Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003 ** ccio-dma.c:
0004 **  DMA management routines for first generation cache-coherent machines.
0005 **  Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
0006 **
0007 **  (c) Copyright 2000 Grant Grundler
0008 **  (c) Copyright 2000 Ryan Bradetich
0009 **  (c) Copyright 2000 Hewlett-Packard Company
0010 **
0011 **
0012 **
0013 **  "Real Mode" operation refers to U2/Uturn chip operation.
0014 **  U2/Uturn were designed to perform coherency checks w/o using
0015 **  the I/O MMU - basically what x86 does.
0016 **
0017 **  Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
0018 **      CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
0019 **      cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
0020 **
0021 **  I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
0022 **
0023 **  Drawbacks of using Real Mode are:
0024 **  o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
0025 **      o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
0026 **  o Ability to do scatter/gather in HW is lost.
0027 **  o Doesn't work under PCX-U/U+ machines since they didn't follow
0028 **        the coherency design originally worked out. Only PCX-W does.
0029 */
0030 
0031 #include <linux/types.h>
0032 #include <linux/kernel.h>
0033 #include <linux/init.h>
0034 #include <linux/mm.h>
0035 #include <linux/spinlock.h>
0036 #include <linux/slab.h>
0037 #include <linux/string.h>
0038 #include <linux/pci.h>
0039 #include <linux/reboot.h>
0040 #include <linux/proc_fs.h>
0041 #include <linux/seq_file.h>
0042 #include <linux/dma-map-ops.h>
0043 #include <linux/scatterlist.h>
0044 #include <linux/iommu-helper.h>
0045 #include <linux/export.h>
0046 
0047 #include <asm/byteorder.h>
0048 #include <asm/cache.h>      /* for L1_CACHE_BYTES */
0049 #include <linux/uaccess.h>
0050 #include <asm/page.h>
0051 #include <asm/dma.h>
0052 #include <asm/io.h>
0053 #include <asm/hardware.h>       /* for register_module() */
0054 #include <asm/parisc-device.h>
0055 
0056 #include "iommu.h"
0057 
0058 /* 
0059 ** Choose "ccio" since that's what HP-UX calls it.
0060 ** Make it easier for folks to migrate from one to the other :^)
0061 */
0062 #define MODULE_NAME "ccio"
0063 
0064 #undef DEBUG_CCIO_RES
0065 #undef DEBUG_CCIO_RUN
0066 #undef DEBUG_CCIO_INIT
0067 #undef DEBUG_CCIO_RUN_SG
0068 
0069 #ifdef CONFIG_PROC_FS
0070 /* depends on proc fs support. But costs CPU performance. */
0071 #undef CCIO_COLLECT_STATS
0072 #endif
0073 
0074 #include <asm/runway.h>     /* for proc_runway_root */
0075 
0076 #ifdef DEBUG_CCIO_INIT
0077 #define DBG_INIT(x...)  printk(x)
0078 #else
0079 #define DBG_INIT(x...)
0080 #endif
0081 
0082 #ifdef DEBUG_CCIO_RUN
0083 #define DBG_RUN(x...)   printk(x)
0084 #else
0085 #define DBG_RUN(x...)
0086 #endif
0087 
0088 #ifdef DEBUG_CCIO_RES
0089 #define DBG_RES(x...)   printk(x)
0090 #else
0091 #define DBG_RES(x...)
0092 #endif
0093 
0094 #ifdef DEBUG_CCIO_RUN_SG
0095 #define DBG_RUN_SG(x...) printk(x)
0096 #else
0097 #define DBG_RUN_SG(x...)
0098 #endif
0099 
0100 #define CCIO_INLINE inline
0101 #define WRITE_U32(value, addr) __raw_writel(value, addr)
0102 #define READ_U32(addr) __raw_readl(addr)
0103 
0104 #define U2_IOA_RUNWAY 0x580
0105 #define U2_BC_GSC     0x501
0106 #define UTURN_IOA_RUNWAY 0x581
0107 #define UTURN_BC_GSC     0x502
0108 
0109 #define IOA_NORMAL_MODE      0x00020080 /* IO_CONTROL to turn on CCIO        */
0110 #define CMD_TLB_DIRECT_WRITE 35         /* IO_COMMAND for I/O TLB Writes     */
0111 #define CMD_TLB_PURGE        33         /* IO_COMMAND to Purge I/O TLB entry */
0112 
0113 struct ioa_registers {
0114     /* Runway Supervisory Set */
0115     int32_t    unused1[12];
0116     uint32_t   io_command;             /* Offset 12 */
0117     uint32_t   io_status;              /* Offset 13 */
0118     uint32_t   io_control;             /* Offset 14 */
0119     int32_t    unused2[1];
0120 
0121     /* Runway Auxiliary Register Set */
0122     uint32_t   io_err_resp;            /* Offset  0 */
0123     uint32_t   io_err_info;            /* Offset  1 */
0124     uint32_t   io_err_req;             /* Offset  2 */
0125     uint32_t   io_err_resp_hi;         /* Offset  3 */
0126     uint32_t   io_tlb_entry_m;         /* Offset  4 */
0127     uint32_t   io_tlb_entry_l;         /* Offset  5 */
0128     uint32_t   unused3[1];
0129     uint32_t   io_pdir_base;           /* Offset  7 */
0130     uint32_t   io_io_low_hv;           /* Offset  8 */
0131     uint32_t   io_io_high_hv;          /* Offset  9 */
0132     uint32_t   unused4[1];
0133     uint32_t   io_chain_id_mask;       /* Offset 11 */
0134     uint32_t   unused5[2];
0135     uint32_t   io_io_low;              /* Offset 14 */
0136     uint32_t   io_io_high;             /* Offset 15 */
0137 };
0138 
0139 /*
0140 ** IOA Registers
0141 ** -------------
0142 **
0143 ** Runway IO_CONTROL Register (+0x38)
0144 ** 
0145 ** The Runway IO_CONTROL register controls the forwarding of transactions.
0146 **
0147 ** | 0  ...  13  |  14 15 | 16 ... 21 | 22 | 23 24 |  25 ... 31 |
0148 ** |    HV       |   TLB  |  reserved | HV | mode  |  reserved  |
0149 **
0150 ** o mode field indicates the address translation of transactions
0151 **   forwarded from Runway to GSC+:
0152 **       Mode Name     Value        Definition
0153 **       Off (default)   0          Opaque to matching addresses.
0154 **       Include         1          Transparent for matching addresses.
0155 **       Peek            3          Map matching addresses.
0156 **
0157 **       + "Off" mode: Runway transactions which match the I/O range
0158 **         specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
0159 **       + "Include" mode: all addresses within the I/O range specified
0160 **         by the IO_IO_LOW and IO_IO_HIGH registers are transparently
0161 **         forwarded. This is the I/O Adapter's normal operating mode.
0162 **       + "Peek" mode: used during system configuration to initialize the
0163 **         GSC+ bus. Runway Write_Shorts in the address range specified by
0164 **         IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
0165 **         *AND* the GSC+ address is remapped to the Broadcast Physical
0166 **         Address space by setting the 14 high order address bits of the
0167 **         32 bit GSC+ address to ones.
0168 **
0169 ** o TLB field affects transactions which are forwarded from GSC+ to Runway.
0170 **   "Real" mode is the poweron default.
0171 ** 
0172 **   TLB Mode  Value  Description
0173 **   Real        0    No TLB translation. Address is directly mapped and the
0174 **                    virtual address is composed of selected physical bits.
0175 **   Error       1    Software fills the TLB manually.
0176 **   Normal      2    IOA fetches IO TLB misses from IO PDIR (in host memory).
0177 **
0178 **
0179 ** IO_IO_LOW_HV   +0x60 (HV dependent)
0180 ** IO_IO_HIGH_HV  +0x64 (HV dependent)
0181 ** IO_IO_LOW      +0x78 (Architected register)
0182 ** IO_IO_HIGH     +0x7c (Architected register)
0183 **
0184 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
0185 ** I/O Adapter address space, respectively.
0186 **
0187 ** 0  ... 7 | 8 ... 15 |  16   ...   31 |
0188 ** 11111111 | 11111111 |      address   |
0189 **
0190 ** Each LOW/HIGH pair describes a disjoint address space region.
0191 ** (2 per GSC+ port). Each incoming Runway transaction address is compared
0192 ** with both sets of LOW/HIGH registers. If the address is in the range
0193 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
0194 ** for forwarded to the respective GSC+ bus.
0195 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
0196 ** an address space region.
0197 **
0198 ** In order for a Runway address to reside within GSC+ extended address space:
0199 **  Runway Address [0:7]    must identically compare to 8'b11111111
0200 **  Runway Address [8:11]   must be equal to IO_IO_LOW(_HV)[16:19]
0201 **  Runway Address [12:23]  must be greater than or equal to
0202 **             IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
0203 **  Runway Address [24:39]  is not used in the comparison.
0204 **
0205 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is
0206 ** as follows:
0207 **  GSC+ Address[0:3]   4'b1111
0208 **  GSC+ Address[4:29]  Runway Address[12:37]
0209 **  GSC+ Address[30:31] 2'b00
0210 **
0211 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus
0212 ** is interrogated and address space is defined. The operating system will
0213 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
0214 ** the PDC initialization.  However, the hardware version dependent IO_IO_LOW
0215 ** and IO_IO_HIGH registers should not be subsequently altered by the OS.
0216 ** 
0217 ** Writes to both sets of registers will take effect immediately, bypassing
0218 ** the queues, which ensures that subsequent Runway transactions are checked
0219 ** against the updated bounds values. However reads are queued, introducing
0220 ** the possibility of a read being bypassed by a subsequent write to the same
0221 ** register. This sequence can be avoided by having software wait for read
0222 ** returns before issuing subsequent writes.
0223 */
0224 
0225 struct ioc {
0226     struct ioa_registers __iomem *ioc_regs;  /* I/O MMU base address */
0227     u8  *res_map;                   /* resource map, bit == pdir entry */
0228     u64 *pdir_base;                 /* physical base address */
0229     u32 pdir_size;          /* bytes, function of IOV Space size */
0230     u32 res_hint;           /* next available IOVP -
0231                        circular search */
0232     u32 res_size;           /* size of resource map in bytes */
0233     spinlock_t res_lock;
0234 
0235 #ifdef CCIO_COLLECT_STATS
0236 #define CCIO_SEARCH_SAMPLE 0x100
0237     unsigned long avg_search[CCIO_SEARCH_SAMPLE];
0238     unsigned long avg_idx;        /* current index into avg_search */
0239     unsigned long used_pages;
0240     unsigned long msingle_calls;
0241     unsigned long msingle_pages;
0242     unsigned long msg_calls;
0243     unsigned long msg_pages;
0244     unsigned long usingle_calls;
0245     unsigned long usingle_pages;
0246     unsigned long usg_calls;
0247     unsigned long usg_pages;
0248 #endif
0249     unsigned short cujo20_bug;
0250 
0251     /* STUFF We don't need in performance path */
0252     u32 chainid_shift;      /* specify bit location of chain_id */
0253     struct ioc *next;       /* Linked list of discovered iocs */
0254     const char *name;       /* device name from firmware */
0255     unsigned int hw_path;           /* the hardware path this ioc is associatd with */
0256     struct pci_dev *fake_pci_dev;   /* the fake pci_dev for non-pci devs */
0257     struct resource mmio_region[2]; /* The "routed" MMIO regions */
0258 };
0259 
0260 static struct ioc *ioc_list;
0261 static int ioc_count;
0262 
0263 /**************************************************************
0264 *
0265 *   I/O Pdir Resource Management
0266 *
0267 *   Bits set in the resource map are in use.
0268 *   Each bit can represent a number of pages.
0269 *   LSbs represent lower addresses (IOVA's).
0270 *
0271 *   This was copied from sba_iommu.c. Don't try to unify
0272 *   the two resource managers unless a way to have different
0273 *   allocation policies is also adjusted. We'd like to avoid
0274 *   I/O TLB thrashing by having resource allocation policy
0275 *   match the I/O TLB replacement policy.
0276 *
0277 ***************************************************************/
0278 #define IOVP_SIZE PAGE_SIZE
0279 #define IOVP_SHIFT PAGE_SHIFT
0280 #define IOVP_MASK PAGE_MASK
0281 
0282 /* Convert from IOVP to IOVA and vice versa. */
0283 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
0284 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
0285 
0286 #define PDIR_INDEX(iovp)    ((iovp)>>IOVP_SHIFT)
0287 #define MKIOVP(pdir_idx)    ((long)(pdir_idx) << IOVP_SHIFT)
0288 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
0289 
0290 /*
0291 ** Don't worry about the 150% average search length on a miss.
0292 ** If the search wraps around, and passes the res_hint, it will
0293 ** cause the kernel to panic anyhow.
0294 */
0295 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size)  \
0296     for (; res_ptr < res_end; ++res_ptr) { \
0297         int ret;\
0298         unsigned int idx;\
0299         idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
0300         ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
0301         if ((0 == (*res_ptr & mask)) && !ret) { \
0302             *res_ptr |= mask; \
0303             res_idx = idx;\
0304             ioc->res_hint = res_idx + (size >> 3); \
0305             goto resource_found; \
0306         } \
0307     }
0308 
0309 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
0310        u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
0311        u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
0312     CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
0313     res_ptr = (u##size *)&(ioc)->res_map[0]; \
0314     CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
0315 
0316 /*
0317 ** Find available bit in this ioa's resource map.
0318 ** Use a "circular" search:
0319 **   o Most IOVA's are "temporary" - avg search time should be small.
0320 ** o keep a history of what happened for debugging
0321 ** o KISS.
0322 **
0323 ** Perf optimizations:
0324 ** o search for log2(size) bits at a time.
0325 ** o search for available resource bits using byte/word/whatever.
0326 ** o use different search for "large" (eg > 4 pages) or "very large"
0327 **   (eg > 16 pages) mappings.
0328 */
0329 
0330 /**
0331  * ccio_alloc_range - Allocate pages in the ioc's resource map.
0332  * @ioc: The I/O Controller.
0333  * @pages_needed: The requested number of pages to be mapped into the
0334  * I/O Pdir...
0335  *
0336  * This function searches the resource map of the ioc to locate a range
0337  * of available pages for the requested size.
0338  */
0339 static int
0340 ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
0341 {
0342     unsigned int pages_needed = size >> IOVP_SHIFT;
0343     unsigned int res_idx;
0344     unsigned long boundary_size;
0345 #ifdef CCIO_COLLECT_STATS
0346     unsigned long cr_start = mfctl(16);
0347 #endif
0348     
0349     BUG_ON(pages_needed == 0);
0350     BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
0351 
0352     DBG_RES("%s() size: %d pages_needed %d\n",
0353             __func__, size, pages_needed);
0354 
0355     /*
0356     ** "seek and ye shall find"...praying never hurts either...
0357     ** ggg sacrifices another 710 to the computer gods.
0358     */
0359 
0360     boundary_size = dma_get_seg_boundary_nr_pages(dev, IOVP_SHIFT);
0361 
0362     if (pages_needed <= 8) {
0363         /*
0364          * LAN traffic will not thrash the TLB IFF the same NIC
0365          * uses 8 adjacent pages to map separate payload data.
0366          * ie the same byte in the resource bit map.
0367          */
0368 #if 0
0369         /* FIXME: bit search should shift it's way through
0370          * an unsigned long - not byte at a time. As it is now,
0371          * we effectively allocate this byte to this mapping.
0372          */
0373         unsigned long mask = ~(~0UL >> pages_needed);
0374         CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
0375 #else
0376         CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
0377 #endif
0378     } else if (pages_needed <= 16) {
0379         CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
0380     } else if (pages_needed <= 32) {
0381         CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
0382 #ifdef __LP64__
0383     } else if (pages_needed <= 64) {
0384         CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
0385 #endif
0386     } else {
0387         panic("%s: %s() Too many pages to map. pages_needed: %u\n",
0388                __FILE__,  __func__, pages_needed);
0389     }
0390 
0391     panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
0392           __func__);
0393     
0394 resource_found:
0395     
0396     DBG_RES("%s() res_idx %d res_hint: %d\n",
0397         __func__, res_idx, ioc->res_hint);
0398 
0399 #ifdef CCIO_COLLECT_STATS
0400     {
0401         unsigned long cr_end = mfctl(16);
0402         unsigned long tmp = cr_end - cr_start;
0403         /* check for roll over */
0404         cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
0405     }
0406     ioc->avg_search[ioc->avg_idx++] = cr_start;
0407     ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
0408     ioc->used_pages += pages_needed;
0409 #endif
0410     /* 
0411     ** return the bit address.
0412     */
0413     return res_idx << 3;
0414 }
0415 
0416 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
0417         u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
0418         BUG_ON((*res_ptr & mask) != mask); \
0419     *res_ptr &= ~(mask);
0420 
0421 /**
0422  * ccio_free_range - Free pages from the ioc's resource map.
0423  * @ioc: The I/O Controller.
0424  * @iova: The I/O Virtual Address.
0425  * @pages_mapped: The requested number of pages to be freed from the
0426  * I/O Pdir.
0427  *
0428  * This function frees the resouces allocated for the iova.
0429  */
0430 static void
0431 ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
0432 {
0433     unsigned long iovp = CCIO_IOVP(iova);
0434     unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
0435 
0436     BUG_ON(pages_mapped == 0);
0437     BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
0438     BUG_ON(pages_mapped > BITS_PER_LONG);
0439 
0440     DBG_RES("%s():  res_idx: %d pages_mapped %d\n", 
0441         __func__, res_idx, pages_mapped);
0442 
0443 #ifdef CCIO_COLLECT_STATS
0444     ioc->used_pages -= pages_mapped;
0445 #endif
0446 
0447     if(pages_mapped <= 8) {
0448 #if 0
0449         /* see matching comments in alloc_range */
0450         unsigned long mask = ~(~0UL >> pages_mapped);
0451         CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
0452 #else
0453         CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
0454 #endif
0455     } else if(pages_mapped <= 16) {
0456         CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
0457     } else if(pages_mapped <= 32) {
0458         CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
0459 #ifdef __LP64__
0460     } else if(pages_mapped <= 64) {
0461         CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
0462 #endif
0463     } else {
0464         panic("%s:%s() Too many pages to unmap.\n", __FILE__,
0465               __func__);
0466     }
0467 }
0468 
0469 /****************************************************************
0470 **
0471 **          CCIO dma_ops support routines
0472 **
0473 *****************************************************************/
0474 
0475 typedef unsigned long space_t;
0476 #define KERNEL_SPACE 0
0477 
0478 /*
0479 ** DMA "Page Type" and Hints 
0480 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
0481 **   set for subcacheline DMA transfers since we don't want to damage the
0482 **   other part of a cacheline.
0483 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
0484 **   This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
0485 **   data can avoid this if the mapping covers full cache lines.
0486 ** o STOP_MOST is needed for atomicity across cachelines.
0487 **   Apparently only "some EISA devices" need this.
0488 **   Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
0489 **   to use this hint iff the EISA devices needs this feature.
0490 **   According to the U2 ERS, STOP_MOST enabled pages hurt performance.
0491 ** o PREFETCH should *not* be set for cases like Multiple PCI devices
0492 **   behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
0493 **   device can be fetched and multiply DMA streams will thrash the
0494 **   prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
0495 **   and Invalidation of Prefetch Entries".
0496 **
0497 ** FIXME: the default hints need to be per GSC device - not global.
0498 ** 
0499 ** HP-UX dorks: linux device driver programming model is totally different
0500 **    than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
0501 **    do special things to work on non-coherent platforms...linux has to
0502 **    be much more careful with this.
0503 */
0504 #define IOPDIR_VALID    0x01UL
0505 #define HINT_SAFE_DMA   0x02UL  /* used for pci_alloc_consistent() pages */
0506 #ifdef CONFIG_EISA
0507 #define HINT_STOP_MOST  0x04UL  /* LSL support */
0508 #else
0509 #define HINT_STOP_MOST  0x00UL  /* only needed for "some EISA devices" */
0510 #endif
0511 #define HINT_UDPATE_ENB 0x08UL  /* not used/supported by U2 */
0512 #define HINT_PREFETCH   0x10UL  /* for outbound pages which are not SAFE */
0513 
0514 
0515 /*
0516 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
0517 ** ccio_alloc_consistent() depends on this to get SAFE_DMA
0518 ** when it passes in BIDIRECTIONAL flag.
0519 */
0520 static u32 hint_lookup[] = {
0521     [DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
0522     [DMA_TO_DEVICE]     = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
0523     [DMA_FROM_DEVICE]   = HINT_STOP_MOST | IOPDIR_VALID,
0524 };
0525 
0526 /**
0527  * ccio_io_pdir_entry - Initialize an I/O Pdir.
0528  * @pdir_ptr: A pointer into I/O Pdir.
0529  * @sid: The Space Identifier.
0530  * @vba: The virtual address.
0531  * @hints: The DMA Hint.
0532  *
0533  * Given a virtual address (vba, arg2) and space id, (sid, arg1),
0534  * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
0535  * entry consists of 8 bytes as shown below (MSB == bit 0):
0536  *
0537  *
0538  * WORD 0:
0539  * +------+----------------+-----------------------------------------------+
0540  * | Phys | Virtual Index  |               Phys                            |
0541  * | 0:3  |     0:11       |               4:19                            |
0542  * |4 bits|   12 bits      |              16 bits                          |
0543  * +------+----------------+-----------------------------------------------+
0544  * WORD 1:
0545  * +-----------------------+-----------------------------------------------+
0546  * |      Phys    |  Rsvd  | Prefetch |Update |Rsvd  |Lock  |Safe  |Valid  |
0547  * |     20:39    |        | Enable   |Enable |      |Enable|DMA   |       |
0548  * |    20 bits   | 5 bits | 1 bit    |1 bit  |2 bits|1 bit |1 bit |1 bit  |
0549  * +-----------------------+-----------------------------------------------+
0550  *
0551  * The virtual index field is filled with the results of the LCI
0552  * (Load Coherence Index) instruction.  The 8 bits used for the virtual
0553  * index are bits 12:19 of the value returned by LCI.
0554  */ 
0555 static void CCIO_INLINE
0556 ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
0557            unsigned long hints)
0558 {
0559     register unsigned long pa;
0560     register unsigned long ci; /* coherent index */
0561 
0562     /* We currently only support kernel addresses */
0563     BUG_ON(sid != KERNEL_SPACE);
0564 
0565     /*
0566     ** WORD 1 - low order word
0567     ** "hints" parm includes the VALID bit!
0568     ** "dep" clobbers the physical address offset bits as well.
0569     */
0570     pa = lpa(vba);
0571     asm volatile("depw  %1,31,12,%0" : "+r" (pa) : "r" (hints));
0572     ((u32 *)pdir_ptr)[1] = (u32) pa;
0573 
0574     /*
0575     ** WORD 0 - high order word
0576     */
0577 
0578 #ifdef __LP64__
0579     /*
0580     ** get bits 12:15 of physical address
0581     ** shift bits 16:31 of physical address
0582     ** and deposit them
0583     */
0584     asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
0585     asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
0586     asm volatile ("depd  %1,35,4,%0" : "+r" (pa) : "r" (ci));
0587 #else
0588     pa = 0;
0589 #endif
0590     /*
0591     ** get CPU coherency index bits
0592     ** Grab virtual index [0:11]
0593     ** Deposit virt_idx bits into I/O PDIR word
0594     */
0595     asm volatile ("lci %%r0(%1), %0" : "=r" (ci) : "r" (vba));
0596     asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
0597     asm volatile ("depw  %1,15,12,%0" : "+r" (pa) : "r" (ci));
0598 
0599     ((u32 *)pdir_ptr)[0] = (u32) pa;
0600 
0601 
0602     /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
0603     **        PCX-U/U+ do. (eg C200/C240)
0604     **        PCX-T'? Don't know. (eg C110 or similar K-class)
0605     **
0606     ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
0607     **
0608     ** "Since PCX-U employs an offset hash that is incompatible with
0609     ** the real mode coherence index generation of U2, the PDIR entry
0610     ** must be flushed to memory to retain coherence."
0611     */
0612     asm_io_fdc(pdir_ptr);
0613     asm_io_sync();
0614 }
0615 
0616 /**
0617  * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
0618  * @ioc: The I/O Controller.
0619  * @iovp: The I/O Virtual Page.
0620  * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
0621  *
0622  * Purge invalid I/O PDIR entries from the I/O TLB.
0623  *
0624  * FIXME: Can we change the byte_cnt to pages_mapped?
0625  */
0626 static CCIO_INLINE void
0627 ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
0628 {
0629     u32 chain_size = 1 << ioc->chainid_shift;
0630 
0631     iovp &= IOVP_MASK;  /* clear offset bits, just want pagenum */
0632     byte_cnt += chain_size;
0633 
0634     while(byte_cnt > chain_size) {
0635         WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
0636         iovp += chain_size;
0637         byte_cnt -= chain_size;
0638     }
0639 }
0640 
0641 /**
0642  * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
0643  * @ioc: The I/O Controller.
0644  * @iova: The I/O Virtual Address.
0645  * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
0646  *
0647  * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
0648  * TLB entries.
0649  *
0650  * FIXME: at some threshold it might be "cheaper" to just blow
0651  *        away the entire I/O TLB instead of individual entries.
0652  *
0653  * FIXME: Uturn has 256 TLB entries. We don't need to purge every
0654  *        PDIR entry - just once for each possible TLB entry.
0655  *        (We do need to maker I/O PDIR entries invalid regardless).
0656  *
0657  * FIXME: Can we change byte_cnt to pages_mapped?
0658  */ 
0659 static CCIO_INLINE void
0660 ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
0661 {
0662     u32 iovp = (u32)CCIO_IOVP(iova);
0663     size_t saved_byte_cnt;
0664 
0665     /* round up to nearest page size */
0666     saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
0667 
0668     while(byte_cnt > 0) {
0669         /* invalidate one page at a time */
0670         unsigned int idx = PDIR_INDEX(iovp);
0671         char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
0672 
0673         BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
0674         pdir_ptr[7] = 0;    /* clear only VALID bit */ 
0675         /*
0676         ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
0677         **   PCX-U/U+ do. (eg C200/C240)
0678         ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
0679         */
0680         asm_io_fdc(pdir_ptr);
0681 
0682         iovp     += IOVP_SIZE;
0683         byte_cnt -= IOVP_SIZE;
0684     }
0685 
0686     asm_io_sync();
0687     ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
0688 }
0689 
0690 /****************************************************************
0691 **
0692 **          CCIO dma_ops
0693 **
0694 *****************************************************************/
0695 
0696 /**
0697  * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
0698  * @dev: The PCI device.
0699  * @mask: A bit mask describing the DMA address range of the device.
0700  */
0701 static int 
0702 ccio_dma_supported(struct device *dev, u64 mask)
0703 {
0704     if(dev == NULL) {
0705         printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
0706         BUG();
0707         return 0;
0708     }
0709 
0710     /* only support 32-bit or better devices (ie PCI/GSC) */
0711     return (int)(mask >= 0xffffffffUL);
0712 }
0713 
0714 /**
0715  * ccio_map_single - Map an address range into the IOMMU.
0716  * @dev: The PCI device.
0717  * @addr: The start address of the DMA region.
0718  * @size: The length of the DMA region.
0719  * @direction: The direction of the DMA transaction (to/from device).
0720  *
0721  * This function implements the pci_map_single function.
0722  */
0723 static dma_addr_t 
0724 ccio_map_single(struct device *dev, void *addr, size_t size,
0725         enum dma_data_direction direction)
0726 {
0727     int idx;
0728     struct ioc *ioc;
0729     unsigned long flags;
0730     dma_addr_t iovp;
0731     dma_addr_t offset;
0732     u64 *pdir_start;
0733     unsigned long hint = hint_lookup[(int)direction];
0734 
0735     BUG_ON(!dev);
0736     ioc = GET_IOC(dev);
0737     if (!ioc)
0738         return DMA_MAPPING_ERROR;
0739 
0740     BUG_ON(size <= 0);
0741 
0742     /* save offset bits */
0743     offset = ((unsigned long) addr) & ~IOVP_MASK;
0744 
0745     /* round up to nearest IOVP_SIZE */
0746     size = ALIGN(size + offset, IOVP_SIZE);
0747     spin_lock_irqsave(&ioc->res_lock, flags);
0748 
0749 #ifdef CCIO_COLLECT_STATS
0750     ioc->msingle_calls++;
0751     ioc->msingle_pages += size >> IOVP_SHIFT;
0752 #endif
0753 
0754     idx = ccio_alloc_range(ioc, dev, size);
0755     iovp = (dma_addr_t)MKIOVP(idx);
0756 
0757     pdir_start = &(ioc->pdir_base[idx]);
0758 
0759     DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
0760         __func__, addr, (long)iovp | offset, size);
0761 
0762     /* If not cacheline aligned, force SAFE_DMA on the whole mess */
0763     if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
0764         hint |= HINT_SAFE_DMA;
0765 
0766     while(size > 0) {
0767         ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
0768 
0769         DBG_RUN(" pdir %p %08x%08x\n",
0770             pdir_start,
0771             (u32) (((u32 *) pdir_start)[0]),
0772             (u32) (((u32 *) pdir_start)[1]));
0773         ++pdir_start;
0774         addr += IOVP_SIZE;
0775         size -= IOVP_SIZE;
0776     }
0777 
0778     spin_unlock_irqrestore(&ioc->res_lock, flags);
0779 
0780     /* form complete address */
0781     return CCIO_IOVA(iovp, offset);
0782 }
0783 
0784 
0785 static dma_addr_t
0786 ccio_map_page(struct device *dev, struct page *page, unsigned long offset,
0787         size_t size, enum dma_data_direction direction,
0788         unsigned long attrs)
0789 {
0790     return ccio_map_single(dev, page_address(page) + offset, size,
0791             direction);
0792 }
0793 
0794 
0795 /**
0796  * ccio_unmap_page - Unmap an address range from the IOMMU.
0797  * @dev: The PCI device.
0798  * @addr: The start address of the DMA region.
0799  * @size: The length of the DMA region.
0800  * @direction: The direction of the DMA transaction (to/from device).
0801  */
0802 static void 
0803 ccio_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
0804         enum dma_data_direction direction, unsigned long attrs)
0805 {
0806     struct ioc *ioc;
0807     unsigned long flags; 
0808     dma_addr_t offset = iova & ~IOVP_MASK;
0809     
0810     BUG_ON(!dev);
0811     ioc = GET_IOC(dev);
0812     if (!ioc) {
0813         WARN_ON(!ioc);
0814         return;
0815     }
0816 
0817     DBG_RUN("%s() iovp 0x%lx/%x\n",
0818         __func__, (long)iova, size);
0819 
0820     iova ^= offset;        /* clear offset bits */
0821     size += offset;
0822     size = ALIGN(size, IOVP_SIZE);
0823 
0824     spin_lock_irqsave(&ioc->res_lock, flags);
0825 
0826 #ifdef CCIO_COLLECT_STATS
0827     ioc->usingle_calls++;
0828     ioc->usingle_pages += size >> IOVP_SHIFT;
0829 #endif
0830 
0831     ccio_mark_invalid(ioc, iova, size);
0832     ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
0833     spin_unlock_irqrestore(&ioc->res_lock, flags);
0834 }
0835 
0836 /**
0837  * ccio_alloc - Allocate a consistent DMA mapping.
0838  * @dev: The PCI device.
0839  * @size: The length of the DMA region.
0840  * @dma_handle: The DMA address handed back to the device (not the cpu).
0841  *
0842  * This function implements the pci_alloc_consistent function.
0843  */
0844 static void * 
0845 ccio_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag,
0846         unsigned long attrs)
0847 {
0848     void *ret;
0849 #if 0
0850 /* GRANT Need to establish hierarchy for non-PCI devs as well
0851 ** and then provide matching gsc_map_xxx() functions for them as well.
0852 */
0853     if(!hwdev) {
0854         /* only support PCI */
0855         *dma_handle = 0;
0856         return 0;
0857     }
0858 #endif
0859     ret = (void *) __get_free_pages(flag, get_order(size));
0860 
0861     if (ret) {
0862         memset(ret, 0, size);
0863         *dma_handle = ccio_map_single(dev, ret, size, DMA_BIDIRECTIONAL);
0864     }
0865 
0866     return ret;
0867 }
0868 
0869 /**
0870  * ccio_free - Free a consistent DMA mapping.
0871  * @dev: The PCI device.
0872  * @size: The length of the DMA region.
0873  * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
0874  * @dma_handle: The device address returned from the ccio_alloc_consistent.
0875  *
0876  * This function implements the pci_free_consistent function.
0877  */
0878 static void 
0879 ccio_free(struct device *dev, size_t size, void *cpu_addr,
0880         dma_addr_t dma_handle, unsigned long attrs)
0881 {
0882     ccio_unmap_page(dev, dma_handle, size, 0, 0);
0883     free_pages((unsigned long)cpu_addr, get_order(size));
0884 }
0885 
0886 /*
0887 ** Since 0 is a valid pdir_base index value, can't use that
0888 ** to determine if a value is valid or not. Use a flag to indicate
0889 ** the SG list entry contains a valid pdir index.
0890 */
0891 #define PIDE_FLAG 0x80000000UL
0892 
0893 #ifdef CCIO_COLLECT_STATS
0894 #define IOMMU_MAP_STATS
0895 #endif
0896 #include "iommu-helpers.h"
0897 
0898 /**
0899  * ccio_map_sg - Map the scatter/gather list into the IOMMU.
0900  * @dev: The PCI device.
0901  * @sglist: The scatter/gather list to be mapped in the IOMMU.
0902  * @nents: The number of entries in the scatter/gather list.
0903  * @direction: The direction of the DMA transaction (to/from device).
0904  *
0905  * This function implements the pci_map_sg function.
0906  */
0907 static int
0908 ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents, 
0909         enum dma_data_direction direction, unsigned long attrs)
0910 {
0911     struct ioc *ioc;
0912     int coalesced, filled = 0;
0913     unsigned long flags;
0914     unsigned long hint = hint_lookup[(int)direction];
0915     unsigned long prev_len = 0, current_len = 0;
0916     int i;
0917     
0918     BUG_ON(!dev);
0919     ioc = GET_IOC(dev);
0920     if (!ioc)
0921         return -EINVAL;
0922     
0923     DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
0924 
0925     /* Fast path single entry scatterlists. */
0926     if (nents == 1) {
0927         sg_dma_address(sglist) = ccio_map_single(dev,
0928                 sg_virt(sglist), sglist->length,
0929                 direction);
0930         sg_dma_len(sglist) = sglist->length;
0931         return 1;
0932     }
0933 
0934     for(i = 0; i < nents; i++)
0935         prev_len += sglist[i].length;
0936     
0937     spin_lock_irqsave(&ioc->res_lock, flags);
0938 
0939 #ifdef CCIO_COLLECT_STATS
0940     ioc->msg_calls++;
0941 #endif
0942 
0943     /*
0944     ** First coalesce the chunks and allocate I/O pdir space
0945     **
0946     ** If this is one DMA stream, we can properly map using the
0947     ** correct virtual address associated with each DMA page.
0948     ** w/o this association, we wouldn't have coherent DMA!
0949     ** Access to the virtual address is what forces a two pass algorithm.
0950     */
0951     coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
0952 
0953     /*
0954     ** Program the I/O Pdir
0955     **
0956     ** map the virtual addresses to the I/O Pdir
0957     ** o dma_address will contain the pdir index
0958     ** o dma_len will contain the number of bytes to map 
0959     ** o page/offset contain the virtual address.
0960     */
0961     filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
0962 
0963     spin_unlock_irqrestore(&ioc->res_lock, flags);
0964 
0965     BUG_ON(coalesced != filled);
0966 
0967     DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
0968 
0969     for (i = 0; i < filled; i++)
0970         current_len += sg_dma_len(sglist + i);
0971 
0972     BUG_ON(current_len != prev_len);
0973 
0974     return filled;
0975 }
0976 
0977 /**
0978  * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
0979  * @dev: The PCI device.
0980  * @sglist: The scatter/gather list to be unmapped from the IOMMU.
0981  * @nents: The number of entries in the scatter/gather list.
0982  * @direction: The direction of the DMA transaction (to/from device).
0983  *
0984  * This function implements the pci_unmap_sg function.
0985  */
0986 static void 
0987 ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, 
0988           enum dma_data_direction direction, unsigned long attrs)
0989 {
0990     struct ioc *ioc;
0991 
0992     BUG_ON(!dev);
0993     ioc = GET_IOC(dev);
0994     if (!ioc) {
0995         WARN_ON(!ioc);
0996         return;
0997     }
0998 
0999     DBG_RUN_SG("%s() START %d entries, %p,%x\n",
1000         __func__, nents, sg_virt(sglist), sglist->length);
1001 
1002 #ifdef CCIO_COLLECT_STATS
1003     ioc->usg_calls++;
1004 #endif
1005 
1006     while (nents && sg_dma_len(sglist)) {
1007 
1008 #ifdef CCIO_COLLECT_STATS
1009         ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
1010 #endif
1011         ccio_unmap_page(dev, sg_dma_address(sglist),
1012                   sg_dma_len(sglist), direction, 0);
1013         ++sglist;
1014         nents--;
1015     }
1016 
1017     DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1018 }
1019 
1020 static const struct dma_map_ops ccio_ops = {
1021     .dma_supported =    ccio_dma_supported,
1022     .alloc =        ccio_alloc,
1023     .free =         ccio_free,
1024     .map_page =     ccio_map_page,
1025     .unmap_page =       ccio_unmap_page,
1026     .map_sg =       ccio_map_sg,
1027     .unmap_sg =     ccio_unmap_sg,
1028     .get_sgtable =      dma_common_get_sgtable,
1029     .alloc_pages =      dma_common_alloc_pages,
1030     .free_pages =       dma_common_free_pages,
1031 };
1032 
1033 #ifdef CONFIG_PROC_FS
1034 static int ccio_proc_info(struct seq_file *m, void *p)
1035 {
1036     struct ioc *ioc = ioc_list;
1037 
1038     while (ioc != NULL) {
1039         unsigned int total_pages = ioc->res_size << 3;
1040 #ifdef CCIO_COLLECT_STATS
1041         unsigned long avg = 0, min, max;
1042         int j;
1043 #endif
1044 
1045         seq_printf(m, "%s\n", ioc->name);
1046         
1047         seq_printf(m, "Cujo 2.0 bug    : %s\n",
1048                (ioc->cujo20_bug ? "yes" : "no"));
1049         
1050         seq_printf(m, "IO PDIR size    : %d bytes (%d entries)\n",
1051                total_pages * 8, total_pages);
1052 
1053 #ifdef CCIO_COLLECT_STATS
1054         seq_printf(m, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
1055                total_pages - ioc->used_pages, ioc->used_pages,
1056                (int)(ioc->used_pages * 100 / total_pages));
1057 #endif
1058 
1059         seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1060                ioc->res_size, total_pages);
1061 
1062 #ifdef CCIO_COLLECT_STATS
1063         min = max = ioc->avg_search[0];
1064         for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1065             avg += ioc->avg_search[j];
1066             if(ioc->avg_search[j] > max) 
1067                 max = ioc->avg_search[j];
1068             if(ioc->avg_search[j] < min) 
1069                 min = ioc->avg_search[j];
1070         }
1071         avg /= CCIO_SEARCH_SAMPLE;
1072         seq_printf(m, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1073                min, avg, max);
1074 
1075         seq_printf(m, "pci_map_single(): %8ld calls  %8ld pages (avg %d/1000)\n",
1076                ioc->msingle_calls, ioc->msingle_pages,
1077                (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1078 
1079         /* KLUGE - unmap_sg calls unmap_page for each mapped page */
1080         min = ioc->usingle_calls - ioc->usg_calls;
1081         max = ioc->usingle_pages - ioc->usg_pages;
1082         seq_printf(m, "pci_unmap_single: %8ld calls  %8ld pages (avg %d/1000)\n",
1083                min, max, (int)((max * 1000)/min));
1084 
1085         seq_printf(m, "pci_map_sg()    : %8ld calls  %8ld pages (avg %d/1000)\n",
1086                ioc->msg_calls, ioc->msg_pages,
1087                (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1088 
1089         seq_printf(m, "pci_unmap_sg()  : %8ld calls  %8ld pages (avg %d/1000)\n\n\n",
1090                ioc->usg_calls, ioc->usg_pages,
1091                (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1092 #endif  /* CCIO_COLLECT_STATS */
1093 
1094         ioc = ioc->next;
1095     }
1096 
1097     return 0;
1098 }
1099 
1100 static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1101 {
1102     struct ioc *ioc = ioc_list;
1103 
1104     while (ioc != NULL) {
1105         seq_hex_dump(m, "   ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map,
1106                  ioc->res_size, false);
1107         seq_putc(m, '\n');
1108         ioc = ioc->next;
1109         break; /* XXX - remove me */
1110     }
1111 
1112     return 0;
1113 }
1114 #endif /* CONFIG_PROC_FS */
1115 
1116 /**
1117  * ccio_find_ioc - Find the ioc in the ioc_list
1118  * @hw_path: The hardware path of the ioc.
1119  *
1120  * This function searches the ioc_list for an ioc that matches
1121  * the provide hardware path.
1122  */
1123 static struct ioc * ccio_find_ioc(int hw_path)
1124 {
1125     int i;
1126     struct ioc *ioc;
1127 
1128     ioc = ioc_list;
1129     for (i = 0; i < ioc_count; i++) {
1130         if (ioc->hw_path == hw_path)
1131             return ioc;
1132 
1133         ioc = ioc->next;
1134     }
1135 
1136     return NULL;
1137 }
1138 
1139 /**
1140  * ccio_get_iommu - Find the iommu which controls this device
1141  * @dev: The parisc device.
1142  *
1143  * This function searches through the registered IOMMU's and returns
1144  * the appropriate IOMMU for the device based on its hardware path.
1145  */
1146 void * ccio_get_iommu(const struct parisc_device *dev)
1147 {
1148     dev = find_pa_parent_type(dev, HPHW_IOA);
1149     if (!dev)
1150         return NULL;
1151 
1152     return ccio_find_ioc(dev->hw_path);
1153 }
1154 
1155 #define CUJO_20_STEP       0x10000000   /* inc upper nibble */
1156 
1157 /* Cujo 2.0 has a bug which will silently corrupt data being transferred
1158  * to/from certain pages.  To avoid this happening, we mark these pages
1159  * as `used', and ensure that nothing will try to allocate from them.
1160  */
1161 void __init ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1162 {
1163     unsigned int idx;
1164     struct parisc_device *dev = parisc_parent(cujo);
1165     struct ioc *ioc = ccio_get_iommu(dev);
1166     u8 *res_ptr;
1167 
1168     ioc->cujo20_bug = 1;
1169     res_ptr = ioc->res_map;
1170     idx = PDIR_INDEX(iovp) >> 3;
1171 
1172     while (idx < ioc->res_size) {
1173         res_ptr[idx] |= 0xff;
1174         idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1175     }
1176 }
1177 
1178 #if 0
1179 /* GRANT -  is this needed for U2 or not? */
1180 
1181 /*
1182 ** Get the size of the I/O TLB for this I/O MMU.
1183 **
1184 ** If spa_shift is non-zero (ie probably U2),
1185 ** then calculate the I/O TLB size using spa_shift.
1186 **
1187 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1188 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1189 ** I think only Java (K/D/R-class too?) systems don't do this.
1190 */
1191 static int
1192 ccio_get_iotlb_size(struct parisc_device *dev)
1193 {
1194     if (dev->spa_shift == 0) {
1195         panic("%s() : Can't determine I/O TLB size.\n", __func__);
1196     }
1197     return (1 << dev->spa_shift);
1198 }
1199 #else
1200 
1201 /* Uturn supports 256 TLB entries */
1202 #define CCIO_CHAINID_SHIFT  8
1203 #define CCIO_CHAINID_MASK   0xff
1204 #endif /* 0 */
1205 
1206 /* We *can't* support JAVA (T600). Venture there at your own risk. */
1207 static const struct parisc_device_id ccio_tbl[] __initconst = {
1208     { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1209     { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1210     { 0, }
1211 };
1212 
1213 static int ccio_probe(struct parisc_device *dev);
1214 
1215 static struct parisc_driver ccio_driver __refdata = {
1216     .name =     "ccio",
1217     .id_table = ccio_tbl,
1218     .probe =    ccio_probe,
1219 };
1220 
1221 /**
1222  * ccio_ioc_init - Initialize the I/O Controller
1223  * @ioc: The I/O Controller.
1224  *
1225  * Initialize the I/O Controller which includes setting up the
1226  * I/O Page Directory, the resource map, and initalizing the
1227  * U2/Uturn chip into virtual mode.
1228  */
1229 static void __init
1230 ccio_ioc_init(struct ioc *ioc)
1231 {
1232     int i;
1233     unsigned int iov_order;
1234     u32 iova_space_size;
1235 
1236     /*
1237     ** Determine IOVA Space size from memory size.
1238     **
1239     ** Ideally, PCI drivers would register the maximum number
1240     ** of DMA they can have outstanding for each device they
1241     ** own.  Next best thing would be to guess how much DMA
1242     ** can be outstanding based on PCI Class/sub-class. Both
1243     ** methods still require some "extra" to support PCI
1244     ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1245     */
1246 
1247     iova_space_size = (u32) (totalram_pages() / count_parisc_driver(&ccio_driver));
1248 
1249     /* limit IOVA space size to 1MB-1GB */
1250 
1251     if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1252         iova_space_size =  1 << (20 - PAGE_SHIFT);
1253 #ifdef __LP64__
1254     } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1255         iova_space_size =  1 << (30 - PAGE_SHIFT);
1256 #endif
1257     }
1258 
1259     /*
1260     ** iova space must be log2() in size.
1261     ** thus, pdir/res_map will also be log2().
1262     */
1263 
1264     /* We could use larger page sizes in order to *decrease* the number
1265     ** of mappings needed.  (ie 8k pages means 1/2 the mappings).
1266     **
1267     ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1268     **   since the pages must also be physically contiguous - typically
1269     **   this is the case under linux."
1270     */
1271 
1272     iov_order = get_order(iova_space_size << PAGE_SHIFT);
1273 
1274     /* iova_space_size is now bytes, not pages */
1275     iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1276 
1277     ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1278 
1279     BUG_ON(ioc->pdir_size > 8 * 1024 * 1024);   /* max pdir size <= 8MB */
1280 
1281     /* Verify it's a power of two */
1282     BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1283 
1284     DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1285             __func__, ioc->ioc_regs,
1286             (unsigned long) totalram_pages() >> (20 - PAGE_SHIFT),
1287             iova_space_size>>20,
1288             iov_order + PAGE_SHIFT);
1289 
1290     ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL, 
1291                          get_order(ioc->pdir_size));
1292     if(NULL == ioc->pdir_base) {
1293         panic("%s() could not allocate I/O Page Table\n", __func__);
1294     }
1295     memset(ioc->pdir_base, 0, ioc->pdir_size);
1296 
1297     BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1298     DBG_INIT(" base %p\n", ioc->pdir_base);
1299 
1300     /* resource map size dictated by pdir_size */
1301     ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1302     DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1303     
1304     ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL, 
1305                           get_order(ioc->res_size));
1306     if(NULL == ioc->res_map) {
1307         panic("%s() could not allocate resource map\n", __func__);
1308     }
1309     memset(ioc->res_map, 0, ioc->res_size);
1310 
1311     /* Initialize the res_hint to 16 */
1312     ioc->res_hint = 16;
1313 
1314     /* Initialize the spinlock */
1315     spin_lock_init(&ioc->res_lock);
1316 
1317     /*
1318     ** Chainid is the upper most bits of an IOVP used to determine
1319     ** which TLB entry an IOVP will use.
1320     */
1321     ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1322     DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1323 
1324     /*
1325     ** Initialize IOA hardware
1326     */
1327     WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift, 
1328           &ioc->ioc_regs->io_chain_id_mask);
1329 
1330     WRITE_U32(virt_to_phys(ioc->pdir_base), 
1331           &ioc->ioc_regs->io_pdir_base);
1332 
1333     /*
1334     ** Go to "Virtual Mode"
1335     */
1336     WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1337 
1338     /*
1339     ** Initialize all I/O TLB entries to 0 (Valid bit off).
1340     */
1341     WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1342     WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1343 
1344     for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1345         WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1346               &ioc->ioc_regs->io_command);
1347     }
1348 }
1349 
1350 static void __init
1351 ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1352 {
1353     int result;
1354 
1355     res->parent = NULL;
1356     res->flags = IORESOURCE_MEM;
1357     /*
1358      * bracing ((signed) ...) are required for 64bit kernel because
1359      * we only want to sign extend the lower 16 bits of the register.
1360      * The upper 16-bits of range registers are hardcoded to 0xffff.
1361      */
1362     res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1363     res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1364     res->name = name;
1365     /*
1366      * Check if this MMIO range is disable
1367      */
1368     if (res->end + 1 == res->start)
1369         return;
1370 
1371     /* On some platforms (e.g. K-Class), we have already registered
1372      * resources for devices reported by firmware. Some are children
1373      * of ccio.
1374      * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1375      */
1376     result = insert_resource(&iomem_resource, res);
1377     if (result < 0) {
1378         printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n", 
1379             __func__, (unsigned long)res->start, (unsigned long)res->end);
1380     }
1381 }
1382 
1383 static int __init ccio_init_resources(struct ioc *ioc)
1384 {
1385     struct resource *res = ioc->mmio_region;
1386     char *name = kmalloc(14, GFP_KERNEL);
1387     if (unlikely(!name))
1388         return -ENOMEM;
1389     snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1390 
1391     ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1392     ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1393     return 0;
1394 }
1395 
1396 static int new_ioc_area(struct resource *res, unsigned long size,
1397         unsigned long min, unsigned long max, unsigned long align)
1398 {
1399     if (max <= min)
1400         return -EBUSY;
1401 
1402     res->start = (max - size + 1) &~ (align - 1);
1403     res->end = res->start + size;
1404     
1405     /* We might be trying to expand the MMIO range to include
1406      * a child device that has already registered it's MMIO space.
1407      * Use "insert" instead of request_resource().
1408      */
1409     if (!insert_resource(&iomem_resource, res))
1410         return 0;
1411 
1412     return new_ioc_area(res, size, min, max - size, align);
1413 }
1414 
1415 static int expand_ioc_area(struct resource *res, unsigned long size,
1416         unsigned long min, unsigned long max, unsigned long align)
1417 {
1418     unsigned long start, len;
1419 
1420     if (!res->parent)
1421         return new_ioc_area(res, size, min, max, align);
1422 
1423     start = (res->start - size) &~ (align - 1);
1424     len = res->end - start + 1;
1425     if (start >= min) {
1426         if (!adjust_resource(res, start, len))
1427             return 0;
1428     }
1429 
1430     start = res->start;
1431     len = ((size + res->end + align) &~ (align - 1)) - start;
1432     if (start + len <= max) {
1433         if (!adjust_resource(res, start, len))
1434             return 0;
1435     }
1436 
1437     return -EBUSY;
1438 }
1439 
1440 /*
1441  * Dino calls this function.  Beware that we may get called on systems
1442  * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1443  * So it's legal to find no parent IOC.
1444  *
1445  * Some other issues: one of the resources in the ioc may be unassigned.
1446  */
1447 int ccio_allocate_resource(const struct parisc_device *dev,
1448         struct resource *res, unsigned long size,
1449         unsigned long min, unsigned long max, unsigned long align)
1450 {
1451     struct resource *parent = &iomem_resource;
1452     struct ioc *ioc = ccio_get_iommu(dev);
1453     if (!ioc)
1454         goto out;
1455 
1456     parent = ioc->mmio_region;
1457     if (parent->parent &&
1458         !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1459         return 0;
1460 
1461     if ((parent + 1)->parent &&
1462         !allocate_resource(parent + 1, res, size, min, max, align,
1463                 NULL, NULL))
1464         return 0;
1465 
1466     if (!expand_ioc_area(parent, size, min, max, align)) {
1467         __raw_writel(((parent->start)>>16) | 0xffff0000,
1468                  &ioc->ioc_regs->io_io_low);
1469         __raw_writel(((parent->end)>>16) | 0xffff0000,
1470                  &ioc->ioc_regs->io_io_high);
1471     } else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1472         parent++;
1473         __raw_writel(((parent->start)>>16) | 0xffff0000,
1474                  &ioc->ioc_regs->io_io_low_hv);
1475         __raw_writel(((parent->end)>>16) | 0xffff0000,
1476                  &ioc->ioc_regs->io_io_high_hv);
1477     } else {
1478         return -EBUSY;
1479     }
1480 
1481  out:
1482     return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1483 }
1484 
1485 int ccio_request_resource(const struct parisc_device *dev,
1486         struct resource *res)
1487 {
1488     struct resource *parent;
1489     struct ioc *ioc = ccio_get_iommu(dev);
1490 
1491     if (!ioc) {
1492         parent = &iomem_resource;
1493     } else if ((ioc->mmio_region->start <= res->start) &&
1494             (res->end <= ioc->mmio_region->end)) {
1495         parent = ioc->mmio_region;
1496     } else if (((ioc->mmio_region + 1)->start <= res->start) &&
1497             (res->end <= (ioc->mmio_region + 1)->end)) {
1498         parent = ioc->mmio_region + 1;
1499     } else {
1500         return -EBUSY;
1501     }
1502 
1503     /* "transparent" bus bridges need to register MMIO resources
1504      * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1505      * registered their resources in the PDC "bus walk" (See
1506      * arch/parisc/kernel/inventory.c).
1507      */
1508     return insert_resource(parent, res);
1509 }
1510 
1511 /**
1512  * ccio_probe - Determine if ccio should claim this device.
1513  * @dev: The device which has been found
1514  *
1515  * Determine if ccio should claim this chip (return 0) or not (return 1).
1516  * If so, initialize the chip and tell other partners in crime they
1517  * have work to do.
1518  */
1519 static int __init ccio_probe(struct parisc_device *dev)
1520 {
1521     int i;
1522     struct ioc *ioc, **ioc_p = &ioc_list;
1523     struct pci_hba_data *hba;
1524 
1525     ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1526     if (ioc == NULL) {
1527         printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1528         return -ENOMEM;
1529     }
1530 
1531     ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1532 
1533     printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1534         (unsigned long)dev->hpa.start);
1535 
1536     for (i = 0; i < ioc_count; i++) {
1537         ioc_p = &(*ioc_p)->next;
1538     }
1539     *ioc_p = ioc;
1540 
1541     ioc->hw_path = dev->hw_path;
1542     ioc->ioc_regs = ioremap(dev->hpa.start, 4096);
1543     if (!ioc->ioc_regs) {
1544         kfree(ioc);
1545         return -ENOMEM;
1546     }
1547     ccio_ioc_init(ioc);
1548     if (ccio_init_resources(ioc)) {
1549         iounmap(ioc->ioc_regs);
1550         kfree(ioc);
1551         return -ENOMEM;
1552     }
1553     hppa_dma_ops = &ccio_ops;
1554 
1555     hba = kzalloc(sizeof(*hba), GFP_KERNEL);
1556     /* if this fails, no I/O cards will work, so may as well bug */
1557     BUG_ON(hba == NULL);
1558 
1559     hba->iommu = ioc;
1560     dev->dev.platform_data = hba;
1561 
1562 #ifdef CONFIG_PROC_FS
1563     if (ioc_count == 0) {
1564         proc_create_single(MODULE_NAME, 0, proc_runway_root,
1565                 ccio_proc_info);
1566         proc_create_single(MODULE_NAME"-bitmap", 0, proc_runway_root,
1567                 ccio_proc_bitmap_info);
1568     }
1569 #endif
1570     ioc_count++;
1571     return 0;
1572 }
1573 
1574 /**
1575  * ccio_init - ccio initialization procedure.
1576  *
1577  * Register this driver.
1578  */
1579 void __init ccio_init(void)
1580 {
1581     register_parisc_driver(&ccio_driver);
1582 }
1583