332  *
2333  * This is called by the platform-specific rproc implementation, whenever
2334  * a new remote processor device is probed.
2335  *
2336  * Note: this function initiates an asynchronous firmware loading
2337  * context, which will look for virtio devices supported by the rproc's
2338  * firmware.
2339  *
2340  * If found, those virtio devices will be created and added, so as a result
2341  * of registering this remote processor, additional virtio drivers might be
2342  * probed.
2343  *
2344  * Return: 0 on success and an appropriate error code otherwise
2345  */
2346 int rproc_add(struct rproc *rproc)
2347 {
2348     struct device *dev = &rproc->dev;
2349     int ret;
2350 
2351     ret = rproc_validate(rproc);
2352     if (ret < 0)
2353         return ret;
2354 
2355     /* add char device for this remoteproc */
2356     ret = rproc_char_device_add(rproc);
2357     if (ret < 0)
2358         return ret;
2359 
2360     ret = device_add(dev);
2361     if (ret < 0) {
2362         put_device(dev);
2363         goto rproc_remove_cdev;
2364     }
2365 
2366     dev_info(dev, "%s is available\n", rproc->name);
2367 
2368     /* create debugfs entries */
2369     rproc_create_debug_dir(rproc);
2370 
2371     /* if rproc is marked always-on, request it to boot */
2372     if (rproc->auto_boot) {
2373         ret = rproc_trigger_auto_boot(rproc);
2374         if (ret < 0)
2375             goto rproc_remove_dev;
2376     }
2377 
2378     /* expose to rproc_get_by_phandle users */
2379     mutex_lock(&rproc_list_mutex);
2380     list_add_rcu(&rproc->node, &rproc_list);
2381     mutex_unlock(&rproc_list_mutex);
2382 
2383     return 0;
2384 
2385 rproc_remove_dev:
2386     rproc_delete_debug_dir(rproc);
2387     device_del(dev);
2388 rproc_remove_cdev:
2389     rproc_char_device_remove(rproc);
2390     return ret;
2391 }
2392 EXPORT_SYMBOL(rproc_add);
2393 
2394 static void devm_rproc_remove(void *rproc)
2395 {
2396     rproc_del(rproc);
2397 }
2398 
2399 /**
2400  * devm_rproc_add() - resource managed rproc_add()
2401  * @dev: the underlying device
2402  * @rproc: the remote processor handle to register
2403  *
2404  * This function performs like rproc_add() but the registered rproc device will
2405  * automatically be removed on driver detach.
2406  *
2407  * Return: 0 on success, negative errno on failure
2408  */
2409 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2410 {
2411     int err;
2412 
2413     err = rproc_add(rproc);
2414     if (err)
2415         return err;
2416 
2417     return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2418 }
2419 EXPORT_SYMBOL(devm_rproc_add);
2420 
2421 /**
2422  * rproc_type_release() - release a remote processor instance
2423  * @dev: the rproc's device
2424  *
2425  * This function should _never_ be called directly.
2426  *
2427  * It will be called by the driver core when no one holds a valid pointer
2428  * to @dev anymore.
2429  */
2430 static void rproc_type_release(struct device *dev)
2431 {
2432     struct rproc *rproc = container_of(dev, struct rproc, dev);
2433 
2434     dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2435 
2436     idr_destroy(&rproc->notifyids);
2437 
2438     if (rproc->index >= 0)
2439         ida_free(&rproc_dev_index, rproc->index);
2440 
2441     kfree_const(rproc->firmware);
2442     kfree_const(rproc->name);
2443     kfree(rproc->ops);
2444     kfree(rproc);
2445 }
2446 
2447 static const struct device_type rproc_type = {
2448     .name       = "remoteproc",
2449     .release    = rproc_type_release,
2450 };
2451 
2452 static int rproc_alloc_firmware(struct rproc *rproc,
2453                 const char *name, const char *firmware)
2454 {
2455     const char *p;
2456 
2457     /*
2458      * Allocate a firmware name if the caller gave us one to work
2459      * with.  Otherwise construct a new one using a default pattern.
2460      */
2461     if (firmware)
2462         p = kstrdup_const(firmware, GFP_KERNEL);
2463     else
2464         p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2465 
2466     if (!p)
2467         return -ENOMEM;
2468 
2469     rproc->firmware = p;
2470 
2471     return 0;
2472 }
2473 
2474 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2475 {
2476     rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2477     if (!rproc->ops)
2478         return -ENOMEM;
2479 
2480     /* Default to rproc_coredump if no coredump function is specified */
2481     if (!rproc->ops->coredump)
2482         rproc->ops->coredump = rproc_coredump;
2483 
2484     if (rproc->ops->load)
2485         return 0;
2486 
2487     /* Default to ELF loader if no load function is specified */
2488     rproc->ops->load = rproc_elf_load_segments;
2489     rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2490     rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2491     rproc->ops->sanity_check = rproc_elf_sanity_check;
2492     rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2493 
2494     return 0;
2495 }
2496 
2497 /**
2498  * rproc_alloc() - allocate a remote processor handle
2499  * @dev: the underlying device
2500  * @name: name of this remote processor
2501  * @ops: platform-specific handlers (mainly start/stop)
2502  * @firmware: name of firmware file to load, can be NULL
2503  * @len: length of private data needed by the rproc driver (in bytes)
2504  *
2505  * Allocates a new remote processor handle, but does not register
2506  * it yet. if @firmware is NULL, a default name is used.
2507  *
2508  * This function should be used by rproc implementations during initialization
2509  * of the remote processor.
2510  *
2511  * After creating an rproc handle using this function, and when ready,
2512  * implementations should then call rproc_add() to complete
2513  * the registration of the remote processor.
2514  *
2515  * Note: _never_ directly deallocate @rproc, even if it was not registered
2516  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2517  *
2518  * Return: new rproc pointer on success, and NULL on failure
2519  */
2520 struct rproc *rproc_alloc(struct device *dev, const char *name,
2521               const struct rproc_ops *ops,
2522               const char *firmware, int len)
2523 {
2524     struct rproc *rproc;
2525 
2526     if (!dev || !name || !ops)
2527         return NULL;
2528 
2529     rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2530     if (!rproc)
2531         return NULL;
2532 
2533     rproc->priv = &rproc[1];
2534     rproc->auto_boot = true;
2535     rproc->elf_class = ELFCLASSNONE;
2536     rproc->elf_machine = EM_NONE;
2537 
2538     device_initialize(&rproc->dev);
2539     rproc->dev.parent = dev;
2540     rproc->dev.type = &rproc_type;
2541     rproc->dev.class = &rproc_class;
2542     rproc->dev.driver_data = rproc;
2543     idr_init(&rproc->notifyids);
2544 
2545     rproc->name = kstrdup_const(name, GFP_KERNEL);
2546     if (!rproc->name)
2547         goto put_device;
2548 
2549     if (rproc_alloc_firmware(rproc, name, firmware))
2550         goto put_device;
2551 
2552     if (rproc_alloc_ops(rproc, ops))
2553         goto put_device;
2554 
2555     /* Assign a unique device index and name */
2556     rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL);
2557     if (rproc->index < 0) {
2558         dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
2559         goto put_device;
2560     }
2561 
2562     dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2563 
2564     atomic_set(&rproc->power, 0);
2565 
2566     mutex_init(&rproc->lock);
2567 
2568     INIT_LIST_HEAD(&rproc->carveouts);
2569     INIT_LIST_HEAD(&rproc->mappings);
2570     INIT_LIST_HEAD(&rproc->traces);
2571     INIT_LIST_HEAD(&rproc->rvdevs);
2572     INIT_LIST_HEAD(&rproc->subdevs);
2573     INIT_LIST_HEAD(&rproc->dump_segments);
2574 
2575     INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2576 
2577     rproc->state = RPROC_OFFLINE;
2578 
2579     return rproc;
2580 
2581 put_device:
2582     put_device(&rproc->dev);
2583     return NULL;
2584 }
2585 EXPORT_SYMBOL(rproc_alloc);
2586 
2587 /**
2588  * rproc_free() - unroll rproc_alloc()
2589  * @rproc: the remote processor handle
2590  *
2591  * This function decrements the rproc dev refcount.
2592  *
2593  * If no one holds any reference to rproc anymore, then its refcount would
2594  * now drop to zero, and it would be freed.
2595  */
2596 void rproc_free(struct rproc *rproc)
2597 {
2598     put_device(&rproc->dev);
2599 }
2600 EXPORT_SYMBOL(rproc_free);
2601 
2602 /**
2603  * rproc_put() - release rproc reference
2604  * @rproc: the remote processor handle
2605  *
2606  * This function decrements the rproc dev refcount.
2607  *
2608  * If no one holds any reference to rproc anymore, then its refcount would
2609  * now drop to zero, and it would be freed.
2610  */
2611 void rproc_put(struct rproc *rproc)
2612 {
2613     module_put(rproc->dev.parent->driver->owner);
2614     put_device(&rproc->dev);
2615 }
2616 EXPORT_SYMBOL(rproc_put);
2617 
2618 /**
2619  * rproc_del() - unregister a remote processor
2620  * @rproc: rproc handle to unregister
2621  *
2622  * This function should be called when the platform specific rproc
2623  * implementation decides to remove the rproc device. it should
2624  * _only_ be called if a previous invocation of rproc_add()
2625  * has completed successfully.
2626  *
2627  * After rproc_del() returns, @rproc isn't freed yet, because
2628  * of the outstanding reference created by rproc_alloc. To decrement that
2629  * one last refcount, one still needs to call rproc_free().
2630  *
2631  * Return: 0 on success and -EINVAL if @rproc isn't valid
2632  */
2633 int rproc_del(struct rproc *rproc)
2634 {
2635     if (!rproc)
2636         return -EINVAL;
2637 
2638     /* TODO: make sure this works with rproc->power > 1 */
2639     rproc_shutdown(rproc);
2640 
2641     mutex_lock(&rproc->lock);
2642     rproc->state = RPROC_DELETED;
2643     mutex_unlock(&rproc->lock);
2644 
2645     rproc_delete_debug_dir(rproc);
2646 
2647     /* the rproc is downref'ed as soon as it's removed from the klist */
2648     mutex_lock(&rproc_list_mutex);
2649     list_del_rcu(&rproc->node);
2650     mutex_unlock(&rproc_list_mutex);
2651 
2652     /* Ensure that no readers of rproc_list are still active */
2653     synchronize_rcu();
2654 
2655     device_del(&rproc->dev);
2656     rproc_char_device_remove(rproc);
2657 
2658     return 0;
2659 }
2660 EXPORT_SYMBOL(rproc_del);
2661 
2662 static void devm_rproc_free(struct device *dev, void *res)
2663 {
2664     rproc_free(*(struct rproc **)res);
2665 }
2666 
2667 /**
2668  * devm_rproc_alloc() - resource managed rproc_alloc()
2669  * @dev: the underlying device
2670  * @name: name of this remote processor
2671  * @ops: platform-specific handlers (mainly start/stop)
2672  * @firmware: name of firmware file to load, can be NULL
2673  * @len: length of private data needed by the rproc driver (in bytes)
2674  *
2675  * This function performs like rproc_alloc() but the acquired rproc device will
2676  * automatically be released on driver detach.
2677  *
2678  * Return: new rproc instance, or NULL on failure
2679  */
2680 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2681                    const struct rproc_ops *ops,
2682                    const char *firmware, int len)
2683 {
2684     struct rproc **ptr, *rproc;
2685 
2686     ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2687     if (!ptr)
2688         return NULL;
2689 
2690     rproc = rproc_alloc(dev, name, ops, firmware, len);
2691     if (rproc) {
2692         *ptr = rproc;
2693         devres_add(dev, ptr);
2694     } else {
2695         devres_free(ptr);
2696     }
2697 
2698     return rproc;
2699 }
2700 EXPORT_SYMBOL(devm_rproc_alloc);
2701 
2702 /**
2703  * rproc_add_subdev() - add a subdevice to a remoteproc
2704  * @rproc: rproc handle to add the subdevice to
2705  * @subdev: subdev handle to register
2706  *
2707  * Caller is responsible for populating optional subdevice function pointers.
2708  */
2709 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2710 {
2711     list_add_tail(&subdev->node, &rproc->subdevs);
2712 }
2713 EXPORT_SYMBOL(rproc_add_subdev);
2714 
2715 /**
2716  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2717  * @rproc: rproc handle to remove the subdevice from
2718  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2719  */
2720 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2721 {
2722     list_del(&subdev->node);
2723 }
2724 EXPORT_SYMBOL(rproc_remove_subdev);
2725 
2726 /**
2727  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2728  * @dev:    child device to find ancestor of
2729  *
2730  * Return: the ancestor rproc instance, or NULL if not found
2731  */
2732 struct rproc *rproc_get_by_child(struct device *dev)
2733 {
2734     for (dev = dev->parent; dev; dev = dev->parent) {
2735         if (dev->type == &rproc_type)
2736             return dev->driver_data;
2737     }
2738 
2739     return NULL;
2740 }
2741 EXPORT_SYMBOL(rproc_get_by_child);
2742 
2743 /**
2744  * rproc_report_crash() - rproc crash reporter function
2745  * @rproc: remote processor
2746  * @type: crash type
2747  *
2748  * This function must be called every time a crash is detected by the low-level
2749  * drivers implementing a specific remoteproc. This should not be called from a
2750  * non-remoteproc driver.
2751  *
2752  * This function can be called from atomic/interrupt context.
2753  */
2754 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2755 {
2756     if (!rproc) {
2757         pr_err("NULL rproc pointer\n");
2758         return;
2759     }
2760 
2761     /* Prevent suspend while the remoteproc is being recovered */
2762     pm_stay_awake(rproc->dev.parent);
2763 
2764     dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2765         rproc->name, rproc_crash_to_string(type));
2766 
2767     queue_work(rproc_recovery_wq, &rproc->crash_handler);
2768 }
2769 EXPORT_SYMBOL(rproc_report_crash);
2770 
2771 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2772                    void *ptr)
2773 {
2774     unsigned int longest = 0;
2775     struct rproc *rproc;
2776     unsigned int d;
2777 
2778     rcu_read_lock();
2779     list_for_each_entry_rcu(rproc, &rproc_list, node) {
2780         if (!rproc->ops->panic)
2781             continue;
2782 
2783         if (rproc->state != RPROC_RUNNING &&
2784             rproc->state != RPROC_ATTACHED)
2785             continue;
2786 
2787         d = rproc->ops->panic(rproc);
2788         longest = max(longest, d);
2789     }
2790     rcu_read_unlock();
2791 
2792     /*
2793      * Delay for the longest requested duration before returning. This can
2794      * be used by the remoteproc drivers to give the remote processor time
2795      * to perform any requested operations (such as flush caches), when
2796      * it's not possible to signal the Linux side due to the panic.
2797      */
2798     mdelay(longest);
2799 
2800     return NOTIFY_DONE;
2801 }
2802 
2803 static void __init rproc_init_panic(void)
2804 {
2805     rproc_panic_nb.notifier_call = rproc_panic_handler;
2806     atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2807 }
2808 
2809 static void __exit rproc_exit_panic(void)
2810 {
2811     atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2812 }
2813 
2814 static int __init remoteproc_init(void)
2815 {
2816     rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2817                         WQ_UNBOUND | WQ_FREEZABLE, 0);
2818     if (!rproc_recovery_wq) {
2819         pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2820         return -ENOMEM;
2821     }
2822 
2823     rproc_init_sysfs();
2824     rproc_init_debugfs();
2825     rproc_init_cdev();
2826     rproc_init_panic();
2827 
2828     return 0;
2829 }
2830 subsys_initcall(remoteproc_init);
2831 
2832 static void __exit remoteproc_exit(void)
2833 {
2834     ida_destroy(&rproc_dev_index);
2835 
2836     if (!rproc_recovery_wq)
2837         return;
2838 
2839     rproc_exit_panic();
2840     rproc_exit_debugfs();
2841     rproc_exit_sysfs();
2842     destroy_workqueue(rproc_recovery_wq);
2843 }
2844 module_exit(remoteproc_exit);
2845 
2846 MODULE_LICENSE("GPL v2");
2847 MODULE_DESCRIPTION("Generic Remote Processor Framework");