Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /* Low-level parallel port routines for built-in port on SGI IP32
0003  *
0004  * Author: Arnaud Giersch <arnaud.giersch@free.fr>
0005  *
0006  * Based on parport_pc.c by
0007  *  Phil Blundell, Tim Waugh, Jose Renau, David Campbell,
0008  *  Andrea Arcangeli, et al.
0009  *
0010  * Thanks to Ilya A. Volynets-Evenbakh for his help.
0011  *
0012  * Copyright (C) 2005, 2006 Arnaud Giersch.
0013  */
0014 
0015 /* Current status:
0016  *
0017  *  Basic SPP and PS2 modes are supported.
0018  *  Support for parallel port IRQ is present.
0019  *  Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are
0020  *  supported.
0021  *  SPP/ECP FIFO can be driven in PIO or DMA mode.  PIO mode can work with
0022  *  or without interrupt support.
0023  *
0024  *  Hardware ECP mode is not fully implemented (ecp_read_data and
0025  *  ecp_write_addr are actually missing).
0026  *
0027  * To do:
0028  *
0029  *  Fully implement ECP mode.
0030  *  EPP and ECP mode need to be tested.  I currently do not own any
0031  *  peripheral supporting these extended mode, and cannot test them.
0032  *  If DMA mode works well, decide if support for PIO FIFO modes should be
0033  *  dropped.
0034  *  Use the io{read,write} family functions when they become available in
0035  *  the linux-mips.org tree.  Note: the MIPS specific functions readsb()
0036  *  and writesb() are to be translated by ioread8_rep() and iowrite8_rep()
0037  *  respectively.
0038  */
0039 
0040 /* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an
0041  * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1].
0042  * This chip supports SPP, bidirectional, EPP and ECP modes.  It has a 16 byte
0043  * FIFO buffer and supports DMA transfers.
0044  *
0045  * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html
0046  *
0047  * Theoretically, we could simply use the parport_pc module.  It is however
0048  * not so simple.  The parport_pc code assumes that the parallel port
0049  * registers are port-mapped.  On the O2, they are memory-mapped.
0050  * Furthermore, each register is replicated on 256 consecutive addresses (as
0051  * it is for the built-in serial ports on the same chip).
0052  */
0053 
0054 /*--- Some configuration defines ---------------------------------------*/
0055 
0056 /* DEBUG_PARPORT_IP32
0057  *  0   disable debug
0058  *  1   standard level: pr_debug1 is enabled
0059  *  2   parport_ip32_dump_state is enabled
0060  *  >=3 verbose level: pr_debug is enabled
0061  */
0062 #if !defined(DEBUG_PARPORT_IP32)
0063 #   define DEBUG_PARPORT_IP32  0    /* 0 (disabled) for production */
0064 #endif
0065 
0066 /*----------------------------------------------------------------------*/
0067 
0068 /* Setup DEBUG macros.  This is done before any includes, just in case we
0069  * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3.
0070  */
0071 #if DEBUG_PARPORT_IP32 == 1
0072 #   warning DEBUG_PARPORT_IP32 == 1
0073 #elif DEBUG_PARPORT_IP32 == 2
0074 #   warning DEBUG_PARPORT_IP32 == 2
0075 #elif DEBUG_PARPORT_IP32 >= 3
0076 #   warning DEBUG_PARPORT_IP32 >= 3
0077 #   if !defined(DEBUG)
0078 #       define DEBUG /* enable pr_debug() in kernel.h */
0079 #   endif
0080 #endif
0081 
0082 #include <linux/completion.h>
0083 #include <linux/delay.h>
0084 #include <linux/dma-mapping.h>
0085 #include <linux/err.h>
0086 #include <linux/init.h>
0087 #include <linux/interrupt.h>
0088 #include <linux/jiffies.h>
0089 #include <linux/kernel.h>
0090 #include <linux/module.h>
0091 #include <linux/parport.h>
0092 #include <linux/sched/signal.h>
0093 #include <linux/slab.h>
0094 #include <linux/spinlock.h>
0095 #include <linux/stddef.h>
0096 #include <linux/types.h>
0097 #include <asm/io.h>
0098 #include <asm/ip32/ip32_ints.h>
0099 #include <asm/ip32/mace.h>
0100 
0101 /*--- Global variables -------------------------------------------------*/
0102 
0103 /* Verbose probing on by default for debugging. */
0104 #if DEBUG_PARPORT_IP32 >= 1
0105 #   define DEFAULT_VERBOSE_PROBING  1
0106 #else
0107 #   define DEFAULT_VERBOSE_PROBING  0
0108 #endif
0109 
0110 /* Default prefix for printk */
0111 #define PPIP32 "parport_ip32: "
0112 
0113 /*
0114  * These are the module parameters:
0115  * @features:       bit mask of features to enable/disable
0116  *          (all enabled by default)
0117  * @verbose_probing:    log chit-chat during initialization
0118  */
0119 #define PARPORT_IP32_ENABLE_IRQ (1U << 0)
0120 #define PARPORT_IP32_ENABLE_DMA (1U << 1)
0121 #define PARPORT_IP32_ENABLE_SPP (1U << 2)
0122 #define PARPORT_IP32_ENABLE_EPP (1U << 3)
0123 #define PARPORT_IP32_ENABLE_ECP (1U << 4)
0124 static unsigned int features =  ~0U;
0125 static bool verbose_probing =   DEFAULT_VERBOSE_PROBING;
0126 
0127 /* We do not support more than one port. */
0128 static struct parport *this_port;
0129 
0130 /* Timing constants for FIFO modes.  */
0131 #define FIFO_NFAULT_TIMEOUT 100 /* milliseconds */
0132 #define FIFO_POLLING_INTERVAL   50  /* microseconds */
0133 
0134 /*--- I/O register definitions -----------------------------------------*/
0135 
0136 /**
0137  * struct parport_ip32_regs - virtual addresses of parallel port registers
0138  * @data:   Data Register
0139  * @dsr:    Device Status Register
0140  * @dcr:    Device Control Register
0141  * @eppAddr:    EPP Address Register
0142  * @eppData0:   EPP Data Register 0
0143  * @eppData1:   EPP Data Register 1
0144  * @eppData2:   EPP Data Register 2
0145  * @eppData3:   EPP Data Register 3
0146  * @ecpAFifo:   ECP Address FIFO
0147  * @fifo:   General FIFO register.  The same address is used for:
0148  *      - cFifo, the Parallel Port DATA FIFO
0149  *      - ecpDFifo, the ECP Data FIFO
0150  *      - tFifo, the ECP Test FIFO
0151  * @cnfgA:  Configuration Register A
0152  * @cnfgB:  Configuration Register B
0153  * @ecr:    Extended Control Register
0154  */
0155 struct parport_ip32_regs {
0156     void __iomem *data;
0157     void __iomem *dsr;
0158     void __iomem *dcr;
0159     void __iomem *eppAddr;
0160     void __iomem *eppData0;
0161     void __iomem *eppData1;
0162     void __iomem *eppData2;
0163     void __iomem *eppData3;
0164     void __iomem *ecpAFifo;
0165     void __iomem *fifo;
0166     void __iomem *cnfgA;
0167     void __iomem *cnfgB;
0168     void __iomem *ecr;
0169 };
0170 
0171 /* Device Status Register */
0172 #define DSR_nBUSY       (1U << 7)   /* PARPORT_STATUS_BUSY */
0173 #define DSR_nACK        (1U << 6)   /* PARPORT_STATUS_ACK */
0174 #define DSR_PERROR      (1U << 5)   /* PARPORT_STATUS_PAPEROUT */
0175 #define DSR_SELECT      (1U << 4)   /* PARPORT_STATUS_SELECT */
0176 #define DSR_nFAULT      (1U << 3)   /* PARPORT_STATUS_ERROR */
0177 #define DSR_nPRINT      (1U << 2)   /* specific to TL16PIR552 */
0178 /* #define DSR_reserved     (1U << 1) */
0179 #define DSR_TIMEOUT     (1U << 0)   /* EPP timeout */
0180 
0181 /* Device Control Register */
0182 /* #define DCR_reserved     (1U << 7) | (1U <<  6) */
0183 #define DCR_DIR         (1U << 5)   /* direction */
0184 #define DCR_IRQ         (1U << 4)   /* interrupt on nAck */
0185 #define DCR_SELECT      (1U << 3)   /* PARPORT_CONTROL_SELECT */
0186 #define DCR_nINIT       (1U << 2)   /* PARPORT_CONTROL_INIT */
0187 #define DCR_AUTOFD      (1U << 1)   /* PARPORT_CONTROL_AUTOFD */
0188 #define DCR_STROBE      (1U << 0)   /* PARPORT_CONTROL_STROBE */
0189 
0190 /* ECP Configuration Register A */
0191 #define CNFGA_IRQ       (1U << 7)
0192 #define CNFGA_ID_MASK       ((1U << 6) | (1U << 5) | (1U << 4))
0193 #define CNFGA_ID_SHIFT      4
0194 #define CNFGA_ID_16     (00U << CNFGA_ID_SHIFT)
0195 #define CNFGA_ID_8      (01U << CNFGA_ID_SHIFT)
0196 #define CNFGA_ID_32     (02U << CNFGA_ID_SHIFT)
0197 /* #define CNFGA_reserved   (1U << 3) */
0198 #define CNFGA_nBYTEINTRANS  (1U << 2)
0199 #define CNFGA_PWORDLEFT     ((1U << 1) | (1U << 0))
0200 
0201 /* ECP Configuration Register B */
0202 #define CNFGB_COMPRESS      (1U << 7)
0203 #define CNFGB_INTRVAL       (1U << 6)
0204 #define CNFGB_IRQ_MASK      ((1U << 5) | (1U << 4) | (1U << 3))
0205 #define CNFGB_IRQ_SHIFT     3
0206 #define CNFGB_DMA_MASK      ((1U << 2) | (1U << 1) | (1U << 0))
0207 #define CNFGB_DMA_SHIFT     0
0208 
0209 /* Extended Control Register */
0210 #define ECR_MODE_MASK       ((1U << 7) | (1U << 6) | (1U << 5))
0211 #define ECR_MODE_SHIFT      5
0212 #define ECR_MODE_SPP        (00U << ECR_MODE_SHIFT)
0213 #define ECR_MODE_PS2        (01U << ECR_MODE_SHIFT)
0214 #define ECR_MODE_PPF        (02U << ECR_MODE_SHIFT)
0215 #define ECR_MODE_ECP        (03U << ECR_MODE_SHIFT)
0216 #define ECR_MODE_EPP        (04U << ECR_MODE_SHIFT)
0217 /* #define ECR_MODE_reserved    (05U << ECR_MODE_SHIFT) */
0218 #define ECR_MODE_TST        (06U << ECR_MODE_SHIFT)
0219 #define ECR_MODE_CFG        (07U << ECR_MODE_SHIFT)
0220 #define ECR_nERRINTR        (1U << 4)
0221 #define ECR_DMAEN       (1U << 3)
0222 #define ECR_SERVINTR        (1U << 2)
0223 #define ECR_F_FULL      (1U << 1)
0224 #define ECR_F_EMPTY     (1U << 0)
0225 
0226 /*--- Private data -----------------------------------------------------*/
0227 
0228 /**
0229  * enum parport_ip32_irq_mode - operation mode of interrupt handler
0230  * @PARPORT_IP32_IRQ_FWD:   forward interrupt to the upper parport layer
0231  * @PARPORT_IP32_IRQ_HERE:  interrupt is handled locally
0232  */
0233 enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE };
0234 
0235 /**
0236  * struct parport_ip32_private - private stuff for &struct parport
0237  * @regs:       register addresses
0238  * @dcr_cache:      cached contents of DCR
0239  * @dcr_writable:   bit mask of writable DCR bits
0240  * @pword:      number of bytes per PWord
0241  * @fifo_depth:     number of PWords that FIFO will hold
0242  * @readIntrThreshold:  minimum number of PWords we can read
0243  *          if we get an interrupt
0244  * @writeIntrThreshold: minimum number of PWords we can write
0245  *          if we get an interrupt
0246  * @irq_mode:       operation mode of interrupt handler for this port
0247  * @irq_complete:   mutex used to wait for an interrupt to occur
0248  */
0249 struct parport_ip32_private {
0250     struct parport_ip32_regs    regs;
0251     unsigned int            dcr_cache;
0252     unsigned int            dcr_writable;
0253     unsigned int            pword;
0254     unsigned int            fifo_depth;
0255     unsigned int            readIntrThreshold;
0256     unsigned int            writeIntrThreshold;
0257     enum parport_ip32_irq_mode  irq_mode;
0258     struct completion       irq_complete;
0259 };
0260 
0261 /*--- Debug code -------------------------------------------------------*/
0262 
0263 /*
0264  * pr_debug1 - print debug messages
0265  *
0266  * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1
0267  */
0268 #if DEBUG_PARPORT_IP32 >= 1
0269 #   define pr_debug1(...)   printk(KERN_DEBUG __VA_ARGS__)
0270 #else /* DEBUG_PARPORT_IP32 < 1 */
0271 #   define pr_debug1(...)   do { } while (0)
0272 #endif
0273 
0274 /*
0275  * pr_trace, pr_trace1 - trace function calls
0276  * @p:      pointer to &struct parport
0277  * @fmt:    printk format string
0278  * @...:    parameters for format string
0279  *
0280  * Macros used to trace function calls.  The given string is formatted after
0281  * function name.  pr_trace() uses pr_debug(), and pr_trace1() uses
0282  * pr_debug1().  __pr_trace() is the low-level macro and is not to be used
0283  * directly.
0284  */
0285 #define __pr_trace(pr, p, fmt, ...)                 \
0286     pr("%s: %s" fmt "\n",                       \
0287        ({ const struct parport *__p = (p);              \
0288            __p ? __p->name : "parport_ip32"; }),        \
0289        __func__ , ##__VA_ARGS__)
0290 #define pr_trace(p, fmt, ...)   __pr_trace(pr_debug, p, fmt , ##__VA_ARGS__)
0291 #define pr_trace1(p, fmt, ...)  __pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__)
0292 
0293 /*
0294  * __pr_probe, pr_probe - print message if @verbose_probing is true
0295  * @p:      pointer to &struct parport
0296  * @fmt:    printk format string
0297  * @...:    parameters for format string
0298  *
0299  * For new lines, use pr_probe().  Use __pr_probe() for continued lines.
0300  */
0301 #define __pr_probe(...)                         \
0302     do { if (verbose_probing) printk(__VA_ARGS__); } while (0)
0303 #define pr_probe(p, fmt, ...)                       \
0304     __pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__)
0305 
0306 /*
0307  * parport_ip32_dump_state - print register status of parport
0308  * @p:      pointer to &struct parport
0309  * @str:    string to add in message
0310  * @show_ecp_config:    shall we dump ECP configuration registers too?
0311  *
0312  * This function is only here for debugging purpose, and should be used with
0313  * care.  Reading the parallel port registers may have undesired side effects.
0314  * Especially if @show_ecp_config is true, the parallel port is resetted.
0315  * This function is only defined if %DEBUG_PARPORT_IP32 >= 2.
0316  */
0317 #if DEBUG_PARPORT_IP32 >= 2
0318 static void parport_ip32_dump_state(struct parport *p, char *str,
0319                     unsigned int show_ecp_config)
0320 {
0321     struct parport_ip32_private * const priv = p->physport->private_data;
0322     unsigned int i;
0323 
0324     printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str);
0325     {
0326         static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF",
0327                              "ECP", "EPP", "???",
0328                              "TST", "CFG"};
0329         unsigned int ecr = readb(priv->regs.ecr);
0330         printk(KERN_DEBUG PPIP32 "    ecr=0x%02x", ecr);
0331         pr_cont(" %s",
0332             ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]);
0333         if (ecr & ECR_nERRINTR)
0334             pr_cont(",nErrIntrEn");
0335         if (ecr & ECR_DMAEN)
0336             pr_cont(",dmaEn");
0337         if (ecr & ECR_SERVINTR)
0338             pr_cont(",serviceIntr");
0339         if (ecr & ECR_F_FULL)
0340             pr_cont(",f_full");
0341         if (ecr & ECR_F_EMPTY)
0342             pr_cont(",f_empty");
0343         pr_cont("\n");
0344     }
0345     if (show_ecp_config) {
0346         unsigned int oecr, cnfgA, cnfgB;
0347         oecr = readb(priv->regs.ecr);
0348         writeb(ECR_MODE_PS2, priv->regs.ecr);
0349         writeb(ECR_MODE_CFG, priv->regs.ecr);
0350         cnfgA = readb(priv->regs.cnfgA);
0351         cnfgB = readb(priv->regs.cnfgB);
0352         writeb(ECR_MODE_PS2, priv->regs.ecr);
0353         writeb(oecr, priv->regs.ecr);
0354         printk(KERN_DEBUG PPIP32 "    cnfgA=0x%02x", cnfgA);
0355         pr_cont(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses");
0356         switch (cnfgA & CNFGA_ID_MASK) {
0357         case CNFGA_ID_8:
0358             pr_cont(",8 bits");
0359             break;
0360         case CNFGA_ID_16:
0361             pr_cont(",16 bits");
0362             break;
0363         case CNFGA_ID_32:
0364             pr_cont(",32 bits");
0365             break;
0366         default:
0367             pr_cont(",unknown ID");
0368             break;
0369         }
0370         if (!(cnfgA & CNFGA_nBYTEINTRANS))
0371             pr_cont(",ByteInTrans");
0372         if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8)
0373             pr_cont(",%d byte%s left",
0374                 cnfgA & CNFGA_PWORDLEFT,
0375                 ((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : "");
0376         pr_cont("\n");
0377         printk(KERN_DEBUG PPIP32 "    cnfgB=0x%02x", cnfgB);
0378         pr_cont(" irq=%u,dma=%u",
0379             (cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT,
0380             (cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT);
0381         pr_cont(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL));
0382         if (cnfgB & CNFGB_COMPRESS)
0383             pr_cont(",compress");
0384         pr_cont("\n");
0385     }
0386     for (i = 0; i < 2; i++) {
0387         unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr);
0388         printk(KERN_DEBUG PPIP32 "    dcr(%s)=0x%02x",
0389                i ? "soft" : "hard", dcr);
0390         pr_cont(" %s", (dcr & DCR_DIR) ? "rev" : "fwd");
0391         if (dcr & DCR_IRQ)
0392             pr_cont(",ackIntEn");
0393         if (!(dcr & DCR_SELECT))
0394             pr_cont(",nSelectIn");
0395         if (dcr & DCR_nINIT)
0396             pr_cont(",nInit");
0397         if (!(dcr & DCR_AUTOFD))
0398             pr_cont(",nAutoFD");
0399         if (!(dcr & DCR_STROBE))
0400             pr_cont(",nStrobe");
0401         pr_cont("\n");
0402     }
0403 #define sep (f++ ? ',' : ' ')
0404     {
0405         unsigned int f = 0;
0406         unsigned int dsr = readb(priv->regs.dsr);
0407         printk(KERN_DEBUG PPIP32 "    dsr=0x%02x", dsr);
0408         if (!(dsr & DSR_nBUSY))
0409             pr_cont("%cBusy", sep);
0410         if (dsr & DSR_nACK)
0411             pr_cont("%cnAck", sep);
0412         if (dsr & DSR_PERROR)
0413             pr_cont("%cPError", sep);
0414         if (dsr & DSR_SELECT)
0415             pr_cont("%cSelect", sep);
0416         if (dsr & DSR_nFAULT)
0417             pr_cont("%cnFault", sep);
0418         if (!(dsr & DSR_nPRINT))
0419             pr_cont("%c(Print)", sep);
0420         if (dsr & DSR_TIMEOUT)
0421             pr_cont("%cTimeout", sep);
0422         pr_cont("\n");
0423     }
0424 #undef sep
0425 }
0426 #else /* DEBUG_PARPORT_IP32 < 2 */
0427 #define parport_ip32_dump_state(...)    do { } while (0)
0428 #endif
0429 
0430 /*
0431  * CHECK_EXTRA_BITS - track and log extra bits
0432  * @p:      pointer to &struct parport
0433  * @b:      byte to inspect
0434  * @m:      bit mask of authorized bits
0435  *
0436  * This is used to track and log extra bits that should not be there in
0437  * parport_ip32_write_control() and parport_ip32_frob_control().  It is only
0438  * defined if %DEBUG_PARPORT_IP32 >= 1.
0439  */
0440 #if DEBUG_PARPORT_IP32 >= 1
0441 #define CHECK_EXTRA_BITS(p, b, m)                   \
0442     do {                                \
0443         unsigned int __b = (b), __m = (m);          \
0444         if (__b & ~__m)                     \
0445             pr_debug1(PPIP32 "%s: extra bits in %s(%s): "   \
0446                   "0x%02x/0x%02x\n",            \
0447                   (p)->name, __func__, #b, __b, __m);   \
0448     } while (0)
0449 #else /* DEBUG_PARPORT_IP32 < 1 */
0450 #define CHECK_EXTRA_BITS(...)   do { } while (0)
0451 #endif
0452 
0453 /*--- IP32 parallel port DMA operations --------------------------------*/
0454 
0455 /**
0456  * struct parport_ip32_dma_data - private data needed for DMA operation
0457  * @dir:    DMA direction (from or to device)
0458  * @buf:    buffer physical address
0459  * @len:    buffer length
0460  * @next:   address of next bytes to DMA transfer
0461  * @left:   number of bytes remaining
0462  * @ctx:    next context to write (0: context_a; 1: context_b)
0463  * @irq_on: are the DMA IRQs currently enabled?
0464  * @lock:   spinlock to protect access to the structure
0465  */
0466 struct parport_ip32_dma_data {
0467     enum dma_data_direction     dir;
0468     dma_addr_t          buf;
0469     dma_addr_t          next;
0470     size_t              len;
0471     size_t              left;
0472     unsigned int            ctx;
0473     unsigned int            irq_on;
0474     spinlock_t          lock;
0475 };
0476 static struct parport_ip32_dma_data parport_ip32_dma;
0477 
0478 /**
0479  * parport_ip32_dma_setup_context - setup next DMA context
0480  * @limit:  maximum data size for the context
0481  *
0482  * The alignment constraints must be verified in caller function, and the
0483  * parameter @limit must be set accordingly.
0484  */
0485 static void parport_ip32_dma_setup_context(unsigned int limit)
0486 {
0487     unsigned long flags;
0488 
0489     spin_lock_irqsave(&parport_ip32_dma.lock, flags);
0490     if (parport_ip32_dma.left > 0) {
0491         /* Note: ctxreg is "volatile" here only because
0492          * mace->perif.ctrl.parport.context_a and context_b are
0493          * "volatile".  */
0494         volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ?
0495             &mace->perif.ctrl.parport.context_a :
0496             &mace->perif.ctrl.parport.context_b;
0497         u64 count;
0498         u64 ctxval;
0499         if (parport_ip32_dma.left <= limit) {
0500             count = parport_ip32_dma.left;
0501             ctxval = MACEPAR_CONTEXT_LASTFLAG;
0502         } else {
0503             count = limit;
0504             ctxval = 0;
0505         }
0506 
0507         pr_trace(NULL,
0508              "(%u): 0x%04x:0x%04x, %u -> %u%s",
0509              limit,
0510              (unsigned int)parport_ip32_dma.buf,
0511              (unsigned int)parport_ip32_dma.next,
0512              (unsigned int)count,
0513              parport_ip32_dma.ctx, ctxval ? "*" : "");
0514 
0515         ctxval |= parport_ip32_dma.next &
0516             MACEPAR_CONTEXT_BASEADDR_MASK;
0517         ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) &
0518             MACEPAR_CONTEXT_DATALEN_MASK;
0519         writeq(ctxval, ctxreg);
0520         parport_ip32_dma.next += count;
0521         parport_ip32_dma.left -= count;
0522         parport_ip32_dma.ctx ^= 1U;
0523     }
0524     /* If there is nothing more to send, disable IRQs to avoid to
0525      * face an IRQ storm which can lock the machine.  Disable them
0526      * only once. */
0527     if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) {
0528         pr_debug(PPIP32 "IRQ off (ctx)\n");
0529         disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
0530         disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
0531         parport_ip32_dma.irq_on = 0;
0532     }
0533     spin_unlock_irqrestore(&parport_ip32_dma.lock, flags);
0534 }
0535 
0536 /**
0537  * parport_ip32_dma_interrupt - DMA interrupt handler
0538  * @irq:    interrupt number
0539  * @dev_id: unused
0540  */
0541 static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id)
0542 {
0543     if (parport_ip32_dma.left)
0544         pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx);
0545     parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
0546     return IRQ_HANDLED;
0547 }
0548 
0549 #if DEBUG_PARPORT_IP32
0550 static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id)
0551 {
0552     pr_trace1(NULL, "(%d)", irq);
0553     return IRQ_HANDLED;
0554 }
0555 #endif
0556 
0557 /**
0558  * parport_ip32_dma_start - begins a DMA transfer
0559  * @p:      partport to work on
0560  * @dir:    DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE
0561  * @addr:   pointer to data buffer
0562  * @count:  buffer size
0563  *
0564  * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
0565  * correctly balanced.
0566  */
0567 static int parport_ip32_dma_start(struct parport *p,
0568         enum dma_data_direction dir, void *addr, size_t count)
0569 {
0570     unsigned int limit;
0571     u64 ctrl;
0572 
0573     pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count);
0574 
0575     /* FIXME - add support for DMA_FROM_DEVICE.  In this case, buffer must
0576      * be 64 bytes aligned. */
0577     BUG_ON(dir != DMA_TO_DEVICE);
0578 
0579     /* Reset DMA controller */
0580     ctrl = MACEPAR_CTLSTAT_RESET;
0581     writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
0582 
0583     /* DMA IRQs should normally be enabled */
0584     if (!parport_ip32_dma.irq_on) {
0585         WARN_ON(1);
0586         enable_irq(MACEISA_PAR_CTXA_IRQ);
0587         enable_irq(MACEISA_PAR_CTXB_IRQ);
0588         parport_ip32_dma.irq_on = 1;
0589     }
0590 
0591     /* Prepare DMA pointers */
0592     parport_ip32_dma.dir = dir;
0593     parport_ip32_dma.buf = dma_map_single(&p->bus_dev, addr, count, dir);
0594     parport_ip32_dma.len = count;
0595     parport_ip32_dma.next = parport_ip32_dma.buf;
0596     parport_ip32_dma.left = parport_ip32_dma.len;
0597     parport_ip32_dma.ctx = 0;
0598 
0599     /* Setup DMA direction and first two contexts */
0600     ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION;
0601     writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
0602     /* Single transfer should not cross a 4K page boundary */
0603     limit = MACEPAR_CONTEXT_DATA_BOUND -
0604         (parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1));
0605     parport_ip32_dma_setup_context(limit);
0606     parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
0607 
0608     /* Real start of DMA transfer */
0609     ctrl |= MACEPAR_CTLSTAT_ENABLE;
0610     writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
0611 
0612     return 0;
0613 }
0614 
0615 /**
0616  * parport_ip32_dma_stop - ends a running DMA transfer
0617  * @p:      partport to work on
0618  *
0619  * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
0620  * correctly balanced.
0621  */
0622 static void parport_ip32_dma_stop(struct parport *p)
0623 {
0624     u64 ctx_a;
0625     u64 ctx_b;
0626     u64 ctrl;
0627     u64 diag;
0628     size_t res[2];  /* {[0] = res_a, [1] = res_b} */
0629 
0630     pr_trace(NULL, "()");
0631 
0632     /* Disable IRQs */
0633     spin_lock_irq(&parport_ip32_dma.lock);
0634     if (parport_ip32_dma.irq_on) {
0635         pr_debug(PPIP32 "IRQ off (stop)\n");
0636         disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
0637         disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
0638         parport_ip32_dma.irq_on = 0;
0639     }
0640     spin_unlock_irq(&parport_ip32_dma.lock);
0641     /* Force IRQ synchronization, even if the IRQs were disabled
0642      * elsewhere. */
0643     synchronize_irq(MACEISA_PAR_CTXA_IRQ);
0644     synchronize_irq(MACEISA_PAR_CTXB_IRQ);
0645 
0646     /* Stop DMA transfer */
0647     ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
0648     ctrl &= ~MACEPAR_CTLSTAT_ENABLE;
0649     writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
0650 
0651     /* Adjust residue (parport_ip32_dma.left) */
0652     ctx_a = readq(&mace->perif.ctrl.parport.context_a);
0653     ctx_b = readq(&mace->perif.ctrl.parport.context_b);
0654     ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
0655     diag = readq(&mace->perif.ctrl.parport.diagnostic);
0656     res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ?
0657         1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >>
0658              MACEPAR_CONTEXT_DATALEN_SHIFT) :
0659         0;
0660     res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ?
0661         1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >>
0662              MACEPAR_CONTEXT_DATALEN_SHIFT) :
0663         0;
0664     if (diag & MACEPAR_DIAG_DMACTIVE)
0665         res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] =
0666             1 + ((diag & MACEPAR_DIAG_CTRMASK) >>
0667                  MACEPAR_DIAG_CTRSHIFT);
0668     parport_ip32_dma.left += res[0] + res[1];
0669 
0670     /* Reset DMA controller, and re-enable IRQs */
0671     ctrl = MACEPAR_CTLSTAT_RESET;
0672     writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
0673     pr_debug(PPIP32 "IRQ on (stop)\n");
0674     enable_irq(MACEISA_PAR_CTXA_IRQ);
0675     enable_irq(MACEISA_PAR_CTXB_IRQ);
0676     parport_ip32_dma.irq_on = 1;
0677 
0678     dma_unmap_single(&p->bus_dev, parport_ip32_dma.buf,
0679              parport_ip32_dma.len, parport_ip32_dma.dir);
0680 }
0681 
0682 /**
0683  * parport_ip32_dma_get_residue - get residue from last DMA transfer
0684  *
0685  * Returns the number of bytes remaining from last DMA transfer.
0686  */
0687 static inline size_t parport_ip32_dma_get_residue(void)
0688 {
0689     return parport_ip32_dma.left;
0690 }
0691 
0692 /**
0693  * parport_ip32_dma_register - initialize DMA engine
0694  *
0695  * Returns zero for success.
0696  */
0697 static int parport_ip32_dma_register(void)
0698 {
0699     int err;
0700 
0701     spin_lock_init(&parport_ip32_dma.lock);
0702     parport_ip32_dma.irq_on = 1;
0703 
0704     /* Reset DMA controller */
0705     writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat);
0706 
0707     /* Request IRQs */
0708     err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt,
0709               0, "parport_ip32", NULL);
0710     if (err)
0711         goto fail_a;
0712     err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt,
0713               0, "parport_ip32", NULL);
0714     if (err)
0715         goto fail_b;
0716 #if DEBUG_PARPORT_IP32
0717     /* FIXME - what is this IRQ for? */
0718     err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt,
0719               0, "parport_ip32", NULL);
0720     if (err)
0721         goto fail_merr;
0722 #endif
0723     return 0;
0724 
0725 #if DEBUG_PARPORT_IP32
0726 fail_merr:
0727     free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
0728 #endif
0729 fail_b:
0730     free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
0731 fail_a:
0732     return err;
0733 }
0734 
0735 /**
0736  * parport_ip32_dma_unregister - release and free resources for DMA engine
0737  */
0738 static void parport_ip32_dma_unregister(void)
0739 {
0740 #if DEBUG_PARPORT_IP32
0741     free_irq(MACEISA_PAR_MERR_IRQ, NULL);
0742 #endif
0743     free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
0744     free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
0745 }
0746 
0747 /*--- Interrupt handlers and associates --------------------------------*/
0748 
0749 /**
0750  * parport_ip32_wakeup - wakes up code waiting for an interrupt
0751  * @p:      pointer to &struct parport
0752  */
0753 static inline void parport_ip32_wakeup(struct parport *p)
0754 {
0755     struct parport_ip32_private * const priv = p->physport->private_data;
0756     complete(&priv->irq_complete);
0757 }
0758 
0759 /**
0760  * parport_ip32_interrupt - interrupt handler
0761  * @irq:    interrupt number
0762  * @dev_id: pointer to &struct parport
0763  *
0764  * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is
0765  * %PARPORT_IP32_IRQ_FWD.
0766  */
0767 static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id)
0768 {
0769     struct parport * const p = dev_id;
0770     struct parport_ip32_private * const priv = p->physport->private_data;
0771     enum parport_ip32_irq_mode irq_mode = priv->irq_mode;
0772 
0773     switch (irq_mode) {
0774     case PARPORT_IP32_IRQ_FWD:
0775         return parport_irq_handler(irq, dev_id);
0776 
0777     case PARPORT_IP32_IRQ_HERE:
0778         parport_ip32_wakeup(p);
0779         break;
0780     }
0781 
0782     return IRQ_HANDLED;
0783 }
0784 
0785 /*--- Some utility function to manipulate ECR register -----------------*/
0786 
0787 /**
0788  * parport_ip32_read_econtrol - read contents of the ECR register
0789  * @p:      pointer to &struct parport
0790  */
0791 static inline unsigned int parport_ip32_read_econtrol(struct parport *p)
0792 {
0793     struct parport_ip32_private * const priv = p->physport->private_data;
0794     return readb(priv->regs.ecr);
0795 }
0796 
0797 /**
0798  * parport_ip32_write_econtrol - write new contents to the ECR register
0799  * @p:      pointer to &struct parport
0800  * @c:      new value to write
0801  */
0802 static inline void parport_ip32_write_econtrol(struct parport *p,
0803                            unsigned int c)
0804 {
0805     struct parport_ip32_private * const priv = p->physport->private_data;
0806     writeb(c, priv->regs.ecr);
0807 }
0808 
0809 /**
0810  * parport_ip32_frob_econtrol - change bits from the ECR register
0811  * @p:      pointer to &struct parport
0812  * @mask:   bit mask of bits to change
0813  * @val:    new value for changed bits
0814  *
0815  * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits
0816  * in @val, and write the result to the ECR.
0817  */
0818 static inline void parport_ip32_frob_econtrol(struct parport *p,
0819                           unsigned int mask,
0820                           unsigned int val)
0821 {
0822     unsigned int c;
0823     c = (parport_ip32_read_econtrol(p) & ~mask) ^ val;
0824     parport_ip32_write_econtrol(p, c);
0825 }
0826 
0827 /**
0828  * parport_ip32_set_mode - change mode of ECP port
0829  * @p:      pointer to &struct parport
0830  * @mode:   new mode to write in ECR
0831  *
0832  * ECR is reset in a sane state (interrupts and DMA disabled), and placed in
0833  * mode @mode.  Go through PS2 mode if needed.
0834  */
0835 static void parport_ip32_set_mode(struct parport *p, unsigned int mode)
0836 {
0837     unsigned int omode;
0838 
0839     mode &= ECR_MODE_MASK;
0840     omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK;
0841 
0842     if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2
0843           || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) {
0844         /* We have to go through PS2 mode */
0845         unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
0846         parport_ip32_write_econtrol(p, ecr);
0847     }
0848     parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR);
0849 }
0850 
0851 /*--- Basic functions needed for parport -------------------------------*/
0852 
0853 /**
0854  * parport_ip32_read_data - return current contents of the DATA register
0855  * @p:      pointer to &struct parport
0856  */
0857 static inline unsigned char parport_ip32_read_data(struct parport *p)
0858 {
0859     struct parport_ip32_private * const priv = p->physport->private_data;
0860     return readb(priv->regs.data);
0861 }
0862 
0863 /**
0864  * parport_ip32_write_data - set new contents for the DATA register
0865  * @p:      pointer to &struct parport
0866  * @d:      new value to write
0867  */
0868 static inline void parport_ip32_write_data(struct parport *p, unsigned char d)
0869 {
0870     struct parport_ip32_private * const priv = p->physport->private_data;
0871     writeb(d, priv->regs.data);
0872 }
0873 
0874 /**
0875  * parport_ip32_read_status - return current contents of the DSR register
0876  * @p:      pointer to &struct parport
0877  */
0878 static inline unsigned char parport_ip32_read_status(struct parport *p)
0879 {
0880     struct parport_ip32_private * const priv = p->physport->private_data;
0881     return readb(priv->regs.dsr);
0882 }
0883 
0884 /**
0885  * __parport_ip32_read_control - return cached contents of the DCR register
0886  * @p:      pointer to &struct parport
0887  */
0888 static inline unsigned int __parport_ip32_read_control(struct parport *p)
0889 {
0890     struct parport_ip32_private * const priv = p->physport->private_data;
0891     return priv->dcr_cache; /* use soft copy */
0892 }
0893 
0894 /**
0895  * __parport_ip32_write_control - set new contents for the DCR register
0896  * @p:      pointer to &struct parport
0897  * @c:      new value to write
0898  */
0899 static inline void __parport_ip32_write_control(struct parport *p,
0900                         unsigned int c)
0901 {
0902     struct parport_ip32_private * const priv = p->physport->private_data;
0903     CHECK_EXTRA_BITS(p, c, priv->dcr_writable);
0904     c &= priv->dcr_writable; /* only writable bits */
0905     writeb(c, priv->regs.dcr);
0906     priv->dcr_cache = c;        /* update soft copy */
0907 }
0908 
0909 /**
0910  * __parport_ip32_frob_control - change bits from the DCR register
0911  * @p:      pointer to &struct parport
0912  * @mask:   bit mask of bits to change
0913  * @val:    new value for changed bits
0914  *
0915  * This is equivalent to read from the DCR, mask out the bits in @mask,
0916  * exclusive-or with the bits in @val, and write the result to the DCR.
0917  * Actually, the cached contents of the DCR is used.
0918  */
0919 static inline void __parport_ip32_frob_control(struct parport *p,
0920                            unsigned int mask,
0921                            unsigned int val)
0922 {
0923     unsigned int c;
0924     c = (__parport_ip32_read_control(p) & ~mask) ^ val;
0925     __parport_ip32_write_control(p, c);
0926 }
0927 
0928 /**
0929  * parport_ip32_read_control - return cached contents of the DCR register
0930  * @p:      pointer to &struct parport
0931  *
0932  * The return value is masked so as to only return the value of %DCR_STROBE,
0933  * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
0934  */
0935 static inline unsigned char parport_ip32_read_control(struct parport *p)
0936 {
0937     const unsigned int rm =
0938         DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
0939     return __parport_ip32_read_control(p) & rm;
0940 }
0941 
0942 /**
0943  * parport_ip32_write_control - set new contents for the DCR register
0944  * @p:      pointer to &struct parport
0945  * @c:      new value to write
0946  *
0947  * The value is masked so as to only change the value of %DCR_STROBE,
0948  * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
0949  */
0950 static inline void parport_ip32_write_control(struct parport *p,
0951                           unsigned char c)
0952 {
0953     const unsigned int wm =
0954         DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
0955     CHECK_EXTRA_BITS(p, c, wm);
0956     __parport_ip32_frob_control(p, wm, c & wm);
0957 }
0958 
0959 /**
0960  * parport_ip32_frob_control - change bits from the DCR register
0961  * @p:      pointer to &struct parport
0962  * @mask:   bit mask of bits to change
0963  * @val:    new value for changed bits
0964  *
0965  * This differs from __parport_ip32_frob_control() in that it only allows to
0966  * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
0967  */
0968 static inline unsigned char parport_ip32_frob_control(struct parport *p,
0969                               unsigned char mask,
0970                               unsigned char val)
0971 {
0972     const unsigned int wm =
0973         DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
0974     CHECK_EXTRA_BITS(p, mask, wm);
0975     CHECK_EXTRA_BITS(p, val, wm);
0976     __parport_ip32_frob_control(p, mask & wm, val & wm);
0977     return parport_ip32_read_control(p);
0978 }
0979 
0980 /**
0981  * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK
0982  * @p:      pointer to &struct parport
0983  */
0984 static inline void parport_ip32_disable_irq(struct parport *p)
0985 {
0986     __parport_ip32_frob_control(p, DCR_IRQ, 0);
0987 }
0988 
0989 /**
0990  * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK
0991  * @p:      pointer to &struct parport
0992  */
0993 static inline void parport_ip32_enable_irq(struct parport *p)
0994 {
0995     __parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ);
0996 }
0997 
0998 /**
0999  * parport_ip32_data_forward - enable host-to-peripheral communications
1000  * @p:      pointer to &struct parport
1001  *
1002  * Enable the data line drivers, for 8-bit host-to-peripheral communications.
1003  */
1004 static inline void parport_ip32_data_forward(struct parport *p)
1005 {
1006     __parport_ip32_frob_control(p, DCR_DIR, 0);
1007 }
1008 
1009 /**
1010  * parport_ip32_data_reverse - enable peripheral-to-host communications
1011  * @p:      pointer to &struct parport
1012  *
1013  * Place the data bus in a high impedance state, if @p->modes has the
1014  * PARPORT_MODE_TRISTATE bit set.
1015  */
1016 static inline void parport_ip32_data_reverse(struct parport *p)
1017 {
1018     __parport_ip32_frob_control(p, DCR_DIR, DCR_DIR);
1019 }
1020 
1021 /**
1022  * parport_ip32_init_state - for core parport code
1023  * @dev:    pointer to &struct pardevice
1024  * @s:      pointer to &struct parport_state to initialize
1025  */
1026 static void parport_ip32_init_state(struct pardevice *dev,
1027                     struct parport_state *s)
1028 {
1029     s->u.ip32.dcr = DCR_SELECT | DCR_nINIT;
1030     s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1031 }
1032 
1033 /**
1034  * parport_ip32_save_state - for core parport code
1035  * @p:      pointer to &struct parport
1036  * @s:      pointer to &struct parport_state to save state to
1037  */
1038 static void parport_ip32_save_state(struct parport *p,
1039                     struct parport_state *s)
1040 {
1041     s->u.ip32.dcr = __parport_ip32_read_control(p);
1042     s->u.ip32.ecr = parport_ip32_read_econtrol(p);
1043 }
1044 
1045 /**
1046  * parport_ip32_restore_state - for core parport code
1047  * @p:      pointer to &struct parport
1048  * @s:      pointer to &struct parport_state to restore state from
1049  */
1050 static void parport_ip32_restore_state(struct parport *p,
1051                        struct parport_state *s)
1052 {
1053     parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK);
1054     parport_ip32_write_econtrol(p, s->u.ip32.ecr);
1055     __parport_ip32_write_control(p, s->u.ip32.dcr);
1056 }
1057 
1058 /*--- EPP mode functions -----------------------------------------------*/
1059 
1060 /**
1061  * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode
1062  * @p:      pointer to &struct parport
1063  *
1064  * Returns 1 if the Timeout bit is clear, and 0 otherwise.
1065  */
1066 static unsigned int parport_ip32_clear_epp_timeout(struct parport *p)
1067 {
1068     struct parport_ip32_private * const priv = p->physport->private_data;
1069     unsigned int cleared;
1070 
1071     if (!(parport_ip32_read_status(p) & DSR_TIMEOUT))
1072         cleared = 1;
1073     else {
1074         unsigned int r;
1075         /* To clear timeout some chips require double read */
1076         parport_ip32_read_status(p);
1077         r = parport_ip32_read_status(p);
1078         /* Some reset by writing 1 */
1079         writeb(r | DSR_TIMEOUT, priv->regs.dsr);
1080         /* Others by writing 0 */
1081         writeb(r & ~DSR_TIMEOUT, priv->regs.dsr);
1082 
1083         r = parport_ip32_read_status(p);
1084         cleared = !(r & DSR_TIMEOUT);
1085     }
1086 
1087     pr_trace(p, "(): %s", cleared ? "cleared" : "failed");
1088     return cleared;
1089 }
1090 
1091 /**
1092  * parport_ip32_epp_read - generic EPP read function
1093  * @eppreg: I/O register to read from
1094  * @p:      pointer to &struct parport
1095  * @buf:    buffer to store read data
1096  * @len:    length of buffer @buf
1097  * @flags:  may be PARPORT_EPP_FAST
1098  */
1099 static size_t parport_ip32_epp_read(void __iomem *eppreg,
1100                     struct parport *p, void *buf,
1101                     size_t len, int flags)
1102 {
1103     struct parport_ip32_private * const priv = p->physport->private_data;
1104     size_t got;
1105     parport_ip32_set_mode(p, ECR_MODE_EPP);
1106     parport_ip32_data_reverse(p);
1107     parport_ip32_write_control(p, DCR_nINIT);
1108     if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1109         readsb(eppreg, buf, len);
1110         if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1111             parport_ip32_clear_epp_timeout(p);
1112             return -EIO;
1113         }
1114         got = len;
1115     } else {
1116         u8 *bufp = buf;
1117         for (got = 0; got < len; got++) {
1118             *bufp++ = readb(eppreg);
1119             if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1120                 parport_ip32_clear_epp_timeout(p);
1121                 break;
1122             }
1123         }
1124     }
1125     parport_ip32_data_forward(p);
1126     parport_ip32_set_mode(p, ECR_MODE_PS2);
1127     return got;
1128 }
1129 
1130 /**
1131  * parport_ip32_epp_write - generic EPP write function
1132  * @eppreg: I/O register to write to
1133  * @p:      pointer to &struct parport
1134  * @buf:    buffer of data to write
1135  * @len:    length of buffer @buf
1136  * @flags:  may be PARPORT_EPP_FAST
1137  */
1138 static size_t parport_ip32_epp_write(void __iomem *eppreg,
1139                      struct parport *p, const void *buf,
1140                      size_t len, int flags)
1141 {
1142     struct parport_ip32_private * const priv = p->physport->private_data;
1143     size_t written;
1144     parport_ip32_set_mode(p, ECR_MODE_EPP);
1145     parport_ip32_data_forward(p);
1146     parport_ip32_write_control(p, DCR_nINIT);
1147     if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1148         writesb(eppreg, buf, len);
1149         if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1150             parport_ip32_clear_epp_timeout(p);
1151             return -EIO;
1152         }
1153         written = len;
1154     } else {
1155         const u8 *bufp = buf;
1156         for (written = 0; written < len; written++) {
1157             writeb(*bufp++, eppreg);
1158             if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1159                 parport_ip32_clear_epp_timeout(p);
1160                 break;
1161             }
1162         }
1163     }
1164     parport_ip32_set_mode(p, ECR_MODE_PS2);
1165     return written;
1166 }
1167 
1168 /**
1169  * parport_ip32_epp_read_data - read a block of data in EPP mode
1170  * @p:      pointer to &struct parport
1171  * @buf:    buffer to store read data
1172  * @len:    length of buffer @buf
1173  * @flags:  may be PARPORT_EPP_FAST
1174  */
1175 static size_t parport_ip32_epp_read_data(struct parport *p, void *buf,
1176                      size_t len, int flags)
1177 {
1178     struct parport_ip32_private * const priv = p->physport->private_data;
1179     return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags);
1180 }
1181 
1182 /**
1183  * parport_ip32_epp_write_data - write a block of data in EPP mode
1184  * @p:      pointer to &struct parport
1185  * @buf:    buffer of data to write
1186  * @len:    length of buffer @buf
1187  * @flags:  may be PARPORT_EPP_FAST
1188  */
1189 static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf,
1190                       size_t len, int flags)
1191 {
1192     struct parport_ip32_private * const priv = p->physport->private_data;
1193     return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags);
1194 }
1195 
1196 /**
1197  * parport_ip32_epp_read_addr - read a block of addresses in EPP mode
1198  * @p:      pointer to &struct parport
1199  * @buf:    buffer to store read data
1200  * @len:    length of buffer @buf
1201  * @flags:  may be PARPORT_EPP_FAST
1202  */
1203 static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf,
1204                      size_t len, int flags)
1205 {
1206     struct parport_ip32_private * const priv = p->physport->private_data;
1207     return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags);
1208 }
1209 
1210 /**
1211  * parport_ip32_epp_write_addr - write a block of addresses in EPP mode
1212  * @p:      pointer to &struct parport
1213  * @buf:    buffer of data to write
1214  * @len:    length of buffer @buf
1215  * @flags:  may be PARPORT_EPP_FAST
1216  */
1217 static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf,
1218                       size_t len, int flags)
1219 {
1220     struct parport_ip32_private * const priv = p->physport->private_data;
1221     return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags);
1222 }
1223 
1224 /*--- ECP mode functions (FIFO) ----------------------------------------*/
1225 
1226 /**
1227  * parport_ip32_fifo_wait_break - check if the waiting function should return
1228  * @p:      pointer to &struct parport
1229  * @expire: timeout expiring date, in jiffies
1230  *
1231  * parport_ip32_fifo_wait_break() checks if the waiting function should return
1232  * immediately or not.  The break conditions are:
1233  *  - expired timeout;
1234  *  - a pending signal;
1235  *  - nFault asserted low.
1236  * This function also calls cond_resched().
1237  */
1238 static unsigned int parport_ip32_fifo_wait_break(struct parport *p,
1239                          unsigned long expire)
1240 {
1241     cond_resched();
1242     if (time_after(jiffies, expire)) {
1243         pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name);
1244         return 1;
1245     }
1246     if (signal_pending(current)) {
1247         pr_debug1(PPIP32 "%s: Signal pending\n", p->name);
1248         return 1;
1249     }
1250     if (!(parport_ip32_read_status(p) & DSR_nFAULT)) {
1251         pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name);
1252         return 1;
1253     }
1254     return 0;
1255 }
1256 
1257 /**
1258  * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling)
1259  * @p:      pointer to &struct parport
1260  *
1261  * Returns the number of bytes that can safely be written in the FIFO.  A
1262  * return value of zero means that the calling function should terminate as
1263  * fast as possible.
1264  */
1265 static unsigned int parport_ip32_fwp_wait_polling(struct parport *p)
1266 {
1267     struct parport_ip32_private * const priv = p->physport->private_data;
1268     struct parport * const physport = p->physport;
1269     unsigned long expire;
1270     unsigned int count;
1271     unsigned int ecr;
1272 
1273     expire = jiffies + physport->cad->timeout;
1274     count = 0;
1275     while (1) {
1276         if (parport_ip32_fifo_wait_break(p, expire))
1277             break;
1278 
1279         /* Check FIFO state.  We do nothing when the FIFO is nor full,
1280          * nor empty.  It appears that the FIFO full bit is not always
1281          * reliable, the FIFO state is sometimes wrongly reported, and
1282          * the chip gets confused if we give it another byte. */
1283         ecr = parport_ip32_read_econtrol(p);
1284         if (ecr & ECR_F_EMPTY) {
1285             /* FIFO is empty, fill it up */
1286             count = priv->fifo_depth;
1287             break;
1288         }
1289 
1290         /* Wait a moment... */
1291         udelay(FIFO_POLLING_INTERVAL);
1292     } /* while (1) */
1293 
1294     return count;
1295 }
1296 
1297 /**
1298  * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven)
1299  * @p:      pointer to &struct parport
1300  *
1301  * Returns the number of bytes that can safely be written in the FIFO.  A
1302  * return value of zero means that the calling function should terminate as
1303  * fast as possible.
1304  */
1305 static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p)
1306 {
1307     static unsigned int lost_interrupt = 0;
1308     struct parport_ip32_private * const priv = p->physport->private_data;
1309     struct parport * const physport = p->physport;
1310     unsigned long nfault_timeout;
1311     unsigned long expire;
1312     unsigned int count;
1313     unsigned int ecr;
1314 
1315     nfault_timeout = min((unsigned long)physport->cad->timeout,
1316                  msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1317     expire = jiffies + physport->cad->timeout;
1318     count = 0;
1319     while (1) {
1320         if (parport_ip32_fifo_wait_break(p, expire))
1321             break;
1322 
1323         /* Initialize mutex used to take interrupts into account */
1324         reinit_completion(&priv->irq_complete);
1325 
1326         /* Enable serviceIntr */
1327         parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1328 
1329         /* Enabling serviceIntr while the FIFO is empty does not
1330          * always generate an interrupt, so check for emptiness
1331          * now. */
1332         ecr = parport_ip32_read_econtrol(p);
1333         if (!(ecr & ECR_F_EMPTY)) {
1334             /* FIFO is not empty: wait for an interrupt or a
1335              * timeout to occur */
1336             wait_for_completion_interruptible_timeout(
1337                 &priv->irq_complete, nfault_timeout);
1338             ecr = parport_ip32_read_econtrol(p);
1339             if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR)
1340                 && !lost_interrupt) {
1341                 pr_warn(PPIP32 "%s: lost interrupt in %s\n",
1342                     p->name, __func__);
1343                 lost_interrupt = 1;
1344             }
1345         }
1346 
1347         /* Disable serviceIntr */
1348         parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR);
1349 
1350         /* Check FIFO state */
1351         if (ecr & ECR_F_EMPTY) {
1352             /* FIFO is empty, fill it up */
1353             count = priv->fifo_depth;
1354             break;
1355         } else if (ecr & ECR_SERVINTR) {
1356             /* FIFO is not empty, but we know that can safely push
1357              * writeIntrThreshold bytes into it */
1358             count = priv->writeIntrThreshold;
1359             break;
1360         }
1361         /* FIFO is not empty, and we did not get any interrupt.
1362          * Either it's time to check for nFault, or a signal is
1363          * pending.  This is verified in
1364          * parport_ip32_fifo_wait_break(), so we continue the loop. */
1365     } /* while (1) */
1366 
1367     return count;
1368 }
1369 
1370 /**
1371  * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode)
1372  * @p:      pointer to &struct parport
1373  * @buf:    buffer of data to write
1374  * @len:    length of buffer @buf
1375  *
1376  * Uses PIO to write the contents of the buffer @buf into the parallel port
1377  * FIFO.  Returns the number of bytes that were actually written.  It can work
1378  * with or without the help of interrupts.  The parallel port must be
1379  * correctly initialized before calling parport_ip32_fifo_write_block_pio().
1380  */
1381 static size_t parport_ip32_fifo_write_block_pio(struct parport *p,
1382                         const void *buf, size_t len)
1383 {
1384     struct parport_ip32_private * const priv = p->physport->private_data;
1385     const u8 *bufp = buf;
1386     size_t left = len;
1387 
1388     priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1389 
1390     while (left > 0) {
1391         unsigned int count;
1392 
1393         count = (p->irq == PARPORT_IRQ_NONE) ?
1394             parport_ip32_fwp_wait_polling(p) :
1395             parport_ip32_fwp_wait_interrupt(p);
1396         if (count == 0)
1397             break;  /* Transmission should be stopped */
1398         if (count > left)
1399             count = left;
1400         if (count == 1) {
1401             writeb(*bufp, priv->regs.fifo);
1402             bufp++, left--;
1403         } else {
1404             writesb(priv->regs.fifo, bufp, count);
1405             bufp += count, left -= count;
1406         }
1407     }
1408 
1409     priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1410 
1411     return len - left;
1412 }
1413 
1414 /**
1415  * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode)
1416  * @p:      pointer to &struct parport
1417  * @buf:    buffer of data to write
1418  * @len:    length of buffer @buf
1419  *
1420  * Uses DMA to write the contents of the buffer @buf into the parallel port
1421  * FIFO.  Returns the number of bytes that were actually written.  The
1422  * parallel port must be correctly initialized before calling
1423  * parport_ip32_fifo_write_block_dma().
1424  */
1425 static size_t parport_ip32_fifo_write_block_dma(struct parport *p,
1426                         const void *buf, size_t len)
1427 {
1428     struct parport_ip32_private * const priv = p->physport->private_data;
1429     struct parport * const physport = p->physport;
1430     unsigned long nfault_timeout;
1431     unsigned long expire;
1432     size_t written;
1433     unsigned int ecr;
1434 
1435     priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1436 
1437     parport_ip32_dma_start(p, DMA_TO_DEVICE, (void *)buf, len);
1438     reinit_completion(&priv->irq_complete);
1439     parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN);
1440 
1441     nfault_timeout = min((unsigned long)physport->cad->timeout,
1442                  msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1443     expire = jiffies + physport->cad->timeout;
1444     while (1) {
1445         if (parport_ip32_fifo_wait_break(p, expire))
1446             break;
1447         wait_for_completion_interruptible_timeout(&priv->irq_complete,
1448                               nfault_timeout);
1449         ecr = parport_ip32_read_econtrol(p);
1450         if (ecr & ECR_SERVINTR)
1451             break;  /* DMA transfer just finished */
1452     }
1453     parport_ip32_dma_stop(p);
1454     written = len - parport_ip32_dma_get_residue();
1455 
1456     priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1457 
1458     return written;
1459 }
1460 
1461 /**
1462  * parport_ip32_fifo_write_block - write a block of data
1463  * @p:      pointer to &struct parport
1464  * @buf:    buffer of data to write
1465  * @len:    length of buffer @buf
1466  *
1467  * Uses PIO or DMA to write the contents of the buffer @buf into the parallel
1468  * p FIFO.  Returns the number of bytes that were actually written.
1469  */
1470 static size_t parport_ip32_fifo_write_block(struct parport *p,
1471                         const void *buf, size_t len)
1472 {
1473     size_t written = 0;
1474     if (len)
1475         /* FIXME - Maybe some threshold value should be set for @len
1476          * under which we revert to PIO mode? */
1477         written = (p->modes & PARPORT_MODE_DMA) ?
1478             parport_ip32_fifo_write_block_dma(p, buf, len) :
1479             parport_ip32_fifo_write_block_pio(p, buf, len);
1480     return written;
1481 }
1482 
1483 /**
1484  * parport_ip32_drain_fifo - wait for FIFO to empty
1485  * @p:      pointer to &struct parport
1486  * @timeout:    timeout, in jiffies
1487  *
1488  * This function waits for FIFO to empty.  It returns 1 when FIFO is empty, or
1489  * 0 if the timeout @timeout is reached before, or if a signal is pending.
1490  */
1491 static unsigned int parport_ip32_drain_fifo(struct parport *p,
1492                         unsigned long timeout)
1493 {
1494     unsigned long expire = jiffies + timeout;
1495     unsigned int polling_interval;
1496     unsigned int counter;
1497 
1498     /* Busy wait for approx. 200us */
1499     for (counter = 0; counter < 40; counter++) {
1500         if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1501             break;
1502         if (time_after(jiffies, expire))
1503             break;
1504         if (signal_pending(current))
1505             break;
1506         udelay(5);
1507     }
1508     /* Poll slowly.  Polling interval starts with 1 millisecond, and is
1509      * increased exponentially until 128.  */
1510     polling_interval = 1; /* msecs */
1511     while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) {
1512         if (time_after_eq(jiffies, expire))
1513             break;
1514         msleep_interruptible(polling_interval);
1515         if (signal_pending(current))
1516             break;
1517         if (polling_interval < 128)
1518             polling_interval *= 2;
1519     }
1520 
1521     return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY);
1522 }
1523 
1524 /**
1525  * parport_ip32_get_fifo_residue - reset FIFO
1526  * @p:      pointer to &struct parport
1527  * @mode:   current operation mode (ECR_MODE_PPF or ECR_MODE_ECP)
1528  *
1529  * This function resets FIFO, and returns the number of bytes remaining in it.
1530  */
1531 static unsigned int parport_ip32_get_fifo_residue(struct parport *p,
1532                           unsigned int mode)
1533 {
1534     struct parport_ip32_private * const priv = p->physport->private_data;
1535     unsigned int residue;
1536     unsigned int cnfga;
1537 
1538     /* FIXME - We are missing one byte if the printer is off-line.  I
1539      * don't know how to detect this.  It looks that the full bit is not
1540      * always reliable.  For the moment, the problem is avoided in most
1541      * cases by testing for BUSY in parport_ip32_compat_write_data().
1542      */
1543     if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1544         residue = 0;
1545     else {
1546         pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name);
1547 
1548         /* Stop all transfers.
1549          *
1550          * Microsoft's document instructs to drive DCR_STROBE to 0,
1551          * but it doesn't work (at least in Compatibility mode, not
1552          * tested in ECP mode).  Switching directly to Test mode (as
1553          * in parport_pc) is not an option: it does confuse the port,
1554          * ECP service interrupts are no more working after that.  A
1555          * hard reset is then needed to revert to a sane state.
1556          *
1557          * Let's hope that the FIFO is really stuck and that the
1558          * peripheral doesn't wake up now.
1559          */
1560         parport_ip32_frob_control(p, DCR_STROBE, 0);
1561 
1562         /* Fill up FIFO */
1563         for (residue = priv->fifo_depth; residue > 0; residue--) {
1564             if (parport_ip32_read_econtrol(p) & ECR_F_FULL)
1565                 break;
1566             writeb(0x00, priv->regs.fifo);
1567         }
1568     }
1569     if (residue)
1570         pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n",
1571               p->name, residue,
1572               (residue == 1) ? " was" : "s were");
1573 
1574     /* Now reset the FIFO */
1575     parport_ip32_set_mode(p, ECR_MODE_PS2);
1576 
1577     /* Host recovery for ECP mode */
1578     if (mode == ECR_MODE_ECP) {
1579         parport_ip32_data_reverse(p);
1580         parport_ip32_frob_control(p, DCR_nINIT, 0);
1581         if (parport_wait_peripheral(p, DSR_PERROR, 0))
1582             pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n",
1583                   p->name, __func__);
1584         parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE);
1585         parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT);
1586         if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR))
1587             pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n",
1588                   p->name, __func__);
1589     }
1590 
1591     /* Adjust residue if needed */
1592     parport_ip32_set_mode(p, ECR_MODE_CFG);
1593     cnfga = readb(priv->regs.cnfgA);
1594     if (!(cnfga & CNFGA_nBYTEINTRANS)) {
1595         pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n",
1596               p->name, cnfga);
1597         pr_debug1(PPIP32 "%s: Accounting for extra byte\n",
1598               p->name);
1599         residue++;
1600     }
1601 
1602     /* Don't care about partial PWords since we do not support
1603      * PWord != 1 byte. */
1604 
1605     /* Back to forward PS2 mode. */
1606     parport_ip32_set_mode(p, ECR_MODE_PS2);
1607     parport_ip32_data_forward(p);
1608 
1609     return residue;
1610 }
1611 
1612 /**
1613  * parport_ip32_compat_write_data - write a block of data in SPP mode
1614  * @p:      pointer to &struct parport
1615  * @buf:    buffer of data to write
1616  * @len:    length of buffer @buf
1617  * @flags:  ignored
1618  */
1619 static size_t parport_ip32_compat_write_data(struct parport *p,
1620                          const void *buf, size_t len,
1621                          int flags)
1622 {
1623     static unsigned int ready_before = 1;
1624     struct parport_ip32_private * const priv = p->physport->private_data;
1625     struct parport * const physport = p->physport;
1626     size_t written = 0;
1627 
1628     /* Special case: a timeout of zero means we cannot call schedule().
1629      * Also if O_NONBLOCK is set then use the default implementation. */
1630     if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1631         return parport_ieee1284_write_compat(p, buf, len, flags);
1632 
1633     /* Reset FIFO, go in forward mode, and disable ackIntEn */
1634     parport_ip32_set_mode(p, ECR_MODE_PS2);
1635     parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1636     parport_ip32_data_forward(p);
1637     parport_ip32_disable_irq(p);
1638     parport_ip32_set_mode(p, ECR_MODE_PPF);
1639     physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1640 
1641     /* Wait for peripheral to become ready */
1642     if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1643                        DSR_nBUSY | DSR_nFAULT)) {
1644         /* Avoid to flood the logs */
1645         if (ready_before)
1646             pr_info(PPIP32 "%s: not ready in %s\n",
1647                 p->name, __func__);
1648         ready_before = 0;
1649         goto stop;
1650     }
1651     ready_before = 1;
1652 
1653     written = parport_ip32_fifo_write_block(p, buf, len);
1654 
1655     /* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */
1656     parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1657 
1658     /* Check for a potential residue */
1659     written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF);
1660 
1661     /* Then, wait for BUSY to get low. */
1662     if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1663         printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1664                p->name, __func__);
1665 
1666 stop:
1667     /* Reset FIFO */
1668     parport_ip32_set_mode(p, ECR_MODE_PS2);
1669     physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1670 
1671     return written;
1672 }
1673 
1674 /*
1675  * FIXME - Insert here parport_ip32_ecp_read_data().
1676  */
1677 
1678 /**
1679  * parport_ip32_ecp_write_data - write a block of data in ECP mode
1680  * @p:      pointer to &struct parport
1681  * @buf:    buffer of data to write
1682  * @len:    length of buffer @buf
1683  * @flags:  ignored
1684  */
1685 static size_t parport_ip32_ecp_write_data(struct parport *p,
1686                       const void *buf, size_t len,
1687                       int flags)
1688 {
1689     static unsigned int ready_before = 1;
1690     struct parport_ip32_private * const priv = p->physport->private_data;
1691     struct parport * const physport = p->physport;
1692     size_t written = 0;
1693 
1694     /* Special case: a timeout of zero means we cannot call schedule().
1695      * Also if O_NONBLOCK is set then use the default implementation. */
1696     if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1697         return parport_ieee1284_ecp_write_data(p, buf, len, flags);
1698 
1699     /* Negotiate to forward mode if necessary. */
1700     if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) {
1701         /* Event 47: Set nInit high. */
1702         parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD,
1703                          DCR_nINIT | DCR_AUTOFD);
1704 
1705         /* Event 49: PError goes high. */
1706         if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) {
1707             printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s\n",
1708                    p->name, __func__);
1709             physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN;
1710             return 0;
1711         }
1712     }
1713 
1714     /* Reset FIFO, go in forward mode, and disable ackIntEn */
1715     parport_ip32_set_mode(p, ECR_MODE_PS2);
1716     parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1717     parport_ip32_data_forward(p);
1718     parport_ip32_disable_irq(p);
1719     parport_ip32_set_mode(p, ECR_MODE_ECP);
1720     physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1721 
1722     /* Wait for peripheral to become ready */
1723     if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1724                        DSR_nBUSY | DSR_nFAULT)) {
1725         /* Avoid to flood the logs */
1726         if (ready_before)
1727             pr_info(PPIP32 "%s: not ready in %s\n",
1728                 p->name, __func__);
1729         ready_before = 0;
1730         goto stop;
1731     }
1732     ready_before = 1;
1733 
1734     written = parport_ip32_fifo_write_block(p, buf, len);
1735 
1736     /* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */
1737     parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1738 
1739     /* Check for a potential residue */
1740     written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP);
1741 
1742     /* Then, wait for BUSY to get low. */
1743     if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1744         printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1745                p->name, __func__);
1746 
1747 stop:
1748     /* Reset FIFO */
1749     parport_ip32_set_mode(p, ECR_MODE_PS2);
1750     physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1751 
1752     return written;
1753 }
1754 
1755 /*
1756  * FIXME - Insert here parport_ip32_ecp_write_addr().
1757  */
1758 
1759 /*--- Default parport operations ---------------------------------------*/
1760 
1761 static const struct parport_operations parport_ip32_ops __initconst = {
1762     .write_data     = parport_ip32_write_data,
1763     .read_data      = parport_ip32_read_data,
1764 
1765     .write_control      = parport_ip32_write_control,
1766     .read_control       = parport_ip32_read_control,
1767     .frob_control       = parport_ip32_frob_control,
1768 
1769     .read_status        = parport_ip32_read_status,
1770 
1771     .enable_irq     = parport_ip32_enable_irq,
1772     .disable_irq        = parport_ip32_disable_irq,
1773 
1774     .data_forward       = parport_ip32_data_forward,
1775     .data_reverse       = parport_ip32_data_reverse,
1776 
1777     .init_state     = parport_ip32_init_state,
1778     .save_state     = parport_ip32_save_state,
1779     .restore_state      = parport_ip32_restore_state,
1780 
1781     .epp_write_data     = parport_ieee1284_epp_write_data,
1782     .epp_read_data      = parport_ieee1284_epp_read_data,
1783     .epp_write_addr     = parport_ieee1284_epp_write_addr,
1784     .epp_read_addr      = parport_ieee1284_epp_read_addr,
1785 
1786     .ecp_write_data     = parport_ieee1284_ecp_write_data,
1787     .ecp_read_data      = parport_ieee1284_ecp_read_data,
1788     .ecp_write_addr     = parport_ieee1284_ecp_write_addr,
1789 
1790     .compat_write_data  = parport_ieee1284_write_compat,
1791     .nibble_read_data   = parport_ieee1284_read_nibble,
1792     .byte_read_data     = parport_ieee1284_read_byte,
1793 
1794     .owner          = THIS_MODULE,
1795 };
1796 
1797 /*--- Device detection -------------------------------------------------*/
1798 
1799 /**
1800  * parport_ip32_ecp_supported - check for an ECP port
1801  * @p:      pointer to the &parport structure
1802  *
1803  * Returns 1 if an ECP port is found, and 0 otherwise.  This function actually
1804  * checks if an Extended Control Register seems to be present.  On successful
1805  * return, the port is placed in SPP mode.
1806  */
1807 static __init unsigned int parport_ip32_ecp_supported(struct parport *p)
1808 {
1809     struct parport_ip32_private * const priv = p->physport->private_data;
1810     unsigned int ecr;
1811 
1812     ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1813     writeb(ecr, priv->regs.ecr);
1814     if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY))
1815         goto fail;
1816 
1817     pr_probe(p, "Found working ECR register\n");
1818     parport_ip32_set_mode(p, ECR_MODE_SPP);
1819     parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1820     return 1;
1821 
1822 fail:
1823     pr_probe(p, "ECR register not found\n");
1824     return 0;
1825 }
1826 
1827 /**
1828  * parport_ip32_fifo_supported - check for FIFO parameters
1829  * @p:      pointer to the &parport structure
1830  *
1831  * Check for FIFO parameters of an Extended Capabilities Port.  Returns 1 on
1832  * success, and 0 otherwise.  Adjust FIFO parameters in the parport structure.
1833  * On return, the port is placed in SPP mode.
1834  */
1835 static __init unsigned int parport_ip32_fifo_supported(struct parport *p)
1836 {
1837     struct parport_ip32_private * const priv = p->physport->private_data;
1838     unsigned int configa, configb;
1839     unsigned int pword;
1840     unsigned int i;
1841 
1842     /* Configuration mode */
1843     parport_ip32_set_mode(p, ECR_MODE_CFG);
1844     configa = readb(priv->regs.cnfgA);
1845     configb = readb(priv->regs.cnfgB);
1846 
1847     /* Find out PWord size */
1848     switch (configa & CNFGA_ID_MASK) {
1849     case CNFGA_ID_8:
1850         pword = 1;
1851         break;
1852     case CNFGA_ID_16:
1853         pword = 2;
1854         break;
1855     case CNFGA_ID_32:
1856         pword = 4;
1857         break;
1858     default:
1859         pr_probe(p, "Unknown implementation ID: 0x%0x\n",
1860              (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT);
1861         goto fail;
1862         break;
1863     }
1864     if (pword != 1) {
1865         pr_probe(p, "Unsupported PWord size: %u\n", pword);
1866         goto fail;
1867     }
1868     priv->pword = pword;
1869     pr_probe(p, "PWord is %u bits\n", 8 * priv->pword);
1870 
1871     /* Check for compression support */
1872     writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB);
1873     if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS)
1874         pr_probe(p, "Hardware compression detected (unsupported)\n");
1875     writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB);
1876 
1877     /* Reset FIFO and go in test mode (no interrupt, no DMA) */
1878     parport_ip32_set_mode(p, ECR_MODE_TST);
1879 
1880     /* FIFO must be empty now */
1881     if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1882         pr_probe(p, "FIFO not reset\n");
1883         goto fail;
1884     }
1885 
1886     /* Find out FIFO depth. */
1887     priv->fifo_depth = 0;
1888     for (i = 0; i < 1024; i++) {
1889         if (readb(priv->regs.ecr) & ECR_F_FULL) {
1890             /* FIFO full */
1891             priv->fifo_depth = i;
1892             break;
1893         }
1894         writeb((u8)i, priv->regs.fifo);
1895     }
1896     if (i >= 1024) {
1897         pr_probe(p, "Can't fill FIFO\n");
1898         goto fail;
1899     }
1900     if (!priv->fifo_depth) {
1901         pr_probe(p, "Can't get FIFO depth\n");
1902         goto fail;
1903     }
1904     pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth);
1905 
1906     /* Enable interrupts */
1907     parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1908 
1909     /* Find out writeIntrThreshold: number of PWords we know we can write
1910      * if we get an interrupt. */
1911     priv->writeIntrThreshold = 0;
1912     for (i = 0; i < priv->fifo_depth; i++) {
1913         if (readb(priv->regs.fifo) != (u8)i) {
1914             pr_probe(p, "Invalid data in FIFO\n");
1915             goto fail;
1916         }
1917         if (!priv->writeIntrThreshold
1918             && readb(priv->regs.ecr) & ECR_SERVINTR)
1919             /* writeIntrThreshold reached */
1920             priv->writeIntrThreshold = i + 1;
1921         if (i + 1 < priv->fifo_depth
1922             && readb(priv->regs.ecr) & ECR_F_EMPTY) {
1923             /* FIFO empty before the last byte? */
1924             pr_probe(p, "Data lost in FIFO\n");
1925             goto fail;
1926         }
1927     }
1928     if (!priv->writeIntrThreshold) {
1929         pr_probe(p, "Can't get writeIntrThreshold\n");
1930         goto fail;
1931     }
1932     pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold);
1933 
1934     /* FIFO must be empty now */
1935     if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1936         pr_probe(p, "Can't empty FIFO\n");
1937         goto fail;
1938     }
1939 
1940     /* Reset FIFO */
1941     parport_ip32_set_mode(p, ECR_MODE_PS2);
1942     /* Set reverse direction (must be in PS2 mode) */
1943     parport_ip32_data_reverse(p);
1944     /* Test FIFO, no interrupt, no DMA */
1945     parport_ip32_set_mode(p, ECR_MODE_TST);
1946     /* Enable interrupts */
1947     parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1948 
1949     /* Find out readIntrThreshold: number of PWords we can read if we get
1950      * an interrupt. */
1951     priv->readIntrThreshold = 0;
1952     for (i = 0; i < priv->fifo_depth; i++) {
1953         writeb(0xaa, priv->regs.fifo);
1954         if (readb(priv->regs.ecr) & ECR_SERVINTR) {
1955             /* readIntrThreshold reached */
1956             priv->readIntrThreshold = i + 1;
1957             break;
1958         }
1959     }
1960     if (!priv->readIntrThreshold) {
1961         pr_probe(p, "Can't get readIntrThreshold\n");
1962         goto fail;
1963     }
1964     pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold);
1965 
1966     /* Reset ECR */
1967     parport_ip32_set_mode(p, ECR_MODE_PS2);
1968     parport_ip32_data_forward(p);
1969     parport_ip32_set_mode(p, ECR_MODE_SPP);
1970     return 1;
1971 
1972 fail:
1973     priv->fifo_depth = 0;
1974     parport_ip32_set_mode(p, ECR_MODE_SPP);
1975     return 0;
1976 }
1977 
1978 /*--- Initialization code ----------------------------------------------*/
1979 
1980 /**
1981  * parport_ip32_make_isa_registers - compute (ISA) register addresses
1982  * @regs:   pointer to &struct parport_ip32_regs to fill
1983  * @base:   base address of standard and EPP registers
1984  * @base_hi:    base address of ECP registers
1985  * @regshift:   how much to shift register offset by
1986  *
1987  * Compute register addresses, according to the ISA standard.  The addresses
1988  * of the standard and EPP registers are computed from address @base.  The
1989  * addresses of the ECP registers are computed from address @base_hi.
1990  */
1991 static void __init
1992 parport_ip32_make_isa_registers(struct parport_ip32_regs *regs,
1993                 void __iomem *base, void __iomem *base_hi,
1994                 unsigned int regshift)
1995 {
1996 #define r_base(offset)    ((u8 __iomem *)base    + ((offset) << regshift))
1997 #define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift))
1998     *regs = (struct parport_ip32_regs){
1999         .data       = r_base(0),
2000         .dsr        = r_base(1),
2001         .dcr        = r_base(2),
2002         .eppAddr    = r_base(3),
2003         .eppData0   = r_base(4),
2004         .eppData1   = r_base(5),
2005         .eppData2   = r_base(6),
2006         .eppData3   = r_base(7),
2007         .ecpAFifo   = r_base(0),
2008         .fifo       = r_base_hi(0),
2009         .cnfgA      = r_base_hi(0),
2010         .cnfgB      = r_base_hi(1),
2011         .ecr        = r_base_hi(2)
2012     };
2013 #undef r_base_hi
2014 #undef r_base
2015 }
2016 
2017 /**
2018  * parport_ip32_probe_port - probe and register IP32 built-in parallel port
2019  *
2020  * Returns the new allocated &parport structure.  On error, an error code is
2021  * encoded in return value with the ERR_PTR function.
2022  */
2023 static __init struct parport *parport_ip32_probe_port(void)
2024 {
2025     struct parport_ip32_regs regs;
2026     struct parport_ip32_private *priv = NULL;
2027     struct parport_operations *ops = NULL;
2028     struct parport *p = NULL;
2029     int err;
2030 
2031     parport_ip32_make_isa_registers(&regs, &mace->isa.parallel,
2032                     &mace->isa.ecp1284, 8 /* regshift */);
2033 
2034     ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL);
2035     priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL);
2036     p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops);
2037     if (ops == NULL || priv == NULL || p == NULL) {
2038         err = -ENOMEM;
2039         goto fail;
2040     }
2041     p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel);
2042     p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284);
2043     p->private_data = priv;
2044 
2045     *ops = parport_ip32_ops;
2046     *priv = (struct parport_ip32_private){
2047         .regs           = regs,
2048         .dcr_writable       = DCR_DIR | DCR_SELECT | DCR_nINIT |
2049                       DCR_AUTOFD | DCR_STROBE,
2050         .irq_mode       = PARPORT_IP32_IRQ_FWD,
2051     };
2052     init_completion(&priv->irq_complete);
2053 
2054     /* Probe port. */
2055     if (!parport_ip32_ecp_supported(p)) {
2056         err = -ENODEV;
2057         goto fail;
2058     }
2059     parport_ip32_dump_state(p, "begin init", 0);
2060 
2061     /* We found what looks like a working ECR register.  Simply assume
2062      * that all modes are correctly supported.  Enable basic modes. */
2063     p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT;
2064     p->modes |= PARPORT_MODE_TRISTATE;
2065 
2066     if (!parport_ip32_fifo_supported(p)) {
2067         pr_warn(PPIP32 "%s: error: FIFO disabled\n", p->name);
2068         /* Disable hardware modes depending on a working FIFO. */
2069         features &= ~PARPORT_IP32_ENABLE_SPP;
2070         features &= ~PARPORT_IP32_ENABLE_ECP;
2071         /* DMA is not needed if FIFO is not supported.  */
2072         features &= ~PARPORT_IP32_ENABLE_DMA;
2073     }
2074 
2075     /* Request IRQ */
2076     if (features & PARPORT_IP32_ENABLE_IRQ) {
2077         int irq = MACEISA_PARALLEL_IRQ;
2078         if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) {
2079             pr_warn(PPIP32 "%s: error: IRQ disabled\n", p->name);
2080             /* DMA cannot work without interrupts. */
2081             features &= ~PARPORT_IP32_ENABLE_DMA;
2082         } else {
2083             pr_probe(p, "Interrupt support enabled\n");
2084             p->irq = irq;
2085             priv->dcr_writable |= DCR_IRQ;
2086         }
2087     }
2088 
2089     /* Allocate DMA resources */
2090     if (features & PARPORT_IP32_ENABLE_DMA) {
2091         if (parport_ip32_dma_register())
2092             pr_warn(PPIP32 "%s: error: DMA disabled\n", p->name);
2093         else {
2094             pr_probe(p, "DMA support enabled\n");
2095             p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */
2096             p->modes |= PARPORT_MODE_DMA;
2097         }
2098     }
2099 
2100     if (features & PARPORT_IP32_ENABLE_SPP) {
2101         /* Enable compatibility FIFO mode */
2102         p->ops->compat_write_data = parport_ip32_compat_write_data;
2103         p->modes |= PARPORT_MODE_COMPAT;
2104         pr_probe(p, "Hardware support for SPP mode enabled\n");
2105     }
2106     if (features & PARPORT_IP32_ENABLE_EPP) {
2107         /* Set up access functions to use EPP hardware. */
2108         p->ops->epp_read_data = parport_ip32_epp_read_data;
2109         p->ops->epp_write_data = parport_ip32_epp_write_data;
2110         p->ops->epp_read_addr = parport_ip32_epp_read_addr;
2111         p->ops->epp_write_addr = parport_ip32_epp_write_addr;
2112         p->modes |= PARPORT_MODE_EPP;
2113         pr_probe(p, "Hardware support for EPP mode enabled\n");
2114     }
2115     if (features & PARPORT_IP32_ENABLE_ECP) {
2116         /* Enable ECP FIFO mode */
2117         p->ops->ecp_write_data = parport_ip32_ecp_write_data;
2118         /* FIXME - not implemented */
2119 /*      p->ops->ecp_read_data  = parport_ip32_ecp_read_data; */
2120 /*      p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */
2121         p->modes |= PARPORT_MODE_ECP;
2122         pr_probe(p, "Hardware support for ECP mode enabled\n");
2123     }
2124 
2125     /* Initialize the port with sensible values */
2126     parport_ip32_set_mode(p, ECR_MODE_PS2);
2127     parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
2128     parport_ip32_data_forward(p);
2129     parport_ip32_disable_irq(p);
2130     parport_ip32_write_data(p, 0x00);
2131     parport_ip32_dump_state(p, "end init", 0);
2132 
2133     /* Print out what we found */
2134     pr_info("%s: SGI IP32 at 0x%lx (0x%lx)", p->name, p->base, p->base_hi);
2135     if (p->irq != PARPORT_IRQ_NONE)
2136         pr_cont(", irq %d", p->irq);
2137     pr_cont(" [");
2138 #define printmode(x)                            \
2139 do {                                    \
2140     if (p->modes & PARPORT_MODE_##x)                \
2141         pr_cont("%s%s", f++ ? "," : "", #x);            \
2142 } while (0)
2143     {
2144         unsigned int f = 0;
2145         printmode(PCSPP);
2146         printmode(TRISTATE);
2147         printmode(COMPAT);
2148         printmode(EPP);
2149         printmode(ECP);
2150         printmode(DMA);
2151     }
2152 #undef printmode
2153     pr_cont("]\n");
2154 
2155     parport_announce_port(p);
2156     return p;
2157 
2158 fail:
2159     if (p)
2160         parport_put_port(p);
2161     kfree(priv);
2162     kfree(ops);
2163     return ERR_PTR(err);
2164 }
2165 
2166 /**
2167  * parport_ip32_unregister_port - unregister a parallel port
2168  * @p:      pointer to the &struct parport
2169  *
2170  * Unregisters a parallel port and free previously allocated resources
2171  * (memory, IRQ, ...).
2172  */
2173 static __exit void parport_ip32_unregister_port(struct parport *p)
2174 {
2175     struct parport_ip32_private * const priv = p->physport->private_data;
2176     struct parport_operations *ops = p->ops;
2177 
2178     parport_remove_port(p);
2179     if (p->modes & PARPORT_MODE_DMA)
2180         parport_ip32_dma_unregister();
2181     if (p->irq != PARPORT_IRQ_NONE)
2182         free_irq(p->irq, p);
2183     parport_put_port(p);
2184     kfree(priv);
2185     kfree(ops);
2186 }
2187 
2188 /**
2189  * parport_ip32_init - module initialization function
2190  */
2191 static int __init parport_ip32_init(void)
2192 {
2193     pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n");
2194     this_port = parport_ip32_probe_port();
2195     return PTR_ERR_OR_ZERO(this_port);
2196 }
2197 
2198 /**
2199  * parport_ip32_exit - module termination function
2200  */
2201 static void __exit parport_ip32_exit(void)
2202 {
2203     parport_ip32_unregister_port(this_port);
2204 }
2205 
2206 /*--- Module stuff -----------------------------------------------------*/
2207 
2208 MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>");
2209 MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver");
2210 MODULE_LICENSE("GPL");
2211 MODULE_VERSION("0.6");      /* update in parport_ip32_init() too */
2212 
2213 module_init(parport_ip32_init);
2214 module_exit(parport_ip32_exit);
2215 
2216 module_param(verbose_probing, bool, S_IRUGO);
2217 MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization");
2218 
2219 module_param(features, uint, S_IRUGO);
2220 MODULE_PARM_DESC(features,
2221          "Bit mask of features to enable"
2222          ", bit 0: IRQ support"
2223          ", bit 1: DMA support"
2224          ", bit 2: hardware SPP mode"
2225          ", bit 3: hardware EPP mode"
2226          ", bit 4: hardware ECP mode");