Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0+
0002 /*
0003  * Procedures for creating, accessing and interpreting the device tree.
0004  *
0005  * Paul Mackerras   August 1996.
0006  * Copyright (C) 1996-2005 Paul Mackerras.
0007  *
0008  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
0009  *    {engebret|bergner}@us.ibm.com
0010  *
0011  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
0012  *
0013  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
0014  *  Grant Likely.
0015  */
0016 
0017 #define pr_fmt(fmt) "OF: " fmt
0018 
0019 #include <linux/console.h>
0020 #include <linux/ctype.h>
0021 #include <linux/cpu.h>
0022 #include <linux/module.h>
0023 #include <linux/of.h>
0024 #include <linux/of_device.h>
0025 #include <linux/of_graph.h>
0026 #include <linux/spinlock.h>
0027 #include <linux/slab.h>
0028 #include <linux/string.h>
0029 #include <linux/proc_fs.h>
0030 
0031 #include "of_private.h"
0032 
0033 LIST_HEAD(aliases_lookup);
0034 
0035 struct device_node *of_root;
0036 EXPORT_SYMBOL(of_root);
0037 struct device_node *of_chosen;
0038 EXPORT_SYMBOL(of_chosen);
0039 struct device_node *of_aliases;
0040 struct device_node *of_stdout;
0041 static const char *of_stdout_options;
0042 
0043 struct kset *of_kset;
0044 
0045 /*
0046  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
0047  * This mutex must be held whenever modifications are being made to the
0048  * device tree. The of_{attach,detach}_node() and
0049  * of_{add,remove,update}_property() helpers make sure this happens.
0050  */
0051 DEFINE_MUTEX(of_mutex);
0052 
0053 /* use when traversing tree through the child, sibling,
0054  * or parent members of struct device_node.
0055  */
0056 DEFINE_RAW_SPINLOCK(devtree_lock);
0057 
0058 bool of_node_name_eq(const struct device_node *np, const char *name)
0059 {
0060     const char *node_name;
0061     size_t len;
0062 
0063     if (!np)
0064         return false;
0065 
0066     node_name = kbasename(np->full_name);
0067     len = strchrnul(node_name, '@') - node_name;
0068 
0069     return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
0070 }
0071 EXPORT_SYMBOL(of_node_name_eq);
0072 
0073 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
0074 {
0075     if (!np)
0076         return false;
0077 
0078     return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
0079 }
0080 EXPORT_SYMBOL(of_node_name_prefix);
0081 
0082 static bool __of_node_is_type(const struct device_node *np, const char *type)
0083 {
0084     const char *match = __of_get_property(np, "device_type", NULL);
0085 
0086     return np && match && type && !strcmp(match, type);
0087 }
0088 
0089 int of_bus_n_addr_cells(struct device_node *np)
0090 {
0091     u32 cells;
0092 
0093     for (; np; np = np->parent)
0094         if (!of_property_read_u32(np, "#address-cells", &cells))
0095             return cells;
0096 
0097     /* No #address-cells property for the root node */
0098     return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
0099 }
0100 
0101 int of_n_addr_cells(struct device_node *np)
0102 {
0103     if (np->parent)
0104         np = np->parent;
0105 
0106     return of_bus_n_addr_cells(np);
0107 }
0108 EXPORT_SYMBOL(of_n_addr_cells);
0109 
0110 int of_bus_n_size_cells(struct device_node *np)
0111 {
0112     u32 cells;
0113 
0114     for (; np; np = np->parent)
0115         if (!of_property_read_u32(np, "#size-cells", &cells))
0116             return cells;
0117 
0118     /* No #size-cells property for the root node */
0119     return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
0120 }
0121 
0122 int of_n_size_cells(struct device_node *np)
0123 {
0124     if (np->parent)
0125         np = np->parent;
0126 
0127     return of_bus_n_size_cells(np);
0128 }
0129 EXPORT_SYMBOL(of_n_size_cells);
0130 
0131 #ifdef CONFIG_NUMA
0132 int __weak of_node_to_nid(struct device_node *np)
0133 {
0134     return NUMA_NO_NODE;
0135 }
0136 #endif
0137 
0138 #define OF_PHANDLE_CACHE_BITS   7
0139 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS)
0140 
0141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
0142 
0143 static u32 of_phandle_cache_hash(phandle handle)
0144 {
0145     return hash_32(handle, OF_PHANDLE_CACHE_BITS);
0146 }
0147 
0148 /*
0149  * Caller must hold devtree_lock.
0150  */
0151 void __of_phandle_cache_inv_entry(phandle handle)
0152 {
0153     u32 handle_hash;
0154     struct device_node *np;
0155 
0156     if (!handle)
0157         return;
0158 
0159     handle_hash = of_phandle_cache_hash(handle);
0160 
0161     np = phandle_cache[handle_hash];
0162     if (np && handle == np->phandle)
0163         phandle_cache[handle_hash] = NULL;
0164 }
0165 
0166 void __init of_core_init(void)
0167 {
0168     struct device_node *np;
0169 
0170 
0171     /* Create the kset, and register existing nodes */
0172     mutex_lock(&of_mutex);
0173     of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
0174     if (!of_kset) {
0175         mutex_unlock(&of_mutex);
0176         pr_err("failed to register existing nodes\n");
0177         return;
0178     }
0179     for_each_of_allnodes(np) {
0180         __of_attach_node_sysfs(np);
0181         if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
0182             phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
0183     }
0184     mutex_unlock(&of_mutex);
0185 
0186     /* Symlink in /proc as required by userspace ABI */
0187     if (of_root)
0188         proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
0189 }
0190 
0191 static struct property *__of_find_property(const struct device_node *np,
0192                        const char *name, int *lenp)
0193 {
0194     struct property *pp;
0195 
0196     if (!np)
0197         return NULL;
0198 
0199     for (pp = np->properties; pp; pp = pp->next) {
0200         if (of_prop_cmp(pp->name, name) == 0) {
0201             if (lenp)
0202                 *lenp = pp->length;
0203             break;
0204         }
0205     }
0206 
0207     return pp;
0208 }
0209 
0210 struct property *of_find_property(const struct device_node *np,
0211                   const char *name,
0212                   int *lenp)
0213 {
0214     struct property *pp;
0215     unsigned long flags;
0216 
0217     raw_spin_lock_irqsave(&devtree_lock, flags);
0218     pp = __of_find_property(np, name, lenp);
0219     raw_spin_unlock_irqrestore(&devtree_lock, flags);
0220 
0221     return pp;
0222 }
0223 EXPORT_SYMBOL(of_find_property);
0224 
0225 struct device_node *__of_find_all_nodes(struct device_node *prev)
0226 {
0227     struct device_node *np;
0228     if (!prev) {
0229         np = of_root;
0230     } else if (prev->child) {
0231         np = prev->child;
0232     } else {
0233         /* Walk back up looking for a sibling, or the end of the structure */
0234         np = prev;
0235         while (np->parent && !np->sibling)
0236             np = np->parent;
0237         np = np->sibling; /* Might be null at the end of the tree */
0238     }
0239     return np;
0240 }
0241 
0242 /**
0243  * of_find_all_nodes - Get next node in global list
0244  * @prev:   Previous node or NULL to start iteration
0245  *      of_node_put() will be called on it
0246  *
0247  * Return: A node pointer with refcount incremented, use
0248  * of_node_put() on it when done.
0249  */
0250 struct device_node *of_find_all_nodes(struct device_node *prev)
0251 {
0252     struct device_node *np;
0253     unsigned long flags;
0254 
0255     raw_spin_lock_irqsave(&devtree_lock, flags);
0256     np = __of_find_all_nodes(prev);
0257     of_node_get(np);
0258     of_node_put(prev);
0259     raw_spin_unlock_irqrestore(&devtree_lock, flags);
0260     return np;
0261 }
0262 EXPORT_SYMBOL(of_find_all_nodes);
0263 
0264 /*
0265  * Find a property with a given name for a given node
0266  * and return the value.
0267  */
0268 const void *__of_get_property(const struct device_node *np,
0269                   const char *name, int *lenp)
0270 {
0271     struct property *pp = __of_find_property(np, name, lenp);
0272 
0273     return pp ? pp->value : NULL;
0274 }
0275 
0276 /*
0277  * Find a property with a given name for a given node
0278  * and return the value.
0279  */
0280 const void *of_get_property(const struct device_node *np, const char *name,
0281                 int *lenp)
0282 {
0283     struct property *pp = of_find_property(np, name, lenp);
0284 
0285     return pp ? pp->value : NULL;
0286 }
0287 EXPORT_SYMBOL(of_get_property);
0288 
0289 /**
0290  * of_get_cpu_hwid - Get the hardware ID from a CPU device node
0291  *
0292  * @cpun: CPU number(logical index) for which device node is required
0293  * @thread: The local thread number to get the hardware ID for.
0294  *
0295  * Return: The hardware ID for the CPU node or ~0ULL if not found.
0296  */
0297 u64 of_get_cpu_hwid(struct device_node *cpun, unsigned int thread)
0298 {
0299     const __be32 *cell;
0300     int ac, len;
0301 
0302     ac = of_n_addr_cells(cpun);
0303     cell = of_get_property(cpun, "reg", &len);
0304     if (!cell || !ac || ((sizeof(*cell) * ac * (thread + 1)) > len))
0305         return ~0ULL;
0306 
0307     cell += ac * thread;
0308     return of_read_number(cell, ac);
0309 }
0310 
0311 /*
0312  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
0313  *
0314  * @cpu: logical cpu index of a core/thread
0315  * @phys_id: physical identifier of a core/thread
0316  *
0317  * CPU logical to physical index mapping is architecture specific.
0318  * However this __weak function provides a default match of physical
0319  * id to logical cpu index. phys_id provided here is usually values read
0320  * from the device tree which must match the hardware internal registers.
0321  *
0322  * Returns true if the physical identifier and the logical cpu index
0323  * correspond to the same core/thread, false otherwise.
0324  */
0325 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
0326 {
0327     return (u32)phys_id == cpu;
0328 }
0329 
0330 /*
0331  * Checks if the given "prop_name" property holds the physical id of the
0332  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
0333  * NULL, local thread number within the core is returned in it.
0334  */
0335 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
0336             const char *prop_name, int cpu, unsigned int *thread)
0337 {
0338     const __be32 *cell;
0339     int ac, prop_len, tid;
0340     u64 hwid;
0341 
0342     ac = of_n_addr_cells(cpun);
0343     cell = of_get_property(cpun, prop_name, &prop_len);
0344     if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
0345         return true;
0346     if (!cell || !ac)
0347         return false;
0348     prop_len /= sizeof(*cell) * ac;
0349     for (tid = 0; tid < prop_len; tid++) {
0350         hwid = of_read_number(cell, ac);
0351         if (arch_match_cpu_phys_id(cpu, hwid)) {
0352             if (thread)
0353                 *thread = tid;
0354             return true;
0355         }
0356         cell += ac;
0357     }
0358     return false;
0359 }
0360 
0361 /*
0362  * arch_find_n_match_cpu_physical_id - See if the given device node is
0363  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
0364  * else false.  If 'thread' is non-NULL, the local thread number within the
0365  * core is returned in it.
0366  */
0367 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
0368                           int cpu, unsigned int *thread)
0369 {
0370     /* Check for non-standard "ibm,ppc-interrupt-server#s" property
0371      * for thread ids on PowerPC. If it doesn't exist fallback to
0372      * standard "reg" property.
0373      */
0374     if (IS_ENABLED(CONFIG_PPC) &&
0375         __of_find_n_match_cpu_property(cpun,
0376                        "ibm,ppc-interrupt-server#s",
0377                        cpu, thread))
0378         return true;
0379 
0380     return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
0381 }
0382 
0383 /**
0384  * of_get_cpu_node - Get device node associated with the given logical CPU
0385  *
0386  * @cpu: CPU number(logical index) for which device node is required
0387  * @thread: if not NULL, local thread number within the physical core is
0388  *          returned
0389  *
0390  * The main purpose of this function is to retrieve the device node for the
0391  * given logical CPU index. It should be used to initialize the of_node in
0392  * cpu device. Once of_node in cpu device is populated, all the further
0393  * references can use that instead.
0394  *
0395  * CPU logical to physical index mapping is architecture specific and is built
0396  * before booting secondary cores. This function uses arch_match_cpu_phys_id
0397  * which can be overridden by architecture specific implementation.
0398  *
0399  * Return: A node pointer for the logical cpu with refcount incremented, use
0400  * of_node_put() on it when done. Returns NULL if not found.
0401  */
0402 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
0403 {
0404     struct device_node *cpun;
0405 
0406     for_each_of_cpu_node(cpun) {
0407         if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
0408             return cpun;
0409     }
0410     return NULL;
0411 }
0412 EXPORT_SYMBOL(of_get_cpu_node);
0413 
0414 /**
0415  * of_cpu_node_to_id: Get the logical CPU number for a given device_node
0416  *
0417  * @cpu_node: Pointer to the device_node for CPU.
0418  *
0419  * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
0420  * CPU is not found.
0421  */
0422 int of_cpu_node_to_id(struct device_node *cpu_node)
0423 {
0424     int cpu;
0425     bool found = false;
0426     struct device_node *np;
0427 
0428     for_each_possible_cpu(cpu) {
0429         np = of_cpu_device_node_get(cpu);
0430         found = (cpu_node == np);
0431         of_node_put(np);
0432         if (found)
0433             return cpu;
0434     }
0435 
0436     return -ENODEV;
0437 }
0438 EXPORT_SYMBOL(of_cpu_node_to_id);
0439 
0440 /**
0441  * of_get_cpu_state_node - Get CPU's idle state node at the given index
0442  *
0443  * @cpu_node: The device node for the CPU
0444  * @index: The index in the list of the idle states
0445  *
0446  * Two generic methods can be used to describe a CPU's idle states, either via
0447  * a flattened description through the "cpu-idle-states" binding or via the
0448  * hierarchical layout, using the "power-domains" and the "domain-idle-states"
0449  * bindings. This function check for both and returns the idle state node for
0450  * the requested index.
0451  *
0452  * Return: An idle state node if found at @index. The refcount is incremented
0453  * for it, so call of_node_put() on it when done. Returns NULL if not found.
0454  */
0455 struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
0456                       int index)
0457 {
0458     struct of_phandle_args args;
0459     int err;
0460 
0461     err = of_parse_phandle_with_args(cpu_node, "power-domains",
0462                     "#power-domain-cells", 0, &args);
0463     if (!err) {
0464         struct device_node *state_node =
0465             of_parse_phandle(args.np, "domain-idle-states", index);
0466 
0467         of_node_put(args.np);
0468         if (state_node)
0469             return state_node;
0470     }
0471 
0472     return of_parse_phandle(cpu_node, "cpu-idle-states", index);
0473 }
0474 EXPORT_SYMBOL(of_get_cpu_state_node);
0475 
0476 /**
0477  * __of_device_is_compatible() - Check if the node matches given constraints
0478  * @device: pointer to node
0479  * @compat: required compatible string, NULL or "" for any match
0480  * @type: required device_type value, NULL or "" for any match
0481  * @name: required node name, NULL or "" for any match
0482  *
0483  * Checks if the given @compat, @type and @name strings match the
0484  * properties of the given @device. A constraints can be skipped by
0485  * passing NULL or an empty string as the constraint.
0486  *
0487  * Returns 0 for no match, and a positive integer on match. The return
0488  * value is a relative score with larger values indicating better
0489  * matches. The score is weighted for the most specific compatible value
0490  * to get the highest score. Matching type is next, followed by matching
0491  * name. Practically speaking, this results in the following priority
0492  * order for matches:
0493  *
0494  * 1. specific compatible && type && name
0495  * 2. specific compatible && type
0496  * 3. specific compatible && name
0497  * 4. specific compatible
0498  * 5. general compatible && type && name
0499  * 6. general compatible && type
0500  * 7. general compatible && name
0501  * 8. general compatible
0502  * 9. type && name
0503  * 10. type
0504  * 11. name
0505  */
0506 static int __of_device_is_compatible(const struct device_node *device,
0507                      const char *compat, const char *type, const char *name)
0508 {
0509     struct property *prop;
0510     const char *cp;
0511     int index = 0, score = 0;
0512 
0513     /* Compatible match has highest priority */
0514     if (compat && compat[0]) {
0515         prop = __of_find_property(device, "compatible", NULL);
0516         for (cp = of_prop_next_string(prop, NULL); cp;
0517              cp = of_prop_next_string(prop, cp), index++) {
0518             if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
0519                 score = INT_MAX/2 - (index << 2);
0520                 break;
0521             }
0522         }
0523         if (!score)
0524             return 0;
0525     }
0526 
0527     /* Matching type is better than matching name */
0528     if (type && type[0]) {
0529         if (!__of_node_is_type(device, type))
0530             return 0;
0531         score += 2;
0532     }
0533 
0534     /* Matching name is a bit better than not */
0535     if (name && name[0]) {
0536         if (!of_node_name_eq(device, name))
0537             return 0;
0538         score++;
0539     }
0540 
0541     return score;
0542 }
0543 
0544 /** Checks if the given "compat" string matches one of the strings in
0545  * the device's "compatible" property
0546  */
0547 int of_device_is_compatible(const struct device_node *device,
0548         const char *compat)
0549 {
0550     unsigned long flags;
0551     int res;
0552 
0553     raw_spin_lock_irqsave(&devtree_lock, flags);
0554     res = __of_device_is_compatible(device, compat, NULL, NULL);
0555     raw_spin_unlock_irqrestore(&devtree_lock, flags);
0556     return res;
0557 }
0558 EXPORT_SYMBOL(of_device_is_compatible);
0559 
0560 /** Checks if the device is compatible with any of the entries in
0561  *  a NULL terminated array of strings. Returns the best match
0562  *  score or 0.
0563  */
0564 int of_device_compatible_match(struct device_node *device,
0565                    const char *const *compat)
0566 {
0567     unsigned int tmp, score = 0;
0568 
0569     if (!compat)
0570         return 0;
0571 
0572     while (*compat) {
0573         tmp = of_device_is_compatible(device, *compat);
0574         if (tmp > score)
0575             score = tmp;
0576         compat++;
0577     }
0578 
0579     return score;
0580 }
0581 
0582 /**
0583  * of_machine_is_compatible - Test root of device tree for a given compatible value
0584  * @compat: compatible string to look for in root node's compatible property.
0585  *
0586  * Return: A positive integer if the root node has the given value in its
0587  * compatible property.
0588  */
0589 int of_machine_is_compatible(const char *compat)
0590 {
0591     struct device_node *root;
0592     int rc = 0;
0593 
0594     root = of_find_node_by_path("/");
0595     if (root) {
0596         rc = of_device_is_compatible(root, compat);
0597         of_node_put(root);
0598     }
0599     return rc;
0600 }
0601 EXPORT_SYMBOL(of_machine_is_compatible);
0602 
0603 /**
0604  *  __of_device_is_available - check if a device is available for use
0605  *
0606  *  @device: Node to check for availability, with locks already held
0607  *
0608  *  Return: True if the status property is absent or set to "okay" or "ok",
0609  *  false otherwise
0610  */
0611 static bool __of_device_is_available(const struct device_node *device)
0612 {
0613     const char *status;
0614     int statlen;
0615 
0616     if (!device)
0617         return false;
0618 
0619     status = __of_get_property(device, "status", &statlen);
0620     if (status == NULL)
0621         return true;
0622 
0623     if (statlen > 0) {
0624         if (!strcmp(status, "okay") || !strcmp(status, "ok"))
0625             return true;
0626     }
0627 
0628     return false;
0629 }
0630 
0631 /**
0632  *  of_device_is_available - check if a device is available for use
0633  *
0634  *  @device: Node to check for availability
0635  *
0636  *  Return: True if the status property is absent or set to "okay" or "ok",
0637  *  false otherwise
0638  */
0639 bool of_device_is_available(const struct device_node *device)
0640 {
0641     unsigned long flags;
0642     bool res;
0643 
0644     raw_spin_lock_irqsave(&devtree_lock, flags);
0645     res = __of_device_is_available(device);
0646     raw_spin_unlock_irqrestore(&devtree_lock, flags);
0647     return res;
0648 
0649 }
0650 EXPORT_SYMBOL(of_device_is_available);
0651 
0652 /**
0653  *  __of_device_is_fail - check if a device has status "fail" or "fail-..."
0654  *
0655  *  @device: Node to check status for, with locks already held
0656  *
0657  *  Return: True if the status property is set to "fail" or "fail-..." (for any
0658  *  error code suffix), false otherwise
0659  */
0660 static bool __of_device_is_fail(const struct device_node *device)
0661 {
0662     const char *status;
0663 
0664     if (!device)
0665         return false;
0666 
0667     status = __of_get_property(device, "status", NULL);
0668     if (status == NULL)
0669         return false;
0670 
0671     return !strcmp(status, "fail") || !strncmp(status, "fail-", 5);
0672 }
0673 
0674 /**
0675  *  of_device_is_big_endian - check if a device has BE registers
0676  *
0677  *  @device: Node to check for endianness
0678  *
0679  *  Return: True if the device has a "big-endian" property, or if the kernel
0680  *  was compiled for BE *and* the device has a "native-endian" property.
0681  *  Returns false otherwise.
0682  *
0683  *  Callers would nominally use ioread32be/iowrite32be if
0684  *  of_device_is_big_endian() == true, or readl/writel otherwise.
0685  */
0686 bool of_device_is_big_endian(const struct device_node *device)
0687 {
0688     if (of_property_read_bool(device, "big-endian"))
0689         return true;
0690     if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
0691         of_property_read_bool(device, "native-endian"))
0692         return true;
0693     return false;
0694 }
0695 EXPORT_SYMBOL(of_device_is_big_endian);
0696 
0697 /**
0698  * of_get_parent - Get a node's parent if any
0699  * @node:   Node to get parent
0700  *
0701  * Return: A node pointer with refcount incremented, use
0702  * of_node_put() on it when done.
0703  */
0704 struct device_node *of_get_parent(const struct device_node *node)
0705 {
0706     struct device_node *np;
0707     unsigned long flags;
0708 
0709     if (!node)
0710         return NULL;
0711 
0712     raw_spin_lock_irqsave(&devtree_lock, flags);
0713     np = of_node_get(node->parent);
0714     raw_spin_unlock_irqrestore(&devtree_lock, flags);
0715     return np;
0716 }
0717 EXPORT_SYMBOL(of_get_parent);
0718 
0719 /**
0720  * of_get_next_parent - Iterate to a node's parent
0721  * @node:   Node to get parent of
0722  *
0723  * This is like of_get_parent() except that it drops the
0724  * refcount on the passed node, making it suitable for iterating
0725  * through a node's parents.
0726  *
0727  * Return: A node pointer with refcount incremented, use
0728  * of_node_put() on it when done.
0729  */
0730 struct device_node *of_get_next_parent(struct device_node *node)
0731 {
0732     struct device_node *parent;
0733     unsigned long flags;
0734 
0735     if (!node)
0736         return NULL;
0737 
0738     raw_spin_lock_irqsave(&devtree_lock, flags);
0739     parent = of_node_get(node->parent);
0740     of_node_put(node);
0741     raw_spin_unlock_irqrestore(&devtree_lock, flags);
0742     return parent;
0743 }
0744 EXPORT_SYMBOL(of_get_next_parent);
0745 
0746 static struct device_node *__of_get_next_child(const struct device_node *node,
0747                         struct device_node *prev)
0748 {
0749     struct device_node *next;
0750 
0751     if (!node)
0752         return NULL;
0753 
0754     next = prev ? prev->sibling : node->child;
0755     of_node_get(next);
0756     of_node_put(prev);
0757     return next;
0758 }
0759 #define __for_each_child_of_node(parent, child) \
0760     for (child = __of_get_next_child(parent, NULL); child != NULL; \
0761          child = __of_get_next_child(parent, child))
0762 
0763 /**
0764  * of_get_next_child - Iterate a node childs
0765  * @node:   parent node
0766  * @prev:   previous child of the parent node, or NULL to get first
0767  *
0768  * Return: A node pointer with refcount incremented, use of_node_put() on
0769  * it when done. Returns NULL when prev is the last child. Decrements the
0770  * refcount of prev.
0771  */
0772 struct device_node *of_get_next_child(const struct device_node *node,
0773     struct device_node *prev)
0774 {
0775     struct device_node *next;
0776     unsigned long flags;
0777 
0778     raw_spin_lock_irqsave(&devtree_lock, flags);
0779     next = __of_get_next_child(node, prev);
0780     raw_spin_unlock_irqrestore(&devtree_lock, flags);
0781     return next;
0782 }
0783 EXPORT_SYMBOL(of_get_next_child);
0784 
0785 /**
0786  * of_get_next_available_child - Find the next available child node
0787  * @node:   parent node
0788  * @prev:   previous child of the parent node, or NULL to get first
0789  *
0790  * This function is like of_get_next_child(), except that it
0791  * automatically skips any disabled nodes (i.e. status = "disabled").
0792  */
0793 struct device_node *of_get_next_available_child(const struct device_node *node,
0794     struct device_node *prev)
0795 {
0796     struct device_node *next;
0797     unsigned long flags;
0798 
0799     if (!node)
0800         return NULL;
0801 
0802     raw_spin_lock_irqsave(&devtree_lock, flags);
0803     next = prev ? prev->sibling : node->child;
0804     for (; next; next = next->sibling) {
0805         if (!__of_device_is_available(next))
0806             continue;
0807         if (of_node_get(next))
0808             break;
0809     }
0810     of_node_put(prev);
0811     raw_spin_unlock_irqrestore(&devtree_lock, flags);
0812     return next;
0813 }
0814 EXPORT_SYMBOL(of_get_next_available_child);
0815 
0816 /**
0817  * of_get_next_cpu_node - Iterate on cpu nodes
0818  * @prev:   previous child of the /cpus node, or NULL to get first
0819  *
0820  * Unusable CPUs (those with the status property set to "fail" or "fail-...")
0821  * will be skipped.
0822  *
0823  * Return: A cpu node pointer with refcount incremented, use of_node_put()
0824  * on it when done. Returns NULL when prev is the last child. Decrements
0825  * the refcount of prev.
0826  */
0827 struct device_node *of_get_next_cpu_node(struct device_node *prev)
0828 {
0829     struct device_node *next = NULL;
0830     unsigned long flags;
0831     struct device_node *node;
0832 
0833     if (!prev)
0834         node = of_find_node_by_path("/cpus");
0835 
0836     raw_spin_lock_irqsave(&devtree_lock, flags);
0837     if (prev)
0838         next = prev->sibling;
0839     else if (node) {
0840         next = node->child;
0841         of_node_put(node);
0842     }
0843     for (; next; next = next->sibling) {
0844         if (__of_device_is_fail(next))
0845             continue;
0846         if (!(of_node_name_eq(next, "cpu") ||
0847               __of_node_is_type(next, "cpu")))
0848             continue;
0849         if (of_node_get(next))
0850             break;
0851     }
0852     of_node_put(prev);
0853     raw_spin_unlock_irqrestore(&devtree_lock, flags);
0854     return next;
0855 }
0856 EXPORT_SYMBOL(of_get_next_cpu_node);
0857 
0858 /**
0859  * of_get_compatible_child - Find compatible child node
0860  * @parent: parent node
0861  * @compatible: compatible string
0862  *
0863  * Lookup child node whose compatible property contains the given compatible
0864  * string.
0865  *
0866  * Return: a node pointer with refcount incremented, use of_node_put() on it
0867  * when done; or NULL if not found.
0868  */
0869 struct device_node *of_get_compatible_child(const struct device_node *parent,
0870                 const char *compatible)
0871 {
0872     struct device_node *child;
0873 
0874     for_each_child_of_node(parent, child) {
0875         if (of_device_is_compatible(child, compatible))
0876             break;
0877     }
0878 
0879     return child;
0880 }
0881 EXPORT_SYMBOL(of_get_compatible_child);
0882 
0883 /**
0884  * of_get_child_by_name - Find the child node by name for a given parent
0885  * @node:   parent node
0886  * @name:   child name to look for.
0887  *
0888  * This function looks for child node for given matching name
0889  *
0890  * Return: A node pointer if found, with refcount incremented, use
0891  * of_node_put() on it when done.
0892  * Returns NULL if node is not found.
0893  */
0894 struct device_node *of_get_child_by_name(const struct device_node *node,
0895                 const char *name)
0896 {
0897     struct device_node *child;
0898 
0899     for_each_child_of_node(node, child)
0900         if (of_node_name_eq(child, name))
0901             break;
0902     return child;
0903 }
0904 EXPORT_SYMBOL(of_get_child_by_name);
0905 
0906 struct device_node *__of_find_node_by_path(struct device_node *parent,
0907                         const char *path)
0908 {
0909     struct device_node *child;
0910     int len;
0911 
0912     len = strcspn(path, "/:");
0913     if (!len)
0914         return NULL;
0915 
0916     __for_each_child_of_node(parent, child) {
0917         const char *name = kbasename(child->full_name);
0918         if (strncmp(path, name, len) == 0 && (strlen(name) == len))
0919             return child;
0920     }
0921     return NULL;
0922 }
0923 
0924 struct device_node *__of_find_node_by_full_path(struct device_node *node,
0925                         const char *path)
0926 {
0927     const char *separator = strchr(path, ':');
0928 
0929     while (node && *path == '/') {
0930         struct device_node *tmp = node;
0931 
0932         path++; /* Increment past '/' delimiter */
0933         node = __of_find_node_by_path(node, path);
0934         of_node_put(tmp);
0935         path = strchrnul(path, '/');
0936         if (separator && separator < path)
0937             break;
0938     }
0939     return node;
0940 }
0941 
0942 /**
0943  * of_find_node_opts_by_path - Find a node matching a full OF path
0944  * @path: Either the full path to match, or if the path does not
0945  *       start with '/', the name of a property of the /aliases
0946  *       node (an alias).  In the case of an alias, the node
0947  *       matching the alias' value will be returned.
0948  * @opts: Address of a pointer into which to store the start of
0949  *       an options string appended to the end of the path with
0950  *       a ':' separator.
0951  *
0952  * Valid paths:
0953  *  * /foo/bar  Full path
0954  *  * foo   Valid alias
0955  *  * foo/bar   Valid alias + relative path
0956  *
0957  * Return: A node pointer with refcount incremented, use
0958  * of_node_put() on it when done.
0959  */
0960 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
0961 {
0962     struct device_node *np = NULL;
0963     struct property *pp;
0964     unsigned long flags;
0965     const char *separator = strchr(path, ':');
0966 
0967     if (opts)
0968         *opts = separator ? separator + 1 : NULL;
0969 
0970     if (strcmp(path, "/") == 0)
0971         return of_node_get(of_root);
0972 
0973     /* The path could begin with an alias */
0974     if (*path != '/') {
0975         int len;
0976         const char *p = separator;
0977 
0978         if (!p)
0979             p = strchrnul(path, '/');
0980         len = p - path;
0981 
0982         /* of_aliases must not be NULL */
0983         if (!of_aliases)
0984             return NULL;
0985 
0986         for_each_property_of_node(of_aliases, pp) {
0987             if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
0988                 np = of_find_node_by_path(pp->value);
0989                 break;
0990             }
0991         }
0992         if (!np)
0993             return NULL;
0994         path = p;
0995     }
0996 
0997     /* Step down the tree matching path components */
0998     raw_spin_lock_irqsave(&devtree_lock, flags);
0999     if (!np)
1000         np = of_node_get(of_root);
1001     np = __of_find_node_by_full_path(np, path);
1002     raw_spin_unlock_irqrestore(&devtree_lock, flags);
1003     return np;
1004 }
1005 EXPORT_SYMBOL(of_find_node_opts_by_path);
1006 
1007 /**
1008  * of_find_node_by_name - Find a node by its "name" property
1009  * @from:   The node to start searching from or NULL; the node
1010  *      you pass will not be searched, only the next one
1011  *      will. Typically, you pass what the previous call
1012  *      returned. of_node_put() will be called on @from.
1013  * @name:   The name string to match against
1014  *
1015  * Return: A node pointer with refcount incremented, use
1016  * of_node_put() on it when done.
1017  */
1018 struct device_node *of_find_node_by_name(struct device_node *from,
1019     const char *name)
1020 {
1021     struct device_node *np;
1022     unsigned long flags;
1023 
1024     raw_spin_lock_irqsave(&devtree_lock, flags);
1025     for_each_of_allnodes_from(from, np)
1026         if (of_node_name_eq(np, name) && of_node_get(np))
1027             break;
1028     of_node_put(from);
1029     raw_spin_unlock_irqrestore(&devtree_lock, flags);
1030     return np;
1031 }
1032 EXPORT_SYMBOL(of_find_node_by_name);
1033 
1034 /**
1035  * of_find_node_by_type - Find a node by its "device_type" property
1036  * @from:   The node to start searching from, or NULL to start searching
1037  *      the entire device tree. The node you pass will not be
1038  *      searched, only the next one will; typically, you pass
1039  *      what the previous call returned. of_node_put() will be
1040  *      called on from for you.
1041  * @type:   The type string to match against
1042  *
1043  * Return: A node pointer with refcount incremented, use
1044  * of_node_put() on it when done.
1045  */
1046 struct device_node *of_find_node_by_type(struct device_node *from,
1047     const char *type)
1048 {
1049     struct device_node *np;
1050     unsigned long flags;
1051 
1052     raw_spin_lock_irqsave(&devtree_lock, flags);
1053     for_each_of_allnodes_from(from, np)
1054         if (__of_node_is_type(np, type) && of_node_get(np))
1055             break;
1056     of_node_put(from);
1057     raw_spin_unlock_irqrestore(&devtree_lock, flags);
1058     return np;
1059 }
1060 EXPORT_SYMBOL(of_find_node_by_type);
1061 
1062 /**
1063  * of_find_compatible_node - Find a node based on type and one of the
1064  *                                tokens in its "compatible" property
1065  * @from:   The node to start searching from or NULL, the node
1066  *      you pass will not be searched, only the next one
1067  *      will; typically, you pass what the previous call
1068  *      returned. of_node_put() will be called on it
1069  * @type:   The type string to match "device_type" or NULL to ignore
1070  * @compatible: The string to match to one of the tokens in the device
1071  *      "compatible" list.
1072  *
1073  * Return: A node pointer with refcount incremented, use
1074  * of_node_put() on it when done.
1075  */
1076 struct device_node *of_find_compatible_node(struct device_node *from,
1077     const char *type, const char *compatible)
1078 {
1079     struct device_node *np;
1080     unsigned long flags;
1081 
1082     raw_spin_lock_irqsave(&devtree_lock, flags);
1083     for_each_of_allnodes_from(from, np)
1084         if (__of_device_is_compatible(np, compatible, type, NULL) &&
1085             of_node_get(np))
1086             break;
1087     of_node_put(from);
1088     raw_spin_unlock_irqrestore(&devtree_lock, flags);
1089     return np;
1090 }
1091 EXPORT_SYMBOL(of_find_compatible_node);
1092 
1093 /**
1094  * of_find_node_with_property - Find a node which has a property with
1095  *                              the given name.
1096  * @from:   The node to start searching from or NULL, the node
1097  *      you pass will not be searched, only the next one
1098  *      will; typically, you pass what the previous call
1099  *      returned. of_node_put() will be called on it
1100  * @prop_name:  The name of the property to look for.
1101  *
1102  * Return: A node pointer with refcount incremented, use
1103  * of_node_put() on it when done.
1104  */
1105 struct device_node *of_find_node_with_property(struct device_node *from,
1106     const char *prop_name)
1107 {
1108     struct device_node *np;
1109     struct property *pp;
1110     unsigned long flags;
1111 
1112     raw_spin_lock_irqsave(&devtree_lock, flags);
1113     for_each_of_allnodes_from(from, np) {
1114         for (pp = np->properties; pp; pp = pp->next) {
1115             if (of_prop_cmp(pp->name, prop_name) == 0) {
1116                 of_node_get(np);
1117                 goto out;
1118             }
1119         }
1120     }
1121 out:
1122     of_node_put(from);
1123     raw_spin_unlock_irqrestore(&devtree_lock, flags);
1124     return np;
1125 }
1126 EXPORT_SYMBOL(of_find_node_with_property);
1127 
1128 static
1129 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1130                        const struct device_node *node)
1131 {
1132     const struct of_device_id *best_match = NULL;
1133     int score, best_score = 0;
1134 
1135     if (!matches)
1136         return NULL;
1137 
1138     for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1139         score = __of_device_is_compatible(node, matches->compatible,
1140                           matches->type, matches->name);
1141         if (score > best_score) {
1142             best_match = matches;
1143             best_score = score;
1144         }
1145     }
1146 
1147     return best_match;
1148 }
1149 
1150 /**
1151  * of_match_node - Tell if a device_node has a matching of_match structure
1152  * @matches:    array of of device match structures to search in
1153  * @node:   the of device structure to match against
1154  *
1155  * Low level utility function used by device matching.
1156  */
1157 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1158                      const struct device_node *node)
1159 {
1160     const struct of_device_id *match;
1161     unsigned long flags;
1162 
1163     raw_spin_lock_irqsave(&devtree_lock, flags);
1164     match = __of_match_node(matches, node);
1165     raw_spin_unlock_irqrestore(&devtree_lock, flags);
1166     return match;
1167 }
1168 EXPORT_SYMBOL(of_match_node);
1169 
1170 /**
1171  * of_find_matching_node_and_match - Find a node based on an of_device_id
1172  *                   match table.
1173  * @from:   The node to start searching from or NULL, the node
1174  *      you pass will not be searched, only the next one
1175  *      will; typically, you pass what the previous call
1176  *      returned. of_node_put() will be called on it
1177  * @matches:    array of of device match structures to search in
1178  * @match:  Updated to point at the matches entry which matched
1179  *
1180  * Return: A node pointer with refcount incremented, use
1181  * of_node_put() on it when done.
1182  */
1183 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1184                     const struct of_device_id *matches,
1185                     const struct of_device_id **match)
1186 {
1187     struct device_node *np;
1188     const struct of_device_id *m;
1189     unsigned long flags;
1190 
1191     if (match)
1192         *match = NULL;
1193 
1194     raw_spin_lock_irqsave(&devtree_lock, flags);
1195     for_each_of_allnodes_from(from, np) {
1196         m = __of_match_node(matches, np);
1197         if (m && of_node_get(np)) {
1198             if (match)
1199                 *match = m;
1200             break;
1201         }
1202     }
1203     of_node_put(from);
1204     raw_spin_unlock_irqrestore(&devtree_lock, flags);
1205     return np;
1206 }
1207 EXPORT_SYMBOL(of_find_matching_node_and_match);
1208 
1209 /**
1210  * of_modalias_node - Lookup appropriate modalias for a device node
1211  * @node:   pointer to a device tree node
1212  * @modalias:   Pointer to buffer that modalias value will be copied into
1213  * @len:    Length of modalias value
1214  *
1215  * Based on the value of the compatible property, this routine will attempt
1216  * to choose an appropriate modalias value for a particular device tree node.
1217  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1218  * from the first entry in the compatible list property.
1219  *
1220  * Return: This routine returns 0 on success, <0 on failure.
1221  */
1222 int of_modalias_node(struct device_node *node, char *modalias, int len)
1223 {
1224     const char *compatible, *p;
1225     int cplen;
1226 
1227     compatible = of_get_property(node, "compatible", &cplen);
1228     if (!compatible || strlen(compatible) > cplen)
1229         return -ENODEV;
1230     p = strchr(compatible, ',');
1231     strlcpy(modalias, p ? p + 1 : compatible, len);
1232     return 0;
1233 }
1234 EXPORT_SYMBOL_GPL(of_modalias_node);
1235 
1236 /**
1237  * of_find_node_by_phandle - Find a node given a phandle
1238  * @handle: phandle of the node to find
1239  *
1240  * Return: A node pointer with refcount incremented, use
1241  * of_node_put() on it when done.
1242  */
1243 struct device_node *of_find_node_by_phandle(phandle handle)
1244 {
1245     struct device_node *np = NULL;
1246     unsigned long flags;
1247     u32 handle_hash;
1248 
1249     if (!handle)
1250         return NULL;
1251 
1252     handle_hash = of_phandle_cache_hash(handle);
1253 
1254     raw_spin_lock_irqsave(&devtree_lock, flags);
1255 
1256     if (phandle_cache[handle_hash] &&
1257         handle == phandle_cache[handle_hash]->phandle)
1258         np = phandle_cache[handle_hash];
1259 
1260     if (!np) {
1261         for_each_of_allnodes(np)
1262             if (np->phandle == handle &&
1263                 !of_node_check_flag(np, OF_DETACHED)) {
1264                 phandle_cache[handle_hash] = np;
1265                 break;
1266             }
1267     }
1268 
1269     of_node_get(np);
1270     raw_spin_unlock_irqrestore(&devtree_lock, flags);
1271     return np;
1272 }
1273 EXPORT_SYMBOL(of_find_node_by_phandle);
1274 
1275 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1276 {
1277     int i;
1278     printk("%s %pOF", msg, args->np);
1279     for (i = 0; i < args->args_count; i++) {
1280         const char delim = i ? ',' : ':';
1281 
1282         pr_cont("%c%08x", delim, args->args[i]);
1283     }
1284     pr_cont("\n");
1285 }
1286 
1287 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1288         const struct device_node *np,
1289         const char *list_name,
1290         const char *cells_name,
1291         int cell_count)
1292 {
1293     const __be32 *list;
1294     int size;
1295 
1296     memset(it, 0, sizeof(*it));
1297 
1298     /*
1299      * one of cell_count or cells_name must be provided to determine the
1300      * argument length.
1301      */
1302     if (cell_count < 0 && !cells_name)
1303         return -EINVAL;
1304 
1305     list = of_get_property(np, list_name, &size);
1306     if (!list)
1307         return -ENOENT;
1308 
1309     it->cells_name = cells_name;
1310     it->cell_count = cell_count;
1311     it->parent = np;
1312     it->list_end = list + size / sizeof(*list);
1313     it->phandle_end = list;
1314     it->cur = list;
1315 
1316     return 0;
1317 }
1318 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1319 
1320 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1321 {
1322     uint32_t count = 0;
1323 
1324     if (it->node) {
1325         of_node_put(it->node);
1326         it->node = NULL;
1327     }
1328 
1329     if (!it->cur || it->phandle_end >= it->list_end)
1330         return -ENOENT;
1331 
1332     it->cur = it->phandle_end;
1333 
1334     /* If phandle is 0, then it is an empty entry with no arguments. */
1335     it->phandle = be32_to_cpup(it->cur++);
1336 
1337     if (it->phandle) {
1338 
1339         /*
1340          * Find the provider node and parse the #*-cells property to
1341          * determine the argument length.
1342          */
1343         it->node = of_find_node_by_phandle(it->phandle);
1344 
1345         if (it->cells_name) {
1346             if (!it->node) {
1347                 pr_err("%pOF: could not find phandle %d\n",
1348                        it->parent, it->phandle);
1349                 goto err;
1350             }
1351 
1352             if (of_property_read_u32(it->node, it->cells_name,
1353                          &count)) {
1354                 /*
1355                  * If both cell_count and cells_name is given,
1356                  * fall back to cell_count in absence
1357                  * of the cells_name property
1358                  */
1359                 if (it->cell_count >= 0) {
1360                     count = it->cell_count;
1361                 } else {
1362                     pr_err("%pOF: could not get %s for %pOF\n",
1363                            it->parent,
1364                            it->cells_name,
1365                            it->node);
1366                     goto err;
1367                 }
1368             }
1369         } else {
1370             count = it->cell_count;
1371         }
1372 
1373         /*
1374          * Make sure that the arguments actually fit in the remaining
1375          * property data length
1376          */
1377         if (it->cur + count > it->list_end) {
1378             if (it->cells_name)
1379                 pr_err("%pOF: %s = %d found %td\n",
1380                     it->parent, it->cells_name,
1381                     count, it->list_end - it->cur);
1382             else
1383                 pr_err("%pOF: phandle %s needs %d, found %td\n",
1384                     it->parent, of_node_full_name(it->node),
1385                     count, it->list_end - it->cur);
1386             goto err;
1387         }
1388     }
1389 
1390     it->phandle_end = it->cur + count;
1391     it->cur_count = count;
1392 
1393     return 0;
1394 
1395 err:
1396     if (it->node) {
1397         of_node_put(it->node);
1398         it->node = NULL;
1399     }
1400 
1401     return -EINVAL;
1402 }
1403 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1404 
1405 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1406                  uint32_t *args,
1407                  int size)
1408 {
1409     int i, count;
1410 
1411     count = it->cur_count;
1412 
1413     if (WARN_ON(size < count))
1414         count = size;
1415 
1416     for (i = 0; i < count; i++)
1417         args[i] = be32_to_cpup(it->cur++);
1418 
1419     return count;
1420 }
1421 
1422 int __of_parse_phandle_with_args(const struct device_node *np,
1423                  const char *list_name,
1424                  const char *cells_name,
1425                  int cell_count, int index,
1426                  struct of_phandle_args *out_args)
1427 {
1428     struct of_phandle_iterator it;
1429     int rc, cur_index = 0;
1430 
1431     if (index < 0)
1432         return -EINVAL;
1433 
1434     /* Loop over the phandles until all the requested entry is found */
1435     of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1436         /*
1437          * All of the error cases bail out of the loop, so at
1438          * this point, the parsing is successful. If the requested
1439          * index matches, then fill the out_args structure and return,
1440          * or return -ENOENT for an empty entry.
1441          */
1442         rc = -ENOENT;
1443         if (cur_index == index) {
1444             if (!it.phandle)
1445                 goto err;
1446 
1447             if (out_args) {
1448                 int c;
1449 
1450                 c = of_phandle_iterator_args(&it,
1451                                  out_args->args,
1452                                  MAX_PHANDLE_ARGS);
1453                 out_args->np = it.node;
1454                 out_args->args_count = c;
1455             } else {
1456                 of_node_put(it.node);
1457             }
1458 
1459             /* Found it! return success */
1460             return 0;
1461         }
1462 
1463         cur_index++;
1464     }
1465 
1466     /*
1467      * Unlock node before returning result; will be one of:
1468      * -ENOENT : index is for empty phandle
1469      * -EINVAL : parsing error on data
1470      */
1471 
1472  err:
1473     of_node_put(it.node);
1474     return rc;
1475 }
1476 EXPORT_SYMBOL(__of_parse_phandle_with_args);
1477 
1478 /**
1479  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1480  * @np:     pointer to a device tree node containing a list
1481  * @list_name:  property name that contains a list
1482  * @stem_name:  stem of property names that specify phandles' arguments count
1483  * @index:  index of a phandle to parse out
1484  * @out_args:   optional pointer to output arguments structure (will be filled)
1485  *
1486  * This function is useful to parse lists of phandles and their arguments.
1487  * Returns 0 on success and fills out_args, on error returns appropriate errno
1488  * value. The difference between this function and of_parse_phandle_with_args()
1489  * is that this API remaps a phandle if the node the phandle points to has
1490  * a <@stem_name>-map property.
1491  *
1492  * Caller is responsible to call of_node_put() on the returned out_args->np
1493  * pointer.
1494  *
1495  * Example::
1496  *
1497  *  phandle1: node1 {
1498  *      #list-cells = <2>;
1499  *  };
1500  *
1501  *  phandle2: node2 {
1502  *      #list-cells = <1>;
1503  *  };
1504  *
1505  *  phandle3: node3 {
1506  *      #list-cells = <1>;
1507  *      list-map = <0 &phandle2 3>,
1508  *             <1 &phandle2 2>,
1509  *             <2 &phandle1 5 1>;
1510  *      list-map-mask = <0x3>;
1511  *  };
1512  *
1513  *  node4 {
1514  *      list = <&phandle1 1 2 &phandle3 0>;
1515  *  };
1516  *
1517  * To get a device_node of the ``node2`` node you may call this:
1518  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1519  */
1520 int of_parse_phandle_with_args_map(const struct device_node *np,
1521                    const char *list_name,
1522                    const char *stem_name,
1523                    int index, struct of_phandle_args *out_args)
1524 {
1525     char *cells_name, *map_name = NULL, *mask_name = NULL;
1526     char *pass_name = NULL;
1527     struct device_node *cur, *new = NULL;
1528     const __be32 *map, *mask, *pass;
1529     static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1530     static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1531     __be32 initial_match_array[MAX_PHANDLE_ARGS];
1532     const __be32 *match_array = initial_match_array;
1533     int i, ret, map_len, match;
1534     u32 list_size, new_size;
1535 
1536     if (index < 0)
1537         return -EINVAL;
1538 
1539     cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1540     if (!cells_name)
1541         return -ENOMEM;
1542 
1543     ret = -ENOMEM;
1544     map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1545     if (!map_name)
1546         goto free;
1547 
1548     mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1549     if (!mask_name)
1550         goto free;
1551 
1552     pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1553     if (!pass_name)
1554         goto free;
1555 
1556     ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1557                        out_args);
1558     if (ret)
1559         goto free;
1560 
1561     /* Get the #<list>-cells property */
1562     cur = out_args->np;
1563     ret = of_property_read_u32(cur, cells_name, &list_size);
1564     if (ret < 0)
1565         goto put;
1566 
1567     /* Precalculate the match array - this simplifies match loop */
1568     for (i = 0; i < list_size; i++)
1569         initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1570 
1571     ret = -EINVAL;
1572     while (cur) {
1573         /* Get the <list>-map property */
1574         map = of_get_property(cur, map_name, &map_len);
1575         if (!map) {
1576             ret = 0;
1577             goto free;
1578         }
1579         map_len /= sizeof(u32);
1580 
1581         /* Get the <list>-map-mask property (optional) */
1582         mask = of_get_property(cur, mask_name, NULL);
1583         if (!mask)
1584             mask = dummy_mask;
1585         /* Iterate through <list>-map property */
1586         match = 0;
1587         while (map_len > (list_size + 1) && !match) {
1588             /* Compare specifiers */
1589             match = 1;
1590             for (i = 0; i < list_size; i++, map_len--)
1591                 match &= !((match_array[i] ^ *map++) & mask[i]);
1592 
1593             of_node_put(new);
1594             new = of_find_node_by_phandle(be32_to_cpup(map));
1595             map++;
1596             map_len--;
1597 
1598             /* Check if not found */
1599             if (!new)
1600                 goto put;
1601 
1602             if (!of_device_is_available(new))
1603                 match = 0;
1604 
1605             ret = of_property_read_u32(new, cells_name, &new_size);
1606             if (ret)
1607                 goto put;
1608 
1609             /* Check for malformed properties */
1610             if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1611                 goto put;
1612             if (map_len < new_size)
1613                 goto put;
1614 
1615             /* Move forward by new node's #<list>-cells amount */
1616             map += new_size;
1617             map_len -= new_size;
1618         }
1619         if (!match)
1620             goto put;
1621 
1622         /* Get the <list>-map-pass-thru property (optional) */
1623         pass = of_get_property(cur, pass_name, NULL);
1624         if (!pass)
1625             pass = dummy_pass;
1626 
1627         /*
1628          * Successfully parsed a <list>-map translation; copy new
1629          * specifier into the out_args structure, keeping the
1630          * bits specified in <list>-map-pass-thru.
1631          */
1632         match_array = map - new_size;
1633         for (i = 0; i < new_size; i++) {
1634             __be32 val = *(map - new_size + i);
1635 
1636             if (i < list_size) {
1637                 val &= ~pass[i];
1638                 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1639             }
1640 
1641             out_args->args[i] = be32_to_cpu(val);
1642         }
1643         out_args->args_count = list_size = new_size;
1644         /* Iterate again with new provider */
1645         out_args->np = new;
1646         of_node_put(cur);
1647         cur = new;
1648     }
1649 put:
1650     of_node_put(cur);
1651     of_node_put(new);
1652 free:
1653     kfree(mask_name);
1654     kfree(map_name);
1655     kfree(cells_name);
1656     kfree(pass_name);
1657 
1658     return ret;
1659 }
1660 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1661 
1662 /**
1663  * of_count_phandle_with_args() - Find the number of phandles references in a property
1664  * @np:     pointer to a device tree node containing a list
1665  * @list_name:  property name that contains a list
1666  * @cells_name: property name that specifies phandles' arguments count
1667  *
1668  * Return: The number of phandle + argument tuples within a property. It
1669  * is a typical pattern to encode a list of phandle and variable
1670  * arguments into a single property. The number of arguments is encoded
1671  * by a property in the phandle-target node. For example, a gpios
1672  * property would contain a list of GPIO specifies consisting of a
1673  * phandle and 1 or more arguments. The number of arguments are
1674  * determined by the #gpio-cells property in the node pointed to by the
1675  * phandle.
1676  */
1677 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1678                 const char *cells_name)
1679 {
1680     struct of_phandle_iterator it;
1681     int rc, cur_index = 0;
1682 
1683     /*
1684      * If cells_name is NULL we assume a cell count of 0. This makes
1685      * counting the phandles trivial as each 32bit word in the list is a
1686      * phandle and no arguments are to consider. So we don't iterate through
1687      * the list but just use the length to determine the phandle count.
1688      */
1689     if (!cells_name) {
1690         const __be32 *list;
1691         int size;
1692 
1693         list = of_get_property(np, list_name, &size);
1694         if (!list)
1695             return -ENOENT;
1696 
1697         return size / sizeof(*list);
1698     }
1699 
1700     rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1701     if (rc)
1702         return rc;
1703 
1704     while ((rc = of_phandle_iterator_next(&it)) == 0)
1705         cur_index += 1;
1706 
1707     if (rc != -ENOENT)
1708         return rc;
1709 
1710     return cur_index;
1711 }
1712 EXPORT_SYMBOL(of_count_phandle_with_args);
1713 
1714 /**
1715  * __of_add_property - Add a property to a node without lock operations
1716  * @np:     Caller's Device Node
1717  * @prop:   Property to add
1718  */
1719 int __of_add_property(struct device_node *np, struct property *prop)
1720 {
1721     struct property **next;
1722 
1723     prop->next = NULL;
1724     next = &np->properties;
1725     while (*next) {
1726         if (strcmp(prop->name, (*next)->name) == 0)
1727             /* duplicate ! don't insert it */
1728             return -EEXIST;
1729 
1730         next = &(*next)->next;
1731     }
1732     *next = prop;
1733 
1734     return 0;
1735 }
1736 
1737 /**
1738  * of_add_property - Add a property to a node
1739  * @np:     Caller's Device Node
1740  * @prop:   Property to add
1741  */
1742 int of_add_property(struct device_node *np, struct property *prop)
1743 {
1744     unsigned long flags;
1745     int rc;
1746 
1747     mutex_lock(&of_mutex);
1748 
1749     raw_spin_lock_irqsave(&devtree_lock, flags);
1750     rc = __of_add_property(np, prop);
1751     raw_spin_unlock_irqrestore(&devtree_lock, flags);
1752 
1753     if (!rc)
1754         __of_add_property_sysfs(np, prop);
1755 
1756     mutex_unlock(&of_mutex);
1757 
1758     if (!rc)
1759         of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1760 
1761     return rc;
1762 }
1763 EXPORT_SYMBOL_GPL(of_add_property);
1764 
1765 int __of_remove_property(struct device_node *np, struct property *prop)
1766 {
1767     struct property **next;
1768 
1769     for (next = &np->properties; *next; next = &(*next)->next) {
1770         if (*next == prop)
1771             break;
1772     }
1773     if (*next == NULL)
1774         return -ENODEV;
1775 
1776     /* found the node */
1777     *next = prop->next;
1778     prop->next = np->deadprops;
1779     np->deadprops = prop;
1780 
1781     return 0;
1782 }
1783 
1784 /**
1785  * of_remove_property - Remove a property from a node.
1786  * @np:     Caller's Device Node
1787  * @prop:   Property to remove
1788  *
1789  * Note that we don't actually remove it, since we have given out
1790  * who-knows-how-many pointers to the data using get-property.
1791  * Instead we just move the property to the "dead properties"
1792  * list, so it won't be found any more.
1793  */
1794 int of_remove_property(struct device_node *np, struct property *prop)
1795 {
1796     unsigned long flags;
1797     int rc;
1798 
1799     if (!prop)
1800         return -ENODEV;
1801 
1802     mutex_lock(&of_mutex);
1803 
1804     raw_spin_lock_irqsave(&devtree_lock, flags);
1805     rc = __of_remove_property(np, prop);
1806     raw_spin_unlock_irqrestore(&devtree_lock, flags);
1807 
1808     if (!rc)
1809         __of_remove_property_sysfs(np, prop);
1810 
1811     mutex_unlock(&of_mutex);
1812 
1813     if (!rc)
1814         of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1815 
1816     return rc;
1817 }
1818 EXPORT_SYMBOL_GPL(of_remove_property);
1819 
1820 int __of_update_property(struct device_node *np, struct property *newprop,
1821         struct property **oldpropp)
1822 {
1823     struct property **next, *oldprop;
1824 
1825     for (next = &np->properties; *next; next = &(*next)->next) {
1826         if (of_prop_cmp((*next)->name, newprop->name) == 0)
1827             break;
1828     }
1829     *oldpropp = oldprop = *next;
1830 
1831     if (oldprop) {
1832         /* replace the node */
1833         newprop->next = oldprop->next;
1834         *next = newprop;
1835         oldprop->next = np->deadprops;
1836         np->deadprops = oldprop;
1837     } else {
1838         /* new node */
1839         newprop->next = NULL;
1840         *next = newprop;
1841     }
1842 
1843     return 0;
1844 }
1845 
1846 /*
1847  * of_update_property - Update a property in a node, if the property does
1848  * not exist, add it.
1849  *
1850  * Note that we don't actually remove it, since we have given out
1851  * who-knows-how-many pointers to the data using get-property.
1852  * Instead we just move the property to the "dead properties" list,
1853  * and add the new property to the property list
1854  */
1855 int of_update_property(struct device_node *np, struct property *newprop)
1856 {
1857     struct property *oldprop;
1858     unsigned long flags;
1859     int rc;
1860 
1861     if (!newprop->name)
1862         return -EINVAL;
1863 
1864     mutex_lock(&of_mutex);
1865 
1866     raw_spin_lock_irqsave(&devtree_lock, flags);
1867     rc = __of_update_property(np, newprop, &oldprop);
1868     raw_spin_unlock_irqrestore(&devtree_lock, flags);
1869 
1870     if (!rc)
1871         __of_update_property_sysfs(np, newprop, oldprop);
1872 
1873     mutex_unlock(&of_mutex);
1874 
1875     if (!rc)
1876         of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1877 
1878     return rc;
1879 }
1880 
1881 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1882              int id, const char *stem, int stem_len)
1883 {
1884     ap->np = np;
1885     ap->id = id;
1886     strncpy(ap->stem, stem, stem_len);
1887     ap->stem[stem_len] = 0;
1888     list_add_tail(&ap->link, &aliases_lookup);
1889     pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1890          ap->alias, ap->stem, ap->id, np);
1891 }
1892 
1893 /**
1894  * of_alias_scan - Scan all properties of the 'aliases' node
1895  * @dt_alloc:   An allocator that provides a virtual address to memory
1896  *      for storing the resulting tree
1897  *
1898  * The function scans all the properties of the 'aliases' node and populates
1899  * the global lookup table with the properties.  It returns the
1900  * number of alias properties found, or an error code in case of failure.
1901  */
1902 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1903 {
1904     struct property *pp;
1905 
1906     of_aliases = of_find_node_by_path("/aliases");
1907     of_chosen = of_find_node_by_path("/chosen");
1908     if (of_chosen == NULL)
1909         of_chosen = of_find_node_by_path("/chosen@0");
1910 
1911     if (of_chosen) {
1912         /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1913         const char *name = NULL;
1914 
1915         if (of_property_read_string(of_chosen, "stdout-path", &name))
1916             of_property_read_string(of_chosen, "linux,stdout-path",
1917                         &name);
1918         if (IS_ENABLED(CONFIG_PPC) && !name)
1919             of_property_read_string(of_aliases, "stdout", &name);
1920         if (name)
1921             of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1922         if (of_stdout)
1923             of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1924     }
1925 
1926     if (!of_aliases)
1927         return;
1928 
1929     for_each_property_of_node(of_aliases, pp) {
1930         const char *start = pp->name;
1931         const char *end = start + strlen(start);
1932         struct device_node *np;
1933         struct alias_prop *ap;
1934         int id, len;
1935 
1936         /* Skip those we do not want to proceed */
1937         if (!strcmp(pp->name, "name") ||
1938             !strcmp(pp->name, "phandle") ||
1939             !strcmp(pp->name, "linux,phandle"))
1940             continue;
1941 
1942         np = of_find_node_by_path(pp->value);
1943         if (!np)
1944             continue;
1945 
1946         /* walk the alias backwards to extract the id and work out
1947          * the 'stem' string */
1948         while (isdigit(*(end-1)) && end > start)
1949             end--;
1950         len = end - start;
1951 
1952         if (kstrtoint(end, 10, &id) < 0)
1953             continue;
1954 
1955         /* Allocate an alias_prop with enough space for the stem */
1956         ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1957         if (!ap)
1958             continue;
1959         memset(ap, 0, sizeof(*ap) + len + 1);
1960         ap->alias = start;
1961         of_alias_add(ap, np, id, start, len);
1962     }
1963 }
1964 
1965 /**
1966  * of_alias_get_id - Get alias id for the given device_node
1967  * @np:     Pointer to the given device_node
1968  * @stem:   Alias stem of the given device_node
1969  *
1970  * The function travels the lookup table to get the alias id for the given
1971  * device_node and alias stem.
1972  *
1973  * Return: The alias id if found.
1974  */
1975 int of_alias_get_id(struct device_node *np, const char *stem)
1976 {
1977     struct alias_prop *app;
1978     int id = -ENODEV;
1979 
1980     mutex_lock(&of_mutex);
1981     list_for_each_entry(app, &aliases_lookup, link) {
1982         if (strcmp(app->stem, stem) != 0)
1983             continue;
1984 
1985         if (np == app->np) {
1986             id = app->id;
1987             break;
1988         }
1989     }
1990     mutex_unlock(&of_mutex);
1991 
1992     return id;
1993 }
1994 EXPORT_SYMBOL_GPL(of_alias_get_id);
1995 
1996 /**
1997  * of_alias_get_highest_id - Get highest alias id for the given stem
1998  * @stem:   Alias stem to be examined
1999  *
2000  * The function travels the lookup table to get the highest alias id for the
2001  * given alias stem.  It returns the alias id if found.
2002  */
2003 int of_alias_get_highest_id(const char *stem)
2004 {
2005     struct alias_prop *app;
2006     int id = -ENODEV;
2007 
2008     mutex_lock(&of_mutex);
2009     list_for_each_entry(app, &aliases_lookup, link) {
2010         if (strcmp(app->stem, stem) != 0)
2011             continue;
2012 
2013         if (app->id > id)
2014             id = app->id;
2015     }
2016     mutex_unlock(&of_mutex);
2017 
2018     return id;
2019 }
2020 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2021 
2022 /**
2023  * of_console_check() - Test and setup console for DT setup
2024  * @dn: Pointer to device node
2025  * @name: Name to use for preferred console without index. ex. "ttyS"
2026  * @index: Index to use for preferred console.
2027  *
2028  * Check if the given device node matches the stdout-path property in the
2029  * /chosen node. If it does then register it as the preferred console.
2030  *
2031  * Return: TRUE if console successfully setup. Otherwise return FALSE.
2032  */
2033 bool of_console_check(struct device_node *dn, char *name, int index)
2034 {
2035     if (!dn || dn != of_stdout || console_set_on_cmdline)
2036         return false;
2037 
2038     /*
2039      * XXX: cast `options' to char pointer to suppress complication
2040      * warnings: printk, UART and console drivers expect char pointer.
2041      */
2042     return !add_preferred_console(name, index, (char *)of_stdout_options);
2043 }
2044 EXPORT_SYMBOL_GPL(of_console_check);
2045 
2046 /**
2047  * of_find_next_cache_node - Find a node's subsidiary cache
2048  * @np: node of type "cpu" or "cache"
2049  *
2050  * Return: A node pointer with refcount incremented, use
2051  * of_node_put() on it when done.  Caller should hold a reference
2052  * to np.
2053  */
2054 struct device_node *of_find_next_cache_node(const struct device_node *np)
2055 {
2056     struct device_node *child, *cache_node;
2057 
2058     cache_node = of_parse_phandle(np, "l2-cache", 0);
2059     if (!cache_node)
2060         cache_node = of_parse_phandle(np, "next-level-cache", 0);
2061 
2062     if (cache_node)
2063         return cache_node;
2064 
2065     /* OF on pmac has nodes instead of properties named "l2-cache"
2066      * beneath CPU nodes.
2067      */
2068     if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2069         for_each_child_of_node(np, child)
2070             if (of_node_is_type(child, "cache"))
2071                 return child;
2072 
2073     return NULL;
2074 }
2075 
2076 /**
2077  * of_find_last_cache_level - Find the level at which the last cache is
2078  *      present for the given logical cpu
2079  *
2080  * @cpu: cpu number(logical index) for which the last cache level is needed
2081  *
2082  * Return: The level at which the last cache is present. It is exactly
2083  * same as  the total number of cache levels for the given logical cpu.
2084  */
2085 int of_find_last_cache_level(unsigned int cpu)
2086 {
2087     u32 cache_level = 0;
2088     struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2089 
2090     while (np) {
2091         prev = np;
2092         of_node_put(np);
2093         np = of_find_next_cache_node(np);
2094     }
2095 
2096     of_property_read_u32(prev, "cache-level", &cache_level);
2097 
2098     return cache_level;
2099 }
2100 
2101 /**
2102  * of_map_id - Translate an ID through a downstream mapping.
2103  * @np: root complex device node.
2104  * @id: device ID to map.
2105  * @map_name: property name of the map to use.
2106  * @map_mask_name: optional property name of the mask to use.
2107  * @target: optional pointer to a target device node.
2108  * @id_out: optional pointer to receive the translated ID.
2109  *
2110  * Given a device ID, look up the appropriate implementation-defined
2111  * platform ID and/or the target device which receives transactions on that
2112  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2113  * @id_out may be NULL if only the other is required. If @target points to
2114  * a non-NULL device node pointer, only entries targeting that node will be
2115  * matched; if it points to a NULL value, it will receive the device node of
2116  * the first matching target phandle, with a reference held.
2117  *
2118  * Return: 0 on success or a standard error code on failure.
2119  */
2120 int of_map_id(struct device_node *np, u32 id,
2121            const char *map_name, const char *map_mask_name,
2122            struct device_node **target, u32 *id_out)
2123 {
2124     u32 map_mask, masked_id;
2125     int map_len;
2126     const __be32 *map = NULL;
2127 
2128     if (!np || !map_name || (!target && !id_out))
2129         return -EINVAL;
2130 
2131     map = of_get_property(np, map_name, &map_len);
2132     if (!map) {
2133         if (target)
2134             return -ENODEV;
2135         /* Otherwise, no map implies no translation */
2136         *id_out = id;
2137         return 0;
2138     }
2139 
2140     if (!map_len || map_len % (4 * sizeof(*map))) {
2141         pr_err("%pOF: Error: Bad %s length: %d\n", np,
2142             map_name, map_len);
2143         return -EINVAL;
2144     }
2145 
2146     /* The default is to select all bits. */
2147     map_mask = 0xffffffff;
2148 
2149     /*
2150      * Can be overridden by "{iommu,msi}-map-mask" property.
2151      * If of_property_read_u32() fails, the default is used.
2152      */
2153     if (map_mask_name)
2154         of_property_read_u32(np, map_mask_name, &map_mask);
2155 
2156     masked_id = map_mask & id;
2157     for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2158         struct device_node *phandle_node;
2159         u32 id_base = be32_to_cpup(map + 0);
2160         u32 phandle = be32_to_cpup(map + 1);
2161         u32 out_base = be32_to_cpup(map + 2);
2162         u32 id_len = be32_to_cpup(map + 3);
2163 
2164         if (id_base & ~map_mask) {
2165             pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2166                 np, map_name, map_name,
2167                 map_mask, id_base);
2168             return -EFAULT;
2169         }
2170 
2171         if (masked_id < id_base || masked_id >= id_base + id_len)
2172             continue;
2173 
2174         phandle_node = of_find_node_by_phandle(phandle);
2175         if (!phandle_node)
2176             return -ENODEV;
2177 
2178         if (target) {
2179             if (*target)
2180                 of_node_put(phandle_node);
2181             else
2182                 *target = phandle_node;
2183 
2184             if (*target != phandle_node)
2185                 continue;
2186         }
2187 
2188         if (id_out)
2189             *id_out = masked_id - id_base + out_base;
2190 
2191         pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2192             np, map_name, map_mask, id_base, out_base,
2193             id_len, id, masked_id - id_base + out_base);
2194         return 0;
2195     }
2196 
2197     pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2198         id, target && *target ? *target : NULL);
2199 
2200     /* Bypasses translation */
2201     if (id_out)
2202         *id_out = id;
2203     return 0;
2204 }
2205 EXPORT_SYMBOL_GPL(of_map_id);