Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0+
0002 /*
0003  * Compaq Hot Plug Controller Driver
0004  *
0005  * Copyright (C) 1995,2001 Compaq Computer Corporation
0006  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
0007  * Copyright (C) 2001 IBM Corp.
0008  *
0009  * All rights reserved.
0010  *
0011  * Send feedback to <greg@kroah.com>
0012  *
0013  */
0014 
0015 #include <linux/module.h>
0016 #include <linux/kernel.h>
0017 #include <linux/types.h>
0018 #include <linux/slab.h>
0019 #include <linux/workqueue.h>
0020 #include <linux/interrupt.h>
0021 #include <linux/delay.h>
0022 #include <linux/wait.h>
0023 #include <linux/pci.h>
0024 #include <linux/pci_hotplug.h>
0025 #include <linux/kthread.h>
0026 #include "cpqphp.h"
0027 
0028 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
0029             u8 behind_bridge, struct resource_lists *resources);
0030 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
0031             u8 behind_bridge, struct resource_lists *resources);
0032 static void interrupt_event_handler(struct controller *ctrl);
0033 
0034 
0035 static struct task_struct *cpqhp_event_thread;
0036 static struct timer_list *pushbutton_pending;   /* = NULL */
0037 
0038 /* delay is in jiffies to wait for */
0039 static void long_delay(int delay)
0040 {
0041     /*
0042      * XXX(hch): if someone is bored please convert all callers
0043      * to call msleep_interruptible directly.  They really want
0044      * to specify timeouts in natural units and spend a lot of
0045      * effort converting them to jiffies..
0046      */
0047     msleep_interruptible(jiffies_to_msecs(delay));
0048 }
0049 
0050 
0051 /* FIXME: The following line needs to be somewhere else... */
0052 #define WRONG_BUS_FREQUENCY 0x07
0053 static u8 handle_switch_change(u8 change, struct controller *ctrl)
0054 {
0055     int hp_slot;
0056     u8 rc = 0;
0057     u16 temp_word;
0058     struct pci_func *func;
0059     struct event_info *taskInfo;
0060 
0061     if (!change)
0062         return 0;
0063 
0064     /* Switch Change */
0065     dbg("cpqsbd:  Switch interrupt received.\n");
0066 
0067     for (hp_slot = 0; hp_slot < 6; hp_slot++) {
0068         if (change & (0x1L << hp_slot)) {
0069             /*
0070              * this one changed.
0071              */
0072             func = cpqhp_slot_find(ctrl->bus,
0073                 (hp_slot + ctrl->slot_device_offset), 0);
0074 
0075             /* this is the structure that tells the worker thread
0076              * what to do
0077              */
0078             taskInfo = &(ctrl->event_queue[ctrl->next_event]);
0079             ctrl->next_event = (ctrl->next_event + 1) % 10;
0080             taskInfo->hp_slot = hp_slot;
0081 
0082             rc++;
0083 
0084             temp_word = ctrl->ctrl_int_comp >> 16;
0085             func->presence_save = (temp_word >> hp_slot) & 0x01;
0086             func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
0087 
0088             if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
0089                 /*
0090                  * Switch opened
0091                  */
0092 
0093                 func->switch_save = 0;
0094 
0095                 taskInfo->event_type = INT_SWITCH_OPEN;
0096             } else {
0097                 /*
0098                  * Switch closed
0099                  */
0100 
0101                 func->switch_save = 0x10;
0102 
0103                 taskInfo->event_type = INT_SWITCH_CLOSE;
0104             }
0105         }
0106     }
0107 
0108     return rc;
0109 }
0110 
0111 /**
0112  * cpqhp_find_slot - find the struct slot of given device
0113  * @ctrl: scan lots of this controller
0114  * @device: the device id to find
0115  */
0116 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
0117 {
0118     struct slot *slot = ctrl->slot;
0119 
0120     while (slot && (slot->device != device))
0121         slot = slot->next;
0122 
0123     return slot;
0124 }
0125 
0126 
0127 static u8 handle_presence_change(u16 change, struct controller *ctrl)
0128 {
0129     int hp_slot;
0130     u8 rc = 0;
0131     u8 temp_byte;
0132     u16 temp_word;
0133     struct pci_func *func;
0134     struct event_info *taskInfo;
0135     struct slot *p_slot;
0136 
0137     if (!change)
0138         return 0;
0139 
0140     /*
0141      * Presence Change
0142      */
0143     dbg("cpqsbd:  Presence/Notify input change.\n");
0144     dbg("         Changed bits are 0x%4.4x\n", change);
0145 
0146     for (hp_slot = 0; hp_slot < 6; hp_slot++) {
0147         if (change & (0x0101 << hp_slot)) {
0148             /*
0149              * this one changed.
0150              */
0151             func = cpqhp_slot_find(ctrl->bus,
0152                 (hp_slot + ctrl->slot_device_offset), 0);
0153 
0154             taskInfo = &(ctrl->event_queue[ctrl->next_event]);
0155             ctrl->next_event = (ctrl->next_event + 1) % 10;
0156             taskInfo->hp_slot = hp_slot;
0157 
0158             rc++;
0159 
0160             p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
0161             if (!p_slot)
0162                 return 0;
0163 
0164             /* If the switch closed, must be a button
0165              * If not in button mode, nevermind
0166              */
0167             if (func->switch_save && (ctrl->push_button == 1)) {
0168                 temp_word = ctrl->ctrl_int_comp >> 16;
0169                 temp_byte = (temp_word >> hp_slot) & 0x01;
0170                 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
0171 
0172                 if (temp_byte != func->presence_save) {
0173                     /*
0174                      * button Pressed (doesn't do anything)
0175                      */
0176                     dbg("hp_slot %d button pressed\n", hp_slot);
0177                     taskInfo->event_type = INT_BUTTON_PRESS;
0178                 } else {
0179                     /*
0180                      * button Released - TAKE ACTION!!!!
0181                      */
0182                     dbg("hp_slot %d button released\n", hp_slot);
0183                     taskInfo->event_type = INT_BUTTON_RELEASE;
0184 
0185                     /* Cancel if we are still blinking */
0186                     if ((p_slot->state == BLINKINGON_STATE)
0187                         || (p_slot->state == BLINKINGOFF_STATE)) {
0188                         taskInfo->event_type = INT_BUTTON_CANCEL;
0189                         dbg("hp_slot %d button cancel\n", hp_slot);
0190                     } else if ((p_slot->state == POWERON_STATE)
0191                            || (p_slot->state == POWEROFF_STATE)) {
0192                         /* info(msg_button_ignore, p_slot->number); */
0193                         taskInfo->event_type = INT_BUTTON_IGNORE;
0194                         dbg("hp_slot %d button ignore\n", hp_slot);
0195                     }
0196                 }
0197             } else {
0198                 /* Switch is open, assume a presence change
0199                  * Save the presence state
0200                  */
0201                 temp_word = ctrl->ctrl_int_comp >> 16;
0202                 func->presence_save = (temp_word >> hp_slot) & 0x01;
0203                 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
0204 
0205                 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
0206                     (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
0207                     /* Present */
0208                     taskInfo->event_type = INT_PRESENCE_ON;
0209                 } else {
0210                     /* Not Present */
0211                     taskInfo->event_type = INT_PRESENCE_OFF;
0212                 }
0213             }
0214         }
0215     }
0216 
0217     return rc;
0218 }
0219 
0220 
0221 static u8 handle_power_fault(u8 change, struct controller *ctrl)
0222 {
0223     int hp_slot;
0224     u8 rc = 0;
0225     struct pci_func *func;
0226     struct event_info *taskInfo;
0227 
0228     if (!change)
0229         return 0;
0230 
0231     /*
0232      * power fault
0233      */
0234 
0235     info("power fault interrupt\n");
0236 
0237     for (hp_slot = 0; hp_slot < 6; hp_slot++) {
0238         if (change & (0x01 << hp_slot)) {
0239             /*
0240              * this one changed.
0241              */
0242             func = cpqhp_slot_find(ctrl->bus,
0243                 (hp_slot + ctrl->slot_device_offset), 0);
0244 
0245             taskInfo = &(ctrl->event_queue[ctrl->next_event]);
0246             ctrl->next_event = (ctrl->next_event + 1) % 10;
0247             taskInfo->hp_slot = hp_slot;
0248 
0249             rc++;
0250 
0251             if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
0252                 /*
0253                  * power fault Cleared
0254                  */
0255                 func->status = 0x00;
0256 
0257                 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
0258             } else {
0259                 /*
0260                  * power fault
0261                  */
0262                 taskInfo->event_type = INT_POWER_FAULT;
0263 
0264                 if (ctrl->rev < 4) {
0265                     amber_LED_on(ctrl, hp_slot);
0266                     green_LED_off(ctrl, hp_slot);
0267                     set_SOGO(ctrl);
0268 
0269                     /* this is a fatal condition, we want
0270                      * to crash the machine to protect from
0271                      * data corruption. simulated_NMI
0272                      * shouldn't ever return */
0273                     /* FIXME
0274                     simulated_NMI(hp_slot, ctrl); */
0275 
0276                     /* The following code causes a software
0277                      * crash just in case simulated_NMI did
0278                      * return */
0279                     /*FIXME
0280                     panic(msg_power_fault); */
0281                 } else {
0282                     /* set power fault status for this board */
0283                     func->status = 0xFF;
0284                     info("power fault bit %x set\n", hp_slot);
0285                 }
0286             }
0287         }
0288     }
0289 
0290     return rc;
0291 }
0292 
0293 
0294 /**
0295  * sort_by_size - sort nodes on the list by their length, smallest first.
0296  * @head: list to sort
0297  */
0298 static int sort_by_size(struct pci_resource **head)
0299 {
0300     struct pci_resource *current_res;
0301     struct pci_resource *next_res;
0302     int out_of_order = 1;
0303 
0304     if (!(*head))
0305         return 1;
0306 
0307     if (!((*head)->next))
0308         return 0;
0309 
0310     while (out_of_order) {
0311         out_of_order = 0;
0312 
0313         /* Special case for swapping list head */
0314         if (((*head)->next) &&
0315             ((*head)->length > (*head)->next->length)) {
0316             out_of_order++;
0317             current_res = *head;
0318             *head = (*head)->next;
0319             current_res->next = (*head)->next;
0320             (*head)->next = current_res;
0321         }
0322 
0323         current_res = *head;
0324 
0325         while (current_res->next && current_res->next->next) {
0326             if (current_res->next->length > current_res->next->next->length) {
0327                 out_of_order++;
0328                 next_res = current_res->next;
0329                 current_res->next = current_res->next->next;
0330                 current_res = current_res->next;
0331                 next_res->next = current_res->next;
0332                 current_res->next = next_res;
0333             } else
0334                 current_res = current_res->next;
0335         }
0336     }  /* End of out_of_order loop */
0337 
0338     return 0;
0339 }
0340 
0341 
0342 /**
0343  * sort_by_max_size - sort nodes on the list by their length, largest first.
0344  * @head: list to sort
0345  */
0346 static int sort_by_max_size(struct pci_resource **head)
0347 {
0348     struct pci_resource *current_res;
0349     struct pci_resource *next_res;
0350     int out_of_order = 1;
0351 
0352     if (!(*head))
0353         return 1;
0354 
0355     if (!((*head)->next))
0356         return 0;
0357 
0358     while (out_of_order) {
0359         out_of_order = 0;
0360 
0361         /* Special case for swapping list head */
0362         if (((*head)->next) &&
0363             ((*head)->length < (*head)->next->length)) {
0364             out_of_order++;
0365             current_res = *head;
0366             *head = (*head)->next;
0367             current_res->next = (*head)->next;
0368             (*head)->next = current_res;
0369         }
0370 
0371         current_res = *head;
0372 
0373         while (current_res->next && current_res->next->next) {
0374             if (current_res->next->length < current_res->next->next->length) {
0375                 out_of_order++;
0376                 next_res = current_res->next;
0377                 current_res->next = current_res->next->next;
0378                 current_res = current_res->next;
0379                 next_res->next = current_res->next;
0380                 current_res->next = next_res;
0381             } else
0382                 current_res = current_res->next;
0383         }
0384     }  /* End of out_of_order loop */
0385 
0386     return 0;
0387 }
0388 
0389 
0390 /**
0391  * do_pre_bridge_resource_split - find node of resources that are unused
0392  * @head: new list head
0393  * @orig_head: original list head
0394  * @alignment: max node size (?)
0395  */
0396 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
0397                 struct pci_resource **orig_head, u32 alignment)
0398 {
0399     struct pci_resource *prevnode = NULL;
0400     struct pci_resource *node;
0401     struct pci_resource *split_node;
0402     u32 rc;
0403     u32 temp_dword;
0404     dbg("do_pre_bridge_resource_split\n");
0405 
0406     if (!(*head) || !(*orig_head))
0407         return NULL;
0408 
0409     rc = cpqhp_resource_sort_and_combine(head);
0410 
0411     if (rc)
0412         return NULL;
0413 
0414     if ((*head)->base != (*orig_head)->base)
0415         return NULL;
0416 
0417     if ((*head)->length == (*orig_head)->length)
0418         return NULL;
0419 
0420 
0421     /* If we got here, there the bridge requires some of the resource, but
0422      * we may be able to split some off of the front
0423      */
0424 
0425     node = *head;
0426 
0427     if (node->length & (alignment - 1)) {
0428         /* this one isn't an aligned length, so we'll make a new entry
0429          * and split it up.
0430          */
0431         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
0432 
0433         if (!split_node)
0434             return NULL;
0435 
0436         temp_dword = (node->length | (alignment-1)) + 1 - alignment;
0437 
0438         split_node->base = node->base;
0439         split_node->length = temp_dword;
0440 
0441         node->length -= temp_dword;
0442         node->base += split_node->length;
0443 
0444         /* Put it in the list */
0445         *head = split_node;
0446         split_node->next = node;
0447     }
0448 
0449     if (node->length < alignment)
0450         return NULL;
0451 
0452     /* Now unlink it */
0453     if (*head == node) {
0454         *head = node->next;
0455     } else {
0456         prevnode = *head;
0457         while (prevnode->next != node)
0458             prevnode = prevnode->next;
0459 
0460         prevnode->next = node->next;
0461     }
0462     node->next = NULL;
0463 
0464     return node;
0465 }
0466 
0467 
0468 /**
0469  * do_bridge_resource_split - find one node of resources that aren't in use
0470  * @head: list head
0471  * @alignment: max node size (?)
0472  */
0473 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
0474 {
0475     struct pci_resource *prevnode = NULL;
0476     struct pci_resource *node;
0477     u32 rc;
0478     u32 temp_dword;
0479 
0480     rc = cpqhp_resource_sort_and_combine(head);
0481 
0482     if (rc)
0483         return NULL;
0484 
0485     node = *head;
0486 
0487     while (node->next) {
0488         prevnode = node;
0489         node = node->next;
0490         kfree(prevnode);
0491     }
0492 
0493     if (node->length < alignment)
0494         goto error;
0495 
0496     if (node->base & (alignment - 1)) {
0497         /* Short circuit if adjusted size is too small */
0498         temp_dword = (node->base | (alignment-1)) + 1;
0499         if ((node->length - (temp_dword - node->base)) < alignment)
0500             goto error;
0501 
0502         node->length -= (temp_dword - node->base);
0503         node->base = temp_dword;
0504     }
0505 
0506     if (node->length & (alignment - 1))
0507         /* There's stuff in use after this node */
0508         goto error;
0509 
0510     return node;
0511 error:
0512     kfree(node);
0513     return NULL;
0514 }
0515 
0516 
0517 /**
0518  * get_io_resource - find first node of given size not in ISA aliasing window.
0519  * @head: list to search
0520  * @size: size of node to find, must be a power of two.
0521  *
0522  * Description: This function sorts the resource list by size and then
0523  * returns the first node of "size" length that is not in the ISA aliasing
0524  * window.  If it finds a node larger than "size" it will split it up.
0525  */
0526 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
0527 {
0528     struct pci_resource *prevnode;
0529     struct pci_resource *node;
0530     struct pci_resource *split_node;
0531     u32 temp_dword;
0532 
0533     if (!(*head))
0534         return NULL;
0535 
0536     if (cpqhp_resource_sort_and_combine(head))
0537         return NULL;
0538 
0539     if (sort_by_size(head))
0540         return NULL;
0541 
0542     for (node = *head; node; node = node->next) {
0543         if (node->length < size)
0544             continue;
0545 
0546         if (node->base & (size - 1)) {
0547             /* this one isn't base aligned properly
0548              * so we'll make a new entry and split it up
0549              */
0550             temp_dword = (node->base | (size-1)) + 1;
0551 
0552             /* Short circuit if adjusted size is too small */
0553             if ((node->length - (temp_dword - node->base)) < size)
0554                 continue;
0555 
0556             split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
0557 
0558             if (!split_node)
0559                 return NULL;
0560 
0561             split_node->base = node->base;
0562             split_node->length = temp_dword - node->base;
0563             node->base = temp_dword;
0564             node->length -= split_node->length;
0565 
0566             /* Put it in the list */
0567             split_node->next = node->next;
0568             node->next = split_node;
0569         } /* End of non-aligned base */
0570 
0571         /* Don't need to check if too small since we already did */
0572         if (node->length > size) {
0573             /* this one is longer than we need
0574              * so we'll make a new entry and split it up
0575              */
0576             split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
0577 
0578             if (!split_node)
0579                 return NULL;
0580 
0581             split_node->base = node->base + size;
0582             split_node->length = node->length - size;
0583             node->length = size;
0584 
0585             /* Put it in the list */
0586             split_node->next = node->next;
0587             node->next = split_node;
0588         }  /* End of too big on top end */
0589 
0590         /* For IO make sure it's not in the ISA aliasing space */
0591         if (node->base & 0x300L)
0592             continue;
0593 
0594         /* If we got here, then it is the right size
0595          * Now take it out of the list and break
0596          */
0597         if (*head == node) {
0598             *head = node->next;
0599         } else {
0600             prevnode = *head;
0601             while (prevnode->next != node)
0602                 prevnode = prevnode->next;
0603 
0604             prevnode->next = node->next;
0605         }
0606         node->next = NULL;
0607         break;
0608     }
0609 
0610     return node;
0611 }
0612 
0613 
0614 /**
0615  * get_max_resource - get largest node which has at least the given size.
0616  * @head: the list to search the node in
0617  * @size: the minimum size of the node to find
0618  *
0619  * Description: Gets the largest node that is at least "size" big from the
0620  * list pointed to by head.  It aligns the node on top and bottom
0621  * to "size" alignment before returning it.
0622  */
0623 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
0624 {
0625     struct pci_resource *max;
0626     struct pci_resource *temp;
0627     struct pci_resource *split_node;
0628     u32 temp_dword;
0629 
0630     if (cpqhp_resource_sort_and_combine(head))
0631         return NULL;
0632 
0633     if (sort_by_max_size(head))
0634         return NULL;
0635 
0636     for (max = *head; max; max = max->next) {
0637         /* If not big enough we could probably just bail,
0638          * instead we'll continue to the next.
0639          */
0640         if (max->length < size)
0641             continue;
0642 
0643         if (max->base & (size - 1)) {
0644             /* this one isn't base aligned properly
0645              * so we'll make a new entry and split it up
0646              */
0647             temp_dword = (max->base | (size-1)) + 1;
0648 
0649             /* Short circuit if adjusted size is too small */
0650             if ((max->length - (temp_dword - max->base)) < size)
0651                 continue;
0652 
0653             split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
0654 
0655             if (!split_node)
0656                 return NULL;
0657 
0658             split_node->base = max->base;
0659             split_node->length = temp_dword - max->base;
0660             max->base = temp_dword;
0661             max->length -= split_node->length;
0662 
0663             split_node->next = max->next;
0664             max->next = split_node;
0665         }
0666 
0667         if ((max->base + max->length) & (size - 1)) {
0668             /* this one isn't end aligned properly at the top
0669              * so we'll make a new entry and split it up
0670              */
0671             split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
0672 
0673             if (!split_node)
0674                 return NULL;
0675             temp_dword = ((max->base + max->length) & ~(size - 1));
0676             split_node->base = temp_dword;
0677             split_node->length = max->length + max->base
0678                          - split_node->base;
0679             max->length -= split_node->length;
0680 
0681             split_node->next = max->next;
0682             max->next = split_node;
0683         }
0684 
0685         /* Make sure it didn't shrink too much when we aligned it */
0686         if (max->length < size)
0687             continue;
0688 
0689         /* Now take it out of the list */
0690         temp = *head;
0691         if (temp == max) {
0692             *head = max->next;
0693         } else {
0694             while (temp && temp->next != max)
0695                 temp = temp->next;
0696 
0697             if (temp)
0698                 temp->next = max->next;
0699         }
0700 
0701         max->next = NULL;
0702         break;
0703     }
0704 
0705     return max;
0706 }
0707 
0708 
0709 /**
0710  * get_resource - find resource of given size and split up larger ones.
0711  * @head: the list to search for resources
0712  * @size: the size limit to use
0713  *
0714  * Description: This function sorts the resource list by size and then
0715  * returns the first node of "size" length.  If it finds a node
0716  * larger than "size" it will split it up.
0717  *
0718  * size must be a power of two.
0719  */
0720 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
0721 {
0722     struct pci_resource *prevnode;
0723     struct pci_resource *node;
0724     struct pci_resource *split_node;
0725     u32 temp_dword;
0726 
0727     if (cpqhp_resource_sort_and_combine(head))
0728         return NULL;
0729 
0730     if (sort_by_size(head))
0731         return NULL;
0732 
0733     for (node = *head; node; node = node->next) {
0734         dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
0735             __func__, size, node, node->base, node->length);
0736         if (node->length < size)
0737             continue;
0738 
0739         if (node->base & (size - 1)) {
0740             dbg("%s: not aligned\n", __func__);
0741             /* this one isn't base aligned properly
0742              * so we'll make a new entry and split it up
0743              */
0744             temp_dword = (node->base | (size-1)) + 1;
0745 
0746             /* Short circuit if adjusted size is too small */
0747             if ((node->length - (temp_dword - node->base)) < size)
0748                 continue;
0749 
0750             split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
0751 
0752             if (!split_node)
0753                 return NULL;
0754 
0755             split_node->base = node->base;
0756             split_node->length = temp_dword - node->base;
0757             node->base = temp_dword;
0758             node->length -= split_node->length;
0759 
0760             split_node->next = node->next;
0761             node->next = split_node;
0762         } /* End of non-aligned base */
0763 
0764         /* Don't need to check if too small since we already did */
0765         if (node->length > size) {
0766             dbg("%s: too big\n", __func__);
0767             /* this one is longer than we need
0768              * so we'll make a new entry and split it up
0769              */
0770             split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
0771 
0772             if (!split_node)
0773                 return NULL;
0774 
0775             split_node->base = node->base + size;
0776             split_node->length = node->length - size;
0777             node->length = size;
0778 
0779             /* Put it in the list */
0780             split_node->next = node->next;
0781             node->next = split_node;
0782         }  /* End of too big on top end */
0783 
0784         dbg("%s: got one!!!\n", __func__);
0785         /* If we got here, then it is the right size
0786          * Now take it out of the list */
0787         if (*head == node) {
0788             *head = node->next;
0789         } else {
0790             prevnode = *head;
0791             while (prevnode->next != node)
0792                 prevnode = prevnode->next;
0793 
0794             prevnode->next = node->next;
0795         }
0796         node->next = NULL;
0797         break;
0798     }
0799     return node;
0800 }
0801 
0802 
0803 /**
0804  * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
0805  * @head: the list to sort and clean up
0806  *
0807  * Description: Sorts all of the nodes in the list in ascending order by
0808  * their base addresses.  Also does garbage collection by
0809  * combining adjacent nodes.
0810  *
0811  * Returns %0 if success.
0812  */
0813 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
0814 {
0815     struct pci_resource *node1;
0816     struct pci_resource *node2;
0817     int out_of_order = 1;
0818 
0819     dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
0820 
0821     if (!(*head))
0822         return 1;
0823 
0824     dbg("*head->next = %p\n", (*head)->next);
0825 
0826     if (!(*head)->next)
0827         return 0;   /* only one item on the list, already sorted! */
0828 
0829     dbg("*head->base = 0x%x\n", (*head)->base);
0830     dbg("*head->next->base = 0x%x\n", (*head)->next->base);
0831     while (out_of_order) {
0832         out_of_order = 0;
0833 
0834         /* Special case for swapping list head */
0835         if (((*head)->next) &&
0836             ((*head)->base > (*head)->next->base)) {
0837             node1 = *head;
0838             (*head) = (*head)->next;
0839             node1->next = (*head)->next;
0840             (*head)->next = node1;
0841             out_of_order++;
0842         }
0843 
0844         node1 = (*head);
0845 
0846         while (node1->next && node1->next->next) {
0847             if (node1->next->base > node1->next->next->base) {
0848                 out_of_order++;
0849                 node2 = node1->next;
0850                 node1->next = node1->next->next;
0851                 node1 = node1->next;
0852                 node2->next = node1->next;
0853                 node1->next = node2;
0854             } else
0855                 node1 = node1->next;
0856         }
0857     }  /* End of out_of_order loop */
0858 
0859     node1 = *head;
0860 
0861     while (node1 && node1->next) {
0862         if ((node1->base + node1->length) == node1->next->base) {
0863             /* Combine */
0864             dbg("8..\n");
0865             node1->length += node1->next->length;
0866             node2 = node1->next;
0867             node1->next = node1->next->next;
0868             kfree(node2);
0869         } else
0870             node1 = node1->next;
0871     }
0872 
0873     return 0;
0874 }
0875 
0876 
0877 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
0878 {
0879     struct controller *ctrl = data;
0880     u8 schedule_flag = 0;
0881     u8 reset;
0882     u16 misc;
0883     u32 Diff;
0884 
0885 
0886     misc = readw(ctrl->hpc_reg + MISC);
0887     /*
0888      * Check to see if it was our interrupt
0889      */
0890     if (!(misc & 0x000C))
0891         return IRQ_NONE;
0892 
0893     if (misc & 0x0004) {
0894         /*
0895          * Serial Output interrupt Pending
0896          */
0897 
0898         /* Clear the interrupt */
0899         misc |= 0x0004;
0900         writew(misc, ctrl->hpc_reg + MISC);
0901 
0902         /* Read to clear posted writes */
0903         misc = readw(ctrl->hpc_reg + MISC);
0904 
0905         dbg("%s - waking up\n", __func__);
0906         wake_up_interruptible(&ctrl->queue);
0907     }
0908 
0909     if (misc & 0x0008) {
0910         /* General-interrupt-input interrupt Pending */
0911         Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
0912 
0913         ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
0914 
0915         /* Clear the interrupt */
0916         writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
0917 
0918         /* Read it back to clear any posted writes */
0919         readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
0920 
0921         if (!Diff)
0922             /* Clear all interrupts */
0923             writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
0924 
0925         schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
0926         schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
0927         schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
0928     }
0929 
0930     reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
0931     if (reset & 0x40) {
0932         /* Bus reset has completed */
0933         reset &= 0xCF;
0934         writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
0935         reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
0936         wake_up_interruptible(&ctrl->queue);
0937     }
0938 
0939     if (schedule_flag) {
0940         wake_up_process(cpqhp_event_thread);
0941         dbg("Waking even thread");
0942     }
0943     return IRQ_HANDLED;
0944 }
0945 
0946 
0947 /**
0948  * cpqhp_slot_create - Creates a node and adds it to the proper bus.
0949  * @busnumber: bus where new node is to be located
0950  *
0951  * Returns pointer to the new node or %NULL if unsuccessful.
0952  */
0953 struct pci_func *cpqhp_slot_create(u8 busnumber)
0954 {
0955     struct pci_func *new_slot;
0956     struct pci_func *next;
0957 
0958     new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
0959     if (new_slot == NULL)
0960         return new_slot;
0961 
0962     new_slot->next = NULL;
0963     new_slot->configured = 1;
0964 
0965     if (cpqhp_slot_list[busnumber] == NULL) {
0966         cpqhp_slot_list[busnumber] = new_slot;
0967     } else {
0968         next = cpqhp_slot_list[busnumber];
0969         while (next->next != NULL)
0970             next = next->next;
0971         next->next = new_slot;
0972     }
0973     return new_slot;
0974 }
0975 
0976 
0977 /**
0978  * slot_remove - Removes a node from the linked list of slots.
0979  * @old_slot: slot to remove
0980  *
0981  * Returns %0 if successful, !0 otherwise.
0982  */
0983 static int slot_remove(struct pci_func *old_slot)
0984 {
0985     struct pci_func *next;
0986 
0987     if (old_slot == NULL)
0988         return 1;
0989 
0990     next = cpqhp_slot_list[old_slot->bus];
0991     if (next == NULL)
0992         return 1;
0993 
0994     if (next == old_slot) {
0995         cpqhp_slot_list[old_slot->bus] = old_slot->next;
0996         cpqhp_destroy_board_resources(old_slot);
0997         kfree(old_slot);
0998         return 0;
0999     }
1000 
1001     while ((next->next != old_slot) && (next->next != NULL))
1002         next = next->next;
1003 
1004     if (next->next == old_slot) {
1005         next->next = old_slot->next;
1006         cpqhp_destroy_board_resources(old_slot);
1007         kfree(old_slot);
1008         return 0;
1009     } else
1010         return 2;
1011 }
1012 
1013 
1014 /**
1015  * bridge_slot_remove - Removes a node from the linked list of slots.
1016  * @bridge: bridge to remove
1017  *
1018  * Returns %0 if successful, !0 otherwise.
1019  */
1020 static int bridge_slot_remove(struct pci_func *bridge)
1021 {
1022     u8 subordinateBus, secondaryBus;
1023     u8 tempBus;
1024     struct pci_func *next;
1025 
1026     secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1027     subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1028 
1029     for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1030         next = cpqhp_slot_list[tempBus];
1031 
1032         while (!slot_remove(next))
1033             next = cpqhp_slot_list[tempBus];
1034     }
1035 
1036     next = cpqhp_slot_list[bridge->bus];
1037 
1038     if (next == NULL)
1039         return 1;
1040 
1041     if (next == bridge) {
1042         cpqhp_slot_list[bridge->bus] = bridge->next;
1043         goto out;
1044     }
1045 
1046     while ((next->next != bridge) && (next->next != NULL))
1047         next = next->next;
1048 
1049     if (next->next != bridge)
1050         return 2;
1051     next->next = bridge->next;
1052 out:
1053     kfree(bridge);
1054     return 0;
1055 }
1056 
1057 
1058 /**
1059  * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1060  * @bus: bus to find
1061  * @device: device to find
1062  * @index: is %0 for first function found, %1 for the second...
1063  *
1064  * Returns pointer to the node if successful, %NULL otherwise.
1065  */
1066 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1067 {
1068     int found = -1;
1069     struct pci_func *func;
1070 
1071     func = cpqhp_slot_list[bus];
1072 
1073     if ((func == NULL) || ((func->device == device) && (index == 0)))
1074         return func;
1075 
1076     if (func->device == device)
1077         found++;
1078 
1079     while (func->next != NULL) {
1080         func = func->next;
1081 
1082         if (func->device == device)
1083             found++;
1084 
1085         if (found == index)
1086             return func;
1087     }
1088 
1089     return NULL;
1090 }
1091 
1092 
1093 /* DJZ: I don't think is_bridge will work as is.
1094  * FIXME */
1095 static int is_bridge(struct pci_func *func)
1096 {
1097     /* Check the header type */
1098     if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1099         return 1;
1100     else
1101         return 0;
1102 }
1103 
1104 
1105 /**
1106  * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1107  * @ctrl: controller to change frequency/mode for.
1108  * @adapter_speed: the speed of the adapter we want to match.
1109  * @hp_slot: the slot number where the adapter is installed.
1110  *
1111  * Returns %0 if we successfully change frequency and/or mode to match the
1112  * adapter speed.
1113  */
1114 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1115 {
1116     struct slot *slot;
1117     struct pci_bus *bus = ctrl->pci_bus;
1118     u8 reg;
1119     u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1120     u16 reg16;
1121     u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1122 
1123     if (bus->cur_bus_speed == adapter_speed)
1124         return 0;
1125 
1126     /* We don't allow freq/mode changes if we find another adapter running
1127      * in another slot on this controller
1128      */
1129     for (slot = ctrl->slot; slot; slot = slot->next) {
1130         if (slot->device == (hp_slot + ctrl->slot_device_offset))
1131             continue;
1132         if (get_presence_status(ctrl, slot) == 0)
1133             continue;
1134         /* If another adapter is running on the same segment but at a
1135          * lower speed/mode, we allow the new adapter to function at
1136          * this rate if supported
1137          */
1138         if (bus->cur_bus_speed < adapter_speed)
1139             return 0;
1140 
1141         return 1;
1142     }
1143 
1144     /* If the controller doesn't support freq/mode changes and the
1145      * controller is running at a higher mode, we bail
1146      */
1147     if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1148         return 1;
1149 
1150     /* But we allow the adapter to run at a lower rate if possible */
1151     if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1152         return 0;
1153 
1154     /* We try to set the max speed supported by both the adapter and
1155      * controller
1156      */
1157     if (bus->max_bus_speed < adapter_speed) {
1158         if (bus->cur_bus_speed == bus->max_bus_speed)
1159             return 0;
1160         adapter_speed = bus->max_bus_speed;
1161     }
1162 
1163     writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1164     writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1165 
1166     set_SOGO(ctrl);
1167     wait_for_ctrl_irq(ctrl);
1168 
1169     if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1170         reg = 0xF5;
1171     else
1172         reg = 0xF4;
1173     pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1174 
1175     reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1176     reg16 &= ~0x000F;
1177     switch (adapter_speed) {
1178         case(PCI_SPEED_133MHz_PCIX):
1179             reg = 0x75;
1180             reg16 |= 0xB;
1181             break;
1182         case(PCI_SPEED_100MHz_PCIX):
1183             reg = 0x74;
1184             reg16 |= 0xA;
1185             break;
1186         case(PCI_SPEED_66MHz_PCIX):
1187             reg = 0x73;
1188             reg16 |= 0x9;
1189             break;
1190         case(PCI_SPEED_66MHz):
1191             reg = 0x73;
1192             reg16 |= 0x1;
1193             break;
1194         default: /* 33MHz PCI 2.2 */
1195             reg = 0x71;
1196             break;
1197 
1198     }
1199     reg16 |= 0xB << 12;
1200     writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1201 
1202     mdelay(5);
1203 
1204     /* Re-enable interrupts */
1205     writel(0, ctrl->hpc_reg + INT_MASK);
1206 
1207     pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1208 
1209     /* Restart state machine */
1210     reg = ~0xF;
1211     pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1212     pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1213 
1214     /* Only if mode change...*/
1215     if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1216         ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1217             set_SOGO(ctrl);
1218 
1219     wait_for_ctrl_irq(ctrl);
1220     mdelay(1100);
1221 
1222     /* Restore LED/Slot state */
1223     writel(leds, ctrl->hpc_reg + LED_CONTROL);
1224     writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1225 
1226     set_SOGO(ctrl);
1227     wait_for_ctrl_irq(ctrl);
1228 
1229     bus->cur_bus_speed = adapter_speed;
1230     slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1231 
1232     info("Successfully changed frequency/mode for adapter in slot %d\n",
1233             slot->number);
1234     return 0;
1235 }
1236 
1237 /* the following routines constitute the bulk of the
1238  * hotplug controller logic
1239  */
1240 
1241 
1242 /**
1243  * board_replaced - Called after a board has been replaced in the system.
1244  * @func: PCI device/function information
1245  * @ctrl: hotplug controller
1246  *
1247  * This is only used if we don't have resources for hot add.
1248  * Turns power on for the board.
1249  * Checks to see if board is the same.
1250  * If board is same, reconfigures it.
1251  * If board isn't same, turns it back off.
1252  */
1253 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1254 {
1255     struct pci_bus *bus = ctrl->pci_bus;
1256     u8 hp_slot;
1257     u8 temp_byte;
1258     u8 adapter_speed;
1259     u32 rc = 0;
1260 
1261     hp_slot = func->device - ctrl->slot_device_offset;
1262 
1263     /*
1264      * The switch is open.
1265      */
1266     if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1267         rc = INTERLOCK_OPEN;
1268     /*
1269      * The board is already on
1270      */
1271     else if (is_slot_enabled(ctrl, hp_slot))
1272         rc = CARD_FUNCTIONING;
1273     else {
1274         mutex_lock(&ctrl->crit_sect);
1275 
1276         /* turn on board without attaching to the bus */
1277         enable_slot_power(ctrl, hp_slot);
1278 
1279         set_SOGO(ctrl);
1280 
1281         /* Wait for SOBS to be unset */
1282         wait_for_ctrl_irq(ctrl);
1283 
1284         /* Change bits in slot power register to force another shift out
1285          * NOTE: this is to work around the timer bug */
1286         temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1287         writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1288         writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1289 
1290         set_SOGO(ctrl);
1291 
1292         /* Wait for SOBS to be unset */
1293         wait_for_ctrl_irq(ctrl);
1294 
1295         adapter_speed = get_adapter_speed(ctrl, hp_slot);
1296         if (bus->cur_bus_speed != adapter_speed)
1297             if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1298                 rc = WRONG_BUS_FREQUENCY;
1299 
1300         /* turn off board without attaching to the bus */
1301         disable_slot_power(ctrl, hp_slot);
1302 
1303         set_SOGO(ctrl);
1304 
1305         /* Wait for SOBS to be unset */
1306         wait_for_ctrl_irq(ctrl);
1307 
1308         mutex_unlock(&ctrl->crit_sect);
1309 
1310         if (rc)
1311             return rc;
1312 
1313         mutex_lock(&ctrl->crit_sect);
1314 
1315         slot_enable(ctrl, hp_slot);
1316         green_LED_blink(ctrl, hp_slot);
1317 
1318         amber_LED_off(ctrl, hp_slot);
1319 
1320         set_SOGO(ctrl);
1321 
1322         /* Wait for SOBS to be unset */
1323         wait_for_ctrl_irq(ctrl);
1324 
1325         mutex_unlock(&ctrl->crit_sect);
1326 
1327         /* Wait for ~1 second because of hot plug spec */
1328         long_delay(1*HZ);
1329 
1330         /* Check for a power fault */
1331         if (func->status == 0xFF) {
1332             /* power fault occurred, but it was benign */
1333             rc = POWER_FAILURE;
1334             func->status = 0;
1335         } else
1336             rc = cpqhp_valid_replace(ctrl, func);
1337 
1338         if (!rc) {
1339             /* It must be the same board */
1340 
1341             rc = cpqhp_configure_board(ctrl, func);
1342 
1343             /* If configuration fails, turn it off
1344              * Get slot won't work for devices behind
1345              * bridges, but in this case it will always be
1346              * called for the "base" bus/dev/func of an
1347              * adapter.
1348              */
1349 
1350             mutex_lock(&ctrl->crit_sect);
1351 
1352             amber_LED_on(ctrl, hp_slot);
1353             green_LED_off(ctrl, hp_slot);
1354             slot_disable(ctrl, hp_slot);
1355 
1356             set_SOGO(ctrl);
1357 
1358             /* Wait for SOBS to be unset */
1359             wait_for_ctrl_irq(ctrl);
1360 
1361             mutex_unlock(&ctrl->crit_sect);
1362 
1363             if (rc)
1364                 return rc;
1365             else
1366                 return 1;
1367 
1368         } else {
1369             /* Something is wrong
1370 
1371              * Get slot won't work for devices behind bridges, but
1372              * in this case it will always be called for the "base"
1373              * bus/dev/func of an adapter.
1374              */
1375 
1376             mutex_lock(&ctrl->crit_sect);
1377 
1378             amber_LED_on(ctrl, hp_slot);
1379             green_LED_off(ctrl, hp_slot);
1380             slot_disable(ctrl, hp_slot);
1381 
1382             set_SOGO(ctrl);
1383 
1384             /* Wait for SOBS to be unset */
1385             wait_for_ctrl_irq(ctrl);
1386 
1387             mutex_unlock(&ctrl->crit_sect);
1388         }
1389 
1390     }
1391     return rc;
1392 
1393 }
1394 
1395 
1396 /**
1397  * board_added - Called after a board has been added to the system.
1398  * @func: PCI device/function info
1399  * @ctrl: hotplug controller
1400  *
1401  * Turns power on for the board.
1402  * Configures board.
1403  */
1404 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1405 {
1406     u8 hp_slot;
1407     u8 temp_byte;
1408     u8 adapter_speed;
1409     int index;
1410     u32 temp_register = 0xFFFFFFFF;
1411     u32 rc = 0;
1412     struct pci_func *new_slot = NULL;
1413     struct pci_bus *bus = ctrl->pci_bus;
1414     struct resource_lists res_lists;
1415 
1416     hp_slot = func->device - ctrl->slot_device_offset;
1417     dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1418         __func__, func->device, ctrl->slot_device_offset, hp_slot);
1419 
1420     mutex_lock(&ctrl->crit_sect);
1421 
1422     /* turn on board without attaching to the bus */
1423     enable_slot_power(ctrl, hp_slot);
1424 
1425     set_SOGO(ctrl);
1426 
1427     /* Wait for SOBS to be unset */
1428     wait_for_ctrl_irq(ctrl);
1429 
1430     /* Change bits in slot power register to force another shift out
1431      * NOTE: this is to work around the timer bug
1432      */
1433     temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1434     writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1435     writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1436 
1437     set_SOGO(ctrl);
1438 
1439     /* Wait for SOBS to be unset */
1440     wait_for_ctrl_irq(ctrl);
1441 
1442     adapter_speed = get_adapter_speed(ctrl, hp_slot);
1443     if (bus->cur_bus_speed != adapter_speed)
1444         if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1445             rc = WRONG_BUS_FREQUENCY;
1446 
1447     /* turn off board without attaching to the bus */
1448     disable_slot_power(ctrl, hp_slot);
1449 
1450     set_SOGO(ctrl);
1451 
1452     /* Wait for SOBS to be unset */
1453     wait_for_ctrl_irq(ctrl);
1454 
1455     mutex_unlock(&ctrl->crit_sect);
1456 
1457     if (rc)
1458         return rc;
1459 
1460     cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1461 
1462     /* turn on board and blink green LED */
1463 
1464     dbg("%s: before down\n", __func__);
1465     mutex_lock(&ctrl->crit_sect);
1466     dbg("%s: after down\n", __func__);
1467 
1468     dbg("%s: before slot_enable\n", __func__);
1469     slot_enable(ctrl, hp_slot);
1470 
1471     dbg("%s: before green_LED_blink\n", __func__);
1472     green_LED_blink(ctrl, hp_slot);
1473 
1474     dbg("%s: before amber_LED_blink\n", __func__);
1475     amber_LED_off(ctrl, hp_slot);
1476 
1477     dbg("%s: before set_SOGO\n", __func__);
1478     set_SOGO(ctrl);
1479 
1480     /* Wait for SOBS to be unset */
1481     dbg("%s: before wait_for_ctrl_irq\n", __func__);
1482     wait_for_ctrl_irq(ctrl);
1483     dbg("%s: after wait_for_ctrl_irq\n", __func__);
1484 
1485     dbg("%s: before up\n", __func__);
1486     mutex_unlock(&ctrl->crit_sect);
1487     dbg("%s: after up\n", __func__);
1488 
1489     /* Wait for ~1 second because of hot plug spec */
1490     dbg("%s: before long_delay\n", __func__);
1491     long_delay(1*HZ);
1492     dbg("%s: after long_delay\n", __func__);
1493 
1494     dbg("%s: func status = %x\n", __func__, func->status);
1495     /* Check for a power fault */
1496     if (func->status == 0xFF) {
1497         /* power fault occurred, but it was benign */
1498         temp_register = 0xFFFFFFFF;
1499         dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1500         rc = POWER_FAILURE;
1501         func->status = 0;
1502     } else {
1503         /* Get vendor/device ID u32 */
1504         ctrl->pci_bus->number = func->bus;
1505         rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1506         dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1507         dbg("%s: temp_register is %x\n", __func__, temp_register);
1508 
1509         if (rc != 0) {
1510             /* Something's wrong here */
1511             temp_register = 0xFFFFFFFF;
1512             dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1513         }
1514         /* Preset return code.  It will be changed later if things go okay. */
1515         rc = NO_ADAPTER_PRESENT;
1516     }
1517 
1518     /* All F's is an empty slot or an invalid board */
1519     if (temp_register != 0xFFFFFFFF) {
1520         res_lists.io_head = ctrl->io_head;
1521         res_lists.mem_head = ctrl->mem_head;
1522         res_lists.p_mem_head = ctrl->p_mem_head;
1523         res_lists.bus_head = ctrl->bus_head;
1524         res_lists.irqs = NULL;
1525 
1526         rc = configure_new_device(ctrl, func, 0, &res_lists);
1527 
1528         dbg("%s: back from configure_new_device\n", __func__);
1529         ctrl->io_head = res_lists.io_head;
1530         ctrl->mem_head = res_lists.mem_head;
1531         ctrl->p_mem_head = res_lists.p_mem_head;
1532         ctrl->bus_head = res_lists.bus_head;
1533 
1534         cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1535         cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1536         cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1537         cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1538 
1539         if (rc) {
1540             mutex_lock(&ctrl->crit_sect);
1541 
1542             amber_LED_on(ctrl, hp_slot);
1543             green_LED_off(ctrl, hp_slot);
1544             slot_disable(ctrl, hp_slot);
1545 
1546             set_SOGO(ctrl);
1547 
1548             /* Wait for SOBS to be unset */
1549             wait_for_ctrl_irq(ctrl);
1550 
1551             mutex_unlock(&ctrl->crit_sect);
1552             return rc;
1553         } else {
1554             cpqhp_save_slot_config(ctrl, func);
1555         }
1556 
1557 
1558         func->status = 0;
1559         func->switch_save = 0x10;
1560         func->is_a_board = 0x01;
1561 
1562         /* next, we will instantiate the linux pci_dev structures (with
1563          * appropriate driver notification, if already present) */
1564         dbg("%s: configure linux pci_dev structure\n", __func__);
1565         index = 0;
1566         do {
1567             new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1568             if (new_slot && !new_slot->pci_dev)
1569                 cpqhp_configure_device(ctrl, new_slot);
1570         } while (new_slot);
1571 
1572         mutex_lock(&ctrl->crit_sect);
1573 
1574         green_LED_on(ctrl, hp_slot);
1575 
1576         set_SOGO(ctrl);
1577 
1578         /* Wait for SOBS to be unset */
1579         wait_for_ctrl_irq(ctrl);
1580 
1581         mutex_unlock(&ctrl->crit_sect);
1582     } else {
1583         mutex_lock(&ctrl->crit_sect);
1584 
1585         amber_LED_on(ctrl, hp_slot);
1586         green_LED_off(ctrl, hp_slot);
1587         slot_disable(ctrl, hp_slot);
1588 
1589         set_SOGO(ctrl);
1590 
1591         /* Wait for SOBS to be unset */
1592         wait_for_ctrl_irq(ctrl);
1593 
1594         mutex_unlock(&ctrl->crit_sect);
1595 
1596         return rc;
1597     }
1598     return 0;
1599 }
1600 
1601 
1602 /**
1603  * remove_board - Turns off slot and LEDs
1604  * @func: PCI device/function info
1605  * @replace_flag: whether replacing or adding a new device
1606  * @ctrl: target controller
1607  */
1608 static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1609 {
1610     int index;
1611     u8 skip = 0;
1612     u8 device;
1613     u8 hp_slot;
1614     u8 temp_byte;
1615     struct resource_lists res_lists;
1616     struct pci_func *temp_func;
1617 
1618     if (cpqhp_unconfigure_device(func))
1619         return 1;
1620 
1621     device = func->device;
1622 
1623     hp_slot = func->device - ctrl->slot_device_offset;
1624     dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1625 
1626     /* When we get here, it is safe to change base address registers.
1627      * We will attempt to save the base address register lengths */
1628     if (replace_flag || !ctrl->add_support)
1629         cpqhp_save_base_addr_length(ctrl, func);
1630     else if (!func->bus_head && !func->mem_head &&
1631          !func->p_mem_head && !func->io_head) {
1632         /* Here we check to see if we've saved any of the board's
1633          * resources already.  If so, we'll skip the attempt to
1634          * determine what's being used. */
1635         index = 0;
1636         temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1637         while (temp_func) {
1638             if (temp_func->bus_head || temp_func->mem_head
1639                 || temp_func->p_mem_head || temp_func->io_head) {
1640                 skip = 1;
1641                 break;
1642             }
1643             temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1644         }
1645 
1646         if (!skip)
1647             cpqhp_save_used_resources(ctrl, func);
1648     }
1649     /* Change status to shutdown */
1650     if (func->is_a_board)
1651         func->status = 0x01;
1652     func->configured = 0;
1653 
1654     mutex_lock(&ctrl->crit_sect);
1655 
1656     green_LED_off(ctrl, hp_slot);
1657     slot_disable(ctrl, hp_slot);
1658 
1659     set_SOGO(ctrl);
1660 
1661     /* turn off SERR for slot */
1662     temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1663     temp_byte &= ~(0x01 << hp_slot);
1664     writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1665 
1666     /* Wait for SOBS to be unset */
1667     wait_for_ctrl_irq(ctrl);
1668 
1669     mutex_unlock(&ctrl->crit_sect);
1670 
1671     if (!replace_flag && ctrl->add_support) {
1672         while (func) {
1673             res_lists.io_head = ctrl->io_head;
1674             res_lists.mem_head = ctrl->mem_head;
1675             res_lists.p_mem_head = ctrl->p_mem_head;
1676             res_lists.bus_head = ctrl->bus_head;
1677 
1678             cpqhp_return_board_resources(func, &res_lists);
1679 
1680             ctrl->io_head = res_lists.io_head;
1681             ctrl->mem_head = res_lists.mem_head;
1682             ctrl->p_mem_head = res_lists.p_mem_head;
1683             ctrl->bus_head = res_lists.bus_head;
1684 
1685             cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1686             cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1687             cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1688             cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1689 
1690             if (is_bridge(func)) {
1691                 bridge_slot_remove(func);
1692             } else
1693                 slot_remove(func);
1694 
1695             func = cpqhp_slot_find(ctrl->bus, device, 0);
1696         }
1697 
1698         /* Setup slot structure with entry for empty slot */
1699         func = cpqhp_slot_create(ctrl->bus);
1700 
1701         if (func == NULL)
1702             return 1;
1703 
1704         func->bus = ctrl->bus;
1705         func->device = device;
1706         func->function = 0;
1707         func->configured = 0;
1708         func->switch_save = 0x10;
1709         func->is_a_board = 0;
1710         func->p_task_event = NULL;
1711     }
1712 
1713     return 0;
1714 }
1715 
1716 static void pushbutton_helper_thread(struct timer_list *t)
1717 {
1718     pushbutton_pending = t;
1719 
1720     wake_up_process(cpqhp_event_thread);
1721 }
1722 
1723 
1724 /* this is the main worker thread */
1725 static int event_thread(void *data)
1726 {
1727     struct controller *ctrl;
1728 
1729     while (1) {
1730         dbg("!!!!event_thread sleeping\n");
1731         set_current_state(TASK_INTERRUPTIBLE);
1732         schedule();
1733 
1734         if (kthread_should_stop())
1735             break;
1736         /* Do stuff here */
1737         if (pushbutton_pending)
1738             cpqhp_pushbutton_thread(pushbutton_pending);
1739         else
1740             for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
1741                 interrupt_event_handler(ctrl);
1742     }
1743     dbg("event_thread signals exit\n");
1744     return 0;
1745 }
1746 
1747 int cpqhp_event_start_thread(void)
1748 {
1749     cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1750     if (IS_ERR(cpqhp_event_thread)) {
1751         err("Can't start up our event thread\n");
1752         return PTR_ERR(cpqhp_event_thread);
1753     }
1754 
1755     return 0;
1756 }
1757 
1758 
1759 void cpqhp_event_stop_thread(void)
1760 {
1761     kthread_stop(cpqhp_event_thread);
1762 }
1763 
1764 
1765 static void interrupt_event_handler(struct controller *ctrl)
1766 {
1767     int loop;
1768     int change = 1;
1769     struct pci_func *func;
1770     u8 hp_slot;
1771     struct slot *p_slot;
1772 
1773     while (change) {
1774         change = 0;
1775 
1776         for (loop = 0; loop < 10; loop++) {
1777             /* dbg("loop %d\n", loop); */
1778             if (ctrl->event_queue[loop].event_type != 0) {
1779                 hp_slot = ctrl->event_queue[loop].hp_slot;
1780 
1781                 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1782                 if (!func)
1783                     return;
1784 
1785                 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1786                 if (!p_slot)
1787                     return;
1788 
1789                 dbg("hp_slot %d, func %p, p_slot %p\n",
1790                     hp_slot, func, p_slot);
1791 
1792                 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1793                     dbg("button pressed\n");
1794                 } else if (ctrl->event_queue[loop].event_type ==
1795                        INT_BUTTON_CANCEL) {
1796                     dbg("button cancel\n");
1797                     del_timer(&p_slot->task_event);
1798 
1799                     mutex_lock(&ctrl->crit_sect);
1800 
1801                     if (p_slot->state == BLINKINGOFF_STATE) {
1802                         /* slot is on */
1803                         dbg("turn on green LED\n");
1804                         green_LED_on(ctrl, hp_slot);
1805                     } else if (p_slot->state == BLINKINGON_STATE) {
1806                         /* slot is off */
1807                         dbg("turn off green LED\n");
1808                         green_LED_off(ctrl, hp_slot);
1809                     }
1810 
1811                     info(msg_button_cancel, p_slot->number);
1812 
1813                     p_slot->state = STATIC_STATE;
1814 
1815                     amber_LED_off(ctrl, hp_slot);
1816 
1817                     set_SOGO(ctrl);
1818 
1819                     /* Wait for SOBS to be unset */
1820                     wait_for_ctrl_irq(ctrl);
1821 
1822                     mutex_unlock(&ctrl->crit_sect);
1823                 }
1824                 /*** button Released (No action on press...) */
1825                 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1826                     dbg("button release\n");
1827 
1828                     if (is_slot_enabled(ctrl, hp_slot)) {
1829                         dbg("slot is on\n");
1830                         p_slot->state = BLINKINGOFF_STATE;
1831                         info(msg_button_off, p_slot->number);
1832                     } else {
1833                         dbg("slot is off\n");
1834                         p_slot->state = BLINKINGON_STATE;
1835                         info(msg_button_on, p_slot->number);
1836                     }
1837                     mutex_lock(&ctrl->crit_sect);
1838 
1839                     dbg("blink green LED and turn off amber\n");
1840 
1841                     amber_LED_off(ctrl, hp_slot);
1842                     green_LED_blink(ctrl, hp_slot);
1843 
1844                     set_SOGO(ctrl);
1845 
1846                     /* Wait for SOBS to be unset */
1847                     wait_for_ctrl_irq(ctrl);
1848 
1849                     mutex_unlock(&ctrl->crit_sect);
1850                     timer_setup(&p_slot->task_event,
1851                             pushbutton_helper_thread,
1852                             0);
1853                     p_slot->hp_slot = hp_slot;
1854                     p_slot->ctrl = ctrl;
1855 /*                  p_slot->physical_slot = physical_slot; */
1856                     p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1857 
1858                     dbg("add_timer p_slot = %p\n", p_slot);
1859                     add_timer(&p_slot->task_event);
1860                 }
1861                 /***********POWER FAULT */
1862                 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1863                     dbg("power fault\n");
1864                 }
1865 
1866                 ctrl->event_queue[loop].event_type = 0;
1867 
1868                 change = 1;
1869             }
1870         }       /* End of FOR loop */
1871     }
1872 }
1873 
1874 
1875 /**
1876  * cpqhp_pushbutton_thread - handle pushbutton events
1877  * @t: pointer to struct timer_list which holds all timer-related callbacks
1878  *
1879  * Scheduled procedure to handle blocking stuff for the pushbuttons.
1880  * Handles all pending events and exits.
1881  */
1882 void cpqhp_pushbutton_thread(struct timer_list *t)
1883 {
1884     u8 hp_slot;
1885     struct pci_func *func;
1886     struct slot *p_slot = from_timer(p_slot, t, task_event);
1887     struct controller *ctrl = (struct controller *) p_slot->ctrl;
1888 
1889     pushbutton_pending = NULL;
1890     hp_slot = p_slot->hp_slot;
1891 
1892     if (is_slot_enabled(ctrl, hp_slot)) {
1893         p_slot->state = POWEROFF_STATE;
1894         /* power Down board */
1895         func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1896         dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1897         if (!func) {
1898             dbg("Error! func NULL in %s\n", __func__);
1899             return;
1900         }
1901 
1902         if (cpqhp_process_SS(ctrl, func) != 0) {
1903             amber_LED_on(ctrl, hp_slot);
1904             green_LED_on(ctrl, hp_slot);
1905 
1906             set_SOGO(ctrl);
1907 
1908             /* Wait for SOBS to be unset */
1909             wait_for_ctrl_irq(ctrl);
1910         }
1911 
1912         p_slot->state = STATIC_STATE;
1913     } else {
1914         p_slot->state = POWERON_STATE;
1915         /* slot is off */
1916 
1917         func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1918         dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1919         if (!func) {
1920             dbg("Error! func NULL in %s\n", __func__);
1921             return;
1922         }
1923 
1924         if (ctrl != NULL) {
1925             if (cpqhp_process_SI(ctrl, func) != 0) {
1926                 amber_LED_on(ctrl, hp_slot);
1927                 green_LED_off(ctrl, hp_slot);
1928 
1929                 set_SOGO(ctrl);
1930 
1931                 /* Wait for SOBS to be unset */
1932                 wait_for_ctrl_irq(ctrl);
1933             }
1934         }
1935 
1936         p_slot->state = STATIC_STATE;
1937     }
1938 }
1939 
1940 
1941 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1942 {
1943     u8 device, hp_slot;
1944     u16 temp_word;
1945     u32 tempdword;
1946     int rc;
1947     struct slot *p_slot;
1948 
1949     tempdword = 0;
1950 
1951     device = func->device;
1952     hp_slot = device - ctrl->slot_device_offset;
1953     p_slot = cpqhp_find_slot(ctrl, device);
1954 
1955     /* Check to see if the interlock is closed */
1956     tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
1957 
1958     if (tempdword & (0x01 << hp_slot))
1959         return 1;
1960 
1961     if (func->is_a_board) {
1962         rc = board_replaced(func, ctrl);
1963     } else {
1964         /* add board */
1965         slot_remove(func);
1966 
1967         func = cpqhp_slot_create(ctrl->bus);
1968         if (func == NULL)
1969             return 1;
1970 
1971         func->bus = ctrl->bus;
1972         func->device = device;
1973         func->function = 0;
1974         func->configured = 0;
1975         func->is_a_board = 1;
1976 
1977         /* We have to save the presence info for these slots */
1978         temp_word = ctrl->ctrl_int_comp >> 16;
1979         func->presence_save = (temp_word >> hp_slot) & 0x01;
1980         func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
1981 
1982         if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
1983             func->switch_save = 0;
1984         } else {
1985             func->switch_save = 0x10;
1986         }
1987 
1988         rc = board_added(func, ctrl);
1989         if (rc) {
1990             if (is_bridge(func)) {
1991                 bridge_slot_remove(func);
1992             } else
1993                 slot_remove(func);
1994 
1995             /* Setup slot structure with entry for empty slot */
1996             func = cpqhp_slot_create(ctrl->bus);
1997 
1998             if (func == NULL)
1999                 return 1;
2000 
2001             func->bus = ctrl->bus;
2002             func->device = device;
2003             func->function = 0;
2004             func->configured = 0;
2005             func->is_a_board = 0;
2006 
2007             /* We have to save the presence info for these slots */
2008             temp_word = ctrl->ctrl_int_comp >> 16;
2009             func->presence_save = (temp_word >> hp_slot) & 0x01;
2010             func->presence_save |=
2011             (temp_word >> (hp_slot + 7)) & 0x02;
2012 
2013             if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2014                 func->switch_save = 0;
2015             } else {
2016                 func->switch_save = 0x10;
2017             }
2018         }
2019     }
2020 
2021     if (rc)
2022         dbg("%s: rc = %d\n", __func__, rc);
2023 
2024     return rc;
2025 }
2026 
2027 
2028 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2029 {
2030     u8 device, class_code, header_type, BCR;
2031     u8 index = 0;
2032     u8 replace_flag;
2033     u32 rc = 0;
2034     unsigned int devfn;
2035     struct slot *p_slot;
2036     struct pci_bus *pci_bus = ctrl->pci_bus;
2037 
2038     device = func->device;
2039     func = cpqhp_slot_find(ctrl->bus, device, index++);
2040     p_slot = cpqhp_find_slot(ctrl, device);
2041 
2042     /* Make sure there are no video controllers here */
2043     while (func && !rc) {
2044         pci_bus->number = func->bus;
2045         devfn = PCI_DEVFN(func->device, func->function);
2046 
2047         /* Check the Class Code */
2048         rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2049         if (rc)
2050             return rc;
2051 
2052         if (class_code == PCI_BASE_CLASS_DISPLAY) {
2053             /* Display/Video adapter (not supported) */
2054             rc = REMOVE_NOT_SUPPORTED;
2055         } else {
2056             /* See if it's a bridge */
2057             rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2058             if (rc)
2059                 return rc;
2060 
2061             /* If it's a bridge, check the VGA Enable bit */
2062             if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2063                 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2064                 if (rc)
2065                     return rc;
2066 
2067                 /* If the VGA Enable bit is set, remove isn't
2068                  * supported */
2069                 if (BCR & PCI_BRIDGE_CTL_VGA)
2070                     rc = REMOVE_NOT_SUPPORTED;
2071             }
2072         }
2073 
2074         func = cpqhp_slot_find(ctrl->bus, device, index++);
2075     }
2076 
2077     func = cpqhp_slot_find(ctrl->bus, device, 0);
2078     if ((func != NULL) && !rc) {
2079         /* FIXME: Replace flag should be passed into process_SS */
2080         replace_flag = !(ctrl->add_support);
2081         rc = remove_board(func, replace_flag, ctrl);
2082     } else if (!rc) {
2083         rc = 1;
2084     }
2085 
2086     return rc;
2087 }
2088 
2089 /**
2090  * switch_leds - switch the leds, go from one site to the other.
2091  * @ctrl: controller to use
2092  * @num_of_slots: number of slots to use
2093  * @work_LED: LED control value
2094  * @direction: 1 to start from the left side, 0 to start right.
2095  */
2096 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2097             u32 *work_LED, const int direction)
2098 {
2099     int loop;
2100 
2101     for (loop = 0; loop < num_of_slots; loop++) {
2102         if (direction)
2103             *work_LED = *work_LED >> 1;
2104         else
2105             *work_LED = *work_LED << 1;
2106         writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2107 
2108         set_SOGO(ctrl);
2109 
2110         /* Wait for SOGO interrupt */
2111         wait_for_ctrl_irq(ctrl);
2112 
2113         /* Get ready for next iteration */
2114         long_delay((2*HZ)/10);
2115     }
2116 }
2117 
2118 /**
2119  * cpqhp_hardware_test - runs hardware tests
2120  * @ctrl: target controller
2121  * @test_num: the number written to the "test" file in sysfs.
2122  *
2123  * For hot plug ctrl folks to play with.
2124  */
2125 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2126 {
2127     u32 save_LED;
2128     u32 work_LED;
2129     int loop;
2130     int num_of_slots;
2131 
2132     num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2133 
2134     switch (test_num) {
2135     case 1:
2136         /* Do stuff here! */
2137 
2138         /* Do that funky LED thing */
2139         /* so we can restore them later */
2140         save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2141         work_LED = 0x01010101;
2142         switch_leds(ctrl, num_of_slots, &work_LED, 0);
2143         switch_leds(ctrl, num_of_slots, &work_LED, 1);
2144         switch_leds(ctrl, num_of_slots, &work_LED, 0);
2145         switch_leds(ctrl, num_of_slots, &work_LED, 1);
2146 
2147         work_LED = 0x01010000;
2148         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2149         switch_leds(ctrl, num_of_slots, &work_LED, 0);
2150         switch_leds(ctrl, num_of_slots, &work_LED, 1);
2151         work_LED = 0x00000101;
2152         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2153         switch_leds(ctrl, num_of_slots, &work_LED, 0);
2154         switch_leds(ctrl, num_of_slots, &work_LED, 1);
2155 
2156         work_LED = 0x01010000;
2157         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2158         for (loop = 0; loop < num_of_slots; loop++) {
2159             set_SOGO(ctrl);
2160 
2161             /* Wait for SOGO interrupt */
2162             wait_for_ctrl_irq(ctrl);
2163 
2164             /* Get ready for next iteration */
2165             long_delay((3*HZ)/10);
2166             work_LED = work_LED >> 16;
2167             writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2168 
2169             set_SOGO(ctrl);
2170 
2171             /* Wait for SOGO interrupt */
2172             wait_for_ctrl_irq(ctrl);
2173 
2174             /* Get ready for next iteration */
2175             long_delay((3*HZ)/10);
2176             work_LED = work_LED << 16;
2177             writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2178             work_LED = work_LED << 1;
2179             writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2180         }
2181 
2182         /* put it back the way it was */
2183         writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2184 
2185         set_SOGO(ctrl);
2186 
2187         /* Wait for SOBS to be unset */
2188         wait_for_ctrl_irq(ctrl);
2189         break;
2190     case 2:
2191         /* Do other stuff here! */
2192         break;
2193     case 3:
2194         /* and more... */
2195         break;
2196     }
2197     return 0;
2198 }
2199 
2200 
2201 /**
2202  * configure_new_device - Configures the PCI header information of one board.
2203  * @ctrl: pointer to controller structure
2204  * @func: pointer to function structure
2205  * @behind_bridge: 1 if this is a recursive call, 0 if not
2206  * @resources: pointer to set of resource lists
2207  *
2208  * Returns 0 if success.
2209  */
2210 static u32 configure_new_device(struct controller  *ctrl, struct pci_func  *func,
2211                  u8 behind_bridge, struct resource_lists  *resources)
2212 {
2213     u8 temp_byte, function, max_functions, stop_it;
2214     int rc;
2215     u32 ID;
2216     struct pci_func *new_slot;
2217     int index;
2218 
2219     new_slot = func;
2220 
2221     dbg("%s\n", __func__);
2222     /* Check for Multi-function device */
2223     ctrl->pci_bus->number = func->bus;
2224     rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2225     if (rc) {
2226         dbg("%s: rc = %d\n", __func__, rc);
2227         return rc;
2228     }
2229 
2230     if (temp_byte & 0x80)   /* Multi-function device */
2231         max_functions = 8;
2232     else
2233         max_functions = 1;
2234 
2235     function = 0;
2236 
2237     do {
2238         rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2239 
2240         if (rc) {
2241             dbg("configure_new_function failed %d\n", rc);
2242             index = 0;
2243 
2244             while (new_slot) {
2245                 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2246 
2247                 if (new_slot)
2248                     cpqhp_return_board_resources(new_slot, resources);
2249             }
2250 
2251             return rc;
2252         }
2253 
2254         function++;
2255 
2256         stop_it = 0;
2257 
2258         /* The following loop skips to the next present function
2259          * and creates a board structure */
2260 
2261         while ((function < max_functions) && (!stop_it)) {
2262             pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2263 
2264             if (PCI_POSSIBLE_ERROR(ID)) {
2265                 function++;
2266             } else {
2267                 /* Setup slot structure. */
2268                 new_slot = cpqhp_slot_create(func->bus);
2269 
2270                 if (new_slot == NULL)
2271                     return 1;
2272 
2273                 new_slot->bus = func->bus;
2274                 new_slot->device = func->device;
2275                 new_slot->function = function;
2276                 new_slot->is_a_board = 1;
2277                 new_slot->status = 0;
2278 
2279                 stop_it++;
2280             }
2281         }
2282 
2283     } while (function < max_functions);
2284     dbg("returning from configure_new_device\n");
2285 
2286     return 0;
2287 }
2288 
2289 
2290 /*
2291  * Configuration logic that involves the hotplug data structures and
2292  * their bookkeeping
2293  */
2294 
2295 
2296 /**
2297  * configure_new_function - Configures the PCI header information of one device
2298  * @ctrl: pointer to controller structure
2299  * @func: pointer to function structure
2300  * @behind_bridge: 1 if this is a recursive call, 0 if not
2301  * @resources: pointer to set of resource lists
2302  *
2303  * Calls itself recursively for bridged devices.
2304  * Returns 0 if success.
2305  */
2306 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2307                    u8 behind_bridge,
2308                    struct resource_lists *resources)
2309 {
2310     int cloop;
2311     u8 IRQ = 0;
2312     u8 temp_byte;
2313     u8 device;
2314     u8 class_code;
2315     u16 command;
2316     u16 temp_word;
2317     u32 temp_dword;
2318     u32 rc;
2319     u32 temp_register;
2320     u32 base;
2321     u32 ID;
2322     unsigned int devfn;
2323     struct pci_resource *mem_node;
2324     struct pci_resource *p_mem_node;
2325     struct pci_resource *io_node;
2326     struct pci_resource *bus_node;
2327     struct pci_resource *hold_mem_node;
2328     struct pci_resource *hold_p_mem_node;
2329     struct pci_resource *hold_IO_node;
2330     struct pci_resource *hold_bus_node;
2331     struct irq_mapping irqs;
2332     struct pci_func *new_slot;
2333     struct pci_bus *pci_bus;
2334     struct resource_lists temp_resources;
2335 
2336     pci_bus = ctrl->pci_bus;
2337     pci_bus->number = func->bus;
2338     devfn = PCI_DEVFN(func->device, func->function);
2339 
2340     /* Check for Bridge */
2341     rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2342     if (rc)
2343         return rc;
2344 
2345     if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2346         /* set Primary bus */
2347         dbg("set Primary bus = %d\n", func->bus);
2348         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2349         if (rc)
2350             return rc;
2351 
2352         /* find range of buses to use */
2353         dbg("find ranges of buses to use\n");
2354         bus_node = get_max_resource(&(resources->bus_head), 1);
2355 
2356         /* If we don't have any buses to allocate, we can't continue */
2357         if (!bus_node)
2358             return -ENOMEM;
2359 
2360         /* set Secondary bus */
2361         temp_byte = bus_node->base;
2362         dbg("set Secondary bus = %d\n", bus_node->base);
2363         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2364         if (rc)
2365             return rc;
2366 
2367         /* set subordinate bus */
2368         temp_byte = bus_node->base + bus_node->length - 1;
2369         dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2370         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2371         if (rc)
2372             return rc;
2373 
2374         /* set subordinate Latency Timer and base Latency Timer */
2375         temp_byte = 0x40;
2376         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2377         if (rc)
2378             return rc;
2379         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2380         if (rc)
2381             return rc;
2382 
2383         /* set Cache Line size */
2384         temp_byte = 0x08;
2385         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2386         if (rc)
2387             return rc;
2388 
2389         /* Setup the IO, memory, and prefetchable windows */
2390         io_node = get_max_resource(&(resources->io_head), 0x1000);
2391         if (!io_node)
2392             return -ENOMEM;
2393         mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2394         if (!mem_node)
2395             return -ENOMEM;
2396         p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2397         if (!p_mem_node)
2398             return -ENOMEM;
2399         dbg("Setup the IO, memory, and prefetchable windows\n");
2400         dbg("io_node\n");
2401         dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2402                     io_node->length, io_node->next);
2403         dbg("mem_node\n");
2404         dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2405                     mem_node->length, mem_node->next);
2406         dbg("p_mem_node\n");
2407         dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2408                     p_mem_node->length, p_mem_node->next);
2409 
2410         /* set up the IRQ info */
2411         if (!resources->irqs) {
2412             irqs.barber_pole = 0;
2413             irqs.interrupt[0] = 0;
2414             irqs.interrupt[1] = 0;
2415             irqs.interrupt[2] = 0;
2416             irqs.interrupt[3] = 0;
2417             irqs.valid_INT = 0;
2418         } else {
2419             irqs.barber_pole = resources->irqs->barber_pole;
2420             irqs.interrupt[0] = resources->irqs->interrupt[0];
2421             irqs.interrupt[1] = resources->irqs->interrupt[1];
2422             irqs.interrupt[2] = resources->irqs->interrupt[2];
2423             irqs.interrupt[3] = resources->irqs->interrupt[3];
2424             irqs.valid_INT = resources->irqs->valid_INT;
2425         }
2426 
2427         /* set up resource lists that are now aligned on top and bottom
2428          * for anything behind the bridge. */
2429         temp_resources.bus_head = bus_node;
2430         temp_resources.io_head = io_node;
2431         temp_resources.mem_head = mem_node;
2432         temp_resources.p_mem_head = p_mem_node;
2433         temp_resources.irqs = &irqs;
2434 
2435         /* Make copies of the nodes we are going to pass down so that
2436          * if there is a problem,we can just use these to free resources
2437          */
2438         hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2439         hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2440         hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2441         hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2442 
2443         if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2444             kfree(hold_bus_node);
2445             kfree(hold_IO_node);
2446             kfree(hold_mem_node);
2447             kfree(hold_p_mem_node);
2448 
2449             return 1;
2450         }
2451 
2452         memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2453 
2454         bus_node->base += 1;
2455         bus_node->length -= 1;
2456         bus_node->next = NULL;
2457 
2458         /* If we have IO resources copy them and fill in the bridge's
2459          * IO range registers */
2460         memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2461         io_node->next = NULL;
2462 
2463         /* set IO base and Limit registers */
2464         temp_byte = io_node->base >> 8;
2465         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2466 
2467         temp_byte = (io_node->base + io_node->length - 1) >> 8;
2468         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2469 
2470         /* Copy the memory resources and fill in the bridge's memory
2471          * range registers.
2472          */
2473         memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2474         mem_node->next = NULL;
2475 
2476         /* set Mem base and Limit registers */
2477         temp_word = mem_node->base >> 16;
2478         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2479 
2480         temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2481         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2482 
2483         memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2484         p_mem_node->next = NULL;
2485 
2486         /* set Pre Mem base and Limit registers */
2487         temp_word = p_mem_node->base >> 16;
2488         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2489 
2490         temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2491         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2492 
2493         /* Adjust this to compensate for extra adjustment in first loop
2494          */
2495         irqs.barber_pole--;
2496 
2497         rc = 0;
2498 
2499         /* Here we actually find the devices and configure them */
2500         for (device = 0; (device <= 0x1F) && !rc; device++) {
2501             irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2502 
2503             ID = 0xFFFFFFFF;
2504             pci_bus->number = hold_bus_node->base;
2505             pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2506             pci_bus->number = func->bus;
2507 
2508             if (!PCI_POSSIBLE_ERROR(ID)) {    /*  device present */
2509                 /* Setup slot structure. */
2510                 new_slot = cpqhp_slot_create(hold_bus_node->base);
2511 
2512                 if (new_slot == NULL) {
2513                     rc = -ENOMEM;
2514                     continue;
2515                 }
2516 
2517                 new_slot->bus = hold_bus_node->base;
2518                 new_slot->device = device;
2519                 new_slot->function = 0;
2520                 new_slot->is_a_board = 1;
2521                 new_slot->status = 0;
2522 
2523                 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2524                 dbg("configure_new_device rc=0x%x\n", rc);
2525             }   /* End of IF (device in slot?) */
2526         }       /* End of FOR loop */
2527 
2528         if (rc)
2529             goto free_and_out;
2530         /* save the interrupt routing information */
2531         if (resources->irqs) {
2532             resources->irqs->interrupt[0] = irqs.interrupt[0];
2533             resources->irqs->interrupt[1] = irqs.interrupt[1];
2534             resources->irqs->interrupt[2] = irqs.interrupt[2];
2535             resources->irqs->interrupt[3] = irqs.interrupt[3];
2536             resources->irqs->valid_INT = irqs.valid_INT;
2537         } else if (!behind_bridge) {
2538             /* We need to hook up the interrupts here */
2539             for (cloop = 0; cloop < 4; cloop++) {
2540                 if (irqs.valid_INT & (0x01 << cloop)) {
2541                     rc = cpqhp_set_irq(func->bus, func->device,
2542                                cloop + 1, irqs.interrupt[cloop]);
2543                     if (rc)
2544                         goto free_and_out;
2545                 }
2546             }   /* end of for loop */
2547         }
2548         /* Return unused bus resources
2549          * First use the temporary node to store information for
2550          * the board */
2551         if (bus_node && temp_resources.bus_head) {
2552             hold_bus_node->length = bus_node->base - hold_bus_node->base;
2553 
2554             hold_bus_node->next = func->bus_head;
2555             func->bus_head = hold_bus_node;
2556 
2557             temp_byte = temp_resources.bus_head->base - 1;
2558 
2559             /* set subordinate bus */
2560             rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2561 
2562             if (temp_resources.bus_head->length == 0) {
2563                 kfree(temp_resources.bus_head);
2564                 temp_resources.bus_head = NULL;
2565             } else {
2566                 return_resource(&(resources->bus_head), temp_resources.bus_head);
2567             }
2568         }
2569 
2570         /* If we have IO space available and there is some left,
2571          * return the unused portion */
2572         if (hold_IO_node && temp_resources.io_head) {
2573             io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2574                                    &hold_IO_node, 0x1000);
2575 
2576             /* Check if we were able to split something off */
2577             if (io_node) {
2578                 hold_IO_node->base = io_node->base + io_node->length;
2579 
2580                 temp_byte = (hold_IO_node->base) >> 8;
2581                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2582 
2583                 return_resource(&(resources->io_head), io_node);
2584             }
2585 
2586             io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2587 
2588             /* Check if we were able to split something off */
2589             if (io_node) {
2590                 /* First use the temporary node to store
2591                  * information for the board */
2592                 hold_IO_node->length = io_node->base - hold_IO_node->base;
2593 
2594                 /* If we used any, add it to the board's list */
2595                 if (hold_IO_node->length) {
2596                     hold_IO_node->next = func->io_head;
2597                     func->io_head = hold_IO_node;
2598 
2599                     temp_byte = (io_node->base - 1) >> 8;
2600                     rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2601 
2602                     return_resource(&(resources->io_head), io_node);
2603                 } else {
2604                     /* it doesn't need any IO */
2605                     temp_word = 0x0000;
2606                     rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2607 
2608                     return_resource(&(resources->io_head), io_node);
2609                     kfree(hold_IO_node);
2610                 }
2611             } else {
2612                 /* it used most of the range */
2613                 hold_IO_node->next = func->io_head;
2614                 func->io_head = hold_IO_node;
2615             }
2616         } else if (hold_IO_node) {
2617             /* it used the whole range */
2618             hold_IO_node->next = func->io_head;
2619             func->io_head = hold_IO_node;
2620         }
2621         /* If we have memory space available and there is some left,
2622          * return the unused portion */
2623         if (hold_mem_node && temp_resources.mem_head) {
2624             mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2625                                 &hold_mem_node, 0x100000);
2626 
2627             /* Check if we were able to split something off */
2628             if (mem_node) {
2629                 hold_mem_node->base = mem_node->base + mem_node->length;
2630 
2631                 temp_word = (hold_mem_node->base) >> 16;
2632                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2633 
2634                 return_resource(&(resources->mem_head), mem_node);
2635             }
2636 
2637             mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2638 
2639             /* Check if we were able to split something off */
2640             if (mem_node) {
2641                 /* First use the temporary node to store
2642                  * information for the board */
2643                 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2644 
2645                 if (hold_mem_node->length) {
2646                     hold_mem_node->next = func->mem_head;
2647                     func->mem_head = hold_mem_node;
2648 
2649                     /* configure end address */
2650                     temp_word = (mem_node->base - 1) >> 16;
2651                     rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2652 
2653                     /* Return unused resources to the pool */
2654                     return_resource(&(resources->mem_head), mem_node);
2655                 } else {
2656                     /* it doesn't need any Mem */
2657                     temp_word = 0x0000;
2658                     rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2659 
2660                     return_resource(&(resources->mem_head), mem_node);
2661                     kfree(hold_mem_node);
2662                 }
2663             } else {
2664                 /* it used most of the range */
2665                 hold_mem_node->next = func->mem_head;
2666                 func->mem_head = hold_mem_node;
2667             }
2668         } else if (hold_mem_node) {
2669             /* it used the whole range */
2670             hold_mem_node->next = func->mem_head;
2671             func->mem_head = hold_mem_node;
2672         }
2673         /* If we have prefetchable memory space available and there
2674          * is some left at the end, return the unused portion */
2675         if (temp_resources.p_mem_head) {
2676             p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2677                                   &hold_p_mem_node, 0x100000);
2678 
2679             /* Check if we were able to split something off */
2680             if (p_mem_node) {
2681                 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2682 
2683                 temp_word = (hold_p_mem_node->base) >> 16;
2684                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2685 
2686                 return_resource(&(resources->p_mem_head), p_mem_node);
2687             }
2688 
2689             p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2690 
2691             /* Check if we were able to split something off */
2692             if (p_mem_node) {
2693                 /* First use the temporary node to store
2694                  * information for the board */
2695                 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2696 
2697                 /* If we used any, add it to the board's list */
2698                 if (hold_p_mem_node->length) {
2699                     hold_p_mem_node->next = func->p_mem_head;
2700                     func->p_mem_head = hold_p_mem_node;
2701 
2702                     temp_word = (p_mem_node->base - 1) >> 16;
2703                     rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2704 
2705                     return_resource(&(resources->p_mem_head), p_mem_node);
2706                 } else {
2707                     /* it doesn't need any PMem */
2708                     temp_word = 0x0000;
2709                     rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2710 
2711                     return_resource(&(resources->p_mem_head), p_mem_node);
2712                     kfree(hold_p_mem_node);
2713                 }
2714             } else {
2715                 /* it used the most of the range */
2716                 hold_p_mem_node->next = func->p_mem_head;
2717                 func->p_mem_head = hold_p_mem_node;
2718             }
2719         } else if (hold_p_mem_node) {
2720             /* it used the whole range */
2721             hold_p_mem_node->next = func->p_mem_head;
2722             func->p_mem_head = hold_p_mem_node;
2723         }
2724         /* We should be configuring an IRQ and the bridge's base address
2725          * registers if it needs them.  Although we have never seen such
2726          * a device */
2727 
2728         /* enable card */
2729         command = 0x0157;   /* = PCI_COMMAND_IO |
2730                      *   PCI_COMMAND_MEMORY |
2731                      *   PCI_COMMAND_MASTER |
2732                      *   PCI_COMMAND_INVALIDATE |
2733                      *   PCI_COMMAND_PARITY |
2734                      *   PCI_COMMAND_SERR */
2735         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
2736 
2737         /* set Bridge Control Register */
2738         command = 0x07;     /* = PCI_BRIDGE_CTL_PARITY |
2739                      *   PCI_BRIDGE_CTL_SERR |
2740                      *   PCI_BRIDGE_CTL_NO_ISA */
2741         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2742     } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2743         /* Standard device */
2744         rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2745 
2746         if (class_code == PCI_BASE_CLASS_DISPLAY) {
2747             /* Display (video) adapter (not supported) */
2748             return DEVICE_TYPE_NOT_SUPPORTED;
2749         }
2750         /* Figure out IO and memory needs */
2751         for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2752             temp_register = 0xFFFFFFFF;
2753 
2754             dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2755             rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
2756 
2757             rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
2758             dbg("CND: base = 0x%x\n", temp_register);
2759 
2760             if (temp_register) {      /* If this register is implemented */
2761                 if ((temp_register & 0x03L) == 0x01) {
2762                     /* Map IO */
2763 
2764                     /* set base = amount of IO space */
2765                     base = temp_register & 0xFFFFFFFC;
2766                     base = ~base + 1;
2767 
2768                     dbg("CND:      length = 0x%x\n", base);
2769                     io_node = get_io_resource(&(resources->io_head), base);
2770                     if (!io_node)
2771                         return -ENOMEM;
2772                     dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2773                         io_node->base, io_node->length, io_node->next);
2774                     dbg("func (%p) io_head (%p)\n", func, func->io_head);
2775 
2776                     /* allocate the resource to the board */
2777                     base = io_node->base;
2778                     io_node->next = func->io_head;
2779                     func->io_head = io_node;
2780                 } else if ((temp_register & 0x0BL) == 0x08) {
2781                     /* Map prefetchable memory */
2782                     base = temp_register & 0xFFFFFFF0;
2783                     base = ~base + 1;
2784 
2785                     dbg("CND:      length = 0x%x\n", base);
2786                     p_mem_node = get_resource(&(resources->p_mem_head), base);
2787 
2788                     /* allocate the resource to the board */
2789                     if (p_mem_node) {
2790                         base = p_mem_node->base;
2791 
2792                         p_mem_node->next = func->p_mem_head;
2793                         func->p_mem_head = p_mem_node;
2794                     } else
2795                         return -ENOMEM;
2796                 } else if ((temp_register & 0x0BL) == 0x00) {
2797                     /* Map memory */
2798                     base = temp_register & 0xFFFFFFF0;
2799                     base = ~base + 1;
2800 
2801                     dbg("CND:      length = 0x%x\n", base);
2802                     mem_node = get_resource(&(resources->mem_head), base);
2803 
2804                     /* allocate the resource to the board */
2805                     if (mem_node) {
2806                         base = mem_node->base;
2807 
2808                         mem_node->next = func->mem_head;
2809                         func->mem_head = mem_node;
2810                     } else
2811                         return -ENOMEM;
2812                 } else {
2813                     /* Reserved bits or requesting space below 1M */
2814                     return NOT_ENOUGH_RESOURCES;
2815                 }
2816 
2817                 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2818 
2819                 /* Check for 64-bit base */
2820                 if ((temp_register & 0x07L) == 0x04) {
2821                     cloop += 4;
2822 
2823                     /* Upper 32 bits of address always zero
2824                      * on today's systems */
2825                     /* FIXME this is probably not true on
2826                      * Alpha and ia64??? */
2827                     base = 0;
2828                     rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2829                 }
2830             }
2831         }       /* End of base register loop */
2832         if (cpqhp_legacy_mode) {
2833             /* Figure out which interrupt pin this function uses */
2834             rc = pci_bus_read_config_byte(pci_bus, devfn,
2835                 PCI_INTERRUPT_PIN, &temp_byte);
2836 
2837             /* If this function needs an interrupt and we are behind
2838              * a bridge and the pin is tied to something that's
2839              * already mapped, set this one the same */
2840             if (temp_byte && resources->irqs &&
2841                 (resources->irqs->valid_INT &
2842                  (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2843                 /* We have to share with something already set up */
2844                 IRQ = resources->irqs->interrupt[(temp_byte +
2845                     resources->irqs->barber_pole - 1) & 0x03];
2846             } else {
2847                 /* Program IRQ based on card type */
2848                 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2849 
2850                 if (class_code == PCI_BASE_CLASS_STORAGE)
2851                     IRQ = cpqhp_disk_irq;
2852                 else
2853                     IRQ = cpqhp_nic_irq;
2854             }
2855 
2856             /* IRQ Line */
2857             rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2858         }
2859 
2860         if (!behind_bridge) {
2861             rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2862             if (rc)
2863                 return 1;
2864         } else {
2865             /* TBD - this code may also belong in the other clause
2866              * of this If statement */
2867             resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2868             resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2869         }
2870 
2871         /* Latency Timer */
2872         temp_byte = 0x40;
2873         rc = pci_bus_write_config_byte(pci_bus, devfn,
2874                     PCI_LATENCY_TIMER, temp_byte);
2875 
2876         /* Cache Line size */
2877         temp_byte = 0x08;
2878         rc = pci_bus_write_config_byte(pci_bus, devfn,
2879                     PCI_CACHE_LINE_SIZE, temp_byte);
2880 
2881         /* disable ROM base Address */
2882         temp_dword = 0x00L;
2883         rc = pci_bus_write_config_word(pci_bus, devfn,
2884                     PCI_ROM_ADDRESS, temp_dword);
2885 
2886         /* enable card */
2887         temp_word = 0x0157; /* = PCI_COMMAND_IO |
2888                      *   PCI_COMMAND_MEMORY |
2889                      *   PCI_COMMAND_MASTER |
2890                      *   PCI_COMMAND_INVALIDATE |
2891                      *   PCI_COMMAND_PARITY |
2892                      *   PCI_COMMAND_SERR */
2893         rc = pci_bus_write_config_word(pci_bus, devfn,
2894                     PCI_COMMAND, temp_word);
2895     } else {        /* End of Not-A-Bridge else */
2896         /* It's some strange type of PCI adapter (Cardbus?) */
2897         return DEVICE_TYPE_NOT_SUPPORTED;
2898     }
2899 
2900     func->configured = 1;
2901 
2902     return 0;
2903 free_and_out:
2904     cpqhp_destroy_resource_list(&temp_resources);
2905 
2906     return_resource(&(resources->bus_head), hold_bus_node);
2907     return_resource(&(resources->io_head), hold_IO_node);
2908     return_resource(&(resources->mem_head), hold_mem_node);
2909     return_resource(&(resources->p_mem_head), hold_p_mem_node);
2910     return rc;
2911 }