0001
0002
0003
0004
0005
0006
0007 #include <linux/idr.h>
0008 #include <linux/device.h>
0009 #include <linux/err.h>
0010 #include <linux/init.h>
0011 #include <linux/kernel.h>
0012 #include <linux/module.h>
0013 #include <linux/posix-clock.h>
0014 #include <linux/pps_kernel.h>
0015 #include <linux/slab.h>
0016 #include <linux/syscalls.h>
0017 #include <linux/uaccess.h>
0018 #include <uapi/linux/sched/types.h>
0019
0020 #include "ptp_private.h"
0021
0022 #define PTP_MAX_ALARMS 4
0023 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
0024 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
0025 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
0026
0027 struct class *ptp_class;
0028
0029
0030
0031 static dev_t ptp_devt;
0032
0033 static DEFINE_IDA(ptp_clocks_map);
0034
0035
0036
0037 static inline int queue_free(struct timestamp_event_queue *q)
0038 {
0039 return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
0040 }
0041
0042 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
0043 struct ptp_clock_event *src)
0044 {
0045 struct ptp_extts_event *dst;
0046 unsigned long flags;
0047 s64 seconds;
0048 u32 remainder;
0049
0050 seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
0051
0052 spin_lock_irqsave(&queue->lock, flags);
0053
0054 dst = &queue->buf[queue->tail];
0055 dst->index = src->index;
0056 dst->t.sec = seconds;
0057 dst->t.nsec = remainder;
0058
0059 if (!queue_free(queue))
0060 queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
0061
0062 queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
0063
0064 spin_unlock_irqrestore(&queue->lock, flags);
0065 }
0066
0067
0068
0069 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
0070 {
0071 tp->tv_sec = 0;
0072 tp->tv_nsec = 1;
0073 return 0;
0074 }
0075
0076 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
0077 {
0078 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
0079
0080 if (ptp_clock_freerun(ptp)) {
0081 pr_err("ptp: physical clock is free running\n");
0082 return -EBUSY;
0083 }
0084
0085 return ptp->info->settime64(ptp->info, tp);
0086 }
0087
0088 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
0089 {
0090 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
0091 int err;
0092
0093 if (ptp->info->gettimex64)
0094 err = ptp->info->gettimex64(ptp->info, tp, NULL);
0095 else
0096 err = ptp->info->gettime64(ptp->info, tp);
0097 return err;
0098 }
0099
0100 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
0101 {
0102 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
0103 struct ptp_clock_info *ops;
0104 int err = -EOPNOTSUPP;
0105
0106 if (ptp_clock_freerun(ptp)) {
0107 pr_err("ptp: physical clock is free running\n");
0108 return -EBUSY;
0109 }
0110
0111 ops = ptp->info;
0112
0113 if (tx->modes & ADJ_SETOFFSET) {
0114 struct timespec64 ts;
0115 ktime_t kt;
0116 s64 delta;
0117
0118 ts.tv_sec = tx->time.tv_sec;
0119 ts.tv_nsec = tx->time.tv_usec;
0120
0121 if (!(tx->modes & ADJ_NANO))
0122 ts.tv_nsec *= 1000;
0123
0124 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
0125 return -EINVAL;
0126
0127 kt = timespec64_to_ktime(ts);
0128 delta = ktime_to_ns(kt);
0129 err = ops->adjtime(ops, delta);
0130 } else if (tx->modes & ADJ_FREQUENCY) {
0131 long ppb = scaled_ppm_to_ppb(tx->freq);
0132 if (ppb > ops->max_adj || ppb < -ops->max_adj)
0133 return -ERANGE;
0134 if (ops->adjfine)
0135 err = ops->adjfine(ops, tx->freq);
0136 else
0137 err = ops->adjfreq(ops, ppb);
0138 ptp->dialed_frequency = tx->freq;
0139 } else if (tx->modes & ADJ_OFFSET) {
0140 if (ops->adjphase) {
0141 s32 offset = tx->offset;
0142
0143 if (!(tx->modes & ADJ_NANO))
0144 offset *= NSEC_PER_USEC;
0145
0146 err = ops->adjphase(ops, offset);
0147 }
0148 } else if (tx->modes == 0) {
0149 tx->freq = ptp->dialed_frequency;
0150 err = 0;
0151 }
0152
0153 return err;
0154 }
0155
0156 static struct posix_clock_operations ptp_clock_ops = {
0157 .owner = THIS_MODULE,
0158 .clock_adjtime = ptp_clock_adjtime,
0159 .clock_gettime = ptp_clock_gettime,
0160 .clock_getres = ptp_clock_getres,
0161 .clock_settime = ptp_clock_settime,
0162 .ioctl = ptp_ioctl,
0163 .open = ptp_open,
0164 .poll = ptp_poll,
0165 .read = ptp_read,
0166 };
0167
0168 static void ptp_clock_release(struct device *dev)
0169 {
0170 struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
0171
0172 ptp_cleanup_pin_groups(ptp);
0173 kfree(ptp->vclock_index);
0174 mutex_destroy(&ptp->tsevq_mux);
0175 mutex_destroy(&ptp->pincfg_mux);
0176 mutex_destroy(&ptp->n_vclocks_mux);
0177 ida_simple_remove(&ptp_clocks_map, ptp->index);
0178 kfree(ptp);
0179 }
0180
0181 static int ptp_getcycles64(struct ptp_clock_info *info, struct timespec64 *ts)
0182 {
0183 if (info->getcyclesx64)
0184 return info->getcyclesx64(info, ts, NULL);
0185 else
0186 return info->gettime64(info, ts);
0187 }
0188
0189 static void ptp_aux_kworker(struct kthread_work *work)
0190 {
0191 struct ptp_clock *ptp = container_of(work, struct ptp_clock,
0192 aux_work.work);
0193 struct ptp_clock_info *info = ptp->info;
0194 long delay;
0195
0196 delay = info->do_aux_work(info);
0197
0198 if (delay >= 0)
0199 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
0200 }
0201
0202
0203
0204 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
0205 struct device *parent)
0206 {
0207 struct ptp_clock *ptp;
0208 int err = 0, index, major = MAJOR(ptp_devt);
0209 size_t size;
0210
0211 if (info->n_alarm > PTP_MAX_ALARMS)
0212 return ERR_PTR(-EINVAL);
0213
0214
0215 err = -ENOMEM;
0216 ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
0217 if (ptp == NULL)
0218 goto no_memory;
0219
0220 index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
0221 if (index < 0) {
0222 err = index;
0223 goto no_slot;
0224 }
0225
0226 ptp->clock.ops = ptp_clock_ops;
0227 ptp->info = info;
0228 ptp->devid = MKDEV(major, index);
0229 ptp->index = index;
0230 spin_lock_init(&ptp->tsevq.lock);
0231 mutex_init(&ptp->tsevq_mux);
0232 mutex_init(&ptp->pincfg_mux);
0233 mutex_init(&ptp->n_vclocks_mux);
0234 init_waitqueue_head(&ptp->tsev_wq);
0235
0236 if (ptp->info->getcycles64 || ptp->info->getcyclesx64) {
0237 ptp->has_cycles = true;
0238 if (!ptp->info->getcycles64 && ptp->info->getcyclesx64)
0239 ptp->info->getcycles64 = ptp_getcycles64;
0240 } else {
0241
0242 ptp->info->getcycles64 = ptp_getcycles64;
0243
0244 if (ptp->info->gettimex64)
0245 ptp->info->getcyclesx64 = ptp->info->gettimex64;
0246
0247 if (ptp->info->getcrosststamp)
0248 ptp->info->getcrosscycles = ptp->info->getcrosststamp;
0249 }
0250
0251 if (ptp->info->do_aux_work) {
0252 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
0253 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
0254 if (IS_ERR(ptp->kworker)) {
0255 err = PTR_ERR(ptp->kworker);
0256 pr_err("failed to create ptp aux_worker %d\n", err);
0257 goto kworker_err;
0258 }
0259 }
0260
0261
0262 if (parent && parent->class && parent->class->name &&
0263 strcmp(parent->class->name, "ptp") == 0)
0264 ptp->is_virtual_clock = true;
0265
0266 if (!ptp->is_virtual_clock) {
0267 ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS;
0268
0269 size = sizeof(int) * ptp->max_vclocks;
0270 ptp->vclock_index = kzalloc(size, GFP_KERNEL);
0271 if (!ptp->vclock_index) {
0272 err = -ENOMEM;
0273 goto no_mem_for_vclocks;
0274 }
0275 }
0276
0277 err = ptp_populate_pin_groups(ptp);
0278 if (err)
0279 goto no_pin_groups;
0280
0281
0282 if (info->pps) {
0283 struct pps_source_info pps;
0284 memset(&pps, 0, sizeof(pps));
0285 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
0286 pps.mode = PTP_PPS_MODE;
0287 pps.owner = info->owner;
0288 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
0289 if (IS_ERR(ptp->pps_source)) {
0290 err = PTR_ERR(ptp->pps_source);
0291 pr_err("failed to register pps source\n");
0292 goto no_pps;
0293 }
0294 ptp->pps_source->lookup_cookie = ptp;
0295 }
0296
0297
0298 device_initialize(&ptp->dev);
0299 ptp->dev.devt = ptp->devid;
0300 ptp->dev.class = ptp_class;
0301 ptp->dev.parent = parent;
0302 ptp->dev.groups = ptp->pin_attr_groups;
0303 ptp->dev.release = ptp_clock_release;
0304 dev_set_drvdata(&ptp->dev, ptp);
0305 dev_set_name(&ptp->dev, "ptp%d", ptp->index);
0306
0307
0308 err = posix_clock_register(&ptp->clock, &ptp->dev);
0309 if (err) {
0310 if (ptp->pps_source)
0311 pps_unregister_source(ptp->pps_source);
0312
0313 if (ptp->kworker)
0314 kthread_destroy_worker(ptp->kworker);
0315
0316 put_device(&ptp->dev);
0317
0318 pr_err("failed to create posix clock\n");
0319 return ERR_PTR(err);
0320 }
0321
0322 return ptp;
0323
0324 no_pps:
0325 ptp_cleanup_pin_groups(ptp);
0326 no_pin_groups:
0327 kfree(ptp->vclock_index);
0328 no_mem_for_vclocks:
0329 if (ptp->kworker)
0330 kthread_destroy_worker(ptp->kworker);
0331 kworker_err:
0332 mutex_destroy(&ptp->tsevq_mux);
0333 mutex_destroy(&ptp->pincfg_mux);
0334 mutex_destroy(&ptp->n_vclocks_mux);
0335 ida_simple_remove(&ptp_clocks_map, index);
0336 no_slot:
0337 kfree(ptp);
0338 no_memory:
0339 return ERR_PTR(err);
0340 }
0341 EXPORT_SYMBOL(ptp_clock_register);
0342
0343 static int unregister_vclock(struct device *dev, void *data)
0344 {
0345 struct ptp_clock *ptp = dev_get_drvdata(dev);
0346
0347 ptp_vclock_unregister(info_to_vclock(ptp->info));
0348 return 0;
0349 }
0350
0351 int ptp_clock_unregister(struct ptp_clock *ptp)
0352 {
0353 if (ptp_vclock_in_use(ptp)) {
0354 device_for_each_child(&ptp->dev, NULL, unregister_vclock);
0355 }
0356
0357 ptp->defunct = 1;
0358 wake_up_interruptible(&ptp->tsev_wq);
0359
0360 if (ptp->kworker) {
0361 kthread_cancel_delayed_work_sync(&ptp->aux_work);
0362 kthread_destroy_worker(ptp->kworker);
0363 }
0364
0365
0366 if (ptp->pps_source)
0367 pps_unregister_source(ptp->pps_source);
0368
0369 posix_clock_unregister(&ptp->clock);
0370
0371 return 0;
0372 }
0373 EXPORT_SYMBOL(ptp_clock_unregister);
0374
0375 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
0376 {
0377 struct pps_event_time evt;
0378
0379 switch (event->type) {
0380
0381 case PTP_CLOCK_ALARM:
0382 break;
0383
0384 case PTP_CLOCK_EXTTS:
0385 enqueue_external_timestamp(&ptp->tsevq, event);
0386 wake_up_interruptible(&ptp->tsev_wq);
0387 break;
0388
0389 case PTP_CLOCK_PPS:
0390 pps_get_ts(&evt);
0391 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
0392 break;
0393
0394 case PTP_CLOCK_PPSUSR:
0395 pps_event(ptp->pps_source, &event->pps_times,
0396 PTP_PPS_EVENT, NULL);
0397 break;
0398 }
0399 }
0400 EXPORT_SYMBOL(ptp_clock_event);
0401
0402 int ptp_clock_index(struct ptp_clock *ptp)
0403 {
0404 return ptp->index;
0405 }
0406 EXPORT_SYMBOL(ptp_clock_index);
0407
0408 int ptp_find_pin(struct ptp_clock *ptp,
0409 enum ptp_pin_function func, unsigned int chan)
0410 {
0411 struct ptp_pin_desc *pin = NULL;
0412 int i;
0413
0414 for (i = 0; i < ptp->info->n_pins; i++) {
0415 if (ptp->info->pin_config[i].func == func &&
0416 ptp->info->pin_config[i].chan == chan) {
0417 pin = &ptp->info->pin_config[i];
0418 break;
0419 }
0420 }
0421
0422 return pin ? i : -1;
0423 }
0424 EXPORT_SYMBOL(ptp_find_pin);
0425
0426 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
0427 enum ptp_pin_function func, unsigned int chan)
0428 {
0429 int result;
0430
0431 mutex_lock(&ptp->pincfg_mux);
0432
0433 result = ptp_find_pin(ptp, func, chan);
0434
0435 mutex_unlock(&ptp->pincfg_mux);
0436
0437 return result;
0438 }
0439 EXPORT_SYMBOL(ptp_find_pin_unlocked);
0440
0441 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
0442 {
0443 return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
0444 }
0445 EXPORT_SYMBOL(ptp_schedule_worker);
0446
0447 void ptp_cancel_worker_sync(struct ptp_clock *ptp)
0448 {
0449 kthread_cancel_delayed_work_sync(&ptp->aux_work);
0450 }
0451 EXPORT_SYMBOL(ptp_cancel_worker_sync);
0452
0453
0454
0455 static void __exit ptp_exit(void)
0456 {
0457 class_destroy(ptp_class);
0458 unregister_chrdev_region(ptp_devt, MINORMASK + 1);
0459 ida_destroy(&ptp_clocks_map);
0460 }
0461
0462 static int __init ptp_init(void)
0463 {
0464 int err;
0465
0466 ptp_class = class_create(THIS_MODULE, "ptp");
0467 if (IS_ERR(ptp_class)) {
0468 pr_err("ptp: failed to allocate class\n");
0469 return PTR_ERR(ptp_class);
0470 }
0471
0472 err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
0473 if (err < 0) {
0474 pr_err("ptp: failed to allocate device region\n");
0475 goto no_region;
0476 }
0477
0478 ptp_class->dev_groups = ptp_groups;
0479 pr_info("PTP clock support registered\n");
0480 return 0;
0481
0482 no_region:
0483 class_destroy(ptp_class);
0484 return err;
0485 }
0486
0487 subsys_initcall(ptp_init);
0488 module_exit(ptp_exit);
0489
0490 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
0491 MODULE_DESCRIPTION("PTP clocks support");
0492 MODULE_LICENSE("GPL");