Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Endpoint Function Driver to implement Non-Transparent Bridge functionality
0004  * Between PCI RC and EP
0005  *
0006  * Copyright (C) 2020 Texas Instruments
0007  * Copyright (C) 2022 NXP
0008  *
0009  * Based on pci-epf-ntb.c
0010  * Author: Frank Li <Frank.Li@nxp.com>
0011  * Author: Kishon Vijay Abraham I <kishon@ti.com>
0012  */
0013 
0014 /**
0015  * +------------+         +---------------------------------------+
0016  * |            |         |                                       |
0017  * +------------+         |                        +--------------+
0018  * | NTB        |         |                        | NTB          |
0019  * | NetDev     |         |                        | NetDev       |
0020  * +------------+         |                        +--------------+
0021  * | NTB        |         |                        | NTB          |
0022  * | Transfer   |         |                        | Transfer     |
0023  * +------------+         |                        +--------------+
0024  * |            |         |                        |              |
0025  * |  PCI NTB   |         |                        |              |
0026  * |    EPF     |         |                        |              |
0027  * |   Driver   |         |                        | PCI Virtual  |
0028  * |            |         +---------------+        | NTB Driver   |
0029  * |            |         | PCI EP NTB    |<------>|              |
0030  * |            |         |  FN Driver    |        |              |
0031  * +------------+         +---------------+        +--------------+
0032  * |            |         |               |        |              |
0033  * |  PCI Bus   | <-----> |  PCI EP Bus   |        |  Virtual PCI |
0034  * |            |  PCI    |               |        |     Bus      |
0035  * +------------+         +---------------+--------+--------------+
0036  * PCIe Root Port                        PCI EP
0037  */
0038 
0039 #include <linux/delay.h>
0040 #include <linux/io.h>
0041 #include <linux/module.h>
0042 #include <linux/slab.h>
0043 
0044 #include <linux/pci-epc.h>
0045 #include <linux/pci-epf.h>
0046 #include <linux/ntb.h>
0047 
0048 static struct workqueue_struct *kpcintb_workqueue;
0049 
0050 #define COMMAND_CONFIGURE_DOORBELL  1
0051 #define COMMAND_TEARDOWN_DOORBELL   2
0052 #define COMMAND_CONFIGURE_MW        3
0053 #define COMMAND_TEARDOWN_MW     4
0054 #define COMMAND_LINK_UP         5
0055 #define COMMAND_LINK_DOWN       6
0056 
0057 #define COMMAND_STATUS_OK       1
0058 #define COMMAND_STATUS_ERROR        2
0059 
0060 #define LINK_STATUS_UP          BIT(0)
0061 
0062 #define SPAD_COUNT          64
0063 #define DB_COUNT            4
0064 #define NTB_MW_OFFSET           2
0065 #define DB_COUNT_MASK           GENMASK(15, 0)
0066 #define MSIX_ENABLE         BIT(16)
0067 #define MAX_DB_COUNT            32
0068 #define MAX_MW              4
0069 
0070 enum epf_ntb_bar {
0071     BAR_CONFIG,
0072     BAR_DB,
0073     BAR_MW0,
0074     BAR_MW1,
0075     BAR_MW2,
0076 };
0077 
0078 /*
0079  * +--------------------------------------------------+ Base
0080  * |                                                  |
0081  * |                                                  |
0082  * |                                                  |
0083  * |          Common Control Register                 |
0084  * |                                                  |
0085  * |                                                  |
0086  * |                                                  |
0087  * +-----------------------+--------------------------+ Base+span_offset
0088  * |                       |                          |
0089  * |    Peer Span Space    |    Span Space            |
0090  * |                       |                          |
0091  * |                       |                          |
0092  * +-----------------------+--------------------------+ Base+span_offset
0093  * |                       |                          |     +span_count * 4
0094  * |                       |                          |
0095  * |     Span Space        |   Peer Span Space        |
0096  * |                       |                          |
0097  * +-----------------------+--------------------------+
0098  *       Virtual PCI             PCIe Endpoint
0099  *       NTB Driver               NTB Driver
0100  */
0101 struct epf_ntb_ctrl {
0102     u32     command;
0103     u32     argument;
0104     u16     command_status;
0105     u16     link_status;
0106     u32     topology;
0107     u64     addr;
0108     u64     size;
0109     u32     num_mws;
0110     u32 reserved;
0111     u32     spad_offset;
0112     u32     spad_count;
0113     u32 db_entry_size;
0114     u32     db_data[MAX_DB_COUNT];
0115     u32     db_offset[MAX_DB_COUNT];
0116 } __packed;
0117 
0118 struct epf_ntb {
0119     struct ntb_dev ntb;
0120     struct pci_epf *epf;
0121     struct config_group group;
0122 
0123     u32 num_mws;
0124     u32 db_count;
0125     u32 spad_count;
0126     u64 mws_size[MAX_MW];
0127     u64 db;
0128     u32 vbus_number;
0129     u16 vntb_pid;
0130     u16 vntb_vid;
0131 
0132     bool linkup;
0133     u32 spad_size;
0134 
0135     enum pci_barno epf_ntb_bar[6];
0136 
0137     struct epf_ntb_ctrl *reg;
0138 
0139     phys_addr_t epf_db_phy;
0140     void __iomem *epf_db;
0141 
0142     phys_addr_t vpci_mw_phy[MAX_MW];
0143     void __iomem *vpci_mw_addr[MAX_MW];
0144 
0145     struct delayed_work cmd_handler;
0146 };
0147 
0148 #define to_epf_ntb(epf_group) container_of((epf_group), struct epf_ntb, group)
0149 #define ntb_ndev(__ntb) container_of(__ntb, struct epf_ntb, ntb)
0150 
0151 static struct pci_epf_header epf_ntb_header = {
0152     .vendorid   = PCI_ANY_ID,
0153     .deviceid   = PCI_ANY_ID,
0154     .baseclass_code = PCI_BASE_CLASS_MEMORY,
0155     .interrupt_pin  = PCI_INTERRUPT_INTA,
0156 };
0157 
0158 /**
0159  * epf_ntb_link_up() - Raise link_up interrupt to Virtual Host
0160  * @ntb: NTB device that facilitates communication between HOST and VHOST
0161  * @link_up: true or false indicating Link is UP or Down
0162  *
0163  * Once NTB function in HOST invoke ntb_link_enable(),
0164  * this NTB function driver will trigger a link event to vhost.
0165  */
0166 static int epf_ntb_link_up(struct epf_ntb *ntb, bool link_up)
0167 {
0168     if (link_up)
0169         ntb->reg->link_status |= LINK_STATUS_UP;
0170     else
0171         ntb->reg->link_status &= ~LINK_STATUS_UP;
0172 
0173     ntb_link_event(&ntb->ntb);
0174     return 0;
0175 }
0176 
0177 /**
0178  * epf_ntb_configure_mw() - Configure the Outbound Address Space for vhost
0179  *   to access the memory window of host
0180  * @ntb: NTB device that facilitates communication between host and vhost
0181  * @mw: Index of the memory window (either 0, 1, 2 or 3)
0182  *
0183  *                          EP Outbound Window
0184  * +--------+              +-----------+
0185  * |        |              |           |
0186  * |        |              |           |
0187  * |        |              |           |
0188  * |        |              |           |
0189  * |        |              +-----------+
0190  * | Virtual|              | Memory Win|
0191  * | NTB    | -----------> |           |
0192  * | Driver |              |           |
0193  * |        |              +-----------+
0194  * |        |              |           |
0195  * |        |              |           |
0196  * +--------+              +-----------+
0197  *  VHost                   PCI EP
0198  */
0199 static int epf_ntb_configure_mw(struct epf_ntb *ntb, u32 mw)
0200 {
0201     phys_addr_t phys_addr;
0202     u8 func_no, vfunc_no;
0203     u64 addr, size;
0204     int ret = 0;
0205 
0206     phys_addr = ntb->vpci_mw_phy[mw];
0207     addr = ntb->reg->addr;
0208     size = ntb->reg->size;
0209 
0210     func_no = ntb->epf->func_no;
0211     vfunc_no = ntb->epf->vfunc_no;
0212 
0213     ret = pci_epc_map_addr(ntb->epf->epc, func_no, vfunc_no, phys_addr, addr, size);
0214     if (ret)
0215         dev_err(&ntb->epf->epc->dev,
0216             "Failed to map memory window %d address\n", mw);
0217     return ret;
0218 }
0219 
0220 /**
0221  * epf_ntb_teardown_mw() - Teardown the configured OB ATU
0222  * @ntb: NTB device that facilitates communication between HOST and vHOST
0223  * @mw: Index of the memory window (either 0, 1, 2 or 3)
0224  *
0225  * Teardown the configured OB ATU configured in epf_ntb_configure_mw() using
0226  * pci_epc_unmap_addr()
0227  */
0228 static void epf_ntb_teardown_mw(struct epf_ntb *ntb, u32 mw)
0229 {
0230     pci_epc_unmap_addr(ntb->epf->epc,
0231                ntb->epf->func_no,
0232                ntb->epf->vfunc_no,
0233                ntb->vpci_mw_phy[mw]);
0234 }
0235 
0236 /**
0237  * epf_ntb_cmd_handler() - Handle commands provided by the NTB Host
0238  * @work: work_struct for the epf_ntb_epc
0239  *
0240  * Workqueue function that gets invoked for the two epf_ntb_epc
0241  * periodically (once every 5ms) to see if it has received any commands
0242  * from NTB host. The host can send commands to configure doorbell or
0243  * configure memory window or to update link status.
0244  */
0245 static void epf_ntb_cmd_handler(struct work_struct *work)
0246 {
0247     struct epf_ntb_ctrl *ctrl;
0248     u32 command, argument;
0249     struct epf_ntb *ntb;
0250     struct device *dev;
0251     int ret;
0252     int i;
0253 
0254     ntb = container_of(work, struct epf_ntb, cmd_handler.work);
0255 
0256     for (i = 1; i < ntb->db_count; i++) {
0257         if (readl(ntb->epf_db + i * 4)) {
0258             if (readl(ntb->epf_db + i * 4))
0259                 ntb->db |= 1 << (i - 1);
0260 
0261             ntb_db_event(&ntb->ntb, i);
0262             writel(0, ntb->epf_db + i * 4);
0263         }
0264     }
0265 
0266     ctrl = ntb->reg;
0267     command = ctrl->command;
0268     if (!command)
0269         goto reset_handler;
0270     argument = ctrl->argument;
0271 
0272     ctrl->command = 0;
0273     ctrl->argument = 0;
0274 
0275     ctrl = ntb->reg;
0276     dev = &ntb->epf->dev;
0277 
0278     switch (command) {
0279     case COMMAND_CONFIGURE_DOORBELL:
0280         ctrl->command_status = COMMAND_STATUS_OK;
0281         break;
0282     case COMMAND_TEARDOWN_DOORBELL:
0283         ctrl->command_status = COMMAND_STATUS_OK;
0284         break;
0285     case COMMAND_CONFIGURE_MW:
0286         ret = epf_ntb_configure_mw(ntb, argument);
0287         if (ret < 0)
0288             ctrl->command_status = COMMAND_STATUS_ERROR;
0289         else
0290             ctrl->command_status = COMMAND_STATUS_OK;
0291         break;
0292     case COMMAND_TEARDOWN_MW:
0293         epf_ntb_teardown_mw(ntb, argument);
0294         ctrl->command_status = COMMAND_STATUS_OK;
0295         break;
0296     case COMMAND_LINK_UP:
0297         ntb->linkup = true;
0298         ret = epf_ntb_link_up(ntb, true);
0299         if (ret < 0)
0300             ctrl->command_status = COMMAND_STATUS_ERROR;
0301         else
0302             ctrl->command_status = COMMAND_STATUS_OK;
0303         goto reset_handler;
0304     case COMMAND_LINK_DOWN:
0305         ntb->linkup = false;
0306         ret = epf_ntb_link_up(ntb, false);
0307         if (ret < 0)
0308             ctrl->command_status = COMMAND_STATUS_ERROR;
0309         else
0310             ctrl->command_status = COMMAND_STATUS_OK;
0311         break;
0312     default:
0313         dev_err(dev, "UNKNOWN command: %d\n", command);
0314         break;
0315     }
0316 
0317 reset_handler:
0318     queue_delayed_work(kpcintb_workqueue, &ntb->cmd_handler,
0319                msecs_to_jiffies(5));
0320 }
0321 
0322 /**
0323  * epf_ntb_config_sspad_bar_clear() - Clear Config + Self scratchpad BAR
0324  * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
0325  *       address.
0326  *
0327  * Clear BAR0 of EP CONTROLLER 1 which contains the HOST1's config and
0328  * self scratchpad region (removes inbound ATU configuration). While BAR0 is
0329  * the default self scratchpad BAR, an NTB could have other BARs for self
0330  * scratchpad (because of reserved BARs). This function can get the exact BAR
0331  * used for self scratchpad from epf_ntb_bar[BAR_CONFIG].
0332  *
0333  * Please note the self scratchpad region and config region is combined to
0334  * a single region and mapped using the same BAR. Also note HOST2's peer
0335  * scratchpad is HOST1's self scratchpad.
0336  */
0337 static void epf_ntb_config_sspad_bar_clear(struct epf_ntb *ntb)
0338 {
0339     struct pci_epf_bar *epf_bar;
0340     enum pci_barno barno;
0341 
0342     barno = ntb->epf_ntb_bar[BAR_CONFIG];
0343     epf_bar = &ntb->epf->bar[barno];
0344 
0345     pci_epc_clear_bar(ntb->epf->epc, ntb->epf->func_no, ntb->epf->vfunc_no, epf_bar);
0346 }
0347 
0348 /**
0349  * epf_ntb_config_sspad_bar_set() - Set Config + Self scratchpad BAR
0350  * @ntb: NTB device that facilitates communication between HOST and vHOST
0351  *
0352  * Map BAR0 of EP CONTROLLER 1 which contains the HOST1's config and
0353  * self scratchpad region.
0354  *
0355  * Please note the self scratchpad region and config region is combined to
0356  * a single region and mapped using the same BAR.
0357  */
0358 static int epf_ntb_config_sspad_bar_set(struct epf_ntb *ntb)
0359 {
0360     struct pci_epf_bar *epf_bar;
0361     enum pci_barno barno;
0362     u8 func_no, vfunc_no;
0363     struct device *dev;
0364     int ret;
0365 
0366     dev = &ntb->epf->dev;
0367     func_no = ntb->epf->func_no;
0368     vfunc_no = ntb->epf->vfunc_no;
0369     barno = ntb->epf_ntb_bar[BAR_CONFIG];
0370     epf_bar = &ntb->epf->bar[barno];
0371 
0372     ret = pci_epc_set_bar(ntb->epf->epc, func_no, vfunc_no, epf_bar);
0373     if (ret) {
0374         dev_err(dev, "inft: Config/Status/SPAD BAR set failed\n");
0375         return ret;
0376     }
0377     return 0;
0378 }
0379 
0380 /**
0381  * epf_ntb_config_spad_bar_free() - Free the physical memory associated with
0382  *   config + scratchpad region
0383  * @ntb: NTB device that facilitates communication between HOST and vHOST
0384  */
0385 static void epf_ntb_config_spad_bar_free(struct epf_ntb *ntb)
0386 {
0387     enum pci_barno barno;
0388 
0389     barno = ntb->epf_ntb_bar[BAR_CONFIG];
0390     pci_epf_free_space(ntb->epf, ntb->reg, barno, 0);
0391 }
0392 
0393 /**
0394  * epf_ntb_config_spad_bar_alloc() - Allocate memory for config + scratchpad
0395  *   region
0396  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
0397  *
0398  * Allocate the Local Memory mentioned in the above diagram. The size of
0399  * CONFIG REGION is sizeof(struct epf_ntb_ctrl) and size of SCRATCHPAD REGION
0400  * is obtained from "spad-count" configfs entry.
0401  */
0402 static int epf_ntb_config_spad_bar_alloc(struct epf_ntb *ntb)
0403 {
0404     size_t align;
0405     enum pci_barno barno;
0406     struct epf_ntb_ctrl *ctrl;
0407     u32 spad_size, ctrl_size;
0408     u64 size;
0409     struct pci_epf *epf = ntb->epf;
0410     struct device *dev = &epf->dev;
0411     u32 spad_count;
0412     void *base;
0413     int i;
0414     const struct pci_epc_features *epc_features = pci_epc_get_features(epf->epc,
0415                                 epf->func_no,
0416                                 epf->vfunc_no);
0417     barno = ntb->epf_ntb_bar[BAR_CONFIG];
0418     size = epc_features->bar_fixed_size[barno];
0419     align = epc_features->align;
0420 
0421     if ((!IS_ALIGNED(size, align)))
0422         return -EINVAL;
0423 
0424     spad_count = ntb->spad_count;
0425 
0426     ctrl_size = sizeof(struct epf_ntb_ctrl);
0427     spad_size = 2 * spad_count * 4;
0428 
0429     if (!align) {
0430         ctrl_size = roundup_pow_of_two(ctrl_size);
0431         spad_size = roundup_pow_of_two(spad_size);
0432     } else {
0433         ctrl_size = ALIGN(ctrl_size, align);
0434         spad_size = ALIGN(spad_size, align);
0435     }
0436 
0437     if (!size)
0438         size = ctrl_size + spad_size;
0439     else if (size < ctrl_size + spad_size)
0440         return -EINVAL;
0441 
0442     base = pci_epf_alloc_space(epf, size, barno, align, 0);
0443     if (!base) {
0444         dev_err(dev, "Config/Status/SPAD alloc region fail\n");
0445         return -ENOMEM;
0446     }
0447 
0448     ntb->reg = base;
0449 
0450     ctrl = ntb->reg;
0451     ctrl->spad_offset = ctrl_size;
0452 
0453     ctrl->spad_count = spad_count;
0454     ctrl->num_mws = ntb->num_mws;
0455     ntb->spad_size = spad_size;
0456 
0457     ctrl->db_entry_size = 4;
0458 
0459     for (i = 0; i < ntb->db_count; i++) {
0460         ntb->reg->db_data[i] = 1 + i;
0461         ntb->reg->db_offset[i] = 0;
0462     }
0463 
0464     return 0;
0465 }
0466 
0467 /**
0468  * epf_ntb_configure_interrupt() - Configure MSI/MSI-X capaiblity
0469  * @ntb: NTB device that facilitates communication between HOST and vHOST
0470  *
0471  * Configure MSI/MSI-X capability for each interface with number of
0472  * interrupts equal to "db_count" configfs entry.
0473  */
0474 static int epf_ntb_configure_interrupt(struct epf_ntb *ntb)
0475 {
0476     const struct pci_epc_features *epc_features;
0477     struct device *dev;
0478     u32 db_count;
0479     int ret;
0480 
0481     dev = &ntb->epf->dev;
0482 
0483     epc_features = pci_epc_get_features(ntb->epf->epc, ntb->epf->func_no, ntb->epf->vfunc_no);
0484 
0485     if (!(epc_features->msix_capable || epc_features->msi_capable)) {
0486         dev_err(dev, "MSI or MSI-X is required for doorbell\n");
0487         return -EINVAL;
0488     }
0489 
0490     db_count = ntb->db_count;
0491     if (db_count > MAX_DB_COUNT) {
0492         dev_err(dev, "DB count cannot be more than %d\n", MAX_DB_COUNT);
0493         return -EINVAL;
0494     }
0495 
0496     ntb->db_count = db_count;
0497 
0498     if (epc_features->msi_capable) {
0499         ret = pci_epc_set_msi(ntb->epf->epc,
0500                       ntb->epf->func_no,
0501                       ntb->epf->vfunc_no,
0502                       16);
0503         if (ret) {
0504             dev_err(dev, "MSI configuration failed\n");
0505             return ret;
0506         }
0507     }
0508 
0509     return 0;
0510 }
0511 
0512 /**
0513  * epf_ntb_db_bar_init() - Configure Doorbell window BARs
0514  * @ntb: NTB device that facilitates communication between HOST and vHOST
0515  */
0516 static int epf_ntb_db_bar_init(struct epf_ntb *ntb)
0517 {
0518     const struct pci_epc_features *epc_features;
0519     u32 align;
0520     struct device *dev = &ntb->epf->dev;
0521     int ret;
0522     struct pci_epf_bar *epf_bar;
0523     void __iomem *mw_addr;
0524     enum pci_barno barno;
0525     size_t size = 4 * ntb->db_count;
0526 
0527     epc_features = pci_epc_get_features(ntb->epf->epc,
0528                         ntb->epf->func_no,
0529                         ntb->epf->vfunc_no);
0530     align = epc_features->align;
0531 
0532     if (size < 128)
0533         size = 128;
0534 
0535     if (align)
0536         size = ALIGN(size, align);
0537     else
0538         size = roundup_pow_of_two(size);
0539 
0540     barno = ntb->epf_ntb_bar[BAR_DB];
0541 
0542     mw_addr = pci_epf_alloc_space(ntb->epf, size, barno, align, 0);
0543     if (!mw_addr) {
0544         dev_err(dev, "Failed to allocate OB address\n");
0545         return -ENOMEM;
0546     }
0547 
0548     ntb->epf_db = mw_addr;
0549 
0550     epf_bar = &ntb->epf->bar[barno];
0551 
0552     ret = pci_epc_set_bar(ntb->epf->epc, ntb->epf->func_no, ntb->epf->vfunc_no, epf_bar);
0553     if (ret) {
0554         dev_err(dev, "Doorbell BAR set failed\n");
0555             goto err_alloc_peer_mem;
0556     }
0557     return ret;
0558 
0559 err_alloc_peer_mem:
0560     pci_epc_mem_free_addr(ntb->epf->epc, epf_bar->phys_addr, mw_addr, epf_bar->size);
0561     return -1;
0562 }
0563 
0564 static void epf_ntb_mw_bar_clear(struct epf_ntb *ntb, int num_mws);
0565 
0566 /**
0567  * epf_ntb_db_bar_clear() - Clear doorbell BAR and free memory
0568  *   allocated in peer's outbound address space
0569  * @ntb: NTB device that facilitates communication between HOST and vHOST
0570  */
0571 static void epf_ntb_db_bar_clear(struct epf_ntb *ntb)
0572 {
0573     enum pci_barno barno;
0574 
0575     barno = ntb->epf_ntb_bar[BAR_DB];
0576     pci_epf_free_space(ntb->epf, ntb->epf_db, barno, 0);
0577     pci_epc_clear_bar(ntb->epf->epc,
0578               ntb->epf->func_no,
0579               ntb->epf->vfunc_no,
0580               &ntb->epf->bar[barno]);
0581 }
0582 
0583 /**
0584  * epf_ntb_mw_bar_init() - Configure Memory window BARs
0585  * @ntb: NTB device that facilitates communication between HOST and vHOST
0586  *
0587  */
0588 static int epf_ntb_mw_bar_init(struct epf_ntb *ntb)
0589 {
0590     int ret = 0;
0591     int i;
0592     u64 size;
0593     enum pci_barno barno;
0594     struct device *dev = &ntb->epf->dev;
0595 
0596     for (i = 0; i < ntb->num_mws; i++) {
0597         size = ntb->mws_size[i];
0598         barno = ntb->epf_ntb_bar[BAR_MW0 + i];
0599 
0600         ntb->epf->bar[barno].barno = barno;
0601         ntb->epf->bar[barno].size = size;
0602         ntb->epf->bar[barno].addr = NULL;
0603         ntb->epf->bar[barno].phys_addr = 0;
0604         ntb->epf->bar[barno].flags |= upper_32_bits(size) ?
0605                 PCI_BASE_ADDRESS_MEM_TYPE_64 :
0606                 PCI_BASE_ADDRESS_MEM_TYPE_32;
0607 
0608         ret = pci_epc_set_bar(ntb->epf->epc,
0609                       ntb->epf->func_no,
0610                       ntb->epf->vfunc_no,
0611                       &ntb->epf->bar[barno]);
0612         if (ret) {
0613             dev_err(dev, "MW set failed\n");
0614             goto err_alloc_mem;
0615         }
0616 
0617         /* Allocate EPC outbound memory windows to vpci vntb device */
0618         ntb->vpci_mw_addr[i] = pci_epc_mem_alloc_addr(ntb->epf->epc,
0619                                   &ntb->vpci_mw_phy[i],
0620                                   size);
0621         if (!ntb->vpci_mw_addr[i]) {
0622             ret = -ENOMEM;
0623             dev_err(dev, "Failed to allocate source address\n");
0624             goto err_set_bar;
0625         }
0626     }
0627 
0628     return ret;
0629 
0630 err_set_bar:
0631     pci_epc_clear_bar(ntb->epf->epc,
0632               ntb->epf->func_no,
0633               ntb->epf->vfunc_no,
0634               &ntb->epf->bar[barno]);
0635 err_alloc_mem:
0636     epf_ntb_mw_bar_clear(ntb, i);
0637     return ret;
0638 }
0639 
0640 /**
0641  * epf_ntb_mw_bar_clear() - Clear Memory window BARs
0642  * @ntb: NTB device that facilitates communication between HOST and vHOST
0643  */
0644 static void epf_ntb_mw_bar_clear(struct epf_ntb *ntb, int num_mws)
0645 {
0646     enum pci_barno barno;
0647     int i;
0648 
0649     for (i = 0; i < num_mws; i++) {
0650         barno = ntb->epf_ntb_bar[BAR_MW0 + i];
0651         pci_epc_clear_bar(ntb->epf->epc,
0652                   ntb->epf->func_no,
0653                   ntb->epf->vfunc_no,
0654                   &ntb->epf->bar[barno]);
0655 
0656         pci_epc_mem_free_addr(ntb->epf->epc,
0657                       ntb->vpci_mw_phy[i],
0658                       ntb->vpci_mw_addr[i],
0659                       ntb->mws_size[i]);
0660     }
0661 }
0662 
0663 /**
0664  * epf_ntb_epc_destroy() - Cleanup NTB EPC interface
0665  * @ntb: NTB device that facilitates communication between HOST and vHOST
0666  *
0667  * Wrapper for epf_ntb_epc_destroy_interface() to cleanup all the NTB interfaces
0668  */
0669 static void epf_ntb_epc_destroy(struct epf_ntb *ntb)
0670 {
0671     pci_epc_remove_epf(ntb->epf->epc, ntb->epf, 0);
0672     pci_epc_put(ntb->epf->epc);
0673 }
0674 
0675 /**
0676  * epf_ntb_init_epc_bar() - Identify BARs to be used for each of the NTB
0677  * constructs (scratchpad region, doorbell, memorywindow)
0678  * @ntb: NTB device that facilitates communication between HOST and vHOST
0679  */
0680 static int epf_ntb_init_epc_bar(struct epf_ntb *ntb)
0681 {
0682     const struct pci_epc_features *epc_features;
0683     enum pci_barno barno;
0684     enum epf_ntb_bar bar;
0685     struct device *dev;
0686     u32 num_mws;
0687     int i;
0688 
0689     barno = BAR_0;
0690     num_mws = ntb->num_mws;
0691     dev = &ntb->epf->dev;
0692     epc_features = pci_epc_get_features(ntb->epf->epc, ntb->epf->func_no, ntb->epf->vfunc_no);
0693 
0694     /* These are required BARs which are mandatory for NTB functionality */
0695     for (bar = BAR_CONFIG; bar <= BAR_MW0; bar++, barno++) {
0696         barno = pci_epc_get_next_free_bar(epc_features, barno);
0697         if (barno < 0) {
0698             dev_err(dev, "Fail to get NTB function BAR\n");
0699             return barno;
0700         }
0701         ntb->epf_ntb_bar[bar] = barno;
0702     }
0703 
0704     /* These are optional BARs which don't impact NTB functionality */
0705     for (bar = BAR_MW1, i = 1; i < num_mws; bar++, barno++, i++) {
0706         barno = pci_epc_get_next_free_bar(epc_features, barno);
0707         if (barno < 0) {
0708             ntb->num_mws = i;
0709             dev_dbg(dev, "BAR not available for > MW%d\n", i + 1);
0710         }
0711         ntb->epf_ntb_bar[bar] = barno;
0712     }
0713 
0714     return 0;
0715 }
0716 
0717 /**
0718  * epf_ntb_epc_init() - Initialize NTB interface
0719  * @ntb: NTB device that facilitates communication between HOST and vHOST2
0720  *
0721  * Wrapper to initialize a particular EPC interface and start the workqueue
0722  * to check for commands from host. This function will write to the
0723  * EP controller HW for configuring it.
0724  */
0725 static int epf_ntb_epc_init(struct epf_ntb *ntb)
0726 {
0727     u8 func_no, vfunc_no;
0728     struct pci_epc *epc;
0729     struct pci_epf *epf;
0730     struct device *dev;
0731     int ret;
0732 
0733     epf = ntb->epf;
0734     dev = &epf->dev;
0735     epc = epf->epc;
0736     func_no = ntb->epf->func_no;
0737     vfunc_no = ntb->epf->vfunc_no;
0738 
0739     ret = epf_ntb_config_sspad_bar_set(ntb);
0740     if (ret) {
0741         dev_err(dev, "Config/self SPAD BAR init failed");
0742         return ret;
0743     }
0744 
0745     ret = epf_ntb_configure_interrupt(ntb);
0746     if (ret) {
0747         dev_err(dev, "Interrupt configuration failed\n");
0748         goto err_config_interrupt;
0749     }
0750 
0751     ret = epf_ntb_db_bar_init(ntb);
0752     if (ret) {
0753         dev_err(dev, "DB BAR init failed\n");
0754         goto err_db_bar_init;
0755     }
0756 
0757     ret = epf_ntb_mw_bar_init(ntb);
0758     if (ret) {
0759         dev_err(dev, "MW BAR init failed\n");
0760         goto err_mw_bar_init;
0761     }
0762 
0763     if (vfunc_no <= 1) {
0764         ret = pci_epc_write_header(epc, func_no, vfunc_no, epf->header);
0765         if (ret) {
0766             dev_err(dev, "Configuration header write failed\n");
0767             goto err_write_header;
0768         }
0769     }
0770 
0771     INIT_DELAYED_WORK(&ntb->cmd_handler, epf_ntb_cmd_handler);
0772     queue_work(kpcintb_workqueue, &ntb->cmd_handler.work);
0773 
0774     return 0;
0775 
0776 err_write_header:
0777     epf_ntb_mw_bar_clear(ntb, ntb->num_mws);
0778 err_mw_bar_init:
0779     epf_ntb_db_bar_clear(ntb);
0780 err_db_bar_init:
0781 err_config_interrupt:
0782     epf_ntb_config_sspad_bar_clear(ntb);
0783 
0784     return ret;
0785 }
0786 
0787 
0788 /**
0789  * epf_ntb_epc_cleanup() - Cleanup all NTB interfaces
0790  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
0791  *
0792  * Wrapper to cleanup all NTB interfaces.
0793  */
0794 static void epf_ntb_epc_cleanup(struct epf_ntb *ntb)
0795 {
0796     epf_ntb_db_bar_clear(ntb);
0797     epf_ntb_mw_bar_clear(ntb, ntb->num_mws);
0798 }
0799 
0800 #define EPF_NTB_R(_name)                        \
0801 static ssize_t epf_ntb_##_name##_show(struct config_item *item,     \
0802                       char *page)           \
0803 {                                   \
0804     struct config_group *group = to_config_group(item);     \
0805     struct epf_ntb *ntb = to_epf_ntb(group);            \
0806                                     \
0807     return sprintf(page, "%d\n", ntb->_name);           \
0808 }
0809 
0810 #define EPF_NTB_W(_name)                        \
0811 static ssize_t epf_ntb_##_name##_store(struct config_item *item,    \
0812                        const char *page, size_t len)    \
0813 {                                   \
0814     struct config_group *group = to_config_group(item);     \
0815     struct epf_ntb *ntb = to_epf_ntb(group);            \
0816     u32 val;                            \
0817     int ret;                            \
0818                                     \
0819     ret = kstrtou32(page, 0, &val);                 \
0820     if (ret)                            \
0821         return ret;                     \
0822                                     \
0823     ntb->_name = val;                       \
0824                                     \
0825     return len;                         \
0826 }
0827 
0828 #define EPF_NTB_MW_R(_name)                     \
0829 static ssize_t epf_ntb_##_name##_show(struct config_item *item,     \
0830                       char *page)           \
0831 {                                   \
0832     struct config_group *group = to_config_group(item);     \
0833     struct epf_ntb *ntb = to_epf_ntb(group);            \
0834     struct device *dev = &ntb->epf->dev;                \
0835     int win_no;                         \
0836                                     \
0837     if (sscanf(#_name, "mw%d", &win_no) != 1)           \
0838         return -EINVAL;                     \
0839                                     \
0840     if (win_no <= 0 || win_no > ntb->num_mws) {         \
0841         dev_err(dev, "Invalid num_nws: %d value\n", ntb->num_mws); \
0842         return -EINVAL;                     \
0843     }                               \
0844                                     \
0845     return sprintf(page, "%lld\n", ntb->mws_size[win_no - 1]);  \
0846 }
0847 
0848 #define EPF_NTB_MW_W(_name)                     \
0849 static ssize_t epf_ntb_##_name##_store(struct config_item *item,    \
0850                        const char *page, size_t len)    \
0851 {                                   \
0852     struct config_group *group = to_config_group(item);     \
0853     struct epf_ntb *ntb = to_epf_ntb(group);            \
0854     struct device *dev = &ntb->epf->dev;                \
0855     int win_no;                         \
0856     u64 val;                            \
0857     int ret;                            \
0858                                     \
0859     ret = kstrtou64(page, 0, &val);                 \
0860     if (ret)                            \
0861         return ret;                     \
0862                                     \
0863     if (sscanf(#_name, "mw%d", &win_no) != 1)           \
0864         return -EINVAL;                     \
0865                                     \
0866     if (win_no <= 0 || win_no > ntb->num_mws) {         \
0867         dev_err(dev, "Invalid num_nws: %d value\n", ntb->num_mws); \
0868         return -EINVAL;                     \
0869     }                               \
0870                                     \
0871     ntb->mws_size[win_no - 1] = val;                \
0872                                     \
0873     return len;                         \
0874 }
0875 
0876 static ssize_t epf_ntb_num_mws_store(struct config_item *item,
0877                      const char *page, size_t len)
0878 {
0879     struct config_group *group = to_config_group(item);
0880     struct epf_ntb *ntb = to_epf_ntb(group);
0881     u32 val;
0882     int ret;
0883 
0884     ret = kstrtou32(page, 0, &val);
0885     if (ret)
0886         return ret;
0887 
0888     if (val > MAX_MW)
0889         return -EINVAL;
0890 
0891     ntb->num_mws = val;
0892 
0893     return len;
0894 }
0895 
0896 EPF_NTB_R(spad_count)
0897 EPF_NTB_W(spad_count)
0898 EPF_NTB_R(db_count)
0899 EPF_NTB_W(db_count)
0900 EPF_NTB_R(num_mws)
0901 EPF_NTB_R(vbus_number)
0902 EPF_NTB_W(vbus_number)
0903 EPF_NTB_R(vntb_pid)
0904 EPF_NTB_W(vntb_pid)
0905 EPF_NTB_R(vntb_vid)
0906 EPF_NTB_W(vntb_vid)
0907 EPF_NTB_MW_R(mw1)
0908 EPF_NTB_MW_W(mw1)
0909 EPF_NTB_MW_R(mw2)
0910 EPF_NTB_MW_W(mw2)
0911 EPF_NTB_MW_R(mw3)
0912 EPF_NTB_MW_W(mw3)
0913 EPF_NTB_MW_R(mw4)
0914 EPF_NTB_MW_W(mw4)
0915 
0916 CONFIGFS_ATTR(epf_ntb_, spad_count);
0917 CONFIGFS_ATTR(epf_ntb_, db_count);
0918 CONFIGFS_ATTR(epf_ntb_, num_mws);
0919 CONFIGFS_ATTR(epf_ntb_, mw1);
0920 CONFIGFS_ATTR(epf_ntb_, mw2);
0921 CONFIGFS_ATTR(epf_ntb_, mw3);
0922 CONFIGFS_ATTR(epf_ntb_, mw4);
0923 CONFIGFS_ATTR(epf_ntb_, vbus_number);
0924 CONFIGFS_ATTR(epf_ntb_, vntb_pid);
0925 CONFIGFS_ATTR(epf_ntb_, vntb_vid);
0926 
0927 static struct configfs_attribute *epf_ntb_attrs[] = {
0928     &epf_ntb_attr_spad_count,
0929     &epf_ntb_attr_db_count,
0930     &epf_ntb_attr_num_mws,
0931     &epf_ntb_attr_mw1,
0932     &epf_ntb_attr_mw2,
0933     &epf_ntb_attr_mw3,
0934     &epf_ntb_attr_mw4,
0935     &epf_ntb_attr_vbus_number,
0936     &epf_ntb_attr_vntb_pid,
0937     &epf_ntb_attr_vntb_vid,
0938     NULL,
0939 };
0940 
0941 static const struct config_item_type ntb_group_type = {
0942     .ct_attrs   = epf_ntb_attrs,
0943     .ct_owner   = THIS_MODULE,
0944 };
0945 
0946 /**
0947  * epf_ntb_add_cfs() - Add configfs directory specific to NTB
0948  * @epf: NTB endpoint function device
0949  * @group: A pointer to the config_group structure referencing a group of
0950  *     config_items of a specific type that belong to a specific sub-system.
0951  *
0952  * Add configfs directory specific to NTB. This directory will hold
0953  * NTB specific properties like db_count, spad_count, num_mws etc.,
0954  */
0955 static struct config_group *epf_ntb_add_cfs(struct pci_epf *epf,
0956                         struct config_group *group)
0957 {
0958     struct epf_ntb *ntb = epf_get_drvdata(epf);
0959     struct config_group *ntb_group = &ntb->group;
0960     struct device *dev = &epf->dev;
0961 
0962     config_group_init_type_name(ntb_group, dev_name(dev), &ntb_group_type);
0963 
0964     return ntb_group;
0965 }
0966 
0967 /*==== virtual PCI bus driver, which only load virtual NTB PCI driver ====*/
0968 
0969 static u32 pci_space[] = {
0970     0xffffffff, /*DeviceID, Vendor ID*/
0971     0,      /*Status, Command*/
0972     0xffffffff, /*Class code, subclass, prog if, revision id*/
0973     0x40,       /*bist, header type, latency Timer, cache line size*/
0974     0,      /*BAR 0*/
0975     0,      /*BAR 1*/
0976     0,      /*BAR 2*/
0977     0,      /*BAR 3*/
0978     0,      /*BAR 4*/
0979     0,      /*BAR 5*/
0980     0,      /*Cardbus cis point*/
0981     0,      /*Subsystem ID Subystem vendor id*/
0982     0,      /*ROM Base Address*/
0983     0,      /*Reserved, Cap. Point*/
0984     0,      /*Reserved,*/
0985     0,      /*Max Lat, Min Gnt, interrupt pin, interrupt line*/
0986 };
0987 
0988 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val)
0989 {
0990     if (devfn == 0) {
0991         memcpy(val, ((u8 *)pci_space) + where, size);
0992         return PCIBIOS_SUCCESSFUL;
0993     }
0994     return PCIBIOS_DEVICE_NOT_FOUND;
0995 }
0996 
0997 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val)
0998 {
0999     return 0;
1000 }
1001 
1002 static struct pci_ops vpci_ops = {
1003     .read = pci_read,
1004     .write = pci_write,
1005 };
1006 
1007 static int vpci_scan_bus(void *sysdata)
1008 {
1009     struct pci_bus *vpci_bus;
1010     struct epf_ntb *ndev = sysdata;
1011 
1012     vpci_bus = pci_scan_bus(ndev->vbus_number, &vpci_ops, sysdata);
1013     if (vpci_bus)
1014         pr_err("create pci bus\n");
1015 
1016     pci_bus_add_devices(vpci_bus);
1017 
1018     return 0;
1019 }
1020 
1021 /*==================== Virtual PCIe NTB driver ==========================*/
1022 
1023 static int vntb_epf_mw_count(struct ntb_dev *ntb, int pidx)
1024 {
1025     struct epf_ntb *ndev = ntb_ndev(ntb);
1026 
1027     return ndev->num_mws;
1028 }
1029 
1030 static int vntb_epf_spad_count(struct ntb_dev *ntb)
1031 {
1032     return ntb_ndev(ntb)->spad_count;
1033 }
1034 
1035 static int vntb_epf_peer_mw_count(struct ntb_dev *ntb)
1036 {
1037     return ntb_ndev(ntb)->num_mws;
1038 }
1039 
1040 static u64 vntb_epf_db_valid_mask(struct ntb_dev *ntb)
1041 {
1042     return BIT_ULL(ntb_ndev(ntb)->db_count) - 1;
1043 }
1044 
1045 static int vntb_epf_db_set_mask(struct ntb_dev *ntb, u64 db_bits)
1046 {
1047     return 0;
1048 }
1049 
1050 static int vntb_epf_mw_set_trans(struct ntb_dev *ndev, int pidx, int idx,
1051         dma_addr_t addr, resource_size_t size)
1052 {
1053     struct epf_ntb *ntb = ntb_ndev(ndev);
1054     struct pci_epf_bar *epf_bar;
1055     enum pci_barno barno;
1056     int ret;
1057     struct device *dev;
1058 
1059     dev = &ntb->ntb.dev;
1060     barno = ntb->epf_ntb_bar[BAR_MW0 + idx];
1061     epf_bar = &ntb->epf->bar[barno];
1062     epf_bar->phys_addr = addr;
1063     epf_bar->barno = barno;
1064     epf_bar->size = size;
1065 
1066     ret = pci_epc_set_bar(ntb->epf->epc, 0, 0, epf_bar);
1067     if (ret) {
1068         dev_err(dev, "failure set mw trans\n");
1069         return ret;
1070     }
1071     return 0;
1072 }
1073 
1074 static int vntb_epf_mw_clear_trans(struct ntb_dev *ntb, int pidx, int idx)
1075 {
1076     return 0;
1077 }
1078 
1079 static int vntb_epf_peer_mw_get_addr(struct ntb_dev *ndev, int idx,
1080                 phys_addr_t *base, resource_size_t *size)
1081 {
1082 
1083     struct epf_ntb *ntb = ntb_ndev(ndev);
1084 
1085     if (base)
1086         *base = ntb->vpci_mw_phy[idx];
1087 
1088     if (size)
1089         *size = ntb->mws_size[idx];
1090 
1091     return 0;
1092 }
1093 
1094 static int vntb_epf_link_enable(struct ntb_dev *ntb,
1095             enum ntb_speed max_speed,
1096             enum ntb_width max_width)
1097 {
1098     return 0;
1099 }
1100 
1101 static u32 vntb_epf_spad_read(struct ntb_dev *ndev, int idx)
1102 {
1103     struct epf_ntb *ntb = ntb_ndev(ndev);
1104     int off = ntb->reg->spad_offset, ct = ntb->reg->spad_count * 4;
1105     u32 val;
1106     void __iomem *base = ntb->reg;
1107 
1108     val = readl(base + off + ct + idx * 4);
1109     return val;
1110 }
1111 
1112 static int vntb_epf_spad_write(struct ntb_dev *ndev, int idx, u32 val)
1113 {
1114     struct epf_ntb *ntb = ntb_ndev(ndev);
1115     struct epf_ntb_ctrl *ctrl = ntb->reg;
1116     int off = ctrl->spad_offset, ct = ctrl->spad_count * 4;
1117     void __iomem *base = ntb->reg;
1118 
1119     writel(val, base + off + ct + idx * 4);
1120     return 0;
1121 }
1122 
1123 static u32 vntb_epf_peer_spad_read(struct ntb_dev *ndev, int pidx, int idx)
1124 {
1125     struct epf_ntb *ntb = ntb_ndev(ndev);
1126     struct epf_ntb_ctrl *ctrl = ntb->reg;
1127     int off = ctrl->spad_offset;
1128     void __iomem *base = ntb->reg;
1129     u32 val;
1130 
1131     val = readl(base + off + idx * 4);
1132     return val;
1133 }
1134 
1135 static int vntb_epf_peer_spad_write(struct ntb_dev *ndev, int pidx, int idx, u32 val)
1136 {
1137     struct epf_ntb *ntb = ntb_ndev(ndev);
1138     struct epf_ntb_ctrl *ctrl = ntb->reg;
1139     int off = ctrl->spad_offset;
1140     void __iomem *base = ntb->reg;
1141 
1142     writel(val, base + off + idx * 4);
1143     return 0;
1144 }
1145 
1146 static int vntb_epf_peer_db_set(struct ntb_dev *ndev, u64 db_bits)
1147 {
1148     u32 interrupt_num = ffs(db_bits) + 1;
1149     struct epf_ntb *ntb = ntb_ndev(ndev);
1150     u8 func_no, vfunc_no;
1151     int ret;
1152 
1153     func_no = ntb->epf->func_no;
1154     vfunc_no = ntb->epf->vfunc_no;
1155 
1156     ret = pci_epc_raise_irq(ntb->epf->epc,
1157                 func_no,
1158                 vfunc_no,
1159                 PCI_EPC_IRQ_MSI,
1160                 interrupt_num + 1);
1161     if (ret)
1162         dev_err(&ntb->ntb.dev, "Failed to raise IRQ\n");
1163 
1164     return ret;
1165 }
1166 
1167 static u64 vntb_epf_db_read(struct ntb_dev *ndev)
1168 {
1169     struct epf_ntb *ntb = ntb_ndev(ndev);
1170 
1171     return ntb->db;
1172 }
1173 
1174 static int vntb_epf_mw_get_align(struct ntb_dev *ndev, int pidx, int idx,
1175             resource_size_t *addr_align,
1176             resource_size_t *size_align,
1177             resource_size_t *size_max)
1178 {
1179     struct epf_ntb *ntb = ntb_ndev(ndev);
1180 
1181     if (addr_align)
1182         *addr_align = SZ_4K;
1183 
1184     if (size_align)
1185         *size_align = 1;
1186 
1187     if (size_max)
1188         *size_max = ntb->mws_size[idx];
1189 
1190     return 0;
1191 }
1192 
1193 static u64 vntb_epf_link_is_up(struct ntb_dev *ndev,
1194             enum ntb_speed *speed,
1195             enum ntb_width *width)
1196 {
1197     struct epf_ntb *ntb = ntb_ndev(ndev);
1198 
1199     return ntb->reg->link_status;
1200 }
1201 
1202 static int vntb_epf_db_clear_mask(struct ntb_dev *ndev, u64 db_bits)
1203 {
1204     return 0;
1205 }
1206 
1207 static int vntb_epf_db_clear(struct ntb_dev *ndev, u64 db_bits)
1208 {
1209     struct epf_ntb *ntb = ntb_ndev(ndev);
1210 
1211     ntb->db &= ~db_bits;
1212     return 0;
1213 }
1214 
1215 static int vntb_epf_link_disable(struct ntb_dev *ntb)
1216 {
1217     return 0;
1218 }
1219 
1220 static const struct ntb_dev_ops vntb_epf_ops = {
1221     .mw_count       = vntb_epf_mw_count,
1222     .spad_count     = vntb_epf_spad_count,
1223     .peer_mw_count      = vntb_epf_peer_mw_count,
1224     .db_valid_mask      = vntb_epf_db_valid_mask,
1225     .db_set_mask        = vntb_epf_db_set_mask,
1226     .mw_set_trans       = vntb_epf_mw_set_trans,
1227     .mw_clear_trans     = vntb_epf_mw_clear_trans,
1228     .peer_mw_get_addr   = vntb_epf_peer_mw_get_addr,
1229     .link_enable        = vntb_epf_link_enable,
1230     .spad_read      = vntb_epf_spad_read,
1231     .spad_write     = vntb_epf_spad_write,
1232     .peer_spad_read     = vntb_epf_peer_spad_read,
1233     .peer_spad_write    = vntb_epf_peer_spad_write,
1234     .peer_db_set        = vntb_epf_peer_db_set,
1235     .db_read        = vntb_epf_db_read,
1236     .mw_get_align       = vntb_epf_mw_get_align,
1237     .link_is_up     = vntb_epf_link_is_up,
1238     .db_clear_mask      = vntb_epf_db_clear_mask,
1239     .db_clear       = vntb_epf_db_clear,
1240     .link_disable       = vntb_epf_link_disable,
1241 };
1242 
1243 static int pci_vntb_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1244 {
1245     int ret;
1246     struct epf_ntb *ndev = (struct epf_ntb *)pdev->sysdata;
1247     struct device *dev = &pdev->dev;
1248 
1249     ndev->ntb.pdev = pdev;
1250     ndev->ntb.topo = NTB_TOPO_NONE;
1251     ndev->ntb.ops =  &vntb_epf_ops;
1252 
1253     ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
1254     if (ret) {
1255         dev_err(dev, "Cannot set DMA mask\n");
1256         return -EINVAL;
1257     }
1258 
1259     ret = ntb_register_device(&ndev->ntb);
1260     if (ret) {
1261         dev_err(dev, "Failed to register NTB device\n");
1262         goto err_register_dev;
1263     }
1264 
1265     dev_dbg(dev, "PCI Virtual NTB driver loaded\n");
1266     return 0;
1267 
1268 err_register_dev:
1269     return -EINVAL;
1270 }
1271 
1272 static struct pci_device_id pci_vntb_table[] = {
1273     {
1274         PCI_DEVICE(0xffff, 0xffff),
1275     },
1276     {},
1277 };
1278 
1279 static struct pci_driver vntb_pci_driver = {
1280     .name           = "pci-vntb",
1281     .id_table       = pci_vntb_table,
1282     .probe          = pci_vntb_probe,
1283 };
1284 
1285 /* ============ PCIe EPF Driver Bind ====================*/
1286 
1287 /**
1288  * epf_ntb_bind() - Initialize endpoint controller to provide NTB functionality
1289  * @epf: NTB endpoint function device
1290  *
1291  * Initialize both the endpoint controllers associated with NTB function device.
1292  * Invoked when a primary interface or secondary interface is bound to EPC
1293  * device. This function will succeed only when EPC is bound to both the
1294  * interfaces.
1295  */
1296 static int epf_ntb_bind(struct pci_epf *epf)
1297 {
1298     struct epf_ntb *ntb = epf_get_drvdata(epf);
1299     struct device *dev = &epf->dev;
1300     int ret;
1301 
1302     if (!epf->epc) {
1303         dev_dbg(dev, "PRIMARY EPC interface not yet bound\n");
1304         return 0;
1305     }
1306 
1307     ret = epf_ntb_init_epc_bar(ntb);
1308     if (ret) {
1309         dev_err(dev, "Failed to create NTB EPC\n");
1310         goto err_bar_init;
1311     }
1312 
1313     ret = epf_ntb_config_spad_bar_alloc(ntb);
1314     if (ret) {
1315         dev_err(dev, "Failed to allocate BAR memory\n");
1316         goto err_bar_alloc;
1317     }
1318 
1319     ret = epf_ntb_epc_init(ntb);
1320     if (ret) {
1321         dev_err(dev, "Failed to initialize EPC\n");
1322         goto err_bar_alloc;
1323     }
1324 
1325     epf_set_drvdata(epf, ntb);
1326 
1327     pci_space[0] = (ntb->vntb_pid << 16) | ntb->vntb_vid;
1328     pci_vntb_table[0].vendor = ntb->vntb_vid;
1329     pci_vntb_table[0].device = ntb->vntb_pid;
1330 
1331     ret = pci_register_driver(&vntb_pci_driver);
1332     if (ret) {
1333         dev_err(dev, "failure register vntb pci driver\n");
1334         goto err_bar_alloc;
1335     }
1336 
1337     vpci_scan_bus(ntb);
1338 
1339     return 0;
1340 
1341 err_bar_alloc:
1342     epf_ntb_config_spad_bar_free(ntb);
1343 
1344 err_bar_init:
1345     epf_ntb_epc_destroy(ntb);
1346 
1347     return ret;
1348 }
1349 
1350 /**
1351  * epf_ntb_unbind() - Cleanup the initialization from epf_ntb_bind()
1352  * @epf: NTB endpoint function device
1353  *
1354  * Cleanup the initialization from epf_ntb_bind()
1355  */
1356 static void epf_ntb_unbind(struct pci_epf *epf)
1357 {
1358     struct epf_ntb *ntb = epf_get_drvdata(epf);
1359 
1360     epf_ntb_epc_cleanup(ntb);
1361     epf_ntb_config_spad_bar_free(ntb);
1362     epf_ntb_epc_destroy(ntb);
1363 
1364     pci_unregister_driver(&vntb_pci_driver);
1365 }
1366 
1367 // EPF driver probe
1368 static struct pci_epf_ops epf_ntb_ops = {
1369     .bind   = epf_ntb_bind,
1370     .unbind = epf_ntb_unbind,
1371     .add_cfs = epf_ntb_add_cfs,
1372 };
1373 
1374 /**
1375  * epf_ntb_probe() - Probe NTB function driver
1376  * @epf: NTB endpoint function device
1377  *
1378  * Probe NTB function driver when endpoint function bus detects a NTB
1379  * endpoint function.
1380  */
1381 static int epf_ntb_probe(struct pci_epf *epf)
1382 {
1383     struct epf_ntb *ntb;
1384     struct device *dev;
1385 
1386     dev = &epf->dev;
1387 
1388     ntb = devm_kzalloc(dev, sizeof(*ntb), GFP_KERNEL);
1389     if (!ntb)
1390         return -ENOMEM;
1391 
1392     epf->header = &epf_ntb_header;
1393     ntb->epf = epf;
1394     ntb->vbus_number = 0xff;
1395     epf_set_drvdata(epf, ntb);
1396 
1397     dev_info(dev, "pci-ep epf driver loaded\n");
1398     return 0;
1399 }
1400 
1401 static const struct pci_epf_device_id epf_ntb_ids[] = {
1402     {
1403         .name = "pci_epf_vntb",
1404     },
1405     {},
1406 };
1407 
1408 static struct pci_epf_driver epf_ntb_driver = {
1409     .driver.name    = "pci_epf_vntb",
1410     .probe          = epf_ntb_probe,
1411     .id_table       = epf_ntb_ids,
1412     .ops            = &epf_ntb_ops,
1413     .owner          = THIS_MODULE,
1414 };
1415 
1416 static int __init epf_ntb_init(void)
1417 {
1418     int ret;
1419 
1420     kpcintb_workqueue = alloc_workqueue("kpcintb", WQ_MEM_RECLAIM |
1421                         WQ_HIGHPRI, 0);
1422     ret = pci_epf_register_driver(&epf_ntb_driver);
1423     if (ret) {
1424         destroy_workqueue(kpcintb_workqueue);
1425         pr_err("Failed to register pci epf ntb driver --> %d\n", ret);
1426         return ret;
1427     }
1428 
1429     return 0;
1430 }
1431 module_init(epf_ntb_init);
1432 
1433 static void __exit epf_ntb_exit(void)
1434 {
1435     pci_epf_unregister_driver(&epf_ntb_driver);
1436     destroy_workqueue(kpcintb_workqueue);
1437 }
1438 module_exit(epf_ntb_exit);
1439 
1440 MODULE_DESCRIPTION("PCI EPF NTB DRIVER");
1441 MODULE_AUTHOR("Frank Li <Frank.li@nxp.com>");
1442 MODULE_LICENSE("GPL v2");