Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Generic OPP Interface
0004  *
0005  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
0006  *  Nishanth Menon
0007  *  Romit Dasgupta
0008  *  Kevin Hilman
0009  */
0010 
0011 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0012 
0013 #include <linux/clk.h>
0014 #include <linux/errno.h>
0015 #include <linux/err.h>
0016 #include <linux/device.h>
0017 #include <linux/export.h>
0018 #include <linux/pm_domain.h>
0019 #include <linux/regulator/consumer.h>
0020 #include <linux/slab.h>
0021 #include <linux/xarray.h>
0022 
0023 #include "opp.h"
0024 
0025 /*
0026  * The root of the list of all opp-tables. All opp_table structures branch off
0027  * from here, with each opp_table containing the list of opps it supports in
0028  * various states of availability.
0029  */
0030 LIST_HEAD(opp_tables);
0031 
0032 /* OPP tables with uninitialized required OPPs */
0033 LIST_HEAD(lazy_opp_tables);
0034 
0035 /* Lock to allow exclusive modification to the device and opp lists */
0036 DEFINE_MUTEX(opp_table_lock);
0037 /* Flag indicating that opp_tables list is being updated at the moment */
0038 static bool opp_tables_busy;
0039 
0040 /* OPP ID allocator */
0041 static DEFINE_XARRAY_ALLOC1(opp_configs);
0042 
0043 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
0044 {
0045     struct opp_device *opp_dev;
0046     bool found = false;
0047 
0048     mutex_lock(&opp_table->lock);
0049     list_for_each_entry(opp_dev, &opp_table->dev_list, node)
0050         if (opp_dev->dev == dev) {
0051             found = true;
0052             break;
0053         }
0054 
0055     mutex_unlock(&opp_table->lock);
0056     return found;
0057 }
0058 
0059 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
0060 {
0061     struct opp_table *opp_table;
0062 
0063     list_for_each_entry(opp_table, &opp_tables, node) {
0064         if (_find_opp_dev(dev, opp_table)) {
0065             _get_opp_table_kref(opp_table);
0066             return opp_table;
0067         }
0068     }
0069 
0070     return ERR_PTR(-ENODEV);
0071 }
0072 
0073 /**
0074  * _find_opp_table() - find opp_table struct using device pointer
0075  * @dev:    device pointer used to lookup OPP table
0076  *
0077  * Search OPP table for one containing matching device.
0078  *
0079  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
0080  * -EINVAL based on type of error.
0081  *
0082  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
0083  */
0084 struct opp_table *_find_opp_table(struct device *dev)
0085 {
0086     struct opp_table *opp_table;
0087 
0088     if (IS_ERR_OR_NULL(dev)) {
0089         pr_err("%s: Invalid parameters\n", __func__);
0090         return ERR_PTR(-EINVAL);
0091     }
0092 
0093     mutex_lock(&opp_table_lock);
0094     opp_table = _find_opp_table_unlocked(dev);
0095     mutex_unlock(&opp_table_lock);
0096 
0097     return opp_table;
0098 }
0099 
0100 /*
0101  * Returns true if multiple clocks aren't there, else returns false with WARN.
0102  *
0103  * We don't force clk_count == 1 here as there are users who don't have a clock
0104  * representation in the OPP table and manage the clock configuration themselves
0105  * in an platform specific way.
0106  */
0107 static bool assert_single_clk(struct opp_table *opp_table)
0108 {
0109     return !WARN_ON(opp_table->clk_count > 1);
0110 }
0111 
0112 /**
0113  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
0114  * @opp:    opp for which voltage has to be returned for
0115  *
0116  * Return: voltage in micro volt corresponding to the opp, else
0117  * return 0
0118  *
0119  * This is useful only for devices with single power supply.
0120  */
0121 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
0122 {
0123     if (IS_ERR_OR_NULL(opp)) {
0124         pr_err("%s: Invalid parameters\n", __func__);
0125         return 0;
0126     }
0127 
0128     return opp->supplies[0].u_volt;
0129 }
0130 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
0131 
0132 /**
0133  * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
0134  * @opp:    opp for which voltage has to be returned for
0135  * @supplies:   Placeholder for copying the supply information.
0136  *
0137  * Return: negative error number on failure, 0 otherwise on success after
0138  * setting @supplies.
0139  *
0140  * This can be used for devices with any number of power supplies. The caller
0141  * must ensure the @supplies array must contain space for each regulator.
0142  */
0143 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
0144                 struct dev_pm_opp_supply *supplies)
0145 {
0146     if (IS_ERR_OR_NULL(opp) || !supplies) {
0147         pr_err("%s: Invalid parameters\n", __func__);
0148         return -EINVAL;
0149     }
0150 
0151     memcpy(supplies, opp->supplies,
0152            sizeof(*supplies) * opp->opp_table->regulator_count);
0153     return 0;
0154 }
0155 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
0156 
0157 /**
0158  * dev_pm_opp_get_power() - Gets the power corresponding to an opp
0159  * @opp:    opp for which power has to be returned for
0160  *
0161  * Return: power in micro watt corresponding to the opp, else
0162  * return 0
0163  *
0164  * This is useful only for devices with single power supply.
0165  */
0166 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
0167 {
0168     unsigned long opp_power = 0;
0169     int i;
0170 
0171     if (IS_ERR_OR_NULL(opp)) {
0172         pr_err("%s: Invalid parameters\n", __func__);
0173         return 0;
0174     }
0175     for (i = 0; i < opp->opp_table->regulator_count; i++)
0176         opp_power += opp->supplies[i].u_watt;
0177 
0178     return opp_power;
0179 }
0180 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
0181 
0182 /**
0183  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
0184  * @opp:    opp for which frequency has to be returned for
0185  *
0186  * Return: frequency in hertz corresponding to the opp, else
0187  * return 0
0188  */
0189 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
0190 {
0191     if (IS_ERR_OR_NULL(opp)) {
0192         pr_err("%s: Invalid parameters\n", __func__);
0193         return 0;
0194     }
0195 
0196     if (!assert_single_clk(opp->opp_table))
0197         return 0;
0198 
0199     return opp->rates[0];
0200 }
0201 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
0202 
0203 /**
0204  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
0205  * @opp:    opp for which level value has to be returned for
0206  *
0207  * Return: level read from device tree corresponding to the opp, else
0208  * return 0.
0209  */
0210 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
0211 {
0212     if (IS_ERR_OR_NULL(opp) || !opp->available) {
0213         pr_err("%s: Invalid parameters\n", __func__);
0214         return 0;
0215     }
0216 
0217     return opp->level;
0218 }
0219 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
0220 
0221 /**
0222  * dev_pm_opp_get_required_pstate() - Gets the required performance state
0223  *                                    corresponding to an available opp
0224  * @opp:    opp for which performance state has to be returned for
0225  * @index:  index of the required opp
0226  *
0227  * Return: performance state read from device tree corresponding to the
0228  * required opp, else return 0.
0229  */
0230 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
0231                         unsigned int index)
0232 {
0233     if (IS_ERR_OR_NULL(opp) || !opp->available ||
0234         index >= opp->opp_table->required_opp_count) {
0235         pr_err("%s: Invalid parameters\n", __func__);
0236         return 0;
0237     }
0238 
0239     /* required-opps not fully initialized yet */
0240     if (lazy_linking_pending(opp->opp_table))
0241         return 0;
0242 
0243     return opp->required_opps[index]->pstate;
0244 }
0245 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
0246 
0247 /**
0248  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
0249  * @opp: opp for which turbo mode is being verified
0250  *
0251  * Turbo OPPs are not for normal use, and can be enabled (under certain
0252  * conditions) for short duration of times to finish high throughput work
0253  * quickly. Running on them for longer times may overheat the chip.
0254  *
0255  * Return: true if opp is turbo opp, else false.
0256  */
0257 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
0258 {
0259     if (IS_ERR_OR_NULL(opp) || !opp->available) {
0260         pr_err("%s: Invalid parameters\n", __func__);
0261         return false;
0262     }
0263 
0264     return opp->turbo;
0265 }
0266 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
0267 
0268 /**
0269  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
0270  * @dev:    device for which we do this operation
0271  *
0272  * Return: This function returns the max clock latency in nanoseconds.
0273  */
0274 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
0275 {
0276     struct opp_table *opp_table;
0277     unsigned long clock_latency_ns;
0278 
0279     opp_table = _find_opp_table(dev);
0280     if (IS_ERR(opp_table))
0281         return 0;
0282 
0283     clock_latency_ns = opp_table->clock_latency_ns_max;
0284 
0285     dev_pm_opp_put_opp_table(opp_table);
0286 
0287     return clock_latency_ns;
0288 }
0289 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
0290 
0291 /**
0292  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
0293  * @dev: device for which we do this operation
0294  *
0295  * Return: This function returns the max voltage latency in nanoseconds.
0296  */
0297 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
0298 {
0299     struct opp_table *opp_table;
0300     struct dev_pm_opp *opp;
0301     struct regulator *reg;
0302     unsigned long latency_ns = 0;
0303     int ret, i, count;
0304     struct {
0305         unsigned long min;
0306         unsigned long max;
0307     } *uV;
0308 
0309     opp_table = _find_opp_table(dev);
0310     if (IS_ERR(opp_table))
0311         return 0;
0312 
0313     /* Regulator may not be required for the device */
0314     if (!opp_table->regulators)
0315         goto put_opp_table;
0316 
0317     count = opp_table->regulator_count;
0318 
0319     uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
0320     if (!uV)
0321         goto put_opp_table;
0322 
0323     mutex_lock(&opp_table->lock);
0324 
0325     for (i = 0; i < count; i++) {
0326         uV[i].min = ~0;
0327         uV[i].max = 0;
0328 
0329         list_for_each_entry(opp, &opp_table->opp_list, node) {
0330             if (!opp->available)
0331                 continue;
0332 
0333             if (opp->supplies[i].u_volt_min < uV[i].min)
0334                 uV[i].min = opp->supplies[i].u_volt_min;
0335             if (opp->supplies[i].u_volt_max > uV[i].max)
0336                 uV[i].max = opp->supplies[i].u_volt_max;
0337         }
0338     }
0339 
0340     mutex_unlock(&opp_table->lock);
0341 
0342     /*
0343      * The caller needs to ensure that opp_table (and hence the regulator)
0344      * isn't freed, while we are executing this routine.
0345      */
0346     for (i = 0; i < count; i++) {
0347         reg = opp_table->regulators[i];
0348         ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
0349         if (ret > 0)
0350             latency_ns += ret * 1000;
0351     }
0352 
0353     kfree(uV);
0354 put_opp_table:
0355     dev_pm_opp_put_opp_table(opp_table);
0356 
0357     return latency_ns;
0358 }
0359 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
0360 
0361 /**
0362  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
0363  *                       nanoseconds
0364  * @dev: device for which we do this operation
0365  *
0366  * Return: This function returns the max transition latency, in nanoseconds, to
0367  * switch from one OPP to other.
0368  */
0369 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
0370 {
0371     return dev_pm_opp_get_max_volt_latency(dev) +
0372         dev_pm_opp_get_max_clock_latency(dev);
0373 }
0374 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
0375 
0376 /**
0377  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
0378  * @dev:    device for which we do this operation
0379  *
0380  * Return: This function returns the frequency of the OPP marked as suspend_opp
0381  * if one is available, else returns 0;
0382  */
0383 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
0384 {
0385     struct opp_table *opp_table;
0386     unsigned long freq = 0;
0387 
0388     opp_table = _find_opp_table(dev);
0389     if (IS_ERR(opp_table))
0390         return 0;
0391 
0392     if (opp_table->suspend_opp && opp_table->suspend_opp->available)
0393         freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
0394 
0395     dev_pm_opp_put_opp_table(opp_table);
0396 
0397     return freq;
0398 }
0399 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
0400 
0401 int _get_opp_count(struct opp_table *opp_table)
0402 {
0403     struct dev_pm_opp *opp;
0404     int count = 0;
0405 
0406     mutex_lock(&opp_table->lock);
0407 
0408     list_for_each_entry(opp, &opp_table->opp_list, node) {
0409         if (opp->available)
0410             count++;
0411     }
0412 
0413     mutex_unlock(&opp_table->lock);
0414 
0415     return count;
0416 }
0417 
0418 /**
0419  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
0420  * @dev:    device for which we do this operation
0421  *
0422  * Return: This function returns the number of available opps if there are any,
0423  * else returns 0 if none or the corresponding error value.
0424  */
0425 int dev_pm_opp_get_opp_count(struct device *dev)
0426 {
0427     struct opp_table *opp_table;
0428     int count;
0429 
0430     opp_table = _find_opp_table(dev);
0431     if (IS_ERR(opp_table)) {
0432         count = PTR_ERR(opp_table);
0433         dev_dbg(dev, "%s: OPP table not found (%d)\n",
0434             __func__, count);
0435         return count;
0436     }
0437 
0438     count = _get_opp_count(opp_table);
0439     dev_pm_opp_put_opp_table(opp_table);
0440 
0441     return count;
0442 }
0443 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
0444 
0445 /* Helpers to read keys */
0446 static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
0447 {
0448     return opp->rates[0];
0449 }
0450 
0451 static unsigned long _read_level(struct dev_pm_opp *opp, int index)
0452 {
0453     return opp->level;
0454 }
0455 
0456 static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
0457 {
0458     return opp->bandwidth[index].peak;
0459 }
0460 
0461 /* Generic comparison helpers */
0462 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
0463                unsigned long opp_key, unsigned long key)
0464 {
0465     if (opp_key == key) {
0466         *opp = temp_opp;
0467         return true;
0468     }
0469 
0470     return false;
0471 }
0472 
0473 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
0474               unsigned long opp_key, unsigned long key)
0475 {
0476     if (opp_key >= key) {
0477         *opp = temp_opp;
0478         return true;
0479     }
0480 
0481     return false;
0482 }
0483 
0484 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
0485                unsigned long opp_key, unsigned long key)
0486 {
0487     if (opp_key > key)
0488         return true;
0489 
0490     *opp = temp_opp;
0491     return false;
0492 }
0493 
0494 /* Generic key finding helpers */
0495 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
0496         unsigned long *key, int index, bool available,
0497         unsigned long (*read)(struct dev_pm_opp *opp, int index),
0498         bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
0499                 unsigned long opp_key, unsigned long key),
0500         bool (*assert)(struct opp_table *opp_table))
0501 {
0502     struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
0503 
0504     /* Assert that the requirement is met */
0505     if (assert && !assert(opp_table))
0506         return ERR_PTR(-EINVAL);
0507 
0508     mutex_lock(&opp_table->lock);
0509 
0510     list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
0511         if (temp_opp->available == available) {
0512             if (compare(&opp, temp_opp, read(temp_opp, index), *key))
0513                 break;
0514         }
0515     }
0516 
0517     /* Increment the reference count of OPP */
0518     if (!IS_ERR(opp)) {
0519         *key = read(opp, index);
0520         dev_pm_opp_get(opp);
0521     }
0522 
0523     mutex_unlock(&opp_table->lock);
0524 
0525     return opp;
0526 }
0527 
0528 static struct dev_pm_opp *
0529 _find_key(struct device *dev, unsigned long *key, int index, bool available,
0530       unsigned long (*read)(struct dev_pm_opp *opp, int index),
0531       bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
0532               unsigned long opp_key, unsigned long key),
0533       bool (*assert)(struct opp_table *opp_table))
0534 {
0535     struct opp_table *opp_table;
0536     struct dev_pm_opp *opp;
0537 
0538     opp_table = _find_opp_table(dev);
0539     if (IS_ERR(opp_table)) {
0540         dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
0541             PTR_ERR(opp_table));
0542         return ERR_CAST(opp_table);
0543     }
0544 
0545     opp = _opp_table_find_key(opp_table, key, index, available, read,
0546                   compare, assert);
0547 
0548     dev_pm_opp_put_opp_table(opp_table);
0549 
0550     return opp;
0551 }
0552 
0553 static struct dev_pm_opp *_find_key_exact(struct device *dev,
0554         unsigned long key, int index, bool available,
0555         unsigned long (*read)(struct dev_pm_opp *opp, int index),
0556         bool (*assert)(struct opp_table *opp_table))
0557 {
0558     /*
0559      * The value of key will be updated here, but will be ignored as the
0560      * caller doesn't need it.
0561      */
0562     return _find_key(dev, &key, index, available, read, _compare_exact,
0563              assert);
0564 }
0565 
0566 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
0567         unsigned long *key, int index, bool available,
0568         unsigned long (*read)(struct dev_pm_opp *opp, int index),
0569         bool (*assert)(struct opp_table *opp_table))
0570 {
0571     return _opp_table_find_key(opp_table, key, index, available, read,
0572                    _compare_ceil, assert);
0573 }
0574 
0575 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
0576         int index, bool available,
0577         unsigned long (*read)(struct dev_pm_opp *opp, int index),
0578         bool (*assert)(struct opp_table *opp_table))
0579 {
0580     return _find_key(dev, key, index, available, read, _compare_ceil,
0581              assert);
0582 }
0583 
0584 static struct dev_pm_opp *_find_key_floor(struct device *dev,
0585         unsigned long *key, int index, bool available,
0586         unsigned long (*read)(struct dev_pm_opp *opp, int index),
0587         bool (*assert)(struct opp_table *opp_table))
0588 {
0589     return _find_key(dev, key, index, available, read, _compare_floor,
0590              assert);
0591 }
0592 
0593 /**
0594  * dev_pm_opp_find_freq_exact() - search for an exact frequency
0595  * @dev:        device for which we do this operation
0596  * @freq:       frequency to search for
0597  * @available:      true/false - match for available opp
0598  *
0599  * Return: Searches for exact match in the opp table and returns pointer to the
0600  * matching opp if found, else returns ERR_PTR in case of error and should
0601  * be handled using IS_ERR. Error return values can be:
0602  * EINVAL:  for bad pointer
0603  * ERANGE:  no match found for search
0604  * ENODEV:  if device not found in list of registered devices
0605  *
0606  * Note: available is a modifier for the search. if available=true, then the
0607  * match is for exact matching frequency and is available in the stored OPP
0608  * table. if false, the match is for exact frequency which is not available.
0609  *
0610  * This provides a mechanism to enable an opp which is not available currently
0611  * or the opposite as well.
0612  *
0613  * The callers are required to call dev_pm_opp_put() for the returned OPP after
0614  * use.
0615  */
0616 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
0617         unsigned long freq, bool available)
0618 {
0619     return _find_key_exact(dev, freq, 0, available, _read_freq,
0620                    assert_single_clk);
0621 }
0622 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
0623 
0624 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
0625                            unsigned long *freq)
0626 {
0627     return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
0628                     assert_single_clk);
0629 }
0630 
0631 /**
0632  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
0633  * @dev:    device for which we do this operation
0634  * @freq:   Start frequency
0635  *
0636  * Search for the matching ceil *available* OPP from a starting freq
0637  * for a device.
0638  *
0639  * Return: matching *opp and refreshes *freq accordingly, else returns
0640  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
0641  * values can be:
0642  * EINVAL:  for bad pointer
0643  * ERANGE:  no match found for search
0644  * ENODEV:  if device not found in list of registered devices
0645  *
0646  * The callers are required to call dev_pm_opp_put() for the returned OPP after
0647  * use.
0648  */
0649 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
0650                          unsigned long *freq)
0651 {
0652     return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
0653 }
0654 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
0655 
0656 /**
0657  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
0658  * @dev:    device for which we do this operation
0659  * @freq:   Start frequency
0660  *
0661  * Search for the matching floor *available* OPP from a starting freq
0662  * for a device.
0663  *
0664  * Return: matching *opp and refreshes *freq accordingly, else returns
0665  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
0666  * values can be:
0667  * EINVAL:  for bad pointer
0668  * ERANGE:  no match found for search
0669  * ENODEV:  if device not found in list of registered devices
0670  *
0671  * The callers are required to call dev_pm_opp_put() for the returned OPP after
0672  * use.
0673  */
0674 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
0675                           unsigned long *freq)
0676 {
0677     return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
0678 }
0679 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
0680 
0681 /**
0682  * dev_pm_opp_find_level_exact() - search for an exact level
0683  * @dev:        device for which we do this operation
0684  * @level:      level to search for
0685  *
0686  * Return: Searches for exact match in the opp table and returns pointer to the
0687  * matching opp if found, else returns ERR_PTR in case of error and should
0688  * be handled using IS_ERR. Error return values can be:
0689  * EINVAL:  for bad pointer
0690  * ERANGE:  no match found for search
0691  * ENODEV:  if device not found in list of registered devices
0692  *
0693  * The callers are required to call dev_pm_opp_put() for the returned OPP after
0694  * use.
0695  */
0696 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
0697                            unsigned int level)
0698 {
0699     return _find_key_exact(dev, level, 0, true, _read_level, NULL);
0700 }
0701 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
0702 
0703 /**
0704  * dev_pm_opp_find_level_ceil() - search for an rounded up level
0705  * @dev:        device for which we do this operation
0706  * @level:      level to search for
0707  *
0708  * Return: Searches for rounded up match in the opp table and returns pointer
0709  * to the  matching opp if found, else returns ERR_PTR in case of error and
0710  * should be handled using IS_ERR. Error return values can be:
0711  * EINVAL:  for bad pointer
0712  * ERANGE:  no match found for search
0713  * ENODEV:  if device not found in list of registered devices
0714  *
0715  * The callers are required to call dev_pm_opp_put() for the returned OPP after
0716  * use.
0717  */
0718 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
0719                           unsigned int *level)
0720 {
0721     unsigned long temp = *level;
0722     struct dev_pm_opp *opp;
0723 
0724     opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
0725     *level = temp;
0726     return opp;
0727 }
0728 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
0729 
0730 /**
0731  * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
0732  * @dev:    device for which we do this operation
0733  * @bw: start bandwidth
0734  * @index:  which bandwidth to compare, in case of OPPs with several values
0735  *
0736  * Search for the matching floor *available* OPP from a starting bandwidth
0737  * for a device.
0738  *
0739  * Return: matching *opp and refreshes *bw accordingly, else returns
0740  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
0741  * values can be:
0742  * EINVAL:  for bad pointer
0743  * ERANGE:  no match found for search
0744  * ENODEV:  if device not found in list of registered devices
0745  *
0746  * The callers are required to call dev_pm_opp_put() for the returned OPP after
0747  * use.
0748  */
0749 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
0750                        int index)
0751 {
0752     unsigned long temp = *bw;
0753     struct dev_pm_opp *opp;
0754 
0755     opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
0756     *bw = temp;
0757     return opp;
0758 }
0759 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
0760 
0761 /**
0762  * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
0763  * @dev:    device for which we do this operation
0764  * @bw: start bandwidth
0765  * @index:  which bandwidth to compare, in case of OPPs with several values
0766  *
0767  * Search for the matching floor *available* OPP from a starting bandwidth
0768  * for a device.
0769  *
0770  * Return: matching *opp and refreshes *bw accordingly, else returns
0771  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
0772  * values can be:
0773  * EINVAL:  for bad pointer
0774  * ERANGE:  no match found for search
0775  * ENODEV:  if device not found in list of registered devices
0776  *
0777  * The callers are required to call dev_pm_opp_put() for the returned OPP after
0778  * use.
0779  */
0780 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
0781                         unsigned int *bw, int index)
0782 {
0783     unsigned long temp = *bw;
0784     struct dev_pm_opp *opp;
0785 
0786     opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
0787     *bw = temp;
0788     return opp;
0789 }
0790 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
0791 
0792 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
0793                 struct dev_pm_opp_supply *supply)
0794 {
0795     int ret;
0796 
0797     /* Regulator not available for device */
0798     if (IS_ERR(reg)) {
0799         dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
0800             PTR_ERR(reg));
0801         return 0;
0802     }
0803 
0804     dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
0805         supply->u_volt_min, supply->u_volt, supply->u_volt_max);
0806 
0807     ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
0808                         supply->u_volt, supply->u_volt_max);
0809     if (ret)
0810         dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
0811             __func__, supply->u_volt_min, supply->u_volt,
0812             supply->u_volt_max, ret);
0813 
0814     return ret;
0815 }
0816 
0817 static int
0818 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
0819                struct dev_pm_opp *opp, void *data, bool scaling_down)
0820 {
0821     unsigned long *target = data;
0822     unsigned long freq;
0823     int ret;
0824 
0825     /* One of target and opp must be available */
0826     if (target) {
0827         freq = *target;
0828     } else if (opp) {
0829         freq = opp->rates[0];
0830     } else {
0831         WARN_ON(1);
0832         return -EINVAL;
0833     }
0834 
0835     ret = clk_set_rate(opp_table->clk, freq);
0836     if (ret) {
0837         dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
0838             ret);
0839     } else {
0840         opp_table->rate_clk_single = freq;
0841     }
0842 
0843     return ret;
0844 }
0845 
0846 /*
0847  * Simple implementation for configuring multiple clocks. Configure clocks in
0848  * the order in which they are present in the array while scaling up.
0849  */
0850 int dev_pm_opp_config_clks_simple(struct device *dev,
0851         struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
0852         bool scaling_down)
0853 {
0854     int ret, i;
0855 
0856     if (scaling_down) {
0857         for (i = opp_table->clk_count - 1; i >= 0; i--) {
0858             ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
0859             if (ret) {
0860                 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
0861                     ret);
0862                 return ret;
0863             }
0864         }
0865     } else {
0866         for (i = 0; i < opp_table->clk_count; i++) {
0867             ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
0868             if (ret) {
0869                 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
0870                     ret);
0871                 return ret;
0872             }
0873         }
0874     }
0875 
0876     return 0;
0877 }
0878 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
0879 
0880 static int _opp_config_regulator_single(struct device *dev,
0881             struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
0882             struct regulator **regulators, unsigned int count)
0883 {
0884     struct regulator *reg = regulators[0];
0885     int ret;
0886 
0887     /* This function only supports single regulator per device */
0888     if (WARN_ON(count > 1)) {
0889         dev_err(dev, "multiple regulators are not supported\n");
0890         return -EINVAL;
0891     }
0892 
0893     ret = _set_opp_voltage(dev, reg, new_opp->supplies);
0894     if (ret)
0895         return ret;
0896 
0897     /*
0898      * Enable the regulator after setting its voltages, otherwise it breaks
0899      * some boot-enabled regulators.
0900      */
0901     if (unlikely(!new_opp->opp_table->enabled)) {
0902         ret = regulator_enable(reg);
0903         if (ret < 0)
0904             dev_warn(dev, "Failed to enable regulator: %d", ret);
0905     }
0906 
0907     return 0;
0908 }
0909 
0910 static int _set_opp_bw(const struct opp_table *opp_table,
0911                struct dev_pm_opp *opp, struct device *dev)
0912 {
0913     u32 avg, peak;
0914     int i, ret;
0915 
0916     if (!opp_table->paths)
0917         return 0;
0918 
0919     for (i = 0; i < opp_table->path_count; i++) {
0920         if (!opp) {
0921             avg = 0;
0922             peak = 0;
0923         } else {
0924             avg = opp->bandwidth[i].avg;
0925             peak = opp->bandwidth[i].peak;
0926         }
0927         ret = icc_set_bw(opp_table->paths[i], avg, peak);
0928         if (ret) {
0929             dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
0930                 opp ? "set" : "remove", i, ret);
0931             return ret;
0932         }
0933     }
0934 
0935     return 0;
0936 }
0937 
0938 static int _set_required_opp(struct device *dev, struct device *pd_dev,
0939                  struct dev_pm_opp *opp, int i)
0940 {
0941     unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
0942     int ret;
0943 
0944     if (!pd_dev)
0945         return 0;
0946 
0947     ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
0948     if (ret) {
0949         dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
0950             dev_name(pd_dev), pstate, ret);
0951     }
0952 
0953     return ret;
0954 }
0955 
0956 /* This is only called for PM domain for now */
0957 static int _set_required_opps(struct device *dev,
0958                   struct opp_table *opp_table,
0959                   struct dev_pm_opp *opp, bool up)
0960 {
0961     struct opp_table **required_opp_tables = opp_table->required_opp_tables;
0962     struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
0963     int i, ret = 0;
0964 
0965     if (!required_opp_tables)
0966         return 0;
0967 
0968     /* required-opps not fully initialized yet */
0969     if (lazy_linking_pending(opp_table))
0970         return -EBUSY;
0971 
0972     /*
0973      * We only support genpd's OPPs in the "required-opps" for now, as we
0974      * don't know much about other use cases. Error out if the required OPP
0975      * doesn't belong to a genpd.
0976      */
0977     if (unlikely(!required_opp_tables[0]->is_genpd)) {
0978         dev_err(dev, "required-opps don't belong to a genpd\n");
0979         return -ENOENT;
0980     }
0981 
0982     /* Single genpd case */
0983     if (!genpd_virt_devs)
0984         return _set_required_opp(dev, dev, opp, 0);
0985 
0986     /* Multiple genpd case */
0987 
0988     /*
0989      * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
0990      * after it is freed from another thread.
0991      */
0992     mutex_lock(&opp_table->genpd_virt_dev_lock);
0993 
0994     /* Scaling up? Set required OPPs in normal order, else reverse */
0995     if (up) {
0996         for (i = 0; i < opp_table->required_opp_count; i++) {
0997             ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
0998             if (ret)
0999                 break;
1000         }
1001     } else {
1002         for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
1003             ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
1004             if (ret)
1005                 break;
1006         }
1007     }
1008 
1009     mutex_unlock(&opp_table->genpd_virt_dev_lock);
1010 
1011     return ret;
1012 }
1013 
1014 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1015 {
1016     struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1017     unsigned long freq;
1018 
1019     if (!IS_ERR(opp_table->clk)) {
1020         freq = clk_get_rate(opp_table->clk);
1021         opp = _find_freq_ceil(opp_table, &freq);
1022     }
1023 
1024     /*
1025      * Unable to find the current OPP ? Pick the first from the list since
1026      * it is in ascending order, otherwise rest of the code will need to
1027      * make special checks to validate current_opp.
1028      */
1029     if (IS_ERR(opp)) {
1030         mutex_lock(&opp_table->lock);
1031         opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1032         dev_pm_opp_get(opp);
1033         mutex_unlock(&opp_table->lock);
1034     }
1035 
1036     opp_table->current_opp = opp;
1037 }
1038 
1039 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1040 {
1041     int ret;
1042 
1043     if (!opp_table->enabled)
1044         return 0;
1045 
1046     /*
1047      * Some drivers need to support cases where some platforms may
1048      * have OPP table for the device, while others don't and
1049      * opp_set_rate() just needs to behave like clk_set_rate().
1050      */
1051     if (!_get_opp_count(opp_table))
1052         return 0;
1053 
1054     ret = _set_opp_bw(opp_table, NULL, dev);
1055     if (ret)
1056         return ret;
1057 
1058     if (opp_table->regulators)
1059         regulator_disable(opp_table->regulators[0]);
1060 
1061     ret = _set_required_opps(dev, opp_table, NULL, false);
1062 
1063     opp_table->enabled = false;
1064     return ret;
1065 }
1066 
1067 static int _set_opp(struct device *dev, struct opp_table *opp_table,
1068             struct dev_pm_opp *opp, void *clk_data, bool forced)
1069 {
1070     struct dev_pm_opp *old_opp;
1071     int scaling_down, ret;
1072 
1073     if (unlikely(!opp))
1074         return _disable_opp_table(dev, opp_table);
1075 
1076     /* Find the currently set OPP if we don't know already */
1077     if (unlikely(!opp_table->current_opp))
1078         _find_current_opp(dev, opp_table);
1079 
1080     old_opp = opp_table->current_opp;
1081 
1082     /* Return early if nothing to do */
1083     if (!forced && old_opp == opp && opp_table->enabled) {
1084         dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1085         return 0;
1086     }
1087 
1088     dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1089         __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1090         opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1091         opp->bandwidth ? opp->bandwidth[0].peak : 0);
1092 
1093     scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1094     if (scaling_down == -1)
1095         scaling_down = 0;
1096 
1097     /* Scaling up? Configure required OPPs before frequency */
1098     if (!scaling_down) {
1099         ret = _set_required_opps(dev, opp_table, opp, true);
1100         if (ret) {
1101             dev_err(dev, "Failed to set required opps: %d\n", ret);
1102             return ret;
1103         }
1104 
1105         ret = _set_opp_bw(opp_table, opp, dev);
1106         if (ret) {
1107             dev_err(dev, "Failed to set bw: %d\n", ret);
1108             return ret;
1109         }
1110 
1111         if (opp_table->config_regulators) {
1112             ret = opp_table->config_regulators(dev, old_opp, opp,
1113                                opp_table->regulators,
1114                                opp_table->regulator_count);
1115             if (ret) {
1116                 dev_err(dev, "Failed to set regulator voltages: %d\n",
1117                     ret);
1118                 return ret;
1119             }
1120         }
1121     }
1122 
1123     if (opp_table->config_clks) {
1124         ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1125         if (ret)
1126             return ret;
1127     }
1128 
1129     /* Scaling down? Configure required OPPs after frequency */
1130     if (scaling_down) {
1131         if (opp_table->config_regulators) {
1132             ret = opp_table->config_regulators(dev, old_opp, opp,
1133                                opp_table->regulators,
1134                                opp_table->regulator_count);
1135             if (ret) {
1136                 dev_err(dev, "Failed to set regulator voltages: %d\n",
1137                     ret);
1138                 return ret;
1139             }
1140         }
1141 
1142         ret = _set_opp_bw(opp_table, opp, dev);
1143         if (ret) {
1144             dev_err(dev, "Failed to set bw: %d\n", ret);
1145             return ret;
1146         }
1147 
1148         ret = _set_required_opps(dev, opp_table, opp, false);
1149         if (ret) {
1150             dev_err(dev, "Failed to set required opps: %d\n", ret);
1151             return ret;
1152         }
1153     }
1154 
1155     opp_table->enabled = true;
1156     dev_pm_opp_put(old_opp);
1157 
1158     /* Make sure current_opp doesn't get freed */
1159     dev_pm_opp_get(opp);
1160     opp_table->current_opp = opp;
1161 
1162     return ret;
1163 }
1164 
1165 /**
1166  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1167  * @dev:     device for which we do this operation
1168  * @target_freq: frequency to achieve
1169  *
1170  * This configures the power-supplies to the levels specified by the OPP
1171  * corresponding to the target_freq, and programs the clock to a value <=
1172  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1173  * provided by the opp, should have already rounded to the target OPP's
1174  * frequency.
1175  */
1176 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1177 {
1178     struct opp_table *opp_table;
1179     unsigned long freq = 0, temp_freq;
1180     struct dev_pm_opp *opp = NULL;
1181     bool forced = false;
1182     int ret;
1183 
1184     opp_table = _find_opp_table(dev);
1185     if (IS_ERR(opp_table)) {
1186         dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1187         return PTR_ERR(opp_table);
1188     }
1189 
1190     if (target_freq) {
1191         /*
1192          * For IO devices which require an OPP on some platforms/SoCs
1193          * while just needing to scale the clock on some others
1194          * we look for empty OPP tables with just a clock handle and
1195          * scale only the clk. This makes dev_pm_opp_set_rate()
1196          * equivalent to a clk_set_rate()
1197          */
1198         if (!_get_opp_count(opp_table)) {
1199             ret = opp_table->config_clks(dev, opp_table, NULL,
1200                              &target_freq, false);
1201             goto put_opp_table;
1202         }
1203 
1204         freq = clk_round_rate(opp_table->clk, target_freq);
1205         if ((long)freq <= 0)
1206             freq = target_freq;
1207 
1208         /*
1209          * The clock driver may support finer resolution of the
1210          * frequencies than the OPP table, don't update the frequency we
1211          * pass to clk_set_rate() here.
1212          */
1213         temp_freq = freq;
1214         opp = _find_freq_ceil(opp_table, &temp_freq);
1215         if (IS_ERR(opp)) {
1216             ret = PTR_ERR(opp);
1217             dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1218                 __func__, freq, ret);
1219             goto put_opp_table;
1220         }
1221 
1222         /*
1223          * An OPP entry specifies the highest frequency at which other
1224          * properties of the OPP entry apply. Even if the new OPP is
1225          * same as the old one, we may still reach here for a different
1226          * value of the frequency. In such a case, do not abort but
1227          * configure the hardware to the desired frequency forcefully.
1228          */
1229         forced = opp_table->rate_clk_single != target_freq;
1230     }
1231 
1232     ret = _set_opp(dev, opp_table, opp, &target_freq, forced);
1233 
1234     if (target_freq)
1235         dev_pm_opp_put(opp);
1236 
1237 put_opp_table:
1238     dev_pm_opp_put_opp_table(opp_table);
1239     return ret;
1240 }
1241 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1242 
1243 /**
1244  * dev_pm_opp_set_opp() - Configure device for OPP
1245  * @dev: device for which we do this operation
1246  * @opp: OPP to set to
1247  *
1248  * This configures the device based on the properties of the OPP passed to this
1249  * routine.
1250  *
1251  * Return: 0 on success, a negative error number otherwise.
1252  */
1253 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1254 {
1255     struct opp_table *opp_table;
1256     int ret;
1257 
1258     opp_table = _find_opp_table(dev);
1259     if (IS_ERR(opp_table)) {
1260         dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1261         return PTR_ERR(opp_table);
1262     }
1263 
1264     ret = _set_opp(dev, opp_table, opp, NULL, false);
1265     dev_pm_opp_put_opp_table(opp_table);
1266 
1267     return ret;
1268 }
1269 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1270 
1271 /* OPP-dev Helpers */
1272 static void _remove_opp_dev(struct opp_device *opp_dev,
1273                 struct opp_table *opp_table)
1274 {
1275     opp_debug_unregister(opp_dev, opp_table);
1276     list_del(&opp_dev->node);
1277     kfree(opp_dev);
1278 }
1279 
1280 struct opp_device *_add_opp_dev(const struct device *dev,
1281                 struct opp_table *opp_table)
1282 {
1283     struct opp_device *opp_dev;
1284 
1285     opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1286     if (!opp_dev)
1287         return NULL;
1288 
1289     /* Initialize opp-dev */
1290     opp_dev->dev = dev;
1291 
1292     mutex_lock(&opp_table->lock);
1293     list_add(&opp_dev->node, &opp_table->dev_list);
1294     mutex_unlock(&opp_table->lock);
1295 
1296     /* Create debugfs entries for the opp_table */
1297     opp_debug_register(opp_dev, opp_table);
1298 
1299     return opp_dev;
1300 }
1301 
1302 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1303 {
1304     struct opp_table *opp_table;
1305     struct opp_device *opp_dev;
1306     int ret;
1307 
1308     /*
1309      * Allocate a new OPP table. In the infrequent case where a new
1310      * device is needed to be added, we pay this penalty.
1311      */
1312     opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1313     if (!opp_table)
1314         return ERR_PTR(-ENOMEM);
1315 
1316     mutex_init(&opp_table->lock);
1317     mutex_init(&opp_table->genpd_virt_dev_lock);
1318     INIT_LIST_HEAD(&opp_table->dev_list);
1319     INIT_LIST_HEAD(&opp_table->lazy);
1320 
1321     opp_table->clk = ERR_PTR(-ENODEV);
1322 
1323     /* Mark regulator count uninitialized */
1324     opp_table->regulator_count = -1;
1325 
1326     opp_dev = _add_opp_dev(dev, opp_table);
1327     if (!opp_dev) {
1328         ret = -ENOMEM;
1329         goto err;
1330     }
1331 
1332     _of_init_opp_table(opp_table, dev, index);
1333 
1334     /* Find interconnect path(s) for the device */
1335     ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1336     if (ret) {
1337         if (ret == -EPROBE_DEFER)
1338             goto remove_opp_dev;
1339 
1340         dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1341              __func__, ret);
1342     }
1343 
1344     BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1345     INIT_LIST_HEAD(&opp_table->opp_list);
1346     kref_init(&opp_table->kref);
1347 
1348     return opp_table;
1349 
1350 remove_opp_dev:
1351     _remove_opp_dev(opp_dev, opp_table);
1352 err:
1353     kfree(opp_table);
1354     return ERR_PTR(ret);
1355 }
1356 
1357 void _get_opp_table_kref(struct opp_table *opp_table)
1358 {
1359     kref_get(&opp_table->kref);
1360 }
1361 
1362 static struct opp_table *_update_opp_table_clk(struct device *dev,
1363                            struct opp_table *opp_table,
1364                            bool getclk)
1365 {
1366     int ret;
1367 
1368     /*
1369      * Return early if we don't need to get clk or we have already done it
1370      * earlier.
1371      */
1372     if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1373         opp_table->clks)
1374         return opp_table;
1375 
1376     /* Find clk for the device */
1377     opp_table->clk = clk_get(dev, NULL);
1378 
1379     ret = PTR_ERR_OR_ZERO(opp_table->clk);
1380     if (!ret) {
1381         opp_table->config_clks = _opp_config_clk_single;
1382         opp_table->clk_count = 1;
1383         return opp_table;
1384     }
1385 
1386     if (ret == -ENOENT) {
1387         /*
1388          * There are few platforms which don't want the OPP core to
1389          * manage device's clock settings. In such cases neither the
1390          * platform provides the clks explicitly to us, nor the DT
1391          * contains a valid clk entry. The OPP nodes in DT may still
1392          * contain "opp-hz" property though, which we need to parse and
1393          * allow the platform to find an OPP based on freq later on.
1394          *
1395          * This is a simple solution to take care of such corner cases,
1396          * i.e. make the clk_count 1, which lets us allocate space for
1397          * frequency in opp->rates and also parse the entries in DT.
1398          */
1399         opp_table->clk_count = 1;
1400 
1401         dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1402         return opp_table;
1403     }
1404 
1405     dev_pm_opp_put_opp_table(opp_table);
1406     dev_err_probe(dev, ret, "Couldn't find clock\n");
1407 
1408     return ERR_PTR(ret);
1409 }
1410 
1411 /*
1412  * We need to make sure that the OPP table for a device doesn't get added twice,
1413  * if this routine gets called in parallel with the same device pointer.
1414  *
1415  * The simplest way to enforce that is to perform everything (find existing
1416  * table and if not found, create a new one) under the opp_table_lock, so only
1417  * one creator gets access to the same. But that expands the critical section
1418  * under the lock and may end up causing circular dependencies with frameworks
1419  * like debugfs, interconnect or clock framework as they may be direct or
1420  * indirect users of OPP core.
1421  *
1422  * And for that reason we have to go for a bit tricky implementation here, which
1423  * uses the opp_tables_busy flag to indicate if another creator is in the middle
1424  * of adding an OPP table and others should wait for it to finish.
1425  */
1426 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1427                      bool getclk)
1428 {
1429     struct opp_table *opp_table;
1430 
1431 again:
1432     mutex_lock(&opp_table_lock);
1433 
1434     opp_table = _find_opp_table_unlocked(dev);
1435     if (!IS_ERR(opp_table))
1436         goto unlock;
1437 
1438     /*
1439      * The opp_tables list or an OPP table's dev_list is getting updated by
1440      * another user, wait for it to finish.
1441      */
1442     if (unlikely(opp_tables_busy)) {
1443         mutex_unlock(&opp_table_lock);
1444         cpu_relax();
1445         goto again;
1446     }
1447 
1448     opp_tables_busy = true;
1449     opp_table = _managed_opp(dev, index);
1450 
1451     /* Drop the lock to reduce the size of critical section */
1452     mutex_unlock(&opp_table_lock);
1453 
1454     if (opp_table) {
1455         if (!_add_opp_dev(dev, opp_table)) {
1456             dev_pm_opp_put_opp_table(opp_table);
1457             opp_table = ERR_PTR(-ENOMEM);
1458         }
1459 
1460         mutex_lock(&opp_table_lock);
1461     } else {
1462         opp_table = _allocate_opp_table(dev, index);
1463 
1464         mutex_lock(&opp_table_lock);
1465         if (!IS_ERR(opp_table))
1466             list_add(&opp_table->node, &opp_tables);
1467     }
1468 
1469     opp_tables_busy = false;
1470 
1471 unlock:
1472     mutex_unlock(&opp_table_lock);
1473 
1474     return _update_opp_table_clk(dev, opp_table, getclk);
1475 }
1476 
1477 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1478 {
1479     return _add_opp_table_indexed(dev, 0, getclk);
1480 }
1481 
1482 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1483 {
1484     return _find_opp_table(dev);
1485 }
1486 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1487 
1488 static void _opp_table_kref_release(struct kref *kref)
1489 {
1490     struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1491     struct opp_device *opp_dev, *temp;
1492     int i;
1493 
1494     /* Drop the lock as soon as we can */
1495     list_del(&opp_table->node);
1496     mutex_unlock(&opp_table_lock);
1497 
1498     if (opp_table->current_opp)
1499         dev_pm_opp_put(opp_table->current_opp);
1500 
1501     _of_clear_opp_table(opp_table);
1502 
1503     /* Release automatically acquired single clk */
1504     if (!IS_ERR(opp_table->clk))
1505         clk_put(opp_table->clk);
1506 
1507     if (opp_table->paths) {
1508         for (i = 0; i < opp_table->path_count; i++)
1509             icc_put(opp_table->paths[i]);
1510         kfree(opp_table->paths);
1511     }
1512 
1513     WARN_ON(!list_empty(&opp_table->opp_list));
1514 
1515     list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1516         /*
1517          * The OPP table is getting removed, drop the performance state
1518          * constraints.
1519          */
1520         if (opp_table->genpd_performance_state)
1521             dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1522 
1523         _remove_opp_dev(opp_dev, opp_table);
1524     }
1525 
1526     mutex_destroy(&opp_table->genpd_virt_dev_lock);
1527     mutex_destroy(&opp_table->lock);
1528     kfree(opp_table);
1529 }
1530 
1531 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1532 {
1533     kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1534                &opp_table_lock);
1535 }
1536 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1537 
1538 void _opp_free(struct dev_pm_opp *opp)
1539 {
1540     kfree(opp);
1541 }
1542 
1543 static void _opp_kref_release(struct kref *kref)
1544 {
1545     struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1546     struct opp_table *opp_table = opp->opp_table;
1547 
1548     list_del(&opp->node);
1549     mutex_unlock(&opp_table->lock);
1550 
1551     /*
1552      * Notify the changes in the availability of the operable
1553      * frequency/voltage list.
1554      */
1555     blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1556     _of_clear_opp(opp_table, opp);
1557     opp_debug_remove_one(opp);
1558     kfree(opp);
1559 }
1560 
1561 void dev_pm_opp_get(struct dev_pm_opp *opp)
1562 {
1563     kref_get(&opp->kref);
1564 }
1565 
1566 void dev_pm_opp_put(struct dev_pm_opp *opp)
1567 {
1568     kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1569 }
1570 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1571 
1572 /**
1573  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1574  * @dev:    device for which we do this operation
1575  * @freq:   OPP to remove with matching 'freq'
1576  *
1577  * This function removes an opp from the opp table.
1578  */
1579 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1580 {
1581     struct dev_pm_opp *opp = NULL, *iter;
1582     struct opp_table *opp_table;
1583 
1584     opp_table = _find_opp_table(dev);
1585     if (IS_ERR(opp_table))
1586         return;
1587 
1588     if (!assert_single_clk(opp_table))
1589         goto put_table;
1590 
1591     mutex_lock(&opp_table->lock);
1592 
1593     list_for_each_entry(iter, &opp_table->opp_list, node) {
1594         if (iter->rates[0] == freq) {
1595             opp = iter;
1596             break;
1597         }
1598     }
1599 
1600     mutex_unlock(&opp_table->lock);
1601 
1602     if (opp) {
1603         dev_pm_opp_put(opp);
1604 
1605         /* Drop the reference taken by dev_pm_opp_add() */
1606         dev_pm_opp_put_opp_table(opp_table);
1607     } else {
1608         dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1609              __func__, freq);
1610     }
1611 
1612 put_table:
1613     /* Drop the reference taken by _find_opp_table() */
1614     dev_pm_opp_put_opp_table(opp_table);
1615 }
1616 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1617 
1618 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1619                     bool dynamic)
1620 {
1621     struct dev_pm_opp *opp = NULL, *temp;
1622 
1623     mutex_lock(&opp_table->lock);
1624     list_for_each_entry(temp, &opp_table->opp_list, node) {
1625         /*
1626          * Refcount must be dropped only once for each OPP by OPP core,
1627          * do that with help of "removed" flag.
1628          */
1629         if (!temp->removed && dynamic == temp->dynamic) {
1630             opp = temp;
1631             break;
1632         }
1633     }
1634 
1635     mutex_unlock(&opp_table->lock);
1636     return opp;
1637 }
1638 
1639 /*
1640  * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1641  * happen lock less to avoid circular dependency issues. This routine must be
1642  * called without the opp_table->lock held.
1643  */
1644 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1645 {
1646     struct dev_pm_opp *opp;
1647 
1648     while ((opp = _opp_get_next(opp_table, dynamic))) {
1649         opp->removed = true;
1650         dev_pm_opp_put(opp);
1651 
1652         /* Drop the references taken by dev_pm_opp_add() */
1653         if (dynamic)
1654             dev_pm_opp_put_opp_table(opp_table);
1655     }
1656 }
1657 
1658 bool _opp_remove_all_static(struct opp_table *opp_table)
1659 {
1660     mutex_lock(&opp_table->lock);
1661 
1662     if (!opp_table->parsed_static_opps) {
1663         mutex_unlock(&opp_table->lock);
1664         return false;
1665     }
1666 
1667     if (--opp_table->parsed_static_opps) {
1668         mutex_unlock(&opp_table->lock);
1669         return true;
1670     }
1671 
1672     mutex_unlock(&opp_table->lock);
1673 
1674     _opp_remove_all(opp_table, false);
1675     return true;
1676 }
1677 
1678 /**
1679  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1680  * @dev:    device for which we do this operation
1681  *
1682  * This function removes all dynamically created OPPs from the opp table.
1683  */
1684 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1685 {
1686     struct opp_table *opp_table;
1687 
1688     opp_table = _find_opp_table(dev);
1689     if (IS_ERR(opp_table))
1690         return;
1691 
1692     _opp_remove_all(opp_table, true);
1693 
1694     /* Drop the reference taken by _find_opp_table() */
1695     dev_pm_opp_put_opp_table(opp_table);
1696 }
1697 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1698 
1699 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1700 {
1701     struct dev_pm_opp *opp;
1702     int supply_count, supply_size, icc_size, clk_size;
1703 
1704     /* Allocate space for at least one supply */
1705     supply_count = opp_table->regulator_count > 0 ?
1706             opp_table->regulator_count : 1;
1707     supply_size = sizeof(*opp->supplies) * supply_count;
1708     clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1709     icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1710 
1711     /* allocate new OPP node and supplies structures */
1712     opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1713     if (!opp)
1714         return NULL;
1715 
1716     /* Put the supplies, bw and clock at the end of the OPP structure */
1717     opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1718 
1719     opp->rates = (unsigned long *)(opp->supplies + supply_count);
1720 
1721     if (icc_size)
1722         opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1723 
1724     INIT_LIST_HEAD(&opp->node);
1725 
1726     return opp;
1727 }
1728 
1729 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1730                      struct opp_table *opp_table)
1731 {
1732     struct regulator *reg;
1733     int i;
1734 
1735     if (!opp_table->regulators)
1736         return true;
1737 
1738     for (i = 0; i < opp_table->regulator_count; i++) {
1739         reg = opp_table->regulators[i];
1740 
1741         if (!regulator_is_supported_voltage(reg,
1742                     opp->supplies[i].u_volt_min,
1743                     opp->supplies[i].u_volt_max)) {
1744             pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1745                 __func__, opp->supplies[i].u_volt_min,
1746                 opp->supplies[i].u_volt_max);
1747             return false;
1748         }
1749     }
1750 
1751     return true;
1752 }
1753 
1754 static int _opp_compare_rate(struct opp_table *opp_table,
1755                  struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1756 {
1757     int i;
1758 
1759     for (i = 0; i < opp_table->clk_count; i++) {
1760         if (opp1->rates[i] != opp2->rates[i])
1761             return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1762     }
1763 
1764     /* Same rates for both OPPs */
1765     return 0;
1766 }
1767 
1768 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1769                struct dev_pm_opp *opp2)
1770 {
1771     int i;
1772 
1773     for (i = 0; i < opp_table->path_count; i++) {
1774         if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1775             return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1776     }
1777 
1778     /* Same bw for both OPPs */
1779     return 0;
1780 }
1781 
1782 /*
1783  * Returns
1784  * 0: opp1 == opp2
1785  * 1: opp1 > opp2
1786  * -1: opp1 < opp2
1787  */
1788 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1789              struct dev_pm_opp *opp2)
1790 {
1791     int ret;
1792 
1793     ret = _opp_compare_rate(opp_table, opp1, opp2);
1794     if (ret)
1795         return ret;
1796 
1797     ret = _opp_compare_bw(opp_table, opp1, opp2);
1798     if (ret)
1799         return ret;
1800 
1801     if (opp1->level != opp2->level)
1802         return opp1->level < opp2->level ? -1 : 1;
1803 
1804     /* Duplicate OPPs */
1805     return 0;
1806 }
1807 
1808 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1809                  struct opp_table *opp_table,
1810                  struct list_head **head)
1811 {
1812     struct dev_pm_opp *opp;
1813     int opp_cmp;
1814 
1815     /*
1816      * Insert new OPP in order of increasing frequency and discard if
1817      * already present.
1818      *
1819      * Need to use &opp_table->opp_list in the condition part of the 'for'
1820      * loop, don't replace it with head otherwise it will become an infinite
1821      * loop.
1822      */
1823     list_for_each_entry(opp, &opp_table->opp_list, node) {
1824         opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1825         if (opp_cmp > 0) {
1826             *head = &opp->node;
1827             continue;
1828         }
1829 
1830         if (opp_cmp < 0)
1831             return 0;
1832 
1833         /* Duplicate OPPs */
1834         dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1835              __func__, opp->rates[0], opp->supplies[0].u_volt,
1836              opp->available, new_opp->rates[0],
1837              new_opp->supplies[0].u_volt, new_opp->available);
1838 
1839         /* Should we compare voltages for all regulators here ? */
1840         return opp->available &&
1841                new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1842     }
1843 
1844     return 0;
1845 }
1846 
1847 void _required_opps_available(struct dev_pm_opp *opp, int count)
1848 {
1849     int i;
1850 
1851     for (i = 0; i < count; i++) {
1852         if (opp->required_opps[i]->available)
1853             continue;
1854 
1855         opp->available = false;
1856         pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1857              __func__, opp->required_opps[i]->np, opp->rates[0]);
1858         return;
1859     }
1860 }
1861 
1862 /*
1863  * Returns:
1864  * 0: On success. And appropriate error message for duplicate OPPs.
1865  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1866  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1867  *  sure we don't print error messages unnecessarily if different parts of
1868  *  kernel try to initialize the OPP table.
1869  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1870  *  should be considered an error by the callers of _opp_add().
1871  */
1872 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1873          struct opp_table *opp_table)
1874 {
1875     struct list_head *head;
1876     int ret;
1877 
1878     mutex_lock(&opp_table->lock);
1879     head = &opp_table->opp_list;
1880 
1881     ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1882     if (ret) {
1883         mutex_unlock(&opp_table->lock);
1884         return ret;
1885     }
1886 
1887     list_add(&new_opp->node, head);
1888     mutex_unlock(&opp_table->lock);
1889 
1890     new_opp->opp_table = opp_table;
1891     kref_init(&new_opp->kref);
1892 
1893     opp_debug_create_one(new_opp, opp_table);
1894 
1895     if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1896         new_opp->available = false;
1897         dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1898              __func__, new_opp->rates[0]);
1899     }
1900 
1901     /* required-opps not fully initialized yet */
1902     if (lazy_linking_pending(opp_table))
1903         return 0;
1904 
1905     _required_opps_available(new_opp, opp_table->required_opp_count);
1906 
1907     return 0;
1908 }
1909 
1910 /**
1911  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1912  * @opp_table:  OPP table
1913  * @dev:    device for which we do this operation
1914  * @freq:   Frequency in Hz for this OPP
1915  * @u_volt: Voltage in uVolts for this OPP
1916  * @dynamic:    Dynamically added OPPs.
1917  *
1918  * This function adds an opp definition to the opp table and returns status.
1919  * The opp is made available by default and it can be controlled using
1920  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1921  *
1922  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1923  * and freed by dev_pm_opp_of_remove_table.
1924  *
1925  * Return:
1926  * 0        On success OR
1927  *      Duplicate OPPs (both freq and volt are same) and opp->available
1928  * -EEXIST  Freq are same and volt are different OR
1929  *      Duplicate OPPs (both freq and volt are same) and !opp->available
1930  * -ENOMEM  Memory allocation failure
1931  */
1932 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1933         unsigned long freq, long u_volt, bool dynamic)
1934 {
1935     struct dev_pm_opp *new_opp;
1936     unsigned long tol;
1937     int ret;
1938 
1939     if (!assert_single_clk(opp_table))
1940         return -EINVAL;
1941 
1942     new_opp = _opp_allocate(opp_table);
1943     if (!new_opp)
1944         return -ENOMEM;
1945 
1946     /* populate the opp table */
1947     new_opp->rates[0] = freq;
1948     tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1949     new_opp->supplies[0].u_volt = u_volt;
1950     new_opp->supplies[0].u_volt_min = u_volt - tol;
1951     new_opp->supplies[0].u_volt_max = u_volt + tol;
1952     new_opp->available = true;
1953     new_opp->dynamic = dynamic;
1954 
1955     ret = _opp_add(dev, new_opp, opp_table);
1956     if (ret) {
1957         /* Don't return error for duplicate OPPs */
1958         if (ret == -EBUSY)
1959             ret = 0;
1960         goto free_opp;
1961     }
1962 
1963     /*
1964      * Notify the changes in the availability of the operable
1965      * frequency/voltage list.
1966      */
1967     blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1968     return 0;
1969 
1970 free_opp:
1971     _opp_free(new_opp);
1972 
1973     return ret;
1974 }
1975 
1976 /**
1977  * _opp_set_supported_hw() - Set supported platforms
1978  * @dev: Device for which supported-hw has to be set.
1979  * @versions: Array of hierarchy of versions to match.
1980  * @count: Number of elements in the array.
1981  *
1982  * This is required only for the V2 bindings, and it enables a platform to
1983  * specify the hierarchy of versions it supports. OPP layer will then enable
1984  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1985  * property.
1986  */
1987 static int _opp_set_supported_hw(struct opp_table *opp_table,
1988                  const u32 *versions, unsigned int count)
1989 {
1990     /* Another CPU that shares the OPP table has set the property ? */
1991     if (opp_table->supported_hw)
1992         return 0;
1993 
1994     opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1995                     GFP_KERNEL);
1996     if (!opp_table->supported_hw)
1997         return -ENOMEM;
1998 
1999     opp_table->supported_hw_count = count;
2000 
2001     return 0;
2002 }
2003 
2004 /**
2005  * _opp_put_supported_hw() - Releases resources blocked for supported hw
2006  * @opp_table: OPP table returned by _opp_set_supported_hw().
2007  *
2008  * This is required only for the V2 bindings, and is called for a matching
2009  * _opp_set_supported_hw(). Until this is called, the opp_table structure
2010  * will not be freed.
2011  */
2012 static void _opp_put_supported_hw(struct opp_table *opp_table)
2013 {
2014     if (opp_table->supported_hw) {
2015         kfree(opp_table->supported_hw);
2016         opp_table->supported_hw = NULL;
2017         opp_table->supported_hw_count = 0;
2018     }
2019 }
2020 
2021 /**
2022  * _opp_set_prop_name() - Set prop-extn name
2023  * @dev: Device for which the prop-name has to be set.
2024  * @name: name to postfix to properties.
2025  *
2026  * This is required only for the V2 bindings, and it enables a platform to
2027  * specify the extn to be used for certain property names. The properties to
2028  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2029  * should postfix the property name with -<name> while looking for them.
2030  */
2031 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2032 {
2033     /* Another CPU that shares the OPP table has set the property ? */
2034     if (!opp_table->prop_name) {
2035         opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2036         if (!opp_table->prop_name)
2037             return -ENOMEM;
2038     }
2039 
2040     return 0;
2041 }
2042 
2043 /**
2044  * _opp_put_prop_name() - Releases resources blocked for prop-name
2045  * @opp_table: OPP table returned by _opp_set_prop_name().
2046  *
2047  * This is required only for the V2 bindings, and is called for a matching
2048  * _opp_set_prop_name(). Until this is called, the opp_table structure
2049  * will not be freed.
2050  */
2051 static void _opp_put_prop_name(struct opp_table *opp_table)
2052 {
2053     if (opp_table->prop_name) {
2054         kfree(opp_table->prop_name);
2055         opp_table->prop_name = NULL;
2056     }
2057 }
2058 
2059 /**
2060  * _opp_set_regulators() - Set regulator names for the device
2061  * @dev: Device for which regulator name is being set.
2062  * @names: Array of pointers to the names of the regulator.
2063  * @count: Number of regulators.
2064  *
2065  * In order to support OPP switching, OPP layer needs to know the name of the
2066  * device's regulators, as the core would be required to switch voltages as
2067  * well.
2068  *
2069  * This must be called before any OPPs are initialized for the device.
2070  */
2071 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2072                    const char * const names[])
2073 {
2074     const char * const *temp = names;
2075     struct regulator *reg;
2076     int count = 0, ret, i;
2077 
2078     /* Count number of regulators */
2079     while (*temp++)
2080         count++;
2081 
2082     if (!count)
2083         return -EINVAL;
2084 
2085     /* Another CPU that shares the OPP table has set the regulators ? */
2086     if (opp_table->regulators)
2087         return 0;
2088 
2089     opp_table->regulators = kmalloc_array(count,
2090                           sizeof(*opp_table->regulators),
2091                           GFP_KERNEL);
2092     if (!opp_table->regulators)
2093         return -ENOMEM;
2094 
2095     for (i = 0; i < count; i++) {
2096         reg = regulator_get_optional(dev, names[i]);
2097         if (IS_ERR(reg)) {
2098             ret = dev_err_probe(dev, PTR_ERR(reg),
2099                         "%s: no regulator (%s) found\n",
2100                         __func__, names[i]);
2101             goto free_regulators;
2102         }
2103 
2104         opp_table->regulators[i] = reg;
2105     }
2106 
2107     opp_table->regulator_count = count;
2108 
2109     /* Set generic config_regulators() for single regulators here */
2110     if (count == 1)
2111         opp_table->config_regulators = _opp_config_regulator_single;
2112 
2113     return 0;
2114 
2115 free_regulators:
2116     while (i != 0)
2117         regulator_put(opp_table->regulators[--i]);
2118 
2119     kfree(opp_table->regulators);
2120     opp_table->regulators = NULL;
2121     opp_table->regulator_count = -1;
2122 
2123     return ret;
2124 }
2125 
2126 /**
2127  * _opp_put_regulators() - Releases resources blocked for regulator
2128  * @opp_table: OPP table returned from _opp_set_regulators().
2129  */
2130 static void _opp_put_regulators(struct opp_table *opp_table)
2131 {
2132     int i;
2133 
2134     if (!opp_table->regulators)
2135         return;
2136 
2137     if (opp_table->enabled) {
2138         for (i = opp_table->regulator_count - 1; i >= 0; i--)
2139             regulator_disable(opp_table->regulators[i]);
2140     }
2141 
2142     for (i = opp_table->regulator_count - 1; i >= 0; i--)
2143         regulator_put(opp_table->regulators[i]);
2144 
2145     kfree(opp_table->regulators);
2146     opp_table->regulators = NULL;
2147     opp_table->regulator_count = -1;
2148 }
2149 
2150 static void _put_clks(struct opp_table *opp_table, int count)
2151 {
2152     int i;
2153 
2154     for (i = count - 1; i >= 0; i--)
2155         clk_put(opp_table->clks[i]);
2156 
2157     kfree(opp_table->clks);
2158     opp_table->clks = NULL;
2159 }
2160 
2161 /**
2162  * _opp_set_clknames() - Set clk names for the device
2163  * @dev: Device for which clk names is being set.
2164  * @names: Clk names.
2165  *
2166  * In order to support OPP switching, OPP layer needs to get pointers to the
2167  * clocks for the device. Simple cases work fine without using this routine
2168  * (i.e. by passing connection-id as NULL), but for a device with multiple
2169  * clocks available, the OPP core needs to know the exact names of the clks to
2170  * use.
2171  *
2172  * This must be called before any OPPs are initialized for the device.
2173  */
2174 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2175                  const char * const names[],
2176                  config_clks_t config_clks)
2177 {
2178     const char * const *temp = names;
2179     int count = 0, ret, i;
2180     struct clk *clk;
2181 
2182     /* Count number of clks */
2183     while (*temp++)
2184         count++;
2185 
2186     /*
2187      * This is a special case where we have a single clock, whose connection
2188      * id name is NULL, i.e. first two entries are NULL in the array.
2189      */
2190     if (!count && !names[1])
2191         count = 1;
2192 
2193     /* Fail early for invalid configurations */
2194     if (!count || (!config_clks && count > 1))
2195         return -EINVAL;
2196 
2197     /* Another CPU that shares the OPP table has set the clkname ? */
2198     if (opp_table->clks)
2199         return 0;
2200 
2201     opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2202                     GFP_KERNEL);
2203     if (!opp_table->clks)
2204         return -ENOMEM;
2205 
2206     /* Find clks for the device */
2207     for (i = 0; i < count; i++) {
2208         clk = clk_get(dev, names[i]);
2209         if (IS_ERR(clk)) {
2210             ret = dev_err_probe(dev, PTR_ERR(clk),
2211                         "%s: Couldn't find clock with name: %s\n",
2212                         __func__, names[i]);
2213             goto free_clks;
2214         }
2215 
2216         opp_table->clks[i] = clk;
2217     }
2218 
2219     opp_table->clk_count = count;
2220     opp_table->config_clks = config_clks;
2221 
2222     /* Set generic single clk set here */
2223     if (count == 1) {
2224         if (!opp_table->config_clks)
2225             opp_table->config_clks = _opp_config_clk_single;
2226 
2227         /*
2228          * We could have just dropped the "clk" field and used "clks"
2229          * everywhere. Instead we kept the "clk" field around for
2230          * following reasons:
2231          *
2232          * - avoiding clks[0] everywhere else.
2233          * - not running single clk helpers for multiple clk usecase by
2234          *   mistake.
2235          *
2236          * Since this is single-clk case, just update the clk pointer
2237          * too.
2238          */
2239         opp_table->clk = opp_table->clks[0];
2240     }
2241 
2242     return 0;
2243 
2244 free_clks:
2245     _put_clks(opp_table, i);
2246     return ret;
2247 }
2248 
2249 /**
2250  * _opp_put_clknames() - Releases resources blocked for clks.
2251  * @opp_table: OPP table returned from _opp_set_clknames().
2252  */
2253 static void _opp_put_clknames(struct opp_table *opp_table)
2254 {
2255     if (!opp_table->clks)
2256         return;
2257 
2258     opp_table->config_clks = NULL;
2259     opp_table->clk = ERR_PTR(-ENODEV);
2260 
2261     _put_clks(opp_table, opp_table->clk_count);
2262 }
2263 
2264 /**
2265  * _opp_set_config_regulators_helper() - Register custom set regulator helper.
2266  * @dev: Device for which the helper is getting registered.
2267  * @config_regulators: Custom set regulator helper.
2268  *
2269  * This is useful to support platforms with multiple regulators per device.
2270  *
2271  * This must be called before any OPPs are initialized for the device.
2272  */
2273 static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2274         struct device *dev, config_regulators_t config_regulators)
2275 {
2276     /* Another CPU that shares the OPP table has set the helper ? */
2277     if (!opp_table->config_regulators)
2278         opp_table->config_regulators = config_regulators;
2279 
2280     return 0;
2281 }
2282 
2283 /**
2284  * _opp_put_config_regulators_helper() - Releases resources blocked for
2285  *                   config_regulators helper.
2286  * @opp_table: OPP table returned from _opp_set_config_regulators_helper().
2287  *
2288  * Release resources blocked for platform specific config_regulators helper.
2289  */
2290 static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2291 {
2292     if (opp_table->config_regulators)
2293         opp_table->config_regulators = NULL;
2294 }
2295 
2296 static void _detach_genpd(struct opp_table *opp_table)
2297 {
2298     int index;
2299 
2300     if (!opp_table->genpd_virt_devs)
2301         return;
2302 
2303     for (index = 0; index < opp_table->required_opp_count; index++) {
2304         if (!opp_table->genpd_virt_devs[index])
2305             continue;
2306 
2307         dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2308         opp_table->genpd_virt_devs[index] = NULL;
2309     }
2310 
2311     kfree(opp_table->genpd_virt_devs);
2312     opp_table->genpd_virt_devs = NULL;
2313 }
2314 
2315 /**
2316  * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2317  * @dev: Consumer device for which the genpd is getting attached.
2318  * @names: Null terminated array of pointers containing names of genpd to attach.
2319  * @virt_devs: Pointer to return the array of virtual devices.
2320  *
2321  * Multiple generic power domains for a device are supported with the help of
2322  * virtual genpd devices, which are created for each consumer device - genpd
2323  * pair. These are the device structures which are attached to the power domain
2324  * and are required by the OPP core to set the performance state of the genpd.
2325  * The same API also works for the case where single genpd is available and so
2326  * we don't need to support that separately.
2327  *
2328  * This helper will normally be called by the consumer driver of the device
2329  * "dev", as only that has details of the genpd names.
2330  *
2331  * This helper needs to be called once with a list of all genpd to attach.
2332  * Otherwise the original device structure will be used instead by the OPP core.
2333  *
2334  * The order of entries in the names array must match the order in which
2335  * "required-opps" are added in DT.
2336  */
2337 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2338             const char * const *names, struct device ***virt_devs)
2339 {
2340     struct device *virt_dev;
2341     int index = 0, ret = -EINVAL;
2342     const char * const *name = names;
2343 
2344     if (opp_table->genpd_virt_devs)
2345         return 0;
2346 
2347     /*
2348      * If the genpd's OPP table isn't already initialized, parsing of the
2349      * required-opps fail for dev. We should retry this after genpd's OPP
2350      * table is added.
2351      */
2352     if (!opp_table->required_opp_count)
2353         return -EPROBE_DEFER;
2354 
2355     mutex_lock(&opp_table->genpd_virt_dev_lock);
2356 
2357     opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2358                          sizeof(*opp_table->genpd_virt_devs),
2359                          GFP_KERNEL);
2360     if (!opp_table->genpd_virt_devs)
2361         goto unlock;
2362 
2363     while (*name) {
2364         if (index >= opp_table->required_opp_count) {
2365             dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2366                 *name, opp_table->required_opp_count, index);
2367             goto err;
2368         }
2369 
2370         virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2371         if (IS_ERR_OR_NULL(virt_dev)) {
2372             ret = PTR_ERR(virt_dev) ? : -ENODEV;
2373             dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2374             goto err;
2375         }
2376 
2377         opp_table->genpd_virt_devs[index] = virt_dev;
2378         index++;
2379         name++;
2380     }
2381 
2382     if (virt_devs)
2383         *virt_devs = opp_table->genpd_virt_devs;
2384     mutex_unlock(&opp_table->genpd_virt_dev_lock);
2385 
2386     return 0;
2387 
2388 err:
2389     _detach_genpd(opp_table);
2390 unlock:
2391     mutex_unlock(&opp_table->genpd_virt_dev_lock);
2392     return ret;
2393 
2394 }
2395 
2396 /**
2397  * _opp_detach_genpd() - Detach genpd(s) from the device.
2398  * @opp_table: OPP table returned by _opp_attach_genpd().
2399  *
2400  * This detaches the genpd(s), resets the virtual device pointers, and puts the
2401  * OPP table.
2402  */
2403 static void _opp_detach_genpd(struct opp_table *opp_table)
2404 {
2405     /*
2406      * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2407      * used in parallel.
2408      */
2409     mutex_lock(&opp_table->genpd_virt_dev_lock);
2410     _detach_genpd(opp_table);
2411     mutex_unlock(&opp_table->genpd_virt_dev_lock);
2412 }
2413 
2414 static void _opp_clear_config(struct opp_config_data *data)
2415 {
2416     if (data->flags & OPP_CONFIG_GENPD)
2417         _opp_detach_genpd(data->opp_table);
2418     if (data->flags & OPP_CONFIG_REGULATOR)
2419         _opp_put_regulators(data->opp_table);
2420     if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2421         _opp_put_supported_hw(data->opp_table);
2422     if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2423         _opp_put_config_regulators_helper(data->opp_table);
2424     if (data->flags & OPP_CONFIG_PROP_NAME)
2425         _opp_put_prop_name(data->opp_table);
2426     if (data->flags & OPP_CONFIG_CLK)
2427         _opp_put_clknames(data->opp_table);
2428 
2429     dev_pm_opp_put_opp_table(data->opp_table);
2430     kfree(data);
2431 }
2432 
2433 /**
2434  * dev_pm_opp_set_config() - Set OPP configuration for the device.
2435  * @dev: Device for which configuration is being set.
2436  * @config: OPP configuration.
2437  *
2438  * This allows all device OPP configurations to be performed at once.
2439  *
2440  * This must be called before any OPPs are initialized for the device. This may
2441  * be called multiple times for the same OPP table, for example once for each
2442  * CPU that share the same table. This must be balanced by the same number of
2443  * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2444  *
2445  * This returns a token to the caller, which must be passed to
2446  * dev_pm_opp_clear_config() to free the resources later. The value of the
2447  * returned token will be >= 1 for success and negative for errors. The minimum
2448  * value of 1 is chosen here to make it easy for callers to manage the resource.
2449  */
2450 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2451 {
2452     struct opp_table *opp_table;
2453     struct opp_config_data *data;
2454     unsigned int id;
2455     int ret;
2456 
2457     data = kmalloc(sizeof(*data), GFP_KERNEL);
2458     if (!data)
2459         return -ENOMEM;
2460 
2461     opp_table = _add_opp_table(dev, false);
2462     if (IS_ERR(opp_table)) {
2463         kfree(data);
2464         return PTR_ERR(opp_table);
2465     }
2466 
2467     data->opp_table = opp_table;
2468     data->flags = 0;
2469 
2470     /* This should be called before OPPs are initialized */
2471     if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2472         ret = -EBUSY;
2473         goto err;
2474     }
2475 
2476     /* Configure clocks */
2477     if (config->clk_names) {
2478         ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2479                     config->config_clks);
2480         if (ret)
2481             goto err;
2482 
2483         data->flags |= OPP_CONFIG_CLK;
2484     } else if (config->config_clks) {
2485         /* Don't allow config callback without clocks */
2486         ret = -EINVAL;
2487         goto err;
2488     }
2489 
2490     /* Configure property names */
2491     if (config->prop_name) {
2492         ret = _opp_set_prop_name(opp_table, config->prop_name);
2493         if (ret)
2494             goto err;
2495 
2496         data->flags |= OPP_CONFIG_PROP_NAME;
2497     }
2498 
2499     /* Configure config_regulators helper */
2500     if (config->config_regulators) {
2501         ret = _opp_set_config_regulators_helper(opp_table, dev,
2502                         config->config_regulators);
2503         if (ret)
2504             goto err;
2505 
2506         data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2507     }
2508 
2509     /* Configure supported hardware */
2510     if (config->supported_hw) {
2511         ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2512                         config->supported_hw_count);
2513         if (ret)
2514             goto err;
2515 
2516         data->flags |= OPP_CONFIG_SUPPORTED_HW;
2517     }
2518 
2519     /* Configure supplies */
2520     if (config->regulator_names) {
2521         ret = _opp_set_regulators(opp_table, dev,
2522                       config->regulator_names);
2523         if (ret)
2524             goto err;
2525 
2526         data->flags |= OPP_CONFIG_REGULATOR;
2527     }
2528 
2529     /* Attach genpds */
2530     if (config->genpd_names) {
2531         ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2532                     config->virt_devs);
2533         if (ret)
2534             goto err;
2535 
2536         data->flags |= OPP_CONFIG_GENPD;
2537     }
2538 
2539     ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2540                GFP_KERNEL);
2541     if (ret)
2542         goto err;
2543 
2544     return id;
2545 
2546 err:
2547     _opp_clear_config(data);
2548     return ret;
2549 }
2550 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2551 
2552 /**
2553  * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2554  * @opp_table: OPP table returned from dev_pm_opp_set_config().
2555  *
2556  * This allows all device OPP configurations to be cleared at once. This must be
2557  * called once for each call made to dev_pm_opp_set_config(), in order to free
2558  * the OPPs properly.
2559  *
2560  * Currently the first call itself ends up freeing all the OPP configurations,
2561  * while the later ones only drop the OPP table reference. This works well for
2562  * now as we would never want to use an half initialized OPP table and want to
2563  * remove the configurations together.
2564  */
2565 void dev_pm_opp_clear_config(int token)
2566 {
2567     struct opp_config_data *data;
2568 
2569     /*
2570      * This lets the callers call this unconditionally and keep their code
2571      * simple.
2572      */
2573     if (unlikely(token <= 0))
2574         return;
2575 
2576     data = xa_erase(&opp_configs, token);
2577     if (WARN_ON(!data))
2578         return;
2579 
2580     _opp_clear_config(data);
2581 }
2582 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2583 
2584 static void devm_pm_opp_config_release(void *token)
2585 {
2586     dev_pm_opp_clear_config((unsigned long)token);
2587 }
2588 
2589 /**
2590  * devm_pm_opp_set_config() - Set OPP configuration for the device.
2591  * @dev: Device for which configuration is being set.
2592  * @config: OPP configuration.
2593  *
2594  * This allows all device OPP configurations to be performed at once.
2595  * This is a resource-managed variant of dev_pm_opp_set_config().
2596  *
2597  * Return: 0 on success and errorno otherwise.
2598  */
2599 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2600 {
2601     int token = dev_pm_opp_set_config(dev, config);
2602 
2603     if (token < 0)
2604         return token;
2605 
2606     return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2607                     (void *) ((unsigned long) token));
2608 }
2609 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2610 
2611 /**
2612  * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2613  * @src_table: OPP table which has @dst_table as one of its required OPP table.
2614  * @dst_table: Required OPP table of the @src_table.
2615  * @src_opp: OPP from the @src_table.
2616  *
2617  * This function returns the OPP (present in @dst_table) pointed out by the
2618  * "required-opps" property of the @src_opp (present in @src_table).
2619  *
2620  * The callers are required to call dev_pm_opp_put() for the returned OPP after
2621  * use.
2622  *
2623  * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2624  */
2625 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2626                          struct opp_table *dst_table,
2627                          struct dev_pm_opp *src_opp)
2628 {
2629     struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2630     int i;
2631 
2632     if (!src_table || !dst_table || !src_opp ||
2633         !src_table->required_opp_tables)
2634         return ERR_PTR(-EINVAL);
2635 
2636     /* required-opps not fully initialized yet */
2637     if (lazy_linking_pending(src_table))
2638         return ERR_PTR(-EBUSY);
2639 
2640     for (i = 0; i < src_table->required_opp_count; i++) {
2641         if (src_table->required_opp_tables[i] == dst_table) {
2642             mutex_lock(&src_table->lock);
2643 
2644             list_for_each_entry(opp, &src_table->opp_list, node) {
2645                 if (opp == src_opp) {
2646                     dest_opp = opp->required_opps[i];
2647                     dev_pm_opp_get(dest_opp);
2648                     break;
2649                 }
2650             }
2651 
2652             mutex_unlock(&src_table->lock);
2653             break;
2654         }
2655     }
2656 
2657     if (IS_ERR(dest_opp)) {
2658         pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2659                src_table, dst_table);
2660     }
2661 
2662     return dest_opp;
2663 }
2664 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2665 
2666 /**
2667  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2668  * @src_table: OPP table which has dst_table as one of its required OPP table.
2669  * @dst_table: Required OPP table of the src_table.
2670  * @pstate: Current performance state of the src_table.
2671  *
2672  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2673  * "required-opps" property of the OPP (present in @src_table) which has
2674  * performance state set to @pstate.
2675  *
2676  * Return: Zero or positive performance state on success, otherwise negative
2677  * value on errors.
2678  */
2679 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2680                        struct opp_table *dst_table,
2681                        unsigned int pstate)
2682 {
2683     struct dev_pm_opp *opp;
2684     int dest_pstate = -EINVAL;
2685     int i;
2686 
2687     /*
2688      * Normally the src_table will have the "required_opps" property set to
2689      * point to one of the OPPs in the dst_table, but in some cases the
2690      * genpd and its master have one to one mapping of performance states
2691      * and so none of them have the "required-opps" property set. Return the
2692      * pstate of the src_table as it is in such cases.
2693      */
2694     if (!src_table || !src_table->required_opp_count)
2695         return pstate;
2696 
2697     /* required-opps not fully initialized yet */
2698     if (lazy_linking_pending(src_table))
2699         return -EBUSY;
2700 
2701     for (i = 0; i < src_table->required_opp_count; i++) {
2702         if (src_table->required_opp_tables[i]->np == dst_table->np)
2703             break;
2704     }
2705 
2706     if (unlikely(i == src_table->required_opp_count)) {
2707         pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2708                __func__, src_table, dst_table);
2709         return -EINVAL;
2710     }
2711 
2712     mutex_lock(&src_table->lock);
2713 
2714     list_for_each_entry(opp, &src_table->opp_list, node) {
2715         if (opp->pstate == pstate) {
2716             dest_pstate = opp->required_opps[i]->pstate;
2717             goto unlock;
2718         }
2719     }
2720 
2721     pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2722            dst_table);
2723 
2724 unlock:
2725     mutex_unlock(&src_table->lock);
2726 
2727     return dest_pstate;
2728 }
2729 
2730 /**
2731  * dev_pm_opp_add()  - Add an OPP table from a table definitions
2732  * @dev:    device for which we do this operation
2733  * @freq:   Frequency in Hz for this OPP
2734  * @u_volt: Voltage in uVolts for this OPP
2735  *
2736  * This function adds an opp definition to the opp table and returns status.
2737  * The opp is made available by default and it can be controlled using
2738  * dev_pm_opp_enable/disable functions.
2739  *
2740  * Return:
2741  * 0        On success OR
2742  *      Duplicate OPPs (both freq and volt are same) and opp->available
2743  * -EEXIST  Freq are same and volt are different OR
2744  *      Duplicate OPPs (both freq and volt are same) and !opp->available
2745  * -ENOMEM  Memory allocation failure
2746  */
2747 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2748 {
2749     struct opp_table *opp_table;
2750     int ret;
2751 
2752     opp_table = _add_opp_table(dev, true);
2753     if (IS_ERR(opp_table))
2754         return PTR_ERR(opp_table);
2755 
2756     /* Fix regulator count for dynamic OPPs */
2757     opp_table->regulator_count = 1;
2758 
2759     ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2760     if (ret)
2761         dev_pm_opp_put_opp_table(opp_table);
2762 
2763     return ret;
2764 }
2765 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2766 
2767 /**
2768  * _opp_set_availability() - helper to set the availability of an opp
2769  * @dev:        device for which we do this operation
2770  * @freq:       OPP frequency to modify availability
2771  * @availability_req:   availability status requested for this opp
2772  *
2773  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2774  * which is isolated here.
2775  *
2776  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2777  * copy operation, returns 0 if no modification was done OR modification was
2778  * successful.
2779  */
2780 static int _opp_set_availability(struct device *dev, unsigned long freq,
2781                  bool availability_req)
2782 {
2783     struct opp_table *opp_table;
2784     struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2785     int r = 0;
2786 
2787     /* Find the opp_table */
2788     opp_table = _find_opp_table(dev);
2789     if (IS_ERR(opp_table)) {
2790         r = PTR_ERR(opp_table);
2791         dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2792         return r;
2793     }
2794 
2795     if (!assert_single_clk(opp_table)) {
2796         r = -EINVAL;
2797         goto put_table;
2798     }
2799 
2800     mutex_lock(&opp_table->lock);
2801 
2802     /* Do we have the frequency? */
2803     list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2804         if (tmp_opp->rates[0] == freq) {
2805             opp = tmp_opp;
2806             break;
2807         }
2808     }
2809 
2810     if (IS_ERR(opp)) {
2811         r = PTR_ERR(opp);
2812         goto unlock;
2813     }
2814 
2815     /* Is update really needed? */
2816     if (opp->available == availability_req)
2817         goto unlock;
2818 
2819     opp->available = availability_req;
2820 
2821     dev_pm_opp_get(opp);
2822     mutex_unlock(&opp_table->lock);
2823 
2824     /* Notify the change of the OPP availability */
2825     if (availability_req)
2826         blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2827                          opp);
2828     else
2829         blocking_notifier_call_chain(&opp_table->head,
2830                          OPP_EVENT_DISABLE, opp);
2831 
2832     dev_pm_opp_put(opp);
2833     goto put_table;
2834 
2835 unlock:
2836     mutex_unlock(&opp_table->lock);
2837 put_table:
2838     dev_pm_opp_put_opp_table(opp_table);
2839     return r;
2840 }
2841 
2842 /**
2843  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2844  * @dev:        device for which we do this operation
2845  * @freq:       OPP frequency to adjust voltage of
2846  * @u_volt:     new OPP target voltage
2847  * @u_volt_min:     new OPP min voltage
2848  * @u_volt_max:     new OPP max voltage
2849  *
2850  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2851  * copy operation, returns 0 if no modifcation was done OR modification was
2852  * successful.
2853  */
2854 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2855                   unsigned long u_volt, unsigned long u_volt_min,
2856                   unsigned long u_volt_max)
2857 
2858 {
2859     struct opp_table *opp_table;
2860     struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2861     int r = 0;
2862 
2863     /* Find the opp_table */
2864     opp_table = _find_opp_table(dev);
2865     if (IS_ERR(opp_table)) {
2866         r = PTR_ERR(opp_table);
2867         dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2868         return r;
2869     }
2870 
2871     if (!assert_single_clk(opp_table)) {
2872         r = -EINVAL;
2873         goto put_table;
2874     }
2875 
2876     mutex_lock(&opp_table->lock);
2877 
2878     /* Do we have the frequency? */
2879     list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2880         if (tmp_opp->rates[0] == freq) {
2881             opp = tmp_opp;
2882             break;
2883         }
2884     }
2885 
2886     if (IS_ERR(opp)) {
2887         r = PTR_ERR(opp);
2888         goto adjust_unlock;
2889     }
2890 
2891     /* Is update really needed? */
2892     if (opp->supplies->u_volt == u_volt)
2893         goto adjust_unlock;
2894 
2895     opp->supplies->u_volt = u_volt;
2896     opp->supplies->u_volt_min = u_volt_min;
2897     opp->supplies->u_volt_max = u_volt_max;
2898 
2899     dev_pm_opp_get(opp);
2900     mutex_unlock(&opp_table->lock);
2901 
2902     /* Notify the voltage change of the OPP */
2903     blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2904                      opp);
2905 
2906     dev_pm_opp_put(opp);
2907     goto put_table;
2908 
2909 adjust_unlock:
2910     mutex_unlock(&opp_table->lock);
2911 put_table:
2912     dev_pm_opp_put_opp_table(opp_table);
2913     return r;
2914 }
2915 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2916 
2917 /**
2918  * dev_pm_opp_enable() - Enable a specific OPP
2919  * @dev:    device for which we do this operation
2920  * @freq:   OPP frequency to enable
2921  *
2922  * Enables a provided opp. If the operation is valid, this returns 0, else the
2923  * corresponding error value. It is meant to be used for users an OPP available
2924  * after being temporarily made unavailable with dev_pm_opp_disable.
2925  *
2926  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2927  * copy operation, returns 0 if no modification was done OR modification was
2928  * successful.
2929  */
2930 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2931 {
2932     return _opp_set_availability(dev, freq, true);
2933 }
2934 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2935 
2936 /**
2937  * dev_pm_opp_disable() - Disable a specific OPP
2938  * @dev:    device for which we do this operation
2939  * @freq:   OPP frequency to disable
2940  *
2941  * Disables a provided opp. If the operation is valid, this returns
2942  * 0, else the corresponding error value. It is meant to be a temporary
2943  * control by users to make this OPP not available until the circumstances are
2944  * right to make it available again (with a call to dev_pm_opp_enable).
2945  *
2946  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2947  * copy operation, returns 0 if no modification was done OR modification was
2948  * successful.
2949  */
2950 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2951 {
2952     return _opp_set_availability(dev, freq, false);
2953 }
2954 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2955 
2956 /**
2957  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2958  * @dev:    Device for which notifier needs to be registered
2959  * @nb:     Notifier block to be registered
2960  *
2961  * Return: 0 on success or a negative error value.
2962  */
2963 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2964 {
2965     struct opp_table *opp_table;
2966     int ret;
2967 
2968     opp_table = _find_opp_table(dev);
2969     if (IS_ERR(opp_table))
2970         return PTR_ERR(opp_table);
2971 
2972     ret = blocking_notifier_chain_register(&opp_table->head, nb);
2973 
2974     dev_pm_opp_put_opp_table(opp_table);
2975 
2976     return ret;
2977 }
2978 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2979 
2980 /**
2981  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2982  * @dev:    Device for which notifier needs to be unregistered
2983  * @nb:     Notifier block to be unregistered
2984  *
2985  * Return: 0 on success or a negative error value.
2986  */
2987 int dev_pm_opp_unregister_notifier(struct device *dev,
2988                    struct notifier_block *nb)
2989 {
2990     struct opp_table *opp_table;
2991     int ret;
2992 
2993     opp_table = _find_opp_table(dev);
2994     if (IS_ERR(opp_table))
2995         return PTR_ERR(opp_table);
2996 
2997     ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2998 
2999     dev_pm_opp_put_opp_table(opp_table);
3000 
3001     return ret;
3002 }
3003 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3004 
3005 /**
3006  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3007  * @dev:    device pointer used to lookup OPP table.
3008  *
3009  * Free both OPPs created using static entries present in DT and the
3010  * dynamically added entries.
3011  */
3012 void dev_pm_opp_remove_table(struct device *dev)
3013 {
3014     struct opp_table *opp_table;
3015 
3016     /* Check for existing table for 'dev' */
3017     opp_table = _find_opp_table(dev);
3018     if (IS_ERR(opp_table)) {
3019         int error = PTR_ERR(opp_table);
3020 
3021         if (error != -ENODEV)
3022             WARN(1, "%s: opp_table: %d\n",
3023                  IS_ERR_OR_NULL(dev) ?
3024                     "Invalid device" : dev_name(dev),
3025                  error);
3026         return;
3027     }
3028 
3029     /*
3030      * Drop the extra reference only if the OPP table was successfully added
3031      * with dev_pm_opp_of_add_table() earlier.
3032      **/
3033     if (_opp_remove_all_static(opp_table))
3034         dev_pm_opp_put_opp_table(opp_table);
3035 
3036     /* Drop reference taken by _find_opp_table() */
3037     dev_pm_opp_put_opp_table(opp_table);
3038 }
3039 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3040 
3041 /**
3042  * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3043  * @dev:    device for which we do this operation
3044  *
3045  * Sync voltage state of the OPP table regulators.
3046  *
3047  * Return: 0 on success or a negative error value.
3048  */
3049 int dev_pm_opp_sync_regulators(struct device *dev)
3050 {
3051     struct opp_table *opp_table;
3052     struct regulator *reg;
3053     int i, ret = 0;
3054 
3055     /* Device may not have OPP table */
3056     opp_table = _find_opp_table(dev);
3057     if (IS_ERR(opp_table))
3058         return 0;
3059 
3060     /* Regulator may not be required for the device */
3061     if (unlikely(!opp_table->regulators))
3062         goto put_table;
3063 
3064     /* Nothing to sync if voltage wasn't changed */
3065     if (!opp_table->enabled)
3066         goto put_table;
3067 
3068     for (i = 0; i < opp_table->regulator_count; i++) {
3069         reg = opp_table->regulators[i];
3070         ret = regulator_sync_voltage(reg);
3071         if (ret)
3072             break;
3073     }
3074 put_table:
3075     /* Drop reference taken by _find_opp_table() */
3076     dev_pm_opp_put_opp_table(opp_table);
3077 
3078     return ret;
3079 }
3080 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);