Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Generic OPP OF helpers
0004  *
0005  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
0006  *  Nishanth Menon
0007  *  Romit Dasgupta
0008  *  Kevin Hilman
0009  */
0010 
0011 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0012 
0013 #include <linux/cpu.h>
0014 #include <linux/errno.h>
0015 #include <linux/device.h>
0016 #include <linux/of_device.h>
0017 #include <linux/pm_domain.h>
0018 #include <linux/slab.h>
0019 #include <linux/export.h>
0020 #include <linux/energy_model.h>
0021 
0022 #include "opp.h"
0023 
0024 /*
0025  * Returns opp descriptor node for a device node, caller must
0026  * do of_node_put().
0027  */
0028 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
0029                              int index)
0030 {
0031     /* "operating-points-v2" can be an array for power domain providers */
0032     return of_parse_phandle(np, "operating-points-v2", index);
0033 }
0034 
0035 /* Returns opp descriptor node for a device, caller must do of_node_put() */
0036 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
0037 {
0038     return _opp_of_get_opp_desc_node(dev->of_node, 0);
0039 }
0040 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
0041 
0042 struct opp_table *_managed_opp(struct device *dev, int index)
0043 {
0044     struct opp_table *opp_table, *managed_table = NULL;
0045     struct device_node *np;
0046 
0047     np = _opp_of_get_opp_desc_node(dev->of_node, index);
0048     if (!np)
0049         return NULL;
0050 
0051     list_for_each_entry(opp_table, &opp_tables, node) {
0052         if (opp_table->np == np) {
0053             /*
0054              * Multiple devices can point to the same OPP table and
0055              * so will have same node-pointer, np.
0056              *
0057              * But the OPPs will be considered as shared only if the
0058              * OPP table contains a "opp-shared" property.
0059              */
0060             if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
0061                 _get_opp_table_kref(opp_table);
0062                 managed_table = opp_table;
0063             }
0064 
0065             break;
0066         }
0067     }
0068 
0069     of_node_put(np);
0070 
0071     return managed_table;
0072 }
0073 
0074 /* The caller must call dev_pm_opp_put() after the OPP is used */
0075 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
0076                       struct device_node *opp_np)
0077 {
0078     struct dev_pm_opp *opp;
0079 
0080     mutex_lock(&opp_table->lock);
0081 
0082     list_for_each_entry(opp, &opp_table->opp_list, node) {
0083         if (opp->np == opp_np) {
0084             dev_pm_opp_get(opp);
0085             mutex_unlock(&opp_table->lock);
0086             return opp;
0087         }
0088     }
0089 
0090     mutex_unlock(&opp_table->lock);
0091 
0092     return NULL;
0093 }
0094 
0095 static struct device_node *of_parse_required_opp(struct device_node *np,
0096                          int index)
0097 {
0098     return of_parse_phandle(np, "required-opps", index);
0099 }
0100 
0101 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */
0102 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
0103 {
0104     struct opp_table *opp_table;
0105     struct device_node *opp_table_np;
0106 
0107     opp_table_np = of_get_parent(opp_np);
0108     if (!opp_table_np)
0109         goto err;
0110 
0111     /* It is safe to put the node now as all we need now is its address */
0112     of_node_put(opp_table_np);
0113 
0114     mutex_lock(&opp_table_lock);
0115     list_for_each_entry(opp_table, &opp_tables, node) {
0116         if (opp_table_np == opp_table->np) {
0117             _get_opp_table_kref(opp_table);
0118             mutex_unlock(&opp_table_lock);
0119             return opp_table;
0120         }
0121     }
0122     mutex_unlock(&opp_table_lock);
0123 
0124 err:
0125     return ERR_PTR(-ENODEV);
0126 }
0127 
0128 /* Free resources previously acquired by _opp_table_alloc_required_tables() */
0129 static void _opp_table_free_required_tables(struct opp_table *opp_table)
0130 {
0131     struct opp_table **required_opp_tables = opp_table->required_opp_tables;
0132     int i;
0133 
0134     if (!required_opp_tables)
0135         return;
0136 
0137     for (i = 0; i < opp_table->required_opp_count; i++) {
0138         if (IS_ERR_OR_NULL(required_opp_tables[i]))
0139             continue;
0140 
0141         dev_pm_opp_put_opp_table(required_opp_tables[i]);
0142     }
0143 
0144     kfree(required_opp_tables);
0145 
0146     opp_table->required_opp_count = 0;
0147     opp_table->required_opp_tables = NULL;
0148     list_del(&opp_table->lazy);
0149 }
0150 
0151 /*
0152  * Populate all devices and opp tables which are part of "required-opps" list.
0153  * Checking only the first OPP node should be enough.
0154  */
0155 static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
0156                          struct device *dev,
0157                          struct device_node *opp_np)
0158 {
0159     struct opp_table **required_opp_tables;
0160     struct device_node *required_np, *np;
0161     bool lazy = false;
0162     int count, i;
0163 
0164     /* Traversing the first OPP node is all we need */
0165     np = of_get_next_available_child(opp_np, NULL);
0166     if (!np) {
0167         dev_warn(dev, "Empty OPP table\n");
0168 
0169         return;
0170     }
0171 
0172     count = of_count_phandle_with_args(np, "required-opps", NULL);
0173     if (count <= 0)
0174         goto put_np;
0175 
0176     required_opp_tables = kcalloc(count, sizeof(*required_opp_tables),
0177                       GFP_KERNEL);
0178     if (!required_opp_tables)
0179         goto put_np;
0180 
0181     opp_table->required_opp_tables = required_opp_tables;
0182     opp_table->required_opp_count = count;
0183 
0184     for (i = 0; i < count; i++) {
0185         required_np = of_parse_required_opp(np, i);
0186         if (!required_np)
0187             goto free_required_tables;
0188 
0189         required_opp_tables[i] = _find_table_of_opp_np(required_np);
0190         of_node_put(required_np);
0191 
0192         if (IS_ERR(required_opp_tables[i]))
0193             lazy = true;
0194     }
0195 
0196     /* Let's do the linking later on */
0197     if (lazy)
0198         list_add(&opp_table->lazy, &lazy_opp_tables);
0199 
0200     goto put_np;
0201 
0202 free_required_tables:
0203     _opp_table_free_required_tables(opp_table);
0204 put_np:
0205     of_node_put(np);
0206 }
0207 
0208 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
0209             int index)
0210 {
0211     struct device_node *np, *opp_np;
0212     u32 val;
0213 
0214     /*
0215      * Only required for backward compatibility with v1 bindings, but isn't
0216      * harmful for other cases. And so we do it unconditionally.
0217      */
0218     np = of_node_get(dev->of_node);
0219     if (!np)
0220         return;
0221 
0222     if (!of_property_read_u32(np, "clock-latency", &val))
0223         opp_table->clock_latency_ns_max = val;
0224     of_property_read_u32(np, "voltage-tolerance",
0225                  &opp_table->voltage_tolerance_v1);
0226 
0227     if (of_find_property(np, "#power-domain-cells", NULL))
0228         opp_table->is_genpd = true;
0229 
0230     /* Get OPP table node */
0231     opp_np = _opp_of_get_opp_desc_node(np, index);
0232     of_node_put(np);
0233 
0234     if (!opp_np)
0235         return;
0236 
0237     if (of_property_read_bool(opp_np, "opp-shared"))
0238         opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
0239     else
0240         opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
0241 
0242     opp_table->np = opp_np;
0243 
0244     _opp_table_alloc_required_tables(opp_table, dev, opp_np);
0245 }
0246 
0247 void _of_clear_opp_table(struct opp_table *opp_table)
0248 {
0249     _opp_table_free_required_tables(opp_table);
0250     of_node_put(opp_table->np);
0251 }
0252 
0253 /*
0254  * Release all resources previously acquired with a call to
0255  * _of_opp_alloc_required_opps().
0256  */
0257 static void _of_opp_free_required_opps(struct opp_table *opp_table,
0258                        struct dev_pm_opp *opp)
0259 {
0260     struct dev_pm_opp **required_opps = opp->required_opps;
0261     int i;
0262 
0263     if (!required_opps)
0264         return;
0265 
0266     for (i = 0; i < opp_table->required_opp_count; i++) {
0267         if (!required_opps[i])
0268             continue;
0269 
0270         /* Put the reference back */
0271         dev_pm_opp_put(required_opps[i]);
0272     }
0273 
0274     opp->required_opps = NULL;
0275     kfree(required_opps);
0276 }
0277 
0278 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
0279 {
0280     _of_opp_free_required_opps(opp_table, opp);
0281     of_node_put(opp->np);
0282 }
0283 
0284 /* Populate all required OPPs which are part of "required-opps" list */
0285 static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
0286                        struct dev_pm_opp *opp)
0287 {
0288     struct dev_pm_opp **required_opps;
0289     struct opp_table *required_table;
0290     struct device_node *np;
0291     int i, ret, count = opp_table->required_opp_count;
0292 
0293     if (!count)
0294         return 0;
0295 
0296     required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL);
0297     if (!required_opps)
0298         return -ENOMEM;
0299 
0300     opp->required_opps = required_opps;
0301 
0302     for (i = 0; i < count; i++) {
0303         required_table = opp_table->required_opp_tables[i];
0304 
0305         /* Required table not added yet, we will link later */
0306         if (IS_ERR_OR_NULL(required_table))
0307             continue;
0308 
0309         np = of_parse_required_opp(opp->np, i);
0310         if (unlikely(!np)) {
0311             ret = -ENODEV;
0312             goto free_required_opps;
0313         }
0314 
0315         required_opps[i] = _find_opp_of_np(required_table, np);
0316         of_node_put(np);
0317 
0318         if (!required_opps[i]) {
0319             pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
0320                    __func__, opp->np, i);
0321             ret = -ENODEV;
0322             goto free_required_opps;
0323         }
0324     }
0325 
0326     return 0;
0327 
0328 free_required_opps:
0329     _of_opp_free_required_opps(opp_table, opp);
0330 
0331     return ret;
0332 }
0333 
0334 /* Link required OPPs for an individual OPP */
0335 static int lazy_link_required_opps(struct opp_table *opp_table,
0336                    struct opp_table *new_table, int index)
0337 {
0338     struct device_node *required_np;
0339     struct dev_pm_opp *opp;
0340 
0341     list_for_each_entry(opp, &opp_table->opp_list, node) {
0342         required_np = of_parse_required_opp(opp->np, index);
0343         if (unlikely(!required_np))
0344             return -ENODEV;
0345 
0346         opp->required_opps[index] = _find_opp_of_np(new_table, required_np);
0347         of_node_put(required_np);
0348 
0349         if (!opp->required_opps[index]) {
0350             pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
0351                    __func__, opp->np, index);
0352             return -ENODEV;
0353         }
0354     }
0355 
0356     return 0;
0357 }
0358 
0359 /* Link required OPPs for all OPPs of the newly added OPP table */
0360 static void lazy_link_required_opp_table(struct opp_table *new_table)
0361 {
0362     struct opp_table *opp_table, *temp, **required_opp_tables;
0363     struct device_node *required_np, *opp_np, *required_table_np;
0364     struct dev_pm_opp *opp;
0365     int i, ret;
0366 
0367     mutex_lock(&opp_table_lock);
0368 
0369     list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
0370         bool lazy = false;
0371 
0372         /* opp_np can't be invalid here */
0373         opp_np = of_get_next_available_child(opp_table->np, NULL);
0374 
0375         for (i = 0; i < opp_table->required_opp_count; i++) {
0376             required_opp_tables = opp_table->required_opp_tables;
0377 
0378             /* Required opp-table is already parsed */
0379             if (!IS_ERR(required_opp_tables[i]))
0380                 continue;
0381 
0382             /* required_np can't be invalid here */
0383             required_np = of_parse_required_opp(opp_np, i);
0384             required_table_np = of_get_parent(required_np);
0385 
0386             of_node_put(required_table_np);
0387             of_node_put(required_np);
0388 
0389             /*
0390              * Newly added table isn't the required opp-table for
0391              * opp_table.
0392              */
0393             if (required_table_np != new_table->np) {
0394                 lazy = true;
0395                 continue;
0396             }
0397 
0398             required_opp_tables[i] = new_table;
0399             _get_opp_table_kref(new_table);
0400 
0401             /* Link OPPs now */
0402             ret = lazy_link_required_opps(opp_table, new_table, i);
0403             if (ret) {
0404                 /* The OPPs will be marked unusable */
0405                 lazy = false;
0406                 break;
0407             }
0408         }
0409 
0410         of_node_put(opp_np);
0411 
0412         /* All required opp-tables found, remove from lazy list */
0413         if (!lazy) {
0414             list_del_init(&opp_table->lazy);
0415 
0416             list_for_each_entry(opp, &opp_table->opp_list, node)
0417                 _required_opps_available(opp, opp_table->required_opp_count);
0418         }
0419     }
0420 
0421     mutex_unlock(&opp_table_lock);
0422 }
0423 
0424 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
0425 {
0426     struct device_node *np, *opp_np;
0427     struct property *prop;
0428 
0429     if (!opp_table) {
0430         np = of_node_get(dev->of_node);
0431         if (!np)
0432             return -ENODEV;
0433 
0434         opp_np = _opp_of_get_opp_desc_node(np, 0);
0435         of_node_put(np);
0436     } else {
0437         opp_np = of_node_get(opp_table->np);
0438     }
0439 
0440     /* Lets not fail in case we are parsing opp-v1 bindings */
0441     if (!opp_np)
0442         return 0;
0443 
0444     /* Checking only first OPP is sufficient */
0445     np = of_get_next_available_child(opp_np, NULL);
0446     of_node_put(opp_np);
0447     if (!np) {
0448         dev_err(dev, "OPP table empty\n");
0449         return -EINVAL;
0450     }
0451 
0452     prop = of_find_property(np, "opp-peak-kBps", NULL);
0453     of_node_put(np);
0454 
0455     if (!prop || !prop->length)
0456         return 0;
0457 
0458     return 1;
0459 }
0460 
0461 int dev_pm_opp_of_find_icc_paths(struct device *dev,
0462                  struct opp_table *opp_table)
0463 {
0464     struct device_node *np;
0465     int ret, i, count, num_paths;
0466     struct icc_path **paths;
0467 
0468     ret = _bandwidth_supported(dev, opp_table);
0469     if (ret == -EINVAL)
0470         return 0; /* Empty OPP table is a valid corner-case, let's not fail */
0471     else if (ret <= 0)
0472         return ret;
0473 
0474     ret = 0;
0475 
0476     np = of_node_get(dev->of_node);
0477     if (!np)
0478         return 0;
0479 
0480     count = of_count_phandle_with_args(np, "interconnects",
0481                        "#interconnect-cells");
0482     of_node_put(np);
0483     if (count < 0)
0484         return 0;
0485 
0486     /* two phandles when #interconnect-cells = <1> */
0487     if (count % 2) {
0488         dev_err(dev, "%s: Invalid interconnects values\n", __func__);
0489         return -EINVAL;
0490     }
0491 
0492     num_paths = count / 2;
0493     paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
0494     if (!paths)
0495         return -ENOMEM;
0496 
0497     for (i = 0; i < num_paths; i++) {
0498         paths[i] = of_icc_get_by_index(dev, i);
0499         if (IS_ERR(paths[i])) {
0500             ret = PTR_ERR(paths[i]);
0501             if (ret != -EPROBE_DEFER) {
0502                 dev_err(dev, "%s: Unable to get path%d: %d\n",
0503                     __func__, i, ret);
0504             }
0505             goto err;
0506         }
0507     }
0508 
0509     if (opp_table) {
0510         opp_table->paths = paths;
0511         opp_table->path_count = num_paths;
0512         return 0;
0513     }
0514 
0515 err:
0516     while (i--)
0517         icc_put(paths[i]);
0518 
0519     kfree(paths);
0520 
0521     return ret;
0522 }
0523 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
0524 
0525 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
0526                   struct device_node *np)
0527 {
0528     unsigned int levels = opp_table->supported_hw_count;
0529     int count, versions, ret, i, j;
0530     u32 val;
0531 
0532     if (!opp_table->supported_hw) {
0533         /*
0534          * In the case that no supported_hw has been set by the
0535          * platform but there is an opp-supported-hw value set for
0536          * an OPP then the OPP should not be enabled as there is
0537          * no way to see if the hardware supports it.
0538          */
0539         if (of_find_property(np, "opp-supported-hw", NULL))
0540             return false;
0541         else
0542             return true;
0543     }
0544 
0545     count = of_property_count_u32_elems(np, "opp-supported-hw");
0546     if (count <= 0 || count % levels) {
0547         dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
0548             __func__, count);
0549         return false;
0550     }
0551 
0552     versions = count / levels;
0553 
0554     /* All levels in at least one of the versions should match */
0555     for (i = 0; i < versions; i++) {
0556         bool supported = true;
0557 
0558         for (j = 0; j < levels; j++) {
0559             ret = of_property_read_u32_index(np, "opp-supported-hw",
0560                              i * levels + j, &val);
0561             if (ret) {
0562                 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
0563                      __func__, i * levels + j, ret);
0564                 return false;
0565             }
0566 
0567             /* Check if the level is supported */
0568             if (!(val & opp_table->supported_hw[j])) {
0569                 supported = false;
0570                 break;
0571             }
0572         }
0573 
0574         if (supported)
0575             return true;
0576     }
0577 
0578     return false;
0579 }
0580 
0581 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
0582                   struct opp_table *opp_table)
0583 {
0584     u32 *microvolt, *microamp = NULL, *microwatt = NULL;
0585     int supplies = opp_table->regulator_count;
0586     int vcount, icount, pcount, ret, i, j;
0587     struct property *prop = NULL;
0588     char name[NAME_MAX];
0589 
0590     /* Search for "opp-microvolt-<name>" */
0591     if (opp_table->prop_name) {
0592         snprintf(name, sizeof(name), "opp-microvolt-%s",
0593              opp_table->prop_name);
0594         prop = of_find_property(opp->np, name, NULL);
0595     }
0596 
0597     if (!prop) {
0598         /* Search for "opp-microvolt" */
0599         sprintf(name, "opp-microvolt");
0600         prop = of_find_property(opp->np, name, NULL);
0601 
0602         /* Missing property isn't a problem, but an invalid entry is */
0603         if (!prop) {
0604             if (unlikely(supplies == -1)) {
0605                 /* Initialize regulator_count */
0606                 opp_table->regulator_count = 0;
0607                 return 0;
0608             }
0609 
0610             if (!supplies)
0611                 return 0;
0612 
0613             dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
0614                 __func__);
0615             return -EINVAL;
0616         }
0617     }
0618 
0619     if (unlikely(supplies == -1)) {
0620         /* Initialize regulator_count */
0621         supplies = opp_table->regulator_count = 1;
0622     } else if (unlikely(!supplies)) {
0623         dev_err(dev, "%s: opp-microvolt wasn't expected\n", __func__);
0624         return -EINVAL;
0625     }
0626 
0627     vcount = of_property_count_u32_elems(opp->np, name);
0628     if (vcount < 0) {
0629         dev_err(dev, "%s: Invalid %s property (%d)\n",
0630             __func__, name, vcount);
0631         return vcount;
0632     }
0633 
0634     /* There can be one or three elements per supply */
0635     if (vcount != supplies && vcount != supplies * 3) {
0636         dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
0637             __func__, name, vcount, supplies);
0638         return -EINVAL;
0639     }
0640 
0641     microvolt = kmalloc_array(vcount, sizeof(*microvolt), GFP_KERNEL);
0642     if (!microvolt)
0643         return -ENOMEM;
0644 
0645     ret = of_property_read_u32_array(opp->np, name, microvolt, vcount);
0646     if (ret) {
0647         dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
0648         ret = -EINVAL;
0649         goto free_microvolt;
0650     }
0651 
0652     /* Search for "opp-microamp-<name>" */
0653     prop = NULL;
0654     if (opp_table->prop_name) {
0655         snprintf(name, sizeof(name), "opp-microamp-%s",
0656              opp_table->prop_name);
0657         prop = of_find_property(opp->np, name, NULL);
0658     }
0659 
0660     if (!prop) {
0661         /* Search for "opp-microamp" */
0662         sprintf(name, "opp-microamp");
0663         prop = of_find_property(opp->np, name, NULL);
0664     }
0665 
0666     if (prop) {
0667         icount = of_property_count_u32_elems(opp->np, name);
0668         if (icount < 0) {
0669             dev_err(dev, "%s: Invalid %s property (%d)\n", __func__,
0670                 name, icount);
0671             ret = icount;
0672             goto free_microvolt;
0673         }
0674 
0675         if (icount != supplies) {
0676             dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
0677                 __func__, name, icount, supplies);
0678             ret = -EINVAL;
0679             goto free_microvolt;
0680         }
0681 
0682         microamp = kmalloc_array(icount, sizeof(*microamp), GFP_KERNEL);
0683         if (!microamp) {
0684             ret = -EINVAL;
0685             goto free_microvolt;
0686         }
0687 
0688         ret = of_property_read_u32_array(opp->np, name, microamp,
0689                          icount);
0690         if (ret) {
0691             dev_err(dev, "%s: error parsing %s: %d\n", __func__,
0692                 name, ret);
0693             ret = -EINVAL;
0694             goto free_microamp;
0695         }
0696     }
0697 
0698     /* Search for "opp-microwatt" */
0699     sprintf(name, "opp-microwatt");
0700     prop = of_find_property(opp->np, name, NULL);
0701 
0702     if (prop) {
0703         pcount = of_property_count_u32_elems(opp->np, name);
0704         if (pcount < 0) {
0705             dev_err(dev, "%s: Invalid %s property (%d)\n", __func__,
0706                 name, pcount);
0707             ret = pcount;
0708             goto free_microamp;
0709         }
0710 
0711         if (pcount != supplies) {
0712             dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
0713                 __func__, name, pcount, supplies);
0714             ret = -EINVAL;
0715             goto free_microamp;
0716         }
0717 
0718         microwatt = kmalloc_array(pcount, sizeof(*microwatt),
0719                       GFP_KERNEL);
0720         if (!microwatt) {
0721             ret = -EINVAL;
0722             goto free_microamp;
0723         }
0724 
0725         ret = of_property_read_u32_array(opp->np, name, microwatt,
0726                          pcount);
0727         if (ret) {
0728             dev_err(dev, "%s: error parsing %s: %d\n", __func__,
0729                 name, ret);
0730             ret = -EINVAL;
0731             goto free_microwatt;
0732         }
0733     }
0734 
0735     for (i = 0, j = 0; i < supplies; i++) {
0736         opp->supplies[i].u_volt = microvolt[j++];
0737 
0738         if (vcount == supplies) {
0739             opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
0740             opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
0741         } else {
0742             opp->supplies[i].u_volt_min = microvolt[j++];
0743             opp->supplies[i].u_volt_max = microvolt[j++];
0744         }
0745 
0746         if (microamp)
0747             opp->supplies[i].u_amp = microamp[i];
0748 
0749         if (microwatt)
0750             opp->supplies[i].u_watt = microwatt[i];
0751     }
0752 
0753 free_microwatt:
0754     kfree(microwatt);
0755 free_microamp:
0756     kfree(microamp);
0757 free_microvolt:
0758     kfree(microvolt);
0759 
0760     return ret;
0761 }
0762 
0763 /**
0764  * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
0765  *                entries
0766  * @dev:    device pointer used to lookup OPP table.
0767  *
0768  * Free OPPs created using static entries present in DT.
0769  */
0770 void dev_pm_opp_of_remove_table(struct device *dev)
0771 {
0772     dev_pm_opp_remove_table(dev);
0773 }
0774 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
0775 
0776 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
0777               struct device_node *np)
0778 {
0779     struct property *prop;
0780     int i, count, ret;
0781     u64 *rates;
0782 
0783     prop = of_find_property(np, "opp-hz", NULL);
0784     if (!prop)
0785         return -ENODEV;
0786 
0787     count = prop->length / sizeof(u64);
0788     if (opp_table->clk_count != count) {
0789         pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
0790                __func__, count, opp_table->clk_count);
0791         return -EINVAL;
0792     }
0793 
0794     rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
0795     if (!rates)
0796         return -ENOMEM;
0797 
0798     ret = of_property_read_u64_array(np, "opp-hz", rates, count);
0799     if (ret) {
0800         pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
0801     } else {
0802         /*
0803          * Rate is defined as an unsigned long in clk API, and so
0804          * casting explicitly to its type. Must be fixed once rate is 64
0805          * bit guaranteed in clk API.
0806          */
0807         for (i = 0; i < count; i++) {
0808             new_opp->rates[i] = (unsigned long)rates[i];
0809 
0810             /* This will happen for frequencies > 4.29 GHz */
0811             WARN_ON(new_opp->rates[i] != rates[i]);
0812         }
0813     }
0814 
0815     kfree(rates);
0816 
0817     return ret;
0818 }
0819 
0820 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
0821             struct device_node *np, bool peak)
0822 {
0823     const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
0824     struct property *prop;
0825     int i, count, ret;
0826     u32 *bw;
0827 
0828     prop = of_find_property(np, name, NULL);
0829     if (!prop)
0830         return -ENODEV;
0831 
0832     count = prop->length / sizeof(u32);
0833     if (opp_table->path_count != count) {
0834         pr_err("%s: Mismatch between %s and paths (%d %d)\n",
0835                 __func__, name, count, opp_table->path_count);
0836         return -EINVAL;
0837     }
0838 
0839     bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
0840     if (!bw)
0841         return -ENOMEM;
0842 
0843     ret = of_property_read_u32_array(np, name, bw, count);
0844     if (ret) {
0845         pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
0846         goto out;
0847     }
0848 
0849     for (i = 0; i < count; i++) {
0850         if (peak)
0851             new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
0852         else
0853             new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
0854     }
0855 
0856 out:
0857     kfree(bw);
0858     return ret;
0859 }
0860 
0861 static int _read_opp_key(struct dev_pm_opp *new_opp,
0862              struct opp_table *opp_table, struct device_node *np)
0863 {
0864     bool found = false;
0865     int ret;
0866 
0867     ret = _read_rate(new_opp, opp_table, np);
0868     if (!ret)
0869         found = true;
0870     else if (ret != -ENODEV)
0871         return ret;
0872 
0873     /*
0874      * Bandwidth consists of peak and average (optional) values:
0875      * opp-peak-kBps = <path1_value path2_value>;
0876      * opp-avg-kBps = <path1_value path2_value>;
0877      */
0878     ret = _read_bw(new_opp, opp_table, np, true);
0879     if (!ret) {
0880         found = true;
0881         ret = _read_bw(new_opp, opp_table, np, false);
0882     }
0883 
0884     /* The properties were found but we failed to parse them */
0885     if (ret && ret != -ENODEV)
0886         return ret;
0887 
0888     if (!of_property_read_u32(np, "opp-level", &new_opp->level))
0889         found = true;
0890 
0891     if (found)
0892         return 0;
0893 
0894     return ret;
0895 }
0896 
0897 /**
0898  * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
0899  * @opp_table:  OPP table
0900  * @dev:    device for which we do this operation
0901  * @np:     device node
0902  *
0903  * This function adds an opp definition to the opp table and returns status. The
0904  * opp can be controlled using dev_pm_opp_enable/disable functions and may be
0905  * removed by dev_pm_opp_remove.
0906  *
0907  * Return:
0908  * Valid OPP pointer:
0909  *      On success
0910  * NULL:
0911  *      Duplicate OPPs (both freq and volt are same) and opp->available
0912  *      OR if the OPP is not supported by hardware.
0913  * ERR_PTR(-EEXIST):
0914  *      Freq are same and volt are different OR
0915  *      Duplicate OPPs (both freq and volt are same) and !opp->available
0916  * ERR_PTR(-ENOMEM):
0917  *      Memory allocation failure
0918  * ERR_PTR(-EINVAL):
0919  *      Failed parsing the OPP node
0920  */
0921 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
0922         struct device *dev, struct device_node *np)
0923 {
0924     struct dev_pm_opp *new_opp;
0925     u32 val;
0926     int ret;
0927 
0928     new_opp = _opp_allocate(opp_table);
0929     if (!new_opp)
0930         return ERR_PTR(-ENOMEM);
0931 
0932     ret = _read_opp_key(new_opp, opp_table, np);
0933     if (ret < 0) {
0934         dev_err(dev, "%s: opp key field not found\n", __func__);
0935         goto free_opp;
0936     }
0937 
0938     /* Check if the OPP supports hardware's hierarchy of versions or not */
0939     if (!_opp_is_supported(dev, opp_table, np)) {
0940         dev_dbg(dev, "OPP not supported by hardware: %s\n",
0941             of_node_full_name(np));
0942         goto free_opp;
0943     }
0944 
0945     new_opp->turbo = of_property_read_bool(np, "turbo-mode");
0946 
0947     new_opp->np = of_node_get(np);
0948     new_opp->dynamic = false;
0949     new_opp->available = true;
0950 
0951     ret = _of_opp_alloc_required_opps(opp_table, new_opp);
0952     if (ret)
0953         goto free_opp;
0954 
0955     if (!of_property_read_u32(np, "clock-latency-ns", &val))
0956         new_opp->clock_latency_ns = val;
0957 
0958     ret = opp_parse_supplies(new_opp, dev, opp_table);
0959     if (ret)
0960         goto free_required_opps;
0961 
0962     if (opp_table->is_genpd)
0963         new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp);
0964 
0965     ret = _opp_add(dev, new_opp, opp_table);
0966     if (ret) {
0967         /* Don't return error for duplicate OPPs */
0968         if (ret == -EBUSY)
0969             ret = 0;
0970         goto free_required_opps;
0971     }
0972 
0973     /* OPP to select on device suspend */
0974     if (of_property_read_bool(np, "opp-suspend")) {
0975         if (opp_table->suspend_opp) {
0976             /* Pick the OPP with higher rate/bw/level as suspend OPP */
0977             if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
0978                 opp_table->suspend_opp->suspend = false;
0979                 new_opp->suspend = true;
0980                 opp_table->suspend_opp = new_opp;
0981             }
0982         } else {
0983             new_opp->suspend = true;
0984             opp_table->suspend_opp = new_opp;
0985         }
0986     }
0987 
0988     if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
0989         opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
0990 
0991     pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
0992          __func__, new_opp->turbo, new_opp->rates[0],
0993          new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
0994          new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
0995          new_opp->level);
0996 
0997     /*
0998      * Notify the changes in the availability of the operable
0999      * frequency/voltage list.
1000      */
1001     blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1002     return new_opp;
1003 
1004 free_required_opps:
1005     _of_opp_free_required_opps(opp_table, new_opp);
1006 free_opp:
1007     _opp_free(new_opp);
1008 
1009     return ret ? ERR_PTR(ret) : NULL;
1010 }
1011 
1012 /* Initializes OPP tables based on new bindings */
1013 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
1014 {
1015     struct device_node *np;
1016     int ret, count = 0;
1017     struct dev_pm_opp *opp;
1018 
1019     /* OPP table is already initialized for the device */
1020     mutex_lock(&opp_table->lock);
1021     if (opp_table->parsed_static_opps) {
1022         opp_table->parsed_static_opps++;
1023         mutex_unlock(&opp_table->lock);
1024         return 0;
1025     }
1026 
1027     opp_table->parsed_static_opps = 1;
1028     mutex_unlock(&opp_table->lock);
1029 
1030     /* We have opp-table node now, iterate over it and add OPPs */
1031     for_each_available_child_of_node(opp_table->np, np) {
1032         opp = _opp_add_static_v2(opp_table, dev, np);
1033         if (IS_ERR(opp)) {
1034             ret = PTR_ERR(opp);
1035             dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1036                 ret);
1037             of_node_put(np);
1038             goto remove_static_opp;
1039         } else if (opp) {
1040             count++;
1041         }
1042     }
1043 
1044     /* There should be one or more OPPs defined */
1045     if (!count) {
1046         dev_err(dev, "%s: no supported OPPs", __func__);
1047         ret = -ENOENT;
1048         goto remove_static_opp;
1049     }
1050 
1051     list_for_each_entry(opp, &opp_table->opp_list, node) {
1052         /* Any non-zero performance state would enable the feature */
1053         if (opp->pstate) {
1054             opp_table->genpd_performance_state = true;
1055             break;
1056         }
1057     }
1058 
1059     lazy_link_required_opp_table(opp_table);
1060 
1061     return 0;
1062 
1063 remove_static_opp:
1064     _opp_remove_all_static(opp_table);
1065 
1066     return ret;
1067 }
1068 
1069 /* Initializes OPP tables based on old-deprecated bindings */
1070 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1071 {
1072     const struct property *prop;
1073     const __be32 *val;
1074     int nr, ret = 0;
1075 
1076     mutex_lock(&opp_table->lock);
1077     if (opp_table->parsed_static_opps) {
1078         opp_table->parsed_static_opps++;
1079         mutex_unlock(&opp_table->lock);
1080         return 0;
1081     }
1082 
1083     opp_table->parsed_static_opps = 1;
1084     mutex_unlock(&opp_table->lock);
1085 
1086     prop = of_find_property(dev->of_node, "operating-points", NULL);
1087     if (!prop) {
1088         ret = -ENODEV;
1089         goto remove_static_opp;
1090     }
1091     if (!prop->value) {
1092         ret = -ENODATA;
1093         goto remove_static_opp;
1094     }
1095 
1096     /*
1097      * Each OPP is a set of tuples consisting of frequency and
1098      * voltage like <freq-kHz vol-uV>.
1099      */
1100     nr = prop->length / sizeof(u32);
1101     if (nr % 2) {
1102         dev_err(dev, "%s: Invalid OPP table\n", __func__);
1103         ret = -EINVAL;
1104         goto remove_static_opp;
1105     }
1106 
1107     val = prop->value;
1108     while (nr) {
1109         unsigned long freq = be32_to_cpup(val++) * 1000;
1110         unsigned long volt = be32_to_cpup(val++);
1111 
1112         ret = _opp_add_v1(opp_table, dev, freq, volt, false);
1113         if (ret) {
1114             dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1115                 __func__, freq, ret);
1116             goto remove_static_opp;
1117         }
1118         nr -= 2;
1119     }
1120 
1121     return 0;
1122 
1123 remove_static_opp:
1124     _opp_remove_all_static(opp_table);
1125 
1126     return ret;
1127 }
1128 
1129 static int _of_add_table_indexed(struct device *dev, int index)
1130 {
1131     struct opp_table *opp_table;
1132     int ret, count;
1133 
1134     if (index) {
1135         /*
1136          * If only one phandle is present, then the same OPP table
1137          * applies for all index requests.
1138          */
1139         count = of_count_phandle_with_args(dev->of_node,
1140                            "operating-points-v2", NULL);
1141         if (count == 1)
1142             index = 0;
1143     }
1144 
1145     opp_table = _add_opp_table_indexed(dev, index, true);
1146     if (IS_ERR(opp_table))
1147         return PTR_ERR(opp_table);
1148 
1149     /*
1150      * OPPs have two version of bindings now. Also try the old (v1)
1151      * bindings for backward compatibility with older dtbs.
1152      */
1153     if (opp_table->np)
1154         ret = _of_add_opp_table_v2(dev, opp_table);
1155     else
1156         ret = _of_add_opp_table_v1(dev, opp_table);
1157 
1158     if (ret)
1159         dev_pm_opp_put_opp_table(opp_table);
1160 
1161     return ret;
1162 }
1163 
1164 static void devm_pm_opp_of_table_release(void *data)
1165 {
1166     dev_pm_opp_of_remove_table(data);
1167 }
1168 
1169 static int _devm_of_add_table_indexed(struct device *dev, int index)
1170 {
1171     int ret;
1172 
1173     ret = _of_add_table_indexed(dev, index);
1174     if (ret)
1175         return ret;
1176 
1177     return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1178 }
1179 
1180 /**
1181  * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1182  * @dev:    device pointer used to lookup OPP table.
1183  *
1184  * Register the initial OPP table with the OPP library for given device.
1185  *
1186  * The opp_table structure will be freed after the device is destroyed.
1187  *
1188  * Return:
1189  * 0        On success OR
1190  *      Duplicate OPPs (both freq and volt are same) and opp->available
1191  * -EEXIST  Freq are same and volt are different OR
1192  *      Duplicate OPPs (both freq and volt are same) and !opp->available
1193  * -ENOMEM  Memory allocation failure
1194  * -ENODEV  when 'operating-points' property is not found or is invalid data
1195  *      in device node.
1196  * -ENODATA when empty 'operating-points' property is found
1197  * -EINVAL  when invalid entries are found in opp-v2 table
1198  */
1199 int devm_pm_opp_of_add_table(struct device *dev)
1200 {
1201     return _devm_of_add_table_indexed(dev, 0);
1202 }
1203 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1204 
1205 /**
1206  * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1207  * @dev:    device pointer used to lookup OPP table.
1208  *
1209  * Register the initial OPP table with the OPP library for given device.
1210  *
1211  * Return:
1212  * 0        On success OR
1213  *      Duplicate OPPs (both freq and volt are same) and opp->available
1214  * -EEXIST  Freq are same and volt are different OR
1215  *      Duplicate OPPs (both freq and volt are same) and !opp->available
1216  * -ENOMEM  Memory allocation failure
1217  * -ENODEV  when 'operating-points' property is not found or is invalid data
1218  *      in device node.
1219  * -ENODATA when empty 'operating-points' property is found
1220  * -EINVAL  when invalid entries are found in opp-v2 table
1221  */
1222 int dev_pm_opp_of_add_table(struct device *dev)
1223 {
1224     return _of_add_table_indexed(dev, 0);
1225 }
1226 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1227 
1228 /**
1229  * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1230  * @dev:    device pointer used to lookup OPP table.
1231  * @index:  Index number.
1232  *
1233  * Register the initial OPP table with the OPP library for given device only
1234  * using the "operating-points-v2" property.
1235  *
1236  * Return: Refer to dev_pm_opp_of_add_table() for return values.
1237  */
1238 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1239 {
1240     return _of_add_table_indexed(dev, index);
1241 }
1242 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1243 
1244 /**
1245  * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1246  * @dev:    device pointer used to lookup OPP table.
1247  * @index:  Index number.
1248  *
1249  * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1250  */
1251 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1252 {
1253     return _devm_of_add_table_indexed(dev, index);
1254 }
1255 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1256 
1257 /* CPU device specific helpers */
1258 
1259 /**
1260  * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1261  * @cpumask:    cpumask for which OPP table needs to be removed
1262  *
1263  * This removes the OPP tables for CPUs present in the @cpumask.
1264  * This should be used only to remove static entries created from DT.
1265  */
1266 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1267 {
1268     _dev_pm_opp_cpumask_remove_table(cpumask, -1);
1269 }
1270 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1271 
1272 /**
1273  * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1274  * @cpumask:    cpumask for which OPP table needs to be added.
1275  *
1276  * This adds the OPP tables for CPUs present in the @cpumask.
1277  */
1278 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1279 {
1280     struct device *cpu_dev;
1281     int cpu, ret;
1282 
1283     if (WARN_ON(cpumask_empty(cpumask)))
1284         return -ENODEV;
1285 
1286     for_each_cpu(cpu, cpumask) {
1287         cpu_dev = get_cpu_device(cpu);
1288         if (!cpu_dev) {
1289             pr_err("%s: failed to get cpu%d device\n", __func__,
1290                    cpu);
1291             ret = -ENODEV;
1292             goto remove_table;
1293         }
1294 
1295         ret = dev_pm_opp_of_add_table(cpu_dev);
1296         if (ret) {
1297             /*
1298              * OPP may get registered dynamically, don't print error
1299              * message here.
1300              */
1301             pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1302                  __func__, cpu, ret);
1303 
1304             goto remove_table;
1305         }
1306     }
1307 
1308     return 0;
1309 
1310 remove_table:
1311     /* Free all other OPPs */
1312     _dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1313 
1314     return ret;
1315 }
1316 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1317 
1318 /*
1319  * Works only for OPP v2 bindings.
1320  *
1321  * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1322  */
1323 /**
1324  * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1325  *                    @cpu_dev using operating-points-v2
1326  *                    bindings.
1327  *
1328  * @cpu_dev:    CPU device for which we do this operation
1329  * @cpumask:    cpumask to update with information of sharing CPUs
1330  *
1331  * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1332  *
1333  * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1334  */
1335 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1336                    struct cpumask *cpumask)
1337 {
1338     struct device_node *np, *tmp_np, *cpu_np;
1339     int cpu, ret = 0;
1340 
1341     /* Get OPP descriptor node */
1342     np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1343     if (!np) {
1344         dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1345         return -ENOENT;
1346     }
1347 
1348     cpumask_set_cpu(cpu_dev->id, cpumask);
1349 
1350     /* OPPs are shared ? */
1351     if (!of_property_read_bool(np, "opp-shared"))
1352         goto put_cpu_node;
1353 
1354     for_each_possible_cpu(cpu) {
1355         if (cpu == cpu_dev->id)
1356             continue;
1357 
1358         cpu_np = of_cpu_device_node_get(cpu);
1359         if (!cpu_np) {
1360             dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1361                 __func__, cpu);
1362             ret = -ENOENT;
1363             goto put_cpu_node;
1364         }
1365 
1366         /* Get OPP descriptor node */
1367         tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1368         of_node_put(cpu_np);
1369         if (!tmp_np) {
1370             pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1371             ret = -ENOENT;
1372             goto put_cpu_node;
1373         }
1374 
1375         /* CPUs are sharing opp node */
1376         if (np == tmp_np)
1377             cpumask_set_cpu(cpu, cpumask);
1378 
1379         of_node_put(tmp_np);
1380     }
1381 
1382 put_cpu_node:
1383     of_node_put(np);
1384     return ret;
1385 }
1386 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1387 
1388 /**
1389  * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1390  * @np: Node that contains the "required-opps" property.
1391  * @index: Index of the phandle to parse.
1392  *
1393  * Returns the performance state of the OPP pointed out by the "required-opps"
1394  * property at @index in @np.
1395  *
1396  * Return: Zero or positive performance state on success, otherwise negative
1397  * value on errors.
1398  */
1399 int of_get_required_opp_performance_state(struct device_node *np, int index)
1400 {
1401     struct dev_pm_opp *opp;
1402     struct device_node *required_np;
1403     struct opp_table *opp_table;
1404     int pstate = -EINVAL;
1405 
1406     required_np = of_parse_required_opp(np, index);
1407     if (!required_np)
1408         return -ENODEV;
1409 
1410     opp_table = _find_table_of_opp_np(required_np);
1411     if (IS_ERR(opp_table)) {
1412         pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1413                __func__, np, PTR_ERR(opp_table));
1414         goto put_required_np;
1415     }
1416 
1417     opp = _find_opp_of_np(opp_table, required_np);
1418     if (opp) {
1419         pstate = opp->pstate;
1420         dev_pm_opp_put(opp);
1421     }
1422 
1423     dev_pm_opp_put_opp_table(opp_table);
1424 
1425 put_required_np:
1426     of_node_put(required_np);
1427 
1428     return pstate;
1429 }
1430 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1431 
1432 /**
1433  * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1434  * @opp:    opp for which DT node has to be returned for
1435  *
1436  * Return: DT node corresponding to the opp, else 0 on success.
1437  *
1438  * The caller needs to put the node with of_node_put() after using it.
1439  */
1440 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1441 {
1442     if (IS_ERR_OR_NULL(opp)) {
1443         pr_err("%s: Invalid parameters\n", __func__);
1444         return NULL;
1445     }
1446 
1447     return of_node_get(opp->np);
1448 }
1449 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1450 
1451 /*
1452  * Callback function provided to the Energy Model framework upon registration.
1453  * It provides the power used by @dev at @kHz if it is the frequency of an
1454  * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1455  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1456  * frequency and @uW to the associated power.
1457  *
1458  * Returns 0 on success or a proper -EINVAL value in case of error.
1459  */
1460 static int __maybe_unused
1461 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1462 {
1463     struct dev_pm_opp *opp;
1464     unsigned long opp_freq, opp_power;
1465 
1466     /* Find the right frequency and related OPP */
1467     opp_freq = *kHz * 1000;
1468     opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1469     if (IS_ERR(opp))
1470         return -EINVAL;
1471 
1472     opp_power = dev_pm_opp_get_power(opp);
1473     dev_pm_opp_put(opp);
1474     if (!opp_power)
1475         return -EINVAL;
1476 
1477     *kHz = opp_freq / 1000;
1478     *uW = opp_power;
1479 
1480     return 0;
1481 }
1482 
1483 /*
1484  * Callback function provided to the Energy Model framework upon registration.
1485  * This computes the power estimated by @dev at @kHz if it is the frequency
1486  * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1487  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1488  * frequency and @uW to the associated power. The power is estimated as
1489  * P = C * V^2 * f with C being the device's capacitance and V and f
1490  * respectively the voltage and frequency of the OPP.
1491  *
1492  * Returns -EINVAL if the power calculation failed because of missing
1493  * parameters, 0 otherwise.
1494  */
1495 static int __maybe_unused _get_power(struct device *dev, unsigned long *uW,
1496                      unsigned long *kHz)
1497 {
1498     struct dev_pm_opp *opp;
1499     struct device_node *np;
1500     unsigned long mV, Hz;
1501     u32 cap;
1502     u64 tmp;
1503     int ret;
1504 
1505     np = of_node_get(dev->of_node);
1506     if (!np)
1507         return -EINVAL;
1508 
1509     ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1510     of_node_put(np);
1511     if (ret)
1512         return -EINVAL;
1513 
1514     Hz = *kHz * 1000;
1515     opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1516     if (IS_ERR(opp))
1517         return -EINVAL;
1518 
1519     mV = dev_pm_opp_get_voltage(opp) / 1000;
1520     dev_pm_opp_put(opp);
1521     if (!mV)
1522         return -EINVAL;
1523 
1524     tmp = (u64)cap * mV * mV * (Hz / 1000000);
1525     /* Provide power in micro-Watts */
1526     do_div(tmp, 1000000);
1527 
1528     *uW = (unsigned long)tmp;
1529     *kHz = Hz / 1000;
1530 
1531     return 0;
1532 }
1533 
1534 static bool _of_has_opp_microwatt_property(struct device *dev)
1535 {
1536     unsigned long power, freq = 0;
1537     struct dev_pm_opp *opp;
1538 
1539     /* Check if at least one OPP has needed property */
1540     opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1541     if (IS_ERR(opp))
1542         return false;
1543 
1544     power = dev_pm_opp_get_power(opp);
1545     dev_pm_opp_put(opp);
1546     if (!power)
1547         return false;
1548 
1549     return true;
1550 }
1551 
1552 /**
1553  * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1554  * @dev     : Device for which an Energy Model has to be registered
1555  * @cpus    : CPUs for which an Energy Model has to be registered. For
1556  *      other type of devices it should be set to NULL.
1557  *
1558  * This checks whether the "dynamic-power-coefficient" devicetree property has
1559  * been specified, and tries to register an Energy Model with it if it has.
1560  * Having this property means the voltages are known for OPPs and the EM
1561  * might be calculated.
1562  */
1563 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1564 {
1565     struct em_data_callback em_cb;
1566     struct device_node *np;
1567     int ret, nr_opp;
1568     u32 cap;
1569 
1570     if (IS_ERR_OR_NULL(dev)) {
1571         ret = -EINVAL;
1572         goto failed;
1573     }
1574 
1575     nr_opp = dev_pm_opp_get_opp_count(dev);
1576     if (nr_opp <= 0) {
1577         ret = -EINVAL;
1578         goto failed;
1579     }
1580 
1581     /* First, try to find more precised Energy Model in DT */
1582     if (_of_has_opp_microwatt_property(dev)) {
1583         EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1584         goto register_em;
1585     }
1586 
1587     np = of_node_get(dev->of_node);
1588     if (!np) {
1589         ret = -EINVAL;
1590         goto failed;
1591     }
1592 
1593     /*
1594      * Register an EM only if the 'dynamic-power-coefficient' property is
1595      * set in devicetree. It is assumed the voltage values are known if that
1596      * property is set since it is useless otherwise. If voltages are not
1597      * known, just let the EM registration fail with an error to alert the
1598      * user about the inconsistent configuration.
1599      */
1600     ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1601     of_node_put(np);
1602     if (ret || !cap) {
1603         dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1604         ret = -EINVAL;
1605         goto failed;
1606     }
1607 
1608     EM_SET_ACTIVE_POWER_CB(em_cb, _get_power);
1609 
1610 register_em:
1611     ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1612     if (ret)
1613         goto failed;
1614 
1615     return 0;
1616 
1617 failed:
1618     dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1619     return ret;
1620 }
1621 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);