0001
0002
0003
0004 #include <linux/err.h>
0005 #include <linux/io.h>
0006 #include <linux/module.h>
0007 #include <linux/mod_devicetable.h>
0008 #include <linux/platform_device.h>
0009 #include <linux/ptp_clock_kernel.h>
0010 #include <linux/types.h>
0011
0012 #define DTE_NCO_LOW_TIME_REG 0x00
0013 #define DTE_NCO_TIME_REG 0x04
0014 #define DTE_NCO_OVERFLOW_REG 0x08
0015 #define DTE_NCO_INC_REG 0x0c
0016
0017 #define DTE_NCO_SUM2_MASK 0xffffffff
0018 #define DTE_NCO_SUM2_SHIFT 4ULL
0019
0020 #define DTE_NCO_SUM3_MASK 0xff
0021 #define DTE_NCO_SUM3_SHIFT 36ULL
0022 #define DTE_NCO_SUM3_WR_SHIFT 8
0023
0024 #define DTE_NCO_TS_WRAP_MASK 0xfff
0025 #define DTE_NCO_TS_WRAP_LSHIFT 32
0026
0027 #define DTE_NCO_INC_DEFAULT 0x80000000
0028 #define DTE_NUM_REGS_TO_RESTORE 4
0029
0030
0031 #define DTE_WRAP_AROUND_NSEC_SHIFT 44
0032
0033
0034 #define DTE_NCO_MAX_NS 0xFFFFFFFFFFFLL
0035
0036
0037 #define DTE_PPB_ADJ(ppb) (u32)(div64_u64((((u64)abs(ppb) * BIT(28)) +\
0038 62500000ULL), 125000000ULL))
0039
0040
0041 struct ptp_dte {
0042 void __iomem *regs;
0043 struct ptp_clock *ptp_clk;
0044 struct ptp_clock_info caps;
0045 struct device *dev;
0046 u32 ts_ovf_last;
0047 u32 ts_wrap_cnt;
0048 spinlock_t lock;
0049 u32 reg_val[DTE_NUM_REGS_TO_RESTORE];
0050 };
0051
0052 static void dte_write_nco(void __iomem *regs, s64 ns)
0053 {
0054 u32 sum2, sum3;
0055
0056 sum2 = (u32)((ns >> DTE_NCO_SUM2_SHIFT) & DTE_NCO_SUM2_MASK);
0057
0058 if (sum2 != DTE_NCO_SUM2_MASK)
0059 sum2++;
0060
0061
0062 sum3 = (u32)(((ns >> DTE_NCO_SUM3_SHIFT) & DTE_NCO_SUM3_MASK) <<
0063 DTE_NCO_SUM3_WR_SHIFT);
0064
0065 writel(0, (regs + DTE_NCO_LOW_TIME_REG));
0066 writel(sum2, (regs + DTE_NCO_TIME_REG));
0067 writel(sum3, (regs + DTE_NCO_OVERFLOW_REG));
0068 }
0069
0070 static s64 dte_read_nco(void __iomem *regs)
0071 {
0072 u32 sum2, sum3;
0073 s64 ns;
0074
0075
0076
0077
0078
0079 sum3 = readl(regs + DTE_NCO_OVERFLOW_REG) & DTE_NCO_SUM3_MASK;
0080 sum2 = readl(regs + DTE_NCO_TIME_REG);
0081 ns = ((s64)sum3 << DTE_NCO_SUM3_SHIFT) |
0082 ((s64)sum2 << DTE_NCO_SUM2_SHIFT);
0083
0084 return ns;
0085 }
0086
0087 static void dte_write_nco_delta(struct ptp_dte *ptp_dte, s64 delta)
0088 {
0089 s64 ns;
0090
0091 ns = dte_read_nco(ptp_dte->regs);
0092
0093
0094 if ((delta < 0) && (abs(delta) > ns)) {
0095 if (ptp_dte->ts_wrap_cnt) {
0096 ns += DTE_NCO_MAX_NS + delta;
0097 ptp_dte->ts_wrap_cnt--;
0098 } else {
0099 ns = 0;
0100 }
0101 } else {
0102 ns += delta;
0103 if (ns > DTE_NCO_MAX_NS) {
0104 ptp_dte->ts_wrap_cnt++;
0105 ns -= DTE_NCO_MAX_NS;
0106 }
0107 }
0108
0109 dte_write_nco(ptp_dte->regs, ns);
0110
0111 ptp_dte->ts_ovf_last = (ns >> DTE_NCO_TS_WRAP_LSHIFT) &
0112 DTE_NCO_TS_WRAP_MASK;
0113 }
0114
0115 static s64 dte_read_nco_with_ovf(struct ptp_dte *ptp_dte)
0116 {
0117 u32 ts_ovf;
0118 s64 ns = 0;
0119
0120 ns = dte_read_nco(ptp_dte->regs);
0121
0122
0123 ts_ovf = (ns >> DTE_NCO_TS_WRAP_LSHIFT) & DTE_NCO_TS_WRAP_MASK;
0124
0125
0126 if (ts_ovf < ptp_dte->ts_ovf_last)
0127 ptp_dte->ts_wrap_cnt++;
0128
0129 ptp_dte->ts_ovf_last = ts_ovf;
0130
0131
0132 ns += (s64)(BIT_ULL(DTE_WRAP_AROUND_NSEC_SHIFT) * ptp_dte->ts_wrap_cnt);
0133
0134 return ns;
0135 }
0136
0137 static int ptp_dte_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
0138 {
0139 u32 nco_incr;
0140 unsigned long flags;
0141 struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps);
0142
0143 if (abs(ppb) > ptp_dte->caps.max_adj) {
0144 dev_err(ptp_dte->dev, "ppb adj too big\n");
0145 return -EINVAL;
0146 }
0147
0148 if (ppb < 0)
0149 nco_incr = DTE_NCO_INC_DEFAULT - DTE_PPB_ADJ(ppb);
0150 else
0151 nco_incr = DTE_NCO_INC_DEFAULT + DTE_PPB_ADJ(ppb);
0152
0153 spin_lock_irqsave(&ptp_dte->lock, flags);
0154 writel(nco_incr, ptp_dte->regs + DTE_NCO_INC_REG);
0155 spin_unlock_irqrestore(&ptp_dte->lock, flags);
0156
0157 return 0;
0158 }
0159
0160 static int ptp_dte_adjtime(struct ptp_clock_info *ptp, s64 delta)
0161 {
0162 unsigned long flags;
0163 struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps);
0164
0165 spin_lock_irqsave(&ptp_dte->lock, flags);
0166 dte_write_nco_delta(ptp_dte, delta);
0167 spin_unlock_irqrestore(&ptp_dte->lock, flags);
0168
0169 return 0;
0170 }
0171
0172 static int ptp_dte_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
0173 {
0174 unsigned long flags;
0175 struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps);
0176
0177 spin_lock_irqsave(&ptp_dte->lock, flags);
0178 *ts = ns_to_timespec64(dte_read_nco_with_ovf(ptp_dte));
0179 spin_unlock_irqrestore(&ptp_dte->lock, flags);
0180
0181 return 0;
0182 }
0183
0184 static int ptp_dte_settime(struct ptp_clock_info *ptp,
0185 const struct timespec64 *ts)
0186 {
0187 unsigned long flags;
0188 struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps);
0189
0190 spin_lock_irqsave(&ptp_dte->lock, flags);
0191
0192
0193 writel(0, ptp_dte->regs + DTE_NCO_INC_REG);
0194
0195 dte_write_nco(ptp_dte->regs, timespec64_to_ns(ts));
0196
0197
0198 ptp_dte->ts_ovf_last = 0;
0199 ptp_dte->ts_wrap_cnt = 0;
0200
0201
0202 writel(DTE_NCO_INC_DEFAULT, ptp_dte->regs + DTE_NCO_INC_REG);
0203
0204 spin_unlock_irqrestore(&ptp_dte->lock, flags);
0205
0206 return 0;
0207 }
0208
0209 static int ptp_dte_enable(struct ptp_clock_info *ptp,
0210 struct ptp_clock_request *rq, int on)
0211 {
0212 return -EOPNOTSUPP;
0213 }
0214
0215 static const struct ptp_clock_info ptp_dte_caps = {
0216 .owner = THIS_MODULE,
0217 .name = "DTE PTP timer",
0218 .max_adj = 50000000,
0219 .n_ext_ts = 0,
0220 .n_pins = 0,
0221 .pps = 0,
0222 .adjfreq = ptp_dte_adjfreq,
0223 .adjtime = ptp_dte_adjtime,
0224 .gettime64 = ptp_dte_gettime,
0225 .settime64 = ptp_dte_settime,
0226 .enable = ptp_dte_enable,
0227 };
0228
0229 static int ptp_dte_probe(struct platform_device *pdev)
0230 {
0231 struct ptp_dte *ptp_dte;
0232 struct device *dev = &pdev->dev;
0233
0234 ptp_dte = devm_kzalloc(dev, sizeof(struct ptp_dte), GFP_KERNEL);
0235 if (!ptp_dte)
0236 return -ENOMEM;
0237
0238 ptp_dte->regs = devm_platform_ioremap_resource(pdev, 0);
0239 if (IS_ERR(ptp_dte->regs))
0240 return PTR_ERR(ptp_dte->regs);
0241
0242 spin_lock_init(&ptp_dte->lock);
0243
0244 ptp_dte->dev = dev;
0245 ptp_dte->caps = ptp_dte_caps;
0246 ptp_dte->ptp_clk = ptp_clock_register(&ptp_dte->caps, &pdev->dev);
0247 if (IS_ERR(ptp_dte->ptp_clk)) {
0248 dev_err(dev,
0249 "%s: Failed to register ptp clock\n", __func__);
0250 return PTR_ERR(ptp_dte->ptp_clk);
0251 }
0252
0253 platform_set_drvdata(pdev, ptp_dte);
0254
0255 dev_info(dev, "ptp clk probe done\n");
0256
0257 return 0;
0258 }
0259
0260 static int ptp_dte_remove(struct platform_device *pdev)
0261 {
0262 struct ptp_dte *ptp_dte = platform_get_drvdata(pdev);
0263 u8 i;
0264
0265 ptp_clock_unregister(ptp_dte->ptp_clk);
0266
0267 for (i = 0; i < DTE_NUM_REGS_TO_RESTORE; i++)
0268 writel(0, ptp_dte->regs + (i * sizeof(u32)));
0269
0270 return 0;
0271 }
0272
0273 #ifdef CONFIG_PM_SLEEP
0274 static int ptp_dte_suspend(struct device *dev)
0275 {
0276 struct ptp_dte *ptp_dte = dev_get_drvdata(dev);
0277 u8 i;
0278
0279 for (i = 0; i < DTE_NUM_REGS_TO_RESTORE; i++) {
0280 ptp_dte->reg_val[i] =
0281 readl(ptp_dte->regs + (i * sizeof(u32)));
0282 }
0283
0284
0285 writel(0, ptp_dte->regs + DTE_NCO_INC_REG);
0286
0287 return 0;
0288 }
0289
0290 static int ptp_dte_resume(struct device *dev)
0291 {
0292 struct ptp_dte *ptp_dte = dev_get_drvdata(dev);
0293 u8 i;
0294
0295 for (i = 0; i < DTE_NUM_REGS_TO_RESTORE; i++) {
0296 if ((i * sizeof(u32)) != DTE_NCO_OVERFLOW_REG)
0297 writel(ptp_dte->reg_val[i],
0298 (ptp_dte->regs + (i * sizeof(u32))));
0299 else
0300 writel(((ptp_dte->reg_val[i] &
0301 DTE_NCO_SUM3_MASK) << DTE_NCO_SUM3_WR_SHIFT),
0302 (ptp_dte->regs + (i * sizeof(u32))));
0303 }
0304
0305 return 0;
0306 }
0307
0308 static const struct dev_pm_ops ptp_dte_pm_ops = {
0309 .suspend = ptp_dte_suspend,
0310 .resume = ptp_dte_resume
0311 };
0312
0313 #define PTP_DTE_PM_OPS (&ptp_dte_pm_ops)
0314 #else
0315 #define PTP_DTE_PM_OPS NULL
0316 #endif
0317
0318 static const struct of_device_id ptp_dte_of_match[] = {
0319 { .compatible = "brcm,ptp-dte", },
0320 {},
0321 };
0322 MODULE_DEVICE_TABLE(of, ptp_dte_of_match);
0323
0324 static struct platform_driver ptp_dte_driver = {
0325 .driver = {
0326 .name = "ptp-dte",
0327 .pm = PTP_DTE_PM_OPS,
0328 .of_match_table = ptp_dte_of_match,
0329 },
0330 .probe = ptp_dte_probe,
0331 .remove = ptp_dte_remove,
0332 };
0333 module_platform_driver(ptp_dte_driver);
0334
0335 MODULE_AUTHOR("Broadcom");
0336 MODULE_DESCRIPTION("Broadcom DTE PTP Clock driver");
0337 MODULE_LICENSE("GPL v2");