Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * RapidIO interconnect services
0004  * (RapidIO Interconnect Specification, http://www.rapidio.org)
0005  *
0006  * Copyright 2005 MontaVista Software, Inc.
0007  * Matt Porter <mporter@kernel.crashing.org>
0008  *
0009  * Copyright 2009 - 2013 Integrated Device Technology, Inc.
0010  * Alex Bounine <alexandre.bounine@idt.com>
0011  */
0012 
0013 #include <linux/types.h>
0014 #include <linux/kernel.h>
0015 
0016 #include <linux/delay.h>
0017 #include <linux/init.h>
0018 #include <linux/rio.h>
0019 #include <linux/rio_drv.h>
0020 #include <linux/rio_ids.h>
0021 #include <linux/rio_regs.h>
0022 #include <linux/module.h>
0023 #include <linux/spinlock.h>
0024 #include <linux/slab.h>
0025 #include <linux/interrupt.h>
0026 
0027 #include "rio.h"
0028 
0029 /*
0030  * struct rio_pwrite - RIO portwrite event
0031  * @node:    Node in list of doorbell events
0032  * @pwcback: Doorbell event callback
0033  * @context: Handler specific context to pass on event
0034  */
0035 struct rio_pwrite {
0036     struct list_head node;
0037 
0038     int (*pwcback)(struct rio_mport *mport, void *context,
0039                union rio_pw_msg *msg, int step);
0040     void *context;
0041 };
0042 
0043 MODULE_DESCRIPTION("RapidIO Subsystem Core");
0044 MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
0045 MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
0046 MODULE_LICENSE("GPL");
0047 
0048 static int hdid[RIO_MAX_MPORTS];
0049 static int ids_num;
0050 module_param_array(hdid, int, &ids_num, 0);
0051 MODULE_PARM_DESC(hdid,
0052     "Destination ID assignment to local RapidIO controllers");
0053 
0054 static LIST_HEAD(rio_devices);
0055 static LIST_HEAD(rio_nets);
0056 static DEFINE_SPINLOCK(rio_global_list_lock);
0057 
0058 static LIST_HEAD(rio_mports);
0059 static LIST_HEAD(rio_scans);
0060 static DEFINE_MUTEX(rio_mport_list_lock);
0061 static unsigned char next_portid;
0062 static DEFINE_SPINLOCK(rio_mmap_lock);
0063 
0064 /**
0065  * rio_local_get_device_id - Get the base/extended device id for a port
0066  * @port: RIO master port from which to get the deviceid
0067  *
0068  * Reads the base/extended device id from the local device
0069  * implementing the master port. Returns the 8/16-bit device
0070  * id.
0071  */
0072 u16 rio_local_get_device_id(struct rio_mport *port)
0073 {
0074     u32 result;
0075 
0076     rio_local_read_config_32(port, RIO_DID_CSR, &result);
0077 
0078     return (RIO_GET_DID(port->sys_size, result));
0079 }
0080 EXPORT_SYMBOL_GPL(rio_local_get_device_id);
0081 
0082 /**
0083  * rio_query_mport - Query mport device attributes
0084  * @port: mport device to query
0085  * @mport_attr: mport attributes data structure
0086  *
0087  * Returns attributes of specified mport through the
0088  * pointer to attributes data structure.
0089  */
0090 int rio_query_mport(struct rio_mport *port,
0091             struct rio_mport_attr *mport_attr)
0092 {
0093     if (!port->ops->query_mport)
0094         return -ENODATA;
0095     return port->ops->query_mport(port, mport_attr);
0096 }
0097 EXPORT_SYMBOL(rio_query_mport);
0098 
0099 /**
0100  * rio_alloc_net- Allocate and initialize a new RIO network data structure
0101  * @mport: Master port associated with the RIO network
0102  *
0103  * Allocates a RIO network structure, initializes per-network
0104  * list heads, and adds the associated master port to the
0105  * network list of associated master ports. Returns a
0106  * RIO network pointer on success or %NULL on failure.
0107  */
0108 struct rio_net *rio_alloc_net(struct rio_mport *mport)
0109 {
0110     struct rio_net *net = kzalloc(sizeof(*net), GFP_KERNEL);
0111 
0112     if (net) {
0113         INIT_LIST_HEAD(&net->node);
0114         INIT_LIST_HEAD(&net->devices);
0115         INIT_LIST_HEAD(&net->switches);
0116         INIT_LIST_HEAD(&net->mports);
0117         mport->net = net;
0118     }
0119     return net;
0120 }
0121 EXPORT_SYMBOL_GPL(rio_alloc_net);
0122 
0123 int rio_add_net(struct rio_net *net)
0124 {
0125     int err;
0126 
0127     err = device_register(&net->dev);
0128     if (err)
0129         return err;
0130     spin_lock(&rio_global_list_lock);
0131     list_add_tail(&net->node, &rio_nets);
0132     spin_unlock(&rio_global_list_lock);
0133 
0134     return 0;
0135 }
0136 EXPORT_SYMBOL_GPL(rio_add_net);
0137 
0138 void rio_free_net(struct rio_net *net)
0139 {
0140     spin_lock(&rio_global_list_lock);
0141     if (!list_empty(&net->node))
0142         list_del(&net->node);
0143     spin_unlock(&rio_global_list_lock);
0144     if (net->release)
0145         net->release(net);
0146     device_unregister(&net->dev);
0147 }
0148 EXPORT_SYMBOL_GPL(rio_free_net);
0149 
0150 /**
0151  * rio_local_set_device_id - Set the base/extended device id for a port
0152  * @port: RIO master port
0153  * @did: Device ID value to be written
0154  *
0155  * Writes the base/extended device id from a device.
0156  */
0157 void rio_local_set_device_id(struct rio_mport *port, u16 did)
0158 {
0159     rio_local_write_config_32(port, RIO_DID_CSR,
0160                   RIO_SET_DID(port->sys_size, did));
0161 }
0162 EXPORT_SYMBOL_GPL(rio_local_set_device_id);
0163 
0164 /**
0165  * rio_add_device- Adds a RIO device to the device model
0166  * @rdev: RIO device
0167  *
0168  * Adds the RIO device to the global device list and adds the RIO
0169  * device to the RIO device list.  Creates the generic sysfs nodes
0170  * for an RIO device.
0171  */
0172 int rio_add_device(struct rio_dev *rdev)
0173 {
0174     int err;
0175 
0176     atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
0177     err = device_register(&rdev->dev);
0178     if (err)
0179         return err;
0180 
0181     spin_lock(&rio_global_list_lock);
0182     list_add_tail(&rdev->global_list, &rio_devices);
0183     if (rdev->net) {
0184         list_add_tail(&rdev->net_list, &rdev->net->devices);
0185         if (rdev->pef & RIO_PEF_SWITCH)
0186             list_add_tail(&rdev->rswitch->node,
0187                       &rdev->net->switches);
0188     }
0189     spin_unlock(&rio_global_list_lock);
0190 
0191     return 0;
0192 }
0193 EXPORT_SYMBOL_GPL(rio_add_device);
0194 
0195 /*
0196  * rio_del_device - removes a RIO device from the device model
0197  * @rdev: RIO device
0198  * @state: device state to set during removal process
0199  *
0200  * Removes the RIO device to the kernel device list and subsystem's device list.
0201  * Clears sysfs entries for the removed device.
0202  */
0203 void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
0204 {
0205     pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
0206     atomic_set(&rdev->state, state);
0207     spin_lock(&rio_global_list_lock);
0208     list_del(&rdev->global_list);
0209     if (rdev->net) {
0210         list_del(&rdev->net_list);
0211         if (rdev->pef & RIO_PEF_SWITCH) {
0212             list_del(&rdev->rswitch->node);
0213             kfree(rdev->rswitch->route_table);
0214         }
0215     }
0216     spin_unlock(&rio_global_list_lock);
0217     device_unregister(&rdev->dev);
0218 }
0219 EXPORT_SYMBOL_GPL(rio_del_device);
0220 
0221 /**
0222  * rio_request_inb_mbox - request inbound mailbox service
0223  * @mport: RIO master port from which to allocate the mailbox resource
0224  * @dev_id: Device specific pointer to pass on event
0225  * @mbox: Mailbox number to claim
0226  * @entries: Number of entries in inbound mailbox queue
0227  * @minb: Callback to execute when inbound message is received
0228  *
0229  * Requests ownership of an inbound mailbox resource and binds
0230  * a callback function to the resource. Returns %0 on success.
0231  */
0232 int rio_request_inb_mbox(struct rio_mport *mport,
0233              void *dev_id,
0234              int mbox,
0235              int entries,
0236              void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
0237                        int slot))
0238 {
0239     int rc = -ENOSYS;
0240     struct resource *res;
0241 
0242     if (!mport->ops->open_inb_mbox)
0243         goto out;
0244 
0245     res = kzalloc(sizeof(*res), GFP_KERNEL);
0246     if (res) {
0247         rio_init_mbox_res(res, mbox, mbox);
0248 
0249         /* Make sure this mailbox isn't in use */
0250         rc = request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
0251                       res);
0252         if (rc < 0) {
0253             kfree(res);
0254             goto out;
0255         }
0256 
0257         mport->inb_msg[mbox].res = res;
0258 
0259         /* Hook the inbound message callback */
0260         mport->inb_msg[mbox].mcback = minb;
0261 
0262         rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
0263         if (rc) {
0264             mport->inb_msg[mbox].mcback = NULL;
0265             mport->inb_msg[mbox].res = NULL;
0266             release_resource(res);
0267             kfree(res);
0268         }
0269     } else
0270         rc = -ENOMEM;
0271 
0272       out:
0273     return rc;
0274 }
0275 EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
0276 
0277 /**
0278  * rio_release_inb_mbox - release inbound mailbox message service
0279  * @mport: RIO master port from which to release the mailbox resource
0280  * @mbox: Mailbox number to release
0281  *
0282  * Releases ownership of an inbound mailbox resource. Returns 0
0283  * if the request has been satisfied.
0284  */
0285 int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
0286 {
0287     int rc;
0288 
0289     if (!mport->ops->close_inb_mbox || !mport->inb_msg[mbox].res)
0290         return -EINVAL;
0291 
0292     mport->ops->close_inb_mbox(mport, mbox);
0293     mport->inb_msg[mbox].mcback = NULL;
0294 
0295     rc = release_resource(mport->inb_msg[mbox].res);
0296     if (rc)
0297         return rc;
0298 
0299     kfree(mport->inb_msg[mbox].res);
0300     mport->inb_msg[mbox].res = NULL;
0301 
0302     return 0;
0303 }
0304 EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
0305 
0306 /**
0307  * rio_request_outb_mbox - request outbound mailbox service
0308  * @mport: RIO master port from which to allocate the mailbox resource
0309  * @dev_id: Device specific pointer to pass on event
0310  * @mbox: Mailbox number to claim
0311  * @entries: Number of entries in outbound mailbox queue
0312  * @moutb: Callback to execute when outbound message is sent
0313  *
0314  * Requests ownership of an outbound mailbox resource and binds
0315  * a callback function to the resource. Returns 0 on success.
0316  */
0317 int rio_request_outb_mbox(struct rio_mport *mport,
0318               void *dev_id,
0319               int mbox,
0320               int entries,
0321               void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
0322 {
0323     int rc = -ENOSYS;
0324     struct resource *res;
0325 
0326     if (!mport->ops->open_outb_mbox)
0327         goto out;
0328 
0329     res = kzalloc(sizeof(*res), GFP_KERNEL);
0330     if (res) {
0331         rio_init_mbox_res(res, mbox, mbox);
0332 
0333         /* Make sure this outbound mailbox isn't in use */
0334         rc = request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
0335                       res);
0336         if (rc < 0) {
0337             kfree(res);
0338             goto out;
0339         }
0340 
0341         mport->outb_msg[mbox].res = res;
0342 
0343         /* Hook the inbound message callback */
0344         mport->outb_msg[mbox].mcback = moutb;
0345 
0346         rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
0347         if (rc) {
0348             mport->outb_msg[mbox].mcback = NULL;
0349             mport->outb_msg[mbox].res = NULL;
0350             release_resource(res);
0351             kfree(res);
0352         }
0353     } else
0354         rc = -ENOMEM;
0355 
0356       out:
0357     return rc;
0358 }
0359 EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
0360 
0361 /**
0362  * rio_release_outb_mbox - release outbound mailbox message service
0363  * @mport: RIO master port from which to release the mailbox resource
0364  * @mbox: Mailbox number to release
0365  *
0366  * Releases ownership of an inbound mailbox resource. Returns 0
0367  * if the request has been satisfied.
0368  */
0369 int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
0370 {
0371     int rc;
0372 
0373     if (!mport->ops->close_outb_mbox || !mport->outb_msg[mbox].res)
0374         return -EINVAL;
0375 
0376     mport->ops->close_outb_mbox(mport, mbox);
0377     mport->outb_msg[mbox].mcback = NULL;
0378 
0379     rc = release_resource(mport->outb_msg[mbox].res);
0380     if (rc)
0381         return rc;
0382 
0383     kfree(mport->outb_msg[mbox].res);
0384     mport->outb_msg[mbox].res = NULL;
0385 
0386     return 0;
0387 }
0388 EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
0389 
0390 /**
0391  * rio_setup_inb_dbell - bind inbound doorbell callback
0392  * @mport: RIO master port to bind the doorbell callback
0393  * @dev_id: Device specific pointer to pass on event
0394  * @res: Doorbell message resource
0395  * @dinb: Callback to execute when doorbell is received
0396  *
0397  * Adds a doorbell resource/callback pair into a port's
0398  * doorbell event list. Returns 0 if the request has been
0399  * satisfied.
0400  */
0401 static int
0402 rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
0403             void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
0404                   u16 info))
0405 {
0406     struct rio_dbell *dbell = kmalloc(sizeof(*dbell), GFP_KERNEL);
0407 
0408     if (!dbell)
0409         return -ENOMEM;
0410 
0411     dbell->res = res;
0412     dbell->dinb = dinb;
0413     dbell->dev_id = dev_id;
0414 
0415     mutex_lock(&mport->lock);
0416     list_add_tail(&dbell->node, &mport->dbells);
0417     mutex_unlock(&mport->lock);
0418     return 0;
0419 }
0420 
0421 /**
0422  * rio_request_inb_dbell - request inbound doorbell message service
0423  * @mport: RIO master port from which to allocate the doorbell resource
0424  * @dev_id: Device specific pointer to pass on event
0425  * @start: Doorbell info range start
0426  * @end: Doorbell info range end
0427  * @dinb: Callback to execute when doorbell is received
0428  *
0429  * Requests ownership of an inbound doorbell resource and binds
0430  * a callback function to the resource. Returns 0 if the request
0431  * has been satisfied.
0432  */
0433 int rio_request_inb_dbell(struct rio_mport *mport,
0434               void *dev_id,
0435               u16 start,
0436               u16 end,
0437               void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
0438                     u16 dst, u16 info))
0439 {
0440     int rc;
0441     struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL);
0442 
0443     if (res) {
0444         rio_init_dbell_res(res, start, end);
0445 
0446         /* Make sure these doorbells aren't in use */
0447         rc = request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
0448                       res);
0449         if (rc < 0) {
0450             kfree(res);
0451             goto out;
0452         }
0453 
0454         /* Hook the doorbell callback */
0455         rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
0456     } else
0457         rc = -ENOMEM;
0458 
0459       out:
0460     return rc;
0461 }
0462 EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
0463 
0464 /**
0465  * rio_release_inb_dbell - release inbound doorbell message service
0466  * @mport: RIO master port from which to release the doorbell resource
0467  * @start: Doorbell info range start
0468  * @end: Doorbell info range end
0469  *
0470  * Releases ownership of an inbound doorbell resource and removes
0471  * callback from the doorbell event list. Returns 0 if the request
0472  * has been satisfied.
0473  */
0474 int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
0475 {
0476     int rc = 0, found = 0;
0477     struct rio_dbell *dbell;
0478 
0479     mutex_lock(&mport->lock);
0480     list_for_each_entry(dbell, &mport->dbells, node) {
0481         if ((dbell->res->start == start) && (dbell->res->end == end)) {
0482             list_del(&dbell->node);
0483             found = 1;
0484             break;
0485         }
0486     }
0487     mutex_unlock(&mport->lock);
0488 
0489     /* If we can't find an exact match, fail */
0490     if (!found) {
0491         rc = -EINVAL;
0492         goto out;
0493     }
0494 
0495     /* Release the doorbell resource */
0496     rc = release_resource(dbell->res);
0497 
0498     /* Free the doorbell event */
0499     kfree(dbell);
0500 
0501       out:
0502     return rc;
0503 }
0504 EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
0505 
0506 /**
0507  * rio_request_outb_dbell - request outbound doorbell message range
0508  * @rdev: RIO device from which to allocate the doorbell resource
0509  * @start: Doorbell message range start
0510  * @end: Doorbell message range end
0511  *
0512  * Requests ownership of a doorbell message range. Returns a resource
0513  * if the request has been satisfied or %NULL on failure.
0514  */
0515 struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
0516                     u16 end)
0517 {
0518     struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
0519 
0520     if (res) {
0521         rio_init_dbell_res(res, start, end);
0522 
0523         /* Make sure these doorbells aren't in use */
0524         if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
0525             < 0) {
0526             kfree(res);
0527             res = NULL;
0528         }
0529     }
0530 
0531     return res;
0532 }
0533 EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
0534 
0535 /**
0536  * rio_release_outb_dbell - release outbound doorbell message range
0537  * @rdev: RIO device from which to release the doorbell resource
0538  * @res: Doorbell resource to be freed
0539  *
0540  * Releases ownership of a doorbell message range. Returns 0 if the
0541  * request has been satisfied.
0542  */
0543 int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
0544 {
0545     int rc = release_resource(res);
0546 
0547     kfree(res);
0548 
0549     return rc;
0550 }
0551 EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
0552 
0553 /**
0554  * rio_add_mport_pw_handler - add port-write message handler into the list
0555  *                            of mport specific pw handlers
0556  * @mport:   RIO master port to bind the portwrite callback
0557  * @context: Handler specific context to pass on event
0558  * @pwcback: Callback to execute when portwrite is received
0559  *
0560  * Returns 0 if the request has been satisfied.
0561  */
0562 int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
0563                  int (*pwcback)(struct rio_mport *mport,
0564                  void *context, union rio_pw_msg *msg, int step))
0565 {
0566     struct rio_pwrite *pwrite = kzalloc(sizeof(*pwrite), GFP_KERNEL);
0567 
0568     if (!pwrite)
0569         return -ENOMEM;
0570 
0571     pwrite->pwcback = pwcback;
0572     pwrite->context = context;
0573     mutex_lock(&mport->lock);
0574     list_add_tail(&pwrite->node, &mport->pwrites);
0575     mutex_unlock(&mport->lock);
0576     return 0;
0577 }
0578 EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
0579 
0580 /**
0581  * rio_del_mport_pw_handler - remove port-write message handler from the list
0582  *                            of mport specific pw handlers
0583  * @mport:   RIO master port to bind the portwrite callback
0584  * @context: Registered handler specific context to pass on event
0585  * @pwcback: Registered callback function
0586  *
0587  * Returns 0 if the request has been satisfied.
0588  */
0589 int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
0590                  int (*pwcback)(struct rio_mport *mport,
0591                  void *context, union rio_pw_msg *msg, int step))
0592 {
0593     int rc = -EINVAL;
0594     struct rio_pwrite *pwrite;
0595 
0596     mutex_lock(&mport->lock);
0597     list_for_each_entry(pwrite, &mport->pwrites, node) {
0598         if (pwrite->pwcback == pwcback && pwrite->context == context) {
0599             list_del(&pwrite->node);
0600             kfree(pwrite);
0601             rc = 0;
0602             break;
0603         }
0604     }
0605     mutex_unlock(&mport->lock);
0606 
0607     return rc;
0608 }
0609 EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
0610 
0611 /**
0612  * rio_request_inb_pwrite - request inbound port-write message service for
0613  *                          specific RapidIO device
0614  * @rdev: RIO device to which register inbound port-write callback routine
0615  * @pwcback: Callback routine to execute when port-write is received
0616  *
0617  * Binds a port-write callback function to the RapidIO device.
0618  * Returns 0 if the request has been satisfied.
0619  */
0620 int rio_request_inb_pwrite(struct rio_dev *rdev,
0621     int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
0622 {
0623     int rc = 0;
0624 
0625     spin_lock(&rio_global_list_lock);
0626     if (rdev->pwcback)
0627         rc = -ENOMEM;
0628     else
0629         rdev->pwcback = pwcback;
0630 
0631     spin_unlock(&rio_global_list_lock);
0632     return rc;
0633 }
0634 EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
0635 
0636 /**
0637  * rio_release_inb_pwrite - release inbound port-write message service
0638  *                          associated with specific RapidIO device
0639  * @rdev: RIO device which registered for inbound port-write callback
0640  *
0641  * Removes callback from the rio_dev structure. Returns 0 if the request
0642  * has been satisfied.
0643  */
0644 int rio_release_inb_pwrite(struct rio_dev *rdev)
0645 {
0646     int rc = -ENOMEM;
0647 
0648     spin_lock(&rio_global_list_lock);
0649     if (rdev->pwcback) {
0650         rdev->pwcback = NULL;
0651         rc = 0;
0652     }
0653 
0654     spin_unlock(&rio_global_list_lock);
0655     return rc;
0656 }
0657 EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
0658 
0659 /**
0660  * rio_pw_enable - Enables/disables port-write handling by a master port
0661  * @mport: Master port associated with port-write handling
0662  * @enable:  1=enable,  0=disable
0663  */
0664 void rio_pw_enable(struct rio_mport *mport, int enable)
0665 {
0666     if (mport->ops->pwenable) {
0667         mutex_lock(&mport->lock);
0668 
0669         if ((enable && ++mport->pwe_refcnt == 1) ||
0670             (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
0671             mport->ops->pwenable(mport, enable);
0672         mutex_unlock(&mport->lock);
0673     }
0674 }
0675 EXPORT_SYMBOL_GPL(rio_pw_enable);
0676 
0677 /**
0678  * rio_map_inb_region -- Map inbound memory region.
0679  * @mport: Master port.
0680  * @local: physical address of memory region to be mapped
0681  * @rbase: RIO base address assigned to this window
0682  * @size: Size of the memory region
0683  * @rflags: Flags for mapping.
0684  *
0685  * Return: 0 -- Success.
0686  *
0687  * This function will create the mapping from RIO space to local memory.
0688  */
0689 int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
0690             u64 rbase, u32 size, u32 rflags)
0691 {
0692     int rc;
0693     unsigned long flags;
0694 
0695     if (!mport->ops->map_inb)
0696         return -1;
0697     spin_lock_irqsave(&rio_mmap_lock, flags);
0698     rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
0699     spin_unlock_irqrestore(&rio_mmap_lock, flags);
0700     return rc;
0701 }
0702 EXPORT_SYMBOL_GPL(rio_map_inb_region);
0703 
0704 /**
0705  * rio_unmap_inb_region -- Unmap the inbound memory region
0706  * @mport: Master port
0707  * @lstart: physical address of memory region to be unmapped
0708  */
0709 void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
0710 {
0711     unsigned long flags;
0712     if (!mport->ops->unmap_inb)
0713         return;
0714     spin_lock_irqsave(&rio_mmap_lock, flags);
0715     mport->ops->unmap_inb(mport, lstart);
0716     spin_unlock_irqrestore(&rio_mmap_lock, flags);
0717 }
0718 EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
0719 
0720 /**
0721  * rio_map_outb_region -- Map outbound memory region.
0722  * @mport: Master port.
0723  * @destid: destination id window points to
0724  * @rbase: RIO base address window translates to
0725  * @size: Size of the memory region
0726  * @rflags: Flags for mapping.
0727  * @local: physical address of memory region mapped
0728  *
0729  * Return: 0 -- Success.
0730  *
0731  * This function will create the mapping from RIO space to local memory.
0732  */
0733 int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
0734             u32 size, u32 rflags, dma_addr_t *local)
0735 {
0736     int rc;
0737     unsigned long flags;
0738 
0739     if (!mport->ops->map_outb)
0740         return -ENODEV;
0741 
0742     spin_lock_irqsave(&rio_mmap_lock, flags);
0743     rc = mport->ops->map_outb(mport, destid, rbase, size,
0744         rflags, local);
0745     spin_unlock_irqrestore(&rio_mmap_lock, flags);
0746 
0747     return rc;
0748 }
0749 EXPORT_SYMBOL_GPL(rio_map_outb_region);
0750 
0751 /**
0752  * rio_unmap_outb_region -- Unmap the inbound memory region
0753  * @mport: Master port
0754  * @destid: destination id mapping points to
0755  * @rstart: RIO base address window translates to
0756  */
0757 void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
0758 {
0759     unsigned long flags;
0760 
0761     if (!mport->ops->unmap_outb)
0762         return;
0763 
0764     spin_lock_irqsave(&rio_mmap_lock, flags);
0765     mport->ops->unmap_outb(mport, destid, rstart);
0766     spin_unlock_irqrestore(&rio_mmap_lock, flags);
0767 }
0768 EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
0769 
0770 /**
0771  * rio_mport_get_physefb - Helper function that returns register offset
0772  *                      for Physical Layer Extended Features Block.
0773  * @port: Master port to issue transaction
0774  * @local: Indicate a local master port or remote device access
0775  * @destid: Destination ID of the device
0776  * @hopcount: Number of switch hops to the device
0777  * @rmap: pointer to location to store register map type info
0778  */
0779 u32
0780 rio_mport_get_physefb(struct rio_mport *port, int local,
0781               u16 destid, u8 hopcount, u32 *rmap)
0782 {
0783     u32 ext_ftr_ptr;
0784     u32 ftr_header;
0785 
0786     ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
0787 
0788     while (ext_ftr_ptr)  {
0789         if (local)
0790             rio_local_read_config_32(port, ext_ftr_ptr,
0791                          &ftr_header);
0792         else
0793             rio_mport_read_config_32(port, destid, hopcount,
0794                          ext_ftr_ptr, &ftr_header);
0795 
0796         ftr_header = RIO_GET_BLOCK_ID(ftr_header);
0797         switch (ftr_header) {
0798 
0799         case RIO_EFB_SER_EP_ID:
0800         case RIO_EFB_SER_EP_REC_ID:
0801         case RIO_EFB_SER_EP_FREE_ID:
0802         case RIO_EFB_SER_EP_M1_ID:
0803         case RIO_EFB_SER_EP_SW_M1_ID:
0804         case RIO_EFB_SER_EPF_M1_ID:
0805         case RIO_EFB_SER_EPF_SW_M1_ID:
0806             *rmap = 1;
0807             return ext_ftr_ptr;
0808 
0809         case RIO_EFB_SER_EP_M2_ID:
0810         case RIO_EFB_SER_EP_SW_M2_ID:
0811         case RIO_EFB_SER_EPF_M2_ID:
0812         case RIO_EFB_SER_EPF_SW_M2_ID:
0813             *rmap = 2;
0814             return ext_ftr_ptr;
0815 
0816         default:
0817             break;
0818         }
0819 
0820         ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
0821                         hopcount, ext_ftr_ptr);
0822     }
0823 
0824     return ext_ftr_ptr;
0825 }
0826 EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
0827 
0828 /**
0829  * rio_get_comptag - Begin or continue searching for a RIO device by component tag
0830  * @comp_tag: RIO component tag to match
0831  * @from: Previous RIO device found in search, or %NULL for new search
0832  *
0833  * Iterates through the list of known RIO devices. If a RIO device is
0834  * found with a matching @comp_tag, a pointer to its device
0835  * structure is returned. Otherwise, %NULL is returned. A new search
0836  * is initiated by passing %NULL to the @from argument. Otherwise, if
0837  * @from is not %NULL, searches continue from next device on the global
0838  * list.
0839  */
0840 struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
0841 {
0842     struct list_head *n;
0843     struct rio_dev *rdev;
0844 
0845     spin_lock(&rio_global_list_lock);
0846     n = from ? from->global_list.next : rio_devices.next;
0847 
0848     while (n && (n != &rio_devices)) {
0849         rdev = rio_dev_g(n);
0850         if (rdev->comp_tag == comp_tag)
0851             goto exit;
0852         n = n->next;
0853     }
0854     rdev = NULL;
0855 exit:
0856     spin_unlock(&rio_global_list_lock);
0857     return rdev;
0858 }
0859 EXPORT_SYMBOL_GPL(rio_get_comptag);
0860 
0861 /**
0862  * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
0863  * @rdev: Pointer to RIO device control structure
0864  * @pnum: Switch port number to set LOCKOUT bit
0865  * @lock: Operation : set (=1) or clear (=0)
0866  */
0867 int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
0868 {
0869     u32 regval;
0870 
0871     rio_read_config_32(rdev,
0872         RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
0873         &regval);
0874     if (lock)
0875         regval |= RIO_PORT_N_CTL_LOCKOUT;
0876     else
0877         regval &= ~RIO_PORT_N_CTL_LOCKOUT;
0878 
0879     rio_write_config_32(rdev,
0880         RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
0881         regval);
0882     return 0;
0883 }
0884 EXPORT_SYMBOL_GPL(rio_set_port_lockout);
0885 
0886 /**
0887  * rio_enable_rx_tx_port - enable input receiver and output transmitter of
0888  * given port
0889  * @port: Master port associated with the RIO network
0890  * @local: local=1 select local port otherwise a far device is reached
0891  * @destid: Destination ID of the device to check host bit
0892  * @hopcount: Number of hops to reach the target
0893  * @port_num: Port (-number on switch) to enable on a far end device
0894  *
0895  * Returns 0 or 1 from on General Control Command and Status Register
0896  * (EXT_PTR+0x3C)
0897  */
0898 int rio_enable_rx_tx_port(struct rio_mport *port,
0899               int local, u16 destid,
0900               u8 hopcount, u8 port_num)
0901 {
0902 #ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
0903     u32 regval;
0904     u32 ext_ftr_ptr;
0905     u32 rmap;
0906 
0907     /*
0908     * enable rx input tx output port
0909     */
0910     pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
0911          "%d, port_num = %d)\n", local, destid, hopcount, port_num);
0912 
0913     ext_ftr_ptr = rio_mport_get_physefb(port, local, destid,
0914                         hopcount, &rmap);
0915 
0916     if (local) {
0917         rio_local_read_config_32(port,
0918                 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap),
0919                 &regval);
0920     } else {
0921         if (rio_mport_read_config_32(port, destid, hopcount,
0922             ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
0923                 &regval) < 0)
0924             return -EIO;
0925     }
0926 
0927     regval = regval | RIO_PORT_N_CTL_EN_RX | RIO_PORT_N_CTL_EN_TX;
0928 
0929     if (local) {
0930         rio_local_write_config_32(port,
0931             ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), regval);
0932     } else {
0933         if (rio_mport_write_config_32(port, destid, hopcount,
0934             ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
0935                 regval) < 0)
0936             return -EIO;
0937     }
0938 #endif
0939     return 0;
0940 }
0941 EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
0942 
0943 
0944 /**
0945  * rio_chk_dev_route - Validate route to the specified device.
0946  * @rdev:  RIO device failed to respond
0947  * @nrdev: Last active device on the route to rdev
0948  * @npnum: nrdev's port number on the route to rdev
0949  *
0950  * Follows a route to the specified RIO device to determine the last available
0951  * device (and corresponding RIO port) on the route.
0952  */
0953 static int
0954 rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
0955 {
0956     u32 result;
0957     int p_port, rc = -EIO;
0958     struct rio_dev *prev = NULL;
0959 
0960     /* Find switch with failed RIO link */
0961     while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
0962         if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
0963             prev = rdev->prev;
0964             break;
0965         }
0966         rdev = rdev->prev;
0967     }
0968 
0969     if (!prev)
0970         goto err_out;
0971 
0972     p_port = prev->rswitch->route_table[rdev->destid];
0973 
0974     if (p_port != RIO_INVALID_ROUTE) {
0975         pr_debug("RIO: link failed on [%s]-P%d\n",
0976              rio_name(prev), p_port);
0977         *nrdev = prev;
0978         *npnum = p_port;
0979         rc = 0;
0980     } else
0981         pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
0982 err_out:
0983     return rc;
0984 }
0985 
0986 /**
0987  * rio_mport_chk_dev_access - Validate access to the specified device.
0988  * @mport: Master port to send transactions
0989  * @destid: Device destination ID in network
0990  * @hopcount: Number of hops into the network
0991  */
0992 int
0993 rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
0994 {
0995     int i = 0;
0996     u32 tmp;
0997 
0998     while (rio_mport_read_config_32(mport, destid, hopcount,
0999                     RIO_DEV_ID_CAR, &tmp)) {
1000         i++;
1001         if (i == RIO_MAX_CHK_RETRY)
1002             return -EIO;
1003         mdelay(1);
1004     }
1005 
1006     return 0;
1007 }
1008 EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
1009 
1010 /**
1011  * rio_chk_dev_access - Validate access to the specified device.
1012  * @rdev: Pointer to RIO device control structure
1013  */
1014 static int rio_chk_dev_access(struct rio_dev *rdev)
1015 {
1016     return rio_mport_chk_dev_access(rdev->net->hport,
1017                     rdev->destid, rdev->hopcount);
1018 }
1019 
1020 /**
1021  * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
1022  *                        returns link-response (if requested).
1023  * @rdev: RIO devive to issue Input-status command
1024  * @pnum: Device port number to issue the command
1025  * @lnkresp: Response from a link partner
1026  */
1027 static int
1028 rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
1029 {
1030     u32 regval;
1031     int checkcount;
1032 
1033     if (lnkresp) {
1034         /* Read from link maintenance response register
1035          * to clear valid bit */
1036         rio_read_config_32(rdev,
1037             RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1038             &regval);
1039         udelay(50);
1040     }
1041 
1042     /* Issue Input-status command */
1043     rio_write_config_32(rdev,
1044         RIO_DEV_PORT_N_MNT_REQ_CSR(rdev, pnum),
1045         RIO_MNT_REQ_CMD_IS);
1046 
1047     /* Exit if the response is not expected */
1048     if (!lnkresp)
1049         return 0;
1050 
1051     checkcount = 3;
1052     while (checkcount--) {
1053         udelay(50);
1054         rio_read_config_32(rdev,
1055             RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1056             &regval);
1057         if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
1058             *lnkresp = regval;
1059             return 0;
1060         }
1061     }
1062 
1063     return -EIO;
1064 }
1065 
1066 /**
1067  * rio_clr_err_stopped - Clears port Error-stopped states.
1068  * @rdev: Pointer to RIO device control structure
1069  * @pnum: Switch port number to clear errors
1070  * @err_status: port error status (if 0 reads register from device)
1071  *
1072  * TODO: Currently this routine is not compatible with recovery process
1073  * specified for idt_gen3 RapidIO switch devices. It has to be reviewed
1074  * to implement universal recovery process that is compatible full range
1075  * off available devices.
1076  * IDT gen3 switch driver now implements HW-specific error handler that
1077  * issues soft port reset to the port to reset ERR_STOP bits and ackIDs.
1078  */
1079 static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
1080 {
1081     struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
1082     u32 regval;
1083     u32 far_ackid, far_linkstat, near_ackid;
1084 
1085     if (err_status == 0)
1086         rio_read_config_32(rdev,
1087             RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1088             &err_status);
1089 
1090     if (err_status & RIO_PORT_N_ERR_STS_OUT_ES) {
1091         pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
1092         /*
1093          * Send a Link-Request/Input-Status control symbol
1094          */
1095         if (rio_get_input_status(rdev, pnum, &regval)) {
1096             pr_debug("RIO_EM: Input-status response timeout\n");
1097             goto rd_err;
1098         }
1099 
1100         pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
1101              pnum, regval);
1102         far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
1103         far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
1104         rio_read_config_32(rdev,
1105             RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1106             &regval);
1107         pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
1108         near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
1109         pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
1110              " near_ackID=0x%02x\n",
1111             pnum, far_ackid, far_linkstat, near_ackid);
1112 
1113         /*
1114          * If required, synchronize ackIDs of near and
1115          * far sides.
1116          */
1117         if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
1118             (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
1119             /* Align near outstanding/outbound ackIDs with
1120              * far inbound.
1121              */
1122             rio_write_config_32(rdev,
1123                 RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1124                 (near_ackid << 24) |
1125                     (far_ackid << 8) | far_ackid);
1126             /* Align far outstanding/outbound ackIDs with
1127              * near inbound.
1128              */
1129             far_ackid++;
1130             if (!nextdev) {
1131                 pr_debug("RIO_EM: nextdev pointer == NULL\n");
1132                 goto rd_err;
1133             }
1134 
1135             rio_write_config_32(nextdev,
1136                 RIO_DEV_PORT_N_ACK_STS_CSR(nextdev,
1137                     RIO_GET_PORT_NUM(nextdev->swpinfo)),
1138                 (far_ackid << 24) |
1139                 (near_ackid << 8) | near_ackid);
1140         }
1141 rd_err:
1142         rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1143                    &err_status);
1144         pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1145     }
1146 
1147     if ((err_status & RIO_PORT_N_ERR_STS_INP_ES) && nextdev) {
1148         pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
1149         rio_get_input_status(nextdev,
1150                      RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
1151         udelay(50);
1152 
1153         rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1154                    &err_status);
1155         pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1156     }
1157 
1158     return (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1159                   RIO_PORT_N_ERR_STS_INP_ES)) ? 1 : 0;
1160 }
1161 
1162 /**
1163  * rio_inb_pwrite_handler - inbound port-write message handler
1164  * @mport:  mport device associated with port-write
1165  * @pw_msg: pointer to inbound port-write message
1166  *
1167  * Processes an inbound port-write message. Returns 0 if the request
1168  * has been satisfied.
1169  */
1170 int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
1171 {
1172     struct rio_dev *rdev;
1173     u32 err_status, em_perrdet, em_ltlerrdet;
1174     int rc, portnum;
1175     struct rio_pwrite *pwrite;
1176 
1177 #ifdef DEBUG_PW
1178     {
1179         u32 i;
1180 
1181         pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
1182         for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
1183             pr_debug("0x%02x: %08x %08x %08x %08x\n",
1184                 i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
1185                 pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
1186         }
1187     }
1188 #endif
1189 
1190     rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
1191     if (rdev) {
1192         pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
1193     } else {
1194         pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
1195             __func__, pw_msg->em.comptag);
1196     }
1197 
1198     /* Call a device-specific handler (if it is registered for the device).
1199      * This may be the service for endpoints that send device-specific
1200      * port-write messages. End-point messages expected to be handled
1201      * completely by EP specific device driver.
1202      * For switches rc==0 signals that no standard processing required.
1203      */
1204     if (rdev && rdev->pwcback) {
1205         rc = rdev->pwcback(rdev, pw_msg, 0);
1206         if (rc == 0)
1207             return 0;
1208     }
1209 
1210     mutex_lock(&mport->lock);
1211     list_for_each_entry(pwrite, &mport->pwrites, node)
1212         pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
1213     mutex_unlock(&mport->lock);
1214 
1215     if (!rdev)
1216         return 0;
1217 
1218     /*
1219      * FIXME: The code below stays as it was before for now until we decide
1220      * how to do default PW handling in combination with per-mport callbacks
1221      */
1222 
1223     portnum = pw_msg->em.is_port & 0xFF;
1224 
1225     /* Check if device and route to it are functional:
1226      * Sometimes devices may send PW message(s) just before being
1227      * powered down (or link being lost).
1228      */
1229     if (rio_chk_dev_access(rdev)) {
1230         pr_debug("RIO: device access failed - get link partner\n");
1231         /* Scan route to the device and identify failed link.
1232          * This will replace device and port reported in PW message.
1233          * PW message should not be used after this point.
1234          */
1235         if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
1236             pr_err("RIO: Route trace for %s failed\n",
1237                 rio_name(rdev));
1238             return -EIO;
1239         }
1240         pw_msg = NULL;
1241     }
1242 
1243     /* For End-point devices processing stops here */
1244     if (!(rdev->pef & RIO_PEF_SWITCH))
1245         return 0;
1246 
1247     if (rdev->phys_efptr == 0) {
1248         pr_err("RIO_PW: Bad switch initialization for %s\n",
1249             rio_name(rdev));
1250         return 0;
1251     }
1252 
1253     /*
1254      * Process the port-write notification from switch
1255      */
1256     if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
1257         rdev->rswitch->ops->em_handle(rdev, portnum);
1258 
1259     rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1260                &err_status);
1261     pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
1262 
1263     if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
1264 
1265         if (!(rdev->rswitch->port_ok & (1 << portnum))) {
1266             rdev->rswitch->port_ok |= (1 << portnum);
1267             rio_set_port_lockout(rdev, portnum, 0);
1268             /* Schedule Insertion Service */
1269             pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
1270                    rio_name(rdev), portnum);
1271         }
1272 
1273         /* Clear error-stopped states (if reported).
1274          * Depending on the link partner state, two attempts
1275          * may be needed for successful recovery.
1276          */
1277         if (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1278                   RIO_PORT_N_ERR_STS_INP_ES)) {
1279             if (rio_clr_err_stopped(rdev, portnum, err_status))
1280                 rio_clr_err_stopped(rdev, portnum, 0);
1281         }
1282     }  else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
1283 
1284         if (rdev->rswitch->port_ok & (1 << portnum)) {
1285             rdev->rswitch->port_ok &= ~(1 << portnum);
1286             rio_set_port_lockout(rdev, portnum, 1);
1287 
1288             if (rdev->phys_rmap == 1) {
1289             rio_write_config_32(rdev,
1290                 RIO_DEV_PORT_N_ACK_STS_CSR(rdev, portnum),
1291                 RIO_PORT_N_ACK_CLEAR);
1292             } else {
1293                 rio_write_config_32(rdev,
1294                     RIO_DEV_PORT_N_OB_ACK_CSR(rdev, portnum),
1295                     RIO_PORT_N_OB_ACK_CLEAR);
1296                 rio_write_config_32(rdev,
1297                     RIO_DEV_PORT_N_IB_ACK_CSR(rdev, portnum),
1298                     0);
1299             }
1300 
1301             /* Schedule Extraction Service */
1302             pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
1303                    rio_name(rdev), portnum);
1304         }
1305     }
1306 
1307     rio_read_config_32(rdev,
1308         rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
1309     if (em_perrdet) {
1310         pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
1311              portnum, em_perrdet);
1312         /* Clear EM Port N Error Detect CSR */
1313         rio_write_config_32(rdev,
1314             rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
1315     }
1316 
1317     rio_read_config_32(rdev,
1318         rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1319     if (em_ltlerrdet) {
1320         pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1321              em_ltlerrdet);
1322         /* Clear EM L/T Layer Error Detect CSR */
1323         rio_write_config_32(rdev,
1324             rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1325     }
1326 
1327     /* Clear remaining error bits and Port-Write Pending bit */
1328     rio_write_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1329                 err_status);
1330 
1331     return 0;
1332 }
1333 EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1334 
1335 /**
1336  * rio_mport_get_efb - get pointer to next extended features block
1337  * @port: Master port to issue transaction
1338  * @local: Indicate a local master port or remote device access
1339  * @destid: Destination ID of the device
1340  * @hopcount: Number of switch hops to the device
1341  * @from: Offset of  current Extended Feature block header (if 0 starts
1342  * from ExtFeaturePtr)
1343  */
1344 u32
1345 rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1346               u8 hopcount, u32 from)
1347 {
1348     u32 reg_val;
1349 
1350     if (from == 0) {
1351         if (local)
1352             rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1353                          &reg_val);
1354         else
1355             rio_mport_read_config_32(port, destid, hopcount,
1356                          RIO_ASM_INFO_CAR, &reg_val);
1357         return reg_val & RIO_EXT_FTR_PTR_MASK;
1358     } else {
1359         if (local)
1360             rio_local_read_config_32(port, from, &reg_val);
1361         else
1362             rio_mport_read_config_32(port, destid, hopcount,
1363                          from, &reg_val);
1364         return RIO_GET_BLOCK_ID(reg_val);
1365     }
1366 }
1367 EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1368 
1369 /**
1370  * rio_mport_get_feature - query for devices' extended features
1371  * @port: Master port to issue transaction
1372  * @local: Indicate a local master port or remote device access
1373  * @destid: Destination ID of the device
1374  * @hopcount: Number of switch hops to the device
1375  * @ftr: Extended feature code
1376  *
1377  * Tell if a device supports a given RapidIO capability.
1378  * Returns the offset of the requested extended feature
1379  * block within the device's RIO configuration space or
1380  * 0 in case the device does not support it.
1381  */
1382 u32
1383 rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1384               u8 hopcount, int ftr)
1385 {
1386     u32 asm_info, ext_ftr_ptr, ftr_header;
1387 
1388     if (local)
1389         rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1390     else
1391         rio_mport_read_config_32(port, destid, hopcount,
1392                      RIO_ASM_INFO_CAR, &asm_info);
1393 
1394     ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1395 
1396     while (ext_ftr_ptr) {
1397         if (local)
1398             rio_local_read_config_32(port, ext_ftr_ptr,
1399                          &ftr_header);
1400         else
1401             rio_mport_read_config_32(port, destid, hopcount,
1402                          ext_ftr_ptr, &ftr_header);
1403         if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1404             return ext_ftr_ptr;
1405 
1406         ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header);
1407         if (!ext_ftr_ptr)
1408             break;
1409     }
1410 
1411     return 0;
1412 }
1413 EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1414 
1415 /**
1416  * rio_std_route_add_entry - Add switch route table entry using standard
1417  *   registers defined in RIO specification rev.1.3
1418  * @mport: Master port to issue transaction
1419  * @destid: Destination ID of the device
1420  * @hopcount: Number of switch hops to the device
1421  * @table: routing table ID (global or port-specific)
1422  * @route_destid: destID entry in the RT
1423  * @route_port: destination port for specified destID
1424  */
1425 static int
1426 rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1427             u16 table, u16 route_destid, u8 route_port)
1428 {
1429     if (table == RIO_GLOBAL_TABLE) {
1430         rio_mport_write_config_32(mport, destid, hopcount,
1431                 RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1432                 (u32)route_destid);
1433         rio_mport_write_config_32(mport, destid, hopcount,
1434                 RIO_STD_RTE_CONF_PORT_SEL_CSR,
1435                 (u32)route_port);
1436     }
1437 
1438     udelay(10);
1439     return 0;
1440 }
1441 
1442 /**
1443  * rio_std_route_get_entry - Read switch route table entry (port number)
1444  *   associated with specified destID using standard registers defined in RIO
1445  *   specification rev.1.3
1446  * @mport: Master port to issue transaction
1447  * @destid: Destination ID of the device
1448  * @hopcount: Number of switch hops to the device
1449  * @table: routing table ID (global or port-specific)
1450  * @route_destid: destID entry in the RT
1451  * @route_port: returned destination port for specified destID
1452  */
1453 static int
1454 rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1455             u16 table, u16 route_destid, u8 *route_port)
1456 {
1457     u32 result;
1458 
1459     if (table == RIO_GLOBAL_TABLE) {
1460         rio_mport_write_config_32(mport, destid, hopcount,
1461                 RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1462         rio_mport_read_config_32(mport, destid, hopcount,
1463                 RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1464 
1465         *route_port = (u8)result;
1466     }
1467 
1468     return 0;
1469 }
1470 
1471 /**
1472  * rio_std_route_clr_table - Clear swotch route table using standard registers
1473  *   defined in RIO specification rev.1.3.
1474  * @mport: Master port to issue transaction
1475  * @destid: Destination ID of the device
1476  * @hopcount: Number of switch hops to the device
1477  * @table: routing table ID (global or port-specific)
1478  */
1479 static int
1480 rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1481             u16 table)
1482 {
1483     u32 max_destid = 0xff;
1484     u32 i, pef, id_inc = 1, ext_cfg = 0;
1485     u32 port_sel = RIO_INVALID_ROUTE;
1486 
1487     if (table == RIO_GLOBAL_TABLE) {
1488         rio_mport_read_config_32(mport, destid, hopcount,
1489                      RIO_PEF_CAR, &pef);
1490 
1491         if (mport->sys_size) {
1492             rio_mport_read_config_32(mport, destid, hopcount,
1493                          RIO_SWITCH_RT_LIMIT,
1494                          &max_destid);
1495             max_destid &= RIO_RT_MAX_DESTID;
1496         }
1497 
1498         if (pef & RIO_PEF_EXT_RT) {
1499             ext_cfg = 0x80000000;
1500             id_inc = 4;
1501             port_sel = (RIO_INVALID_ROUTE << 24) |
1502                    (RIO_INVALID_ROUTE << 16) |
1503                    (RIO_INVALID_ROUTE << 8) |
1504                    RIO_INVALID_ROUTE;
1505         }
1506 
1507         for (i = 0; i <= max_destid;) {
1508             rio_mport_write_config_32(mport, destid, hopcount,
1509                     RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1510                     ext_cfg | i);
1511             rio_mport_write_config_32(mport, destid, hopcount,
1512                     RIO_STD_RTE_CONF_PORT_SEL_CSR,
1513                     port_sel);
1514             i += id_inc;
1515         }
1516     }
1517 
1518     udelay(10);
1519     return 0;
1520 }
1521 
1522 /**
1523  * rio_lock_device - Acquires host device lock for specified device
1524  * @port: Master port to send transaction
1525  * @destid: Destination ID for device/switch
1526  * @hopcount: Hopcount to reach switch
1527  * @wait_ms: Max wait time in msec (0 = no timeout)
1528  *
1529  * Attepts to acquire host device lock for specified device
1530  * Returns 0 if device lock acquired or EINVAL if timeout expires.
1531  */
1532 int rio_lock_device(struct rio_mport *port, u16 destid,
1533             u8 hopcount, int wait_ms)
1534 {
1535     u32 result;
1536     int tcnt = 0;
1537 
1538     /* Attempt to acquire device lock */
1539     rio_mport_write_config_32(port, destid, hopcount,
1540                   RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1541     rio_mport_read_config_32(port, destid, hopcount,
1542                  RIO_HOST_DID_LOCK_CSR, &result);
1543 
1544     while (result != port->host_deviceid) {
1545         if (wait_ms != 0 && tcnt == wait_ms) {
1546             pr_debug("RIO: timeout when locking device %x:%x\n",
1547                 destid, hopcount);
1548             return -EINVAL;
1549         }
1550 
1551         /* Delay a bit */
1552         mdelay(1);
1553         tcnt++;
1554         /* Try to acquire device lock again */
1555         rio_mport_write_config_32(port, destid,
1556             hopcount,
1557             RIO_HOST_DID_LOCK_CSR,
1558             port->host_deviceid);
1559         rio_mport_read_config_32(port, destid,
1560             hopcount,
1561             RIO_HOST_DID_LOCK_CSR, &result);
1562     }
1563 
1564     return 0;
1565 }
1566 EXPORT_SYMBOL_GPL(rio_lock_device);
1567 
1568 /**
1569  * rio_unlock_device - Releases host device lock for specified device
1570  * @port: Master port to send transaction
1571  * @destid: Destination ID for device/switch
1572  * @hopcount: Hopcount to reach switch
1573  *
1574  * Returns 0 if device lock released or EINVAL if fails.
1575  */
1576 int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1577 {
1578     u32 result;
1579 
1580     /* Release device lock */
1581     rio_mport_write_config_32(port, destid,
1582                   hopcount,
1583                   RIO_HOST_DID_LOCK_CSR,
1584                   port->host_deviceid);
1585     rio_mport_read_config_32(port, destid, hopcount,
1586         RIO_HOST_DID_LOCK_CSR, &result);
1587     if ((result & 0xffff) != 0xffff) {
1588         pr_debug("RIO: badness when releasing device lock %x:%x\n",
1589              destid, hopcount);
1590         return -EINVAL;
1591     }
1592 
1593     return 0;
1594 }
1595 EXPORT_SYMBOL_GPL(rio_unlock_device);
1596 
1597 /**
1598  * rio_route_add_entry- Add a route entry to a switch routing table
1599  * @rdev: RIO device
1600  * @table: Routing table ID
1601  * @route_destid: Destination ID to be routed
1602  * @route_port: Port number to be routed
1603  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1604  *
1605  * If available calls the switch specific add_entry() method to add a route
1606  * entry into a switch routing table. Otherwise uses standard RT update method
1607  * as defined by RapidIO specification. A specific routing table can be selected
1608  * using the @table argument if a switch has per port routing tables or
1609  * the standard (or global) table may be used by passing
1610  * %RIO_GLOBAL_TABLE in @table.
1611  *
1612  * Returns %0 on success or %-EINVAL on failure.
1613  */
1614 int rio_route_add_entry(struct rio_dev *rdev,
1615             u16 table, u16 route_destid, u8 route_port, int lock)
1616 {
1617     int rc = -EINVAL;
1618     struct rio_switch_ops *ops = rdev->rswitch->ops;
1619 
1620     if (lock) {
1621         rc = rio_lock_device(rdev->net->hport, rdev->destid,
1622                      rdev->hopcount, 1000);
1623         if (rc)
1624             return rc;
1625     }
1626 
1627     spin_lock(&rdev->rswitch->lock);
1628 
1629     if (!ops || !ops->add_entry) {
1630         rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1631                          rdev->hopcount, table,
1632                          route_destid, route_port);
1633     } else if (try_module_get(ops->owner)) {
1634         rc = ops->add_entry(rdev->net->hport, rdev->destid,
1635                     rdev->hopcount, table, route_destid,
1636                     route_port);
1637         module_put(ops->owner);
1638     }
1639 
1640     spin_unlock(&rdev->rswitch->lock);
1641 
1642     if (lock)
1643         rio_unlock_device(rdev->net->hport, rdev->destid,
1644                   rdev->hopcount);
1645 
1646     return rc;
1647 }
1648 EXPORT_SYMBOL_GPL(rio_route_add_entry);
1649 
1650 /**
1651  * rio_route_get_entry- Read an entry from a switch routing table
1652  * @rdev: RIO device
1653  * @table: Routing table ID
1654  * @route_destid: Destination ID to be routed
1655  * @route_port: Pointer to read port number into
1656  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1657  *
1658  * If available calls the switch specific get_entry() method to fetch a route
1659  * entry from a switch routing table. Otherwise uses standard RT read method
1660  * as defined by RapidIO specification. A specific routing table can be selected
1661  * using the @table argument if a switch has per port routing tables or
1662  * the standard (or global) table may be used by passing
1663  * %RIO_GLOBAL_TABLE in @table.
1664  *
1665  * Returns %0 on success or %-EINVAL on failure.
1666  */
1667 int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1668             u16 route_destid, u8 *route_port, int lock)
1669 {
1670     int rc = -EINVAL;
1671     struct rio_switch_ops *ops = rdev->rswitch->ops;
1672 
1673     if (lock) {
1674         rc = rio_lock_device(rdev->net->hport, rdev->destid,
1675                      rdev->hopcount, 1000);
1676         if (rc)
1677             return rc;
1678     }
1679 
1680     spin_lock(&rdev->rswitch->lock);
1681 
1682     if (!ops || !ops->get_entry) {
1683         rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1684                          rdev->hopcount, table,
1685                          route_destid, route_port);
1686     } else if (try_module_get(ops->owner)) {
1687         rc = ops->get_entry(rdev->net->hport, rdev->destid,
1688                     rdev->hopcount, table, route_destid,
1689                     route_port);
1690         module_put(ops->owner);
1691     }
1692 
1693     spin_unlock(&rdev->rswitch->lock);
1694 
1695     if (lock)
1696         rio_unlock_device(rdev->net->hport, rdev->destid,
1697                   rdev->hopcount);
1698     return rc;
1699 }
1700 EXPORT_SYMBOL_GPL(rio_route_get_entry);
1701 
1702 /**
1703  * rio_route_clr_table - Clear a switch routing table
1704  * @rdev: RIO device
1705  * @table: Routing table ID
1706  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1707  *
1708  * If available calls the switch specific clr_table() method to clear a switch
1709  * routing table. Otherwise uses standard RT write method as defined by RapidIO
1710  * specification. A specific routing table can be selected using the @table
1711  * argument if a switch has per port routing tables or the standard (or global)
1712  * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1713  *
1714  * Returns %0 on success or %-EINVAL on failure.
1715  */
1716 int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1717 {
1718     int rc = -EINVAL;
1719     struct rio_switch_ops *ops = rdev->rswitch->ops;
1720 
1721     if (lock) {
1722         rc = rio_lock_device(rdev->net->hport, rdev->destid,
1723                      rdev->hopcount, 1000);
1724         if (rc)
1725             return rc;
1726     }
1727 
1728     spin_lock(&rdev->rswitch->lock);
1729 
1730     if (!ops || !ops->clr_table) {
1731         rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1732                          rdev->hopcount, table);
1733     } else if (try_module_get(ops->owner)) {
1734         rc = ops->clr_table(rdev->net->hport, rdev->destid,
1735                     rdev->hopcount, table);
1736 
1737         module_put(ops->owner);
1738     }
1739 
1740     spin_unlock(&rdev->rswitch->lock);
1741 
1742     if (lock)
1743         rio_unlock_device(rdev->net->hport, rdev->destid,
1744                   rdev->hopcount);
1745 
1746     return rc;
1747 }
1748 EXPORT_SYMBOL_GPL(rio_route_clr_table);
1749 
1750 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
1751 
1752 static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1753 {
1754     struct rio_mport *mport = arg;
1755 
1756     /* Check that DMA device belongs to the right MPORT */
1757     return mport == container_of(chan->device, struct rio_mport, dma);
1758 }
1759 
1760 /**
1761  * rio_request_mport_dma - request RapidIO capable DMA channel associated
1762  *   with specified local RapidIO mport device.
1763  * @mport: RIO mport to perform DMA data transfers
1764  *
1765  * Returns pointer to allocated DMA channel or NULL if failed.
1766  */
1767 struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
1768 {
1769     dma_cap_mask_t mask;
1770 
1771     dma_cap_zero(mask);
1772     dma_cap_set(DMA_SLAVE, mask);
1773     return dma_request_channel(mask, rio_chan_filter, mport);
1774 }
1775 EXPORT_SYMBOL_GPL(rio_request_mport_dma);
1776 
1777 /**
1778  * rio_request_dma - request RapidIO capable DMA channel that supports
1779  *   specified target RapidIO device.
1780  * @rdev: RIO device associated with DMA transfer
1781  *
1782  * Returns pointer to allocated DMA channel or NULL if failed.
1783  */
1784 struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1785 {
1786     return rio_request_mport_dma(rdev->net->hport);
1787 }
1788 EXPORT_SYMBOL_GPL(rio_request_dma);
1789 
1790 /**
1791  * rio_release_dma - release specified DMA channel
1792  * @dchan: DMA channel to release
1793  */
1794 void rio_release_dma(struct dma_chan *dchan)
1795 {
1796     dma_release_channel(dchan);
1797 }
1798 EXPORT_SYMBOL_GPL(rio_release_dma);
1799 
1800 /**
1801  * rio_dma_prep_xfer - RapidIO specific wrapper
1802  *   for device_prep_slave_sg callback defined by DMAENGINE.
1803  * @dchan: DMA channel to configure
1804  * @destid: target RapidIO device destination ID
1805  * @data: RIO specific data descriptor
1806  * @direction: DMA data transfer direction (TO or FROM the device)
1807  * @flags: dmaengine defined flags
1808  *
1809  * Initializes RapidIO capable DMA channel for the specified data transfer.
1810  * Uses DMA channel private extension to pass information related to remote
1811  * target RIO device.
1812  *
1813  * Returns: pointer to DMA transaction descriptor if successful,
1814  *          error-valued pointer or NULL if failed.
1815  */
1816 struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
1817     u16 destid, struct rio_dma_data *data,
1818     enum dma_transfer_direction direction, unsigned long flags)
1819 {
1820     struct rio_dma_ext rio_ext;
1821 
1822     if (!dchan->device->device_prep_slave_sg) {
1823         pr_err("%s: prep_rio_sg == NULL\n", __func__);
1824         return NULL;
1825     }
1826 
1827     rio_ext.destid = destid;
1828     rio_ext.rio_addr_u = data->rio_addr_u;
1829     rio_ext.rio_addr = data->rio_addr;
1830     rio_ext.wr_type = data->wr_type;
1831 
1832     return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1833                      direction, flags, &rio_ext);
1834 }
1835 EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
1836 
1837 /**
1838  * rio_dma_prep_slave_sg - RapidIO specific wrapper
1839  *   for device_prep_slave_sg callback defined by DMAENGINE.
1840  * @rdev: RIO device control structure
1841  * @dchan: DMA channel to configure
1842  * @data: RIO specific data descriptor
1843  * @direction: DMA data transfer direction (TO or FROM the device)
1844  * @flags: dmaengine defined flags
1845  *
1846  * Initializes RapidIO capable DMA channel for the specified data transfer.
1847  * Uses DMA channel private extension to pass information related to remote
1848  * target RIO device.
1849  *
1850  * Returns: pointer to DMA transaction descriptor if successful,
1851  *          error-valued pointer or NULL if failed.
1852  */
1853 struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1854     struct dma_chan *dchan, struct rio_dma_data *data,
1855     enum dma_transfer_direction direction, unsigned long flags)
1856 {
1857     return rio_dma_prep_xfer(dchan, rdev->destid, data, direction, flags);
1858 }
1859 EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1860 
1861 #endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1862 
1863 /**
1864  * rio_find_mport - find RIO mport by its ID
1865  * @mport_id: number (ID) of mport device
1866  *
1867  * Given a RIO mport number, the desired mport is located
1868  * in the global list of mports. If the mport is found, a pointer to its
1869  * data structure is returned.  If no mport is found, %NULL is returned.
1870  */
1871 struct rio_mport *rio_find_mport(int mport_id)
1872 {
1873     struct rio_mport *port;
1874 
1875     mutex_lock(&rio_mport_list_lock);
1876     list_for_each_entry(port, &rio_mports, node) {
1877         if (port->id == mport_id)
1878             goto found;
1879     }
1880     port = NULL;
1881 found:
1882     mutex_unlock(&rio_mport_list_lock);
1883 
1884     return port;
1885 }
1886 
1887 /**
1888  * rio_register_scan - enumeration/discovery method registration interface
1889  * @mport_id: mport device ID for which fabric scan routine has to be set
1890  *            (RIO_MPORT_ANY = set for all available mports)
1891  * @scan_ops: enumeration/discovery operations structure
1892  *
1893  * Registers enumeration/discovery operations with RapidIO subsystem and
1894  * attaches it to the specified mport device (or all available mports
1895  * if RIO_MPORT_ANY is specified).
1896  *
1897  * Returns error if the mport already has an enumerator attached to it.
1898  * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1899  */
1900 int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1901 {
1902     struct rio_mport *port;
1903     struct rio_scan_node *scan;
1904     int rc = 0;
1905 
1906     pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1907 
1908     if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1909         !scan_ops)
1910         return -EINVAL;
1911 
1912     mutex_lock(&rio_mport_list_lock);
1913 
1914     /*
1915      * Check if there is another enumerator already registered for
1916      * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1917      * for the same mport ID are not supported.
1918      */
1919     list_for_each_entry(scan, &rio_scans, node) {
1920         if (scan->mport_id == mport_id) {
1921             rc = -EBUSY;
1922             goto err_out;
1923         }
1924     }
1925 
1926     /*
1927      * Allocate and initialize new scan registration node.
1928      */
1929     scan = kzalloc(sizeof(*scan), GFP_KERNEL);
1930     if (!scan) {
1931         rc = -ENOMEM;
1932         goto err_out;
1933     }
1934 
1935     scan->mport_id = mport_id;
1936     scan->ops = scan_ops;
1937 
1938     /*
1939      * Traverse the list of registered mports to attach this new scan.
1940      *
1941      * The new scan with matching mport ID overrides any previously attached
1942      * scan assuming that old scan (if any) is the default one (based on the
1943      * enumerator registration check above).
1944      * If the new scan is the global one, it will be attached only to mports
1945      * that do not have their own individual operations already attached.
1946      */
1947     list_for_each_entry(port, &rio_mports, node) {
1948         if (port->id == mport_id) {
1949             port->nscan = scan_ops;
1950             break;
1951         } else if (mport_id == RIO_MPORT_ANY && !port->nscan)
1952             port->nscan = scan_ops;
1953     }
1954 
1955     list_add_tail(&scan->node, &rio_scans);
1956 
1957 err_out:
1958     mutex_unlock(&rio_mport_list_lock);
1959 
1960     return rc;
1961 }
1962 EXPORT_SYMBOL_GPL(rio_register_scan);
1963 
1964 /**
1965  * rio_unregister_scan - removes enumeration/discovery method from mport
1966  * @mport_id: mport device ID for which fabric scan routine has to be
1967  *            unregistered (RIO_MPORT_ANY = apply to all mports that use
1968  *            the specified scan_ops)
1969  * @scan_ops: enumeration/discovery operations structure
1970  *
1971  * Removes enumeration or discovery method assigned to the specified mport
1972  * device. If RIO_MPORT_ANY is specified, removes the specified operations from
1973  * all mports that have them attached.
1974  */
1975 int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
1976 {
1977     struct rio_mport *port;
1978     struct rio_scan_node *scan;
1979 
1980     pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1981 
1982     if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
1983         return -EINVAL;
1984 
1985     mutex_lock(&rio_mport_list_lock);
1986 
1987     list_for_each_entry(port, &rio_mports, node)
1988         if (port->id == mport_id ||
1989             (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
1990             port->nscan = NULL;
1991 
1992     list_for_each_entry(scan, &rio_scans, node) {
1993         if (scan->mport_id == mport_id) {
1994             list_del(&scan->node);
1995             kfree(scan);
1996             break;
1997         }
1998     }
1999 
2000     mutex_unlock(&rio_mport_list_lock);
2001 
2002     return 0;
2003 }
2004 EXPORT_SYMBOL_GPL(rio_unregister_scan);
2005 
2006 /**
2007  * rio_mport_scan - execute enumeration/discovery on the specified mport
2008  * @mport_id: number (ID) of mport device
2009  */
2010 int rio_mport_scan(int mport_id)
2011 {
2012     struct rio_mport *port = NULL;
2013     int rc;
2014 
2015     mutex_lock(&rio_mport_list_lock);
2016     list_for_each_entry(port, &rio_mports, node) {
2017         if (port->id == mport_id)
2018             goto found;
2019     }
2020     mutex_unlock(&rio_mport_list_lock);
2021     return -ENODEV;
2022 found:
2023     if (!port->nscan) {
2024         mutex_unlock(&rio_mport_list_lock);
2025         return -EINVAL;
2026     }
2027 
2028     if (!try_module_get(port->nscan->owner)) {
2029         mutex_unlock(&rio_mport_list_lock);
2030         return -ENODEV;
2031     }
2032 
2033     mutex_unlock(&rio_mport_list_lock);
2034 
2035     if (port->host_deviceid >= 0)
2036         rc = port->nscan->enumerate(port, 0);
2037     else
2038         rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
2039 
2040     module_put(port->nscan->owner);
2041     return rc;
2042 }
2043 
2044 static struct workqueue_struct *rio_wq;
2045 
2046 struct rio_disc_work {
2047     struct work_struct  work;
2048     struct rio_mport    *mport;
2049 };
2050 
2051 static void disc_work_handler(struct work_struct *_work)
2052 {
2053     struct rio_disc_work *work;
2054 
2055     work = container_of(_work, struct rio_disc_work, work);
2056     pr_debug("RIO: discovery work for mport %d %s\n",
2057          work->mport->id, work->mport->name);
2058     if (try_module_get(work->mport->nscan->owner)) {
2059         work->mport->nscan->discover(work->mport, 0);
2060         module_put(work->mport->nscan->owner);
2061     }
2062 }
2063 
2064 int rio_init_mports(void)
2065 {
2066     struct rio_mport *port;
2067     struct rio_disc_work *work;
2068     int n = 0;
2069 
2070     if (!next_portid)
2071         return -ENODEV;
2072 
2073     /*
2074      * First, run enumerations and check if we need to perform discovery
2075      * on any of the registered mports.
2076      */
2077     mutex_lock(&rio_mport_list_lock);
2078     list_for_each_entry(port, &rio_mports, node) {
2079         if (port->host_deviceid >= 0) {
2080             if (port->nscan && try_module_get(port->nscan->owner)) {
2081                 port->nscan->enumerate(port, 0);
2082                 module_put(port->nscan->owner);
2083             }
2084         } else
2085             n++;
2086     }
2087     mutex_unlock(&rio_mport_list_lock);
2088 
2089     if (!n)
2090         goto no_disc;
2091 
2092     /*
2093      * If we have mports that require discovery schedule a discovery work
2094      * for each of them. If the code below fails to allocate needed
2095      * resources, exit without error to keep results of enumeration
2096      * process (if any).
2097      * TODO: Implement restart of discovery process for all or
2098      * individual discovering mports.
2099      */
2100     rio_wq = alloc_workqueue("riodisc", 0, 0);
2101     if (!rio_wq) {
2102         pr_err("RIO: unable allocate rio_wq\n");
2103         goto no_disc;
2104     }
2105 
2106     work = kcalloc(n, sizeof *work, GFP_KERNEL);
2107     if (!work) {
2108         destroy_workqueue(rio_wq);
2109         goto no_disc;
2110     }
2111 
2112     n = 0;
2113     mutex_lock(&rio_mport_list_lock);
2114     list_for_each_entry(port, &rio_mports, node) {
2115         if (port->host_deviceid < 0 && port->nscan) {
2116             work[n].mport = port;
2117             INIT_WORK(&work[n].work, disc_work_handler);
2118             queue_work(rio_wq, &work[n].work);
2119             n++;
2120         }
2121     }
2122 
2123     flush_workqueue(rio_wq);
2124     mutex_unlock(&rio_mport_list_lock);
2125     pr_debug("RIO: destroy discovery workqueue\n");
2126     destroy_workqueue(rio_wq);
2127     kfree(work);
2128 
2129 no_disc:
2130     return 0;
2131 }
2132 EXPORT_SYMBOL_GPL(rio_init_mports);
2133 
2134 static int rio_get_hdid(int index)
2135 {
2136     if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
2137         return -1;
2138 
2139     return hdid[index];
2140 }
2141 
2142 int rio_mport_initialize(struct rio_mport *mport)
2143 {
2144     if (next_portid >= RIO_MAX_MPORTS) {
2145         pr_err("RIO: reached specified max number of mports\n");
2146         return -ENODEV;
2147     }
2148 
2149     atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
2150     mport->id = next_portid++;
2151     mport->host_deviceid = rio_get_hdid(mport->id);
2152     mport->nscan = NULL;
2153     mutex_init(&mport->lock);
2154     mport->pwe_refcnt = 0;
2155     INIT_LIST_HEAD(&mport->pwrites);
2156 
2157     return 0;
2158 }
2159 EXPORT_SYMBOL_GPL(rio_mport_initialize);
2160 
2161 int rio_register_mport(struct rio_mport *port)
2162 {
2163     struct rio_scan_node *scan = NULL;
2164     int res = 0;
2165 
2166     mutex_lock(&rio_mport_list_lock);
2167 
2168     /*
2169      * Check if there are any registered enumeration/discovery operations
2170      * that have to be attached to the added mport.
2171      */
2172     list_for_each_entry(scan, &rio_scans, node) {
2173         if (port->id == scan->mport_id ||
2174             scan->mport_id == RIO_MPORT_ANY) {
2175             port->nscan = scan->ops;
2176             if (port->id == scan->mport_id)
2177                 break;
2178         }
2179     }
2180 
2181     list_add_tail(&port->node, &rio_mports);
2182     mutex_unlock(&rio_mport_list_lock);
2183 
2184     dev_set_name(&port->dev, "rapidio%d", port->id);
2185     port->dev.class = &rio_mport_class;
2186     atomic_set(&port->state, RIO_DEVICE_RUNNING);
2187 
2188     res = device_register(&port->dev);
2189     if (res)
2190         dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
2191             port->id, res);
2192     else
2193         dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
2194 
2195     return res;
2196 }
2197 EXPORT_SYMBOL_GPL(rio_register_mport);
2198 
2199 static int rio_mport_cleanup_callback(struct device *dev, void *data)
2200 {
2201     struct rio_dev *rdev = to_rio_dev(dev);
2202 
2203     if (dev->bus == &rio_bus_type)
2204         rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
2205     return 0;
2206 }
2207 
2208 static int rio_net_remove_children(struct rio_net *net)
2209 {
2210     /*
2211      * Unregister all RapidIO devices residing on this net (this will
2212      * invoke notification of registered subsystem interfaces as well).
2213      */
2214     device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
2215     return 0;
2216 }
2217 
2218 int rio_unregister_mport(struct rio_mport *port)
2219 {
2220     pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
2221 
2222     /* Transition mport to the SHUTDOWN state */
2223     if (atomic_cmpxchg(&port->state,
2224                RIO_DEVICE_RUNNING,
2225                RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
2226         pr_err("RIO: %s unexpected state transition for mport %s\n",
2227             __func__, port->name);
2228     }
2229 
2230     if (port->net && port->net->hport == port) {
2231         rio_net_remove_children(port->net);
2232         rio_free_net(port->net);
2233     }
2234 
2235     /*
2236      * Unregister all RapidIO devices attached to this mport (this will
2237      * invoke notification of registered subsystem interfaces as well).
2238      */
2239     mutex_lock(&rio_mport_list_lock);
2240     list_del(&port->node);
2241     mutex_unlock(&rio_mport_list_lock);
2242     device_unregister(&port->dev);
2243 
2244     return 0;
2245 }
2246 EXPORT_SYMBOL_GPL(rio_unregister_mport);