0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/delay.h>
0009 #include <linux/err.h>
0010 #include <linux/init.h>
0011 #include <linux/module.h>
0012 #include <linux/of.h>
0013 #include <linux/of_device.h>
0014 #include <linux/regulator/coupler.h>
0015 #include <linux/regulator/driver.h>
0016 #include <linux/regulator/of_regulator.h>
0017 #include <linux/sort.h>
0018
0019 #include "internal.h"
0020
0021 struct vctrl_voltage_range {
0022 int min_uV;
0023 int max_uV;
0024 };
0025
0026 struct vctrl_voltage_ranges {
0027 struct vctrl_voltage_range ctrl;
0028 struct vctrl_voltage_range out;
0029 };
0030
0031 struct vctrl_voltage_table {
0032 int ctrl;
0033 int out;
0034 int ovp_min_sel;
0035 };
0036
0037 struct vctrl_data {
0038 struct regulator_dev *rdev;
0039 struct regulator_desc desc;
0040 bool enabled;
0041 unsigned int min_slew_down_rate;
0042 unsigned int ovp_threshold;
0043 struct vctrl_voltage_ranges vrange;
0044 struct vctrl_voltage_table *vtable;
0045 unsigned int sel;
0046 };
0047
0048 static int vctrl_calc_ctrl_voltage(struct vctrl_data *vctrl, int out_uV)
0049 {
0050 struct vctrl_voltage_range *ctrl = &vctrl->vrange.ctrl;
0051 struct vctrl_voltage_range *out = &vctrl->vrange.out;
0052
0053 return ctrl->min_uV +
0054 DIV_ROUND_CLOSEST_ULL((s64)(out_uV - out->min_uV) *
0055 (ctrl->max_uV - ctrl->min_uV),
0056 out->max_uV - out->min_uV);
0057 }
0058
0059 static int vctrl_calc_output_voltage(struct vctrl_data *vctrl, int ctrl_uV)
0060 {
0061 struct vctrl_voltage_range *ctrl = &vctrl->vrange.ctrl;
0062 struct vctrl_voltage_range *out = &vctrl->vrange.out;
0063
0064 if (ctrl_uV < 0) {
0065 pr_err("vctrl: failed to get control voltage\n");
0066 return ctrl_uV;
0067 }
0068
0069 if (ctrl_uV < ctrl->min_uV)
0070 return out->min_uV;
0071
0072 if (ctrl_uV > ctrl->max_uV)
0073 return out->max_uV;
0074
0075 return out->min_uV +
0076 DIV_ROUND_CLOSEST_ULL((s64)(ctrl_uV - ctrl->min_uV) *
0077 (out->max_uV - out->min_uV),
0078 ctrl->max_uV - ctrl->min_uV);
0079 }
0080
0081 static int vctrl_get_voltage(struct regulator_dev *rdev)
0082 {
0083 struct vctrl_data *vctrl = rdev_get_drvdata(rdev);
0084 int ctrl_uV;
0085
0086 if (!rdev->supply)
0087 return -EPROBE_DEFER;
0088
0089 ctrl_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
0090
0091 return vctrl_calc_output_voltage(vctrl, ctrl_uV);
0092 }
0093
0094 static int vctrl_set_voltage(struct regulator_dev *rdev,
0095 int req_min_uV, int req_max_uV,
0096 unsigned int *selector)
0097 {
0098 struct vctrl_data *vctrl = rdev_get_drvdata(rdev);
0099 int orig_ctrl_uV;
0100 int uV;
0101 int ret;
0102
0103 if (!rdev->supply)
0104 return -EPROBE_DEFER;
0105
0106 orig_ctrl_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
0107 uV = vctrl_calc_output_voltage(vctrl, orig_ctrl_uV);
0108
0109 if (req_min_uV >= uV || !vctrl->ovp_threshold)
0110
0111 return regulator_set_voltage_rdev(rdev->supply->rdev,
0112 vctrl_calc_ctrl_voltage(vctrl, req_min_uV),
0113 vctrl_calc_ctrl_voltage(vctrl, req_max_uV),
0114 PM_SUSPEND_ON);
0115
0116 while (uV > req_min_uV) {
0117 int max_drop_uV = (uV * vctrl->ovp_threshold) / 100;
0118 int next_uV;
0119 int next_ctrl_uV;
0120 int delay;
0121
0122
0123 if (max_drop_uV == 0)
0124 max_drop_uV = 1;
0125
0126 next_uV = max_t(int, req_min_uV, uV - max_drop_uV);
0127 next_ctrl_uV = vctrl_calc_ctrl_voltage(vctrl, next_uV);
0128
0129 ret = regulator_set_voltage_rdev(rdev->supply->rdev,
0130 next_ctrl_uV,
0131 next_ctrl_uV,
0132 PM_SUSPEND_ON);
0133 if (ret)
0134 goto err;
0135
0136 delay = DIV_ROUND_UP(uV - next_uV, vctrl->min_slew_down_rate);
0137 usleep_range(delay, delay + DIV_ROUND_UP(delay, 10));
0138
0139 uV = next_uV;
0140 }
0141
0142 return 0;
0143
0144 err:
0145
0146 regulator_set_voltage_rdev(rdev->supply->rdev, orig_ctrl_uV, orig_ctrl_uV,
0147 PM_SUSPEND_ON);
0148
0149 return ret;
0150 }
0151
0152 static int vctrl_get_voltage_sel(struct regulator_dev *rdev)
0153 {
0154 struct vctrl_data *vctrl = rdev_get_drvdata(rdev);
0155
0156 return vctrl->sel;
0157 }
0158
0159 static int vctrl_set_voltage_sel(struct regulator_dev *rdev,
0160 unsigned int selector)
0161 {
0162 struct vctrl_data *vctrl = rdev_get_drvdata(rdev);
0163 unsigned int orig_sel = vctrl->sel;
0164 int ret;
0165
0166 if (!rdev->supply)
0167 return -EPROBE_DEFER;
0168
0169 if (selector >= rdev->desc->n_voltages)
0170 return -EINVAL;
0171
0172 if (selector >= vctrl->sel || !vctrl->ovp_threshold) {
0173
0174 ret = regulator_set_voltage_rdev(rdev->supply->rdev,
0175 vctrl->vtable[selector].ctrl,
0176 vctrl->vtable[selector].ctrl,
0177 PM_SUSPEND_ON);
0178 if (!ret)
0179 vctrl->sel = selector;
0180
0181 return ret;
0182 }
0183
0184 while (vctrl->sel != selector) {
0185 unsigned int next_sel;
0186 int delay;
0187
0188 next_sel = max_t(unsigned int, selector, vctrl->vtable[vctrl->sel].ovp_min_sel);
0189
0190 ret = regulator_set_voltage_rdev(rdev->supply->rdev,
0191 vctrl->vtable[next_sel].ctrl,
0192 vctrl->vtable[next_sel].ctrl,
0193 PM_SUSPEND_ON);
0194 if (ret) {
0195 dev_err(&rdev->dev,
0196 "failed to set control voltage to %duV\n",
0197 vctrl->vtable[next_sel].ctrl);
0198 goto err;
0199 }
0200 vctrl->sel = next_sel;
0201
0202 delay = DIV_ROUND_UP(vctrl->vtable[vctrl->sel].out -
0203 vctrl->vtable[next_sel].out,
0204 vctrl->min_slew_down_rate);
0205 usleep_range(delay, delay + DIV_ROUND_UP(delay, 10));
0206 }
0207
0208 return 0;
0209
0210 err:
0211 if (vctrl->sel != orig_sel) {
0212
0213 if (!regulator_set_voltage_rdev(rdev->supply->rdev,
0214 vctrl->vtable[orig_sel].ctrl,
0215 vctrl->vtable[orig_sel].ctrl,
0216 PM_SUSPEND_ON))
0217 vctrl->sel = orig_sel;
0218 else
0219 dev_warn(&rdev->dev,
0220 "failed to restore original voltage\n");
0221 }
0222
0223 return ret;
0224 }
0225
0226 static int vctrl_list_voltage(struct regulator_dev *rdev,
0227 unsigned int selector)
0228 {
0229 struct vctrl_data *vctrl = rdev_get_drvdata(rdev);
0230
0231 if (selector >= rdev->desc->n_voltages)
0232 return -EINVAL;
0233
0234 return vctrl->vtable[selector].out;
0235 }
0236
0237 static int vctrl_parse_dt(struct platform_device *pdev,
0238 struct vctrl_data *vctrl)
0239 {
0240 int ret;
0241 struct device_node *np = pdev->dev.of_node;
0242 u32 pval;
0243 u32 vrange_ctrl[2];
0244
0245 ret = of_property_read_u32(np, "ovp-threshold-percent", &pval);
0246 if (!ret) {
0247 vctrl->ovp_threshold = pval;
0248 if (vctrl->ovp_threshold > 100) {
0249 dev_err(&pdev->dev,
0250 "ovp-threshold-percent (%u) > 100\n",
0251 vctrl->ovp_threshold);
0252 return -EINVAL;
0253 }
0254 }
0255
0256 ret = of_property_read_u32(np, "min-slew-down-rate", &pval);
0257 if (!ret) {
0258 vctrl->min_slew_down_rate = pval;
0259
0260
0261 if (vctrl->min_slew_down_rate == 0) {
0262 dev_err(&pdev->dev,
0263 "min-slew-down-rate must not be 0\n");
0264 return -EINVAL;
0265 } else if (vctrl->min_slew_down_rate > INT_MAX) {
0266 dev_err(&pdev->dev, "min-slew-down-rate (%u) too big\n",
0267 vctrl->min_slew_down_rate);
0268 return -EINVAL;
0269 }
0270 }
0271
0272 if (vctrl->ovp_threshold && !vctrl->min_slew_down_rate) {
0273 dev_err(&pdev->dev,
0274 "ovp-threshold-percent requires min-slew-down-rate\n");
0275 return -EINVAL;
0276 }
0277
0278 ret = of_property_read_u32(np, "regulator-min-microvolt", &pval);
0279 if (ret) {
0280 dev_err(&pdev->dev,
0281 "failed to read regulator-min-microvolt: %d\n", ret);
0282 return ret;
0283 }
0284 vctrl->vrange.out.min_uV = pval;
0285
0286 ret = of_property_read_u32(np, "regulator-max-microvolt", &pval);
0287 if (ret) {
0288 dev_err(&pdev->dev,
0289 "failed to read regulator-max-microvolt: %d\n", ret);
0290 return ret;
0291 }
0292 vctrl->vrange.out.max_uV = pval;
0293
0294 ret = of_property_read_u32_array(np, "ctrl-voltage-range", vrange_ctrl,
0295 2);
0296 if (ret) {
0297 dev_err(&pdev->dev, "failed to read ctrl-voltage-range: %d\n",
0298 ret);
0299 return ret;
0300 }
0301
0302 if (vrange_ctrl[0] >= vrange_ctrl[1]) {
0303 dev_err(&pdev->dev, "ctrl-voltage-range is invalid: %d-%d\n",
0304 vrange_ctrl[0], vrange_ctrl[1]);
0305 return -EINVAL;
0306 }
0307
0308 vctrl->vrange.ctrl.min_uV = vrange_ctrl[0];
0309 vctrl->vrange.ctrl.max_uV = vrange_ctrl[1];
0310
0311 return 0;
0312 }
0313
0314 static int vctrl_cmp_ctrl_uV(const void *a, const void *b)
0315 {
0316 const struct vctrl_voltage_table *at = a;
0317 const struct vctrl_voltage_table *bt = b;
0318
0319 return at->ctrl - bt->ctrl;
0320 }
0321
0322 static int vctrl_init_vtable(struct platform_device *pdev,
0323 struct regulator *ctrl_reg)
0324 {
0325 struct vctrl_data *vctrl = platform_get_drvdata(pdev);
0326 struct regulator_desc *rdesc = &vctrl->desc;
0327 struct vctrl_voltage_range *vrange_ctrl = &vctrl->vrange.ctrl;
0328 int n_voltages;
0329 int ctrl_uV;
0330 int i, idx_vt;
0331
0332 n_voltages = regulator_count_voltages(ctrl_reg);
0333
0334 rdesc->n_voltages = n_voltages;
0335
0336
0337 for (i = 0; i < n_voltages; i++) {
0338 ctrl_uV = regulator_list_voltage(ctrl_reg, i);
0339
0340 if (ctrl_uV < vrange_ctrl->min_uV ||
0341 ctrl_uV > vrange_ctrl->max_uV)
0342 rdesc->n_voltages--;
0343 }
0344
0345 if (rdesc->n_voltages == 0) {
0346 dev_err(&pdev->dev, "invalid configuration\n");
0347 return -EINVAL;
0348 }
0349
0350 vctrl->vtable = devm_kcalloc(&pdev->dev, rdesc->n_voltages,
0351 sizeof(struct vctrl_voltage_table),
0352 GFP_KERNEL);
0353 if (!vctrl->vtable)
0354 return -ENOMEM;
0355
0356
0357 for (i = 0, idx_vt = 0; i < n_voltages; i++) {
0358 ctrl_uV = regulator_list_voltage(ctrl_reg, i);
0359
0360 if (ctrl_uV < vrange_ctrl->min_uV ||
0361 ctrl_uV > vrange_ctrl->max_uV)
0362 continue;
0363
0364 vctrl->vtable[idx_vt].ctrl = ctrl_uV;
0365 vctrl->vtable[idx_vt].out =
0366 vctrl_calc_output_voltage(vctrl, ctrl_uV);
0367 idx_vt++;
0368 }
0369
0370
0371 sort(vctrl->vtable, rdesc->n_voltages,
0372 sizeof(struct vctrl_voltage_table), vctrl_cmp_ctrl_uV,
0373 NULL);
0374
0375
0376 for (i = rdesc->n_voltages - 1; i > 0; i--) {
0377 int j;
0378 int ovp_min_uV = (vctrl->vtable[i].out *
0379 (100 - vctrl->ovp_threshold)) / 100;
0380
0381 for (j = 0; j < i; j++) {
0382 if (vctrl->vtable[j].out >= ovp_min_uV) {
0383 vctrl->vtable[i].ovp_min_sel = j;
0384 break;
0385 }
0386 }
0387
0388 if (j == i) {
0389 dev_warn(&pdev->dev, "switching down from %duV may cause OVP shutdown\n",
0390 vctrl->vtable[i].out);
0391
0392 vctrl->vtable[i].ovp_min_sel = i - 1;
0393 }
0394 }
0395
0396 return 0;
0397 }
0398
0399 static int vctrl_enable(struct regulator_dev *rdev)
0400 {
0401 struct vctrl_data *vctrl = rdev_get_drvdata(rdev);
0402
0403 vctrl->enabled = true;
0404
0405 return 0;
0406 }
0407
0408 static int vctrl_disable(struct regulator_dev *rdev)
0409 {
0410 struct vctrl_data *vctrl = rdev_get_drvdata(rdev);
0411
0412 vctrl->enabled = false;
0413
0414 return 0;
0415 }
0416
0417 static int vctrl_is_enabled(struct regulator_dev *rdev)
0418 {
0419 struct vctrl_data *vctrl = rdev_get_drvdata(rdev);
0420
0421 return vctrl->enabled;
0422 }
0423
0424 static const struct regulator_ops vctrl_ops_cont = {
0425 .enable = vctrl_enable,
0426 .disable = vctrl_disable,
0427 .is_enabled = vctrl_is_enabled,
0428 .get_voltage = vctrl_get_voltage,
0429 .set_voltage = vctrl_set_voltage,
0430 };
0431
0432 static const struct regulator_ops vctrl_ops_non_cont = {
0433 .enable = vctrl_enable,
0434 .disable = vctrl_disable,
0435 .is_enabled = vctrl_is_enabled,
0436 .set_voltage_sel = vctrl_set_voltage_sel,
0437 .get_voltage_sel = vctrl_get_voltage_sel,
0438 .list_voltage = vctrl_list_voltage,
0439 .map_voltage = regulator_map_voltage_iterate,
0440 };
0441
0442 static int vctrl_probe(struct platform_device *pdev)
0443 {
0444 struct device_node *np = pdev->dev.of_node;
0445 struct vctrl_data *vctrl;
0446 const struct regulator_init_data *init_data;
0447 struct regulator_desc *rdesc;
0448 struct regulator_config cfg = { };
0449 struct vctrl_voltage_range *vrange_ctrl;
0450 struct regulator *ctrl_reg;
0451 int ctrl_uV;
0452 int ret;
0453
0454 vctrl = devm_kzalloc(&pdev->dev, sizeof(struct vctrl_data),
0455 GFP_KERNEL);
0456 if (!vctrl)
0457 return -ENOMEM;
0458
0459 platform_set_drvdata(pdev, vctrl);
0460
0461 ret = vctrl_parse_dt(pdev, vctrl);
0462 if (ret)
0463 return ret;
0464
0465 ctrl_reg = devm_regulator_get(&pdev->dev, "ctrl");
0466 if (IS_ERR(ctrl_reg))
0467 return PTR_ERR(ctrl_reg);
0468
0469 vrange_ctrl = &vctrl->vrange.ctrl;
0470
0471 rdesc = &vctrl->desc;
0472 rdesc->name = "vctrl";
0473 rdesc->type = REGULATOR_VOLTAGE;
0474 rdesc->owner = THIS_MODULE;
0475 rdesc->supply_name = "ctrl";
0476
0477 if ((regulator_get_linear_step(ctrl_reg) == 1) ||
0478 (regulator_count_voltages(ctrl_reg) == -EINVAL)) {
0479 rdesc->continuous_voltage_range = true;
0480 rdesc->ops = &vctrl_ops_cont;
0481 } else {
0482 rdesc->ops = &vctrl_ops_non_cont;
0483 }
0484
0485 init_data = of_get_regulator_init_data(&pdev->dev, np, rdesc);
0486 if (!init_data)
0487 return -ENOMEM;
0488
0489 cfg.of_node = np;
0490 cfg.dev = &pdev->dev;
0491 cfg.driver_data = vctrl;
0492 cfg.init_data = init_data;
0493
0494 if (!rdesc->continuous_voltage_range) {
0495 ret = vctrl_init_vtable(pdev, ctrl_reg);
0496 if (ret)
0497 return ret;
0498
0499
0500 ctrl_uV = regulator_get_voltage(ctrl_reg);
0501 if (ctrl_uV < 0) {
0502 dev_err(&pdev->dev, "failed to get control voltage\n");
0503 return ctrl_uV;
0504 }
0505
0506
0507 if (ctrl_uV < vrange_ctrl->min_uV) {
0508 vctrl->sel = 0;
0509 } else if (ctrl_uV > vrange_ctrl->max_uV) {
0510 vctrl->sel = rdesc->n_voltages - 1;
0511 } else {
0512 int i;
0513
0514 for (i = 0; i < rdesc->n_voltages; i++) {
0515 if (ctrl_uV == vctrl->vtable[i].ctrl) {
0516 vctrl->sel = i;
0517 break;
0518 }
0519 }
0520 }
0521 }
0522
0523
0524 devm_regulator_put(ctrl_reg);
0525
0526 vctrl->rdev = devm_regulator_register(&pdev->dev, rdesc, &cfg);
0527 if (IS_ERR(vctrl->rdev)) {
0528 ret = PTR_ERR(vctrl->rdev);
0529 dev_err(&pdev->dev, "failed to register regulator: %d\n", ret);
0530 return ret;
0531 }
0532
0533 return 0;
0534 }
0535
0536 static const struct of_device_id vctrl_of_match[] = {
0537 { .compatible = "vctrl-regulator", },
0538 {},
0539 };
0540 MODULE_DEVICE_TABLE(of, vctrl_of_match);
0541
0542 static struct platform_driver vctrl_driver = {
0543 .probe = vctrl_probe,
0544 .driver = {
0545 .name = "vctrl-regulator",
0546 .of_match_table = of_match_ptr(vctrl_of_match),
0547 },
0548 };
0549
0550 module_platform_driver(vctrl_driver);
0551
0552 MODULE_DESCRIPTION("Voltage Controlled Regulator Driver");
0553 MODULE_AUTHOR("Matthias Kaehlcke <mka@chromium.org>");
0554 MODULE_LICENSE("GPL v2");