Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Core driver for the pin control subsystem
0004  *
0005  * Copyright (C) 2011-2012 ST-Ericsson SA
0006  * Written on behalf of Linaro for ST-Ericsson
0007  * Based on bits of regulator core, gpio core and clk core
0008  *
0009  * Author: Linus Walleij <linus.walleij@linaro.org>
0010  *
0011  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
0012  */
0013 #define pr_fmt(fmt) "pinctrl core: " fmt
0014 
0015 #include <linux/kernel.h>
0016 #include <linux/kref.h>
0017 #include <linux/export.h>
0018 #include <linux/init.h>
0019 #include <linux/device.h>
0020 #include <linux/slab.h>
0021 #include <linux/err.h>
0022 #include <linux/list.h>
0023 #include <linux/debugfs.h>
0024 #include <linux/seq_file.h>
0025 #include <linux/pinctrl/consumer.h>
0026 #include <linux/pinctrl/pinctrl.h>
0027 #include <linux/pinctrl/machine.h>
0028 
0029 #ifdef CONFIG_GPIOLIB
0030 #include "../gpio/gpiolib.h"
0031 #include <asm-generic/gpio.h>
0032 #endif
0033 
0034 #include "core.h"
0035 #include "devicetree.h"
0036 #include "pinmux.h"
0037 #include "pinconf.h"
0038 
0039 
0040 static bool pinctrl_dummy_state;
0041 
0042 /* Mutex taken to protect pinctrl_list */
0043 static DEFINE_MUTEX(pinctrl_list_mutex);
0044 
0045 /* Mutex taken to protect pinctrl_maps */
0046 DEFINE_MUTEX(pinctrl_maps_mutex);
0047 
0048 /* Mutex taken to protect pinctrldev_list */
0049 static DEFINE_MUTEX(pinctrldev_list_mutex);
0050 
0051 /* Global list of pin control devices (struct pinctrl_dev) */
0052 static LIST_HEAD(pinctrldev_list);
0053 
0054 /* List of pin controller handles (struct pinctrl) */
0055 static LIST_HEAD(pinctrl_list);
0056 
0057 /* List of pinctrl maps (struct pinctrl_maps) */
0058 LIST_HEAD(pinctrl_maps);
0059 
0060 
0061 /**
0062  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
0063  *
0064  * Usually this function is called by platforms without pinctrl driver support
0065  * but run with some shared drivers using pinctrl APIs.
0066  * After calling this function, the pinctrl core will return successfully
0067  * with creating a dummy state for the driver to keep going smoothly.
0068  */
0069 void pinctrl_provide_dummies(void)
0070 {
0071     pinctrl_dummy_state = true;
0072 }
0073 
0074 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
0075 {
0076     /* We're not allowed to register devices without name */
0077     return pctldev->desc->name;
0078 }
0079 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
0080 
0081 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
0082 {
0083     return dev_name(pctldev->dev);
0084 }
0085 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
0086 
0087 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
0088 {
0089     return pctldev->driver_data;
0090 }
0091 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
0092 
0093 /**
0094  * get_pinctrl_dev_from_devname() - look up pin controller device
0095  * @devname: the name of a device instance, as returned by dev_name()
0096  *
0097  * Looks up a pin control device matching a certain device name or pure device
0098  * pointer, the pure device pointer will take precedence.
0099  */
0100 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
0101 {
0102     struct pinctrl_dev *pctldev;
0103 
0104     if (!devname)
0105         return NULL;
0106 
0107     mutex_lock(&pinctrldev_list_mutex);
0108 
0109     list_for_each_entry(pctldev, &pinctrldev_list, node) {
0110         if (!strcmp(dev_name(pctldev->dev), devname)) {
0111             /* Matched on device name */
0112             mutex_unlock(&pinctrldev_list_mutex);
0113             return pctldev;
0114         }
0115     }
0116 
0117     mutex_unlock(&pinctrldev_list_mutex);
0118 
0119     return NULL;
0120 }
0121 
0122 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
0123 {
0124     struct pinctrl_dev *pctldev;
0125 
0126     mutex_lock(&pinctrldev_list_mutex);
0127 
0128     list_for_each_entry(pctldev, &pinctrldev_list, node)
0129         if (device_match_of_node(pctldev->dev, np)) {
0130             mutex_unlock(&pinctrldev_list_mutex);
0131             return pctldev;
0132         }
0133 
0134     mutex_unlock(&pinctrldev_list_mutex);
0135 
0136     return NULL;
0137 }
0138 
0139 /**
0140  * pin_get_from_name() - look up a pin number from a name
0141  * @pctldev: the pin control device to lookup the pin on
0142  * @name: the name of the pin to look up
0143  */
0144 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
0145 {
0146     unsigned i, pin;
0147 
0148     /* The pin number can be retrived from the pin controller descriptor */
0149     for (i = 0; i < pctldev->desc->npins; i++) {
0150         struct pin_desc *desc;
0151 
0152         pin = pctldev->desc->pins[i].number;
0153         desc = pin_desc_get(pctldev, pin);
0154         /* Pin space may be sparse */
0155         if (desc && !strcmp(name, desc->name))
0156             return pin;
0157     }
0158 
0159     return -EINVAL;
0160 }
0161 
0162 /**
0163  * pin_get_name() - look up a pin name from a pin id
0164  * @pctldev: the pin control device to lookup the pin on
0165  * @pin: pin number/id to look up
0166  */
0167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
0168 {
0169     const struct pin_desc *desc;
0170 
0171     desc = pin_desc_get(pctldev, pin);
0172     if (!desc) {
0173         dev_err(pctldev->dev, "failed to get pin(%d) name\n",
0174             pin);
0175         return NULL;
0176     }
0177 
0178     return desc->name;
0179 }
0180 EXPORT_SYMBOL_GPL(pin_get_name);
0181 
0182 /* Deletes a range of pin descriptors */
0183 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
0184                   const struct pinctrl_pin_desc *pins,
0185                   unsigned num_pins)
0186 {
0187     int i;
0188 
0189     for (i = 0; i < num_pins; i++) {
0190         struct pin_desc *pindesc;
0191 
0192         pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
0193                         pins[i].number);
0194         if (pindesc) {
0195             radix_tree_delete(&pctldev->pin_desc_tree,
0196                       pins[i].number);
0197             if (pindesc->dynamic_name)
0198                 kfree(pindesc->name);
0199         }
0200         kfree(pindesc);
0201     }
0202 }
0203 
0204 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
0205                     const struct pinctrl_pin_desc *pin)
0206 {
0207     struct pin_desc *pindesc;
0208 
0209     pindesc = pin_desc_get(pctldev, pin->number);
0210     if (pindesc) {
0211         dev_err(pctldev->dev, "pin %d already registered\n",
0212             pin->number);
0213         return -EINVAL;
0214     }
0215 
0216     pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
0217     if (!pindesc)
0218         return -ENOMEM;
0219 
0220     /* Set owner */
0221     pindesc->pctldev = pctldev;
0222 
0223     /* Copy basic pin info */
0224     if (pin->name) {
0225         pindesc->name = pin->name;
0226     } else {
0227         pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
0228         if (!pindesc->name) {
0229             kfree(pindesc);
0230             return -ENOMEM;
0231         }
0232         pindesc->dynamic_name = true;
0233     }
0234 
0235     pindesc->drv_data = pin->drv_data;
0236 
0237     radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
0238     pr_debug("registered pin %d (%s) on %s\n",
0239          pin->number, pindesc->name, pctldev->desc->name);
0240     return 0;
0241 }
0242 
0243 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
0244                  const struct pinctrl_pin_desc *pins,
0245                  unsigned num_descs)
0246 {
0247     unsigned i;
0248     int ret = 0;
0249 
0250     for (i = 0; i < num_descs; i++) {
0251         ret = pinctrl_register_one_pin(pctldev, &pins[i]);
0252         if (ret)
0253             return ret;
0254     }
0255 
0256     return 0;
0257 }
0258 
0259 /**
0260  * gpio_to_pin() - GPIO range GPIO number to pin number translation
0261  * @range: GPIO range used for the translation
0262  * @gpio: gpio pin to translate to a pin number
0263  *
0264  * Finds the pin number for a given GPIO using the specified GPIO range
0265  * as a base for translation. The distinction between linear GPIO ranges
0266  * and pin list based GPIO ranges is managed correctly by this function.
0267  *
0268  * This function assumes the gpio is part of the specified GPIO range, use
0269  * only after making sure this is the case (e.g. by calling it on the
0270  * result of successful pinctrl_get_device_gpio_range calls)!
0271  */
0272 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
0273                 unsigned int gpio)
0274 {
0275     unsigned int offset = gpio - range->base;
0276     if (range->pins)
0277         return range->pins[offset];
0278     else
0279         return range->pin_base + offset;
0280 }
0281 
0282 /**
0283  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
0284  * @pctldev: pin controller device to check
0285  * @gpio: gpio pin to check taken from the global GPIO pin space
0286  *
0287  * Tries to match a GPIO pin number to the ranges handled by a certain pin
0288  * controller, return the range or NULL
0289  */
0290 static struct pinctrl_gpio_range *
0291 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
0292 {
0293     struct pinctrl_gpio_range *range;
0294 
0295     mutex_lock(&pctldev->mutex);
0296     /* Loop over the ranges */
0297     list_for_each_entry(range, &pctldev->gpio_ranges, node) {
0298         /* Check if we're in the valid range */
0299         if (gpio >= range->base &&
0300             gpio < range->base + range->npins) {
0301             mutex_unlock(&pctldev->mutex);
0302             return range;
0303         }
0304     }
0305     mutex_unlock(&pctldev->mutex);
0306     return NULL;
0307 }
0308 
0309 /**
0310  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
0311  * the same GPIO chip are in range
0312  * @gpio: gpio pin to check taken from the global GPIO pin space
0313  *
0314  * This function is complement of pinctrl_match_gpio_range(). If the return
0315  * value of pinctrl_match_gpio_range() is NULL, this function could be used
0316  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
0317  * of the same GPIO chip don't have back-end pinctrl interface.
0318  * If the return value is true, it means that pinctrl device is ready & the
0319  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
0320  * is false, it means that pinctrl device may not be ready.
0321  */
0322 #ifdef CONFIG_GPIOLIB
0323 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
0324 {
0325     struct pinctrl_dev *pctldev;
0326     struct pinctrl_gpio_range *range = NULL;
0327     struct gpio_chip *chip = gpio_to_chip(gpio);
0328 
0329     if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
0330         return false;
0331 
0332     mutex_lock(&pinctrldev_list_mutex);
0333 
0334     /* Loop over the pin controllers */
0335     list_for_each_entry(pctldev, &pinctrldev_list, node) {
0336         /* Loop over the ranges */
0337         mutex_lock(&pctldev->mutex);
0338         list_for_each_entry(range, &pctldev->gpio_ranges, node) {
0339             /* Check if any gpio range overlapped with gpio chip */
0340             if (range->base + range->npins - 1 < chip->base ||
0341                 range->base > chip->base + chip->ngpio - 1)
0342                 continue;
0343             mutex_unlock(&pctldev->mutex);
0344             mutex_unlock(&pinctrldev_list_mutex);
0345             return true;
0346         }
0347         mutex_unlock(&pctldev->mutex);
0348     }
0349 
0350     mutex_unlock(&pinctrldev_list_mutex);
0351 
0352     return false;
0353 }
0354 #else
0355 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
0356 #endif
0357 
0358 /**
0359  * pinctrl_get_device_gpio_range() - find device for GPIO range
0360  * @gpio: the pin to locate the pin controller for
0361  * @outdev: the pin control device if found
0362  * @outrange: the GPIO range if found
0363  *
0364  * Find the pin controller handling a certain GPIO pin from the pinspace of
0365  * the GPIO subsystem, return the device and the matching GPIO range. Returns
0366  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
0367  * may still have not been registered.
0368  */
0369 static int pinctrl_get_device_gpio_range(unsigned gpio,
0370                      struct pinctrl_dev **outdev,
0371                      struct pinctrl_gpio_range **outrange)
0372 {
0373     struct pinctrl_dev *pctldev;
0374 
0375     mutex_lock(&pinctrldev_list_mutex);
0376 
0377     /* Loop over the pin controllers */
0378     list_for_each_entry(pctldev, &pinctrldev_list, node) {
0379         struct pinctrl_gpio_range *range;
0380 
0381         range = pinctrl_match_gpio_range(pctldev, gpio);
0382         if (range) {
0383             *outdev = pctldev;
0384             *outrange = range;
0385             mutex_unlock(&pinctrldev_list_mutex);
0386             return 0;
0387         }
0388     }
0389 
0390     mutex_unlock(&pinctrldev_list_mutex);
0391 
0392     return -EPROBE_DEFER;
0393 }
0394 
0395 /**
0396  * pinctrl_add_gpio_range() - register a GPIO range for a controller
0397  * @pctldev: pin controller device to add the range to
0398  * @range: the GPIO range to add
0399  *
0400  * This adds a range of GPIOs to be handled by a certain pin controller. Call
0401  * this to register handled ranges after registering your pin controller.
0402  */
0403 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
0404                 struct pinctrl_gpio_range *range)
0405 {
0406     mutex_lock(&pctldev->mutex);
0407     list_add_tail(&range->node, &pctldev->gpio_ranges);
0408     mutex_unlock(&pctldev->mutex);
0409 }
0410 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
0411 
0412 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
0413                  struct pinctrl_gpio_range *ranges,
0414                  unsigned nranges)
0415 {
0416     int i;
0417 
0418     for (i = 0; i < nranges; i++)
0419         pinctrl_add_gpio_range(pctldev, &ranges[i]);
0420 }
0421 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
0422 
0423 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
0424         struct pinctrl_gpio_range *range)
0425 {
0426     struct pinctrl_dev *pctldev;
0427 
0428     pctldev = get_pinctrl_dev_from_devname(devname);
0429 
0430     /*
0431      * If we can't find this device, let's assume that is because
0432      * it has not probed yet, so the driver trying to register this
0433      * range need to defer probing.
0434      */
0435     if (!pctldev) {
0436         return ERR_PTR(-EPROBE_DEFER);
0437     }
0438     pinctrl_add_gpio_range(pctldev, range);
0439 
0440     return pctldev;
0441 }
0442 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
0443 
0444 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
0445                 const unsigned **pins, unsigned *num_pins)
0446 {
0447     const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
0448     int gs;
0449 
0450     if (!pctlops->get_group_pins)
0451         return -EINVAL;
0452 
0453     gs = pinctrl_get_group_selector(pctldev, pin_group);
0454     if (gs < 0)
0455         return gs;
0456 
0457     return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
0458 }
0459 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
0460 
0461 struct pinctrl_gpio_range *
0462 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
0463                     unsigned int pin)
0464 {
0465     struct pinctrl_gpio_range *range;
0466 
0467     /* Loop over the ranges */
0468     list_for_each_entry(range, &pctldev->gpio_ranges, node) {
0469         /* Check if we're in the valid range */
0470         if (range->pins) {
0471             int a;
0472             for (a = 0; a < range->npins; a++) {
0473                 if (range->pins[a] == pin)
0474                     return range;
0475             }
0476         } else if (pin >= range->pin_base &&
0477                pin < range->pin_base + range->npins)
0478             return range;
0479     }
0480 
0481     return NULL;
0482 }
0483 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
0484 
0485 /**
0486  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
0487  * @pctldev: the pin controller device to look in
0488  * @pin: a controller-local number to find the range for
0489  */
0490 struct pinctrl_gpio_range *
0491 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
0492                  unsigned int pin)
0493 {
0494     struct pinctrl_gpio_range *range;
0495 
0496     mutex_lock(&pctldev->mutex);
0497     range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
0498     mutex_unlock(&pctldev->mutex);
0499 
0500     return range;
0501 }
0502 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
0503 
0504 /**
0505  * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
0506  * @pctldev: pin controller device to remove the range from
0507  * @range: the GPIO range to remove
0508  */
0509 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
0510                    struct pinctrl_gpio_range *range)
0511 {
0512     mutex_lock(&pctldev->mutex);
0513     list_del(&range->node);
0514     mutex_unlock(&pctldev->mutex);
0515 }
0516 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
0517 
0518 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
0519 
0520 /**
0521  * pinctrl_generic_get_group_count() - returns the number of pin groups
0522  * @pctldev: pin controller device
0523  */
0524 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
0525 {
0526     return pctldev->num_groups;
0527 }
0528 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
0529 
0530 /**
0531  * pinctrl_generic_get_group_name() - returns the name of a pin group
0532  * @pctldev: pin controller device
0533  * @selector: group number
0534  */
0535 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
0536                        unsigned int selector)
0537 {
0538     struct group_desc *group;
0539 
0540     group = radix_tree_lookup(&pctldev->pin_group_tree,
0541                   selector);
0542     if (!group)
0543         return NULL;
0544 
0545     return group->name;
0546 }
0547 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
0548 
0549 /**
0550  * pinctrl_generic_get_group_pins() - gets the pin group pins
0551  * @pctldev: pin controller device
0552  * @selector: group number
0553  * @pins: pins in the group
0554  * @num_pins: number of pins in the group
0555  */
0556 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
0557                    unsigned int selector,
0558                    const unsigned int **pins,
0559                    unsigned int *num_pins)
0560 {
0561     struct group_desc *group;
0562 
0563     group = radix_tree_lookup(&pctldev->pin_group_tree,
0564                   selector);
0565     if (!group) {
0566         dev_err(pctldev->dev, "%s could not find pingroup%i\n",
0567             __func__, selector);
0568         return -EINVAL;
0569     }
0570 
0571     *pins = group->pins;
0572     *num_pins = group->num_pins;
0573 
0574     return 0;
0575 }
0576 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
0577 
0578 /**
0579  * pinctrl_generic_get_group() - returns a pin group based on the number
0580  * @pctldev: pin controller device
0581  * @selector: group number
0582  */
0583 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
0584                          unsigned int selector)
0585 {
0586     struct group_desc *group;
0587 
0588     group = radix_tree_lookup(&pctldev->pin_group_tree,
0589                   selector);
0590     if (!group)
0591         return NULL;
0592 
0593     return group;
0594 }
0595 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
0596 
0597 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
0598                           const char *function)
0599 {
0600     const struct pinctrl_ops *ops = pctldev->desc->pctlops;
0601     int ngroups = ops->get_groups_count(pctldev);
0602     int selector = 0;
0603 
0604     /* See if this pctldev has this group */
0605     while (selector < ngroups) {
0606         const char *gname = ops->get_group_name(pctldev, selector);
0607 
0608         if (gname && !strcmp(function, gname))
0609             return selector;
0610 
0611         selector++;
0612     }
0613 
0614     return -EINVAL;
0615 }
0616 
0617 /**
0618  * pinctrl_generic_add_group() - adds a new pin group
0619  * @pctldev: pin controller device
0620  * @name: name of the pin group
0621  * @pins: pins in the pin group
0622  * @num_pins: number of pins in the pin group
0623  * @data: pin controller driver specific data
0624  *
0625  * Note that the caller must take care of locking.
0626  */
0627 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
0628                   int *pins, int num_pins, void *data)
0629 {
0630     struct group_desc *group;
0631     int selector;
0632 
0633     if (!name)
0634         return -EINVAL;
0635 
0636     selector = pinctrl_generic_group_name_to_selector(pctldev, name);
0637     if (selector >= 0)
0638         return selector;
0639 
0640     selector = pctldev->num_groups;
0641 
0642     group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
0643     if (!group)
0644         return -ENOMEM;
0645 
0646     group->name = name;
0647     group->pins = pins;
0648     group->num_pins = num_pins;
0649     group->data = data;
0650 
0651     radix_tree_insert(&pctldev->pin_group_tree, selector, group);
0652 
0653     pctldev->num_groups++;
0654 
0655     return selector;
0656 }
0657 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
0658 
0659 /**
0660  * pinctrl_generic_remove_group() - removes a numbered pin group
0661  * @pctldev: pin controller device
0662  * @selector: group number
0663  *
0664  * Note that the caller must take care of locking.
0665  */
0666 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
0667                  unsigned int selector)
0668 {
0669     struct group_desc *group;
0670 
0671     group = radix_tree_lookup(&pctldev->pin_group_tree,
0672                   selector);
0673     if (!group)
0674         return -ENOENT;
0675 
0676     radix_tree_delete(&pctldev->pin_group_tree, selector);
0677     devm_kfree(pctldev->dev, group);
0678 
0679     pctldev->num_groups--;
0680 
0681     return 0;
0682 }
0683 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
0684 
0685 /**
0686  * pinctrl_generic_free_groups() - removes all pin groups
0687  * @pctldev: pin controller device
0688  *
0689  * Note that the caller must take care of locking. The pinctrl groups
0690  * are allocated with devm_kzalloc() so no need to free them here.
0691  */
0692 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
0693 {
0694     struct radix_tree_iter iter;
0695     void __rcu **slot;
0696 
0697     radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
0698         radix_tree_delete(&pctldev->pin_group_tree, iter.index);
0699 
0700     pctldev->num_groups = 0;
0701 }
0702 
0703 #else
0704 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
0705 {
0706 }
0707 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
0708 
0709 /**
0710  * pinctrl_get_group_selector() - returns the group selector for a group
0711  * @pctldev: the pin controller handling the group
0712  * @pin_group: the pin group to look up
0713  */
0714 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
0715                    const char *pin_group)
0716 {
0717     const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
0718     unsigned ngroups = pctlops->get_groups_count(pctldev);
0719     unsigned group_selector = 0;
0720 
0721     while (group_selector < ngroups) {
0722         const char *gname = pctlops->get_group_name(pctldev,
0723                                 group_selector);
0724         if (gname && !strcmp(gname, pin_group)) {
0725             dev_dbg(pctldev->dev,
0726                 "found group selector %u for %s\n",
0727                 group_selector,
0728                 pin_group);
0729             return group_selector;
0730         }
0731 
0732         group_selector++;
0733     }
0734 
0735     dev_err(pctldev->dev, "does not have pin group %s\n",
0736         pin_group);
0737 
0738     return -EINVAL;
0739 }
0740 
0741 bool pinctrl_gpio_can_use_line(unsigned gpio)
0742 {
0743     struct pinctrl_dev *pctldev;
0744     struct pinctrl_gpio_range *range;
0745     bool result;
0746     int pin;
0747 
0748     /*
0749      * Try to obtain GPIO range, if it fails
0750      * we're probably dealing with GPIO driver
0751      * without a backing pin controller - bail out.
0752      */
0753     if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
0754         return true;
0755 
0756     mutex_lock(&pctldev->mutex);
0757 
0758     /* Convert to the pin controllers number space */
0759     pin = gpio_to_pin(range, gpio);
0760 
0761     result = pinmux_can_be_used_for_gpio(pctldev, pin);
0762 
0763     mutex_unlock(&pctldev->mutex);
0764 
0765     return result;
0766 }
0767 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
0768 
0769 /**
0770  * pinctrl_gpio_request() - request a single pin to be used as GPIO
0771  * @gpio: the GPIO pin number from the GPIO subsystem number space
0772  *
0773  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
0774  * as part of their gpio_request() semantics, platforms and individual drivers
0775  * shall *NOT* request GPIO pins to be muxed in.
0776  */
0777 int pinctrl_gpio_request(unsigned gpio)
0778 {
0779     struct pinctrl_dev *pctldev;
0780     struct pinctrl_gpio_range *range;
0781     int ret;
0782     int pin;
0783 
0784     ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
0785     if (ret) {
0786         if (pinctrl_ready_for_gpio_range(gpio))
0787             ret = 0;
0788         return ret;
0789     }
0790 
0791     mutex_lock(&pctldev->mutex);
0792 
0793     /* Convert to the pin controllers number space */
0794     pin = gpio_to_pin(range, gpio);
0795 
0796     ret = pinmux_request_gpio(pctldev, range, pin, gpio);
0797 
0798     mutex_unlock(&pctldev->mutex);
0799 
0800     return ret;
0801 }
0802 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
0803 
0804 /**
0805  * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
0806  * @gpio: the GPIO pin number from the GPIO subsystem number space
0807  *
0808  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
0809  * as part of their gpio_free() semantics, platforms and individual drivers
0810  * shall *NOT* request GPIO pins to be muxed out.
0811  */
0812 void pinctrl_gpio_free(unsigned gpio)
0813 {
0814     struct pinctrl_dev *pctldev;
0815     struct pinctrl_gpio_range *range;
0816     int ret;
0817     int pin;
0818 
0819     ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
0820     if (ret) {
0821         return;
0822     }
0823     mutex_lock(&pctldev->mutex);
0824 
0825     /* Convert to the pin controllers number space */
0826     pin = gpio_to_pin(range, gpio);
0827 
0828     pinmux_free_gpio(pctldev, pin, range);
0829 
0830     mutex_unlock(&pctldev->mutex);
0831 }
0832 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
0833 
0834 static int pinctrl_gpio_direction(unsigned gpio, bool input)
0835 {
0836     struct pinctrl_dev *pctldev;
0837     struct pinctrl_gpio_range *range;
0838     int ret;
0839     int pin;
0840 
0841     ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
0842     if (ret) {
0843         return ret;
0844     }
0845 
0846     mutex_lock(&pctldev->mutex);
0847 
0848     /* Convert to the pin controllers number space */
0849     pin = gpio_to_pin(range, gpio);
0850     ret = pinmux_gpio_direction(pctldev, range, pin, input);
0851 
0852     mutex_unlock(&pctldev->mutex);
0853 
0854     return ret;
0855 }
0856 
0857 /**
0858  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
0859  * @gpio: the GPIO pin number from the GPIO subsystem number space
0860  *
0861  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
0862  * as part of their gpio_direction_input() semantics, platforms and individual
0863  * drivers shall *NOT* touch pin control GPIO calls.
0864  */
0865 int pinctrl_gpio_direction_input(unsigned gpio)
0866 {
0867     return pinctrl_gpio_direction(gpio, true);
0868 }
0869 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
0870 
0871 /**
0872  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
0873  * @gpio: the GPIO pin number from the GPIO subsystem number space
0874  *
0875  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
0876  * as part of their gpio_direction_output() semantics, platforms and individual
0877  * drivers shall *NOT* touch pin control GPIO calls.
0878  */
0879 int pinctrl_gpio_direction_output(unsigned gpio)
0880 {
0881     return pinctrl_gpio_direction(gpio, false);
0882 }
0883 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
0884 
0885 /**
0886  * pinctrl_gpio_set_config() - Apply config to given GPIO pin
0887  * @gpio: the GPIO pin number from the GPIO subsystem number space
0888  * @config: the configuration to apply to the GPIO
0889  *
0890  * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
0891  * they need to call the underlying pin controller to change GPIO config
0892  * (for example set debounce time).
0893  */
0894 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
0895 {
0896     unsigned long configs[] = { config };
0897     struct pinctrl_gpio_range *range;
0898     struct pinctrl_dev *pctldev;
0899     int ret, pin;
0900 
0901     ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
0902     if (ret)
0903         return ret;
0904 
0905     mutex_lock(&pctldev->mutex);
0906     pin = gpio_to_pin(range, gpio);
0907     ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
0908     mutex_unlock(&pctldev->mutex);
0909 
0910     return ret;
0911 }
0912 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
0913 
0914 static struct pinctrl_state *find_state(struct pinctrl *p,
0915                     const char *name)
0916 {
0917     struct pinctrl_state *state;
0918 
0919     list_for_each_entry(state, &p->states, node)
0920         if (!strcmp(state->name, name))
0921             return state;
0922 
0923     return NULL;
0924 }
0925 
0926 static struct pinctrl_state *create_state(struct pinctrl *p,
0927                       const char *name)
0928 {
0929     struct pinctrl_state *state;
0930 
0931     state = kzalloc(sizeof(*state), GFP_KERNEL);
0932     if (!state)
0933         return ERR_PTR(-ENOMEM);
0934 
0935     state->name = name;
0936     INIT_LIST_HEAD(&state->settings);
0937 
0938     list_add_tail(&state->node, &p->states);
0939 
0940     return state;
0941 }
0942 
0943 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
0944                const struct pinctrl_map *map)
0945 {
0946     struct pinctrl_state *state;
0947     struct pinctrl_setting *setting;
0948     int ret;
0949 
0950     state = find_state(p, map->name);
0951     if (!state)
0952         state = create_state(p, map->name);
0953     if (IS_ERR(state))
0954         return PTR_ERR(state);
0955 
0956     if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
0957         return 0;
0958 
0959     setting = kzalloc(sizeof(*setting), GFP_KERNEL);
0960     if (!setting)
0961         return -ENOMEM;
0962 
0963     setting->type = map->type;
0964 
0965     if (pctldev)
0966         setting->pctldev = pctldev;
0967     else
0968         setting->pctldev =
0969             get_pinctrl_dev_from_devname(map->ctrl_dev_name);
0970     if (!setting->pctldev) {
0971         kfree(setting);
0972         /* Do not defer probing of hogs (circular loop) */
0973         if (!strcmp(map->ctrl_dev_name, map->dev_name))
0974             return -ENODEV;
0975         /*
0976          * OK let us guess that the driver is not there yet, and
0977          * let's defer obtaining this pinctrl handle to later...
0978          */
0979         dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
0980             map->ctrl_dev_name);
0981         return -EPROBE_DEFER;
0982     }
0983 
0984     setting->dev_name = map->dev_name;
0985 
0986     switch (map->type) {
0987     case PIN_MAP_TYPE_MUX_GROUP:
0988         ret = pinmux_map_to_setting(map, setting);
0989         break;
0990     case PIN_MAP_TYPE_CONFIGS_PIN:
0991     case PIN_MAP_TYPE_CONFIGS_GROUP:
0992         ret = pinconf_map_to_setting(map, setting);
0993         break;
0994     default:
0995         ret = -EINVAL;
0996         break;
0997     }
0998     if (ret < 0) {
0999         kfree(setting);
1000         return ret;
1001     }
1002 
1003     list_add_tail(&setting->node, &state->settings);
1004 
1005     return 0;
1006 }
1007 
1008 static struct pinctrl *find_pinctrl(struct device *dev)
1009 {
1010     struct pinctrl *p;
1011 
1012     mutex_lock(&pinctrl_list_mutex);
1013     list_for_each_entry(p, &pinctrl_list, node)
1014         if (p->dev == dev) {
1015             mutex_unlock(&pinctrl_list_mutex);
1016             return p;
1017         }
1018 
1019     mutex_unlock(&pinctrl_list_mutex);
1020     return NULL;
1021 }
1022 
1023 static void pinctrl_free(struct pinctrl *p, bool inlist);
1024 
1025 static struct pinctrl *create_pinctrl(struct device *dev,
1026                       struct pinctrl_dev *pctldev)
1027 {
1028     struct pinctrl *p;
1029     const char *devname;
1030     struct pinctrl_maps *maps_node;
1031     int i;
1032     const struct pinctrl_map *map;
1033     int ret;
1034 
1035     /*
1036      * create the state cookie holder struct pinctrl for each
1037      * mapping, this is what consumers will get when requesting
1038      * a pin control handle with pinctrl_get()
1039      */
1040     p = kzalloc(sizeof(*p), GFP_KERNEL);
1041     if (!p)
1042         return ERR_PTR(-ENOMEM);
1043     p->dev = dev;
1044     INIT_LIST_HEAD(&p->states);
1045     INIT_LIST_HEAD(&p->dt_maps);
1046 
1047     ret = pinctrl_dt_to_map(p, pctldev);
1048     if (ret < 0) {
1049         kfree(p);
1050         return ERR_PTR(ret);
1051     }
1052 
1053     devname = dev_name(dev);
1054 
1055     mutex_lock(&pinctrl_maps_mutex);
1056     /* Iterate over the pin control maps to locate the right ones */
1057     for_each_maps(maps_node, i, map) {
1058         /* Map must be for this device */
1059         if (strcmp(map->dev_name, devname))
1060             continue;
1061         /*
1062          * If pctldev is not null, we are claiming hog for it,
1063          * that means, setting that is served by pctldev by itself.
1064          *
1065          * Thus we must skip map that is for this device but is served
1066          * by other device.
1067          */
1068         if (pctldev &&
1069             strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1070             continue;
1071 
1072         ret = add_setting(p, pctldev, map);
1073         /*
1074          * At this point the adding of a setting may:
1075          *
1076          * - Defer, if the pinctrl device is not yet available
1077          * - Fail, if the pinctrl device is not yet available,
1078          *   AND the setting is a hog. We cannot defer that, since
1079          *   the hog will kick in immediately after the device
1080          *   is registered.
1081          *
1082          * If the error returned was not -EPROBE_DEFER then we
1083          * accumulate the errors to see if we end up with
1084          * an -EPROBE_DEFER later, as that is the worst case.
1085          */
1086         if (ret == -EPROBE_DEFER) {
1087             pinctrl_free(p, false);
1088             mutex_unlock(&pinctrl_maps_mutex);
1089             return ERR_PTR(ret);
1090         }
1091     }
1092     mutex_unlock(&pinctrl_maps_mutex);
1093 
1094     if (ret < 0) {
1095         /* If some other error than deferral occurred, return here */
1096         pinctrl_free(p, false);
1097         return ERR_PTR(ret);
1098     }
1099 
1100     kref_init(&p->users);
1101 
1102     /* Add the pinctrl handle to the global list */
1103     mutex_lock(&pinctrl_list_mutex);
1104     list_add_tail(&p->node, &pinctrl_list);
1105     mutex_unlock(&pinctrl_list_mutex);
1106 
1107     return p;
1108 }
1109 
1110 /**
1111  * pinctrl_get() - retrieves the pinctrl handle for a device
1112  * @dev: the device to obtain the handle for
1113  */
1114 struct pinctrl *pinctrl_get(struct device *dev)
1115 {
1116     struct pinctrl *p;
1117 
1118     if (WARN_ON(!dev))
1119         return ERR_PTR(-EINVAL);
1120 
1121     /*
1122      * See if somebody else (such as the device core) has already
1123      * obtained a handle to the pinctrl for this device. In that case,
1124      * return another pointer to it.
1125      */
1126     p = find_pinctrl(dev);
1127     if (p) {
1128         dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1129         kref_get(&p->users);
1130         return p;
1131     }
1132 
1133     return create_pinctrl(dev, NULL);
1134 }
1135 EXPORT_SYMBOL_GPL(pinctrl_get);
1136 
1137 static void pinctrl_free_setting(bool disable_setting,
1138                  struct pinctrl_setting *setting)
1139 {
1140     switch (setting->type) {
1141     case PIN_MAP_TYPE_MUX_GROUP:
1142         if (disable_setting)
1143             pinmux_disable_setting(setting);
1144         pinmux_free_setting(setting);
1145         break;
1146     case PIN_MAP_TYPE_CONFIGS_PIN:
1147     case PIN_MAP_TYPE_CONFIGS_GROUP:
1148         pinconf_free_setting(setting);
1149         break;
1150     default:
1151         break;
1152     }
1153 }
1154 
1155 static void pinctrl_free(struct pinctrl *p, bool inlist)
1156 {
1157     struct pinctrl_state *state, *n1;
1158     struct pinctrl_setting *setting, *n2;
1159 
1160     mutex_lock(&pinctrl_list_mutex);
1161     list_for_each_entry_safe(state, n1, &p->states, node) {
1162         list_for_each_entry_safe(setting, n2, &state->settings, node) {
1163             pinctrl_free_setting(state == p->state, setting);
1164             list_del(&setting->node);
1165             kfree(setting);
1166         }
1167         list_del(&state->node);
1168         kfree(state);
1169     }
1170 
1171     pinctrl_dt_free_maps(p);
1172 
1173     if (inlist)
1174         list_del(&p->node);
1175     kfree(p);
1176     mutex_unlock(&pinctrl_list_mutex);
1177 }
1178 
1179 /**
1180  * pinctrl_release() - release the pinctrl handle
1181  * @kref: the kref in the pinctrl being released
1182  */
1183 static void pinctrl_release(struct kref *kref)
1184 {
1185     struct pinctrl *p = container_of(kref, struct pinctrl, users);
1186 
1187     pinctrl_free(p, true);
1188 }
1189 
1190 /**
1191  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1192  * @p: the pinctrl handle to release
1193  */
1194 void pinctrl_put(struct pinctrl *p)
1195 {
1196     kref_put(&p->users, pinctrl_release);
1197 }
1198 EXPORT_SYMBOL_GPL(pinctrl_put);
1199 
1200 /**
1201  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1202  * @p: the pinctrl handle to retrieve the state from
1203  * @name: the state name to retrieve
1204  */
1205 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1206                          const char *name)
1207 {
1208     struct pinctrl_state *state;
1209 
1210     state = find_state(p, name);
1211     if (!state) {
1212         if (pinctrl_dummy_state) {
1213             /* create dummy state */
1214             dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1215                 name);
1216             state = create_state(p, name);
1217         } else
1218             state = ERR_PTR(-ENODEV);
1219     }
1220 
1221     return state;
1222 }
1223 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1224 
1225 static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1226                  struct device *consumer)
1227 {
1228     if (pctldev->desc->link_consumers)
1229         device_link_add(consumer, pctldev->dev,
1230                 DL_FLAG_PM_RUNTIME |
1231                 DL_FLAG_AUTOREMOVE_CONSUMER);
1232 }
1233 
1234 /**
1235  * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1236  * @p: the pinctrl handle for the device that requests configuration
1237  * @state: the state handle to select/activate/program
1238  */
1239 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1240 {
1241     struct pinctrl_setting *setting, *setting2;
1242     struct pinctrl_state *old_state = p->state;
1243     int ret;
1244 
1245     if (p->state) {
1246         /*
1247          * For each pinmux setting in the old state, forget SW's record
1248          * of mux owner for that pingroup. Any pingroups which are
1249          * still owned by the new state will be re-acquired by the call
1250          * to pinmux_enable_setting() in the loop below.
1251          */
1252         list_for_each_entry(setting, &p->state->settings, node) {
1253             if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1254                 continue;
1255             pinmux_disable_setting(setting);
1256         }
1257     }
1258 
1259     p->state = NULL;
1260 
1261     /* Apply all the settings for the new state - pinmux first */
1262     list_for_each_entry(setting, &state->settings, node) {
1263         switch (setting->type) {
1264         case PIN_MAP_TYPE_MUX_GROUP:
1265             ret = pinmux_enable_setting(setting);
1266             break;
1267         case PIN_MAP_TYPE_CONFIGS_PIN:
1268         case PIN_MAP_TYPE_CONFIGS_GROUP:
1269             ret = 0;
1270             break;
1271         default:
1272             ret = -EINVAL;
1273             break;
1274         }
1275 
1276         if (ret < 0)
1277             goto unapply_new_state;
1278 
1279         /* Do not link hogs (circular dependency) */
1280         if (p != setting->pctldev->p)
1281             pinctrl_link_add(setting->pctldev, p->dev);
1282     }
1283 
1284     /* Apply all the settings for the new state - pinconf after */
1285     list_for_each_entry(setting, &state->settings, node) {
1286         switch (setting->type) {
1287         case PIN_MAP_TYPE_MUX_GROUP:
1288             ret = 0;
1289             break;
1290         case PIN_MAP_TYPE_CONFIGS_PIN:
1291         case PIN_MAP_TYPE_CONFIGS_GROUP:
1292             ret = pinconf_apply_setting(setting);
1293             break;
1294         default:
1295             ret = -EINVAL;
1296             break;
1297         }
1298 
1299         if (ret < 0) {
1300             goto unapply_new_state;
1301         }
1302 
1303         /* Do not link hogs (circular dependency) */
1304         if (p != setting->pctldev->p)
1305             pinctrl_link_add(setting->pctldev, p->dev);
1306     }
1307 
1308     p->state = state;
1309 
1310     return 0;
1311 
1312 unapply_new_state:
1313     dev_err(p->dev, "Error applying setting, reverse things back\n");
1314 
1315     list_for_each_entry(setting2, &state->settings, node) {
1316         if (&setting2->node == &setting->node)
1317             break;
1318         /*
1319          * All we can do here is pinmux_disable_setting.
1320          * That means that some pins are muxed differently now
1321          * than they were before applying the setting (We can't
1322          * "unmux a pin"!), but it's not a big deal since the pins
1323          * are free to be muxed by another apply_setting.
1324          */
1325         if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1326             pinmux_disable_setting(setting2);
1327     }
1328 
1329     /* There's no infinite recursive loop here because p->state is NULL */
1330     if (old_state)
1331         pinctrl_select_state(p, old_state);
1332 
1333     return ret;
1334 }
1335 
1336 /**
1337  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1338  * @p: the pinctrl handle for the device that requests configuration
1339  * @state: the state handle to select/activate/program
1340  */
1341 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1342 {
1343     if (p->state == state)
1344         return 0;
1345 
1346     return pinctrl_commit_state(p, state);
1347 }
1348 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1349 
1350 static void devm_pinctrl_release(struct device *dev, void *res)
1351 {
1352     pinctrl_put(*(struct pinctrl **)res);
1353 }
1354 
1355 /**
1356  * devm_pinctrl_get() - Resource managed pinctrl_get()
1357  * @dev: the device to obtain the handle for
1358  *
1359  * If there is a need to explicitly destroy the returned struct pinctrl,
1360  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1361  */
1362 struct pinctrl *devm_pinctrl_get(struct device *dev)
1363 {
1364     struct pinctrl **ptr, *p;
1365 
1366     ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1367     if (!ptr)
1368         return ERR_PTR(-ENOMEM);
1369 
1370     p = pinctrl_get(dev);
1371     if (!IS_ERR(p)) {
1372         *ptr = p;
1373         devres_add(dev, ptr);
1374     } else {
1375         devres_free(ptr);
1376     }
1377 
1378     return p;
1379 }
1380 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1381 
1382 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1383 {
1384     struct pinctrl **p = res;
1385 
1386     return *p == data;
1387 }
1388 
1389 /**
1390  * devm_pinctrl_put() - Resource managed pinctrl_put()
1391  * @p: the pinctrl handle to release
1392  *
1393  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1394  * this function will not need to be called and the resource management
1395  * code will ensure that the resource is freed.
1396  */
1397 void devm_pinctrl_put(struct pinctrl *p)
1398 {
1399     WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1400                    devm_pinctrl_match, p));
1401 }
1402 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1403 
1404 /**
1405  * pinctrl_register_mappings() - register a set of pin controller mappings
1406  * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1407  *  keeps a reference to the passed in maps, so they should _not_ be
1408  *  marked with __initdata.
1409  * @num_maps: the number of maps in the mapping table
1410  */
1411 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1412                   unsigned num_maps)
1413 {
1414     int i, ret;
1415     struct pinctrl_maps *maps_node;
1416 
1417     pr_debug("add %u pinctrl maps\n", num_maps);
1418 
1419     /* First sanity check the new mapping */
1420     for (i = 0; i < num_maps; i++) {
1421         if (!maps[i].dev_name) {
1422             pr_err("failed to register map %s (%d): no device given\n",
1423                    maps[i].name, i);
1424             return -EINVAL;
1425         }
1426 
1427         if (!maps[i].name) {
1428             pr_err("failed to register map %d: no map name given\n",
1429                    i);
1430             return -EINVAL;
1431         }
1432 
1433         if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1434                 !maps[i].ctrl_dev_name) {
1435             pr_err("failed to register map %s (%d): no pin control device given\n",
1436                    maps[i].name, i);
1437             return -EINVAL;
1438         }
1439 
1440         switch (maps[i].type) {
1441         case PIN_MAP_TYPE_DUMMY_STATE:
1442             break;
1443         case PIN_MAP_TYPE_MUX_GROUP:
1444             ret = pinmux_validate_map(&maps[i], i);
1445             if (ret < 0)
1446                 return ret;
1447             break;
1448         case PIN_MAP_TYPE_CONFIGS_PIN:
1449         case PIN_MAP_TYPE_CONFIGS_GROUP:
1450             ret = pinconf_validate_map(&maps[i], i);
1451             if (ret < 0)
1452                 return ret;
1453             break;
1454         default:
1455             pr_err("failed to register map %s (%d): invalid type given\n",
1456                    maps[i].name, i);
1457             return -EINVAL;
1458         }
1459     }
1460 
1461     maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1462     if (!maps_node)
1463         return -ENOMEM;
1464 
1465     maps_node->maps = maps;
1466     maps_node->num_maps = num_maps;
1467 
1468     mutex_lock(&pinctrl_maps_mutex);
1469     list_add_tail(&maps_node->node, &pinctrl_maps);
1470     mutex_unlock(&pinctrl_maps_mutex);
1471 
1472     return 0;
1473 }
1474 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1475 
1476 /**
1477  * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1478  * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1479  *  when registering the mappings.
1480  */
1481 void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1482 {
1483     struct pinctrl_maps *maps_node;
1484 
1485     mutex_lock(&pinctrl_maps_mutex);
1486     list_for_each_entry(maps_node, &pinctrl_maps, node) {
1487         if (maps_node->maps == map) {
1488             list_del(&maps_node->node);
1489             kfree(maps_node);
1490             mutex_unlock(&pinctrl_maps_mutex);
1491             return;
1492         }
1493     }
1494     mutex_unlock(&pinctrl_maps_mutex);
1495 }
1496 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1497 
1498 /**
1499  * pinctrl_force_sleep() - turn a given controller device into sleep state
1500  * @pctldev: pin controller device
1501  */
1502 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1503 {
1504     if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1505         return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1506     return 0;
1507 }
1508 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1509 
1510 /**
1511  * pinctrl_force_default() - turn a given controller device into default state
1512  * @pctldev: pin controller device
1513  */
1514 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1515 {
1516     if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1517         return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1518     return 0;
1519 }
1520 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1521 
1522 /**
1523  * pinctrl_init_done() - tell pinctrl probe is done
1524  *
1525  * We'll use this time to switch the pins from "init" to "default" unless the
1526  * driver selected some other state.
1527  *
1528  * @dev: device to that's done probing
1529  */
1530 int pinctrl_init_done(struct device *dev)
1531 {
1532     struct dev_pin_info *pins = dev->pins;
1533     int ret;
1534 
1535     if (!pins)
1536         return 0;
1537 
1538     if (IS_ERR(pins->init_state))
1539         return 0; /* No such state */
1540 
1541     if (pins->p->state != pins->init_state)
1542         return 0; /* Not at init anyway */
1543 
1544     if (IS_ERR(pins->default_state))
1545         return 0; /* No default state */
1546 
1547     ret = pinctrl_select_state(pins->p, pins->default_state);
1548     if (ret)
1549         dev_err(dev, "failed to activate default pinctrl state\n");
1550 
1551     return ret;
1552 }
1553 
1554 static int pinctrl_select_bound_state(struct device *dev,
1555                       struct pinctrl_state *state)
1556 {
1557     struct dev_pin_info *pins = dev->pins;
1558     int ret;
1559 
1560     if (IS_ERR(state))
1561         return 0; /* No such state */
1562     ret = pinctrl_select_state(pins->p, state);
1563     if (ret)
1564         dev_err(dev, "failed to activate pinctrl state %s\n",
1565             state->name);
1566     return ret;
1567 }
1568 
1569 /**
1570  * pinctrl_select_default_state() - select default pinctrl state
1571  * @dev: device to select default state for
1572  */
1573 int pinctrl_select_default_state(struct device *dev)
1574 {
1575     if (!dev->pins)
1576         return 0;
1577 
1578     return pinctrl_select_bound_state(dev, dev->pins->default_state);
1579 }
1580 EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1581 
1582 #ifdef CONFIG_PM
1583 
1584 /**
1585  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1586  * @dev: device to select default state for
1587  */
1588 int pinctrl_pm_select_default_state(struct device *dev)
1589 {
1590     return pinctrl_select_default_state(dev);
1591 }
1592 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1593 
1594 /**
1595  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1596  * @dev: device to select sleep state for
1597  */
1598 int pinctrl_pm_select_sleep_state(struct device *dev)
1599 {
1600     if (!dev->pins)
1601         return 0;
1602 
1603     return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1604 }
1605 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1606 
1607 /**
1608  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1609  * @dev: device to select idle state for
1610  */
1611 int pinctrl_pm_select_idle_state(struct device *dev)
1612 {
1613     if (!dev->pins)
1614         return 0;
1615 
1616     return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1617 }
1618 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1619 #endif
1620 
1621 #ifdef CONFIG_DEBUG_FS
1622 
1623 static int pinctrl_pins_show(struct seq_file *s, void *what)
1624 {
1625     struct pinctrl_dev *pctldev = s->private;
1626     const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1627     unsigned i, pin;
1628 #ifdef CONFIG_GPIOLIB
1629     struct pinctrl_gpio_range *range;
1630     struct gpio_chip *chip;
1631     int gpio_num;
1632 #endif
1633 
1634     seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1635 
1636     mutex_lock(&pctldev->mutex);
1637 
1638     /* The pin number can be retrived from the pin controller descriptor */
1639     for (i = 0; i < pctldev->desc->npins; i++) {
1640         struct pin_desc *desc;
1641 
1642         pin = pctldev->desc->pins[i].number;
1643         desc = pin_desc_get(pctldev, pin);
1644         /* Pin space may be sparse */
1645         if (!desc)
1646             continue;
1647 
1648         seq_printf(s, "pin %d (%s) ", pin, desc->name);
1649 
1650 #ifdef CONFIG_GPIOLIB
1651         gpio_num = -1;
1652         list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1653             if ((pin >= range->pin_base) &&
1654                 (pin < (range->pin_base + range->npins))) {
1655                 gpio_num = range->base + (pin - range->pin_base);
1656                 break;
1657             }
1658         }
1659         if (gpio_num >= 0)
1660             chip = gpio_to_chip(gpio_num);
1661         else
1662             chip = NULL;
1663         if (chip)
1664             seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label);
1665         else
1666             seq_puts(s, "0:? ");
1667 #endif
1668 
1669         /* Driver-specific info per pin */
1670         if (ops->pin_dbg_show)
1671             ops->pin_dbg_show(pctldev, s, pin);
1672 
1673         seq_puts(s, "\n");
1674     }
1675 
1676     mutex_unlock(&pctldev->mutex);
1677 
1678     return 0;
1679 }
1680 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1681 
1682 static int pinctrl_groups_show(struct seq_file *s, void *what)
1683 {
1684     struct pinctrl_dev *pctldev = s->private;
1685     const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1686     unsigned ngroups, selector = 0;
1687 
1688     mutex_lock(&pctldev->mutex);
1689 
1690     ngroups = ops->get_groups_count(pctldev);
1691 
1692     seq_puts(s, "registered pin groups:\n");
1693     while (selector < ngroups) {
1694         const unsigned *pins = NULL;
1695         unsigned num_pins = 0;
1696         const char *gname = ops->get_group_name(pctldev, selector);
1697         const char *pname;
1698         int ret = 0;
1699         int i;
1700 
1701         if (ops->get_group_pins)
1702             ret = ops->get_group_pins(pctldev, selector,
1703                           &pins, &num_pins);
1704         if (ret)
1705             seq_printf(s, "%s [ERROR GETTING PINS]\n",
1706                    gname);
1707         else {
1708             seq_printf(s, "group: %s\n", gname);
1709             for (i = 0; i < num_pins; i++) {
1710                 pname = pin_get_name(pctldev, pins[i]);
1711                 if (WARN_ON(!pname)) {
1712                     mutex_unlock(&pctldev->mutex);
1713                     return -EINVAL;
1714                 }
1715                 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1716             }
1717             seq_puts(s, "\n");
1718         }
1719         selector++;
1720     }
1721 
1722     mutex_unlock(&pctldev->mutex);
1723 
1724     return 0;
1725 }
1726 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1727 
1728 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1729 {
1730     struct pinctrl_dev *pctldev = s->private;
1731     struct pinctrl_gpio_range *range;
1732 
1733     seq_puts(s, "GPIO ranges handled:\n");
1734 
1735     mutex_lock(&pctldev->mutex);
1736 
1737     /* Loop over the ranges */
1738     list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1739         if (range->pins) {
1740             int a;
1741             seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1742                 range->id, range->name,
1743                 range->base, (range->base + range->npins - 1));
1744             for (a = 0; a < range->npins - 1; a++)
1745                 seq_printf(s, "%u, ", range->pins[a]);
1746             seq_printf(s, "%u}\n", range->pins[a]);
1747         }
1748         else
1749             seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1750                 range->id, range->name,
1751                 range->base, (range->base + range->npins - 1),
1752                 range->pin_base,
1753                 (range->pin_base + range->npins - 1));
1754     }
1755 
1756     mutex_unlock(&pctldev->mutex);
1757 
1758     return 0;
1759 }
1760 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1761 
1762 static int pinctrl_devices_show(struct seq_file *s, void *what)
1763 {
1764     struct pinctrl_dev *pctldev;
1765 
1766     seq_puts(s, "name [pinmux] [pinconf]\n");
1767 
1768     mutex_lock(&pinctrldev_list_mutex);
1769 
1770     list_for_each_entry(pctldev, &pinctrldev_list, node) {
1771         seq_printf(s, "%s ", pctldev->desc->name);
1772         if (pctldev->desc->pmxops)
1773             seq_puts(s, "yes ");
1774         else
1775             seq_puts(s, "no ");
1776         if (pctldev->desc->confops)
1777             seq_puts(s, "yes");
1778         else
1779             seq_puts(s, "no");
1780         seq_puts(s, "\n");
1781     }
1782 
1783     mutex_unlock(&pinctrldev_list_mutex);
1784 
1785     return 0;
1786 }
1787 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1788 
1789 static inline const char *map_type(enum pinctrl_map_type type)
1790 {
1791     static const char * const names[] = {
1792         "INVALID",
1793         "DUMMY_STATE",
1794         "MUX_GROUP",
1795         "CONFIGS_PIN",
1796         "CONFIGS_GROUP",
1797     };
1798 
1799     if (type >= ARRAY_SIZE(names))
1800         return "UNKNOWN";
1801 
1802     return names[type];
1803 }
1804 
1805 static int pinctrl_maps_show(struct seq_file *s, void *what)
1806 {
1807     struct pinctrl_maps *maps_node;
1808     int i;
1809     const struct pinctrl_map *map;
1810 
1811     seq_puts(s, "Pinctrl maps:\n");
1812 
1813     mutex_lock(&pinctrl_maps_mutex);
1814     for_each_maps(maps_node, i, map) {
1815         seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1816                map->dev_name, map->name, map_type(map->type),
1817                map->type);
1818 
1819         if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1820             seq_printf(s, "controlling device %s\n",
1821                    map->ctrl_dev_name);
1822 
1823         switch (map->type) {
1824         case PIN_MAP_TYPE_MUX_GROUP:
1825             pinmux_show_map(s, map);
1826             break;
1827         case PIN_MAP_TYPE_CONFIGS_PIN:
1828         case PIN_MAP_TYPE_CONFIGS_GROUP:
1829             pinconf_show_map(s, map);
1830             break;
1831         default:
1832             break;
1833         }
1834 
1835         seq_putc(s, '\n');
1836     }
1837     mutex_unlock(&pinctrl_maps_mutex);
1838 
1839     return 0;
1840 }
1841 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1842 
1843 static int pinctrl_show(struct seq_file *s, void *what)
1844 {
1845     struct pinctrl *p;
1846     struct pinctrl_state *state;
1847     struct pinctrl_setting *setting;
1848 
1849     seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1850 
1851     mutex_lock(&pinctrl_list_mutex);
1852 
1853     list_for_each_entry(p, &pinctrl_list, node) {
1854         seq_printf(s, "device: %s current state: %s\n",
1855                dev_name(p->dev),
1856                p->state ? p->state->name : "none");
1857 
1858         list_for_each_entry(state, &p->states, node) {
1859             seq_printf(s, "  state: %s\n", state->name);
1860 
1861             list_for_each_entry(setting, &state->settings, node) {
1862                 struct pinctrl_dev *pctldev = setting->pctldev;
1863 
1864                 seq_printf(s, "    type: %s controller %s ",
1865                        map_type(setting->type),
1866                        pinctrl_dev_get_name(pctldev));
1867 
1868                 switch (setting->type) {
1869                 case PIN_MAP_TYPE_MUX_GROUP:
1870                     pinmux_show_setting(s, setting);
1871                     break;
1872                 case PIN_MAP_TYPE_CONFIGS_PIN:
1873                 case PIN_MAP_TYPE_CONFIGS_GROUP:
1874                     pinconf_show_setting(s, setting);
1875                     break;
1876                 default:
1877                     break;
1878                 }
1879             }
1880         }
1881     }
1882 
1883     mutex_unlock(&pinctrl_list_mutex);
1884 
1885     return 0;
1886 }
1887 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1888 
1889 static struct dentry *debugfs_root;
1890 
1891 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1892 {
1893     struct dentry *device_root;
1894     const char *debugfs_name;
1895 
1896     if (pctldev->desc->name &&
1897             strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1898         debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1899                 "%s-%s", dev_name(pctldev->dev),
1900                 pctldev->desc->name);
1901         if (!debugfs_name) {
1902             pr_warn("failed to determine debugfs dir name for %s\n",
1903                 dev_name(pctldev->dev));
1904             return;
1905         }
1906     } else {
1907         debugfs_name = dev_name(pctldev->dev);
1908     }
1909 
1910     device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1911     pctldev->device_root = device_root;
1912 
1913     if (IS_ERR(device_root) || !device_root) {
1914         pr_warn("failed to create debugfs directory for %s\n",
1915             dev_name(pctldev->dev));
1916         return;
1917     }
1918     debugfs_create_file("pins", 0444,
1919                 device_root, pctldev, &pinctrl_pins_fops);
1920     debugfs_create_file("pingroups", 0444,
1921                 device_root, pctldev, &pinctrl_groups_fops);
1922     debugfs_create_file("gpio-ranges", 0444,
1923                 device_root, pctldev, &pinctrl_gpioranges_fops);
1924     if (pctldev->desc->pmxops)
1925         pinmux_init_device_debugfs(device_root, pctldev);
1926     if (pctldev->desc->confops)
1927         pinconf_init_device_debugfs(device_root, pctldev);
1928 }
1929 
1930 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1931 {
1932     debugfs_remove_recursive(pctldev->device_root);
1933 }
1934 
1935 static void pinctrl_init_debugfs(void)
1936 {
1937     debugfs_root = debugfs_create_dir("pinctrl", NULL);
1938     if (IS_ERR(debugfs_root) || !debugfs_root) {
1939         pr_warn("failed to create debugfs directory\n");
1940         debugfs_root = NULL;
1941         return;
1942     }
1943 
1944     debugfs_create_file("pinctrl-devices", 0444,
1945                 debugfs_root, NULL, &pinctrl_devices_fops);
1946     debugfs_create_file("pinctrl-maps", 0444,
1947                 debugfs_root, NULL, &pinctrl_maps_fops);
1948     debugfs_create_file("pinctrl-handles", 0444,
1949                 debugfs_root, NULL, &pinctrl_fops);
1950 }
1951 
1952 #else /* CONFIG_DEBUG_FS */
1953 
1954 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1955 {
1956 }
1957 
1958 static void pinctrl_init_debugfs(void)
1959 {
1960 }
1961 
1962 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1963 {
1964 }
1965 
1966 #endif
1967 
1968 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1969 {
1970     const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1971 
1972     if (!ops ||
1973         !ops->get_groups_count ||
1974         !ops->get_group_name)
1975         return -EINVAL;
1976 
1977     return 0;
1978 }
1979 
1980 /**
1981  * pinctrl_init_controller() - init a pin controller device
1982  * @pctldesc: descriptor for this pin controller
1983  * @dev: parent device for this pin controller
1984  * @driver_data: private pin controller data for this pin controller
1985  */
1986 static struct pinctrl_dev *
1987 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1988             void *driver_data)
1989 {
1990     struct pinctrl_dev *pctldev;
1991     int ret;
1992 
1993     if (!pctldesc)
1994         return ERR_PTR(-EINVAL);
1995     if (!pctldesc->name)
1996         return ERR_PTR(-EINVAL);
1997 
1998     pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1999     if (!pctldev)
2000         return ERR_PTR(-ENOMEM);
2001 
2002     /* Initialize pin control device struct */
2003     pctldev->owner = pctldesc->owner;
2004     pctldev->desc = pctldesc;
2005     pctldev->driver_data = driver_data;
2006     INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2007 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2008     INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2009 #endif
2010 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2011     INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2012 #endif
2013     INIT_LIST_HEAD(&pctldev->gpio_ranges);
2014     INIT_LIST_HEAD(&pctldev->node);
2015     pctldev->dev = dev;
2016     mutex_init(&pctldev->mutex);
2017 
2018     /* check core ops for sanity */
2019     ret = pinctrl_check_ops(pctldev);
2020     if (ret) {
2021         dev_err(dev, "pinctrl ops lacks necessary functions\n");
2022         goto out_err;
2023     }
2024 
2025     /* If we're implementing pinmuxing, check the ops for sanity */
2026     if (pctldesc->pmxops) {
2027         ret = pinmux_check_ops(pctldev);
2028         if (ret)
2029             goto out_err;
2030     }
2031 
2032     /* If we're implementing pinconfig, check the ops for sanity */
2033     if (pctldesc->confops) {
2034         ret = pinconf_check_ops(pctldev);
2035         if (ret)
2036             goto out_err;
2037     }
2038 
2039     /* Register all the pins */
2040     dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
2041     ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2042     if (ret) {
2043         dev_err(dev, "error during pin registration\n");
2044         pinctrl_free_pindescs(pctldev, pctldesc->pins,
2045                       pctldesc->npins);
2046         goto out_err;
2047     }
2048 
2049     return pctldev;
2050 
2051 out_err:
2052     mutex_destroy(&pctldev->mutex);
2053     kfree(pctldev);
2054     return ERR_PTR(ret);
2055 }
2056 
2057 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2058 {
2059     pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2060     if (PTR_ERR(pctldev->p) == -ENODEV) {
2061         dev_dbg(pctldev->dev, "no hogs found\n");
2062 
2063         return 0;
2064     }
2065 
2066     if (IS_ERR(pctldev->p)) {
2067         dev_err(pctldev->dev, "error claiming hogs: %li\n",
2068             PTR_ERR(pctldev->p));
2069 
2070         return PTR_ERR(pctldev->p);
2071     }
2072 
2073     pctldev->hog_default =
2074         pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2075     if (IS_ERR(pctldev->hog_default)) {
2076         dev_dbg(pctldev->dev,
2077             "failed to lookup the default state\n");
2078     } else {
2079         if (pinctrl_select_state(pctldev->p,
2080                      pctldev->hog_default))
2081             dev_err(pctldev->dev,
2082                 "failed to select default state\n");
2083     }
2084 
2085     pctldev->hog_sleep =
2086         pinctrl_lookup_state(pctldev->p,
2087                      PINCTRL_STATE_SLEEP);
2088     if (IS_ERR(pctldev->hog_sleep))
2089         dev_dbg(pctldev->dev,
2090             "failed to lookup the sleep state\n");
2091 
2092     return 0;
2093 }
2094 
2095 int pinctrl_enable(struct pinctrl_dev *pctldev)
2096 {
2097     int error;
2098 
2099     error = pinctrl_claim_hogs(pctldev);
2100     if (error) {
2101         dev_err(pctldev->dev, "could not claim hogs: %i\n",
2102             error);
2103         pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2104                       pctldev->desc->npins);
2105         mutex_destroy(&pctldev->mutex);
2106         kfree(pctldev);
2107 
2108         return error;
2109     }
2110 
2111     mutex_lock(&pinctrldev_list_mutex);
2112     list_add_tail(&pctldev->node, &pinctrldev_list);
2113     mutex_unlock(&pinctrldev_list_mutex);
2114 
2115     pinctrl_init_device_debugfs(pctldev);
2116 
2117     return 0;
2118 }
2119 EXPORT_SYMBOL_GPL(pinctrl_enable);
2120 
2121 /**
2122  * pinctrl_register() - register a pin controller device
2123  * @pctldesc: descriptor for this pin controller
2124  * @dev: parent device for this pin controller
2125  * @driver_data: private pin controller data for this pin controller
2126  *
2127  * Note that pinctrl_register() is known to have problems as the pin
2128  * controller driver functions are called before the driver has a
2129  * struct pinctrl_dev handle. To avoid issues later on, please use the
2130  * new pinctrl_register_and_init() below instead.
2131  */
2132 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2133                     struct device *dev, void *driver_data)
2134 {
2135     struct pinctrl_dev *pctldev;
2136     int error;
2137 
2138     pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2139     if (IS_ERR(pctldev))
2140         return pctldev;
2141 
2142     error = pinctrl_enable(pctldev);
2143     if (error)
2144         return ERR_PTR(error);
2145 
2146     return pctldev;
2147 }
2148 EXPORT_SYMBOL_GPL(pinctrl_register);
2149 
2150 /**
2151  * pinctrl_register_and_init() - register and init pin controller device
2152  * @pctldesc: descriptor for this pin controller
2153  * @dev: parent device for this pin controller
2154  * @driver_data: private pin controller data for this pin controller
2155  * @pctldev: pin controller device
2156  *
2157  * Note that pinctrl_enable() still needs to be manually called after
2158  * this once the driver is ready.
2159  */
2160 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2161                   struct device *dev, void *driver_data,
2162                   struct pinctrl_dev **pctldev)
2163 {
2164     struct pinctrl_dev *p;
2165 
2166     p = pinctrl_init_controller(pctldesc, dev, driver_data);
2167     if (IS_ERR(p))
2168         return PTR_ERR(p);
2169 
2170     /*
2171      * We have pinctrl_start() call functions in the pin controller
2172      * driver with create_pinctrl() for at least dt_node_to_map(). So
2173      * let's make sure pctldev is properly initialized for the
2174      * pin controller driver before we do anything.
2175      */
2176     *pctldev = p;
2177 
2178     return 0;
2179 }
2180 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2181 
2182 /**
2183  * pinctrl_unregister() - unregister pinmux
2184  * @pctldev: pin controller to unregister
2185  *
2186  * Called by pinmux drivers to unregister a pinmux.
2187  */
2188 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2189 {
2190     struct pinctrl_gpio_range *range, *n;
2191 
2192     if (!pctldev)
2193         return;
2194 
2195     mutex_lock(&pctldev->mutex);
2196     pinctrl_remove_device_debugfs(pctldev);
2197     mutex_unlock(&pctldev->mutex);
2198 
2199     if (!IS_ERR_OR_NULL(pctldev->p))
2200         pinctrl_put(pctldev->p);
2201 
2202     mutex_lock(&pinctrldev_list_mutex);
2203     mutex_lock(&pctldev->mutex);
2204     /* TODO: check that no pinmuxes are still active? */
2205     list_del(&pctldev->node);
2206     pinmux_generic_free_functions(pctldev);
2207     pinctrl_generic_free_groups(pctldev);
2208     /* Destroy descriptor tree */
2209     pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2210                   pctldev->desc->npins);
2211     /* remove gpio ranges map */
2212     list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2213         list_del(&range->node);
2214 
2215     mutex_unlock(&pctldev->mutex);
2216     mutex_destroy(&pctldev->mutex);
2217     kfree(pctldev);
2218     mutex_unlock(&pinctrldev_list_mutex);
2219 }
2220 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2221 
2222 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2223 {
2224     struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2225 
2226     pinctrl_unregister(pctldev);
2227 }
2228 
2229 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2230 {
2231     struct pctldev **r = res;
2232 
2233     if (WARN_ON(!r || !*r))
2234         return 0;
2235 
2236     return *r == data;
2237 }
2238 
2239 /**
2240  * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2241  * @dev: parent device for this pin controller
2242  * @pctldesc: descriptor for this pin controller
2243  * @driver_data: private pin controller data for this pin controller
2244  *
2245  * Returns an error pointer if pincontrol register failed. Otherwise
2246  * it returns valid pinctrl handle.
2247  *
2248  * The pinctrl device will be automatically released when the device is unbound.
2249  */
2250 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2251                       struct pinctrl_desc *pctldesc,
2252                       void *driver_data)
2253 {
2254     struct pinctrl_dev **ptr, *pctldev;
2255 
2256     ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2257     if (!ptr)
2258         return ERR_PTR(-ENOMEM);
2259 
2260     pctldev = pinctrl_register(pctldesc, dev, driver_data);
2261     if (IS_ERR(pctldev)) {
2262         devres_free(ptr);
2263         return pctldev;
2264     }
2265 
2266     *ptr = pctldev;
2267     devres_add(dev, ptr);
2268 
2269     return pctldev;
2270 }
2271 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2272 
2273 /**
2274  * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2275  * @dev: parent device for this pin controller
2276  * @pctldesc: descriptor for this pin controller
2277  * @driver_data: private pin controller data for this pin controller
2278  * @pctldev: pin controller device
2279  *
2280  * Returns zero on success or an error number on failure.
2281  *
2282  * The pinctrl device will be automatically released when the device is unbound.
2283  */
2284 int devm_pinctrl_register_and_init(struct device *dev,
2285                    struct pinctrl_desc *pctldesc,
2286                    void *driver_data,
2287                    struct pinctrl_dev **pctldev)
2288 {
2289     struct pinctrl_dev **ptr;
2290     int error;
2291 
2292     ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2293     if (!ptr)
2294         return -ENOMEM;
2295 
2296     error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2297     if (error) {
2298         devres_free(ptr);
2299         return error;
2300     }
2301 
2302     *ptr = *pctldev;
2303     devres_add(dev, ptr);
2304 
2305     return 0;
2306 }
2307 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2308 
2309 /**
2310  * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2311  * @dev: device for which resource was allocated
2312  * @pctldev: the pinctrl device to unregister.
2313  */
2314 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2315 {
2316     WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2317                    devm_pinctrl_dev_match, pctldev));
2318 }
2319 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2320 
2321 static int __init pinctrl_init(void)
2322 {
2323     pr_info("initialized pinctrl subsystem\n");
2324     pinctrl_init_debugfs();
2325     return 0;
2326 }
2327 
2328 /* init early since many drivers really need to initialized pinmux early */
2329 core_initcall(pinctrl_init);