0001
0002
0003
0004 #include <linux/bits.h>
0005 #include <linux/err.h>
0006 #include <linux/kernel.h>
0007 #include <linux/module.h>
0008 #include <linux/debugfs.h>
0009 #include <linux/init.h>
0010 #include <linux/pci.h>
0011 #include <linux/serial_8250.h>
0012 #include <linux/clkdev.h>
0013 #include <linux/clk-provider.h>
0014 #include <linux/platform_device.h>
0015 #include <linux/platform_data/i2c-xiic.h>
0016 #include <linux/ptp_clock_kernel.h>
0017 #include <linux/spi/spi.h>
0018 #include <linux/spi/xilinx_spi.h>
0019 #include <net/devlink.h>
0020 #include <linux/i2c.h>
0021 #include <linux/mtd/mtd.h>
0022 #include <linux/nvmem-consumer.h>
0023 #include <linux/crc16.h>
0024
0025 #define PCI_VENDOR_ID_FACEBOOK 0x1d9b
0026 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD 0x0400
0027
0028 #define PCI_VENDOR_ID_CELESTICA 0x18d4
0029 #define PCI_DEVICE_ID_CELESTICA_TIMECARD 0x1008
0030
0031 static struct class timecard_class = {
0032 .owner = THIS_MODULE,
0033 .name = "timecard",
0034 };
0035
0036 struct ocp_reg {
0037 u32 ctrl;
0038 u32 status;
0039 u32 select;
0040 u32 version;
0041 u32 time_ns;
0042 u32 time_sec;
0043 u32 __pad0[2];
0044 u32 adjust_ns;
0045 u32 adjust_sec;
0046 u32 __pad1[2];
0047 u32 offset_ns;
0048 u32 offset_window_ns;
0049 u32 __pad2[2];
0050 u32 drift_ns;
0051 u32 drift_window_ns;
0052 u32 __pad3[6];
0053 u32 servo_offset_p;
0054 u32 servo_offset_i;
0055 u32 servo_drift_p;
0056 u32 servo_drift_i;
0057 u32 status_offset;
0058 u32 status_drift;
0059 };
0060
0061 #define OCP_CTRL_ENABLE BIT(0)
0062 #define OCP_CTRL_ADJUST_TIME BIT(1)
0063 #define OCP_CTRL_ADJUST_OFFSET BIT(2)
0064 #define OCP_CTRL_ADJUST_DRIFT BIT(3)
0065 #define OCP_CTRL_ADJUST_SERVO BIT(8)
0066 #define OCP_CTRL_READ_TIME_REQ BIT(30)
0067 #define OCP_CTRL_READ_TIME_DONE BIT(31)
0068
0069 #define OCP_STATUS_IN_SYNC BIT(0)
0070 #define OCP_STATUS_IN_HOLDOVER BIT(1)
0071
0072 #define OCP_SELECT_CLK_NONE 0
0073 #define OCP_SELECT_CLK_REG 0xfe
0074
0075 struct tod_reg {
0076 u32 ctrl;
0077 u32 status;
0078 u32 uart_polarity;
0079 u32 version;
0080 u32 adj_sec;
0081 u32 __pad0[3];
0082 u32 uart_baud;
0083 u32 __pad1[3];
0084 u32 utc_status;
0085 u32 leap;
0086 };
0087
0088 #define TOD_CTRL_PROTOCOL BIT(28)
0089 #define TOD_CTRL_DISABLE_FMT_A BIT(17)
0090 #define TOD_CTRL_DISABLE_FMT_B BIT(16)
0091 #define TOD_CTRL_ENABLE BIT(0)
0092 #define TOD_CTRL_GNSS_MASK GENMASK(3, 0)
0093 #define TOD_CTRL_GNSS_SHIFT 24
0094
0095 #define TOD_STATUS_UTC_MASK GENMASK(7, 0)
0096 #define TOD_STATUS_UTC_VALID BIT(8)
0097 #define TOD_STATUS_LEAP_ANNOUNCE BIT(12)
0098 #define TOD_STATUS_LEAP_VALID BIT(16)
0099
0100 struct ts_reg {
0101 u32 enable;
0102 u32 error;
0103 u32 polarity;
0104 u32 version;
0105 u32 __pad0[4];
0106 u32 cable_delay;
0107 u32 __pad1[3];
0108 u32 intr;
0109 u32 intr_mask;
0110 u32 event_count;
0111 u32 __pad2[1];
0112 u32 ts_count;
0113 u32 time_ns;
0114 u32 time_sec;
0115 u32 data_width;
0116 u32 data;
0117 };
0118
0119 struct pps_reg {
0120 u32 ctrl;
0121 u32 status;
0122 u32 __pad0[6];
0123 u32 cable_delay;
0124 };
0125
0126 #define PPS_STATUS_FILTER_ERR BIT(0)
0127 #define PPS_STATUS_SUPERV_ERR BIT(1)
0128
0129 struct img_reg {
0130 u32 version;
0131 };
0132
0133 struct gpio_reg {
0134 u32 gpio1;
0135 u32 __pad0;
0136 u32 gpio2;
0137 u32 __pad1;
0138 };
0139
0140 struct irig_master_reg {
0141 u32 ctrl;
0142 u32 status;
0143 u32 __pad0;
0144 u32 version;
0145 u32 adj_sec;
0146 u32 mode_ctrl;
0147 };
0148
0149 #define IRIG_M_CTRL_ENABLE BIT(0)
0150
0151 struct irig_slave_reg {
0152 u32 ctrl;
0153 u32 status;
0154 u32 __pad0;
0155 u32 version;
0156 u32 adj_sec;
0157 u32 mode_ctrl;
0158 };
0159
0160 #define IRIG_S_CTRL_ENABLE BIT(0)
0161
0162 struct dcf_master_reg {
0163 u32 ctrl;
0164 u32 status;
0165 u32 __pad0;
0166 u32 version;
0167 u32 adj_sec;
0168 };
0169
0170 #define DCF_M_CTRL_ENABLE BIT(0)
0171
0172 struct dcf_slave_reg {
0173 u32 ctrl;
0174 u32 status;
0175 u32 __pad0;
0176 u32 version;
0177 u32 adj_sec;
0178 };
0179
0180 #define DCF_S_CTRL_ENABLE BIT(0)
0181
0182 struct signal_reg {
0183 u32 enable;
0184 u32 status;
0185 u32 polarity;
0186 u32 version;
0187 u32 __pad0[4];
0188 u32 cable_delay;
0189 u32 __pad1[3];
0190 u32 intr;
0191 u32 intr_mask;
0192 u32 __pad2[2];
0193 u32 start_ns;
0194 u32 start_sec;
0195 u32 pulse_ns;
0196 u32 pulse_sec;
0197 u32 period_ns;
0198 u32 period_sec;
0199 u32 repeat_count;
0200 };
0201
0202 struct frequency_reg {
0203 u32 ctrl;
0204 u32 status;
0205 };
0206 #define FREQ_STATUS_VALID BIT(31)
0207 #define FREQ_STATUS_ERROR BIT(30)
0208 #define FREQ_STATUS_OVERRUN BIT(29)
0209 #define FREQ_STATUS_MASK GENMASK(23, 0)
0210
0211 struct ptp_ocp_flash_info {
0212 const char *name;
0213 int pci_offset;
0214 int data_size;
0215 void *data;
0216 };
0217
0218 struct ptp_ocp_firmware_header {
0219 char magic[4];
0220 __be16 pci_vendor_id;
0221 __be16 pci_device_id;
0222 __be32 image_size;
0223 __be16 hw_revision;
0224 __be16 crc;
0225 };
0226
0227 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
0228
0229 struct ptp_ocp_i2c_info {
0230 const char *name;
0231 unsigned long fixed_rate;
0232 size_t data_size;
0233 void *data;
0234 };
0235
0236 struct ptp_ocp_ext_info {
0237 int index;
0238 irqreturn_t (*irq_fcn)(int irq, void *priv);
0239 int (*enable)(void *priv, u32 req, bool enable);
0240 };
0241
0242 struct ptp_ocp_ext_src {
0243 void __iomem *mem;
0244 struct ptp_ocp *bp;
0245 struct ptp_ocp_ext_info *info;
0246 int irq_vec;
0247 };
0248
0249 enum ptp_ocp_sma_mode {
0250 SMA_MODE_IN,
0251 SMA_MODE_OUT,
0252 };
0253
0254 struct ptp_ocp_sma_connector {
0255 enum ptp_ocp_sma_mode mode;
0256 bool fixed_fcn;
0257 bool fixed_dir;
0258 bool disabled;
0259 u8 default_fcn;
0260 };
0261
0262 struct ocp_attr_group {
0263 u64 cap;
0264 const struct attribute_group *group;
0265 };
0266
0267 #define OCP_CAP_BASIC BIT(0)
0268 #define OCP_CAP_SIGNAL BIT(1)
0269 #define OCP_CAP_FREQ BIT(2)
0270
0271 struct ptp_ocp_signal {
0272 ktime_t period;
0273 ktime_t pulse;
0274 ktime_t phase;
0275 ktime_t start;
0276 int duty;
0277 bool polarity;
0278 bool running;
0279 };
0280
0281 #define OCP_BOARD_ID_LEN 13
0282 #define OCP_SERIAL_LEN 6
0283
0284 struct ptp_ocp {
0285 struct pci_dev *pdev;
0286 struct device dev;
0287 spinlock_t lock;
0288 struct ocp_reg __iomem *reg;
0289 struct tod_reg __iomem *tod;
0290 struct pps_reg __iomem *pps_to_ext;
0291 struct pps_reg __iomem *pps_to_clk;
0292 struct gpio_reg __iomem *pps_select;
0293 struct gpio_reg __iomem *sma_map1;
0294 struct gpio_reg __iomem *sma_map2;
0295 struct irig_master_reg __iomem *irig_out;
0296 struct irig_slave_reg __iomem *irig_in;
0297 struct dcf_master_reg __iomem *dcf_out;
0298 struct dcf_slave_reg __iomem *dcf_in;
0299 struct tod_reg __iomem *nmea_out;
0300 struct frequency_reg __iomem *freq_in[4];
0301 struct ptp_ocp_ext_src *signal_out[4];
0302 struct ptp_ocp_ext_src *pps;
0303 struct ptp_ocp_ext_src *ts0;
0304 struct ptp_ocp_ext_src *ts1;
0305 struct ptp_ocp_ext_src *ts2;
0306 struct ptp_ocp_ext_src *ts3;
0307 struct ptp_ocp_ext_src *ts4;
0308 struct img_reg __iomem *image;
0309 struct ptp_clock *ptp;
0310 struct ptp_clock_info ptp_info;
0311 struct platform_device *i2c_ctrl;
0312 struct platform_device *spi_flash;
0313 struct clk_hw *i2c_clk;
0314 struct timer_list watchdog;
0315 const struct attribute_group **attr_group;
0316 const struct ptp_ocp_eeprom_map *eeprom_map;
0317 struct dentry *debug_root;
0318 time64_t gnss_lost;
0319 int id;
0320 int n_irqs;
0321 int gnss_port;
0322 int gnss2_port;
0323 int mac_port;
0324 int nmea_port;
0325 bool fw_loader;
0326 u8 fw_tag;
0327 u16 fw_version;
0328 u8 board_id[OCP_BOARD_ID_LEN];
0329 u8 serial[OCP_SERIAL_LEN];
0330 bool has_eeprom_data;
0331 u32 pps_req_map;
0332 int flash_start;
0333 u32 utc_tai_offset;
0334 u32 ts_window_adjust;
0335 u64 fw_cap;
0336 struct ptp_ocp_signal signal[4];
0337 struct ptp_ocp_sma_connector sma[4];
0338 const struct ocp_sma_op *sma_op;
0339 };
0340
0341 #define OCP_REQ_TIMESTAMP BIT(0)
0342 #define OCP_REQ_PPS BIT(1)
0343
0344 struct ocp_resource {
0345 unsigned long offset;
0346 int size;
0347 int irq_vec;
0348 int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
0349 void *extra;
0350 unsigned long bp_offset;
0351 const char * const name;
0352 };
0353
0354 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
0355 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
0356 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
0357 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
0358 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
0359 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
0360 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
0361 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
0362 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
0363 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
0364 struct ptp_perout_request *req);
0365 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
0366 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
0367
0368 static const struct ocp_attr_group fb_timecard_groups[];
0369
0370 struct ptp_ocp_eeprom_map {
0371 u16 off;
0372 u16 len;
0373 u32 bp_offset;
0374 const void * const tag;
0375 };
0376
0377 #define EEPROM_ENTRY(addr, member) \
0378 .off = addr, \
0379 .len = sizeof_field(struct ptp_ocp, member), \
0380 .bp_offset = offsetof(struct ptp_ocp, member)
0381
0382 #define BP_MAP_ENTRY_ADDR(bp, map) ({ \
0383 (void *)((uintptr_t)(bp) + (map)->bp_offset); \
0384 })
0385
0386 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
0387 { EEPROM_ENTRY(0x43, board_id) },
0388 { EEPROM_ENTRY(0x00, serial), .tag = "mac" },
0389 { }
0390 };
0391
0392 #define bp_assign_entry(bp, res, val) ({ \
0393 uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset; \
0394 *(typeof(val) *)addr = val; \
0395 })
0396
0397 #define OCP_RES_LOCATION(member) \
0398 .name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
0399
0400 #define OCP_MEM_RESOURCE(member) \
0401 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
0402
0403 #define OCP_SERIAL_RESOURCE(member) \
0404 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
0405
0406 #define OCP_I2C_RESOURCE(member) \
0407 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
0408
0409 #define OCP_SPI_RESOURCE(member) \
0410 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
0411
0412 #define OCP_EXT_RESOURCE(member) \
0413 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435 static struct ocp_resource ocp_fb_resource[] = {
0436 {
0437 OCP_MEM_RESOURCE(reg),
0438 .offset = 0x01000000, .size = 0x10000,
0439 },
0440 {
0441 OCP_EXT_RESOURCE(ts0),
0442 .offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
0443 .extra = &(struct ptp_ocp_ext_info) {
0444 .index = 0,
0445 .irq_fcn = ptp_ocp_ts_irq,
0446 .enable = ptp_ocp_ts_enable,
0447 },
0448 },
0449 {
0450 OCP_EXT_RESOURCE(ts1),
0451 .offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
0452 .extra = &(struct ptp_ocp_ext_info) {
0453 .index = 1,
0454 .irq_fcn = ptp_ocp_ts_irq,
0455 .enable = ptp_ocp_ts_enable,
0456 },
0457 },
0458 {
0459 OCP_EXT_RESOURCE(ts2),
0460 .offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
0461 .extra = &(struct ptp_ocp_ext_info) {
0462 .index = 2,
0463 .irq_fcn = ptp_ocp_ts_irq,
0464 .enable = ptp_ocp_ts_enable,
0465 },
0466 },
0467 {
0468 OCP_EXT_RESOURCE(ts3),
0469 .offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
0470 .extra = &(struct ptp_ocp_ext_info) {
0471 .index = 3,
0472 .irq_fcn = ptp_ocp_ts_irq,
0473 .enable = ptp_ocp_ts_enable,
0474 },
0475 },
0476 {
0477 OCP_EXT_RESOURCE(ts4),
0478 .offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
0479 .extra = &(struct ptp_ocp_ext_info) {
0480 .index = 4,
0481 .irq_fcn = ptp_ocp_ts_irq,
0482 .enable = ptp_ocp_ts_enable,
0483 },
0484 },
0485
0486 {
0487 OCP_EXT_RESOURCE(pps),
0488 .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
0489 .extra = &(struct ptp_ocp_ext_info) {
0490 .index = 5,
0491 .irq_fcn = ptp_ocp_ts_irq,
0492 .enable = ptp_ocp_ts_enable,
0493 },
0494 },
0495 {
0496 OCP_EXT_RESOURCE(signal_out[0]),
0497 .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
0498 .extra = &(struct ptp_ocp_ext_info) {
0499 .index = 1,
0500 .irq_fcn = ptp_ocp_signal_irq,
0501 .enable = ptp_ocp_signal_enable,
0502 },
0503 },
0504 {
0505 OCP_EXT_RESOURCE(signal_out[1]),
0506 .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
0507 .extra = &(struct ptp_ocp_ext_info) {
0508 .index = 2,
0509 .irq_fcn = ptp_ocp_signal_irq,
0510 .enable = ptp_ocp_signal_enable,
0511 },
0512 },
0513 {
0514 OCP_EXT_RESOURCE(signal_out[2]),
0515 .offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
0516 .extra = &(struct ptp_ocp_ext_info) {
0517 .index = 3,
0518 .irq_fcn = ptp_ocp_signal_irq,
0519 .enable = ptp_ocp_signal_enable,
0520 },
0521 },
0522 {
0523 OCP_EXT_RESOURCE(signal_out[3]),
0524 .offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
0525 .extra = &(struct ptp_ocp_ext_info) {
0526 .index = 4,
0527 .irq_fcn = ptp_ocp_signal_irq,
0528 .enable = ptp_ocp_signal_enable,
0529 },
0530 },
0531 {
0532 OCP_MEM_RESOURCE(pps_to_ext),
0533 .offset = 0x01030000, .size = 0x10000,
0534 },
0535 {
0536 OCP_MEM_RESOURCE(pps_to_clk),
0537 .offset = 0x01040000, .size = 0x10000,
0538 },
0539 {
0540 OCP_MEM_RESOURCE(tod),
0541 .offset = 0x01050000, .size = 0x10000,
0542 },
0543 {
0544 OCP_MEM_RESOURCE(irig_in),
0545 .offset = 0x01070000, .size = 0x10000,
0546 },
0547 {
0548 OCP_MEM_RESOURCE(irig_out),
0549 .offset = 0x01080000, .size = 0x10000,
0550 },
0551 {
0552 OCP_MEM_RESOURCE(dcf_in),
0553 .offset = 0x01090000, .size = 0x10000,
0554 },
0555 {
0556 OCP_MEM_RESOURCE(dcf_out),
0557 .offset = 0x010A0000, .size = 0x10000,
0558 },
0559 {
0560 OCP_MEM_RESOURCE(nmea_out),
0561 .offset = 0x010B0000, .size = 0x10000,
0562 },
0563 {
0564 OCP_MEM_RESOURCE(image),
0565 .offset = 0x00020000, .size = 0x1000,
0566 },
0567 {
0568 OCP_MEM_RESOURCE(pps_select),
0569 .offset = 0x00130000, .size = 0x1000,
0570 },
0571 {
0572 OCP_MEM_RESOURCE(sma_map1),
0573 .offset = 0x00140000, .size = 0x1000,
0574 },
0575 {
0576 OCP_MEM_RESOURCE(sma_map2),
0577 .offset = 0x00220000, .size = 0x1000,
0578 },
0579 {
0580 OCP_I2C_RESOURCE(i2c_ctrl),
0581 .offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
0582 .extra = &(struct ptp_ocp_i2c_info) {
0583 .name = "xiic-i2c",
0584 .fixed_rate = 50000000,
0585 .data_size = sizeof(struct xiic_i2c_platform_data),
0586 .data = &(struct xiic_i2c_platform_data) {
0587 .num_devices = 2,
0588 .devices = (struct i2c_board_info[]) {
0589 { I2C_BOARD_INFO("24c02", 0x50) },
0590 { I2C_BOARD_INFO("24mac402", 0x58),
0591 .platform_data = "mac" },
0592 },
0593 },
0594 },
0595 },
0596 {
0597 OCP_SERIAL_RESOURCE(gnss_port),
0598 .offset = 0x00160000 + 0x1000, .irq_vec = 3,
0599 },
0600 {
0601 OCP_SERIAL_RESOURCE(gnss2_port),
0602 .offset = 0x00170000 + 0x1000, .irq_vec = 4,
0603 },
0604 {
0605 OCP_SERIAL_RESOURCE(mac_port),
0606 .offset = 0x00180000 + 0x1000, .irq_vec = 5,
0607 },
0608 {
0609 OCP_SERIAL_RESOURCE(nmea_port),
0610 .offset = 0x00190000 + 0x1000, .irq_vec = 10,
0611 },
0612 {
0613 OCP_SPI_RESOURCE(spi_flash),
0614 .offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
0615 .extra = &(struct ptp_ocp_flash_info) {
0616 .name = "xilinx_spi", .pci_offset = 0,
0617 .data_size = sizeof(struct xspi_platform_data),
0618 .data = &(struct xspi_platform_data) {
0619 .num_chipselect = 1,
0620 .bits_per_word = 8,
0621 .num_devices = 1,
0622 .devices = &(struct spi_board_info) {
0623 .modalias = "spi-nor",
0624 },
0625 },
0626 },
0627 },
0628 {
0629 OCP_MEM_RESOURCE(freq_in[0]),
0630 .offset = 0x01200000, .size = 0x10000,
0631 },
0632 {
0633 OCP_MEM_RESOURCE(freq_in[1]),
0634 .offset = 0x01210000, .size = 0x10000,
0635 },
0636 {
0637 OCP_MEM_RESOURCE(freq_in[2]),
0638 .offset = 0x01220000, .size = 0x10000,
0639 },
0640 {
0641 OCP_MEM_RESOURCE(freq_in[3]),
0642 .offset = 0x01230000, .size = 0x10000,
0643 },
0644 {
0645 .setup = ptp_ocp_fb_board_init,
0646 },
0647 { }
0648 };
0649
0650 static const struct pci_device_id ptp_ocp_pcidev_id[] = {
0651 { PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
0652 { PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
0653 { }
0654 };
0655 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
0656
0657 static DEFINE_MUTEX(ptp_ocp_lock);
0658 static DEFINE_IDR(ptp_ocp_idr);
0659
0660 struct ocp_selector {
0661 const char *name;
0662 int value;
0663 };
0664
0665 static const struct ocp_selector ptp_ocp_clock[] = {
0666 { .name = "NONE", .value = 0 },
0667 { .name = "TOD", .value = 1 },
0668 { .name = "IRIG", .value = 2 },
0669 { .name = "PPS", .value = 3 },
0670 { .name = "PTP", .value = 4 },
0671 { .name = "RTC", .value = 5 },
0672 { .name = "DCF", .value = 6 },
0673 { .name = "REGS", .value = 0xfe },
0674 { .name = "EXT", .value = 0xff },
0675 { }
0676 };
0677
0678 #define SMA_DISABLE BIT(16)
0679 #define SMA_ENABLE BIT(15)
0680 #define SMA_SELECT_MASK GENMASK(14, 0)
0681
0682 static const struct ocp_selector ptp_ocp_sma_in[] = {
0683 { .name = "10Mhz", .value = 0x0000 },
0684 { .name = "PPS1", .value = 0x0001 },
0685 { .name = "PPS2", .value = 0x0002 },
0686 { .name = "TS1", .value = 0x0004 },
0687 { .name = "TS2", .value = 0x0008 },
0688 { .name = "IRIG", .value = 0x0010 },
0689 { .name = "DCF", .value = 0x0020 },
0690 { .name = "TS3", .value = 0x0040 },
0691 { .name = "TS4", .value = 0x0080 },
0692 { .name = "FREQ1", .value = 0x0100 },
0693 { .name = "FREQ2", .value = 0x0200 },
0694 { .name = "FREQ3", .value = 0x0400 },
0695 { .name = "FREQ4", .value = 0x0800 },
0696 { .name = "None", .value = SMA_DISABLE },
0697 { }
0698 };
0699
0700 static const struct ocp_selector ptp_ocp_sma_out[] = {
0701 { .name = "10Mhz", .value = 0x0000 },
0702 { .name = "PHC", .value = 0x0001 },
0703 { .name = "MAC", .value = 0x0002 },
0704 { .name = "GNSS1", .value = 0x0004 },
0705 { .name = "GNSS2", .value = 0x0008 },
0706 { .name = "IRIG", .value = 0x0010 },
0707 { .name = "DCF", .value = 0x0020 },
0708 { .name = "GEN1", .value = 0x0040 },
0709 { .name = "GEN2", .value = 0x0080 },
0710 { .name = "GEN3", .value = 0x0100 },
0711 { .name = "GEN4", .value = 0x0200 },
0712 { .name = "GND", .value = 0x2000 },
0713 { .name = "VCC", .value = 0x4000 },
0714 { }
0715 };
0716
0717 struct ocp_sma_op {
0718 const struct ocp_selector *tbl[2];
0719 void (*init)(struct ptp_ocp *bp);
0720 u32 (*get)(struct ptp_ocp *bp, int sma_nr);
0721 int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
0722 int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
0723 };
0724
0725 static void
0726 ptp_ocp_sma_init(struct ptp_ocp *bp)
0727 {
0728 return bp->sma_op->init(bp);
0729 }
0730
0731 static u32
0732 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
0733 {
0734 return bp->sma_op->get(bp, sma_nr);
0735 }
0736
0737 static int
0738 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
0739 {
0740 return bp->sma_op->set_inputs(bp, sma_nr, val);
0741 }
0742
0743 static int
0744 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
0745 {
0746 return bp->sma_op->set_output(bp, sma_nr, val);
0747 }
0748
0749 static const char *
0750 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
0751 {
0752 int i;
0753
0754 for (i = 0; tbl[i].name; i++)
0755 if (tbl[i].value == val)
0756 return tbl[i].name;
0757 return NULL;
0758 }
0759
0760 static int
0761 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
0762 {
0763 const char *select;
0764 int i;
0765
0766 for (i = 0; tbl[i].name; i++) {
0767 select = tbl[i].name;
0768 if (!strncasecmp(name, select, strlen(select)))
0769 return tbl[i].value;
0770 }
0771 return -EINVAL;
0772 }
0773
0774 static ssize_t
0775 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
0776 {
0777 ssize_t count;
0778 int i;
0779
0780 count = 0;
0781 for (i = 0; tbl[i].name; i++)
0782 count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
0783 if (count)
0784 count--;
0785 count += sysfs_emit_at(buf, count, "\n");
0786 return count;
0787 }
0788
0789 static int
0790 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
0791 struct ptp_system_timestamp *sts)
0792 {
0793 u32 ctrl, time_sec, time_ns;
0794 int i;
0795
0796 ptp_read_system_prets(sts);
0797
0798 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
0799 iowrite32(ctrl, &bp->reg->ctrl);
0800
0801 for (i = 0; i < 100; i++) {
0802 ctrl = ioread32(&bp->reg->ctrl);
0803 if (ctrl & OCP_CTRL_READ_TIME_DONE)
0804 break;
0805 }
0806 ptp_read_system_postts(sts);
0807
0808 if (sts && bp->ts_window_adjust) {
0809 s64 ns = timespec64_to_ns(&sts->post_ts);
0810
0811 sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
0812 }
0813
0814 time_ns = ioread32(&bp->reg->time_ns);
0815 time_sec = ioread32(&bp->reg->time_sec);
0816
0817 ts->tv_sec = time_sec;
0818 ts->tv_nsec = time_ns;
0819
0820 return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
0821 }
0822
0823 static int
0824 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
0825 struct ptp_system_timestamp *sts)
0826 {
0827 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
0828 unsigned long flags;
0829 int err;
0830
0831 spin_lock_irqsave(&bp->lock, flags);
0832 err = __ptp_ocp_gettime_locked(bp, ts, sts);
0833 spin_unlock_irqrestore(&bp->lock, flags);
0834
0835 return err;
0836 }
0837
0838 static void
0839 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
0840 {
0841 u32 ctrl, time_sec, time_ns;
0842 u32 select;
0843
0844 time_ns = ts->tv_nsec;
0845 time_sec = ts->tv_sec;
0846
0847 select = ioread32(&bp->reg->select);
0848 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
0849
0850 iowrite32(time_ns, &bp->reg->adjust_ns);
0851 iowrite32(time_sec, &bp->reg->adjust_sec);
0852
0853 ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
0854 iowrite32(ctrl, &bp->reg->ctrl);
0855
0856
0857 iowrite32(select >> 16, &bp->reg->select);
0858 }
0859
0860 static int
0861 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
0862 {
0863 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
0864 unsigned long flags;
0865
0866 spin_lock_irqsave(&bp->lock, flags);
0867 __ptp_ocp_settime_locked(bp, ts);
0868 spin_unlock_irqrestore(&bp->lock, flags);
0869
0870 return 0;
0871 }
0872
0873 static void
0874 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
0875 {
0876 u32 select, ctrl;
0877
0878 select = ioread32(&bp->reg->select);
0879 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
0880
0881 iowrite32(adj_val, &bp->reg->offset_ns);
0882 iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
0883
0884 ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
0885 iowrite32(ctrl, &bp->reg->ctrl);
0886
0887
0888 iowrite32(select >> 16, &bp->reg->select);
0889 }
0890
0891 static void
0892 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
0893 {
0894 struct timespec64 ts;
0895 unsigned long flags;
0896 int err;
0897
0898 spin_lock_irqsave(&bp->lock, flags);
0899 err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
0900 if (likely(!err)) {
0901 set_normalized_timespec64(&ts, ts.tv_sec,
0902 ts.tv_nsec + delta_ns);
0903 __ptp_ocp_settime_locked(bp, &ts);
0904 }
0905 spin_unlock_irqrestore(&bp->lock, flags);
0906 }
0907
0908 static int
0909 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
0910 {
0911 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
0912 unsigned long flags;
0913 u32 adj_ns, sign;
0914
0915 if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
0916 ptp_ocp_adjtime_coarse(bp, delta_ns);
0917 return 0;
0918 }
0919
0920 sign = delta_ns < 0 ? BIT(31) : 0;
0921 adj_ns = sign ? -delta_ns : delta_ns;
0922
0923 spin_lock_irqsave(&bp->lock, flags);
0924 __ptp_ocp_adjtime_locked(bp, sign | adj_ns);
0925 spin_unlock_irqrestore(&bp->lock, flags);
0926
0927 return 0;
0928 }
0929
0930 static int
0931 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
0932 {
0933 if (scaled_ppm == 0)
0934 return 0;
0935
0936 return -EOPNOTSUPP;
0937 }
0938
0939 static int
0940 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
0941 {
0942 return -EOPNOTSUPP;
0943 }
0944
0945 static int
0946 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
0947 int on)
0948 {
0949 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
0950 struct ptp_ocp_ext_src *ext = NULL;
0951 u32 req;
0952 int err;
0953
0954 switch (rq->type) {
0955 case PTP_CLK_REQ_EXTTS:
0956 req = OCP_REQ_TIMESTAMP;
0957 switch (rq->extts.index) {
0958 case 0:
0959 ext = bp->ts0;
0960 break;
0961 case 1:
0962 ext = bp->ts1;
0963 break;
0964 case 2:
0965 ext = bp->ts2;
0966 break;
0967 case 3:
0968 ext = bp->ts3;
0969 break;
0970 case 4:
0971 ext = bp->ts4;
0972 break;
0973 case 5:
0974 ext = bp->pps;
0975 break;
0976 }
0977 break;
0978 case PTP_CLK_REQ_PPS:
0979 req = OCP_REQ_PPS;
0980 ext = bp->pps;
0981 break;
0982 case PTP_CLK_REQ_PEROUT:
0983 switch (rq->perout.index) {
0984 case 0:
0985
0986
0987
0988 if (on && (rq->perout.period.sec != 1 ||
0989 rq->perout.period.nsec != 0))
0990 return -EINVAL;
0991 return 0;
0992 case 1:
0993 case 2:
0994 case 3:
0995 case 4:
0996 req = rq->perout.index - 1;
0997 ext = bp->signal_out[req];
0998 err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
0999 if (err)
1000 return err;
1001 break;
1002 }
1003 break;
1004 default:
1005 return -EOPNOTSUPP;
1006 }
1007
1008 err = -ENXIO;
1009 if (ext)
1010 err = ext->info->enable(ext, req, on);
1011
1012 return err;
1013 }
1014
1015 static int
1016 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
1017 enum ptp_pin_function func, unsigned chan)
1018 {
1019 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1020 char buf[16];
1021
1022 switch (func) {
1023 case PTP_PF_NONE:
1024 snprintf(buf, sizeof(buf), "IN: None");
1025 break;
1026 case PTP_PF_EXTTS:
1027
1028 return 0;
1029 case PTP_PF_PEROUT:
1030
1031
1032
1033 if (chan)
1034 snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
1035 else
1036 snprintf(buf, sizeof(buf), "OUT: PHC");
1037 break;
1038 default:
1039 return -EOPNOTSUPP;
1040 }
1041
1042 return ptp_ocp_sma_store(bp, buf, pin + 1);
1043 }
1044
1045 static const struct ptp_clock_info ptp_ocp_clock_info = {
1046 .owner = THIS_MODULE,
1047 .name = KBUILD_MODNAME,
1048 .max_adj = 100000000,
1049 .gettimex64 = ptp_ocp_gettimex,
1050 .settime64 = ptp_ocp_settime,
1051 .adjtime = ptp_ocp_adjtime,
1052 .adjfine = ptp_ocp_null_adjfine,
1053 .adjphase = ptp_ocp_null_adjphase,
1054 .enable = ptp_ocp_enable,
1055 .verify = ptp_ocp_verify,
1056 .pps = true,
1057 .n_ext_ts = 6,
1058 .n_per_out = 5,
1059 };
1060
1061 static void
1062 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
1063 {
1064 u32 ctrl, select;
1065
1066 select = ioread32(&bp->reg->select);
1067 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1068
1069 iowrite32(0, &bp->reg->drift_ns);
1070
1071 ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
1072 iowrite32(ctrl, &bp->reg->ctrl);
1073
1074
1075 iowrite32(select >> 16, &bp->reg->select);
1076 }
1077
1078 static void
1079 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
1080 {
1081 unsigned long flags;
1082
1083 spin_lock_irqsave(&bp->lock, flags);
1084
1085 bp->utc_tai_offset = val;
1086
1087 if (bp->irig_out)
1088 iowrite32(val, &bp->irig_out->adj_sec);
1089 if (bp->dcf_out)
1090 iowrite32(val, &bp->dcf_out->adj_sec);
1091 if (bp->nmea_out)
1092 iowrite32(val, &bp->nmea_out->adj_sec);
1093
1094 spin_unlock_irqrestore(&bp->lock, flags);
1095 }
1096
1097 static void
1098 ptp_ocp_watchdog(struct timer_list *t)
1099 {
1100 struct ptp_ocp *bp = from_timer(bp, t, watchdog);
1101 unsigned long flags;
1102 u32 status, utc_offset;
1103
1104 status = ioread32(&bp->pps_to_clk->status);
1105
1106 if (status & PPS_STATUS_SUPERV_ERR) {
1107 iowrite32(status, &bp->pps_to_clk->status);
1108 if (!bp->gnss_lost) {
1109 spin_lock_irqsave(&bp->lock, flags);
1110 __ptp_ocp_clear_drift_locked(bp);
1111 spin_unlock_irqrestore(&bp->lock, flags);
1112 bp->gnss_lost = ktime_get_real_seconds();
1113 }
1114
1115 } else if (bp->gnss_lost) {
1116 bp->gnss_lost = 0;
1117 }
1118
1119
1120
1121
1122 if (bp->tod) {
1123 status = ioread32(&bp->tod->utc_status);
1124 utc_offset = status & TOD_STATUS_UTC_MASK;
1125 if (status & TOD_STATUS_UTC_VALID &&
1126 utc_offset != bp->utc_tai_offset)
1127 ptp_ocp_utc_distribute(bp, utc_offset);
1128 }
1129
1130 mod_timer(&bp->watchdog, jiffies + HZ);
1131 }
1132
1133 static void
1134 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
1135 {
1136 ktime_t start, end;
1137 ktime_t delay;
1138 u32 ctrl;
1139
1140 ctrl = ioread32(&bp->reg->ctrl);
1141 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1142
1143 iowrite32(ctrl, &bp->reg->ctrl);
1144
1145 start = ktime_get_ns();
1146
1147 ctrl = ioread32(&bp->reg->ctrl);
1148
1149 end = ktime_get_ns();
1150
1151 delay = end - start;
1152 bp->ts_window_adjust = (delay >> 5) * 3;
1153 }
1154
1155 static int
1156 ptp_ocp_init_clock(struct ptp_ocp *bp)
1157 {
1158 struct timespec64 ts;
1159 bool sync;
1160 u32 ctrl;
1161
1162 ctrl = OCP_CTRL_ENABLE;
1163 iowrite32(ctrl, &bp->reg->ctrl);
1164
1165
1166
1167 iowrite32(0x2000, &bp->reg->servo_offset_p);
1168 iowrite32(0x1000, &bp->reg->servo_offset_i);
1169 iowrite32(0, &bp->reg->servo_drift_p);
1170 iowrite32(0, &bp->reg->servo_drift_i);
1171
1172
1173 ctrl |= OCP_CTRL_ADJUST_SERVO;
1174 iowrite32(ctrl, &bp->reg->ctrl);
1175
1176 if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
1177 dev_err(&bp->pdev->dev, "clock not enabled\n");
1178 return -ENODEV;
1179 }
1180
1181 ptp_ocp_estimate_pci_timing(bp);
1182
1183 sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
1184 if (!sync) {
1185 ktime_get_clocktai_ts64(&ts);
1186 ptp_ocp_settime(&bp->ptp_info, &ts);
1187 }
1188
1189
1190 if (bp->pps_to_clk) {
1191 timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
1192 mod_timer(&bp->watchdog, jiffies + HZ);
1193 }
1194
1195 return 0;
1196 }
1197
1198 static void
1199 ptp_ocp_tod_init(struct ptp_ocp *bp)
1200 {
1201 u32 ctrl, reg;
1202
1203 ctrl = ioread32(&bp->tod->ctrl);
1204 ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
1205 ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
1206 iowrite32(ctrl, &bp->tod->ctrl);
1207
1208 reg = ioread32(&bp->tod->utc_status);
1209 if (reg & TOD_STATUS_UTC_VALID)
1210 ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
1211 }
1212
1213 static const char *
1214 ptp_ocp_tod_proto_name(const int idx)
1215 {
1216 static const char * const proto_name[] = {
1217 "NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
1218 "UBX", "UBX_UTC", "UBX_LS", "UBX_none"
1219 };
1220 return proto_name[idx];
1221 }
1222
1223 static const char *
1224 ptp_ocp_tod_gnss_name(int idx)
1225 {
1226 static const char * const gnss_name[] = {
1227 "ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
1228 "Unknown"
1229 };
1230 if (idx >= ARRAY_SIZE(gnss_name))
1231 idx = ARRAY_SIZE(gnss_name) - 1;
1232 return gnss_name[idx];
1233 }
1234
1235 struct ptp_ocp_nvmem_match_info {
1236 struct ptp_ocp *bp;
1237 const void * const tag;
1238 };
1239
1240 static int
1241 ptp_ocp_nvmem_match(struct device *dev, const void *data)
1242 {
1243 const struct ptp_ocp_nvmem_match_info *info = data;
1244
1245 dev = dev->parent;
1246 if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
1247 return 0;
1248
1249 while ((dev = dev->parent))
1250 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
1251 return info->bp == dev_get_drvdata(dev);
1252 return 0;
1253 }
1254
1255 static inline struct nvmem_device *
1256 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
1257 {
1258 struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
1259
1260 return nvmem_device_find(&info, ptp_ocp_nvmem_match);
1261 }
1262
1263 static inline void
1264 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
1265 {
1266 if (!IS_ERR_OR_NULL(*nvmemp))
1267 nvmem_device_put(*nvmemp);
1268 *nvmemp = NULL;
1269 }
1270
1271 static void
1272 ptp_ocp_read_eeprom(struct ptp_ocp *bp)
1273 {
1274 const struct ptp_ocp_eeprom_map *map;
1275 struct nvmem_device *nvmem;
1276 const void *tag;
1277 int ret;
1278
1279 if (!bp->i2c_ctrl)
1280 return;
1281
1282 tag = NULL;
1283 nvmem = NULL;
1284
1285 for (map = bp->eeprom_map; map->len; map++) {
1286 if (map->tag != tag) {
1287 tag = map->tag;
1288 ptp_ocp_nvmem_device_put(&nvmem);
1289 }
1290 if (!nvmem) {
1291 nvmem = ptp_ocp_nvmem_device_get(bp, tag);
1292 if (IS_ERR(nvmem)) {
1293 ret = PTR_ERR(nvmem);
1294 goto fail;
1295 }
1296 }
1297 ret = nvmem_device_read(nvmem, map->off, map->len,
1298 BP_MAP_ENTRY_ADDR(bp, map));
1299 if (ret != map->len)
1300 goto fail;
1301 }
1302
1303 bp->has_eeprom_data = true;
1304
1305 out:
1306 ptp_ocp_nvmem_device_put(&nvmem);
1307 return;
1308
1309 fail:
1310 dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
1311 goto out;
1312 }
1313
1314 static int
1315 ptp_ocp_firstchild(struct device *dev, void *data)
1316 {
1317 return 1;
1318 }
1319
1320 static struct device *
1321 ptp_ocp_find_flash(struct ptp_ocp *bp)
1322 {
1323 struct device *dev, *last;
1324
1325 last = NULL;
1326 dev = &bp->spi_flash->dev;
1327
1328 while ((dev = device_find_child(dev, NULL, ptp_ocp_firstchild))) {
1329 if (!strcmp("mtd", dev_bus_name(dev)))
1330 break;
1331 put_device(last);
1332 last = dev;
1333 }
1334 put_device(last);
1335
1336 return dev;
1337 }
1338
1339 static int
1340 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
1341 const u8 **data, size_t *size)
1342 {
1343 struct ptp_ocp *bp = devlink_priv(devlink);
1344 const struct ptp_ocp_firmware_header *hdr;
1345 size_t offset, length;
1346 u16 crc;
1347
1348 hdr = (const struct ptp_ocp_firmware_header *)fw->data;
1349 if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
1350 devlink_flash_update_status_notify(devlink,
1351 "No firmware header found, flashing raw image",
1352 NULL, 0, 0);
1353 offset = 0;
1354 length = fw->size;
1355 goto out;
1356 }
1357
1358 if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
1359 be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
1360 devlink_flash_update_status_notify(devlink,
1361 "Firmware image compatibility check failed",
1362 NULL, 0, 0);
1363 return -EINVAL;
1364 }
1365
1366 offset = sizeof(*hdr);
1367 length = be32_to_cpu(hdr->image_size);
1368 if (length != (fw->size - offset)) {
1369 devlink_flash_update_status_notify(devlink,
1370 "Firmware image size check failed",
1371 NULL, 0, 0);
1372 return -EINVAL;
1373 }
1374
1375 crc = crc16(0xffff, &fw->data[offset], length);
1376 if (be16_to_cpu(hdr->crc) != crc) {
1377 devlink_flash_update_status_notify(devlink,
1378 "Firmware image CRC check failed",
1379 NULL, 0, 0);
1380 return -EINVAL;
1381 }
1382
1383 out:
1384 *data = &fw->data[offset];
1385 *size = length;
1386
1387 return 0;
1388 }
1389
1390 static int
1391 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
1392 const struct firmware *fw)
1393 {
1394 struct mtd_info *mtd = dev_get_drvdata(dev);
1395 struct ptp_ocp *bp = devlink_priv(devlink);
1396 size_t off, len, size, resid, wrote;
1397 struct erase_info erase;
1398 size_t base, blksz;
1399 const u8 *data;
1400 int err;
1401
1402 err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
1403 if (err)
1404 goto out;
1405
1406 off = 0;
1407 base = bp->flash_start;
1408 blksz = 4096;
1409 resid = size;
1410
1411 while (resid) {
1412 devlink_flash_update_status_notify(devlink, "Flashing",
1413 NULL, off, size);
1414
1415 len = min_t(size_t, resid, blksz);
1416 erase.addr = base + off;
1417 erase.len = blksz;
1418
1419 err = mtd_erase(mtd, &erase);
1420 if (err)
1421 goto out;
1422
1423 err = mtd_write(mtd, base + off, len, &wrote, data + off);
1424 if (err)
1425 goto out;
1426
1427 off += blksz;
1428 resid -= len;
1429 }
1430 out:
1431 return err;
1432 }
1433
1434 static int
1435 ptp_ocp_devlink_flash_update(struct devlink *devlink,
1436 struct devlink_flash_update_params *params,
1437 struct netlink_ext_ack *extack)
1438 {
1439 struct ptp_ocp *bp = devlink_priv(devlink);
1440 struct device *dev;
1441 const char *msg;
1442 int err;
1443
1444 dev = ptp_ocp_find_flash(bp);
1445 if (!dev) {
1446 dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
1447 return -ENODEV;
1448 }
1449
1450 devlink_flash_update_status_notify(devlink, "Preparing to flash",
1451 NULL, 0, 0);
1452
1453 err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
1454
1455 msg = err ? "Flash error" : "Flash complete";
1456 devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
1457
1458 put_device(dev);
1459 return err;
1460 }
1461
1462 static int
1463 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
1464 struct netlink_ext_ack *extack)
1465 {
1466 struct ptp_ocp *bp = devlink_priv(devlink);
1467 const char *fw_image;
1468 char buf[32];
1469 int err;
1470
1471 err = devlink_info_driver_name_put(req, KBUILD_MODNAME);
1472 if (err)
1473 return err;
1474
1475 fw_image = bp->fw_loader ? "loader" : "fw";
1476 sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
1477 err = devlink_info_version_running_put(req, fw_image, buf);
1478 if (err)
1479 return err;
1480
1481 if (!bp->has_eeprom_data) {
1482 ptp_ocp_read_eeprom(bp);
1483 if (!bp->has_eeprom_data)
1484 return 0;
1485 }
1486
1487 sprintf(buf, "%pM", bp->serial);
1488 err = devlink_info_serial_number_put(req, buf);
1489 if (err)
1490 return err;
1491
1492 err = devlink_info_version_fixed_put(req,
1493 DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
1494 bp->board_id);
1495 if (err)
1496 return err;
1497
1498 return 0;
1499 }
1500
1501 static const struct devlink_ops ptp_ocp_devlink_ops = {
1502 .flash_update = ptp_ocp_devlink_flash_update,
1503 .info_get = ptp_ocp_devlink_info_get,
1504 };
1505
1506 static void __iomem *
1507 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
1508 {
1509 struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
1510
1511 return devm_ioremap_resource(&bp->pdev->dev, &res);
1512 }
1513
1514 static void __iomem *
1515 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1516 {
1517 resource_size_t start;
1518
1519 start = pci_resource_start(bp->pdev, 0) + r->offset;
1520 return __ptp_ocp_get_mem(bp, start, r->size);
1521 }
1522
1523 static void
1524 ptp_ocp_set_irq_resource(struct resource *res, int irq)
1525 {
1526 struct resource r = DEFINE_RES_IRQ(irq);
1527 *res = r;
1528 }
1529
1530 static void
1531 ptp_ocp_set_mem_resource(struct resource *res, resource_size_t start, int size)
1532 {
1533 struct resource r = DEFINE_RES_MEM(start, size);
1534 *res = r;
1535 }
1536
1537 static int
1538 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
1539 {
1540 struct ptp_ocp_flash_info *info;
1541 struct pci_dev *pdev = bp->pdev;
1542 struct platform_device *p;
1543 struct resource res[2];
1544 resource_size_t start;
1545 int id;
1546
1547 start = pci_resource_start(pdev, 0) + r->offset;
1548 ptp_ocp_set_mem_resource(&res[0], start, r->size);
1549 ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1550
1551 info = r->extra;
1552 id = pci_dev_id(pdev) << 1;
1553 id += info->pci_offset;
1554
1555 p = platform_device_register_resndata(&pdev->dev, info->name, id,
1556 res, 2, info->data,
1557 info->data_size);
1558 if (IS_ERR(p))
1559 return PTR_ERR(p);
1560
1561 bp_assign_entry(bp, r, p);
1562
1563 return 0;
1564 }
1565
1566 static struct platform_device *
1567 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
1568 {
1569 struct ptp_ocp_i2c_info *info;
1570 struct resource res[2];
1571 resource_size_t start;
1572
1573 info = r->extra;
1574 start = pci_resource_start(pdev, 0) + r->offset;
1575 ptp_ocp_set_mem_resource(&res[0], start, r->size);
1576 ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1577
1578 return platform_device_register_resndata(&pdev->dev, info->name,
1579 id, res, 2,
1580 info->data, info->data_size);
1581 }
1582
1583 static int
1584 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
1585 {
1586 struct pci_dev *pdev = bp->pdev;
1587 struct ptp_ocp_i2c_info *info;
1588 struct platform_device *p;
1589 struct clk_hw *clk;
1590 char buf[32];
1591 int id;
1592
1593 info = r->extra;
1594 id = pci_dev_id(bp->pdev);
1595
1596 sprintf(buf, "AXI.%d", id);
1597 clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
1598 info->fixed_rate);
1599 if (IS_ERR(clk))
1600 return PTR_ERR(clk);
1601 bp->i2c_clk = clk;
1602
1603 sprintf(buf, "%s.%d", info->name, id);
1604 devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
1605 p = ptp_ocp_i2c_bus(bp->pdev, r, id);
1606 if (IS_ERR(p))
1607 return PTR_ERR(p);
1608
1609 bp_assign_entry(bp, r, p);
1610
1611 return 0;
1612 }
1613
1614
1615 static irqreturn_t
1616 ptp_ocp_signal_irq(int irq, void *priv)
1617 {
1618 struct ptp_ocp_ext_src *ext = priv;
1619 struct signal_reg __iomem *reg = ext->mem;
1620 struct ptp_ocp *bp = ext->bp;
1621 u32 enable, status;
1622 int gen;
1623
1624 gen = ext->info->index - 1;
1625
1626 enable = ioread32(®->enable);
1627 status = ioread32(®->status);
1628
1629
1630 if (status || !enable) {
1631 iowrite32(0, ®->intr_mask);
1632 iowrite32(0, ®->enable);
1633 bp->signal[gen].running = false;
1634 }
1635
1636 iowrite32(0, ®->intr);
1637
1638 return IRQ_HANDLED;
1639 }
1640
1641 static int
1642 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
1643 {
1644 struct ptp_system_timestamp sts;
1645 struct timespec64 ts;
1646 ktime_t start_ns;
1647 int err;
1648
1649 if (!s->period)
1650 return 0;
1651
1652 if (!s->pulse)
1653 s->pulse = ktime_divns(s->period * s->duty, 100);
1654
1655 err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
1656 if (err)
1657 return err;
1658
1659 start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
1660 if (!s->start) {
1661
1662 s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
1663 s->start = ktime_add(s->start, s->phase);
1664 }
1665
1666 if (s->duty < 1 || s->duty > 99)
1667 return -EINVAL;
1668
1669 if (s->pulse < 1 || s->pulse > s->period)
1670 return -EINVAL;
1671
1672 if (s->start < start_ns)
1673 return -EINVAL;
1674
1675 bp->signal[gen] = *s;
1676
1677 return 0;
1678 }
1679
1680 static int
1681 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
1682 struct ptp_perout_request *req)
1683 {
1684 struct ptp_ocp_signal s = { };
1685
1686 s.polarity = bp->signal[gen].polarity;
1687 s.period = ktime_set(req->period.sec, req->period.nsec);
1688 if (!s.period)
1689 return 0;
1690
1691 if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
1692 s.pulse = ktime_set(req->on.sec, req->on.nsec);
1693 s.duty = ktime_divns(s.pulse * 100, s.period);
1694 }
1695
1696 if (req->flags & PTP_PEROUT_PHASE)
1697 s.phase = ktime_set(req->phase.sec, req->phase.nsec);
1698 else
1699 s.start = ktime_set(req->start.sec, req->start.nsec);
1700
1701 return ptp_ocp_signal_set(bp, gen, &s);
1702 }
1703
1704 static int
1705 ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
1706 {
1707 struct ptp_ocp_ext_src *ext = priv;
1708 struct signal_reg __iomem *reg = ext->mem;
1709 struct ptp_ocp *bp = ext->bp;
1710 struct timespec64 ts;
1711 int gen;
1712
1713 gen = ext->info->index - 1;
1714
1715 iowrite32(0, ®->intr_mask);
1716 iowrite32(0, ®->enable);
1717 bp->signal[gen].running = false;
1718 if (!enable)
1719 return 0;
1720
1721 ts = ktime_to_timespec64(bp->signal[gen].start);
1722 iowrite32(ts.tv_sec, ®->start_sec);
1723 iowrite32(ts.tv_nsec, ®->start_ns);
1724
1725 ts = ktime_to_timespec64(bp->signal[gen].period);
1726 iowrite32(ts.tv_sec, ®->period_sec);
1727 iowrite32(ts.tv_nsec, ®->period_ns);
1728
1729 ts = ktime_to_timespec64(bp->signal[gen].pulse);
1730 iowrite32(ts.tv_sec, ®->pulse_sec);
1731 iowrite32(ts.tv_nsec, ®->pulse_ns);
1732
1733 iowrite32(bp->signal[gen].polarity, ®->polarity);
1734 iowrite32(0, ®->repeat_count);
1735
1736 iowrite32(0, ®->intr);
1737 iowrite32(1, ®->intr_mask);
1738 iowrite32(3, ®->enable);
1739
1740 bp->signal[gen].running = true;
1741
1742 return 0;
1743 }
1744
1745 static irqreturn_t
1746 ptp_ocp_ts_irq(int irq, void *priv)
1747 {
1748 struct ptp_ocp_ext_src *ext = priv;
1749 struct ts_reg __iomem *reg = ext->mem;
1750 struct ptp_clock_event ev;
1751 u32 sec, nsec;
1752
1753 if (ext == ext->bp->pps) {
1754 if (ext->bp->pps_req_map & OCP_REQ_PPS) {
1755 ev.type = PTP_CLOCK_PPS;
1756 ptp_clock_event(ext->bp->ptp, &ev);
1757 }
1758
1759 if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
1760 goto out;
1761 }
1762
1763
1764 sec = ioread32(®->time_sec);
1765 nsec = ioread32(®->time_ns);
1766
1767 ev.type = PTP_CLOCK_EXTTS;
1768 ev.index = ext->info->index;
1769 ev.timestamp = sec * NSEC_PER_SEC + nsec;
1770
1771 ptp_clock_event(ext->bp->ptp, &ev);
1772
1773 out:
1774 iowrite32(1, ®->intr);
1775
1776 return IRQ_HANDLED;
1777 }
1778
1779 static int
1780 ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
1781 {
1782 struct ptp_ocp_ext_src *ext = priv;
1783 struct ts_reg __iomem *reg = ext->mem;
1784 struct ptp_ocp *bp = ext->bp;
1785
1786 if (ext == bp->pps) {
1787 u32 old_map = bp->pps_req_map;
1788
1789 if (enable)
1790 bp->pps_req_map |= req;
1791 else
1792 bp->pps_req_map &= ~req;
1793
1794
1795 if ((!!old_map ^ !!bp->pps_req_map) == 0)
1796 return 0;
1797 }
1798
1799 if (enable) {
1800 iowrite32(1, ®->enable);
1801 iowrite32(1, ®->intr_mask);
1802 iowrite32(1, ®->intr);
1803 } else {
1804 iowrite32(0, ®->intr_mask);
1805 iowrite32(0, ®->enable);
1806 }
1807
1808 return 0;
1809 }
1810
1811 static void
1812 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
1813 {
1814 ext->info->enable(ext, ~0, false);
1815 pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
1816 kfree(ext);
1817 }
1818
1819 static int
1820 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
1821 {
1822 struct pci_dev *pdev = bp->pdev;
1823 struct ptp_ocp_ext_src *ext;
1824 int err;
1825
1826 ext = kzalloc(sizeof(*ext), GFP_KERNEL);
1827 if (!ext)
1828 return -ENOMEM;
1829
1830 ext->mem = ptp_ocp_get_mem(bp, r);
1831 if (IS_ERR(ext->mem)) {
1832 err = PTR_ERR(ext->mem);
1833 goto out;
1834 }
1835
1836 ext->bp = bp;
1837 ext->info = r->extra;
1838 ext->irq_vec = r->irq_vec;
1839
1840 err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
1841 ext, "ocp%d.%s", bp->id, r->name);
1842 if (err) {
1843 dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
1844 goto out;
1845 }
1846
1847 bp_assign_entry(bp, r, ext);
1848
1849 return 0;
1850
1851 out:
1852 kfree(ext);
1853 return err;
1854 }
1855
1856 static int
1857 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
1858 {
1859 struct pci_dev *pdev = bp->pdev;
1860 struct uart_8250_port uart;
1861
1862
1863
1864
1865 memset(&uart, 0, sizeof(uart));
1866 uart.port.dev = &pdev->dev;
1867 uart.port.iotype = UPIO_MEM;
1868 uart.port.regshift = 2;
1869 uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
1870 uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
1871 uart.port.uartclk = 50000000;
1872 uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
1873 uart.port.type = PORT_16550A;
1874
1875 return serial8250_register_8250_port(&uart);
1876 }
1877
1878 static int
1879 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
1880 {
1881 int port;
1882
1883 port = ptp_ocp_serial_line(bp, r);
1884 if (port < 0)
1885 return port;
1886
1887 bp_assign_entry(bp, r, port);
1888
1889 return 0;
1890 }
1891
1892 static int
1893 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1894 {
1895 void __iomem *mem;
1896
1897 mem = ptp_ocp_get_mem(bp, r);
1898 if (IS_ERR(mem))
1899 return PTR_ERR(mem);
1900
1901 bp_assign_entry(bp, r, mem);
1902
1903 return 0;
1904 }
1905
1906 static void
1907 ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
1908 {
1909 if (!bp->nmea_out)
1910 return;
1911
1912 iowrite32(0, &bp->nmea_out->ctrl);
1913 iowrite32(7, &bp->nmea_out->uart_baud);
1914 iowrite32(1, &bp->nmea_out->ctrl);
1915 }
1916
1917 static void
1918 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
1919 {
1920 u32 val;
1921
1922 iowrite32(0, ®->enable);
1923
1924 val = ioread32(®->polarity);
1925 s->polarity = val ? true : false;
1926 s->duty = 50;
1927 }
1928
1929 static void
1930 ptp_ocp_signal_init(struct ptp_ocp *bp)
1931 {
1932 int i;
1933
1934 for (i = 0; i < 4; i++)
1935 if (bp->signal_out[i])
1936 _ptp_ocp_signal_init(&bp->signal[i],
1937 bp->signal_out[i]->mem);
1938 }
1939
1940 static void
1941 ptp_ocp_attr_group_del(struct ptp_ocp *bp)
1942 {
1943 sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
1944 kfree(bp->attr_group);
1945 }
1946
1947 static int
1948 ptp_ocp_attr_group_add(struct ptp_ocp *bp,
1949 const struct ocp_attr_group *attr_tbl)
1950 {
1951 int count, i;
1952 int err;
1953
1954 count = 0;
1955 for (i = 0; attr_tbl[i].cap; i++)
1956 if (attr_tbl[i].cap & bp->fw_cap)
1957 count++;
1958
1959 bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *),
1960 GFP_KERNEL);
1961 if (!bp->attr_group)
1962 return -ENOMEM;
1963
1964 count = 0;
1965 for (i = 0; attr_tbl[i].cap; i++)
1966 if (attr_tbl[i].cap & bp->fw_cap)
1967 bp->attr_group[count++] = attr_tbl[i].group;
1968
1969 err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
1970 if (err)
1971 bp->attr_group[0] = NULL;
1972
1973 return err;
1974 }
1975
1976 static void
1977 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
1978 {
1979 u32 ctrl;
1980 bool on;
1981
1982 ctrl = ioread32(reg);
1983 on = ctrl & bit;
1984 if (on ^ enable) {
1985 ctrl &= ~bit;
1986 ctrl |= enable ? bit : 0;
1987 iowrite32(ctrl, reg);
1988 }
1989 }
1990
1991 static void
1992 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
1993 {
1994 return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
1995 IRIG_M_CTRL_ENABLE, enable);
1996 }
1997
1998 static void
1999 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
2000 {
2001 return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
2002 IRIG_S_CTRL_ENABLE, enable);
2003 }
2004
2005 static void
2006 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
2007 {
2008 return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
2009 DCF_M_CTRL_ENABLE, enable);
2010 }
2011
2012 static void
2013 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
2014 {
2015 return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
2016 DCF_S_CTRL_ENABLE, enable);
2017 }
2018
2019 static void
2020 __handle_signal_outputs(struct ptp_ocp *bp, u32 val)
2021 {
2022 ptp_ocp_irig_out(bp, val & 0x00100010);
2023 ptp_ocp_dcf_out(bp, val & 0x00200020);
2024 }
2025
2026 static void
2027 __handle_signal_inputs(struct ptp_ocp *bp, u32 val)
2028 {
2029 ptp_ocp_irig_in(bp, val & 0x00100010);
2030 ptp_ocp_dcf_in(bp, val & 0x00200020);
2031 }
2032
2033 static u32
2034 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
2035 {
2036 u32 __iomem *gpio;
2037 u32 shift;
2038
2039 if (bp->sma[sma_nr - 1].fixed_fcn)
2040 return (sma_nr - 1) & 1;
2041
2042 if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
2043 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2044 else
2045 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2046 shift = sma_nr & 1 ? 0 : 16;
2047
2048 return (ioread32(gpio) >> shift) & 0xffff;
2049 }
2050
2051 static int
2052 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2053 {
2054 u32 reg, mask, shift;
2055 unsigned long flags;
2056 u32 __iomem *gpio;
2057
2058 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2059 shift = sma_nr & 1 ? 0 : 16;
2060
2061 mask = 0xffff << (16 - shift);
2062
2063 spin_lock_irqsave(&bp->lock, flags);
2064
2065 reg = ioread32(gpio);
2066 reg = (reg & mask) | (val << shift);
2067
2068 __handle_signal_outputs(bp, reg);
2069
2070 iowrite32(reg, gpio);
2071
2072 spin_unlock_irqrestore(&bp->lock, flags);
2073
2074 return 0;
2075 }
2076
2077 static int
2078 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2079 {
2080 u32 reg, mask, shift;
2081 unsigned long flags;
2082 u32 __iomem *gpio;
2083
2084 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2085 shift = sma_nr & 1 ? 0 : 16;
2086
2087 mask = 0xffff << (16 - shift);
2088
2089 spin_lock_irqsave(&bp->lock, flags);
2090
2091 reg = ioread32(gpio);
2092 reg = (reg & mask) | (val << shift);
2093
2094 __handle_signal_inputs(bp, reg);
2095
2096 iowrite32(reg, gpio);
2097
2098 spin_unlock_irqrestore(&bp->lock, flags);
2099
2100 return 0;
2101 }
2102
2103 static void
2104 ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
2105 {
2106 u32 reg;
2107 int i;
2108
2109
2110 bp->sma[0].mode = SMA_MODE_IN;
2111 bp->sma[1].mode = SMA_MODE_IN;
2112 bp->sma[2].mode = SMA_MODE_OUT;
2113 bp->sma[3].mode = SMA_MODE_OUT;
2114 for (i = 0; i < 4; i++)
2115 bp->sma[i].default_fcn = i & 1;
2116
2117
2118 if (!bp->sma_map1) {
2119 for (i = 0; i < 4; i++) {
2120 bp->sma[i].fixed_fcn = true;
2121 bp->sma[i].fixed_dir = true;
2122 }
2123 return;
2124 }
2125
2126
2127
2128
2129 reg = ioread32(&bp->sma_map2->gpio2);
2130 if (reg == 0xffffffff) {
2131 for (i = 0; i < 4; i++)
2132 bp->sma[i].fixed_dir = true;
2133 } else {
2134 reg = ioread32(&bp->sma_map1->gpio1);
2135 bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
2136 bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
2137
2138 reg = ioread32(&bp->sma_map1->gpio2);
2139 bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
2140 bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
2141 }
2142 }
2143
2144 static const struct ocp_sma_op ocp_fb_sma_op = {
2145 .tbl = { ptp_ocp_sma_in, ptp_ocp_sma_out },
2146 .init = ptp_ocp_sma_fb_init,
2147 .get = ptp_ocp_sma_fb_get,
2148 .set_inputs = ptp_ocp_sma_fb_set_inputs,
2149 .set_output = ptp_ocp_sma_fb_set_output,
2150 };
2151
2152 static int
2153 ptp_ocp_fb_set_pins(struct ptp_ocp *bp)
2154 {
2155 struct ptp_pin_desc *config;
2156 int i;
2157
2158 config = kcalloc(4, sizeof(*config), GFP_KERNEL);
2159 if (!config)
2160 return -ENOMEM;
2161
2162 for (i = 0; i < 4; i++) {
2163 sprintf(config[i].name, "sma%d", i + 1);
2164 config[i].index = i;
2165 }
2166
2167 bp->ptp_info.n_pins = 4;
2168 bp->ptp_info.pin_config = config;
2169
2170 return 0;
2171 }
2172
2173 static void
2174 ptp_ocp_fb_set_version(struct ptp_ocp *bp)
2175 {
2176 u64 cap = OCP_CAP_BASIC;
2177 u32 version;
2178
2179 version = ioread32(&bp->image->version);
2180
2181
2182 if ((version & 0xffff) == 0) {
2183 version = version >> 16;
2184 bp->fw_loader = true;
2185 }
2186
2187 bp->fw_tag = version >> 15;
2188 bp->fw_version = version & 0x7fff;
2189
2190 if (bp->fw_tag) {
2191
2192 if (version >= 5)
2193 cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2194 } else {
2195
2196 if (version >= 19)
2197 cap |= OCP_CAP_SIGNAL;
2198 if (version >= 20)
2199 cap |= OCP_CAP_FREQ;
2200 }
2201
2202 bp->fw_cap = cap;
2203 }
2204
2205
2206 static int
2207 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2208 {
2209 int err;
2210
2211 bp->flash_start = 1024 * 4096;
2212 bp->eeprom_map = fb_eeprom_map;
2213 bp->fw_version = ioread32(&bp->image->version);
2214 bp->sma_op = &ocp_fb_sma_op;
2215
2216 ptp_ocp_fb_set_version(bp);
2217
2218 ptp_ocp_tod_init(bp);
2219 ptp_ocp_nmea_out_init(bp);
2220 ptp_ocp_sma_init(bp);
2221 ptp_ocp_signal_init(bp);
2222
2223 err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
2224 if (err)
2225 return err;
2226
2227 err = ptp_ocp_fb_set_pins(bp);
2228 if (err)
2229 return err;
2230
2231 return ptp_ocp_init_clock(bp);
2232 }
2233
2234 static bool
2235 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
2236 {
2237 bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
2238
2239 if (!allow)
2240 dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
2241 r->irq_vec, r->name);
2242 return allow;
2243 }
2244
2245 static int
2246 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
2247 {
2248 struct ocp_resource *r, *table;
2249 int err = 0;
2250
2251 table = (struct ocp_resource *)driver_data;
2252 for (r = table; r->setup; r++) {
2253 if (!ptp_ocp_allow_irq(bp, r))
2254 continue;
2255 err = r->setup(bp, r);
2256 if (err) {
2257 dev_err(&bp->pdev->dev,
2258 "Could not register %s: err %d\n",
2259 r->name, err);
2260 break;
2261 }
2262 }
2263 return err;
2264 }
2265
2266 static ssize_t
2267 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
2268 int def_val)
2269 {
2270 const char *name;
2271 ssize_t count;
2272
2273 count = sysfs_emit(buf, "OUT: ");
2274 name = ptp_ocp_select_name_from_val(tbl, val);
2275 if (!name)
2276 name = ptp_ocp_select_name_from_val(tbl, def_val);
2277 count += sysfs_emit_at(buf, count, "%s\n", name);
2278 return count;
2279 }
2280
2281 static ssize_t
2282 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
2283 int def_val)
2284 {
2285 const char *name;
2286 ssize_t count;
2287 int i;
2288
2289 count = sysfs_emit(buf, "IN: ");
2290 for (i = 0; tbl[i].name; i++) {
2291 if (val & tbl[i].value) {
2292 name = tbl[i].name;
2293 count += sysfs_emit_at(buf, count, "%s ", name);
2294 }
2295 }
2296 if (!val && def_val >= 0) {
2297 name = ptp_ocp_select_name_from_val(tbl, def_val);
2298 count += sysfs_emit_at(buf, count, "%s ", name);
2299 }
2300 if (count)
2301 count--;
2302 count += sysfs_emit_at(buf, count, "\n");
2303 return count;
2304 }
2305
2306 static int
2307 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
2308 enum ptp_ocp_sma_mode *mode)
2309 {
2310 int idx, count, dir;
2311 char **argv;
2312 int ret;
2313
2314 argv = argv_split(GFP_KERNEL, buf, &count);
2315 if (!argv)
2316 return -ENOMEM;
2317
2318 ret = -EINVAL;
2319 if (!count)
2320 goto out;
2321
2322 idx = 0;
2323 dir = *mode == SMA_MODE_IN ? 0 : 1;
2324 if (!strcasecmp("IN:", argv[0])) {
2325 dir = 0;
2326 idx++;
2327 }
2328 if (!strcasecmp("OUT:", argv[0])) {
2329 dir = 1;
2330 idx++;
2331 }
2332 *mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
2333
2334 ret = 0;
2335 for (; idx < count; idx++)
2336 ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
2337 if (ret < 0)
2338 ret = -EINVAL;
2339
2340 out:
2341 argv_free(argv);
2342 return ret;
2343 }
2344
2345 static ssize_t
2346 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
2347 int default_in_val, int default_out_val)
2348 {
2349 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2350 const struct ocp_selector * const *tbl;
2351 u32 val;
2352
2353 tbl = bp->sma_op->tbl;
2354 val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
2355
2356 if (sma->mode == SMA_MODE_IN) {
2357 if (sma->disabled)
2358 val = SMA_DISABLE;
2359 return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
2360 }
2361
2362 return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
2363 }
2364
2365 static ssize_t
2366 sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
2367 {
2368 struct ptp_ocp *bp = dev_get_drvdata(dev);
2369
2370 return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
2371 }
2372
2373 static ssize_t
2374 sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
2375 {
2376 struct ptp_ocp *bp = dev_get_drvdata(dev);
2377
2378 return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
2379 }
2380
2381 static ssize_t
2382 sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
2383 {
2384 struct ptp_ocp *bp = dev_get_drvdata(dev);
2385
2386 return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
2387 }
2388
2389 static ssize_t
2390 sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
2391 {
2392 struct ptp_ocp *bp = dev_get_drvdata(dev);
2393
2394 return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
2395 }
2396
2397 static int
2398 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
2399 {
2400 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2401 enum ptp_ocp_sma_mode mode;
2402 int val;
2403
2404 mode = sma->mode;
2405 val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
2406 if (val < 0)
2407 return val;
2408
2409 if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
2410 return -EOPNOTSUPP;
2411
2412 if (sma->fixed_fcn) {
2413 if (val != sma->default_fcn)
2414 return -EOPNOTSUPP;
2415 return 0;
2416 }
2417
2418 sma->disabled = !!(val & SMA_DISABLE);
2419
2420 if (mode != sma->mode) {
2421 if (mode == SMA_MODE_IN)
2422 ptp_ocp_sma_set_output(bp, sma_nr, 0);
2423 else
2424 ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
2425 sma->mode = mode;
2426 }
2427
2428 if (!sma->fixed_dir)
2429 val |= SMA_ENABLE;
2430
2431 if (sma->disabled)
2432 val = 0;
2433
2434 if (mode == SMA_MODE_IN)
2435 val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
2436 else
2437 val = ptp_ocp_sma_set_output(bp, sma_nr, val);
2438
2439 return val;
2440 }
2441
2442 static ssize_t
2443 sma1_store(struct device *dev, struct device_attribute *attr,
2444 const char *buf, size_t count)
2445 {
2446 struct ptp_ocp *bp = dev_get_drvdata(dev);
2447 int err;
2448
2449 err = ptp_ocp_sma_store(bp, buf, 1);
2450 return err ? err : count;
2451 }
2452
2453 static ssize_t
2454 sma2_store(struct device *dev, struct device_attribute *attr,
2455 const char *buf, size_t count)
2456 {
2457 struct ptp_ocp *bp = dev_get_drvdata(dev);
2458 int err;
2459
2460 err = ptp_ocp_sma_store(bp, buf, 2);
2461 return err ? err : count;
2462 }
2463
2464 static ssize_t
2465 sma3_store(struct device *dev, struct device_attribute *attr,
2466 const char *buf, size_t count)
2467 {
2468 struct ptp_ocp *bp = dev_get_drvdata(dev);
2469 int err;
2470
2471 err = ptp_ocp_sma_store(bp, buf, 3);
2472 return err ? err : count;
2473 }
2474
2475 static ssize_t
2476 sma4_store(struct device *dev, struct device_attribute *attr,
2477 const char *buf, size_t count)
2478 {
2479 struct ptp_ocp *bp = dev_get_drvdata(dev);
2480 int err;
2481
2482 err = ptp_ocp_sma_store(bp, buf, 4);
2483 return err ? err : count;
2484 }
2485 static DEVICE_ATTR_RW(sma1);
2486 static DEVICE_ATTR_RW(sma2);
2487 static DEVICE_ATTR_RW(sma3);
2488 static DEVICE_ATTR_RW(sma4);
2489
2490 static ssize_t
2491 available_sma_inputs_show(struct device *dev,
2492 struct device_attribute *attr, char *buf)
2493 {
2494 struct ptp_ocp *bp = dev_get_drvdata(dev);
2495
2496 return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
2497 }
2498 static DEVICE_ATTR_RO(available_sma_inputs);
2499
2500 static ssize_t
2501 available_sma_outputs_show(struct device *dev,
2502 struct device_attribute *attr, char *buf)
2503 {
2504 struct ptp_ocp *bp = dev_get_drvdata(dev);
2505
2506 return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
2507 }
2508 static DEVICE_ATTR_RO(available_sma_outputs);
2509
2510 #define EXT_ATTR_RO(_group, _name, _val) \
2511 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
2512 { __ATTR_RO(_name), (void *)_val }
2513 #define EXT_ATTR_RW(_group, _name, _val) \
2514 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
2515 { __ATTR_RW(_name), (void *)_val }
2516 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2517
2518
2519 static ssize_t
2520 signal_store(struct device *dev, struct device_attribute *attr,
2521 const char *buf, size_t count)
2522 {
2523 struct dev_ext_attribute *ea = to_ext_attr(attr);
2524 struct ptp_ocp *bp = dev_get_drvdata(dev);
2525 struct ptp_ocp_signal s = { };
2526 int gen = (uintptr_t)ea->var;
2527 int argc, err;
2528 char **argv;
2529
2530 argv = argv_split(GFP_KERNEL, buf, &argc);
2531 if (!argv)
2532 return -ENOMEM;
2533
2534 err = -EINVAL;
2535 s.duty = bp->signal[gen].duty;
2536 s.phase = bp->signal[gen].phase;
2537 s.period = bp->signal[gen].period;
2538 s.polarity = bp->signal[gen].polarity;
2539
2540 switch (argc) {
2541 case 4:
2542 argc--;
2543 err = kstrtobool(argv[argc], &s.polarity);
2544 if (err)
2545 goto out;
2546 fallthrough;
2547 case 3:
2548 argc--;
2549 err = kstrtou64(argv[argc], 0, &s.phase);
2550 if (err)
2551 goto out;
2552 fallthrough;
2553 case 2:
2554 argc--;
2555 err = kstrtoint(argv[argc], 0, &s.duty);
2556 if (err)
2557 goto out;
2558 fallthrough;
2559 case 1:
2560 argc--;
2561 err = kstrtou64(argv[argc], 0, &s.period);
2562 if (err)
2563 goto out;
2564 break;
2565 default:
2566 goto out;
2567 }
2568
2569 err = ptp_ocp_signal_set(bp, gen, &s);
2570 if (err)
2571 goto out;
2572
2573 err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
2574
2575 out:
2576 argv_free(argv);
2577 return err ? err : count;
2578 }
2579
2580 static ssize_t
2581 signal_show(struct device *dev, struct device_attribute *attr, char *buf)
2582 {
2583 struct dev_ext_attribute *ea = to_ext_attr(attr);
2584 struct ptp_ocp *bp = dev_get_drvdata(dev);
2585 struct ptp_ocp_signal *signal;
2586 struct timespec64 ts;
2587 ssize_t count;
2588 int i;
2589
2590 i = (uintptr_t)ea->var;
2591 signal = &bp->signal[i];
2592
2593 count = sysfs_emit(buf, "%llu %d %llu %d", signal->period,
2594 signal->duty, signal->phase, signal->polarity);
2595
2596 ts = ktime_to_timespec64(signal->start);
2597 count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts);
2598
2599 return count;
2600 }
2601 static EXT_ATTR_RW(signal, signal, 0);
2602 static EXT_ATTR_RW(signal, signal, 1);
2603 static EXT_ATTR_RW(signal, signal, 2);
2604 static EXT_ATTR_RW(signal, signal, 3);
2605
2606 static ssize_t
2607 duty_show(struct device *dev, struct device_attribute *attr, char *buf)
2608 {
2609 struct dev_ext_attribute *ea = to_ext_attr(attr);
2610 struct ptp_ocp *bp = dev_get_drvdata(dev);
2611 int i = (uintptr_t)ea->var;
2612
2613 return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
2614 }
2615 static EXT_ATTR_RO(signal, duty, 0);
2616 static EXT_ATTR_RO(signal, duty, 1);
2617 static EXT_ATTR_RO(signal, duty, 2);
2618 static EXT_ATTR_RO(signal, duty, 3);
2619
2620 static ssize_t
2621 period_show(struct device *dev, struct device_attribute *attr, char *buf)
2622 {
2623 struct dev_ext_attribute *ea = to_ext_attr(attr);
2624 struct ptp_ocp *bp = dev_get_drvdata(dev);
2625 int i = (uintptr_t)ea->var;
2626
2627 return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
2628 }
2629 static EXT_ATTR_RO(signal, period, 0);
2630 static EXT_ATTR_RO(signal, period, 1);
2631 static EXT_ATTR_RO(signal, period, 2);
2632 static EXT_ATTR_RO(signal, period, 3);
2633
2634 static ssize_t
2635 phase_show(struct device *dev, struct device_attribute *attr, char *buf)
2636 {
2637 struct dev_ext_attribute *ea = to_ext_attr(attr);
2638 struct ptp_ocp *bp = dev_get_drvdata(dev);
2639 int i = (uintptr_t)ea->var;
2640
2641 return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
2642 }
2643 static EXT_ATTR_RO(signal, phase, 0);
2644 static EXT_ATTR_RO(signal, phase, 1);
2645 static EXT_ATTR_RO(signal, phase, 2);
2646 static EXT_ATTR_RO(signal, phase, 3);
2647
2648 static ssize_t
2649 polarity_show(struct device *dev, struct device_attribute *attr,
2650 char *buf)
2651 {
2652 struct dev_ext_attribute *ea = to_ext_attr(attr);
2653 struct ptp_ocp *bp = dev_get_drvdata(dev);
2654 int i = (uintptr_t)ea->var;
2655
2656 return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
2657 }
2658 static EXT_ATTR_RO(signal, polarity, 0);
2659 static EXT_ATTR_RO(signal, polarity, 1);
2660 static EXT_ATTR_RO(signal, polarity, 2);
2661 static EXT_ATTR_RO(signal, polarity, 3);
2662
2663 static ssize_t
2664 running_show(struct device *dev, struct device_attribute *attr, char *buf)
2665 {
2666 struct dev_ext_attribute *ea = to_ext_attr(attr);
2667 struct ptp_ocp *bp = dev_get_drvdata(dev);
2668 int i = (uintptr_t)ea->var;
2669
2670 return sysfs_emit(buf, "%d\n", bp->signal[i].running);
2671 }
2672 static EXT_ATTR_RO(signal, running, 0);
2673 static EXT_ATTR_RO(signal, running, 1);
2674 static EXT_ATTR_RO(signal, running, 2);
2675 static EXT_ATTR_RO(signal, running, 3);
2676
2677 static ssize_t
2678 start_show(struct device *dev, struct device_attribute *attr, char *buf)
2679 {
2680 struct dev_ext_attribute *ea = to_ext_attr(attr);
2681 struct ptp_ocp *bp = dev_get_drvdata(dev);
2682 int i = (uintptr_t)ea->var;
2683 struct timespec64 ts;
2684
2685 ts = ktime_to_timespec64(bp->signal[i].start);
2686 return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
2687 }
2688 static EXT_ATTR_RO(signal, start, 0);
2689 static EXT_ATTR_RO(signal, start, 1);
2690 static EXT_ATTR_RO(signal, start, 2);
2691 static EXT_ATTR_RO(signal, start, 3);
2692
2693 static ssize_t
2694 seconds_store(struct device *dev, struct device_attribute *attr,
2695 const char *buf, size_t count)
2696 {
2697 struct dev_ext_attribute *ea = to_ext_attr(attr);
2698 struct ptp_ocp *bp = dev_get_drvdata(dev);
2699 int idx = (uintptr_t)ea->var;
2700 u32 val;
2701 int err;
2702
2703 err = kstrtou32(buf, 0, &val);
2704 if (err)
2705 return err;
2706 if (val > 0xff)
2707 return -EINVAL;
2708
2709 if (val)
2710 val = (val << 8) | 0x1;
2711
2712 iowrite32(val, &bp->freq_in[idx]->ctrl);
2713
2714 return count;
2715 }
2716
2717 static ssize_t
2718 seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
2719 {
2720 struct dev_ext_attribute *ea = to_ext_attr(attr);
2721 struct ptp_ocp *bp = dev_get_drvdata(dev);
2722 int idx = (uintptr_t)ea->var;
2723 u32 val;
2724
2725 val = ioread32(&bp->freq_in[idx]->ctrl);
2726 if (val & 1)
2727 val = (val >> 8) & 0xff;
2728 else
2729 val = 0;
2730
2731 return sysfs_emit(buf, "%u\n", val);
2732 }
2733 static EXT_ATTR_RW(freq, seconds, 0);
2734 static EXT_ATTR_RW(freq, seconds, 1);
2735 static EXT_ATTR_RW(freq, seconds, 2);
2736 static EXT_ATTR_RW(freq, seconds, 3);
2737
2738 static ssize_t
2739 frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
2740 {
2741 struct dev_ext_attribute *ea = to_ext_attr(attr);
2742 struct ptp_ocp *bp = dev_get_drvdata(dev);
2743 int idx = (uintptr_t)ea->var;
2744 u32 val;
2745
2746 val = ioread32(&bp->freq_in[idx]->status);
2747 if (val & FREQ_STATUS_ERROR)
2748 return sysfs_emit(buf, "error\n");
2749 if (val & FREQ_STATUS_OVERRUN)
2750 return sysfs_emit(buf, "overrun\n");
2751 if (val & FREQ_STATUS_VALID)
2752 return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
2753 return 0;
2754 }
2755 static EXT_ATTR_RO(freq, frequency, 0);
2756 static EXT_ATTR_RO(freq, frequency, 1);
2757 static EXT_ATTR_RO(freq, frequency, 2);
2758 static EXT_ATTR_RO(freq, frequency, 3);
2759
2760 static ssize_t
2761 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
2762 {
2763 struct ptp_ocp *bp = dev_get_drvdata(dev);
2764
2765 if (!bp->has_eeprom_data)
2766 ptp_ocp_read_eeprom(bp);
2767
2768 return sysfs_emit(buf, "%pM\n", bp->serial);
2769 }
2770 static DEVICE_ATTR_RO(serialnum);
2771
2772 static ssize_t
2773 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
2774 {
2775 struct ptp_ocp *bp = dev_get_drvdata(dev);
2776 ssize_t ret;
2777
2778 if (bp->gnss_lost)
2779 ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
2780 else
2781 ret = sysfs_emit(buf, "SYNC\n");
2782
2783 return ret;
2784 }
2785 static DEVICE_ATTR_RO(gnss_sync);
2786
2787 static ssize_t
2788 utc_tai_offset_show(struct device *dev,
2789 struct device_attribute *attr, char *buf)
2790 {
2791 struct ptp_ocp *bp = dev_get_drvdata(dev);
2792
2793 return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
2794 }
2795
2796 static ssize_t
2797 utc_tai_offset_store(struct device *dev,
2798 struct device_attribute *attr,
2799 const char *buf, size_t count)
2800 {
2801 struct ptp_ocp *bp = dev_get_drvdata(dev);
2802 int err;
2803 u32 val;
2804
2805 err = kstrtou32(buf, 0, &val);
2806 if (err)
2807 return err;
2808
2809 ptp_ocp_utc_distribute(bp, val);
2810
2811 return count;
2812 }
2813 static DEVICE_ATTR_RW(utc_tai_offset);
2814
2815 static ssize_t
2816 ts_window_adjust_show(struct device *dev,
2817 struct device_attribute *attr, char *buf)
2818 {
2819 struct ptp_ocp *bp = dev_get_drvdata(dev);
2820
2821 return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
2822 }
2823
2824 static ssize_t
2825 ts_window_adjust_store(struct device *dev,
2826 struct device_attribute *attr,
2827 const char *buf, size_t count)
2828 {
2829 struct ptp_ocp *bp = dev_get_drvdata(dev);
2830 int err;
2831 u32 val;
2832
2833 err = kstrtou32(buf, 0, &val);
2834 if (err)
2835 return err;
2836
2837 bp->ts_window_adjust = val;
2838
2839 return count;
2840 }
2841 static DEVICE_ATTR_RW(ts_window_adjust);
2842
2843 static ssize_t
2844 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
2845 {
2846 struct ptp_ocp *bp = dev_get_drvdata(dev);
2847 u32 val;
2848
2849 val = ioread32(&bp->irig_out->ctrl);
2850 val = (val >> 16) & 0x07;
2851 return sysfs_emit(buf, "%d\n", val);
2852 }
2853
2854 static ssize_t
2855 irig_b_mode_store(struct device *dev,
2856 struct device_attribute *attr,
2857 const char *buf, size_t count)
2858 {
2859 struct ptp_ocp *bp = dev_get_drvdata(dev);
2860 unsigned long flags;
2861 int err;
2862 u32 reg;
2863 u8 val;
2864
2865 err = kstrtou8(buf, 0, &val);
2866 if (err)
2867 return err;
2868 if (val > 7)
2869 return -EINVAL;
2870
2871 reg = ((val & 0x7) << 16);
2872
2873 spin_lock_irqsave(&bp->lock, flags);
2874 iowrite32(0, &bp->irig_out->ctrl);
2875 iowrite32(reg, &bp->irig_out->ctrl);
2876 iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
2877 spin_unlock_irqrestore(&bp->lock, flags);
2878
2879 return count;
2880 }
2881 static DEVICE_ATTR_RW(irig_b_mode);
2882
2883 static ssize_t
2884 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
2885 {
2886 struct ptp_ocp *bp = dev_get_drvdata(dev);
2887 const char *p;
2888 u32 select;
2889
2890 select = ioread32(&bp->reg->select);
2891 p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
2892
2893 return sysfs_emit(buf, "%s\n", p);
2894 }
2895
2896 static ssize_t
2897 clock_source_store(struct device *dev, struct device_attribute *attr,
2898 const char *buf, size_t count)
2899 {
2900 struct ptp_ocp *bp = dev_get_drvdata(dev);
2901 unsigned long flags;
2902 int val;
2903
2904 val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
2905 if (val < 0)
2906 return val;
2907
2908 spin_lock_irqsave(&bp->lock, flags);
2909 iowrite32(val, &bp->reg->select);
2910 spin_unlock_irqrestore(&bp->lock, flags);
2911
2912 return count;
2913 }
2914 static DEVICE_ATTR_RW(clock_source);
2915
2916 static ssize_t
2917 available_clock_sources_show(struct device *dev,
2918 struct device_attribute *attr, char *buf)
2919 {
2920 return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
2921 }
2922 static DEVICE_ATTR_RO(available_clock_sources);
2923
2924 static ssize_t
2925 clock_status_drift_show(struct device *dev,
2926 struct device_attribute *attr, char *buf)
2927 {
2928 struct ptp_ocp *bp = dev_get_drvdata(dev);
2929 u32 val;
2930 int res;
2931
2932 val = ioread32(&bp->reg->status_drift);
2933 res = (val & ~INT_MAX) ? -1 : 1;
2934 res *= (val & INT_MAX);
2935 return sysfs_emit(buf, "%d\n", res);
2936 }
2937 static DEVICE_ATTR_RO(clock_status_drift);
2938
2939 static ssize_t
2940 clock_status_offset_show(struct device *dev,
2941 struct device_attribute *attr, char *buf)
2942 {
2943 struct ptp_ocp *bp = dev_get_drvdata(dev);
2944 u32 val;
2945 int res;
2946
2947 val = ioread32(&bp->reg->status_offset);
2948 res = (val & ~INT_MAX) ? -1 : 1;
2949 res *= (val & INT_MAX);
2950 return sysfs_emit(buf, "%d\n", res);
2951 }
2952 static DEVICE_ATTR_RO(clock_status_offset);
2953
2954 static ssize_t
2955 tod_correction_show(struct device *dev,
2956 struct device_attribute *attr, char *buf)
2957 {
2958 struct ptp_ocp *bp = dev_get_drvdata(dev);
2959 u32 val;
2960 int res;
2961
2962 val = ioread32(&bp->tod->adj_sec);
2963 res = (val & ~INT_MAX) ? -1 : 1;
2964 res *= (val & INT_MAX);
2965 return sysfs_emit(buf, "%d\n", res);
2966 }
2967
2968 static ssize_t
2969 tod_correction_store(struct device *dev, struct device_attribute *attr,
2970 const char *buf, size_t count)
2971 {
2972 struct ptp_ocp *bp = dev_get_drvdata(dev);
2973 unsigned long flags;
2974 int err, res;
2975 u32 val = 0;
2976
2977 err = kstrtos32(buf, 0, &res);
2978 if (err)
2979 return err;
2980 if (res < 0) {
2981 res *= -1;
2982 val |= BIT(31);
2983 }
2984 val |= res;
2985
2986 spin_lock_irqsave(&bp->lock, flags);
2987 iowrite32(val, &bp->tod->adj_sec);
2988 spin_unlock_irqrestore(&bp->lock, flags);
2989
2990 return count;
2991 }
2992 static DEVICE_ATTR_RW(tod_correction);
2993
2994 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr) \
2995 static struct attribute *fb_timecard_signal##_nr##_attrs[] = { \
2996 &dev_attr_signal##_nr##_signal.attr.attr, \
2997 &dev_attr_signal##_nr##_duty.attr.attr, \
2998 &dev_attr_signal##_nr##_phase.attr.attr, \
2999 &dev_attr_signal##_nr##_period.attr.attr, \
3000 &dev_attr_signal##_nr##_polarity.attr.attr, \
3001 &dev_attr_signal##_nr##_running.attr.attr, \
3002 &dev_attr_signal##_nr##_start.attr.attr, \
3003 NULL, \
3004 }
3005
3006 #define DEVICE_SIGNAL_GROUP(_name, _nr) \
3007 _DEVICE_SIGNAL_GROUP_ATTRS(_nr); \
3008 static const struct attribute_group \
3009 fb_timecard_signal##_nr##_group = { \
3010 .name = #_name, \
3011 .attrs = fb_timecard_signal##_nr##_attrs, \
3012 }
3013
3014 DEVICE_SIGNAL_GROUP(gen1, 0);
3015 DEVICE_SIGNAL_GROUP(gen2, 1);
3016 DEVICE_SIGNAL_GROUP(gen3, 2);
3017 DEVICE_SIGNAL_GROUP(gen4, 3);
3018
3019 #define _DEVICE_FREQ_GROUP_ATTRS(_nr) \
3020 static struct attribute *fb_timecard_freq##_nr##_attrs[] = { \
3021 &dev_attr_freq##_nr##_seconds.attr.attr, \
3022 &dev_attr_freq##_nr##_frequency.attr.attr, \
3023 NULL, \
3024 }
3025
3026 #define DEVICE_FREQ_GROUP(_name, _nr) \
3027 _DEVICE_FREQ_GROUP_ATTRS(_nr); \
3028 static const struct attribute_group \
3029 fb_timecard_freq##_nr##_group = { \
3030 .name = #_name, \
3031 .attrs = fb_timecard_freq##_nr##_attrs, \
3032 }
3033
3034 DEVICE_FREQ_GROUP(freq1, 0);
3035 DEVICE_FREQ_GROUP(freq2, 1);
3036 DEVICE_FREQ_GROUP(freq3, 2);
3037 DEVICE_FREQ_GROUP(freq4, 3);
3038
3039 static struct attribute *fb_timecard_attrs[] = {
3040 &dev_attr_serialnum.attr,
3041 &dev_attr_gnss_sync.attr,
3042 &dev_attr_clock_source.attr,
3043 &dev_attr_available_clock_sources.attr,
3044 &dev_attr_sma1.attr,
3045 &dev_attr_sma2.attr,
3046 &dev_attr_sma3.attr,
3047 &dev_attr_sma4.attr,
3048 &dev_attr_available_sma_inputs.attr,
3049 &dev_attr_available_sma_outputs.attr,
3050 &dev_attr_clock_status_drift.attr,
3051 &dev_attr_clock_status_offset.attr,
3052 &dev_attr_irig_b_mode.attr,
3053 &dev_attr_utc_tai_offset.attr,
3054 &dev_attr_ts_window_adjust.attr,
3055 &dev_attr_tod_correction.attr,
3056 NULL,
3057 };
3058 static const struct attribute_group fb_timecard_group = {
3059 .attrs = fb_timecard_attrs,
3060 };
3061 static const struct ocp_attr_group fb_timecard_groups[] = {
3062 { .cap = OCP_CAP_BASIC, .group = &fb_timecard_group },
3063 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group },
3064 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group },
3065 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal2_group },
3066 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal3_group },
3067 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group },
3068 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group },
3069 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq2_group },
3070 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq3_group },
3071 { },
3072 };
3073
3074 static void
3075 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
3076 const char *def)
3077 {
3078 int i;
3079
3080 for (i = 0; i < 4; i++) {
3081 if (bp->sma[i].mode != SMA_MODE_IN)
3082 continue;
3083 if (map[i][0] & (1 << bit)) {
3084 sprintf(buf, "sma%d", i + 1);
3085 return;
3086 }
3087 }
3088 if (!def)
3089 def = "----";
3090 strcpy(buf, def);
3091 }
3092
3093 static void
3094 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
3095 {
3096 char *ans = buf;
3097 int i;
3098
3099 strcpy(ans, "----");
3100 for (i = 0; i < 4; i++) {
3101 if (bp->sma[i].mode != SMA_MODE_OUT)
3102 continue;
3103 if (map[i][1] & (1 << bit))
3104 ans += sprintf(ans, "sma%d ", i + 1);
3105 }
3106 }
3107
3108 static void
3109 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
3110 {
3111 struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
3112 struct ptp_ocp_signal *signal = &bp->signal[nr];
3113 char label[8];
3114 bool on;
3115 u32 val;
3116
3117 if (!signal)
3118 return;
3119
3120 on = signal->running;
3121 sprintf(label, "GEN%d", nr + 1);
3122 seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
3123 label, on ? " ON" : "OFF",
3124 signal->period, signal->duty, signal->phase,
3125 signal->polarity);
3126
3127 val = ioread32(®->enable);
3128 seq_printf(s, " [%x", val);
3129 val = ioread32(®->status);
3130 seq_printf(s, " %x]", val);
3131
3132 seq_printf(s, " start:%llu\n", signal->start);
3133 }
3134
3135 static void
3136 _frequency_summary_show(struct seq_file *s, int nr,
3137 struct frequency_reg __iomem *reg)
3138 {
3139 char label[8];
3140 bool on;
3141 u32 val;
3142
3143 if (!reg)
3144 return;
3145
3146 sprintf(label, "FREQ%d", nr + 1);
3147 val = ioread32(®->ctrl);
3148 on = val & 1;
3149 val = (val >> 8) & 0xff;
3150 seq_printf(s, "%7s: %s, sec:%u",
3151 label,
3152 on ? " ON" : "OFF",
3153 val);
3154
3155 val = ioread32(®->status);
3156 if (val & FREQ_STATUS_ERROR)
3157 seq_printf(s, ", error");
3158 if (val & FREQ_STATUS_OVERRUN)
3159 seq_printf(s, ", overrun");
3160 if (val & FREQ_STATUS_VALID)
3161 seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
3162 seq_printf(s, " reg:%x\n", val);
3163 }
3164
3165 static int
3166 ptp_ocp_summary_show(struct seq_file *s, void *data)
3167 {
3168 struct device *dev = s->private;
3169 struct ptp_system_timestamp sts;
3170 struct ts_reg __iomem *ts_reg;
3171 char *buf, *src, *mac_src;
3172 struct timespec64 ts;
3173 struct ptp_ocp *bp;
3174 u16 sma_val[4][2];
3175 u32 ctrl, val;
3176 bool on, map;
3177 int i;
3178
3179 buf = (char *)__get_free_page(GFP_KERNEL);
3180 if (!buf)
3181 return -ENOMEM;
3182
3183 bp = dev_get_drvdata(dev);
3184
3185 seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
3186 if (bp->gnss_port != -1)
3187 seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS1", bp->gnss_port);
3188 if (bp->gnss2_port != -1)
3189 seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS2", bp->gnss2_port);
3190 if (bp->mac_port != -1)
3191 seq_printf(s, "%7s: /dev/ttyS%d\n", "MAC", bp->mac_port);
3192 if (bp->nmea_port != -1)
3193 seq_printf(s, "%7s: /dev/ttyS%d\n", "NMEA", bp->nmea_port);
3194
3195 memset(sma_val, 0xff, sizeof(sma_val));
3196 if (bp->sma_map1) {
3197 u32 reg;
3198
3199 reg = ioread32(&bp->sma_map1->gpio1);
3200 sma_val[0][0] = reg & 0xffff;
3201 sma_val[1][0] = reg >> 16;
3202
3203 reg = ioread32(&bp->sma_map1->gpio2);
3204 sma_val[2][1] = reg & 0xffff;
3205 sma_val[3][1] = reg >> 16;
3206
3207 reg = ioread32(&bp->sma_map2->gpio1);
3208 sma_val[2][0] = reg & 0xffff;
3209 sma_val[3][0] = reg >> 16;
3210
3211 reg = ioread32(&bp->sma_map2->gpio2);
3212 sma_val[0][1] = reg & 0xffff;
3213 sma_val[1][1] = reg >> 16;
3214 }
3215
3216 sma1_show(dev, NULL, buf);
3217 seq_printf(s, " sma1: %04x,%04x %s",
3218 sma_val[0][0], sma_val[0][1], buf);
3219
3220 sma2_show(dev, NULL, buf);
3221 seq_printf(s, " sma2: %04x,%04x %s",
3222 sma_val[1][0], sma_val[1][1], buf);
3223
3224 sma3_show(dev, NULL, buf);
3225 seq_printf(s, " sma3: %04x,%04x %s",
3226 sma_val[2][0], sma_val[2][1], buf);
3227
3228 sma4_show(dev, NULL, buf);
3229 seq_printf(s, " sma4: %04x,%04x %s",
3230 sma_val[3][0], sma_val[3][1], buf);
3231
3232 if (bp->ts0) {
3233 ts_reg = bp->ts0->mem;
3234 on = ioread32(&ts_reg->enable);
3235 src = "GNSS1";
3236 seq_printf(s, "%7s: %s, src: %s\n", "TS0",
3237 on ? " ON" : "OFF", src);
3238 }
3239
3240 if (bp->ts1) {
3241 ts_reg = bp->ts1->mem;
3242 on = ioread32(&ts_reg->enable);
3243 gpio_input_map(buf, bp, sma_val, 2, NULL);
3244 seq_printf(s, "%7s: %s, src: %s\n", "TS1",
3245 on ? " ON" : "OFF", buf);
3246 }
3247
3248 if (bp->ts2) {
3249 ts_reg = bp->ts2->mem;
3250 on = ioread32(&ts_reg->enable);
3251 gpio_input_map(buf, bp, sma_val, 3, NULL);
3252 seq_printf(s, "%7s: %s, src: %s\n", "TS2",
3253 on ? " ON" : "OFF", buf);
3254 }
3255
3256 if (bp->ts3) {
3257 ts_reg = bp->ts3->mem;
3258 on = ioread32(&ts_reg->enable);
3259 gpio_input_map(buf, bp, sma_val, 6, NULL);
3260 seq_printf(s, "%7s: %s, src: %s\n", "TS3",
3261 on ? " ON" : "OFF", buf);
3262 }
3263
3264 if (bp->ts4) {
3265 ts_reg = bp->ts4->mem;
3266 on = ioread32(&ts_reg->enable);
3267 gpio_input_map(buf, bp, sma_val, 7, NULL);
3268 seq_printf(s, "%7s: %s, src: %s\n", "TS4",
3269 on ? " ON" : "OFF", buf);
3270 }
3271
3272 if (bp->pps) {
3273 ts_reg = bp->pps->mem;
3274 src = "PHC";
3275 on = ioread32(&ts_reg->enable);
3276 map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
3277 seq_printf(s, "%7s: %s, src: %s\n", "TS5",
3278 on && map ? " ON" : "OFF", src);
3279
3280 map = !!(bp->pps_req_map & OCP_REQ_PPS);
3281 seq_printf(s, "%7s: %s, src: %s\n", "PPS",
3282 on && map ? " ON" : "OFF", src);
3283 }
3284
3285 if (bp->fw_cap & OCP_CAP_SIGNAL)
3286 for (i = 0; i < 4; i++)
3287 _signal_summary_show(s, bp, i);
3288
3289 if (bp->fw_cap & OCP_CAP_FREQ)
3290 for (i = 0; i < 4; i++)
3291 _frequency_summary_show(s, i, bp->freq_in[i]);
3292
3293 if (bp->irig_out) {
3294 ctrl = ioread32(&bp->irig_out->ctrl);
3295 on = ctrl & IRIG_M_CTRL_ENABLE;
3296 val = ioread32(&bp->irig_out->status);
3297 gpio_output_map(buf, bp, sma_val, 4);
3298 seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
3299 on ? " ON" : "OFF", val, (ctrl >> 16), buf);
3300 }
3301
3302 if (bp->irig_in) {
3303 on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
3304 val = ioread32(&bp->irig_in->status);
3305 gpio_input_map(buf, bp, sma_val, 4, NULL);
3306 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
3307 on ? " ON" : "OFF", val, buf);
3308 }
3309
3310 if (bp->dcf_out) {
3311 on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
3312 val = ioread32(&bp->dcf_out->status);
3313 gpio_output_map(buf, bp, sma_val, 5);
3314 seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
3315 on ? " ON" : "OFF", val, buf);
3316 }
3317
3318 if (bp->dcf_in) {
3319 on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
3320 val = ioread32(&bp->dcf_in->status);
3321 gpio_input_map(buf, bp, sma_val, 5, NULL);
3322 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
3323 on ? " ON" : "OFF", val, buf);
3324 }
3325
3326 if (bp->nmea_out) {
3327 on = ioread32(&bp->nmea_out->ctrl) & 1;
3328 val = ioread32(&bp->nmea_out->status);
3329 seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
3330 on ? " ON" : "OFF", val);
3331 }
3332
3333
3334 if (bp->pps_select) {
3335 val = ioread32(&bp->pps_select->gpio1);
3336 src = &buf[80];
3337 mac_src = "GNSS1";
3338 if (val & 0x01) {
3339 gpio_input_map(src, bp, sma_val, 0, NULL);
3340 mac_src = src;
3341 } else if (val & 0x02) {
3342 src = "MAC";
3343 } else if (val & 0x04) {
3344 src = "GNSS1";
3345 } else {
3346 src = "----";
3347 mac_src = src;
3348 }
3349 } else {
3350 src = "?";
3351 mac_src = src;
3352 }
3353 seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
3354
3355 gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
3356 seq_printf(s, "MAC PPS2 src: %s\n", buf);
3357
3358
3359 val = ioread32(&bp->reg->select);
3360 switch (val >> 16) {
3361 case 0:
3362 sprintf(buf, "----");
3363 break;
3364 case 2:
3365 sprintf(buf, "IRIG");
3366 break;
3367 case 3:
3368 sprintf(buf, "%s via PPS1", src);
3369 break;
3370 case 6:
3371 sprintf(buf, "DCF");
3372 break;
3373 default:
3374 strcpy(buf, "unknown");
3375 break;
3376 }
3377 val = ioread32(&bp->reg->status);
3378 seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
3379 val & OCP_STATUS_IN_SYNC ? "sync" : "unsynced");
3380
3381 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
3382 struct timespec64 sys_ts;
3383 s64 pre_ns, post_ns, ns;
3384
3385 pre_ns = timespec64_to_ns(&sts.pre_ts);
3386 post_ns = timespec64_to_ns(&sts.post_ts);
3387 ns = (pre_ns + post_ns) / 2;
3388 ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
3389 sys_ts = ns_to_timespec64(ns);
3390
3391 seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
3392 ts.tv_sec, ts.tv_nsec, &ts);
3393 seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
3394 sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
3395 bp->utc_tai_offset);
3396 seq_printf(s, "%7s: PHC:SYS offset: %lld window: %lld\n", "",
3397 timespec64_to_ns(&ts) - ns,
3398 post_ns - pre_ns);
3399 }
3400
3401 free_page((unsigned long)buf);
3402 return 0;
3403 }
3404 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
3405
3406 static int
3407 ptp_ocp_tod_status_show(struct seq_file *s, void *data)
3408 {
3409 struct device *dev = s->private;
3410 struct ptp_ocp *bp;
3411 u32 val;
3412 int idx;
3413
3414 bp = dev_get_drvdata(dev);
3415
3416 val = ioread32(&bp->tod->ctrl);
3417 if (!(val & TOD_CTRL_ENABLE)) {
3418 seq_printf(s, "TOD Slave disabled\n");
3419 return 0;
3420 }
3421 seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
3422
3423 idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
3424 idx += (val >> 16) & 3;
3425 seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
3426
3427 idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
3428 seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
3429
3430 val = ioread32(&bp->tod->version);
3431 seq_printf(s, "TOD Version %d.%d.%d\n",
3432 val >> 24, (val >> 16) & 0xff, val & 0xffff);
3433
3434 val = ioread32(&bp->tod->status);
3435 seq_printf(s, "Status register: 0x%08X\n", val);
3436
3437 val = ioread32(&bp->tod->adj_sec);
3438 idx = (val & ~INT_MAX) ? -1 : 1;
3439 idx *= (val & INT_MAX);
3440 seq_printf(s, "Correction seconds: %d\n", idx);
3441
3442 val = ioread32(&bp->tod->utc_status);
3443 seq_printf(s, "UTC status register: 0x%08X\n", val);
3444 seq_printf(s, "UTC offset: %ld valid:%d\n",
3445 val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
3446 seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
3447 val & TOD_STATUS_LEAP_VALID ? 1 : 0,
3448 val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
3449
3450 val = ioread32(&bp->tod->leap);
3451 seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
3452
3453 return 0;
3454 }
3455 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
3456
3457 static struct dentry *ptp_ocp_debugfs_root;
3458
3459 static void
3460 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
3461 {
3462 struct dentry *d;
3463
3464 d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
3465 bp->debug_root = d;
3466 debugfs_create_file("summary", 0444, bp->debug_root,
3467 &bp->dev, &ptp_ocp_summary_fops);
3468 if (bp->tod)
3469 debugfs_create_file("tod_status", 0444, bp->debug_root,
3470 &bp->dev, &ptp_ocp_tod_status_fops);
3471 }
3472
3473 static void
3474 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
3475 {
3476 debugfs_remove_recursive(bp->debug_root);
3477 }
3478
3479 static void
3480 ptp_ocp_debugfs_init(void)
3481 {
3482 ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
3483 }
3484
3485 static void
3486 ptp_ocp_debugfs_fini(void)
3487 {
3488 debugfs_remove_recursive(ptp_ocp_debugfs_root);
3489 }
3490
3491 static void
3492 ptp_ocp_dev_release(struct device *dev)
3493 {
3494 struct ptp_ocp *bp = dev_get_drvdata(dev);
3495
3496 mutex_lock(&ptp_ocp_lock);
3497 idr_remove(&ptp_ocp_idr, bp->id);
3498 mutex_unlock(&ptp_ocp_lock);
3499 }
3500
3501 static int
3502 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
3503 {
3504 int err;
3505
3506 mutex_lock(&ptp_ocp_lock);
3507 err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
3508 mutex_unlock(&ptp_ocp_lock);
3509 if (err < 0) {
3510 dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
3511 return err;
3512 }
3513 bp->id = err;
3514
3515 bp->ptp_info = ptp_ocp_clock_info;
3516 spin_lock_init(&bp->lock);
3517 bp->gnss_port = -1;
3518 bp->gnss2_port = -1;
3519 bp->mac_port = -1;
3520 bp->nmea_port = -1;
3521 bp->pdev = pdev;
3522
3523 device_initialize(&bp->dev);
3524 dev_set_name(&bp->dev, "ocp%d", bp->id);
3525 bp->dev.class = &timecard_class;
3526 bp->dev.parent = &pdev->dev;
3527 bp->dev.release = ptp_ocp_dev_release;
3528 dev_set_drvdata(&bp->dev, bp);
3529
3530 err = device_add(&bp->dev);
3531 if (err) {
3532 dev_err(&bp->dev, "device add failed: %d\n", err);
3533 goto out;
3534 }
3535
3536 pci_set_drvdata(pdev, bp);
3537
3538 return 0;
3539
3540 out:
3541 ptp_ocp_dev_release(&bp->dev);
3542 put_device(&bp->dev);
3543 return err;
3544 }
3545
3546 static void
3547 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
3548 {
3549 struct device *dev = &bp->dev;
3550
3551 if (sysfs_create_link(&dev->kobj, &child->kobj, link))
3552 dev_err(dev, "%s symlink failed\n", link);
3553 }
3554
3555 static void
3556 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
3557 {
3558 struct device *dev, *child;
3559
3560 dev = &bp->pdev->dev;
3561
3562 child = device_find_child_by_name(dev, name);
3563 if (!child) {
3564 dev_err(dev, "Could not find device %s\n", name);
3565 return;
3566 }
3567
3568 ptp_ocp_symlink(bp, child, link);
3569 put_device(child);
3570 }
3571
3572 static int
3573 ptp_ocp_complete(struct ptp_ocp *bp)
3574 {
3575 struct pps_device *pps;
3576 char buf[32];
3577
3578 if (bp->gnss_port != -1) {
3579 sprintf(buf, "ttyS%d", bp->gnss_port);
3580 ptp_ocp_link_child(bp, buf, "ttyGNSS");
3581 }
3582 if (bp->gnss2_port != -1) {
3583 sprintf(buf, "ttyS%d", bp->gnss2_port);
3584 ptp_ocp_link_child(bp, buf, "ttyGNSS2");
3585 }
3586 if (bp->mac_port != -1) {
3587 sprintf(buf, "ttyS%d", bp->mac_port);
3588 ptp_ocp_link_child(bp, buf, "ttyMAC");
3589 }
3590 if (bp->nmea_port != -1) {
3591 sprintf(buf, "ttyS%d", bp->nmea_port);
3592 ptp_ocp_link_child(bp, buf, "ttyNMEA");
3593 }
3594 sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
3595 ptp_ocp_link_child(bp, buf, "ptp");
3596
3597 pps = pps_lookup_dev(bp->ptp);
3598 if (pps)
3599 ptp_ocp_symlink(bp, pps->dev, "pps");
3600
3601 ptp_ocp_debugfs_add_device(bp);
3602
3603 return 0;
3604 }
3605
3606 static void
3607 ptp_ocp_phc_info(struct ptp_ocp *bp)
3608 {
3609 struct timespec64 ts;
3610 u32 version, select;
3611 bool sync;
3612
3613 version = ioread32(&bp->reg->version);
3614 select = ioread32(&bp->reg->select);
3615 dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
3616 version >> 24, (version >> 16) & 0xff, version & 0xffff,
3617 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
3618 ptp_clock_index(bp->ptp));
3619
3620 sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
3621 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
3622 dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
3623 ts.tv_sec, ts.tv_nsec,
3624 sync ? "in-sync" : "UNSYNCED");
3625 }
3626
3627 static void
3628 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
3629 {
3630 if (port != -1)
3631 dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
3632 }
3633
3634 static void
3635 ptp_ocp_info(struct ptp_ocp *bp)
3636 {
3637 static int nmea_baud[] = {
3638 1200, 2400, 4800, 9600, 19200, 38400,
3639 57600, 115200, 230400, 460800, 921600,
3640 1000000, 2000000
3641 };
3642 struct device *dev = &bp->pdev->dev;
3643 u32 reg;
3644
3645 ptp_ocp_phc_info(bp);
3646
3647 ptp_ocp_serial_info(dev, "GNSS", bp->gnss_port, 115200);
3648 ptp_ocp_serial_info(dev, "GNSS2", bp->gnss2_port, 115200);
3649 ptp_ocp_serial_info(dev, "MAC", bp->mac_port, 57600);
3650 if (bp->nmea_out && bp->nmea_port != -1) {
3651 int baud = -1;
3652
3653 reg = ioread32(&bp->nmea_out->uart_baud);
3654 if (reg < ARRAY_SIZE(nmea_baud))
3655 baud = nmea_baud[reg];
3656 ptp_ocp_serial_info(dev, "NMEA", bp->nmea_port, baud);
3657 }
3658 }
3659
3660 static void
3661 ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
3662 {
3663 struct device *dev = &bp->dev;
3664
3665 sysfs_remove_link(&dev->kobj, "ttyGNSS");
3666 sysfs_remove_link(&dev->kobj, "ttyMAC");
3667 sysfs_remove_link(&dev->kobj, "ptp");
3668 sysfs_remove_link(&dev->kobj, "pps");
3669 }
3670
3671 static void
3672 ptp_ocp_detach(struct ptp_ocp *bp)
3673 {
3674 int i;
3675
3676 ptp_ocp_debugfs_remove_device(bp);
3677 ptp_ocp_detach_sysfs(bp);
3678 ptp_ocp_attr_group_del(bp);
3679 if (timer_pending(&bp->watchdog))
3680 del_timer_sync(&bp->watchdog);
3681 if (bp->ts0)
3682 ptp_ocp_unregister_ext(bp->ts0);
3683 if (bp->ts1)
3684 ptp_ocp_unregister_ext(bp->ts1);
3685 if (bp->ts2)
3686 ptp_ocp_unregister_ext(bp->ts2);
3687 if (bp->ts3)
3688 ptp_ocp_unregister_ext(bp->ts3);
3689 if (bp->ts4)
3690 ptp_ocp_unregister_ext(bp->ts4);
3691 if (bp->pps)
3692 ptp_ocp_unregister_ext(bp->pps);
3693 for (i = 0; i < 4; i++)
3694 if (bp->signal_out[i])
3695 ptp_ocp_unregister_ext(bp->signal_out[i]);
3696 if (bp->gnss_port != -1)
3697 serial8250_unregister_port(bp->gnss_port);
3698 if (bp->gnss2_port != -1)
3699 serial8250_unregister_port(bp->gnss2_port);
3700 if (bp->mac_port != -1)
3701 serial8250_unregister_port(bp->mac_port);
3702 if (bp->nmea_port != -1)
3703 serial8250_unregister_port(bp->nmea_port);
3704 platform_device_unregister(bp->spi_flash);
3705 platform_device_unregister(bp->i2c_ctrl);
3706 if (bp->i2c_clk)
3707 clk_hw_unregister_fixed_rate(bp->i2c_clk);
3708 if (bp->n_irqs)
3709 pci_free_irq_vectors(bp->pdev);
3710 if (bp->ptp)
3711 ptp_clock_unregister(bp->ptp);
3712 kfree(bp->ptp_info.pin_config);
3713 device_unregister(&bp->dev);
3714 }
3715
3716 static int
3717 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3718 {
3719 struct devlink *devlink;
3720 struct ptp_ocp *bp;
3721 int err;
3722
3723 devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
3724 if (!devlink) {
3725 dev_err(&pdev->dev, "devlink_alloc failed\n");
3726 return -ENOMEM;
3727 }
3728
3729 err = pci_enable_device(pdev);
3730 if (err) {
3731 dev_err(&pdev->dev, "pci_enable_device\n");
3732 goto out_free;
3733 }
3734
3735 bp = devlink_priv(devlink);
3736 err = ptp_ocp_device_init(bp, pdev);
3737 if (err)
3738 goto out_disable;
3739
3740
3741
3742
3743
3744
3745 err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
3746 if (err < 0) {
3747 dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
3748 goto out;
3749 }
3750 bp->n_irqs = err;
3751 pci_set_master(pdev);
3752
3753 err = ptp_ocp_register_resources(bp, id->driver_data);
3754 if (err)
3755 goto out;
3756
3757 bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
3758 if (IS_ERR(bp->ptp)) {
3759 err = PTR_ERR(bp->ptp);
3760 dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
3761 bp->ptp = NULL;
3762 goto out;
3763 }
3764
3765 err = ptp_ocp_complete(bp);
3766 if (err)
3767 goto out;
3768
3769 ptp_ocp_info(bp);
3770 devlink_register(devlink);
3771 return 0;
3772
3773 out:
3774 ptp_ocp_detach(bp);
3775 out_disable:
3776 pci_disable_device(pdev);
3777 out_free:
3778 devlink_free(devlink);
3779 return err;
3780 }
3781
3782 static void
3783 ptp_ocp_remove(struct pci_dev *pdev)
3784 {
3785 struct ptp_ocp *bp = pci_get_drvdata(pdev);
3786 struct devlink *devlink = priv_to_devlink(bp);
3787
3788 devlink_unregister(devlink);
3789 ptp_ocp_detach(bp);
3790 pci_disable_device(pdev);
3791
3792 devlink_free(devlink);
3793 }
3794
3795 static struct pci_driver ptp_ocp_driver = {
3796 .name = KBUILD_MODNAME,
3797 .id_table = ptp_ocp_pcidev_id,
3798 .probe = ptp_ocp_probe,
3799 .remove = ptp_ocp_remove,
3800 };
3801
3802 static int
3803 ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
3804 unsigned long action, void *data)
3805 {
3806 struct device *dev, *child = data;
3807 struct ptp_ocp *bp;
3808 bool add;
3809
3810 switch (action) {
3811 case BUS_NOTIFY_ADD_DEVICE:
3812 case BUS_NOTIFY_DEL_DEVICE:
3813 add = action == BUS_NOTIFY_ADD_DEVICE;
3814 break;
3815 default:
3816 return 0;
3817 }
3818
3819 if (!i2c_verify_adapter(child))
3820 return 0;
3821
3822 dev = child;
3823 while ((dev = dev->parent))
3824 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
3825 goto found;
3826 return 0;
3827
3828 found:
3829 bp = dev_get_drvdata(dev);
3830 if (add)
3831 ptp_ocp_symlink(bp, child, "i2c");
3832 else
3833 sysfs_remove_link(&bp->dev.kobj, "i2c");
3834
3835 return 0;
3836 }
3837
3838 static struct notifier_block ptp_ocp_i2c_notifier = {
3839 .notifier_call = ptp_ocp_i2c_notifier_call,
3840 };
3841
3842 static int __init
3843 ptp_ocp_init(void)
3844 {
3845 const char *what;
3846 int err;
3847
3848 ptp_ocp_debugfs_init();
3849
3850 what = "timecard class";
3851 err = class_register(&timecard_class);
3852 if (err)
3853 goto out;
3854
3855 what = "i2c notifier";
3856 err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
3857 if (err)
3858 goto out_notifier;
3859
3860 what = "ptp_ocp driver";
3861 err = pci_register_driver(&ptp_ocp_driver);
3862 if (err)
3863 goto out_register;
3864
3865 return 0;
3866
3867 out_register:
3868 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
3869 out_notifier:
3870 class_unregister(&timecard_class);
3871 out:
3872 ptp_ocp_debugfs_fini();
3873 pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
3874 return err;
3875 }
3876
3877 static void __exit
3878 ptp_ocp_fini(void)
3879 {
3880 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
3881 pci_unregister_driver(&ptp_ocp_driver);
3882 class_unregister(&timecard_class);
3883 ptp_ocp_debugfs_fini();
3884 }
3885
3886 module_init(ptp_ocp_init);
3887 module_exit(ptp_ocp_fini);
3888
3889 MODULE_DESCRIPTION("OpenCompute TimeCard driver");
3890 MODULE_LICENSE("GPL v2");