Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /* Copyright (c) 2020 Facebook */
0003 
0004 #include <linux/bits.h>
0005 #include <linux/err.h>
0006 #include <linux/kernel.h>
0007 #include <linux/module.h>
0008 #include <linux/debugfs.h>
0009 #include <linux/init.h>
0010 #include <linux/pci.h>
0011 #include <linux/serial_8250.h>
0012 #include <linux/clkdev.h>
0013 #include <linux/clk-provider.h>
0014 #include <linux/platform_device.h>
0015 #include <linux/platform_data/i2c-xiic.h>
0016 #include <linux/ptp_clock_kernel.h>
0017 #include <linux/spi/spi.h>
0018 #include <linux/spi/xilinx_spi.h>
0019 #include <net/devlink.h>
0020 #include <linux/i2c.h>
0021 #include <linux/mtd/mtd.h>
0022 #include <linux/nvmem-consumer.h>
0023 #include <linux/crc16.h>
0024 
0025 #define PCI_VENDOR_ID_FACEBOOK          0x1d9b
0026 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD     0x0400
0027 
0028 #define PCI_VENDOR_ID_CELESTICA         0x18d4
0029 #define PCI_DEVICE_ID_CELESTICA_TIMECARD    0x1008
0030 
0031 static struct class timecard_class = {
0032     .owner      = THIS_MODULE,
0033     .name       = "timecard",
0034 };
0035 
0036 struct ocp_reg {
0037     u32 ctrl;
0038     u32 status;
0039     u32 select;
0040     u32 version;
0041     u32 time_ns;
0042     u32 time_sec;
0043     u32 __pad0[2];
0044     u32 adjust_ns;
0045     u32 adjust_sec;
0046     u32 __pad1[2];
0047     u32 offset_ns;
0048     u32 offset_window_ns;
0049     u32 __pad2[2];
0050     u32 drift_ns;
0051     u32 drift_window_ns;
0052     u32 __pad3[6];
0053     u32 servo_offset_p;
0054     u32 servo_offset_i;
0055     u32 servo_drift_p;
0056     u32 servo_drift_i;
0057     u32 status_offset;
0058     u32 status_drift;
0059 };
0060 
0061 #define OCP_CTRL_ENABLE     BIT(0)
0062 #define OCP_CTRL_ADJUST_TIME    BIT(1)
0063 #define OCP_CTRL_ADJUST_OFFSET  BIT(2)
0064 #define OCP_CTRL_ADJUST_DRIFT   BIT(3)
0065 #define OCP_CTRL_ADJUST_SERVO   BIT(8)
0066 #define OCP_CTRL_READ_TIME_REQ  BIT(30)
0067 #define OCP_CTRL_READ_TIME_DONE BIT(31)
0068 
0069 #define OCP_STATUS_IN_SYNC  BIT(0)
0070 #define OCP_STATUS_IN_HOLDOVER  BIT(1)
0071 
0072 #define OCP_SELECT_CLK_NONE 0
0073 #define OCP_SELECT_CLK_REG  0xfe
0074 
0075 struct tod_reg {
0076     u32 ctrl;
0077     u32 status;
0078     u32 uart_polarity;
0079     u32 version;
0080     u32 adj_sec;
0081     u32 __pad0[3];
0082     u32 uart_baud;
0083     u32 __pad1[3];
0084     u32 utc_status;
0085     u32 leap;
0086 };
0087 
0088 #define TOD_CTRL_PROTOCOL   BIT(28)
0089 #define TOD_CTRL_DISABLE_FMT_A  BIT(17)
0090 #define TOD_CTRL_DISABLE_FMT_B  BIT(16)
0091 #define TOD_CTRL_ENABLE     BIT(0)
0092 #define TOD_CTRL_GNSS_MASK  GENMASK(3, 0)
0093 #define TOD_CTRL_GNSS_SHIFT 24
0094 
0095 #define TOD_STATUS_UTC_MASK     GENMASK(7, 0)
0096 #define TOD_STATUS_UTC_VALID        BIT(8)
0097 #define TOD_STATUS_LEAP_ANNOUNCE    BIT(12)
0098 #define TOD_STATUS_LEAP_VALID       BIT(16)
0099 
0100 struct ts_reg {
0101     u32 enable;
0102     u32 error;
0103     u32 polarity;
0104     u32 version;
0105     u32 __pad0[4];
0106     u32 cable_delay;
0107     u32 __pad1[3];
0108     u32 intr;
0109     u32 intr_mask;
0110     u32 event_count;
0111     u32 __pad2[1];
0112     u32 ts_count;
0113     u32 time_ns;
0114     u32 time_sec;
0115     u32 data_width;
0116     u32 data;
0117 };
0118 
0119 struct pps_reg {
0120     u32 ctrl;
0121     u32 status;
0122     u32 __pad0[6];
0123     u32 cable_delay;
0124 };
0125 
0126 #define PPS_STATUS_FILTER_ERR   BIT(0)
0127 #define PPS_STATUS_SUPERV_ERR   BIT(1)
0128 
0129 struct img_reg {
0130     u32 version;
0131 };
0132 
0133 struct gpio_reg {
0134     u32 gpio1;
0135     u32 __pad0;
0136     u32 gpio2;
0137     u32 __pad1;
0138 };
0139 
0140 struct irig_master_reg {
0141     u32 ctrl;
0142     u32 status;
0143     u32 __pad0;
0144     u32 version;
0145     u32 adj_sec;
0146     u32 mode_ctrl;
0147 };
0148 
0149 #define IRIG_M_CTRL_ENABLE  BIT(0)
0150 
0151 struct irig_slave_reg {
0152     u32 ctrl;
0153     u32 status;
0154     u32 __pad0;
0155     u32 version;
0156     u32 adj_sec;
0157     u32 mode_ctrl;
0158 };
0159 
0160 #define IRIG_S_CTRL_ENABLE  BIT(0)
0161 
0162 struct dcf_master_reg {
0163     u32 ctrl;
0164     u32 status;
0165     u32 __pad0;
0166     u32 version;
0167     u32 adj_sec;
0168 };
0169 
0170 #define DCF_M_CTRL_ENABLE   BIT(0)
0171 
0172 struct dcf_slave_reg {
0173     u32 ctrl;
0174     u32 status;
0175     u32 __pad0;
0176     u32 version;
0177     u32 adj_sec;
0178 };
0179 
0180 #define DCF_S_CTRL_ENABLE   BIT(0)
0181 
0182 struct signal_reg {
0183     u32 enable;
0184     u32 status;
0185     u32 polarity;
0186     u32 version;
0187     u32 __pad0[4];
0188     u32 cable_delay;
0189     u32 __pad1[3];
0190     u32 intr;
0191     u32 intr_mask;
0192     u32 __pad2[2];
0193     u32 start_ns;
0194     u32 start_sec;
0195     u32 pulse_ns;
0196     u32 pulse_sec;
0197     u32 period_ns;
0198     u32 period_sec;
0199     u32 repeat_count;
0200 };
0201 
0202 struct frequency_reg {
0203     u32 ctrl;
0204     u32 status;
0205 };
0206 #define FREQ_STATUS_VALID   BIT(31)
0207 #define FREQ_STATUS_ERROR   BIT(30)
0208 #define FREQ_STATUS_OVERRUN BIT(29)
0209 #define FREQ_STATUS_MASK    GENMASK(23, 0)
0210 
0211 struct ptp_ocp_flash_info {
0212     const char *name;
0213     int pci_offset;
0214     int data_size;
0215     void *data;
0216 };
0217 
0218 struct ptp_ocp_firmware_header {
0219     char magic[4];
0220     __be16 pci_vendor_id;
0221     __be16 pci_device_id;
0222     __be32 image_size;
0223     __be16 hw_revision;
0224     __be16 crc;
0225 };
0226 
0227 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
0228 
0229 struct ptp_ocp_i2c_info {
0230     const char *name;
0231     unsigned long fixed_rate;
0232     size_t data_size;
0233     void *data;
0234 };
0235 
0236 struct ptp_ocp_ext_info {
0237     int index;
0238     irqreturn_t (*irq_fcn)(int irq, void *priv);
0239     int (*enable)(void *priv, u32 req, bool enable);
0240 };
0241 
0242 struct ptp_ocp_ext_src {
0243     void __iomem        *mem;
0244     struct ptp_ocp      *bp;
0245     struct ptp_ocp_ext_info *info;
0246     int         irq_vec;
0247 };
0248 
0249 enum ptp_ocp_sma_mode {
0250     SMA_MODE_IN,
0251     SMA_MODE_OUT,
0252 };
0253 
0254 struct ptp_ocp_sma_connector {
0255     enum    ptp_ocp_sma_mode mode;
0256     bool    fixed_fcn;
0257     bool    fixed_dir;
0258     bool    disabled;
0259     u8  default_fcn;
0260 };
0261 
0262 struct ocp_attr_group {
0263     u64 cap;
0264     const struct attribute_group *group;
0265 };
0266 
0267 #define OCP_CAP_BASIC   BIT(0)
0268 #define OCP_CAP_SIGNAL  BIT(1)
0269 #define OCP_CAP_FREQ    BIT(2)
0270 
0271 struct ptp_ocp_signal {
0272     ktime_t     period;
0273     ktime_t     pulse;
0274     ktime_t     phase;
0275     ktime_t     start;
0276     int     duty;
0277     bool        polarity;
0278     bool        running;
0279 };
0280 
0281 #define OCP_BOARD_ID_LEN        13
0282 #define OCP_SERIAL_LEN          6
0283 
0284 struct ptp_ocp {
0285     struct pci_dev      *pdev;
0286     struct device       dev;
0287     spinlock_t      lock;
0288     struct ocp_reg __iomem  *reg;
0289     struct tod_reg __iomem  *tod;
0290     struct pps_reg __iomem  *pps_to_ext;
0291     struct pps_reg __iomem  *pps_to_clk;
0292     struct gpio_reg __iomem *pps_select;
0293     struct gpio_reg __iomem *sma_map1;
0294     struct gpio_reg __iomem *sma_map2;
0295     struct irig_master_reg  __iomem *irig_out;
0296     struct irig_slave_reg   __iomem *irig_in;
0297     struct dcf_master_reg   __iomem *dcf_out;
0298     struct dcf_slave_reg    __iomem *dcf_in;
0299     struct tod_reg      __iomem *nmea_out;
0300     struct frequency_reg    __iomem *freq_in[4];
0301     struct ptp_ocp_ext_src  *signal_out[4];
0302     struct ptp_ocp_ext_src  *pps;
0303     struct ptp_ocp_ext_src  *ts0;
0304     struct ptp_ocp_ext_src  *ts1;
0305     struct ptp_ocp_ext_src  *ts2;
0306     struct ptp_ocp_ext_src  *ts3;
0307     struct ptp_ocp_ext_src  *ts4;
0308     struct img_reg __iomem  *image;
0309     struct ptp_clock    *ptp;
0310     struct ptp_clock_info   ptp_info;
0311     struct platform_device  *i2c_ctrl;
0312     struct platform_device  *spi_flash;
0313     struct clk_hw       *i2c_clk;
0314     struct timer_list   watchdog;
0315     const struct attribute_group **attr_group;
0316     const struct ptp_ocp_eeprom_map *eeprom_map;
0317     struct dentry       *debug_root;
0318     time64_t        gnss_lost;
0319     int         id;
0320     int         n_irqs;
0321     int         gnss_port;
0322     int         gnss2_port;
0323     int         mac_port;   /* miniature atomic clock */
0324     int         nmea_port;
0325     bool            fw_loader;
0326     u8          fw_tag;
0327     u16         fw_version;
0328     u8          board_id[OCP_BOARD_ID_LEN];
0329     u8          serial[OCP_SERIAL_LEN];
0330     bool            has_eeprom_data;
0331     u32         pps_req_map;
0332     int         flash_start;
0333     u32         utc_tai_offset;
0334     u32         ts_window_adjust;
0335     u64         fw_cap;
0336     struct ptp_ocp_signal   signal[4];
0337     struct ptp_ocp_sma_connector sma[4];
0338     const struct ocp_sma_op *sma_op;
0339 };
0340 
0341 #define OCP_REQ_TIMESTAMP   BIT(0)
0342 #define OCP_REQ_PPS     BIT(1)
0343 
0344 struct ocp_resource {
0345     unsigned long offset;
0346     int size;
0347     int irq_vec;
0348     int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
0349     void *extra;
0350     unsigned long bp_offset;
0351     const char * const name;
0352 };
0353 
0354 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
0355 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
0356 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
0357 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
0358 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
0359 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
0360 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
0361 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
0362 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
0363 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
0364                       struct ptp_perout_request *req);
0365 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
0366 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
0367 
0368 static const struct ocp_attr_group fb_timecard_groups[];
0369 
0370 struct ptp_ocp_eeprom_map {
0371     u16 off;
0372     u16 len;
0373     u32 bp_offset;
0374     const void * const tag;
0375 };
0376 
0377 #define EEPROM_ENTRY(addr, member)              \
0378     .off = addr,                        \
0379     .len = sizeof_field(struct ptp_ocp, member),        \
0380     .bp_offset = offsetof(struct ptp_ocp, member)
0381 
0382 #define BP_MAP_ENTRY_ADDR(bp, map) ({               \
0383     (void *)((uintptr_t)(bp) + (map)->bp_offset);       \
0384 })
0385 
0386 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
0387     { EEPROM_ENTRY(0x43, board_id) },
0388     { EEPROM_ENTRY(0x00, serial), .tag = "mac" },
0389     { }
0390 };
0391 
0392 #define bp_assign_entry(bp, res, val) ({                \
0393     uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset;        \
0394     *(typeof(val) *)addr = val;                 \
0395 })
0396 
0397 #define OCP_RES_LOCATION(member) \
0398     .name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
0399 
0400 #define OCP_MEM_RESOURCE(member) \
0401     OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
0402 
0403 #define OCP_SERIAL_RESOURCE(member) \
0404     OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
0405 
0406 #define OCP_I2C_RESOURCE(member) \
0407     OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
0408 
0409 #define OCP_SPI_RESOURCE(member) \
0410     OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
0411 
0412 #define OCP_EXT_RESOURCE(member) \
0413     OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
0414 
0415 /* This is the MSI vector mapping used.
0416  * 0: PPS (TS5)
0417  * 1: TS0
0418  * 2: TS1
0419  * 3: GNSS1
0420  * 4: GNSS2
0421  * 5: MAC
0422  * 6: TS2
0423  * 7: I2C controller
0424  * 8: HWICAP (notused)
0425  * 9: SPI Flash
0426  * 10: NMEA
0427  * 11: Signal Generator 1
0428  * 12: Signal Generator 2
0429  * 13: Signal Generator 3
0430  * 14: Signal Generator 4
0431  * 15: TS3
0432  * 16: TS4
0433  */
0434 
0435 static struct ocp_resource ocp_fb_resource[] = {
0436     {
0437         OCP_MEM_RESOURCE(reg),
0438         .offset = 0x01000000, .size = 0x10000,
0439     },
0440     {
0441         OCP_EXT_RESOURCE(ts0),
0442         .offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
0443         .extra = &(struct ptp_ocp_ext_info) {
0444             .index = 0,
0445             .irq_fcn = ptp_ocp_ts_irq,
0446             .enable = ptp_ocp_ts_enable,
0447         },
0448     },
0449     {
0450         OCP_EXT_RESOURCE(ts1),
0451         .offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
0452         .extra = &(struct ptp_ocp_ext_info) {
0453             .index = 1,
0454             .irq_fcn = ptp_ocp_ts_irq,
0455             .enable = ptp_ocp_ts_enable,
0456         },
0457     },
0458     {
0459         OCP_EXT_RESOURCE(ts2),
0460         .offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
0461         .extra = &(struct ptp_ocp_ext_info) {
0462             .index = 2,
0463             .irq_fcn = ptp_ocp_ts_irq,
0464             .enable = ptp_ocp_ts_enable,
0465         },
0466     },
0467     {
0468         OCP_EXT_RESOURCE(ts3),
0469         .offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
0470         .extra = &(struct ptp_ocp_ext_info) {
0471             .index = 3,
0472             .irq_fcn = ptp_ocp_ts_irq,
0473             .enable = ptp_ocp_ts_enable,
0474         },
0475     },
0476     {
0477         OCP_EXT_RESOURCE(ts4),
0478         .offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
0479         .extra = &(struct ptp_ocp_ext_info) {
0480             .index = 4,
0481             .irq_fcn = ptp_ocp_ts_irq,
0482             .enable = ptp_ocp_ts_enable,
0483         },
0484     },
0485     /* Timestamp for PHC and/or PPS generator */
0486     {
0487         OCP_EXT_RESOURCE(pps),
0488         .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
0489         .extra = &(struct ptp_ocp_ext_info) {
0490             .index = 5,
0491             .irq_fcn = ptp_ocp_ts_irq,
0492             .enable = ptp_ocp_ts_enable,
0493         },
0494     },
0495     {
0496         OCP_EXT_RESOURCE(signal_out[0]),
0497         .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
0498         .extra = &(struct ptp_ocp_ext_info) {
0499             .index = 1,
0500             .irq_fcn = ptp_ocp_signal_irq,
0501             .enable = ptp_ocp_signal_enable,
0502         },
0503     },
0504     {
0505         OCP_EXT_RESOURCE(signal_out[1]),
0506         .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
0507         .extra = &(struct ptp_ocp_ext_info) {
0508             .index = 2,
0509             .irq_fcn = ptp_ocp_signal_irq,
0510             .enable = ptp_ocp_signal_enable,
0511         },
0512     },
0513     {
0514         OCP_EXT_RESOURCE(signal_out[2]),
0515         .offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
0516         .extra = &(struct ptp_ocp_ext_info) {
0517             .index = 3,
0518             .irq_fcn = ptp_ocp_signal_irq,
0519             .enable = ptp_ocp_signal_enable,
0520         },
0521     },
0522     {
0523         OCP_EXT_RESOURCE(signal_out[3]),
0524         .offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
0525         .extra = &(struct ptp_ocp_ext_info) {
0526             .index = 4,
0527             .irq_fcn = ptp_ocp_signal_irq,
0528             .enable = ptp_ocp_signal_enable,
0529         },
0530     },
0531     {
0532         OCP_MEM_RESOURCE(pps_to_ext),
0533         .offset = 0x01030000, .size = 0x10000,
0534     },
0535     {
0536         OCP_MEM_RESOURCE(pps_to_clk),
0537         .offset = 0x01040000, .size = 0x10000,
0538     },
0539     {
0540         OCP_MEM_RESOURCE(tod),
0541         .offset = 0x01050000, .size = 0x10000,
0542     },
0543     {
0544         OCP_MEM_RESOURCE(irig_in),
0545         .offset = 0x01070000, .size = 0x10000,
0546     },
0547     {
0548         OCP_MEM_RESOURCE(irig_out),
0549         .offset = 0x01080000, .size = 0x10000,
0550     },
0551     {
0552         OCP_MEM_RESOURCE(dcf_in),
0553         .offset = 0x01090000, .size = 0x10000,
0554     },
0555     {
0556         OCP_MEM_RESOURCE(dcf_out),
0557         .offset = 0x010A0000, .size = 0x10000,
0558     },
0559     {
0560         OCP_MEM_RESOURCE(nmea_out),
0561         .offset = 0x010B0000, .size = 0x10000,
0562     },
0563     {
0564         OCP_MEM_RESOURCE(image),
0565         .offset = 0x00020000, .size = 0x1000,
0566     },
0567     {
0568         OCP_MEM_RESOURCE(pps_select),
0569         .offset = 0x00130000, .size = 0x1000,
0570     },
0571     {
0572         OCP_MEM_RESOURCE(sma_map1),
0573         .offset = 0x00140000, .size = 0x1000,
0574     },
0575     {
0576         OCP_MEM_RESOURCE(sma_map2),
0577         .offset = 0x00220000, .size = 0x1000,
0578     },
0579     {
0580         OCP_I2C_RESOURCE(i2c_ctrl),
0581         .offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
0582         .extra = &(struct ptp_ocp_i2c_info) {
0583             .name = "xiic-i2c",
0584             .fixed_rate = 50000000,
0585             .data_size = sizeof(struct xiic_i2c_platform_data),
0586             .data = &(struct xiic_i2c_platform_data) {
0587                 .num_devices = 2,
0588                 .devices = (struct i2c_board_info[]) {
0589                     { I2C_BOARD_INFO("24c02", 0x50) },
0590                     { I2C_BOARD_INFO("24mac402", 0x58),
0591                       .platform_data = "mac" },
0592                 },
0593             },
0594         },
0595     },
0596     {
0597         OCP_SERIAL_RESOURCE(gnss_port),
0598         .offset = 0x00160000 + 0x1000, .irq_vec = 3,
0599     },
0600     {
0601         OCP_SERIAL_RESOURCE(gnss2_port),
0602         .offset = 0x00170000 + 0x1000, .irq_vec = 4,
0603     },
0604     {
0605         OCP_SERIAL_RESOURCE(mac_port),
0606         .offset = 0x00180000 + 0x1000, .irq_vec = 5,
0607     },
0608     {
0609         OCP_SERIAL_RESOURCE(nmea_port),
0610         .offset = 0x00190000 + 0x1000, .irq_vec = 10,
0611     },
0612     {
0613         OCP_SPI_RESOURCE(spi_flash),
0614         .offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
0615         .extra = &(struct ptp_ocp_flash_info) {
0616             .name = "xilinx_spi", .pci_offset = 0,
0617             .data_size = sizeof(struct xspi_platform_data),
0618             .data = &(struct xspi_platform_data) {
0619                 .num_chipselect = 1,
0620                 .bits_per_word = 8,
0621                 .num_devices = 1,
0622                 .devices = &(struct spi_board_info) {
0623                     .modalias = "spi-nor",
0624                 },
0625             },
0626         },
0627     },
0628     {
0629         OCP_MEM_RESOURCE(freq_in[0]),
0630         .offset = 0x01200000, .size = 0x10000,
0631     },
0632     {
0633         OCP_MEM_RESOURCE(freq_in[1]),
0634         .offset = 0x01210000, .size = 0x10000,
0635     },
0636     {
0637         OCP_MEM_RESOURCE(freq_in[2]),
0638         .offset = 0x01220000, .size = 0x10000,
0639     },
0640     {
0641         OCP_MEM_RESOURCE(freq_in[3]),
0642         .offset = 0x01230000, .size = 0x10000,
0643     },
0644     {
0645         .setup = ptp_ocp_fb_board_init,
0646     },
0647     { }
0648 };
0649 
0650 static const struct pci_device_id ptp_ocp_pcidev_id[] = {
0651     { PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
0652     { PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
0653     { }
0654 };
0655 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
0656 
0657 static DEFINE_MUTEX(ptp_ocp_lock);
0658 static DEFINE_IDR(ptp_ocp_idr);
0659 
0660 struct ocp_selector {
0661     const char *name;
0662     int value;
0663 };
0664 
0665 static const struct ocp_selector ptp_ocp_clock[] = {
0666     { .name = "NONE",   .value = 0 },
0667     { .name = "TOD",    .value = 1 },
0668     { .name = "IRIG",   .value = 2 },
0669     { .name = "PPS",    .value = 3 },
0670     { .name = "PTP",    .value = 4 },
0671     { .name = "RTC",    .value = 5 },
0672     { .name = "DCF",    .value = 6 },
0673     { .name = "REGS",   .value = 0xfe },
0674     { .name = "EXT",    .value = 0xff },
0675     { }
0676 };
0677 
0678 #define SMA_DISABLE     BIT(16)
0679 #define SMA_ENABLE      BIT(15)
0680 #define SMA_SELECT_MASK     GENMASK(14, 0)
0681 
0682 static const struct ocp_selector ptp_ocp_sma_in[] = {
0683     { .name = "10Mhz",  .value = 0x0000 },
0684     { .name = "PPS1",   .value = 0x0001 },
0685     { .name = "PPS2",   .value = 0x0002 },
0686     { .name = "TS1",    .value = 0x0004 },
0687     { .name = "TS2",    .value = 0x0008 },
0688     { .name = "IRIG",   .value = 0x0010 },
0689     { .name = "DCF",    .value = 0x0020 },
0690     { .name = "TS3",    .value = 0x0040 },
0691     { .name = "TS4",    .value = 0x0080 },
0692     { .name = "FREQ1",  .value = 0x0100 },
0693     { .name = "FREQ2",  .value = 0x0200 },
0694     { .name = "FREQ3",  .value = 0x0400 },
0695     { .name = "FREQ4",  .value = 0x0800 },
0696     { .name = "None",   .value = SMA_DISABLE },
0697     { }
0698 };
0699 
0700 static const struct ocp_selector ptp_ocp_sma_out[] = {
0701     { .name = "10Mhz",  .value = 0x0000 },
0702     { .name = "PHC",    .value = 0x0001 },
0703     { .name = "MAC",    .value = 0x0002 },
0704     { .name = "GNSS1",  .value = 0x0004 },
0705     { .name = "GNSS2",  .value = 0x0008 },
0706     { .name = "IRIG",   .value = 0x0010 },
0707     { .name = "DCF",    .value = 0x0020 },
0708     { .name = "GEN1",   .value = 0x0040 },
0709     { .name = "GEN2",   .value = 0x0080 },
0710     { .name = "GEN3",   .value = 0x0100 },
0711     { .name = "GEN4",   .value = 0x0200 },
0712     { .name = "GND",    .value = 0x2000 },
0713     { .name = "VCC",    .value = 0x4000 },
0714     { }
0715 };
0716 
0717 struct ocp_sma_op {
0718     const struct ocp_selector *tbl[2];
0719     void (*init)(struct ptp_ocp *bp);
0720     u32 (*get)(struct ptp_ocp *bp, int sma_nr);
0721     int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
0722     int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
0723 };
0724 
0725 static void
0726 ptp_ocp_sma_init(struct ptp_ocp *bp)
0727 {
0728     return bp->sma_op->init(bp);
0729 }
0730 
0731 static u32
0732 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
0733 {
0734     return bp->sma_op->get(bp, sma_nr);
0735 }
0736 
0737 static int
0738 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
0739 {
0740     return bp->sma_op->set_inputs(bp, sma_nr, val);
0741 }
0742 
0743 static int
0744 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
0745 {
0746     return bp->sma_op->set_output(bp, sma_nr, val);
0747 }
0748 
0749 static const char *
0750 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
0751 {
0752     int i;
0753 
0754     for (i = 0; tbl[i].name; i++)
0755         if (tbl[i].value == val)
0756             return tbl[i].name;
0757     return NULL;
0758 }
0759 
0760 static int
0761 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
0762 {
0763     const char *select;
0764     int i;
0765 
0766     for (i = 0; tbl[i].name; i++) {
0767         select = tbl[i].name;
0768         if (!strncasecmp(name, select, strlen(select)))
0769             return tbl[i].value;
0770     }
0771     return -EINVAL;
0772 }
0773 
0774 static ssize_t
0775 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
0776 {
0777     ssize_t count;
0778     int i;
0779 
0780     count = 0;
0781     for (i = 0; tbl[i].name; i++)
0782         count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
0783     if (count)
0784         count--;
0785     count += sysfs_emit_at(buf, count, "\n");
0786     return count;
0787 }
0788 
0789 static int
0790 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
0791              struct ptp_system_timestamp *sts)
0792 {
0793     u32 ctrl, time_sec, time_ns;
0794     int i;
0795 
0796     ptp_read_system_prets(sts);
0797 
0798     ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
0799     iowrite32(ctrl, &bp->reg->ctrl);
0800 
0801     for (i = 0; i < 100; i++) {
0802         ctrl = ioread32(&bp->reg->ctrl);
0803         if (ctrl & OCP_CTRL_READ_TIME_DONE)
0804             break;
0805     }
0806     ptp_read_system_postts(sts);
0807 
0808     if (sts && bp->ts_window_adjust) {
0809         s64 ns = timespec64_to_ns(&sts->post_ts);
0810 
0811         sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
0812     }
0813 
0814     time_ns = ioread32(&bp->reg->time_ns);
0815     time_sec = ioread32(&bp->reg->time_sec);
0816 
0817     ts->tv_sec = time_sec;
0818     ts->tv_nsec = time_ns;
0819 
0820     return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
0821 }
0822 
0823 static int
0824 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
0825          struct ptp_system_timestamp *sts)
0826 {
0827     struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
0828     unsigned long flags;
0829     int err;
0830 
0831     spin_lock_irqsave(&bp->lock, flags);
0832     err = __ptp_ocp_gettime_locked(bp, ts, sts);
0833     spin_unlock_irqrestore(&bp->lock, flags);
0834 
0835     return err;
0836 }
0837 
0838 static void
0839 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
0840 {
0841     u32 ctrl, time_sec, time_ns;
0842     u32 select;
0843 
0844     time_ns = ts->tv_nsec;
0845     time_sec = ts->tv_sec;
0846 
0847     select = ioread32(&bp->reg->select);
0848     iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
0849 
0850     iowrite32(time_ns, &bp->reg->adjust_ns);
0851     iowrite32(time_sec, &bp->reg->adjust_sec);
0852 
0853     ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
0854     iowrite32(ctrl, &bp->reg->ctrl);
0855 
0856     /* restore clock selection */
0857     iowrite32(select >> 16, &bp->reg->select);
0858 }
0859 
0860 static int
0861 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
0862 {
0863     struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
0864     unsigned long flags;
0865 
0866     spin_lock_irqsave(&bp->lock, flags);
0867     __ptp_ocp_settime_locked(bp, ts);
0868     spin_unlock_irqrestore(&bp->lock, flags);
0869 
0870     return 0;
0871 }
0872 
0873 static void
0874 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
0875 {
0876     u32 select, ctrl;
0877 
0878     select = ioread32(&bp->reg->select);
0879     iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
0880 
0881     iowrite32(adj_val, &bp->reg->offset_ns);
0882     iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
0883 
0884     ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
0885     iowrite32(ctrl, &bp->reg->ctrl);
0886 
0887     /* restore clock selection */
0888     iowrite32(select >> 16, &bp->reg->select);
0889 }
0890 
0891 static void
0892 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
0893 {
0894     struct timespec64 ts;
0895     unsigned long flags;
0896     int err;
0897 
0898     spin_lock_irqsave(&bp->lock, flags);
0899     err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
0900     if (likely(!err)) {
0901         set_normalized_timespec64(&ts, ts.tv_sec,
0902                       ts.tv_nsec + delta_ns);
0903         __ptp_ocp_settime_locked(bp, &ts);
0904     }
0905     spin_unlock_irqrestore(&bp->lock, flags);
0906 }
0907 
0908 static int
0909 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
0910 {
0911     struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
0912     unsigned long flags;
0913     u32 adj_ns, sign;
0914 
0915     if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
0916         ptp_ocp_adjtime_coarse(bp, delta_ns);
0917         return 0;
0918     }
0919 
0920     sign = delta_ns < 0 ? BIT(31) : 0;
0921     adj_ns = sign ? -delta_ns : delta_ns;
0922 
0923     spin_lock_irqsave(&bp->lock, flags);
0924     __ptp_ocp_adjtime_locked(bp, sign | adj_ns);
0925     spin_unlock_irqrestore(&bp->lock, flags);
0926 
0927     return 0;
0928 }
0929 
0930 static int
0931 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
0932 {
0933     if (scaled_ppm == 0)
0934         return 0;
0935 
0936     return -EOPNOTSUPP;
0937 }
0938 
0939 static int
0940 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
0941 {
0942     return -EOPNOTSUPP;
0943 }
0944 
0945 static int
0946 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
0947            int on)
0948 {
0949     struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
0950     struct ptp_ocp_ext_src *ext = NULL;
0951     u32 req;
0952     int err;
0953 
0954     switch (rq->type) {
0955     case PTP_CLK_REQ_EXTTS:
0956         req = OCP_REQ_TIMESTAMP;
0957         switch (rq->extts.index) {
0958         case 0:
0959             ext = bp->ts0;
0960             break;
0961         case 1:
0962             ext = bp->ts1;
0963             break;
0964         case 2:
0965             ext = bp->ts2;
0966             break;
0967         case 3:
0968             ext = bp->ts3;
0969             break;
0970         case 4:
0971             ext = bp->ts4;
0972             break;
0973         case 5:
0974             ext = bp->pps;
0975             break;
0976         }
0977         break;
0978     case PTP_CLK_REQ_PPS:
0979         req = OCP_REQ_PPS;
0980         ext = bp->pps;
0981         break;
0982     case PTP_CLK_REQ_PEROUT:
0983         switch (rq->perout.index) {
0984         case 0:
0985             /* This is a request for 1PPS on an output SMA.
0986              * Allow, but assume manual configuration.
0987              */
0988             if (on && (rq->perout.period.sec != 1 ||
0989                    rq->perout.period.nsec != 0))
0990                 return -EINVAL;
0991             return 0;
0992         case 1:
0993         case 2:
0994         case 3:
0995         case 4:
0996             req = rq->perout.index - 1;
0997             ext = bp->signal_out[req];
0998             err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
0999             if (err)
1000                 return err;
1001             break;
1002         }
1003         break;
1004     default:
1005         return -EOPNOTSUPP;
1006     }
1007 
1008     err = -ENXIO;
1009     if (ext)
1010         err = ext->info->enable(ext, req, on);
1011 
1012     return err;
1013 }
1014 
1015 static int
1016 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
1017            enum ptp_pin_function func, unsigned chan)
1018 {
1019     struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1020     char buf[16];
1021 
1022     switch (func) {
1023     case PTP_PF_NONE:
1024         snprintf(buf, sizeof(buf), "IN: None");
1025         break;
1026     case PTP_PF_EXTTS:
1027         /* Allow timestamps, but require sysfs configuration. */
1028         return 0;
1029     case PTP_PF_PEROUT:
1030         /* channel 0 is 1PPS from PHC.
1031          * channels 1..4 are the frequency generators.
1032          */
1033         if (chan)
1034             snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
1035         else
1036             snprintf(buf, sizeof(buf), "OUT: PHC");
1037         break;
1038     default:
1039         return -EOPNOTSUPP;
1040     }
1041 
1042     return ptp_ocp_sma_store(bp, buf, pin + 1);
1043 }
1044 
1045 static const struct ptp_clock_info ptp_ocp_clock_info = {
1046     .owner      = THIS_MODULE,
1047     .name       = KBUILD_MODNAME,
1048     .max_adj    = 100000000,
1049     .gettimex64 = ptp_ocp_gettimex,
1050     .settime64  = ptp_ocp_settime,
1051     .adjtime    = ptp_ocp_adjtime,
1052     .adjfine    = ptp_ocp_null_adjfine,
1053     .adjphase   = ptp_ocp_null_adjphase,
1054     .enable     = ptp_ocp_enable,
1055     .verify     = ptp_ocp_verify,
1056     .pps        = true,
1057     .n_ext_ts   = 6,
1058     .n_per_out  = 5,
1059 };
1060 
1061 static void
1062 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
1063 {
1064     u32 ctrl, select;
1065 
1066     select = ioread32(&bp->reg->select);
1067     iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1068 
1069     iowrite32(0, &bp->reg->drift_ns);
1070 
1071     ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
1072     iowrite32(ctrl, &bp->reg->ctrl);
1073 
1074     /* restore clock selection */
1075     iowrite32(select >> 16, &bp->reg->select);
1076 }
1077 
1078 static void
1079 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
1080 {
1081     unsigned long flags;
1082 
1083     spin_lock_irqsave(&bp->lock, flags);
1084 
1085     bp->utc_tai_offset = val;
1086 
1087     if (bp->irig_out)
1088         iowrite32(val, &bp->irig_out->adj_sec);
1089     if (bp->dcf_out)
1090         iowrite32(val, &bp->dcf_out->adj_sec);
1091     if (bp->nmea_out)
1092         iowrite32(val, &bp->nmea_out->adj_sec);
1093 
1094     spin_unlock_irqrestore(&bp->lock, flags);
1095 }
1096 
1097 static void
1098 ptp_ocp_watchdog(struct timer_list *t)
1099 {
1100     struct ptp_ocp *bp = from_timer(bp, t, watchdog);
1101     unsigned long flags;
1102     u32 status, utc_offset;
1103 
1104     status = ioread32(&bp->pps_to_clk->status);
1105 
1106     if (status & PPS_STATUS_SUPERV_ERR) {
1107         iowrite32(status, &bp->pps_to_clk->status);
1108         if (!bp->gnss_lost) {
1109             spin_lock_irqsave(&bp->lock, flags);
1110             __ptp_ocp_clear_drift_locked(bp);
1111             spin_unlock_irqrestore(&bp->lock, flags);
1112             bp->gnss_lost = ktime_get_real_seconds();
1113         }
1114 
1115     } else if (bp->gnss_lost) {
1116         bp->gnss_lost = 0;
1117     }
1118 
1119     /* if GNSS provides correct data we can rely on
1120      * it to get leap second information
1121      */
1122     if (bp->tod) {
1123         status = ioread32(&bp->tod->utc_status);
1124         utc_offset = status & TOD_STATUS_UTC_MASK;
1125         if (status & TOD_STATUS_UTC_VALID &&
1126             utc_offset != bp->utc_tai_offset)
1127             ptp_ocp_utc_distribute(bp, utc_offset);
1128     }
1129 
1130     mod_timer(&bp->watchdog, jiffies + HZ);
1131 }
1132 
1133 static void
1134 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
1135 {
1136     ktime_t start, end;
1137     ktime_t delay;
1138     u32 ctrl;
1139 
1140     ctrl = ioread32(&bp->reg->ctrl);
1141     ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1142 
1143     iowrite32(ctrl, &bp->reg->ctrl);
1144 
1145     start = ktime_get_ns();
1146 
1147     ctrl = ioread32(&bp->reg->ctrl);
1148 
1149     end = ktime_get_ns();
1150 
1151     delay = end - start;
1152     bp->ts_window_adjust = (delay >> 5) * 3;
1153 }
1154 
1155 static int
1156 ptp_ocp_init_clock(struct ptp_ocp *bp)
1157 {
1158     struct timespec64 ts;
1159     bool sync;
1160     u32 ctrl;
1161 
1162     ctrl = OCP_CTRL_ENABLE;
1163     iowrite32(ctrl, &bp->reg->ctrl);
1164 
1165     /* NO DRIFT Correction */
1166     /* offset_p:i 1/8, offset_i: 1/16, drift_p: 0, drift_i: 0 */
1167     iowrite32(0x2000, &bp->reg->servo_offset_p);
1168     iowrite32(0x1000, &bp->reg->servo_offset_i);
1169     iowrite32(0,      &bp->reg->servo_drift_p);
1170     iowrite32(0,      &bp->reg->servo_drift_i);
1171 
1172     /* latch servo values */
1173     ctrl |= OCP_CTRL_ADJUST_SERVO;
1174     iowrite32(ctrl, &bp->reg->ctrl);
1175 
1176     if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
1177         dev_err(&bp->pdev->dev, "clock not enabled\n");
1178         return -ENODEV;
1179     }
1180 
1181     ptp_ocp_estimate_pci_timing(bp);
1182 
1183     sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
1184     if (!sync) {
1185         ktime_get_clocktai_ts64(&ts);
1186         ptp_ocp_settime(&bp->ptp_info, &ts);
1187     }
1188 
1189     /* If there is a clock supervisor, then enable the watchdog */
1190     if (bp->pps_to_clk) {
1191         timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
1192         mod_timer(&bp->watchdog, jiffies + HZ);
1193     }
1194 
1195     return 0;
1196 }
1197 
1198 static void
1199 ptp_ocp_tod_init(struct ptp_ocp *bp)
1200 {
1201     u32 ctrl, reg;
1202 
1203     ctrl = ioread32(&bp->tod->ctrl);
1204     ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
1205     ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
1206     iowrite32(ctrl, &bp->tod->ctrl);
1207 
1208     reg = ioread32(&bp->tod->utc_status);
1209     if (reg & TOD_STATUS_UTC_VALID)
1210         ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
1211 }
1212 
1213 static const char *
1214 ptp_ocp_tod_proto_name(const int idx)
1215 {
1216     static const char * const proto_name[] = {
1217         "NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
1218         "UBX", "UBX_UTC", "UBX_LS", "UBX_none"
1219     };
1220     return proto_name[idx];
1221 }
1222 
1223 static const char *
1224 ptp_ocp_tod_gnss_name(int idx)
1225 {
1226     static const char * const gnss_name[] = {
1227         "ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
1228         "Unknown"
1229     };
1230     if (idx >= ARRAY_SIZE(gnss_name))
1231         idx = ARRAY_SIZE(gnss_name) - 1;
1232     return gnss_name[idx];
1233 }
1234 
1235 struct ptp_ocp_nvmem_match_info {
1236     struct ptp_ocp *bp;
1237     const void * const tag;
1238 };
1239 
1240 static int
1241 ptp_ocp_nvmem_match(struct device *dev, const void *data)
1242 {
1243     const struct ptp_ocp_nvmem_match_info *info = data;
1244 
1245     dev = dev->parent;
1246     if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
1247         return 0;
1248 
1249     while ((dev = dev->parent))
1250         if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
1251             return info->bp == dev_get_drvdata(dev);
1252     return 0;
1253 }
1254 
1255 static inline struct nvmem_device *
1256 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
1257 {
1258     struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
1259 
1260     return nvmem_device_find(&info, ptp_ocp_nvmem_match);
1261 }
1262 
1263 static inline void
1264 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
1265 {
1266     if (!IS_ERR_OR_NULL(*nvmemp))
1267         nvmem_device_put(*nvmemp);
1268     *nvmemp = NULL;
1269 }
1270 
1271 static void
1272 ptp_ocp_read_eeprom(struct ptp_ocp *bp)
1273 {
1274     const struct ptp_ocp_eeprom_map *map;
1275     struct nvmem_device *nvmem;
1276     const void *tag;
1277     int ret;
1278 
1279     if (!bp->i2c_ctrl)
1280         return;
1281 
1282     tag = NULL;
1283     nvmem = NULL;
1284 
1285     for (map = bp->eeprom_map; map->len; map++) {
1286         if (map->tag != tag) {
1287             tag = map->tag;
1288             ptp_ocp_nvmem_device_put(&nvmem);
1289         }
1290         if (!nvmem) {
1291             nvmem = ptp_ocp_nvmem_device_get(bp, tag);
1292             if (IS_ERR(nvmem)) {
1293                 ret = PTR_ERR(nvmem);
1294                 goto fail;
1295             }
1296         }
1297         ret = nvmem_device_read(nvmem, map->off, map->len,
1298                     BP_MAP_ENTRY_ADDR(bp, map));
1299         if (ret != map->len)
1300             goto fail;
1301     }
1302 
1303     bp->has_eeprom_data = true;
1304 
1305 out:
1306     ptp_ocp_nvmem_device_put(&nvmem);
1307     return;
1308 
1309 fail:
1310     dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
1311     goto out;
1312 }
1313 
1314 static int
1315 ptp_ocp_firstchild(struct device *dev, void *data)
1316 {
1317     return 1;
1318 }
1319 
1320 static struct device *
1321 ptp_ocp_find_flash(struct ptp_ocp *bp)
1322 {
1323     struct device *dev, *last;
1324 
1325     last = NULL;
1326     dev = &bp->spi_flash->dev;
1327 
1328     while ((dev = device_find_child(dev, NULL, ptp_ocp_firstchild))) {
1329         if (!strcmp("mtd", dev_bus_name(dev)))
1330             break;
1331         put_device(last);
1332         last = dev;
1333     }
1334     put_device(last);
1335 
1336     return dev;
1337 }
1338 
1339 static int
1340 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
1341              const u8 **data, size_t *size)
1342 {
1343     struct ptp_ocp *bp = devlink_priv(devlink);
1344     const struct ptp_ocp_firmware_header *hdr;
1345     size_t offset, length;
1346     u16 crc;
1347 
1348     hdr = (const struct ptp_ocp_firmware_header *)fw->data;
1349     if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
1350         devlink_flash_update_status_notify(devlink,
1351             "No firmware header found, flashing raw image",
1352             NULL, 0, 0);
1353         offset = 0;
1354         length = fw->size;
1355         goto out;
1356     }
1357 
1358     if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
1359         be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
1360         devlink_flash_update_status_notify(devlink,
1361             "Firmware image compatibility check failed",
1362             NULL, 0, 0);
1363         return -EINVAL;
1364     }
1365 
1366     offset = sizeof(*hdr);
1367     length = be32_to_cpu(hdr->image_size);
1368     if (length != (fw->size - offset)) {
1369         devlink_flash_update_status_notify(devlink,
1370             "Firmware image size check failed",
1371             NULL, 0, 0);
1372         return -EINVAL;
1373     }
1374 
1375     crc = crc16(0xffff, &fw->data[offset], length);
1376     if (be16_to_cpu(hdr->crc) != crc) {
1377         devlink_flash_update_status_notify(devlink,
1378             "Firmware image CRC check failed",
1379             NULL, 0, 0);
1380         return -EINVAL;
1381     }
1382 
1383 out:
1384     *data = &fw->data[offset];
1385     *size = length;
1386 
1387     return 0;
1388 }
1389 
1390 static int
1391 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
1392               const struct firmware *fw)
1393 {
1394     struct mtd_info *mtd = dev_get_drvdata(dev);
1395     struct ptp_ocp *bp = devlink_priv(devlink);
1396     size_t off, len, size, resid, wrote;
1397     struct erase_info erase;
1398     size_t base, blksz;
1399     const u8 *data;
1400     int err;
1401 
1402     err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
1403     if (err)
1404         goto out;
1405 
1406     off = 0;
1407     base = bp->flash_start;
1408     blksz = 4096;
1409     resid = size;
1410 
1411     while (resid) {
1412         devlink_flash_update_status_notify(devlink, "Flashing",
1413                            NULL, off, size);
1414 
1415         len = min_t(size_t, resid, blksz);
1416         erase.addr = base + off;
1417         erase.len = blksz;
1418 
1419         err = mtd_erase(mtd, &erase);
1420         if (err)
1421             goto out;
1422 
1423         err = mtd_write(mtd, base + off, len, &wrote, data + off);
1424         if (err)
1425             goto out;
1426 
1427         off += blksz;
1428         resid -= len;
1429     }
1430 out:
1431     return err;
1432 }
1433 
1434 static int
1435 ptp_ocp_devlink_flash_update(struct devlink *devlink,
1436                  struct devlink_flash_update_params *params,
1437                  struct netlink_ext_ack *extack)
1438 {
1439     struct ptp_ocp *bp = devlink_priv(devlink);
1440     struct device *dev;
1441     const char *msg;
1442     int err;
1443 
1444     dev = ptp_ocp_find_flash(bp);
1445     if (!dev) {
1446         dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
1447         return -ENODEV;
1448     }
1449 
1450     devlink_flash_update_status_notify(devlink, "Preparing to flash",
1451                        NULL, 0, 0);
1452 
1453     err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
1454 
1455     msg = err ? "Flash error" : "Flash complete";
1456     devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
1457 
1458     put_device(dev);
1459     return err;
1460 }
1461 
1462 static int
1463 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
1464              struct netlink_ext_ack *extack)
1465 {
1466     struct ptp_ocp *bp = devlink_priv(devlink);
1467     const char *fw_image;
1468     char buf[32];
1469     int err;
1470 
1471     err = devlink_info_driver_name_put(req, KBUILD_MODNAME);
1472     if (err)
1473         return err;
1474 
1475     fw_image = bp->fw_loader ? "loader" : "fw";
1476     sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
1477     err = devlink_info_version_running_put(req, fw_image, buf);
1478     if (err)
1479         return err;
1480 
1481     if (!bp->has_eeprom_data) {
1482         ptp_ocp_read_eeprom(bp);
1483         if (!bp->has_eeprom_data)
1484             return 0;
1485     }
1486 
1487     sprintf(buf, "%pM", bp->serial);
1488     err = devlink_info_serial_number_put(req, buf);
1489     if (err)
1490         return err;
1491 
1492     err = devlink_info_version_fixed_put(req,
1493             DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
1494             bp->board_id);
1495     if (err)
1496         return err;
1497 
1498     return 0;
1499 }
1500 
1501 static const struct devlink_ops ptp_ocp_devlink_ops = {
1502     .flash_update = ptp_ocp_devlink_flash_update,
1503     .info_get = ptp_ocp_devlink_info_get,
1504 };
1505 
1506 static void __iomem *
1507 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
1508 {
1509     struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
1510 
1511     return devm_ioremap_resource(&bp->pdev->dev, &res);
1512 }
1513 
1514 static void __iomem *
1515 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1516 {
1517     resource_size_t start;
1518 
1519     start = pci_resource_start(bp->pdev, 0) + r->offset;
1520     return __ptp_ocp_get_mem(bp, start, r->size);
1521 }
1522 
1523 static void
1524 ptp_ocp_set_irq_resource(struct resource *res, int irq)
1525 {
1526     struct resource r = DEFINE_RES_IRQ(irq);
1527     *res = r;
1528 }
1529 
1530 static void
1531 ptp_ocp_set_mem_resource(struct resource *res, resource_size_t start, int size)
1532 {
1533     struct resource r = DEFINE_RES_MEM(start, size);
1534     *res = r;
1535 }
1536 
1537 static int
1538 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
1539 {
1540     struct ptp_ocp_flash_info *info;
1541     struct pci_dev *pdev = bp->pdev;
1542     struct platform_device *p;
1543     struct resource res[2];
1544     resource_size_t start;
1545     int id;
1546 
1547     start = pci_resource_start(pdev, 0) + r->offset;
1548     ptp_ocp_set_mem_resource(&res[0], start, r->size);
1549     ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1550 
1551     info = r->extra;
1552     id = pci_dev_id(pdev) << 1;
1553     id += info->pci_offset;
1554 
1555     p = platform_device_register_resndata(&pdev->dev, info->name, id,
1556                           res, 2, info->data,
1557                           info->data_size);
1558     if (IS_ERR(p))
1559         return PTR_ERR(p);
1560 
1561     bp_assign_entry(bp, r, p);
1562 
1563     return 0;
1564 }
1565 
1566 static struct platform_device *
1567 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
1568 {
1569     struct ptp_ocp_i2c_info *info;
1570     struct resource res[2];
1571     resource_size_t start;
1572 
1573     info = r->extra;
1574     start = pci_resource_start(pdev, 0) + r->offset;
1575     ptp_ocp_set_mem_resource(&res[0], start, r->size);
1576     ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1577 
1578     return platform_device_register_resndata(&pdev->dev, info->name,
1579                          id, res, 2,
1580                          info->data, info->data_size);
1581 }
1582 
1583 static int
1584 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
1585 {
1586     struct pci_dev *pdev = bp->pdev;
1587     struct ptp_ocp_i2c_info *info;
1588     struct platform_device *p;
1589     struct clk_hw *clk;
1590     char buf[32];
1591     int id;
1592 
1593     info = r->extra;
1594     id = pci_dev_id(bp->pdev);
1595 
1596     sprintf(buf, "AXI.%d", id);
1597     clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
1598                      info->fixed_rate);
1599     if (IS_ERR(clk))
1600         return PTR_ERR(clk);
1601     bp->i2c_clk = clk;
1602 
1603     sprintf(buf, "%s.%d", info->name, id);
1604     devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
1605     p = ptp_ocp_i2c_bus(bp->pdev, r, id);
1606     if (IS_ERR(p))
1607         return PTR_ERR(p);
1608 
1609     bp_assign_entry(bp, r, p);
1610 
1611     return 0;
1612 }
1613 
1614 /* The expectation is that this is triggered only on error. */
1615 static irqreturn_t
1616 ptp_ocp_signal_irq(int irq, void *priv)
1617 {
1618     struct ptp_ocp_ext_src *ext = priv;
1619     struct signal_reg __iomem *reg = ext->mem;
1620     struct ptp_ocp *bp = ext->bp;
1621     u32 enable, status;
1622     int gen;
1623 
1624     gen = ext->info->index - 1;
1625 
1626     enable = ioread32(&reg->enable);
1627     status = ioread32(&reg->status);
1628 
1629     /* disable generator on error */
1630     if (status || !enable) {
1631         iowrite32(0, &reg->intr_mask);
1632         iowrite32(0, &reg->enable);
1633         bp->signal[gen].running = false;
1634     }
1635 
1636     iowrite32(0, &reg->intr);   /* ack interrupt */
1637 
1638     return IRQ_HANDLED;
1639 }
1640 
1641 static int
1642 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
1643 {
1644     struct ptp_system_timestamp sts;
1645     struct timespec64 ts;
1646     ktime_t start_ns;
1647     int err;
1648 
1649     if (!s->period)
1650         return 0;
1651 
1652     if (!s->pulse)
1653         s->pulse = ktime_divns(s->period * s->duty, 100);
1654 
1655     err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
1656     if (err)
1657         return err;
1658 
1659     start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
1660     if (!s->start) {
1661         /* roundup() does not work on 32-bit systems */
1662         s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
1663         s->start = ktime_add(s->start, s->phase);
1664     }
1665 
1666     if (s->duty < 1 || s->duty > 99)
1667         return -EINVAL;
1668 
1669     if (s->pulse < 1 || s->pulse > s->period)
1670         return -EINVAL;
1671 
1672     if (s->start < start_ns)
1673         return -EINVAL;
1674 
1675     bp->signal[gen] = *s;
1676 
1677     return 0;
1678 }
1679 
1680 static int
1681 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
1682                struct ptp_perout_request *req)
1683 {
1684     struct ptp_ocp_signal s = { };
1685 
1686     s.polarity = bp->signal[gen].polarity;
1687     s.period = ktime_set(req->period.sec, req->period.nsec);
1688     if (!s.period)
1689         return 0;
1690 
1691     if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
1692         s.pulse = ktime_set(req->on.sec, req->on.nsec);
1693         s.duty = ktime_divns(s.pulse * 100, s.period);
1694     }
1695 
1696     if (req->flags & PTP_PEROUT_PHASE)
1697         s.phase = ktime_set(req->phase.sec, req->phase.nsec);
1698     else
1699         s.start = ktime_set(req->start.sec, req->start.nsec);
1700 
1701     return ptp_ocp_signal_set(bp, gen, &s);
1702 }
1703 
1704 static int
1705 ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
1706 {
1707     struct ptp_ocp_ext_src *ext = priv;
1708     struct signal_reg __iomem *reg = ext->mem;
1709     struct ptp_ocp *bp = ext->bp;
1710     struct timespec64 ts;
1711     int gen;
1712 
1713     gen = ext->info->index - 1;
1714 
1715     iowrite32(0, &reg->intr_mask);
1716     iowrite32(0, &reg->enable);
1717     bp->signal[gen].running = false;
1718     if (!enable)
1719         return 0;
1720 
1721     ts = ktime_to_timespec64(bp->signal[gen].start);
1722     iowrite32(ts.tv_sec, &reg->start_sec);
1723     iowrite32(ts.tv_nsec, &reg->start_ns);
1724 
1725     ts = ktime_to_timespec64(bp->signal[gen].period);
1726     iowrite32(ts.tv_sec, &reg->period_sec);
1727     iowrite32(ts.tv_nsec, &reg->period_ns);
1728 
1729     ts = ktime_to_timespec64(bp->signal[gen].pulse);
1730     iowrite32(ts.tv_sec, &reg->pulse_sec);
1731     iowrite32(ts.tv_nsec, &reg->pulse_ns);
1732 
1733     iowrite32(bp->signal[gen].polarity, &reg->polarity);
1734     iowrite32(0, &reg->repeat_count);
1735 
1736     iowrite32(0, &reg->intr);       /* clear interrupt state */
1737     iowrite32(1, &reg->intr_mask);      /* enable interrupt */
1738     iowrite32(3, &reg->enable);     /* valid & enable */
1739 
1740     bp->signal[gen].running = true;
1741 
1742     return 0;
1743 }
1744 
1745 static irqreturn_t
1746 ptp_ocp_ts_irq(int irq, void *priv)
1747 {
1748     struct ptp_ocp_ext_src *ext = priv;
1749     struct ts_reg __iomem *reg = ext->mem;
1750     struct ptp_clock_event ev;
1751     u32 sec, nsec;
1752 
1753     if (ext == ext->bp->pps) {
1754         if (ext->bp->pps_req_map & OCP_REQ_PPS) {
1755             ev.type = PTP_CLOCK_PPS;
1756             ptp_clock_event(ext->bp->ptp, &ev);
1757         }
1758 
1759         if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
1760             goto out;
1761     }
1762 
1763     /* XXX should fix API - this converts s/ns -> ts -> s/ns */
1764     sec = ioread32(&reg->time_sec);
1765     nsec = ioread32(&reg->time_ns);
1766 
1767     ev.type = PTP_CLOCK_EXTTS;
1768     ev.index = ext->info->index;
1769     ev.timestamp = sec * NSEC_PER_SEC + nsec;
1770 
1771     ptp_clock_event(ext->bp->ptp, &ev);
1772 
1773 out:
1774     iowrite32(1, &reg->intr);   /* write 1 to ack */
1775 
1776     return IRQ_HANDLED;
1777 }
1778 
1779 static int
1780 ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
1781 {
1782     struct ptp_ocp_ext_src *ext = priv;
1783     struct ts_reg __iomem *reg = ext->mem;
1784     struct ptp_ocp *bp = ext->bp;
1785 
1786     if (ext == bp->pps) {
1787         u32 old_map = bp->pps_req_map;
1788 
1789         if (enable)
1790             bp->pps_req_map |= req;
1791         else
1792             bp->pps_req_map &= ~req;
1793 
1794         /* if no state change, just return */
1795         if ((!!old_map ^ !!bp->pps_req_map) == 0)
1796             return 0;
1797     }
1798 
1799     if (enable) {
1800         iowrite32(1, &reg->enable);
1801         iowrite32(1, &reg->intr_mask);
1802         iowrite32(1, &reg->intr);
1803     } else {
1804         iowrite32(0, &reg->intr_mask);
1805         iowrite32(0, &reg->enable);
1806     }
1807 
1808     return 0;
1809 }
1810 
1811 static void
1812 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
1813 {
1814     ext->info->enable(ext, ~0, false);
1815     pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
1816     kfree(ext);
1817 }
1818 
1819 static int
1820 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
1821 {
1822     struct pci_dev *pdev = bp->pdev;
1823     struct ptp_ocp_ext_src *ext;
1824     int err;
1825 
1826     ext = kzalloc(sizeof(*ext), GFP_KERNEL);
1827     if (!ext)
1828         return -ENOMEM;
1829 
1830     ext->mem = ptp_ocp_get_mem(bp, r);
1831     if (IS_ERR(ext->mem)) {
1832         err = PTR_ERR(ext->mem);
1833         goto out;
1834     }
1835 
1836     ext->bp = bp;
1837     ext->info = r->extra;
1838     ext->irq_vec = r->irq_vec;
1839 
1840     err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
1841                   ext, "ocp%d.%s", bp->id, r->name);
1842     if (err) {
1843         dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
1844         goto out;
1845     }
1846 
1847     bp_assign_entry(bp, r, ext);
1848 
1849     return 0;
1850 
1851 out:
1852     kfree(ext);
1853     return err;
1854 }
1855 
1856 static int
1857 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
1858 {
1859     struct pci_dev *pdev = bp->pdev;
1860     struct uart_8250_port uart;
1861 
1862     /* Setting UPF_IOREMAP and leaving port.membase unspecified lets
1863      * the serial port device claim and release the pci resource.
1864      */
1865     memset(&uart, 0, sizeof(uart));
1866     uart.port.dev = &pdev->dev;
1867     uart.port.iotype = UPIO_MEM;
1868     uart.port.regshift = 2;
1869     uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
1870     uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
1871     uart.port.uartclk = 50000000;
1872     uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
1873     uart.port.type = PORT_16550A;
1874 
1875     return serial8250_register_8250_port(&uart);
1876 }
1877 
1878 static int
1879 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
1880 {
1881     int port;
1882 
1883     port = ptp_ocp_serial_line(bp, r);
1884     if (port < 0)
1885         return port;
1886 
1887     bp_assign_entry(bp, r, port);
1888 
1889     return 0;
1890 }
1891 
1892 static int
1893 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1894 {
1895     void __iomem *mem;
1896 
1897     mem = ptp_ocp_get_mem(bp, r);
1898     if (IS_ERR(mem))
1899         return PTR_ERR(mem);
1900 
1901     bp_assign_entry(bp, r, mem);
1902 
1903     return 0;
1904 }
1905 
1906 static void
1907 ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
1908 {
1909     if (!bp->nmea_out)
1910         return;
1911 
1912     iowrite32(0, &bp->nmea_out->ctrl);      /* disable */
1913     iowrite32(7, &bp->nmea_out->uart_baud);     /* 115200 */
1914     iowrite32(1, &bp->nmea_out->ctrl);      /* enable */
1915 }
1916 
1917 static void
1918 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
1919 {
1920     u32 val;
1921 
1922     iowrite32(0, &reg->enable);     /* disable */
1923 
1924     val = ioread32(&reg->polarity);
1925     s->polarity = val ? true : false;
1926     s->duty = 50;
1927 }
1928 
1929 static void
1930 ptp_ocp_signal_init(struct ptp_ocp *bp)
1931 {
1932     int i;
1933 
1934     for (i = 0; i < 4; i++)
1935         if (bp->signal_out[i])
1936             _ptp_ocp_signal_init(&bp->signal[i],
1937                          bp->signal_out[i]->mem);
1938 }
1939 
1940 static void
1941 ptp_ocp_attr_group_del(struct ptp_ocp *bp)
1942 {
1943     sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
1944     kfree(bp->attr_group);
1945 }
1946 
1947 static int
1948 ptp_ocp_attr_group_add(struct ptp_ocp *bp,
1949                const struct ocp_attr_group *attr_tbl)
1950 {
1951     int count, i;
1952     int err;
1953 
1954     count = 0;
1955     for (i = 0; attr_tbl[i].cap; i++)
1956         if (attr_tbl[i].cap & bp->fw_cap)
1957             count++;
1958 
1959     bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *),
1960                  GFP_KERNEL);
1961     if (!bp->attr_group)
1962         return -ENOMEM;
1963 
1964     count = 0;
1965     for (i = 0; attr_tbl[i].cap; i++)
1966         if (attr_tbl[i].cap & bp->fw_cap)
1967             bp->attr_group[count++] = attr_tbl[i].group;
1968 
1969     err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
1970     if (err)
1971         bp->attr_group[0] = NULL;
1972 
1973     return err;
1974 }
1975 
1976 static void
1977 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
1978 {
1979     u32 ctrl;
1980     bool on;
1981 
1982     ctrl = ioread32(reg);
1983     on = ctrl & bit;
1984     if (on ^ enable) {
1985         ctrl &= ~bit;
1986         ctrl |= enable ? bit : 0;
1987         iowrite32(ctrl, reg);
1988     }
1989 }
1990 
1991 static void
1992 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
1993 {
1994     return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
1995                    IRIG_M_CTRL_ENABLE, enable);
1996 }
1997 
1998 static void
1999 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
2000 {
2001     return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
2002                    IRIG_S_CTRL_ENABLE, enable);
2003 }
2004 
2005 static void
2006 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
2007 {
2008     return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
2009                    DCF_M_CTRL_ENABLE, enable);
2010 }
2011 
2012 static void
2013 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
2014 {
2015     return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
2016                    DCF_S_CTRL_ENABLE, enable);
2017 }
2018 
2019 static void
2020 __handle_signal_outputs(struct ptp_ocp *bp, u32 val)
2021 {
2022     ptp_ocp_irig_out(bp, val & 0x00100010);
2023     ptp_ocp_dcf_out(bp, val & 0x00200020);
2024 }
2025 
2026 static void
2027 __handle_signal_inputs(struct ptp_ocp *bp, u32 val)
2028 {
2029     ptp_ocp_irig_in(bp, val & 0x00100010);
2030     ptp_ocp_dcf_in(bp, val & 0x00200020);
2031 }
2032 
2033 static u32
2034 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
2035 {
2036     u32 __iomem *gpio;
2037     u32 shift;
2038 
2039     if (bp->sma[sma_nr - 1].fixed_fcn)
2040         return (sma_nr - 1) & 1;
2041 
2042     if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
2043         gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2044     else
2045         gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2046     shift = sma_nr & 1 ? 0 : 16;
2047 
2048     return (ioread32(gpio) >> shift) & 0xffff;
2049 }
2050 
2051 static int
2052 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2053 {
2054     u32 reg, mask, shift;
2055     unsigned long flags;
2056     u32 __iomem *gpio;
2057 
2058     gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2059     shift = sma_nr & 1 ? 0 : 16;
2060 
2061     mask = 0xffff << (16 - shift);
2062 
2063     spin_lock_irqsave(&bp->lock, flags);
2064 
2065     reg = ioread32(gpio);
2066     reg = (reg & mask) | (val << shift);
2067 
2068     __handle_signal_outputs(bp, reg);
2069 
2070     iowrite32(reg, gpio);
2071 
2072     spin_unlock_irqrestore(&bp->lock, flags);
2073 
2074     return 0;
2075 }
2076 
2077 static int
2078 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2079 {
2080     u32 reg, mask, shift;
2081     unsigned long flags;
2082     u32 __iomem *gpio;
2083 
2084     gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2085     shift = sma_nr & 1 ? 0 : 16;
2086 
2087     mask = 0xffff << (16 - shift);
2088 
2089     spin_lock_irqsave(&bp->lock, flags);
2090 
2091     reg = ioread32(gpio);
2092     reg = (reg & mask) | (val << shift);
2093 
2094     __handle_signal_inputs(bp, reg);
2095 
2096     iowrite32(reg, gpio);
2097 
2098     spin_unlock_irqrestore(&bp->lock, flags);
2099 
2100     return 0;
2101 }
2102 
2103 static void
2104 ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
2105 {
2106     u32 reg;
2107     int i;
2108 
2109     /* defaults */
2110     bp->sma[0].mode = SMA_MODE_IN;
2111     bp->sma[1].mode = SMA_MODE_IN;
2112     bp->sma[2].mode = SMA_MODE_OUT;
2113     bp->sma[3].mode = SMA_MODE_OUT;
2114     for (i = 0; i < 4; i++)
2115         bp->sma[i].default_fcn = i & 1;
2116 
2117     /* If no SMA1 map, the pin functions and directions are fixed. */
2118     if (!bp->sma_map1) {
2119         for (i = 0; i < 4; i++) {
2120             bp->sma[i].fixed_fcn = true;
2121             bp->sma[i].fixed_dir = true;
2122         }
2123         return;
2124     }
2125 
2126     /* If SMA2 GPIO output map is all 1, it is not present.
2127      * This indicates the firmware has fixed direction SMA pins.
2128      */
2129     reg = ioread32(&bp->sma_map2->gpio2);
2130     if (reg == 0xffffffff) {
2131         for (i = 0; i < 4; i++)
2132             bp->sma[i].fixed_dir = true;
2133     } else {
2134         reg = ioread32(&bp->sma_map1->gpio1);
2135         bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
2136         bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
2137 
2138         reg = ioread32(&bp->sma_map1->gpio2);
2139         bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
2140         bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
2141     }
2142 }
2143 
2144 static const struct ocp_sma_op ocp_fb_sma_op = {
2145     .tbl        = { ptp_ocp_sma_in, ptp_ocp_sma_out },
2146     .init       = ptp_ocp_sma_fb_init,
2147     .get        = ptp_ocp_sma_fb_get,
2148     .set_inputs = ptp_ocp_sma_fb_set_inputs,
2149     .set_output = ptp_ocp_sma_fb_set_output,
2150 };
2151 
2152 static int
2153 ptp_ocp_fb_set_pins(struct ptp_ocp *bp)
2154 {
2155     struct ptp_pin_desc *config;
2156     int i;
2157 
2158     config = kcalloc(4, sizeof(*config), GFP_KERNEL);
2159     if (!config)
2160         return -ENOMEM;
2161 
2162     for (i = 0; i < 4; i++) {
2163         sprintf(config[i].name, "sma%d", i + 1);
2164         config[i].index = i;
2165     }
2166 
2167     bp->ptp_info.n_pins = 4;
2168     bp->ptp_info.pin_config = config;
2169 
2170     return 0;
2171 }
2172 
2173 static void
2174 ptp_ocp_fb_set_version(struct ptp_ocp *bp)
2175 {
2176     u64 cap = OCP_CAP_BASIC;
2177     u32 version;
2178 
2179     version = ioread32(&bp->image->version);
2180 
2181     /* if lower 16 bits are empty, this is the fw loader. */
2182     if ((version & 0xffff) == 0) {
2183         version = version >> 16;
2184         bp->fw_loader = true;
2185     }
2186 
2187     bp->fw_tag = version >> 15;
2188     bp->fw_version = version & 0x7fff;
2189 
2190     if (bp->fw_tag) {
2191         /* FPGA firmware */
2192         if (version >= 5)
2193             cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2194     } else {
2195         /* SOM firmware */
2196         if (version >= 19)
2197             cap |= OCP_CAP_SIGNAL;
2198         if (version >= 20)
2199             cap |= OCP_CAP_FREQ;
2200     }
2201 
2202     bp->fw_cap = cap;
2203 }
2204 
2205 /* FB specific board initializers; last "resource" registered. */
2206 static int
2207 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2208 {
2209     int err;
2210 
2211     bp->flash_start = 1024 * 4096;
2212     bp->eeprom_map = fb_eeprom_map;
2213     bp->fw_version = ioread32(&bp->image->version);
2214     bp->sma_op = &ocp_fb_sma_op;
2215 
2216     ptp_ocp_fb_set_version(bp);
2217 
2218     ptp_ocp_tod_init(bp);
2219     ptp_ocp_nmea_out_init(bp);
2220     ptp_ocp_sma_init(bp);
2221     ptp_ocp_signal_init(bp);
2222 
2223     err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
2224     if (err)
2225         return err;
2226 
2227     err = ptp_ocp_fb_set_pins(bp);
2228     if (err)
2229         return err;
2230 
2231     return ptp_ocp_init_clock(bp);
2232 }
2233 
2234 static bool
2235 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
2236 {
2237     bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
2238 
2239     if (!allow)
2240         dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
2241             r->irq_vec, r->name);
2242     return allow;
2243 }
2244 
2245 static int
2246 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
2247 {
2248     struct ocp_resource *r, *table;
2249     int err = 0;
2250 
2251     table = (struct ocp_resource *)driver_data;
2252     for (r = table; r->setup; r++) {
2253         if (!ptp_ocp_allow_irq(bp, r))
2254             continue;
2255         err = r->setup(bp, r);
2256         if (err) {
2257             dev_err(&bp->pdev->dev,
2258                 "Could not register %s: err %d\n",
2259                 r->name, err);
2260             break;
2261         }
2262     }
2263     return err;
2264 }
2265 
2266 static ssize_t
2267 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
2268             int def_val)
2269 {
2270     const char *name;
2271     ssize_t count;
2272 
2273     count = sysfs_emit(buf, "OUT: ");
2274     name = ptp_ocp_select_name_from_val(tbl, val);
2275     if (!name)
2276         name = ptp_ocp_select_name_from_val(tbl, def_val);
2277     count += sysfs_emit_at(buf, count, "%s\n", name);
2278     return count;
2279 }
2280 
2281 static ssize_t
2282 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
2283             int def_val)
2284 {
2285     const char *name;
2286     ssize_t count;
2287     int i;
2288 
2289     count = sysfs_emit(buf, "IN: ");
2290     for (i = 0; tbl[i].name; i++) {
2291         if (val & tbl[i].value) {
2292             name = tbl[i].name;
2293             count += sysfs_emit_at(buf, count, "%s ", name);
2294         }
2295     }
2296     if (!val && def_val >= 0) {
2297         name = ptp_ocp_select_name_from_val(tbl, def_val);
2298         count += sysfs_emit_at(buf, count, "%s ", name);
2299     }
2300     if (count)
2301         count--;
2302     count += sysfs_emit_at(buf, count, "\n");
2303     return count;
2304 }
2305 
2306 static int
2307 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
2308          enum ptp_ocp_sma_mode *mode)
2309 {
2310     int idx, count, dir;
2311     char **argv;
2312     int ret;
2313 
2314     argv = argv_split(GFP_KERNEL, buf, &count);
2315     if (!argv)
2316         return -ENOMEM;
2317 
2318     ret = -EINVAL;
2319     if (!count)
2320         goto out;
2321 
2322     idx = 0;
2323     dir = *mode == SMA_MODE_IN ? 0 : 1;
2324     if (!strcasecmp("IN:", argv[0])) {
2325         dir = 0;
2326         idx++;
2327     }
2328     if (!strcasecmp("OUT:", argv[0])) {
2329         dir = 1;
2330         idx++;
2331     }
2332     *mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
2333 
2334     ret = 0;
2335     for (; idx < count; idx++)
2336         ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
2337     if (ret < 0)
2338         ret = -EINVAL;
2339 
2340 out:
2341     argv_free(argv);
2342     return ret;
2343 }
2344 
2345 static ssize_t
2346 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
2347          int default_in_val, int default_out_val)
2348 {
2349     struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2350     const struct ocp_selector * const *tbl;
2351     u32 val;
2352 
2353     tbl = bp->sma_op->tbl;
2354     val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
2355 
2356     if (sma->mode == SMA_MODE_IN) {
2357         if (sma->disabled)
2358             val = SMA_DISABLE;
2359         return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
2360     }
2361 
2362     return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
2363 }
2364 
2365 static ssize_t
2366 sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
2367 {
2368     struct ptp_ocp *bp = dev_get_drvdata(dev);
2369 
2370     return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
2371 }
2372 
2373 static ssize_t
2374 sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
2375 {
2376     struct ptp_ocp *bp = dev_get_drvdata(dev);
2377 
2378     return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
2379 }
2380 
2381 static ssize_t
2382 sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
2383 {
2384     struct ptp_ocp *bp = dev_get_drvdata(dev);
2385 
2386     return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
2387 }
2388 
2389 static ssize_t
2390 sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
2391 {
2392     struct ptp_ocp *bp = dev_get_drvdata(dev);
2393 
2394     return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
2395 }
2396 
2397 static int
2398 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
2399 {
2400     struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2401     enum ptp_ocp_sma_mode mode;
2402     int val;
2403 
2404     mode = sma->mode;
2405     val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
2406     if (val < 0)
2407         return val;
2408 
2409     if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
2410         return -EOPNOTSUPP;
2411 
2412     if (sma->fixed_fcn) {
2413         if (val != sma->default_fcn)
2414             return -EOPNOTSUPP;
2415         return 0;
2416     }
2417 
2418     sma->disabled = !!(val & SMA_DISABLE);
2419 
2420     if (mode != sma->mode) {
2421         if (mode == SMA_MODE_IN)
2422             ptp_ocp_sma_set_output(bp, sma_nr, 0);
2423         else
2424             ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
2425         sma->mode = mode;
2426     }
2427 
2428     if (!sma->fixed_dir)
2429         val |= SMA_ENABLE;      /* add enable bit */
2430 
2431     if (sma->disabled)
2432         val = 0;
2433 
2434     if (mode == SMA_MODE_IN)
2435         val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
2436     else
2437         val = ptp_ocp_sma_set_output(bp, sma_nr, val);
2438 
2439     return val;
2440 }
2441 
2442 static ssize_t
2443 sma1_store(struct device *dev, struct device_attribute *attr,
2444        const char *buf, size_t count)
2445 {
2446     struct ptp_ocp *bp = dev_get_drvdata(dev);
2447     int err;
2448 
2449     err = ptp_ocp_sma_store(bp, buf, 1);
2450     return err ? err : count;
2451 }
2452 
2453 static ssize_t
2454 sma2_store(struct device *dev, struct device_attribute *attr,
2455        const char *buf, size_t count)
2456 {
2457     struct ptp_ocp *bp = dev_get_drvdata(dev);
2458     int err;
2459 
2460     err = ptp_ocp_sma_store(bp, buf, 2);
2461     return err ? err : count;
2462 }
2463 
2464 static ssize_t
2465 sma3_store(struct device *dev, struct device_attribute *attr,
2466        const char *buf, size_t count)
2467 {
2468     struct ptp_ocp *bp = dev_get_drvdata(dev);
2469     int err;
2470 
2471     err = ptp_ocp_sma_store(bp, buf, 3);
2472     return err ? err : count;
2473 }
2474 
2475 static ssize_t
2476 sma4_store(struct device *dev, struct device_attribute *attr,
2477        const char *buf, size_t count)
2478 {
2479     struct ptp_ocp *bp = dev_get_drvdata(dev);
2480     int err;
2481 
2482     err = ptp_ocp_sma_store(bp, buf, 4);
2483     return err ? err : count;
2484 }
2485 static DEVICE_ATTR_RW(sma1);
2486 static DEVICE_ATTR_RW(sma2);
2487 static DEVICE_ATTR_RW(sma3);
2488 static DEVICE_ATTR_RW(sma4);
2489 
2490 static ssize_t
2491 available_sma_inputs_show(struct device *dev,
2492               struct device_attribute *attr, char *buf)
2493 {
2494     struct ptp_ocp *bp = dev_get_drvdata(dev);
2495 
2496     return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
2497 }
2498 static DEVICE_ATTR_RO(available_sma_inputs);
2499 
2500 static ssize_t
2501 available_sma_outputs_show(struct device *dev,
2502                struct device_attribute *attr, char *buf)
2503 {
2504     struct ptp_ocp *bp = dev_get_drvdata(dev);
2505 
2506     return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
2507 }
2508 static DEVICE_ATTR_RO(available_sma_outputs);
2509 
2510 #define EXT_ATTR_RO(_group, _name, _val)                \
2511     struct dev_ext_attribute dev_attr_##_group##_val##_##_name =    \
2512         { __ATTR_RO(_name), (void *)_val }
2513 #define EXT_ATTR_RW(_group, _name, _val)                \
2514     struct dev_ext_attribute dev_attr_##_group##_val##_##_name =    \
2515         { __ATTR_RW(_name), (void *)_val }
2516 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2517 
2518 /* period [duty [phase [polarity]]] */
2519 static ssize_t
2520 signal_store(struct device *dev, struct device_attribute *attr,
2521          const char *buf, size_t count)
2522 {
2523     struct dev_ext_attribute *ea = to_ext_attr(attr);
2524     struct ptp_ocp *bp = dev_get_drvdata(dev);
2525     struct ptp_ocp_signal s = { };
2526     int gen = (uintptr_t)ea->var;
2527     int argc, err;
2528     char **argv;
2529 
2530     argv = argv_split(GFP_KERNEL, buf, &argc);
2531     if (!argv)
2532         return -ENOMEM;
2533 
2534     err = -EINVAL;
2535     s.duty = bp->signal[gen].duty;
2536     s.phase = bp->signal[gen].phase;
2537     s.period = bp->signal[gen].period;
2538     s.polarity = bp->signal[gen].polarity;
2539 
2540     switch (argc) {
2541     case 4:
2542         argc--;
2543         err = kstrtobool(argv[argc], &s.polarity);
2544         if (err)
2545             goto out;
2546         fallthrough;
2547     case 3:
2548         argc--;
2549         err = kstrtou64(argv[argc], 0, &s.phase);
2550         if (err)
2551             goto out;
2552         fallthrough;
2553     case 2:
2554         argc--;
2555         err = kstrtoint(argv[argc], 0, &s.duty);
2556         if (err)
2557             goto out;
2558         fallthrough;
2559     case 1:
2560         argc--;
2561         err = kstrtou64(argv[argc], 0, &s.period);
2562         if (err)
2563             goto out;
2564         break;
2565     default:
2566         goto out;
2567     }
2568 
2569     err = ptp_ocp_signal_set(bp, gen, &s);
2570     if (err)
2571         goto out;
2572 
2573     err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
2574 
2575 out:
2576     argv_free(argv);
2577     return err ? err : count;
2578 }
2579 
2580 static ssize_t
2581 signal_show(struct device *dev, struct device_attribute *attr, char *buf)
2582 {
2583     struct dev_ext_attribute *ea = to_ext_attr(attr);
2584     struct ptp_ocp *bp = dev_get_drvdata(dev);
2585     struct ptp_ocp_signal *signal;
2586     struct timespec64 ts;
2587     ssize_t count;
2588     int i;
2589 
2590     i = (uintptr_t)ea->var;
2591     signal = &bp->signal[i];
2592 
2593     count = sysfs_emit(buf, "%llu %d %llu %d", signal->period,
2594                signal->duty, signal->phase, signal->polarity);
2595 
2596     ts = ktime_to_timespec64(signal->start);
2597     count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts);
2598 
2599     return count;
2600 }
2601 static EXT_ATTR_RW(signal, signal, 0);
2602 static EXT_ATTR_RW(signal, signal, 1);
2603 static EXT_ATTR_RW(signal, signal, 2);
2604 static EXT_ATTR_RW(signal, signal, 3);
2605 
2606 static ssize_t
2607 duty_show(struct device *dev, struct device_attribute *attr, char *buf)
2608 {
2609     struct dev_ext_attribute *ea = to_ext_attr(attr);
2610     struct ptp_ocp *bp = dev_get_drvdata(dev);
2611     int i = (uintptr_t)ea->var;
2612 
2613     return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
2614 }
2615 static EXT_ATTR_RO(signal, duty, 0);
2616 static EXT_ATTR_RO(signal, duty, 1);
2617 static EXT_ATTR_RO(signal, duty, 2);
2618 static EXT_ATTR_RO(signal, duty, 3);
2619 
2620 static ssize_t
2621 period_show(struct device *dev, struct device_attribute *attr, char *buf)
2622 {
2623     struct dev_ext_attribute *ea = to_ext_attr(attr);
2624     struct ptp_ocp *bp = dev_get_drvdata(dev);
2625     int i = (uintptr_t)ea->var;
2626 
2627     return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
2628 }
2629 static EXT_ATTR_RO(signal, period, 0);
2630 static EXT_ATTR_RO(signal, period, 1);
2631 static EXT_ATTR_RO(signal, period, 2);
2632 static EXT_ATTR_RO(signal, period, 3);
2633 
2634 static ssize_t
2635 phase_show(struct device *dev, struct device_attribute *attr, char *buf)
2636 {
2637     struct dev_ext_attribute *ea = to_ext_attr(attr);
2638     struct ptp_ocp *bp = dev_get_drvdata(dev);
2639     int i = (uintptr_t)ea->var;
2640 
2641     return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
2642 }
2643 static EXT_ATTR_RO(signal, phase, 0);
2644 static EXT_ATTR_RO(signal, phase, 1);
2645 static EXT_ATTR_RO(signal, phase, 2);
2646 static EXT_ATTR_RO(signal, phase, 3);
2647 
2648 static ssize_t
2649 polarity_show(struct device *dev, struct device_attribute *attr,
2650           char *buf)
2651 {
2652     struct dev_ext_attribute *ea = to_ext_attr(attr);
2653     struct ptp_ocp *bp = dev_get_drvdata(dev);
2654     int i = (uintptr_t)ea->var;
2655 
2656     return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
2657 }
2658 static EXT_ATTR_RO(signal, polarity, 0);
2659 static EXT_ATTR_RO(signal, polarity, 1);
2660 static EXT_ATTR_RO(signal, polarity, 2);
2661 static EXT_ATTR_RO(signal, polarity, 3);
2662 
2663 static ssize_t
2664 running_show(struct device *dev, struct device_attribute *attr, char *buf)
2665 {
2666     struct dev_ext_attribute *ea = to_ext_attr(attr);
2667     struct ptp_ocp *bp = dev_get_drvdata(dev);
2668     int i = (uintptr_t)ea->var;
2669 
2670     return sysfs_emit(buf, "%d\n", bp->signal[i].running);
2671 }
2672 static EXT_ATTR_RO(signal, running, 0);
2673 static EXT_ATTR_RO(signal, running, 1);
2674 static EXT_ATTR_RO(signal, running, 2);
2675 static EXT_ATTR_RO(signal, running, 3);
2676 
2677 static ssize_t
2678 start_show(struct device *dev, struct device_attribute *attr, char *buf)
2679 {
2680     struct dev_ext_attribute *ea = to_ext_attr(attr);
2681     struct ptp_ocp *bp = dev_get_drvdata(dev);
2682     int i = (uintptr_t)ea->var;
2683     struct timespec64 ts;
2684 
2685     ts = ktime_to_timespec64(bp->signal[i].start);
2686     return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
2687 }
2688 static EXT_ATTR_RO(signal, start, 0);
2689 static EXT_ATTR_RO(signal, start, 1);
2690 static EXT_ATTR_RO(signal, start, 2);
2691 static EXT_ATTR_RO(signal, start, 3);
2692 
2693 static ssize_t
2694 seconds_store(struct device *dev, struct device_attribute *attr,
2695           const char *buf, size_t count)
2696 {
2697     struct dev_ext_attribute *ea = to_ext_attr(attr);
2698     struct ptp_ocp *bp = dev_get_drvdata(dev);
2699     int idx = (uintptr_t)ea->var;
2700     u32 val;
2701     int err;
2702 
2703     err = kstrtou32(buf, 0, &val);
2704     if (err)
2705         return err;
2706     if (val > 0xff)
2707         return -EINVAL;
2708 
2709     if (val)
2710         val = (val << 8) | 0x1;
2711 
2712     iowrite32(val, &bp->freq_in[idx]->ctrl);
2713 
2714     return count;
2715 }
2716 
2717 static ssize_t
2718 seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
2719 {
2720     struct dev_ext_attribute *ea = to_ext_attr(attr);
2721     struct ptp_ocp *bp = dev_get_drvdata(dev);
2722     int idx = (uintptr_t)ea->var;
2723     u32 val;
2724 
2725     val = ioread32(&bp->freq_in[idx]->ctrl);
2726     if (val & 1)
2727         val = (val >> 8) & 0xff;
2728     else
2729         val = 0;
2730 
2731     return sysfs_emit(buf, "%u\n", val);
2732 }
2733 static EXT_ATTR_RW(freq, seconds, 0);
2734 static EXT_ATTR_RW(freq, seconds, 1);
2735 static EXT_ATTR_RW(freq, seconds, 2);
2736 static EXT_ATTR_RW(freq, seconds, 3);
2737 
2738 static ssize_t
2739 frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
2740 {
2741     struct dev_ext_attribute *ea = to_ext_attr(attr);
2742     struct ptp_ocp *bp = dev_get_drvdata(dev);
2743     int idx = (uintptr_t)ea->var;
2744     u32 val;
2745 
2746     val = ioread32(&bp->freq_in[idx]->status);
2747     if (val & FREQ_STATUS_ERROR)
2748         return sysfs_emit(buf, "error\n");
2749     if (val & FREQ_STATUS_OVERRUN)
2750         return sysfs_emit(buf, "overrun\n");
2751     if (val & FREQ_STATUS_VALID)
2752         return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
2753     return 0;
2754 }
2755 static EXT_ATTR_RO(freq, frequency, 0);
2756 static EXT_ATTR_RO(freq, frequency, 1);
2757 static EXT_ATTR_RO(freq, frequency, 2);
2758 static EXT_ATTR_RO(freq, frequency, 3);
2759 
2760 static ssize_t
2761 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
2762 {
2763     struct ptp_ocp *bp = dev_get_drvdata(dev);
2764 
2765     if (!bp->has_eeprom_data)
2766         ptp_ocp_read_eeprom(bp);
2767 
2768     return sysfs_emit(buf, "%pM\n", bp->serial);
2769 }
2770 static DEVICE_ATTR_RO(serialnum);
2771 
2772 static ssize_t
2773 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
2774 {
2775     struct ptp_ocp *bp = dev_get_drvdata(dev);
2776     ssize_t ret;
2777 
2778     if (bp->gnss_lost)
2779         ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
2780     else
2781         ret = sysfs_emit(buf, "SYNC\n");
2782 
2783     return ret;
2784 }
2785 static DEVICE_ATTR_RO(gnss_sync);
2786 
2787 static ssize_t
2788 utc_tai_offset_show(struct device *dev,
2789             struct device_attribute *attr, char *buf)
2790 {
2791     struct ptp_ocp *bp = dev_get_drvdata(dev);
2792 
2793     return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
2794 }
2795 
2796 static ssize_t
2797 utc_tai_offset_store(struct device *dev,
2798              struct device_attribute *attr,
2799              const char *buf, size_t count)
2800 {
2801     struct ptp_ocp *bp = dev_get_drvdata(dev);
2802     int err;
2803     u32 val;
2804 
2805     err = kstrtou32(buf, 0, &val);
2806     if (err)
2807         return err;
2808 
2809     ptp_ocp_utc_distribute(bp, val);
2810 
2811     return count;
2812 }
2813 static DEVICE_ATTR_RW(utc_tai_offset);
2814 
2815 static ssize_t
2816 ts_window_adjust_show(struct device *dev,
2817               struct device_attribute *attr, char *buf)
2818 {
2819     struct ptp_ocp *bp = dev_get_drvdata(dev);
2820 
2821     return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
2822 }
2823 
2824 static ssize_t
2825 ts_window_adjust_store(struct device *dev,
2826                struct device_attribute *attr,
2827                const char *buf, size_t count)
2828 {
2829     struct ptp_ocp *bp = dev_get_drvdata(dev);
2830     int err;
2831     u32 val;
2832 
2833     err = kstrtou32(buf, 0, &val);
2834     if (err)
2835         return err;
2836 
2837     bp->ts_window_adjust = val;
2838 
2839     return count;
2840 }
2841 static DEVICE_ATTR_RW(ts_window_adjust);
2842 
2843 static ssize_t
2844 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
2845 {
2846     struct ptp_ocp *bp = dev_get_drvdata(dev);
2847     u32 val;
2848 
2849     val = ioread32(&bp->irig_out->ctrl);
2850     val = (val >> 16) & 0x07;
2851     return sysfs_emit(buf, "%d\n", val);
2852 }
2853 
2854 static ssize_t
2855 irig_b_mode_store(struct device *dev,
2856           struct device_attribute *attr,
2857           const char *buf, size_t count)
2858 {
2859     struct ptp_ocp *bp = dev_get_drvdata(dev);
2860     unsigned long flags;
2861     int err;
2862     u32 reg;
2863     u8 val;
2864 
2865     err = kstrtou8(buf, 0, &val);
2866     if (err)
2867         return err;
2868     if (val > 7)
2869         return -EINVAL;
2870 
2871     reg = ((val & 0x7) << 16);
2872 
2873     spin_lock_irqsave(&bp->lock, flags);
2874     iowrite32(0, &bp->irig_out->ctrl);      /* disable */
2875     iowrite32(reg, &bp->irig_out->ctrl);        /* change mode */
2876     iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
2877     spin_unlock_irqrestore(&bp->lock, flags);
2878 
2879     return count;
2880 }
2881 static DEVICE_ATTR_RW(irig_b_mode);
2882 
2883 static ssize_t
2884 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
2885 {
2886     struct ptp_ocp *bp = dev_get_drvdata(dev);
2887     const char *p;
2888     u32 select;
2889 
2890     select = ioread32(&bp->reg->select);
2891     p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
2892 
2893     return sysfs_emit(buf, "%s\n", p);
2894 }
2895 
2896 static ssize_t
2897 clock_source_store(struct device *dev, struct device_attribute *attr,
2898            const char *buf, size_t count)
2899 {
2900     struct ptp_ocp *bp = dev_get_drvdata(dev);
2901     unsigned long flags;
2902     int val;
2903 
2904     val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
2905     if (val < 0)
2906         return val;
2907 
2908     spin_lock_irqsave(&bp->lock, flags);
2909     iowrite32(val, &bp->reg->select);
2910     spin_unlock_irqrestore(&bp->lock, flags);
2911 
2912     return count;
2913 }
2914 static DEVICE_ATTR_RW(clock_source);
2915 
2916 static ssize_t
2917 available_clock_sources_show(struct device *dev,
2918                  struct device_attribute *attr, char *buf)
2919 {
2920     return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
2921 }
2922 static DEVICE_ATTR_RO(available_clock_sources);
2923 
2924 static ssize_t
2925 clock_status_drift_show(struct device *dev,
2926             struct device_attribute *attr, char *buf)
2927 {
2928     struct ptp_ocp *bp = dev_get_drvdata(dev);
2929     u32 val;
2930     int res;
2931 
2932     val = ioread32(&bp->reg->status_drift);
2933     res = (val & ~INT_MAX) ? -1 : 1;
2934     res *= (val & INT_MAX);
2935     return sysfs_emit(buf, "%d\n", res);
2936 }
2937 static DEVICE_ATTR_RO(clock_status_drift);
2938 
2939 static ssize_t
2940 clock_status_offset_show(struct device *dev,
2941              struct device_attribute *attr, char *buf)
2942 {
2943     struct ptp_ocp *bp = dev_get_drvdata(dev);
2944     u32 val;
2945     int res;
2946 
2947     val = ioread32(&bp->reg->status_offset);
2948     res = (val & ~INT_MAX) ? -1 : 1;
2949     res *= (val & INT_MAX);
2950     return sysfs_emit(buf, "%d\n", res);
2951 }
2952 static DEVICE_ATTR_RO(clock_status_offset);
2953 
2954 static ssize_t
2955 tod_correction_show(struct device *dev,
2956             struct device_attribute *attr, char *buf)
2957 {
2958     struct ptp_ocp *bp = dev_get_drvdata(dev);
2959     u32 val;
2960     int res;
2961 
2962     val = ioread32(&bp->tod->adj_sec);
2963     res = (val & ~INT_MAX) ? -1 : 1;
2964     res *= (val & INT_MAX);
2965     return sysfs_emit(buf, "%d\n", res);
2966 }
2967 
2968 static ssize_t
2969 tod_correction_store(struct device *dev, struct device_attribute *attr,
2970              const char *buf, size_t count)
2971 {
2972     struct ptp_ocp *bp = dev_get_drvdata(dev);
2973     unsigned long flags;
2974     int err, res;
2975     u32 val = 0;
2976 
2977     err = kstrtos32(buf, 0, &res);
2978     if (err)
2979         return err;
2980     if (res < 0) {
2981         res *= -1;
2982         val |= BIT(31);
2983     }
2984     val |= res;
2985 
2986     spin_lock_irqsave(&bp->lock, flags);
2987     iowrite32(val, &bp->tod->adj_sec);
2988     spin_unlock_irqrestore(&bp->lock, flags);
2989 
2990     return count;
2991 }
2992 static DEVICE_ATTR_RW(tod_correction);
2993 
2994 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr)                 \
2995     static struct attribute *fb_timecard_signal##_nr##_attrs[] = {  \
2996         &dev_attr_signal##_nr##_signal.attr.attr,       \
2997         &dev_attr_signal##_nr##_duty.attr.attr,         \
2998         &dev_attr_signal##_nr##_phase.attr.attr,        \
2999         &dev_attr_signal##_nr##_period.attr.attr,       \
3000         &dev_attr_signal##_nr##_polarity.attr.attr,     \
3001         &dev_attr_signal##_nr##_running.attr.attr,      \
3002         &dev_attr_signal##_nr##_start.attr.attr,        \
3003         NULL,                           \
3004     }
3005 
3006 #define DEVICE_SIGNAL_GROUP(_name, _nr)                 \
3007     _DEVICE_SIGNAL_GROUP_ATTRS(_nr);                \
3008     static const struct attribute_group             \
3009             fb_timecard_signal##_nr##_group = {     \
3010         .name = #_name,                     \
3011         .attrs = fb_timecard_signal##_nr##_attrs,       \
3012 }
3013 
3014 DEVICE_SIGNAL_GROUP(gen1, 0);
3015 DEVICE_SIGNAL_GROUP(gen2, 1);
3016 DEVICE_SIGNAL_GROUP(gen3, 2);
3017 DEVICE_SIGNAL_GROUP(gen4, 3);
3018 
3019 #define _DEVICE_FREQ_GROUP_ATTRS(_nr)                   \
3020     static struct attribute *fb_timecard_freq##_nr##_attrs[] = {    \
3021         &dev_attr_freq##_nr##_seconds.attr.attr,        \
3022         &dev_attr_freq##_nr##_frequency.attr.attr,      \
3023         NULL,                           \
3024     }
3025 
3026 #define DEVICE_FREQ_GROUP(_name, _nr)                   \
3027     _DEVICE_FREQ_GROUP_ATTRS(_nr);                  \
3028     static const struct attribute_group             \
3029             fb_timecard_freq##_nr##_group = {       \
3030         .name = #_name,                     \
3031         .attrs = fb_timecard_freq##_nr##_attrs,         \
3032 }
3033 
3034 DEVICE_FREQ_GROUP(freq1, 0);
3035 DEVICE_FREQ_GROUP(freq2, 1);
3036 DEVICE_FREQ_GROUP(freq3, 2);
3037 DEVICE_FREQ_GROUP(freq4, 3);
3038 
3039 static struct attribute *fb_timecard_attrs[] = {
3040     &dev_attr_serialnum.attr,
3041     &dev_attr_gnss_sync.attr,
3042     &dev_attr_clock_source.attr,
3043     &dev_attr_available_clock_sources.attr,
3044     &dev_attr_sma1.attr,
3045     &dev_attr_sma2.attr,
3046     &dev_attr_sma3.attr,
3047     &dev_attr_sma4.attr,
3048     &dev_attr_available_sma_inputs.attr,
3049     &dev_attr_available_sma_outputs.attr,
3050     &dev_attr_clock_status_drift.attr,
3051     &dev_attr_clock_status_offset.attr,
3052     &dev_attr_irig_b_mode.attr,
3053     &dev_attr_utc_tai_offset.attr,
3054     &dev_attr_ts_window_adjust.attr,
3055     &dev_attr_tod_correction.attr,
3056     NULL,
3057 };
3058 static const struct attribute_group fb_timecard_group = {
3059     .attrs = fb_timecard_attrs,
3060 };
3061 static const struct ocp_attr_group fb_timecard_groups[] = {
3062     { .cap = OCP_CAP_BASIC,     .group = &fb_timecard_group },
3063     { .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal0_group },
3064     { .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal1_group },
3065     { .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal2_group },
3066     { .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal3_group },
3067     { .cap = OCP_CAP_FREQ,      .group = &fb_timecard_freq0_group },
3068     { .cap = OCP_CAP_FREQ,      .group = &fb_timecard_freq1_group },
3069     { .cap = OCP_CAP_FREQ,      .group = &fb_timecard_freq2_group },
3070     { .cap = OCP_CAP_FREQ,      .group = &fb_timecard_freq3_group },
3071     { },
3072 };
3073 
3074 static void
3075 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
3076            const char *def)
3077 {
3078     int i;
3079 
3080     for (i = 0; i < 4; i++) {
3081         if (bp->sma[i].mode != SMA_MODE_IN)
3082             continue;
3083         if (map[i][0] & (1 << bit)) {
3084             sprintf(buf, "sma%d", i + 1);
3085             return;
3086         }
3087     }
3088     if (!def)
3089         def = "----";
3090     strcpy(buf, def);
3091 }
3092 
3093 static void
3094 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
3095 {
3096     char *ans = buf;
3097     int i;
3098 
3099     strcpy(ans, "----");
3100     for (i = 0; i < 4; i++) {
3101         if (bp->sma[i].mode != SMA_MODE_OUT)
3102             continue;
3103         if (map[i][1] & (1 << bit))
3104             ans += sprintf(ans, "sma%d ", i + 1);
3105     }
3106 }
3107 
3108 static void
3109 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
3110 {
3111     struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
3112     struct ptp_ocp_signal *signal = &bp->signal[nr];
3113     char label[8];
3114     bool on;
3115     u32 val;
3116 
3117     if (!signal)
3118         return;
3119 
3120     on = signal->running;
3121     sprintf(label, "GEN%d", nr + 1);
3122     seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
3123            label, on ? " ON" : "OFF",
3124            signal->period, signal->duty, signal->phase,
3125            signal->polarity);
3126 
3127     val = ioread32(&reg->enable);
3128     seq_printf(s, " [%x", val);
3129     val = ioread32(&reg->status);
3130     seq_printf(s, " %x]", val);
3131 
3132     seq_printf(s, " start:%llu\n", signal->start);
3133 }
3134 
3135 static void
3136 _frequency_summary_show(struct seq_file *s, int nr,
3137             struct frequency_reg __iomem *reg)
3138 {
3139     char label[8];
3140     bool on;
3141     u32 val;
3142 
3143     if (!reg)
3144         return;
3145 
3146     sprintf(label, "FREQ%d", nr + 1);
3147     val = ioread32(&reg->ctrl);
3148     on = val & 1;
3149     val = (val >> 8) & 0xff;
3150     seq_printf(s, "%7s: %s, sec:%u",
3151            label,
3152            on ? " ON" : "OFF",
3153            val);
3154 
3155     val = ioread32(&reg->status);
3156     if (val & FREQ_STATUS_ERROR)
3157         seq_printf(s, ", error");
3158     if (val & FREQ_STATUS_OVERRUN)
3159         seq_printf(s, ", overrun");
3160     if (val & FREQ_STATUS_VALID)
3161         seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
3162     seq_printf(s, "  reg:%x\n", val);
3163 }
3164 
3165 static int
3166 ptp_ocp_summary_show(struct seq_file *s, void *data)
3167 {
3168     struct device *dev = s->private;
3169     struct ptp_system_timestamp sts;
3170     struct ts_reg __iomem *ts_reg;
3171     char *buf, *src, *mac_src;
3172     struct timespec64 ts;
3173     struct ptp_ocp *bp;
3174     u16 sma_val[4][2];
3175     u32 ctrl, val;
3176     bool on, map;
3177     int i;
3178 
3179     buf = (char *)__get_free_page(GFP_KERNEL);
3180     if (!buf)
3181         return -ENOMEM;
3182 
3183     bp = dev_get_drvdata(dev);
3184 
3185     seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
3186     if (bp->gnss_port != -1)
3187         seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS1", bp->gnss_port);
3188     if (bp->gnss2_port != -1)
3189         seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS2", bp->gnss2_port);
3190     if (bp->mac_port != -1)
3191         seq_printf(s, "%7s: /dev/ttyS%d\n", "MAC", bp->mac_port);
3192     if (bp->nmea_port != -1)
3193         seq_printf(s, "%7s: /dev/ttyS%d\n", "NMEA", bp->nmea_port);
3194 
3195     memset(sma_val, 0xff, sizeof(sma_val));
3196     if (bp->sma_map1) {
3197         u32 reg;
3198 
3199         reg = ioread32(&bp->sma_map1->gpio1);
3200         sma_val[0][0] = reg & 0xffff;
3201         sma_val[1][0] = reg >> 16;
3202 
3203         reg = ioread32(&bp->sma_map1->gpio2);
3204         sma_val[2][1] = reg & 0xffff;
3205         sma_val[3][1] = reg >> 16;
3206 
3207         reg = ioread32(&bp->sma_map2->gpio1);
3208         sma_val[2][0] = reg & 0xffff;
3209         sma_val[3][0] = reg >> 16;
3210 
3211         reg = ioread32(&bp->sma_map2->gpio2);
3212         sma_val[0][1] = reg & 0xffff;
3213         sma_val[1][1] = reg >> 16;
3214     }
3215 
3216     sma1_show(dev, NULL, buf);
3217     seq_printf(s, "   sma1: %04x,%04x %s",
3218            sma_val[0][0], sma_val[0][1], buf);
3219 
3220     sma2_show(dev, NULL, buf);
3221     seq_printf(s, "   sma2: %04x,%04x %s",
3222            sma_val[1][0], sma_val[1][1], buf);
3223 
3224     sma3_show(dev, NULL, buf);
3225     seq_printf(s, "   sma3: %04x,%04x %s",
3226            sma_val[2][0], sma_val[2][1], buf);
3227 
3228     sma4_show(dev, NULL, buf);
3229     seq_printf(s, "   sma4: %04x,%04x %s",
3230            sma_val[3][0], sma_val[3][1], buf);
3231 
3232     if (bp->ts0) {
3233         ts_reg = bp->ts0->mem;
3234         on = ioread32(&ts_reg->enable);
3235         src = "GNSS1";
3236         seq_printf(s, "%7s: %s, src: %s\n", "TS0",
3237                on ? " ON" : "OFF", src);
3238     }
3239 
3240     if (bp->ts1) {
3241         ts_reg = bp->ts1->mem;
3242         on = ioread32(&ts_reg->enable);
3243         gpio_input_map(buf, bp, sma_val, 2, NULL);
3244         seq_printf(s, "%7s: %s, src: %s\n", "TS1",
3245                on ? " ON" : "OFF", buf);
3246     }
3247 
3248     if (bp->ts2) {
3249         ts_reg = bp->ts2->mem;
3250         on = ioread32(&ts_reg->enable);
3251         gpio_input_map(buf, bp, sma_val, 3, NULL);
3252         seq_printf(s, "%7s: %s, src: %s\n", "TS2",
3253                on ? " ON" : "OFF", buf);
3254     }
3255 
3256     if (bp->ts3) {
3257         ts_reg = bp->ts3->mem;
3258         on = ioread32(&ts_reg->enable);
3259         gpio_input_map(buf, bp, sma_val, 6, NULL);
3260         seq_printf(s, "%7s: %s, src: %s\n", "TS3",
3261                on ? " ON" : "OFF", buf);
3262     }
3263 
3264     if (bp->ts4) {
3265         ts_reg = bp->ts4->mem;
3266         on = ioread32(&ts_reg->enable);
3267         gpio_input_map(buf, bp, sma_val, 7, NULL);
3268         seq_printf(s, "%7s: %s, src: %s\n", "TS4",
3269                on ? " ON" : "OFF", buf);
3270     }
3271 
3272     if (bp->pps) {
3273         ts_reg = bp->pps->mem;
3274         src = "PHC";
3275         on = ioread32(&ts_reg->enable);
3276         map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
3277         seq_printf(s, "%7s: %s, src: %s\n", "TS5",
3278                on && map ? " ON" : "OFF", src);
3279 
3280         map = !!(bp->pps_req_map & OCP_REQ_PPS);
3281         seq_printf(s, "%7s: %s, src: %s\n", "PPS",
3282                on && map ? " ON" : "OFF", src);
3283     }
3284 
3285     if (bp->fw_cap & OCP_CAP_SIGNAL)
3286         for (i = 0; i < 4; i++)
3287             _signal_summary_show(s, bp, i);
3288 
3289     if (bp->fw_cap & OCP_CAP_FREQ)
3290         for (i = 0; i < 4; i++)
3291             _frequency_summary_show(s, i, bp->freq_in[i]);
3292 
3293     if (bp->irig_out) {
3294         ctrl = ioread32(&bp->irig_out->ctrl);
3295         on = ctrl & IRIG_M_CTRL_ENABLE;
3296         val = ioread32(&bp->irig_out->status);
3297         gpio_output_map(buf, bp, sma_val, 4);
3298         seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
3299                on ? " ON" : "OFF", val, (ctrl >> 16), buf);
3300     }
3301 
3302     if (bp->irig_in) {
3303         on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
3304         val = ioread32(&bp->irig_in->status);
3305         gpio_input_map(buf, bp, sma_val, 4, NULL);
3306         seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
3307                on ? " ON" : "OFF", val, buf);
3308     }
3309 
3310     if (bp->dcf_out) {
3311         on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
3312         val = ioread32(&bp->dcf_out->status);
3313         gpio_output_map(buf, bp, sma_val, 5);
3314         seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
3315                on ? " ON" : "OFF", val, buf);
3316     }
3317 
3318     if (bp->dcf_in) {
3319         on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
3320         val = ioread32(&bp->dcf_in->status);
3321         gpio_input_map(buf, bp, sma_val, 5, NULL);
3322         seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
3323                on ? " ON" : "OFF", val, buf);
3324     }
3325 
3326     if (bp->nmea_out) {
3327         on = ioread32(&bp->nmea_out->ctrl) & 1;
3328         val = ioread32(&bp->nmea_out->status);
3329         seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
3330                on ? " ON" : "OFF", val);
3331     }
3332 
3333     /* compute src for PPS1, used below. */
3334     if (bp->pps_select) {
3335         val = ioread32(&bp->pps_select->gpio1);
3336         src = &buf[80];
3337         mac_src = "GNSS1";
3338         if (val & 0x01) {
3339             gpio_input_map(src, bp, sma_val, 0, NULL);
3340             mac_src = src;
3341         } else if (val & 0x02) {
3342             src = "MAC";
3343         } else if (val & 0x04) {
3344             src = "GNSS1";
3345         } else {
3346             src = "----";
3347             mac_src = src;
3348         }
3349     } else {
3350         src = "?";
3351         mac_src = src;
3352     }
3353     seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
3354 
3355     gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
3356     seq_printf(s, "MAC PPS2 src: %s\n", buf);
3357 
3358     /* assumes automatic switchover/selection */
3359     val = ioread32(&bp->reg->select);
3360     switch (val >> 16) {
3361     case 0:
3362         sprintf(buf, "----");
3363         break;
3364     case 2:
3365         sprintf(buf, "IRIG");
3366         break;
3367     case 3:
3368         sprintf(buf, "%s via PPS1", src);
3369         break;
3370     case 6:
3371         sprintf(buf, "DCF");
3372         break;
3373     default:
3374         strcpy(buf, "unknown");
3375         break;
3376     }
3377     val = ioread32(&bp->reg->status);
3378     seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
3379            val & OCP_STATUS_IN_SYNC ? "sync" : "unsynced");
3380 
3381     if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
3382         struct timespec64 sys_ts;
3383         s64 pre_ns, post_ns, ns;
3384 
3385         pre_ns = timespec64_to_ns(&sts.pre_ts);
3386         post_ns = timespec64_to_ns(&sts.post_ts);
3387         ns = (pre_ns + post_ns) / 2;
3388         ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
3389         sys_ts = ns_to_timespec64(ns);
3390 
3391         seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
3392                ts.tv_sec, ts.tv_nsec, &ts);
3393         seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
3394                sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
3395                bp->utc_tai_offset);
3396         seq_printf(s, "%7s: PHC:SYS offset: %lld  window: %lld\n", "",
3397                timespec64_to_ns(&ts) - ns,
3398                post_ns - pre_ns);
3399     }
3400 
3401     free_page((unsigned long)buf);
3402     return 0;
3403 }
3404 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
3405 
3406 static int
3407 ptp_ocp_tod_status_show(struct seq_file *s, void *data)
3408 {
3409     struct device *dev = s->private;
3410     struct ptp_ocp *bp;
3411     u32 val;
3412     int idx;
3413 
3414     bp = dev_get_drvdata(dev);
3415 
3416     val = ioread32(&bp->tod->ctrl);
3417     if (!(val & TOD_CTRL_ENABLE)) {
3418         seq_printf(s, "TOD Slave disabled\n");
3419         return 0;
3420     }
3421     seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
3422 
3423     idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
3424     idx += (val >> 16) & 3;
3425     seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
3426 
3427     idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
3428     seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
3429 
3430     val = ioread32(&bp->tod->version);
3431     seq_printf(s, "TOD Version %d.%d.%d\n",
3432         val >> 24, (val >> 16) & 0xff, val & 0xffff);
3433 
3434     val = ioread32(&bp->tod->status);
3435     seq_printf(s, "Status register: 0x%08X\n", val);
3436 
3437     val = ioread32(&bp->tod->adj_sec);
3438     idx = (val & ~INT_MAX) ? -1 : 1;
3439     idx *= (val & INT_MAX);
3440     seq_printf(s, "Correction seconds: %d\n", idx);
3441 
3442     val = ioread32(&bp->tod->utc_status);
3443     seq_printf(s, "UTC status register: 0x%08X\n", val);
3444     seq_printf(s, "UTC offset: %ld  valid:%d\n",
3445         val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
3446     seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
3447         val & TOD_STATUS_LEAP_VALID ? 1 : 0,
3448         val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
3449 
3450     val = ioread32(&bp->tod->leap);
3451     seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
3452 
3453     return 0;
3454 }
3455 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
3456 
3457 static struct dentry *ptp_ocp_debugfs_root;
3458 
3459 static void
3460 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
3461 {
3462     struct dentry *d;
3463 
3464     d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
3465     bp->debug_root = d;
3466     debugfs_create_file("summary", 0444, bp->debug_root,
3467                 &bp->dev, &ptp_ocp_summary_fops);
3468     if (bp->tod)
3469         debugfs_create_file("tod_status", 0444, bp->debug_root,
3470                     &bp->dev, &ptp_ocp_tod_status_fops);
3471 }
3472 
3473 static void
3474 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
3475 {
3476     debugfs_remove_recursive(bp->debug_root);
3477 }
3478 
3479 static void
3480 ptp_ocp_debugfs_init(void)
3481 {
3482     ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
3483 }
3484 
3485 static void
3486 ptp_ocp_debugfs_fini(void)
3487 {
3488     debugfs_remove_recursive(ptp_ocp_debugfs_root);
3489 }
3490 
3491 static void
3492 ptp_ocp_dev_release(struct device *dev)
3493 {
3494     struct ptp_ocp *bp = dev_get_drvdata(dev);
3495 
3496     mutex_lock(&ptp_ocp_lock);
3497     idr_remove(&ptp_ocp_idr, bp->id);
3498     mutex_unlock(&ptp_ocp_lock);
3499 }
3500 
3501 static int
3502 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
3503 {
3504     int err;
3505 
3506     mutex_lock(&ptp_ocp_lock);
3507     err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
3508     mutex_unlock(&ptp_ocp_lock);
3509     if (err < 0) {
3510         dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
3511         return err;
3512     }
3513     bp->id = err;
3514 
3515     bp->ptp_info = ptp_ocp_clock_info;
3516     spin_lock_init(&bp->lock);
3517     bp->gnss_port = -1;
3518     bp->gnss2_port = -1;
3519     bp->mac_port = -1;
3520     bp->nmea_port = -1;
3521     bp->pdev = pdev;
3522 
3523     device_initialize(&bp->dev);
3524     dev_set_name(&bp->dev, "ocp%d", bp->id);
3525     bp->dev.class = &timecard_class;
3526     bp->dev.parent = &pdev->dev;
3527     bp->dev.release = ptp_ocp_dev_release;
3528     dev_set_drvdata(&bp->dev, bp);
3529 
3530     err = device_add(&bp->dev);
3531     if (err) {
3532         dev_err(&bp->dev, "device add failed: %d\n", err);
3533         goto out;
3534     }
3535 
3536     pci_set_drvdata(pdev, bp);
3537 
3538     return 0;
3539 
3540 out:
3541     ptp_ocp_dev_release(&bp->dev);
3542     put_device(&bp->dev);
3543     return err;
3544 }
3545 
3546 static void
3547 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
3548 {
3549     struct device *dev = &bp->dev;
3550 
3551     if (sysfs_create_link(&dev->kobj, &child->kobj, link))
3552         dev_err(dev, "%s symlink failed\n", link);
3553 }
3554 
3555 static void
3556 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
3557 {
3558     struct device *dev, *child;
3559 
3560     dev = &bp->pdev->dev;
3561 
3562     child = device_find_child_by_name(dev, name);
3563     if (!child) {
3564         dev_err(dev, "Could not find device %s\n", name);
3565         return;
3566     }
3567 
3568     ptp_ocp_symlink(bp, child, link);
3569     put_device(child);
3570 }
3571 
3572 static int
3573 ptp_ocp_complete(struct ptp_ocp *bp)
3574 {
3575     struct pps_device *pps;
3576     char buf[32];
3577 
3578     if (bp->gnss_port != -1) {
3579         sprintf(buf, "ttyS%d", bp->gnss_port);
3580         ptp_ocp_link_child(bp, buf, "ttyGNSS");
3581     }
3582     if (bp->gnss2_port != -1) {
3583         sprintf(buf, "ttyS%d", bp->gnss2_port);
3584         ptp_ocp_link_child(bp, buf, "ttyGNSS2");
3585     }
3586     if (bp->mac_port != -1) {
3587         sprintf(buf, "ttyS%d", bp->mac_port);
3588         ptp_ocp_link_child(bp, buf, "ttyMAC");
3589     }
3590     if (bp->nmea_port != -1) {
3591         sprintf(buf, "ttyS%d", bp->nmea_port);
3592         ptp_ocp_link_child(bp, buf, "ttyNMEA");
3593     }
3594     sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
3595     ptp_ocp_link_child(bp, buf, "ptp");
3596 
3597     pps = pps_lookup_dev(bp->ptp);
3598     if (pps)
3599         ptp_ocp_symlink(bp, pps->dev, "pps");
3600 
3601     ptp_ocp_debugfs_add_device(bp);
3602 
3603     return 0;
3604 }
3605 
3606 static void
3607 ptp_ocp_phc_info(struct ptp_ocp *bp)
3608 {
3609     struct timespec64 ts;
3610     u32 version, select;
3611     bool sync;
3612 
3613     version = ioread32(&bp->reg->version);
3614     select = ioread32(&bp->reg->select);
3615     dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
3616          version >> 24, (version >> 16) & 0xff, version & 0xffff,
3617          ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
3618          ptp_clock_index(bp->ptp));
3619 
3620     sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
3621     if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
3622         dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
3623              ts.tv_sec, ts.tv_nsec,
3624              sync ? "in-sync" : "UNSYNCED");
3625 }
3626 
3627 static void
3628 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
3629 {
3630     if (port != -1)
3631         dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
3632 }
3633 
3634 static void
3635 ptp_ocp_info(struct ptp_ocp *bp)
3636 {
3637     static int nmea_baud[] = {
3638         1200, 2400, 4800, 9600, 19200, 38400,
3639         57600, 115200, 230400, 460800, 921600,
3640         1000000, 2000000
3641     };
3642     struct device *dev = &bp->pdev->dev;
3643     u32 reg;
3644 
3645     ptp_ocp_phc_info(bp);
3646 
3647     ptp_ocp_serial_info(dev, "GNSS", bp->gnss_port, 115200);
3648     ptp_ocp_serial_info(dev, "GNSS2", bp->gnss2_port, 115200);
3649     ptp_ocp_serial_info(dev, "MAC", bp->mac_port, 57600);
3650     if (bp->nmea_out && bp->nmea_port != -1) {
3651         int baud = -1;
3652 
3653         reg = ioread32(&bp->nmea_out->uart_baud);
3654         if (reg < ARRAY_SIZE(nmea_baud))
3655             baud = nmea_baud[reg];
3656         ptp_ocp_serial_info(dev, "NMEA", bp->nmea_port, baud);
3657     }
3658 }
3659 
3660 static void
3661 ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
3662 {
3663     struct device *dev = &bp->dev;
3664 
3665     sysfs_remove_link(&dev->kobj, "ttyGNSS");
3666     sysfs_remove_link(&dev->kobj, "ttyMAC");
3667     sysfs_remove_link(&dev->kobj, "ptp");
3668     sysfs_remove_link(&dev->kobj, "pps");
3669 }
3670 
3671 static void
3672 ptp_ocp_detach(struct ptp_ocp *bp)
3673 {
3674     int i;
3675 
3676     ptp_ocp_debugfs_remove_device(bp);
3677     ptp_ocp_detach_sysfs(bp);
3678     ptp_ocp_attr_group_del(bp);
3679     if (timer_pending(&bp->watchdog))
3680         del_timer_sync(&bp->watchdog);
3681     if (bp->ts0)
3682         ptp_ocp_unregister_ext(bp->ts0);
3683     if (bp->ts1)
3684         ptp_ocp_unregister_ext(bp->ts1);
3685     if (bp->ts2)
3686         ptp_ocp_unregister_ext(bp->ts2);
3687     if (bp->ts3)
3688         ptp_ocp_unregister_ext(bp->ts3);
3689     if (bp->ts4)
3690         ptp_ocp_unregister_ext(bp->ts4);
3691     if (bp->pps)
3692         ptp_ocp_unregister_ext(bp->pps);
3693     for (i = 0; i < 4; i++)
3694         if (bp->signal_out[i])
3695             ptp_ocp_unregister_ext(bp->signal_out[i]);
3696     if (bp->gnss_port != -1)
3697         serial8250_unregister_port(bp->gnss_port);
3698     if (bp->gnss2_port != -1)
3699         serial8250_unregister_port(bp->gnss2_port);
3700     if (bp->mac_port != -1)
3701         serial8250_unregister_port(bp->mac_port);
3702     if (bp->nmea_port != -1)
3703         serial8250_unregister_port(bp->nmea_port);
3704     platform_device_unregister(bp->spi_flash);
3705     platform_device_unregister(bp->i2c_ctrl);
3706     if (bp->i2c_clk)
3707         clk_hw_unregister_fixed_rate(bp->i2c_clk);
3708     if (bp->n_irqs)
3709         pci_free_irq_vectors(bp->pdev);
3710     if (bp->ptp)
3711         ptp_clock_unregister(bp->ptp);
3712     kfree(bp->ptp_info.pin_config);
3713     device_unregister(&bp->dev);
3714 }
3715 
3716 static int
3717 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3718 {
3719     struct devlink *devlink;
3720     struct ptp_ocp *bp;
3721     int err;
3722 
3723     devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
3724     if (!devlink) {
3725         dev_err(&pdev->dev, "devlink_alloc failed\n");
3726         return -ENOMEM;
3727     }
3728 
3729     err = pci_enable_device(pdev);
3730     if (err) {
3731         dev_err(&pdev->dev, "pci_enable_device\n");
3732         goto out_free;
3733     }
3734 
3735     bp = devlink_priv(devlink);
3736     err = ptp_ocp_device_init(bp, pdev);
3737     if (err)
3738         goto out_disable;
3739 
3740     /* compat mode.
3741      * Older FPGA firmware only returns 2 irq's.
3742      * allow this - if not all of the IRQ's are returned, skip the
3743      * extra devices and just register the clock.
3744      */
3745     err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
3746     if (err < 0) {
3747         dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
3748         goto out;
3749     }
3750     bp->n_irqs = err;
3751     pci_set_master(pdev);
3752 
3753     err = ptp_ocp_register_resources(bp, id->driver_data);
3754     if (err)
3755         goto out;
3756 
3757     bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
3758     if (IS_ERR(bp->ptp)) {
3759         err = PTR_ERR(bp->ptp);
3760         dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
3761         bp->ptp = NULL;
3762         goto out;
3763     }
3764 
3765     err = ptp_ocp_complete(bp);
3766     if (err)
3767         goto out;
3768 
3769     ptp_ocp_info(bp);
3770     devlink_register(devlink);
3771     return 0;
3772 
3773 out:
3774     ptp_ocp_detach(bp);
3775 out_disable:
3776     pci_disable_device(pdev);
3777 out_free:
3778     devlink_free(devlink);
3779     return err;
3780 }
3781 
3782 static void
3783 ptp_ocp_remove(struct pci_dev *pdev)
3784 {
3785     struct ptp_ocp *bp = pci_get_drvdata(pdev);
3786     struct devlink *devlink = priv_to_devlink(bp);
3787 
3788     devlink_unregister(devlink);
3789     ptp_ocp_detach(bp);
3790     pci_disable_device(pdev);
3791 
3792     devlink_free(devlink);
3793 }
3794 
3795 static struct pci_driver ptp_ocp_driver = {
3796     .name       = KBUILD_MODNAME,
3797     .id_table   = ptp_ocp_pcidev_id,
3798     .probe      = ptp_ocp_probe,
3799     .remove     = ptp_ocp_remove,
3800 };
3801 
3802 static int
3803 ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
3804               unsigned long action, void *data)
3805 {
3806     struct device *dev, *child = data;
3807     struct ptp_ocp *bp;
3808     bool add;
3809 
3810     switch (action) {
3811     case BUS_NOTIFY_ADD_DEVICE:
3812     case BUS_NOTIFY_DEL_DEVICE:
3813         add = action == BUS_NOTIFY_ADD_DEVICE;
3814         break;
3815     default:
3816         return 0;
3817     }
3818 
3819     if (!i2c_verify_adapter(child))
3820         return 0;
3821 
3822     dev = child;
3823     while ((dev = dev->parent))
3824         if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
3825             goto found;
3826     return 0;
3827 
3828 found:
3829     bp = dev_get_drvdata(dev);
3830     if (add)
3831         ptp_ocp_symlink(bp, child, "i2c");
3832     else
3833         sysfs_remove_link(&bp->dev.kobj, "i2c");
3834 
3835     return 0;
3836 }
3837 
3838 static struct notifier_block ptp_ocp_i2c_notifier = {
3839     .notifier_call = ptp_ocp_i2c_notifier_call,
3840 };
3841 
3842 static int __init
3843 ptp_ocp_init(void)
3844 {
3845     const char *what;
3846     int err;
3847 
3848     ptp_ocp_debugfs_init();
3849 
3850     what = "timecard class";
3851     err = class_register(&timecard_class);
3852     if (err)
3853         goto out;
3854 
3855     what = "i2c notifier";
3856     err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
3857     if (err)
3858         goto out_notifier;
3859 
3860     what = "ptp_ocp driver";
3861     err = pci_register_driver(&ptp_ocp_driver);
3862     if (err)
3863         goto out_register;
3864 
3865     return 0;
3866 
3867 out_register:
3868     bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
3869 out_notifier:
3870     class_unregister(&timecard_class);
3871 out:
3872     ptp_ocp_debugfs_fini();
3873     pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
3874     return err;
3875 }
3876 
3877 static void __exit
3878 ptp_ocp_fini(void)
3879 {
3880     bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
3881     pci_unregister_driver(&ptp_ocp_driver);
3882     class_unregister(&timecard_class);
3883     ptp_ocp_debugfs_fini();
3884 }
3885 
3886 module_init(ptp_ocp_init);
3887 module_exit(ptp_ocp_fini);
3888 
3889 MODULE_DESCRIPTION("OpenCompute TimeCard driver");
3890 MODULE_LICENSE("GPL v2");