Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * OF helpers for regulator framework
0004  *
0005  * Copyright (C) 2011 Texas Instruments, Inc.
0006  * Rajendra Nayak <rnayak@ti.com>
0007  */
0008 
0009 #include <linux/module.h>
0010 #include <linux/slab.h>
0011 #include <linux/of.h>
0012 #include <linux/regulator/machine.h>
0013 #include <linux/regulator/driver.h>
0014 #include <linux/regulator/of_regulator.h>
0015 
0016 #include "internal.h"
0017 
0018 static const char *const regulator_states[PM_SUSPEND_MAX + 1] = {
0019     [PM_SUSPEND_STANDBY]    = "regulator-state-standby",
0020     [PM_SUSPEND_MEM]    = "regulator-state-mem",
0021     [PM_SUSPEND_MAX]    = "regulator-state-disk",
0022 };
0023 
0024 static void fill_limit(int *limit, int val)
0025 {
0026     if (val)
0027         if (val == 1)
0028             *limit = REGULATOR_NOTIF_LIMIT_ENABLE;
0029         else
0030             *limit = val;
0031     else
0032         *limit = REGULATOR_NOTIF_LIMIT_DISABLE;
0033 }
0034 
0035 static void of_get_regulator_prot_limits(struct device_node *np,
0036                 struct regulation_constraints *constraints)
0037 {
0038     u32 pval;
0039     int i;
0040     static const char *const props[] = {
0041         "regulator-oc-%s-microamp",
0042         "regulator-ov-%s-microvolt",
0043         "regulator-temp-%s-kelvin",
0044         "regulator-uv-%s-microvolt",
0045     };
0046     struct notification_limit *limits[] = {
0047         &constraints->over_curr_limits,
0048         &constraints->over_voltage_limits,
0049         &constraints->temp_limits,
0050         &constraints->under_voltage_limits,
0051     };
0052     bool set[4] = {0};
0053 
0054     /* Protection limits: */
0055     for (i = 0; i < ARRAY_SIZE(props); i++) {
0056         char prop[255];
0057         bool found;
0058         int j;
0059         static const char *const lvl[] = {
0060             "protection", "error", "warn"
0061         };
0062         int *l[] = {
0063             &limits[i]->prot, &limits[i]->err, &limits[i]->warn,
0064         };
0065 
0066         for (j = 0; j < ARRAY_SIZE(lvl); j++) {
0067             snprintf(prop, 255, props[i], lvl[j]);
0068             found = !of_property_read_u32(np, prop, &pval);
0069             if (found)
0070                 fill_limit(l[j], pval);
0071             set[i] |= found;
0072         }
0073     }
0074     constraints->over_current_detection = set[0];
0075     constraints->over_voltage_detection = set[1];
0076     constraints->over_temp_detection = set[2];
0077     constraints->under_voltage_detection = set[3];
0078 }
0079 
0080 static int of_get_regulation_constraints(struct device *dev,
0081                     struct device_node *np,
0082                     struct regulator_init_data **init_data,
0083                     const struct regulator_desc *desc)
0084 {
0085     struct regulation_constraints *constraints = &(*init_data)->constraints;
0086     struct regulator_state *suspend_state;
0087     struct device_node *suspend_np;
0088     unsigned int mode;
0089     int ret, i, len;
0090     int n_phandles;
0091     u32 pval;
0092 
0093     n_phandles = of_count_phandle_with_args(np, "regulator-coupled-with",
0094                         NULL);
0095     n_phandles = max(n_phandles, 0);
0096 
0097     constraints->name = of_get_property(np, "regulator-name", NULL);
0098 
0099     if (!of_property_read_u32(np, "regulator-min-microvolt", &pval))
0100         constraints->min_uV = pval;
0101 
0102     if (!of_property_read_u32(np, "regulator-max-microvolt", &pval))
0103         constraints->max_uV = pval;
0104 
0105     /* Voltage change possible? */
0106     if (constraints->min_uV != constraints->max_uV)
0107         constraints->valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE;
0108 
0109     /* Do we have a voltage range, if so try to apply it? */
0110     if (constraints->min_uV && constraints->max_uV)
0111         constraints->apply_uV = true;
0112 
0113     if (!of_property_read_u32(np, "regulator-microvolt-offset", &pval))
0114         constraints->uV_offset = pval;
0115     if (!of_property_read_u32(np, "regulator-min-microamp", &pval))
0116         constraints->min_uA = pval;
0117     if (!of_property_read_u32(np, "regulator-max-microamp", &pval))
0118         constraints->max_uA = pval;
0119 
0120     if (!of_property_read_u32(np, "regulator-input-current-limit-microamp",
0121                   &pval))
0122         constraints->ilim_uA = pval;
0123 
0124     /* Current change possible? */
0125     if (constraints->min_uA != constraints->max_uA)
0126         constraints->valid_ops_mask |= REGULATOR_CHANGE_CURRENT;
0127 
0128     constraints->boot_on = of_property_read_bool(np, "regulator-boot-on");
0129     constraints->always_on = of_property_read_bool(np, "regulator-always-on");
0130     if (!constraints->always_on) /* status change should be possible. */
0131         constraints->valid_ops_mask |= REGULATOR_CHANGE_STATUS;
0132 
0133     constraints->pull_down = of_property_read_bool(np, "regulator-pull-down");
0134 
0135     if (of_property_read_bool(np, "regulator-allow-bypass"))
0136         constraints->valid_ops_mask |= REGULATOR_CHANGE_BYPASS;
0137 
0138     if (of_property_read_bool(np, "regulator-allow-set-load"))
0139         constraints->valid_ops_mask |= REGULATOR_CHANGE_DRMS;
0140 
0141     ret = of_property_read_u32(np, "regulator-ramp-delay", &pval);
0142     if (!ret) {
0143         if (pval)
0144             constraints->ramp_delay = pval;
0145         else
0146             constraints->ramp_disable = true;
0147     }
0148 
0149     ret = of_property_read_u32(np, "regulator-settling-time-us", &pval);
0150     if (!ret)
0151         constraints->settling_time = pval;
0152 
0153     ret = of_property_read_u32(np, "regulator-settling-time-up-us", &pval);
0154     if (!ret)
0155         constraints->settling_time_up = pval;
0156     if (constraints->settling_time_up && constraints->settling_time) {
0157         pr_warn("%pOFn: ambiguous configuration for settling time, ignoring 'regulator-settling-time-up-us'\n",
0158             np);
0159         constraints->settling_time_up = 0;
0160     }
0161 
0162     ret = of_property_read_u32(np, "regulator-settling-time-down-us",
0163                    &pval);
0164     if (!ret)
0165         constraints->settling_time_down = pval;
0166     if (constraints->settling_time_down && constraints->settling_time) {
0167         pr_warn("%pOFn: ambiguous configuration for settling time, ignoring 'regulator-settling-time-down-us'\n",
0168             np);
0169         constraints->settling_time_down = 0;
0170     }
0171 
0172     ret = of_property_read_u32(np, "regulator-enable-ramp-delay", &pval);
0173     if (!ret)
0174         constraints->enable_time = pval;
0175 
0176     constraints->soft_start = of_property_read_bool(np,
0177                     "regulator-soft-start");
0178     ret = of_property_read_u32(np, "regulator-active-discharge", &pval);
0179     if (!ret) {
0180         constraints->active_discharge =
0181                 (pval) ? REGULATOR_ACTIVE_DISCHARGE_ENABLE :
0182                     REGULATOR_ACTIVE_DISCHARGE_DISABLE;
0183     }
0184 
0185     if (!of_property_read_u32(np, "regulator-initial-mode", &pval)) {
0186         if (desc && desc->of_map_mode) {
0187             mode = desc->of_map_mode(pval);
0188             if (mode == REGULATOR_MODE_INVALID)
0189                 pr_err("%pOFn: invalid mode %u\n", np, pval);
0190             else
0191                 constraints->initial_mode = mode;
0192         } else {
0193             pr_warn("%pOFn: mapping for mode %d not defined\n",
0194                 np, pval);
0195         }
0196     }
0197 
0198     len = of_property_count_elems_of_size(np, "regulator-allowed-modes",
0199                         sizeof(u32));
0200     if (len > 0) {
0201         if (desc && desc->of_map_mode) {
0202             for (i = 0; i < len; i++) {
0203                 ret = of_property_read_u32_index(np,
0204                     "regulator-allowed-modes", i, &pval);
0205                 if (ret) {
0206                     pr_err("%pOFn: couldn't read allowed modes index %d, ret=%d\n",
0207                         np, i, ret);
0208                     break;
0209                 }
0210                 mode = desc->of_map_mode(pval);
0211                 if (mode == REGULATOR_MODE_INVALID)
0212                     pr_err("%pOFn: invalid regulator-allowed-modes element %u\n",
0213                         np, pval);
0214                 else
0215                     constraints->valid_modes_mask |= mode;
0216             }
0217             if (constraints->valid_modes_mask)
0218                 constraints->valid_ops_mask
0219                     |= REGULATOR_CHANGE_MODE;
0220         } else {
0221             pr_warn("%pOFn: mode mapping not defined\n", np);
0222         }
0223     }
0224 
0225     if (!of_property_read_u32(np, "regulator-system-load", &pval))
0226         constraints->system_load = pval;
0227 
0228     if (n_phandles) {
0229         constraints->max_spread = devm_kzalloc(dev,
0230                 sizeof(*constraints->max_spread) * n_phandles,
0231                 GFP_KERNEL);
0232 
0233         if (!constraints->max_spread)
0234             return -ENOMEM;
0235 
0236         of_property_read_u32_array(np, "regulator-coupled-max-spread",
0237                        constraints->max_spread, n_phandles);
0238     }
0239 
0240     if (!of_property_read_u32(np, "regulator-max-step-microvolt",
0241                   &pval))
0242         constraints->max_uV_step = pval;
0243 
0244     constraints->over_current_protection = of_property_read_bool(np,
0245                     "regulator-over-current-protection");
0246 
0247     of_get_regulator_prot_limits(np, constraints);
0248 
0249     for (i = 0; i < ARRAY_SIZE(regulator_states); i++) {
0250         switch (i) {
0251         case PM_SUSPEND_MEM:
0252             suspend_state = &constraints->state_mem;
0253             break;
0254         case PM_SUSPEND_MAX:
0255             suspend_state = &constraints->state_disk;
0256             break;
0257         case PM_SUSPEND_STANDBY:
0258             suspend_state = &constraints->state_standby;
0259             break;
0260         case PM_SUSPEND_ON:
0261         case PM_SUSPEND_TO_IDLE:
0262         default:
0263             continue;
0264         }
0265 
0266         suspend_np = of_get_child_by_name(np, regulator_states[i]);
0267         if (!suspend_np)
0268             continue;
0269         if (!suspend_state) {
0270             of_node_put(suspend_np);
0271             continue;
0272         }
0273 
0274         if (!of_property_read_u32(suspend_np, "regulator-mode",
0275                       &pval)) {
0276             if (desc && desc->of_map_mode) {
0277                 mode = desc->of_map_mode(pval);
0278                 if (mode == REGULATOR_MODE_INVALID)
0279                     pr_err("%pOFn: invalid mode %u\n",
0280                            np, pval);
0281                 else
0282                     suspend_state->mode = mode;
0283             } else {
0284                 pr_warn("%pOFn: mapping for mode %d not defined\n",
0285                     np, pval);
0286             }
0287         }
0288 
0289         if (of_property_read_bool(suspend_np,
0290                     "regulator-on-in-suspend"))
0291             suspend_state->enabled = ENABLE_IN_SUSPEND;
0292         else if (of_property_read_bool(suspend_np,
0293                     "regulator-off-in-suspend"))
0294             suspend_state->enabled = DISABLE_IN_SUSPEND;
0295 
0296         if (!of_property_read_u32(suspend_np,
0297                 "regulator-suspend-min-microvolt", &pval))
0298             suspend_state->min_uV = pval;
0299 
0300         if (!of_property_read_u32(suspend_np,
0301                 "regulator-suspend-max-microvolt", &pval))
0302             suspend_state->max_uV = pval;
0303 
0304         if (!of_property_read_u32(suspend_np,
0305                     "regulator-suspend-microvolt", &pval))
0306             suspend_state->uV = pval;
0307         else /* otherwise use min_uV as default suspend voltage */
0308             suspend_state->uV = suspend_state->min_uV;
0309 
0310         if (of_property_read_bool(suspend_np,
0311                     "regulator-changeable-in-suspend"))
0312             suspend_state->changeable = true;
0313 
0314         if (i == PM_SUSPEND_MEM)
0315             constraints->initial_state = PM_SUSPEND_MEM;
0316 
0317         of_node_put(suspend_np);
0318         suspend_state = NULL;
0319         suspend_np = NULL;
0320     }
0321 
0322     return 0;
0323 }
0324 
0325 /**
0326  * of_get_regulator_init_data - extract regulator_init_data structure info
0327  * @dev: device requesting for regulator_init_data
0328  * @node: regulator device node
0329  * @desc: regulator description
0330  *
0331  * Populates regulator_init_data structure by extracting data from device
0332  * tree node, returns a pointer to the populated structure or NULL if memory
0333  * alloc fails.
0334  */
0335 struct regulator_init_data *of_get_regulator_init_data(struct device *dev,
0336                       struct device_node *node,
0337                       const struct regulator_desc *desc)
0338 {
0339     struct regulator_init_data *init_data;
0340 
0341     if (!node)
0342         return NULL;
0343 
0344     init_data = devm_kzalloc(dev, sizeof(*init_data), GFP_KERNEL);
0345     if (!init_data)
0346         return NULL; /* Out of memory? */
0347 
0348     if (of_get_regulation_constraints(dev, node, &init_data, desc))
0349         return NULL;
0350 
0351     return init_data;
0352 }
0353 EXPORT_SYMBOL_GPL(of_get_regulator_init_data);
0354 
0355 struct devm_of_regulator_matches {
0356     struct of_regulator_match *matches;
0357     unsigned int num_matches;
0358 };
0359 
0360 static void devm_of_regulator_put_matches(struct device *dev, void *res)
0361 {
0362     struct devm_of_regulator_matches *devm_matches = res;
0363     int i;
0364 
0365     for (i = 0; i < devm_matches->num_matches; i++)
0366         of_node_put(devm_matches->matches[i].of_node);
0367 }
0368 
0369 /**
0370  * of_regulator_match - extract multiple regulator init data from device tree.
0371  * @dev: device requesting the data
0372  * @node: parent device node of the regulators
0373  * @matches: match table for the regulators
0374  * @num_matches: number of entries in match table
0375  *
0376  * This function uses a match table specified by the regulator driver to
0377  * parse regulator init data from the device tree. @node is expected to
0378  * contain a set of child nodes, each providing the init data for one
0379  * regulator. The data parsed from a child node will be matched to a regulator
0380  * based on either the deprecated property regulator-compatible if present,
0381  * or otherwise the child node's name. Note that the match table is modified
0382  * in place and an additional of_node reference is taken for each matched
0383  * regulator.
0384  *
0385  * Returns the number of matches found or a negative error code on failure.
0386  */
0387 int of_regulator_match(struct device *dev, struct device_node *node,
0388                struct of_regulator_match *matches,
0389                unsigned int num_matches)
0390 {
0391     unsigned int count = 0;
0392     unsigned int i;
0393     const char *name;
0394     struct device_node *child;
0395     struct devm_of_regulator_matches *devm_matches;
0396 
0397     if (!dev || !node)
0398         return -EINVAL;
0399 
0400     devm_matches = devres_alloc(devm_of_regulator_put_matches,
0401                     sizeof(struct devm_of_regulator_matches),
0402                     GFP_KERNEL);
0403     if (!devm_matches)
0404         return -ENOMEM;
0405 
0406     devm_matches->matches = matches;
0407     devm_matches->num_matches = num_matches;
0408 
0409     devres_add(dev, devm_matches);
0410 
0411     for (i = 0; i < num_matches; i++) {
0412         struct of_regulator_match *match = &matches[i];
0413         match->init_data = NULL;
0414         match->of_node = NULL;
0415     }
0416 
0417     for_each_child_of_node(node, child) {
0418         name = of_get_property(child,
0419                     "regulator-compatible", NULL);
0420         if (!name)
0421             name = child->name;
0422         for (i = 0; i < num_matches; i++) {
0423             struct of_regulator_match *match = &matches[i];
0424             if (match->of_node)
0425                 continue;
0426 
0427             if (strcmp(match->name, name))
0428                 continue;
0429 
0430             match->init_data =
0431                 of_get_regulator_init_data(dev, child,
0432                                match->desc);
0433             if (!match->init_data) {
0434                 dev_err(dev,
0435                     "failed to parse DT for regulator %pOFn\n",
0436                     child);
0437                 of_node_put(child);
0438                 return -EINVAL;
0439             }
0440             match->of_node = of_node_get(child);
0441             count++;
0442             break;
0443         }
0444     }
0445 
0446     return count;
0447 }
0448 EXPORT_SYMBOL_GPL(of_regulator_match);
0449 
0450 static struct
0451 device_node *regulator_of_get_init_node(struct device *dev,
0452                     const struct regulator_desc *desc)
0453 {
0454     struct device_node *search, *child;
0455     const char *name;
0456 
0457     if (!dev->of_node || !desc->of_match)
0458         return NULL;
0459 
0460     if (desc->regulators_node) {
0461         search = of_get_child_by_name(dev->of_node,
0462                           desc->regulators_node);
0463     } else {
0464         search = of_node_get(dev->of_node);
0465 
0466         if (!strcmp(desc->of_match, search->name))
0467             return search;
0468     }
0469 
0470     if (!search) {
0471         dev_dbg(dev, "Failed to find regulator container node '%s'\n",
0472             desc->regulators_node);
0473         return NULL;
0474     }
0475 
0476     for_each_available_child_of_node(search, child) {
0477         name = of_get_property(child, "regulator-compatible", NULL);
0478         if (!name) {
0479             if (!desc->of_match_full_name)
0480                 name = child->name;
0481             else
0482                 name = child->full_name;
0483         }
0484 
0485         if (!strcmp(desc->of_match, name)) {
0486             of_node_put(search);
0487             /*
0488              * 'of_node_get(child)' is already performed by the
0489              * for_each loop.
0490              */
0491             return child;
0492         }
0493     }
0494 
0495     of_node_put(search);
0496 
0497     return NULL;
0498 }
0499 
0500 struct regulator_init_data *regulator_of_get_init_data(struct device *dev,
0501                         const struct regulator_desc *desc,
0502                         struct regulator_config *config,
0503                         struct device_node **node)
0504 {
0505     struct device_node *child;
0506     struct regulator_init_data *init_data = NULL;
0507 
0508     child = regulator_of_get_init_node(dev, desc);
0509     if (!child)
0510         return NULL;
0511 
0512     init_data = of_get_regulator_init_data(dev, child, desc);
0513     if (!init_data) {
0514         dev_err(dev, "failed to parse DT for regulator %pOFn\n", child);
0515         goto error;
0516     }
0517 
0518     if (desc->of_parse_cb) {
0519         int ret;
0520 
0521         ret = desc->of_parse_cb(child, desc, config);
0522         if (ret) {
0523             if (ret == -EPROBE_DEFER) {
0524                 of_node_put(child);
0525                 return ERR_PTR(-EPROBE_DEFER);
0526             }
0527             dev_err(dev,
0528                 "driver callback failed to parse DT for regulator %pOFn\n",
0529                 child);
0530             goto error;
0531         }
0532     }
0533 
0534     *node = child;
0535 
0536     return init_data;
0537 
0538 error:
0539     of_node_put(child);
0540 
0541     return NULL;
0542 }
0543 
0544 struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
0545 {
0546     struct device *dev;
0547 
0548     dev = class_find_device_by_of_node(&regulator_class, np);
0549 
0550     return dev ? dev_to_rdev(dev) : NULL;
0551 }
0552 
0553 /*
0554  * Returns number of regulators coupled with rdev.
0555  */
0556 int of_get_n_coupled(struct regulator_dev *rdev)
0557 {
0558     struct device_node *node = rdev->dev.of_node;
0559     int n_phandles;
0560 
0561     n_phandles = of_count_phandle_with_args(node,
0562                         "regulator-coupled-with",
0563                         NULL);
0564 
0565     return (n_phandles > 0) ? n_phandles : 0;
0566 }
0567 
0568 /* Looks for "to_find" device_node in src's "regulator-coupled-with" property */
0569 static bool of_coupling_find_node(struct device_node *src,
0570                   struct device_node *to_find,
0571                   int *index)
0572 {
0573     int n_phandles, i;
0574     bool found = false;
0575 
0576     n_phandles = of_count_phandle_with_args(src,
0577                         "regulator-coupled-with",
0578                         NULL);
0579 
0580     for (i = 0; i < n_phandles; i++) {
0581         struct device_node *tmp = of_parse_phandle(src,
0582                        "regulator-coupled-with", i);
0583 
0584         if (!tmp)
0585             break;
0586 
0587         /* found */
0588         if (tmp == to_find)
0589             found = true;
0590 
0591         of_node_put(tmp);
0592 
0593         if (found) {
0594             *index = i;
0595             break;
0596         }
0597     }
0598 
0599     return found;
0600 }
0601 
0602 /**
0603  * of_check_coupling_data - Parse rdev's coupling properties and check data
0604  *              consistency
0605  * @rdev: pointer to regulator_dev whose data is checked
0606  *
0607  * Function checks if all the following conditions are met:
0608  * - rdev's max_spread is greater than 0
0609  * - all coupled regulators have the same max_spread
0610  * - all coupled regulators have the same number of regulator_dev phandles
0611  * - all regulators are linked to each other
0612  *
0613  * Returns true if all conditions are met.
0614  */
0615 bool of_check_coupling_data(struct regulator_dev *rdev)
0616 {
0617     struct device_node *node = rdev->dev.of_node;
0618     int n_phandles = of_get_n_coupled(rdev);
0619     struct device_node *c_node;
0620     int index;
0621     int i;
0622     bool ret = true;
0623 
0624     /* iterate over rdev's phandles */
0625     for (i = 0; i < n_phandles; i++) {
0626         int max_spread = rdev->constraints->max_spread[i];
0627         int c_max_spread, c_n_phandles;
0628 
0629         if (max_spread <= 0) {
0630             dev_err(&rdev->dev, "max_spread value invalid\n");
0631             return false;
0632         }
0633 
0634         c_node = of_parse_phandle(node,
0635                       "regulator-coupled-with", i);
0636 
0637         if (!c_node)
0638             ret = false;
0639 
0640         c_n_phandles = of_count_phandle_with_args(c_node,
0641                               "regulator-coupled-with",
0642                               NULL);
0643 
0644         if (c_n_phandles != n_phandles) {
0645             dev_err(&rdev->dev, "number of coupled reg phandles mismatch\n");
0646             ret = false;
0647             goto clean;
0648         }
0649 
0650         if (!of_coupling_find_node(c_node, node, &index)) {
0651             dev_err(&rdev->dev, "missing 2-way linking for coupled regulators\n");
0652             ret = false;
0653             goto clean;
0654         }
0655 
0656         if (of_property_read_u32_index(c_node, "regulator-coupled-max-spread",
0657                            index, &c_max_spread)) {
0658             ret = false;
0659             goto clean;
0660         }
0661 
0662         if (c_max_spread != max_spread) {
0663             dev_err(&rdev->dev,
0664                 "coupled regulators max_spread mismatch\n");
0665             ret = false;
0666             goto clean;
0667         }
0668 
0669 clean:
0670         of_node_put(c_node);
0671         if (!ret)
0672             break;
0673     }
0674 
0675     return ret;
0676 }
0677 
0678 /**
0679  * of_parse_coupled regulator - Get regulator_dev pointer from rdev's property
0680  * @rdev: Pointer to regulator_dev, whose DTS is used as a source to parse
0681  *    "regulator-coupled-with" property
0682  * @index: Index in phandles array
0683  *
0684  * Returns the regulator_dev pointer parsed from DTS. If it has not been yet
0685  * registered, returns NULL
0686  */
0687 struct regulator_dev *of_parse_coupled_regulator(struct regulator_dev *rdev,
0688                          int index)
0689 {
0690     struct device_node *node = rdev->dev.of_node;
0691     struct device_node *c_node;
0692     struct regulator_dev *c_rdev;
0693 
0694     c_node = of_parse_phandle(node, "regulator-coupled-with", index);
0695     if (!c_node)
0696         return NULL;
0697 
0698     c_rdev = of_find_regulator_by_node(c_node);
0699 
0700     of_node_put(c_node);
0701 
0702     return c_rdev;
0703 }