Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * CPU PMU driver for the Apple M1 and derivatives
0004  *
0005  * Copyright (C) 2021 Google LLC
0006  *
0007  * Author: Marc Zyngier <maz@kernel.org>
0008  *
0009  * Most of the information used in this driver was provided by the
0010  * Asahi Linux project. The rest was experimentally discovered.
0011  */
0012 
0013 #include <linux/of.h>
0014 #include <linux/perf/arm_pmu.h>
0015 #include <linux/platform_device.h>
0016 
0017 #include <asm/apple_m1_pmu.h>
0018 #include <asm/irq_regs.h>
0019 #include <asm/perf_event.h>
0020 
0021 #define M1_PMU_NR_COUNTERS      10
0022 
0023 #define M1_PMU_CFG_EVENT        GENMASK(7, 0)
0024 
0025 #define ANY_BUT_0_1         GENMASK(9, 2)
0026 #define ONLY_2_TO_7         GENMASK(7, 2)
0027 #define ONLY_2_4_6          (BIT(2) | BIT(4) | BIT(6))
0028 #define ONLY_5_6_7          (BIT(5) | BIT(6) | BIT(7))
0029 
0030 /*
0031  * Description of the events we actually know about, as well as those with
0032  * a specific counter affinity. Yes, this is a grand total of two known
0033  * counters, and the rest is anybody's guess.
0034  *
0035  * Not all counters can count all events. Counters #0 and #1 are wired to
0036  * count cycles and instructions respectively, and some events have
0037  * bizarre mappings (every other counter, or even *one* counter). These
0038  * restrictions equally apply to both P and E cores.
0039  *
0040  * It is worth noting that the PMUs attached to P and E cores are likely
0041  * to be different because the underlying uarches are different. At the
0042  * moment, we don't really need to distinguish between the two because we
0043  * know next to nothing about the events themselves, and we already have
0044  * per cpu-type PMU abstractions.
0045  *
0046  * If we eventually find out that the events are different across
0047  * implementations, we'll have to introduce per cpu-type tables.
0048  */
0049 enum m1_pmu_events {
0050     M1_PMU_PERFCTR_UNKNOWN_01   = 0x01,
0051     M1_PMU_PERFCTR_CPU_CYCLES   = 0x02,
0052     M1_PMU_PERFCTR_INSTRUCTIONS = 0x8c,
0053     M1_PMU_PERFCTR_UNKNOWN_8d   = 0x8d,
0054     M1_PMU_PERFCTR_UNKNOWN_8e   = 0x8e,
0055     M1_PMU_PERFCTR_UNKNOWN_8f   = 0x8f,
0056     M1_PMU_PERFCTR_UNKNOWN_90   = 0x90,
0057     M1_PMU_PERFCTR_UNKNOWN_93   = 0x93,
0058     M1_PMU_PERFCTR_UNKNOWN_94   = 0x94,
0059     M1_PMU_PERFCTR_UNKNOWN_95   = 0x95,
0060     M1_PMU_PERFCTR_UNKNOWN_96   = 0x96,
0061     M1_PMU_PERFCTR_UNKNOWN_97   = 0x97,
0062     M1_PMU_PERFCTR_UNKNOWN_98   = 0x98,
0063     M1_PMU_PERFCTR_UNKNOWN_99   = 0x99,
0064     M1_PMU_PERFCTR_UNKNOWN_9a   = 0x9a,
0065     M1_PMU_PERFCTR_UNKNOWN_9b   = 0x9b,
0066     M1_PMU_PERFCTR_UNKNOWN_9c   = 0x9c,
0067     M1_PMU_PERFCTR_UNKNOWN_9f   = 0x9f,
0068     M1_PMU_PERFCTR_UNKNOWN_bf   = 0xbf,
0069     M1_PMU_PERFCTR_UNKNOWN_c0   = 0xc0,
0070     M1_PMU_PERFCTR_UNKNOWN_c1   = 0xc1,
0071     M1_PMU_PERFCTR_UNKNOWN_c4   = 0xc4,
0072     M1_PMU_PERFCTR_UNKNOWN_c5   = 0xc5,
0073     M1_PMU_PERFCTR_UNKNOWN_c6   = 0xc6,
0074     M1_PMU_PERFCTR_UNKNOWN_c8   = 0xc8,
0075     M1_PMU_PERFCTR_UNKNOWN_ca   = 0xca,
0076     M1_PMU_PERFCTR_UNKNOWN_cb   = 0xcb,
0077     M1_PMU_PERFCTR_UNKNOWN_f5   = 0xf5,
0078     M1_PMU_PERFCTR_UNKNOWN_f6   = 0xf6,
0079     M1_PMU_PERFCTR_UNKNOWN_f7   = 0xf7,
0080     M1_PMU_PERFCTR_UNKNOWN_f8   = 0xf8,
0081     M1_PMU_PERFCTR_UNKNOWN_fd   = 0xfd,
0082     M1_PMU_PERFCTR_LAST     = M1_PMU_CFG_EVENT,
0083 
0084     /*
0085      * From this point onwards, these are not actual HW events,
0086      * but attributes that get stored in hw->config_base.
0087      */
0088     M1_PMU_CFG_COUNT_USER       = BIT(8),
0089     M1_PMU_CFG_COUNT_KERNEL     = BIT(9),
0090 };
0091 
0092 /*
0093  * Per-event affinity table. Most events can be installed on counter
0094  * 2-9, but there are a number of exceptions. Note that this table
0095  * has been created experimentally, and I wouldn't be surprised if more
0096  * counters had strange affinities.
0097  */
0098 static const u16 m1_pmu_event_affinity[M1_PMU_PERFCTR_LAST + 1] = {
0099     [0 ... M1_PMU_PERFCTR_LAST] = ANY_BUT_0_1,
0100     [M1_PMU_PERFCTR_UNKNOWN_01] = BIT(7),
0101     [M1_PMU_PERFCTR_CPU_CYCLES] = ANY_BUT_0_1 | BIT(0),
0102     [M1_PMU_PERFCTR_INSTRUCTIONS]   = BIT(7) | BIT(1),
0103     [M1_PMU_PERFCTR_UNKNOWN_8d] = ONLY_5_6_7,
0104     [M1_PMU_PERFCTR_UNKNOWN_8e] = ONLY_5_6_7,
0105     [M1_PMU_PERFCTR_UNKNOWN_8f] = ONLY_5_6_7,
0106     [M1_PMU_PERFCTR_UNKNOWN_90] = ONLY_5_6_7,
0107     [M1_PMU_PERFCTR_UNKNOWN_93] = ONLY_5_6_7,
0108     [M1_PMU_PERFCTR_UNKNOWN_94] = ONLY_5_6_7,
0109     [M1_PMU_PERFCTR_UNKNOWN_95] = ONLY_5_6_7,
0110     [M1_PMU_PERFCTR_UNKNOWN_96] = ONLY_5_6_7,
0111     [M1_PMU_PERFCTR_UNKNOWN_97] = BIT(7),
0112     [M1_PMU_PERFCTR_UNKNOWN_98] = ONLY_5_6_7,
0113     [M1_PMU_PERFCTR_UNKNOWN_99] = ONLY_5_6_7,
0114     [M1_PMU_PERFCTR_UNKNOWN_9a] = BIT(7),
0115     [M1_PMU_PERFCTR_UNKNOWN_9b] = ONLY_5_6_7,
0116     [M1_PMU_PERFCTR_UNKNOWN_9c] = ONLY_5_6_7,
0117     [M1_PMU_PERFCTR_UNKNOWN_9f] = BIT(7),
0118     [M1_PMU_PERFCTR_UNKNOWN_bf] = ONLY_5_6_7,
0119     [M1_PMU_PERFCTR_UNKNOWN_c0] = ONLY_5_6_7,
0120     [M1_PMU_PERFCTR_UNKNOWN_c1] = ONLY_5_6_7,
0121     [M1_PMU_PERFCTR_UNKNOWN_c4] = ONLY_5_6_7,
0122     [M1_PMU_PERFCTR_UNKNOWN_c5] = ONLY_5_6_7,
0123     [M1_PMU_PERFCTR_UNKNOWN_c6] = ONLY_5_6_7,
0124     [M1_PMU_PERFCTR_UNKNOWN_c8] = ONLY_5_6_7,
0125     [M1_PMU_PERFCTR_UNKNOWN_ca] = ONLY_5_6_7,
0126     [M1_PMU_PERFCTR_UNKNOWN_cb] = ONLY_5_6_7,
0127     [M1_PMU_PERFCTR_UNKNOWN_f5] = ONLY_2_4_6,
0128     [M1_PMU_PERFCTR_UNKNOWN_f6] = ONLY_2_4_6,
0129     [M1_PMU_PERFCTR_UNKNOWN_f7] = ONLY_2_4_6,
0130     [M1_PMU_PERFCTR_UNKNOWN_f8] = ONLY_2_TO_7,
0131     [M1_PMU_PERFCTR_UNKNOWN_fd] = ONLY_2_4_6,
0132 };
0133 
0134 static const unsigned m1_pmu_perf_map[PERF_COUNT_HW_MAX] = {
0135     PERF_MAP_ALL_UNSUPPORTED,
0136     [PERF_COUNT_HW_CPU_CYCLES]  = M1_PMU_PERFCTR_CPU_CYCLES,
0137     [PERF_COUNT_HW_INSTRUCTIONS]    = M1_PMU_PERFCTR_INSTRUCTIONS,
0138     /* No idea about the rest yet */
0139 };
0140 
0141 /* sysfs definitions */
0142 static ssize_t m1_pmu_events_sysfs_show(struct device *dev,
0143                     struct device_attribute *attr,
0144                     char *page)
0145 {
0146     struct perf_pmu_events_attr *pmu_attr;
0147 
0148     pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
0149 
0150     return sprintf(page, "event=0x%04llx\n", pmu_attr->id);
0151 }
0152 
0153 #define M1_PMU_EVENT_ATTR(name, config)                 \
0154     PMU_EVENT_ATTR_ID(name, m1_pmu_events_sysfs_show, config)
0155 
0156 static struct attribute *m1_pmu_event_attrs[] = {
0157     M1_PMU_EVENT_ATTR(cycles, M1_PMU_PERFCTR_CPU_CYCLES),
0158     M1_PMU_EVENT_ATTR(instructions, M1_PMU_PERFCTR_INSTRUCTIONS),
0159     NULL,
0160 };
0161 
0162 static const struct attribute_group m1_pmu_events_attr_group = {
0163     .name = "events",
0164     .attrs = m1_pmu_event_attrs,
0165 };
0166 
0167 PMU_FORMAT_ATTR(event, "config:0-7");
0168 
0169 static struct attribute *m1_pmu_format_attrs[] = {
0170     &format_attr_event.attr,
0171     NULL,
0172 };
0173 
0174 static const struct attribute_group m1_pmu_format_attr_group = {
0175     .name = "format",
0176     .attrs = m1_pmu_format_attrs,
0177 };
0178 
0179 /* Low level accessors. No synchronisation. */
0180 #define PMU_READ_COUNTER(_idx)                      \
0181     case _idx:  return read_sysreg_s(SYS_IMP_APL_PMC## _idx ##_EL1)
0182 
0183 #define PMU_WRITE_COUNTER(_val, _idx)                   \
0184     case _idx:                          \
0185         write_sysreg_s(_val, SYS_IMP_APL_PMC## _idx ##_EL1);    \
0186         return
0187 
0188 static u64 m1_pmu_read_hw_counter(unsigned int index)
0189 {
0190     switch (index) {
0191         PMU_READ_COUNTER(0);
0192         PMU_READ_COUNTER(1);
0193         PMU_READ_COUNTER(2);
0194         PMU_READ_COUNTER(3);
0195         PMU_READ_COUNTER(4);
0196         PMU_READ_COUNTER(5);
0197         PMU_READ_COUNTER(6);
0198         PMU_READ_COUNTER(7);
0199         PMU_READ_COUNTER(8);
0200         PMU_READ_COUNTER(9);
0201     }
0202 
0203     BUG();
0204 }
0205 
0206 static void m1_pmu_write_hw_counter(u64 val, unsigned int index)
0207 {
0208     switch (index) {
0209         PMU_WRITE_COUNTER(val, 0);
0210         PMU_WRITE_COUNTER(val, 1);
0211         PMU_WRITE_COUNTER(val, 2);
0212         PMU_WRITE_COUNTER(val, 3);
0213         PMU_WRITE_COUNTER(val, 4);
0214         PMU_WRITE_COUNTER(val, 5);
0215         PMU_WRITE_COUNTER(val, 6);
0216         PMU_WRITE_COUNTER(val, 7);
0217         PMU_WRITE_COUNTER(val, 8);
0218         PMU_WRITE_COUNTER(val, 9);
0219     }
0220 
0221     BUG();
0222 }
0223 
0224 #define get_bit_offset(index, mask) (__ffs(mask) + (index))
0225 
0226 static void __m1_pmu_enable_counter(unsigned int index, bool en)
0227 {
0228     u64 val, bit;
0229 
0230     switch (index) {
0231     case 0 ... 7:
0232         bit = BIT(get_bit_offset(index, PMCR0_CNT_ENABLE_0_7));
0233         break;
0234     case 8 ... 9:
0235         bit = BIT(get_bit_offset(index - 8, PMCR0_CNT_ENABLE_8_9));
0236         break;
0237     default:
0238         BUG();
0239     }
0240 
0241     val = read_sysreg_s(SYS_IMP_APL_PMCR0_EL1);
0242 
0243     if (en)
0244         val |= bit;
0245     else
0246         val &= ~bit;
0247 
0248     write_sysreg_s(val, SYS_IMP_APL_PMCR0_EL1);
0249 }
0250 
0251 static void m1_pmu_enable_counter(unsigned int index)
0252 {
0253     __m1_pmu_enable_counter(index, true);
0254 }
0255 
0256 static void m1_pmu_disable_counter(unsigned int index)
0257 {
0258     __m1_pmu_enable_counter(index, false);
0259 }
0260 
0261 static void __m1_pmu_enable_counter_interrupt(unsigned int index, bool en)
0262 {
0263     u64 val, bit;
0264 
0265     switch (index) {
0266     case 0 ... 7:
0267         bit = BIT(get_bit_offset(index, PMCR0_PMI_ENABLE_0_7));
0268         break;
0269     case 8 ... 9:
0270         bit = BIT(get_bit_offset(index - 8, PMCR0_PMI_ENABLE_8_9));
0271         break;
0272     default:
0273         BUG();
0274     }
0275 
0276     val = read_sysreg_s(SYS_IMP_APL_PMCR0_EL1);
0277 
0278     if (en)
0279         val |= bit;
0280     else
0281         val &= ~bit;
0282 
0283     write_sysreg_s(val, SYS_IMP_APL_PMCR0_EL1);
0284 }
0285 
0286 static void m1_pmu_enable_counter_interrupt(unsigned int index)
0287 {
0288     __m1_pmu_enable_counter_interrupt(index, true);
0289 }
0290 
0291 static void m1_pmu_disable_counter_interrupt(unsigned int index)
0292 {
0293     __m1_pmu_enable_counter_interrupt(index, false);
0294 }
0295 
0296 static void m1_pmu_configure_counter(unsigned int index, u8 event,
0297                      bool user, bool kernel)
0298 {
0299     u64 val, user_bit, kernel_bit;
0300     int shift;
0301 
0302     switch (index) {
0303     case 0 ... 7:
0304         user_bit = BIT(get_bit_offset(index, PMCR1_COUNT_A64_EL0_0_7));
0305         kernel_bit = BIT(get_bit_offset(index, PMCR1_COUNT_A64_EL1_0_7));
0306         break;
0307     case 8 ... 9:
0308         user_bit = BIT(get_bit_offset(index - 8, PMCR1_COUNT_A64_EL0_8_9));
0309         kernel_bit = BIT(get_bit_offset(index - 8, PMCR1_COUNT_A64_EL1_8_9));
0310         break;
0311     default:
0312         BUG();
0313     }
0314 
0315     val = read_sysreg_s(SYS_IMP_APL_PMCR1_EL1);
0316 
0317     if (user)
0318         val |= user_bit;
0319     else
0320         val &= ~user_bit;
0321 
0322     if (kernel)
0323         val |= kernel_bit;
0324     else
0325         val &= ~kernel_bit;
0326 
0327     write_sysreg_s(val, SYS_IMP_APL_PMCR1_EL1);
0328 
0329     /*
0330      * Counters 0 and 1 have fixed events. For anything else,
0331      * place the event at the expected location in the relevant
0332      * register (PMESR0 holds the event configuration for counters
0333      * 2-5, resp. PMESR1 for counters 6-9).
0334      */
0335     switch (index) {
0336     case 0 ... 1:
0337         break;
0338     case 2 ... 5:
0339         shift = (index - 2) * 8;
0340         val = read_sysreg_s(SYS_IMP_APL_PMESR0_EL1);
0341         val &= ~((u64)0xff << shift);
0342         val |= (u64)event << shift;
0343         write_sysreg_s(val, SYS_IMP_APL_PMESR0_EL1);
0344         break;
0345     case 6 ... 9:
0346         shift = (index - 6) * 8;
0347         val = read_sysreg_s(SYS_IMP_APL_PMESR1_EL1);
0348         val &= ~((u64)0xff << shift);
0349         val |= (u64)event << shift;
0350         write_sysreg_s(val, SYS_IMP_APL_PMESR1_EL1);
0351         break;
0352     }
0353 }
0354 
0355 /* arm_pmu backend */
0356 static void m1_pmu_enable_event(struct perf_event *event)
0357 {
0358     bool user, kernel;
0359     u8 evt;
0360 
0361     evt = event->hw.config_base & M1_PMU_CFG_EVENT;
0362     user = event->hw.config_base & M1_PMU_CFG_COUNT_USER;
0363     kernel = event->hw.config_base & M1_PMU_CFG_COUNT_KERNEL;
0364 
0365     m1_pmu_disable_counter_interrupt(event->hw.idx);
0366     m1_pmu_disable_counter(event->hw.idx);
0367     isb();
0368 
0369     m1_pmu_configure_counter(event->hw.idx, evt, user, kernel);
0370     m1_pmu_enable_counter(event->hw.idx);
0371     m1_pmu_enable_counter_interrupt(event->hw.idx);
0372     isb();
0373 }
0374 
0375 static void m1_pmu_disable_event(struct perf_event *event)
0376 {
0377     m1_pmu_disable_counter_interrupt(event->hw.idx);
0378     m1_pmu_disable_counter(event->hw.idx);
0379     isb();
0380 }
0381 
0382 static irqreturn_t m1_pmu_handle_irq(struct arm_pmu *cpu_pmu)
0383 {
0384     struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
0385     struct pt_regs *regs;
0386     u64 overflow, state;
0387     int idx;
0388 
0389     overflow = read_sysreg_s(SYS_IMP_APL_PMSR_EL1);
0390     if (!overflow) {
0391         /* Spurious interrupt? */
0392         state = read_sysreg_s(SYS_IMP_APL_PMCR0_EL1);
0393         state &= ~PMCR0_IACT;
0394         write_sysreg_s(state, SYS_IMP_APL_PMCR0_EL1);
0395         isb();
0396         return IRQ_NONE;
0397     }
0398 
0399     cpu_pmu->stop(cpu_pmu);
0400 
0401     regs = get_irq_regs();
0402 
0403     for (idx = 0; idx < cpu_pmu->num_events; idx++) {
0404         struct perf_event *event = cpuc->events[idx];
0405         struct perf_sample_data data;
0406 
0407         if (!event)
0408             continue;
0409 
0410         armpmu_event_update(event);
0411         perf_sample_data_init(&data, 0, event->hw.last_period);
0412         if (!armpmu_event_set_period(event))
0413             continue;
0414 
0415         if (perf_event_overflow(event, &data, regs))
0416             m1_pmu_disable_event(event);
0417     }
0418 
0419     cpu_pmu->start(cpu_pmu);
0420 
0421     return IRQ_HANDLED;
0422 }
0423 
0424 static u64 m1_pmu_read_counter(struct perf_event *event)
0425 {
0426     return m1_pmu_read_hw_counter(event->hw.idx);
0427 }
0428 
0429 static void m1_pmu_write_counter(struct perf_event *event, u64 value)
0430 {
0431     m1_pmu_write_hw_counter(value, event->hw.idx);
0432     isb();
0433 }
0434 
0435 static int m1_pmu_get_event_idx(struct pmu_hw_events *cpuc,
0436                 struct perf_event *event)
0437 {
0438     unsigned long evtype = event->hw.config_base & M1_PMU_CFG_EVENT;
0439     unsigned long affinity = m1_pmu_event_affinity[evtype];
0440     int idx;
0441 
0442     /*
0443      * Place the event on the first free counter that can count
0444      * this event.
0445      *
0446      * We could do a better job if we had a view of all the events
0447      * counting on the PMU at any given time, and by placing the
0448      * most constraining events first.
0449      */
0450     for_each_set_bit(idx, &affinity, M1_PMU_NR_COUNTERS) {
0451         if (!test_and_set_bit(idx, cpuc->used_mask))
0452             return idx;
0453     }
0454 
0455     return -EAGAIN;
0456 }
0457 
0458 static void m1_pmu_clear_event_idx(struct pmu_hw_events *cpuc,
0459                    struct perf_event *event)
0460 {
0461     clear_bit(event->hw.idx, cpuc->used_mask);
0462 }
0463 
0464 static void __m1_pmu_set_mode(u8 mode)
0465 {
0466     u64 val;
0467 
0468     val = read_sysreg_s(SYS_IMP_APL_PMCR0_EL1);
0469     val &= ~(PMCR0_IMODE | PMCR0_IACT);
0470     val |= FIELD_PREP(PMCR0_IMODE, mode);
0471     write_sysreg_s(val, SYS_IMP_APL_PMCR0_EL1);
0472     isb();
0473 }
0474 
0475 static void m1_pmu_start(struct arm_pmu *cpu_pmu)
0476 {
0477     __m1_pmu_set_mode(PMCR0_IMODE_FIQ);
0478 }
0479 
0480 static void m1_pmu_stop(struct arm_pmu *cpu_pmu)
0481 {
0482     __m1_pmu_set_mode(PMCR0_IMODE_OFF);
0483 }
0484 
0485 static int m1_pmu_map_event(struct perf_event *event)
0486 {
0487     /*
0488      * Although the counters are 48bit wide, bit 47 is what
0489      * triggers the overflow interrupt. Advertise the counters
0490      * being 47bit wide to mimick the behaviour of the ARM PMU.
0491      */
0492     event->hw.flags |= ARMPMU_EVT_47BIT;
0493     return armpmu_map_event(event, &m1_pmu_perf_map, NULL, M1_PMU_CFG_EVENT);
0494 }
0495 
0496 static void m1_pmu_reset(void *info)
0497 {
0498     int i;
0499 
0500     __m1_pmu_set_mode(PMCR0_IMODE_OFF);
0501 
0502     for (i = 0; i < M1_PMU_NR_COUNTERS; i++) {
0503         m1_pmu_disable_counter(i);
0504         m1_pmu_disable_counter_interrupt(i);
0505         m1_pmu_write_hw_counter(0, i);
0506     }
0507 
0508     isb();
0509 }
0510 
0511 static int m1_pmu_set_event_filter(struct hw_perf_event *event,
0512                    struct perf_event_attr *attr)
0513 {
0514     unsigned long config_base = 0;
0515 
0516     if (!attr->exclude_guest)
0517         return -EINVAL;
0518     if (!attr->exclude_kernel)
0519         config_base |= M1_PMU_CFG_COUNT_KERNEL;
0520     if (!attr->exclude_user)
0521         config_base |= M1_PMU_CFG_COUNT_USER;
0522 
0523     event->config_base = config_base;
0524 
0525     return 0;
0526 }
0527 
0528 static int m1_pmu_init(struct arm_pmu *cpu_pmu)
0529 {
0530     cpu_pmu->handle_irq   = m1_pmu_handle_irq;
0531     cpu_pmu->enable       = m1_pmu_enable_event;
0532     cpu_pmu->disable      = m1_pmu_disable_event;
0533     cpu_pmu->read_counter     = m1_pmu_read_counter;
0534     cpu_pmu->write_counter    = m1_pmu_write_counter;
0535     cpu_pmu->get_event_idx    = m1_pmu_get_event_idx;
0536     cpu_pmu->clear_event_idx  = m1_pmu_clear_event_idx;
0537     cpu_pmu->start        = m1_pmu_start;
0538     cpu_pmu->stop         = m1_pmu_stop;
0539     cpu_pmu->map_event    = m1_pmu_map_event;
0540     cpu_pmu->reset        = m1_pmu_reset;
0541     cpu_pmu->set_event_filter = m1_pmu_set_event_filter;
0542 
0543     cpu_pmu->num_events   = M1_PMU_NR_COUNTERS;
0544     cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] = &m1_pmu_events_attr_group;
0545     cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] = &m1_pmu_format_attr_group;
0546     return 0;
0547 }
0548 
0549 /* Device driver gunk */
0550 static int m1_pmu_ice_init(struct arm_pmu *cpu_pmu)
0551 {
0552     cpu_pmu->name = "apple_icestorm_pmu";
0553     return m1_pmu_init(cpu_pmu);
0554 }
0555 
0556 static int m1_pmu_fire_init(struct arm_pmu *cpu_pmu)
0557 {
0558     cpu_pmu->name = "apple_firestorm_pmu";
0559     return m1_pmu_init(cpu_pmu);
0560 }
0561 
0562 static const struct of_device_id m1_pmu_of_device_ids[] = {
0563     { .compatible = "apple,icestorm-pmu",   .data = m1_pmu_ice_init, },
0564     { .compatible = "apple,firestorm-pmu",  .data = m1_pmu_fire_init, },
0565     { },
0566 };
0567 MODULE_DEVICE_TABLE(of, m1_pmu_of_device_ids);
0568 
0569 static int m1_pmu_device_probe(struct platform_device *pdev)
0570 {
0571     return arm_pmu_device_probe(pdev, m1_pmu_of_device_ids, NULL);
0572 }
0573 
0574 static struct platform_driver m1_pmu_driver = {
0575     .driver     = {
0576         .name           = "apple-m1-cpu-pmu",
0577         .of_match_table     = m1_pmu_of_device_ids,
0578         .suppress_bind_attrs    = true,
0579     },
0580     .probe      = m1_pmu_device_probe,
0581 };
0582 
0583 module_platform_driver(m1_pmu_driver);
0584 MODULE_LICENSE("GPL v2");