0001
0002
0003
0004
0005
0006
0007
0008
0009 #include <linux/device.h>
0010 #include <linux/export.h>
0011 #include <linux/fs.h>
0012 #include <linux/idr.h>
0013 #include <linux/init.h>
0014 #include <linux/kref.h>
0015 #include <linux/module.h>
0016 #include <linux/nvmem-consumer.h>
0017 #include <linux/nvmem-provider.h>
0018 #include <linux/gpio/consumer.h>
0019 #include <linux/of.h>
0020 #include <linux/slab.h>
0021
0022 struct nvmem_device {
0023 struct module *owner;
0024 struct device dev;
0025 int stride;
0026 int word_size;
0027 int id;
0028 struct kref refcnt;
0029 size_t size;
0030 bool read_only;
0031 bool root_only;
0032 int flags;
0033 enum nvmem_type type;
0034 struct bin_attribute eeprom;
0035 struct device *base_dev;
0036 struct list_head cells;
0037 const struct nvmem_keepout *keepout;
0038 unsigned int nkeepout;
0039 nvmem_reg_read_t reg_read;
0040 nvmem_reg_write_t reg_write;
0041 nvmem_cell_post_process_t cell_post_process;
0042 struct gpio_desc *wp_gpio;
0043 void *priv;
0044 };
0045
0046 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
0047
0048 #define FLAG_COMPAT BIT(0)
0049 struct nvmem_cell_entry {
0050 const char *name;
0051 int offset;
0052 int bytes;
0053 int bit_offset;
0054 int nbits;
0055 struct device_node *np;
0056 struct nvmem_device *nvmem;
0057 struct list_head node;
0058 };
0059
0060 struct nvmem_cell {
0061 struct nvmem_cell_entry *entry;
0062 const char *id;
0063 };
0064
0065 static DEFINE_MUTEX(nvmem_mutex);
0066 static DEFINE_IDA(nvmem_ida);
0067
0068 static DEFINE_MUTEX(nvmem_cell_mutex);
0069 static LIST_HEAD(nvmem_cell_tables);
0070
0071 static DEFINE_MUTEX(nvmem_lookup_mutex);
0072 static LIST_HEAD(nvmem_lookup_list);
0073
0074 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
0075
0076 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
0077 void *val, size_t bytes)
0078 {
0079 if (nvmem->reg_read)
0080 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
0081
0082 return -EINVAL;
0083 }
0084
0085 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
0086 void *val, size_t bytes)
0087 {
0088 int ret;
0089
0090 if (nvmem->reg_write) {
0091 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
0092 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
0093 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
0094 return ret;
0095 }
0096
0097 return -EINVAL;
0098 }
0099
0100 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
0101 unsigned int offset, void *val,
0102 size_t bytes, int write)
0103 {
0104
0105 unsigned int end = offset + bytes;
0106 unsigned int kend, ksize;
0107 const struct nvmem_keepout *keepout = nvmem->keepout;
0108 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
0109 int rc;
0110
0111
0112
0113
0114
0115 while ((keepout < keepoutend) && (keepout->end <= offset))
0116 keepout++;
0117
0118 while ((offset < end) && (keepout < keepoutend)) {
0119
0120 if (offset < keepout->start) {
0121 kend = min(end, keepout->start);
0122 ksize = kend - offset;
0123 if (write)
0124 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
0125 else
0126 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
0127
0128 if (rc)
0129 return rc;
0130
0131 offset += ksize;
0132 val += ksize;
0133 }
0134
0135
0136
0137
0138
0139 kend = min(end, keepout->end);
0140 ksize = kend - offset;
0141 if (!write)
0142 memset(val, keepout->value, ksize);
0143
0144 val += ksize;
0145 offset += ksize;
0146 keepout++;
0147 }
0148
0149
0150
0151
0152
0153 if (offset < end) {
0154 ksize = end - offset;
0155 if (write)
0156 return __nvmem_reg_write(nvmem, offset, val, ksize);
0157 else
0158 return __nvmem_reg_read(nvmem, offset, val, ksize);
0159 }
0160
0161 return 0;
0162 }
0163
0164 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
0165 void *val, size_t bytes)
0166 {
0167 if (!nvmem->nkeepout)
0168 return __nvmem_reg_read(nvmem, offset, val, bytes);
0169
0170 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
0171 }
0172
0173 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
0174 void *val, size_t bytes)
0175 {
0176 if (!nvmem->nkeepout)
0177 return __nvmem_reg_write(nvmem, offset, val, bytes);
0178
0179 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
0180 }
0181
0182 #ifdef CONFIG_NVMEM_SYSFS
0183 static const char * const nvmem_type_str[] = {
0184 [NVMEM_TYPE_UNKNOWN] = "Unknown",
0185 [NVMEM_TYPE_EEPROM] = "EEPROM",
0186 [NVMEM_TYPE_OTP] = "OTP",
0187 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
0188 [NVMEM_TYPE_FRAM] = "FRAM",
0189 };
0190
0191 #ifdef CONFIG_DEBUG_LOCK_ALLOC
0192 static struct lock_class_key eeprom_lock_key;
0193 #endif
0194
0195 static ssize_t type_show(struct device *dev,
0196 struct device_attribute *attr, char *buf)
0197 {
0198 struct nvmem_device *nvmem = to_nvmem_device(dev);
0199
0200 return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
0201 }
0202
0203 static DEVICE_ATTR_RO(type);
0204
0205 static struct attribute *nvmem_attrs[] = {
0206 &dev_attr_type.attr,
0207 NULL,
0208 };
0209
0210 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
0211 struct bin_attribute *attr, char *buf,
0212 loff_t pos, size_t count)
0213 {
0214 struct device *dev;
0215 struct nvmem_device *nvmem;
0216 int rc;
0217
0218 if (attr->private)
0219 dev = attr->private;
0220 else
0221 dev = kobj_to_dev(kobj);
0222 nvmem = to_nvmem_device(dev);
0223
0224
0225 if (pos >= nvmem->size)
0226 return 0;
0227
0228 if (!IS_ALIGNED(pos, nvmem->stride))
0229 return -EINVAL;
0230
0231 if (count < nvmem->word_size)
0232 return -EINVAL;
0233
0234 if (pos + count > nvmem->size)
0235 count = nvmem->size - pos;
0236
0237 count = round_down(count, nvmem->word_size);
0238
0239 if (!nvmem->reg_read)
0240 return -EPERM;
0241
0242 rc = nvmem_reg_read(nvmem, pos, buf, count);
0243
0244 if (rc)
0245 return rc;
0246
0247 return count;
0248 }
0249
0250 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
0251 struct bin_attribute *attr, char *buf,
0252 loff_t pos, size_t count)
0253 {
0254 struct device *dev;
0255 struct nvmem_device *nvmem;
0256 int rc;
0257
0258 if (attr->private)
0259 dev = attr->private;
0260 else
0261 dev = kobj_to_dev(kobj);
0262 nvmem = to_nvmem_device(dev);
0263
0264
0265 if (pos >= nvmem->size)
0266 return -EFBIG;
0267
0268 if (!IS_ALIGNED(pos, nvmem->stride))
0269 return -EINVAL;
0270
0271 if (count < nvmem->word_size)
0272 return -EINVAL;
0273
0274 if (pos + count > nvmem->size)
0275 count = nvmem->size - pos;
0276
0277 count = round_down(count, nvmem->word_size);
0278
0279 if (!nvmem->reg_write)
0280 return -EPERM;
0281
0282 rc = nvmem_reg_write(nvmem, pos, buf, count);
0283
0284 if (rc)
0285 return rc;
0286
0287 return count;
0288 }
0289
0290 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
0291 {
0292 umode_t mode = 0400;
0293
0294 if (!nvmem->root_only)
0295 mode |= 0044;
0296
0297 if (!nvmem->read_only)
0298 mode |= 0200;
0299
0300 if (!nvmem->reg_write)
0301 mode &= ~0200;
0302
0303 if (!nvmem->reg_read)
0304 mode &= ~0444;
0305
0306 return mode;
0307 }
0308
0309 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
0310 struct bin_attribute *attr, int i)
0311 {
0312 struct device *dev = kobj_to_dev(kobj);
0313 struct nvmem_device *nvmem = to_nvmem_device(dev);
0314
0315 attr->size = nvmem->size;
0316
0317 return nvmem_bin_attr_get_umode(nvmem);
0318 }
0319
0320
0321 static struct bin_attribute bin_attr_rw_nvmem = {
0322 .attr = {
0323 .name = "nvmem",
0324 .mode = 0644,
0325 },
0326 .read = bin_attr_nvmem_read,
0327 .write = bin_attr_nvmem_write,
0328 };
0329
0330 static struct bin_attribute *nvmem_bin_attributes[] = {
0331 &bin_attr_rw_nvmem,
0332 NULL,
0333 };
0334
0335 static const struct attribute_group nvmem_bin_group = {
0336 .bin_attrs = nvmem_bin_attributes,
0337 .attrs = nvmem_attrs,
0338 .is_bin_visible = nvmem_bin_attr_is_visible,
0339 };
0340
0341 static const struct attribute_group *nvmem_dev_groups[] = {
0342 &nvmem_bin_group,
0343 NULL,
0344 };
0345
0346 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
0347 .attr = {
0348 .name = "eeprom",
0349 },
0350 .read = bin_attr_nvmem_read,
0351 .write = bin_attr_nvmem_write,
0352 };
0353
0354
0355
0356
0357
0358
0359 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
0360 const struct nvmem_config *config)
0361 {
0362 int rval;
0363
0364 if (!config->compat)
0365 return 0;
0366
0367 if (!config->base_dev)
0368 return -EINVAL;
0369
0370 if (config->type == NVMEM_TYPE_FRAM)
0371 bin_attr_nvmem_eeprom_compat.attr.name = "fram";
0372
0373 nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
0374 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
0375 nvmem->eeprom.size = nvmem->size;
0376 #ifdef CONFIG_DEBUG_LOCK_ALLOC
0377 nvmem->eeprom.attr.key = &eeprom_lock_key;
0378 #endif
0379 nvmem->eeprom.private = &nvmem->dev;
0380 nvmem->base_dev = config->base_dev;
0381
0382 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
0383 if (rval) {
0384 dev_err(&nvmem->dev,
0385 "Failed to create eeprom binary file %d\n", rval);
0386 return rval;
0387 }
0388
0389 nvmem->flags |= FLAG_COMPAT;
0390
0391 return 0;
0392 }
0393
0394 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
0395 const struct nvmem_config *config)
0396 {
0397 if (config->compat)
0398 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
0399 }
0400
0401 #else
0402
0403 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
0404 const struct nvmem_config *config)
0405 {
0406 return -ENOSYS;
0407 }
0408 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
0409 const struct nvmem_config *config)
0410 {
0411 }
0412
0413 #endif
0414
0415 static void nvmem_release(struct device *dev)
0416 {
0417 struct nvmem_device *nvmem = to_nvmem_device(dev);
0418
0419 ida_free(&nvmem_ida, nvmem->id);
0420 gpiod_put(nvmem->wp_gpio);
0421 kfree(nvmem);
0422 }
0423
0424 static const struct device_type nvmem_provider_type = {
0425 .release = nvmem_release,
0426 };
0427
0428 static struct bus_type nvmem_bus_type = {
0429 .name = "nvmem",
0430 };
0431
0432 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
0433 {
0434 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
0435 mutex_lock(&nvmem_mutex);
0436 list_del(&cell->node);
0437 mutex_unlock(&nvmem_mutex);
0438 of_node_put(cell->np);
0439 kfree_const(cell->name);
0440 kfree(cell);
0441 }
0442
0443 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
0444 {
0445 struct nvmem_cell_entry *cell, *p;
0446
0447 list_for_each_entry_safe(cell, p, &nvmem->cells, node)
0448 nvmem_cell_entry_drop(cell);
0449 }
0450
0451 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
0452 {
0453 mutex_lock(&nvmem_mutex);
0454 list_add_tail(&cell->node, &cell->nvmem->cells);
0455 mutex_unlock(&nvmem_mutex);
0456 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
0457 }
0458
0459 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
0460 const struct nvmem_cell_info *info,
0461 struct nvmem_cell_entry *cell)
0462 {
0463 cell->nvmem = nvmem;
0464 cell->offset = info->offset;
0465 cell->bytes = info->bytes;
0466 cell->name = info->name;
0467
0468 cell->bit_offset = info->bit_offset;
0469 cell->nbits = info->nbits;
0470 cell->np = info->np;
0471
0472 if (cell->nbits)
0473 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
0474 BITS_PER_BYTE);
0475
0476 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
0477 dev_err(&nvmem->dev,
0478 "cell %s unaligned to nvmem stride %d\n",
0479 cell->name ?: "<unknown>", nvmem->stride);
0480 return -EINVAL;
0481 }
0482
0483 return 0;
0484 }
0485
0486 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
0487 const struct nvmem_cell_info *info,
0488 struct nvmem_cell_entry *cell)
0489 {
0490 int err;
0491
0492 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
0493 if (err)
0494 return err;
0495
0496 cell->name = kstrdup_const(info->name, GFP_KERNEL);
0497 if (!cell->name)
0498 return -ENOMEM;
0499
0500 return 0;
0501 }
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512 static int nvmem_add_cells(struct nvmem_device *nvmem,
0513 const struct nvmem_cell_info *info,
0514 int ncells)
0515 {
0516 struct nvmem_cell_entry **cells;
0517 int i, rval;
0518
0519 cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
0520 if (!cells)
0521 return -ENOMEM;
0522
0523 for (i = 0; i < ncells; i++) {
0524 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
0525 if (!cells[i]) {
0526 rval = -ENOMEM;
0527 goto err;
0528 }
0529
0530 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, &info[i], cells[i]);
0531 if (rval) {
0532 kfree(cells[i]);
0533 goto err;
0534 }
0535
0536 nvmem_cell_entry_add(cells[i]);
0537 }
0538
0539
0540 kfree(cells);
0541
0542 return 0;
0543 err:
0544 while (i--)
0545 nvmem_cell_entry_drop(cells[i]);
0546
0547 kfree(cells);
0548
0549 return rval;
0550 }
0551
0552
0553
0554
0555
0556
0557
0558
0559 int nvmem_register_notifier(struct notifier_block *nb)
0560 {
0561 return blocking_notifier_chain_register(&nvmem_notifier, nb);
0562 }
0563 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
0564
0565
0566
0567
0568
0569
0570
0571
0572 int nvmem_unregister_notifier(struct notifier_block *nb)
0573 {
0574 return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
0575 }
0576 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
0577
0578 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
0579 {
0580 const struct nvmem_cell_info *info;
0581 struct nvmem_cell_table *table;
0582 struct nvmem_cell_entry *cell;
0583 int rval = 0, i;
0584
0585 mutex_lock(&nvmem_cell_mutex);
0586 list_for_each_entry(table, &nvmem_cell_tables, node) {
0587 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
0588 for (i = 0; i < table->ncells; i++) {
0589 info = &table->cells[i];
0590
0591 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
0592 if (!cell) {
0593 rval = -ENOMEM;
0594 goto out;
0595 }
0596
0597 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
0598 if (rval) {
0599 kfree(cell);
0600 goto out;
0601 }
0602
0603 nvmem_cell_entry_add(cell);
0604 }
0605 }
0606 }
0607
0608 out:
0609 mutex_unlock(&nvmem_cell_mutex);
0610 return rval;
0611 }
0612
0613 static struct nvmem_cell_entry *
0614 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
0615 {
0616 struct nvmem_cell_entry *iter, *cell = NULL;
0617
0618 mutex_lock(&nvmem_mutex);
0619 list_for_each_entry(iter, &nvmem->cells, node) {
0620 if (strcmp(cell_id, iter->name) == 0) {
0621 cell = iter;
0622 break;
0623 }
0624 }
0625 mutex_unlock(&nvmem_mutex);
0626
0627 return cell;
0628 }
0629
0630 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
0631 {
0632 unsigned int cur = 0;
0633 const struct nvmem_keepout *keepout = nvmem->keepout;
0634 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
0635
0636 while (keepout < keepoutend) {
0637
0638 if (keepout->start < cur) {
0639 dev_err(&nvmem->dev,
0640 "Keepout regions aren't sorted or overlap.\n");
0641
0642 return -ERANGE;
0643 }
0644
0645 if (keepout->end < keepout->start) {
0646 dev_err(&nvmem->dev,
0647 "Invalid keepout region.\n");
0648
0649 return -EINVAL;
0650 }
0651
0652
0653
0654
0655
0656 if ((keepout->end - keepout->start < nvmem->word_size) ||
0657 ((keepout->start != cur) &&
0658 (keepout->start - cur < nvmem->word_size))) {
0659
0660 dev_err(&nvmem->dev,
0661 "Keepout regions violate word_size constraints.\n");
0662
0663 return -ERANGE;
0664 }
0665
0666
0667 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
0668 !IS_ALIGNED(keepout->end, nvmem->stride)) {
0669
0670 dev_err(&nvmem->dev,
0671 "Keepout regions violate stride.\n");
0672
0673 return -EINVAL;
0674 }
0675
0676 cur = keepout->end;
0677 keepout++;
0678 }
0679
0680 return 0;
0681 }
0682
0683 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
0684 {
0685 struct device_node *parent, *child;
0686 struct device *dev = &nvmem->dev;
0687 struct nvmem_cell_entry *cell;
0688 const __be32 *addr;
0689 int len;
0690
0691 parent = dev->of_node;
0692
0693 for_each_child_of_node(parent, child) {
0694 addr = of_get_property(child, "reg", &len);
0695 if (!addr)
0696 continue;
0697 if (len < 2 * sizeof(u32)) {
0698 dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
0699 of_node_put(child);
0700 return -EINVAL;
0701 }
0702
0703 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
0704 if (!cell) {
0705 of_node_put(child);
0706 return -ENOMEM;
0707 }
0708
0709 cell->nvmem = nvmem;
0710 cell->offset = be32_to_cpup(addr++);
0711 cell->bytes = be32_to_cpup(addr);
0712 cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
0713
0714 addr = of_get_property(child, "bits", &len);
0715 if (addr && len == (2 * sizeof(u32))) {
0716 cell->bit_offset = be32_to_cpup(addr++);
0717 cell->nbits = be32_to_cpup(addr);
0718 }
0719
0720 if (cell->nbits)
0721 cell->bytes = DIV_ROUND_UP(
0722 cell->nbits + cell->bit_offset,
0723 BITS_PER_BYTE);
0724
0725 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
0726 dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
0727 cell->name, nvmem->stride);
0728
0729 kfree_const(cell->name);
0730 kfree(cell);
0731 of_node_put(child);
0732 return -EINVAL;
0733 }
0734
0735 cell->np = of_node_get(child);
0736 nvmem_cell_entry_add(cell);
0737 }
0738
0739 return 0;
0740 }
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
0753 {
0754 struct nvmem_device *nvmem;
0755 int rval;
0756
0757 if (!config->dev)
0758 return ERR_PTR(-EINVAL);
0759
0760 if (!config->reg_read && !config->reg_write)
0761 return ERR_PTR(-EINVAL);
0762
0763 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
0764 if (!nvmem)
0765 return ERR_PTR(-ENOMEM);
0766
0767 rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
0768 if (rval < 0) {
0769 kfree(nvmem);
0770 return ERR_PTR(rval);
0771 }
0772
0773 if (config->wp_gpio)
0774 nvmem->wp_gpio = config->wp_gpio;
0775 else if (!config->ignore_wp)
0776 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
0777 GPIOD_OUT_HIGH);
0778 if (IS_ERR(nvmem->wp_gpio)) {
0779 ida_free(&nvmem_ida, nvmem->id);
0780 rval = PTR_ERR(nvmem->wp_gpio);
0781 kfree(nvmem);
0782 return ERR_PTR(rval);
0783 }
0784
0785 kref_init(&nvmem->refcnt);
0786 INIT_LIST_HEAD(&nvmem->cells);
0787
0788 nvmem->id = rval;
0789 nvmem->owner = config->owner;
0790 if (!nvmem->owner && config->dev->driver)
0791 nvmem->owner = config->dev->driver->owner;
0792 nvmem->stride = config->stride ?: 1;
0793 nvmem->word_size = config->word_size ?: 1;
0794 nvmem->size = config->size;
0795 nvmem->dev.type = &nvmem_provider_type;
0796 nvmem->dev.bus = &nvmem_bus_type;
0797 nvmem->dev.parent = config->dev;
0798 nvmem->root_only = config->root_only;
0799 nvmem->priv = config->priv;
0800 nvmem->type = config->type;
0801 nvmem->reg_read = config->reg_read;
0802 nvmem->reg_write = config->reg_write;
0803 nvmem->cell_post_process = config->cell_post_process;
0804 nvmem->keepout = config->keepout;
0805 nvmem->nkeepout = config->nkeepout;
0806 if (config->of_node)
0807 nvmem->dev.of_node = config->of_node;
0808 else if (!config->no_of_node)
0809 nvmem->dev.of_node = config->dev->of_node;
0810
0811 switch (config->id) {
0812 case NVMEM_DEVID_NONE:
0813 dev_set_name(&nvmem->dev, "%s", config->name);
0814 break;
0815 case NVMEM_DEVID_AUTO:
0816 dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
0817 break;
0818 default:
0819 dev_set_name(&nvmem->dev, "%s%d",
0820 config->name ? : "nvmem",
0821 config->name ? config->id : nvmem->id);
0822 break;
0823 }
0824
0825 nvmem->read_only = device_property_present(config->dev, "read-only") ||
0826 config->read_only || !nvmem->reg_write;
0827
0828 #ifdef CONFIG_NVMEM_SYSFS
0829 nvmem->dev.groups = nvmem_dev_groups;
0830 #endif
0831
0832 if (nvmem->nkeepout) {
0833 rval = nvmem_validate_keepouts(nvmem);
0834 if (rval) {
0835 ida_free(&nvmem_ida, nvmem->id);
0836 kfree(nvmem);
0837 return ERR_PTR(rval);
0838 }
0839 }
0840
0841 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
0842
0843 rval = device_register(&nvmem->dev);
0844 if (rval)
0845 goto err_put_device;
0846
0847 if (config->compat) {
0848 rval = nvmem_sysfs_setup_compat(nvmem, config);
0849 if (rval)
0850 goto err_device_del;
0851 }
0852
0853 if (config->cells) {
0854 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
0855 if (rval)
0856 goto err_teardown_compat;
0857 }
0858
0859 rval = nvmem_add_cells_from_table(nvmem);
0860 if (rval)
0861 goto err_remove_cells;
0862
0863 rval = nvmem_add_cells_from_of(nvmem);
0864 if (rval)
0865 goto err_remove_cells;
0866
0867 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
0868
0869 return nvmem;
0870
0871 err_remove_cells:
0872 nvmem_device_remove_all_cells(nvmem);
0873 err_teardown_compat:
0874 if (config->compat)
0875 nvmem_sysfs_remove_compat(nvmem, config);
0876 err_device_del:
0877 device_del(&nvmem->dev);
0878 err_put_device:
0879 put_device(&nvmem->dev);
0880
0881 return ERR_PTR(rval);
0882 }
0883 EXPORT_SYMBOL_GPL(nvmem_register);
0884
0885 static void nvmem_device_release(struct kref *kref)
0886 {
0887 struct nvmem_device *nvmem;
0888
0889 nvmem = container_of(kref, struct nvmem_device, refcnt);
0890
0891 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
0892
0893 if (nvmem->flags & FLAG_COMPAT)
0894 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
0895
0896 nvmem_device_remove_all_cells(nvmem);
0897 device_unregister(&nvmem->dev);
0898 }
0899
0900
0901
0902
0903
0904
0905 void nvmem_unregister(struct nvmem_device *nvmem)
0906 {
0907 if (nvmem)
0908 kref_put(&nvmem->refcnt, nvmem_device_release);
0909 }
0910 EXPORT_SYMBOL_GPL(nvmem_unregister);
0911
0912 static void devm_nvmem_unregister(void *nvmem)
0913 {
0914 nvmem_unregister(nvmem);
0915 }
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928 struct nvmem_device *devm_nvmem_register(struct device *dev,
0929 const struct nvmem_config *config)
0930 {
0931 struct nvmem_device *nvmem;
0932 int ret;
0933
0934 nvmem = nvmem_register(config);
0935 if (IS_ERR(nvmem))
0936 return nvmem;
0937
0938 ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
0939 if (ret)
0940 return ERR_PTR(ret);
0941
0942 return nvmem;
0943 }
0944 EXPORT_SYMBOL_GPL(devm_nvmem_register);
0945
0946 static struct nvmem_device *__nvmem_device_get(void *data,
0947 int (*match)(struct device *dev, const void *data))
0948 {
0949 struct nvmem_device *nvmem = NULL;
0950 struct device *dev;
0951
0952 mutex_lock(&nvmem_mutex);
0953 dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
0954 if (dev)
0955 nvmem = to_nvmem_device(dev);
0956 mutex_unlock(&nvmem_mutex);
0957 if (!nvmem)
0958 return ERR_PTR(-EPROBE_DEFER);
0959
0960 if (!try_module_get(nvmem->owner)) {
0961 dev_err(&nvmem->dev,
0962 "could not increase module refcount for cell %s\n",
0963 nvmem_dev_name(nvmem));
0964
0965 put_device(&nvmem->dev);
0966 return ERR_PTR(-EINVAL);
0967 }
0968
0969 kref_get(&nvmem->refcnt);
0970
0971 return nvmem;
0972 }
0973
0974 static void __nvmem_device_put(struct nvmem_device *nvmem)
0975 {
0976 put_device(&nvmem->dev);
0977 module_put(nvmem->owner);
0978 kref_put(&nvmem->refcnt, nvmem_device_release);
0979 }
0980
0981 #if IS_ENABLED(CONFIG_OF)
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
0992 {
0993
0994 struct device_node *nvmem_np;
0995 struct nvmem_device *nvmem;
0996 int index = 0;
0997
0998 if (id)
0999 index = of_property_match_string(np, "nvmem-names", id);
1000
1001 nvmem_np = of_parse_phandle(np, "nvmem", index);
1002 if (!nvmem_np)
1003 return ERR_PTR(-ENOENT);
1004
1005 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1006 of_node_put(nvmem_np);
1007 return nvmem;
1008 }
1009 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1010 #endif
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1022 {
1023 if (dev->of_node) {
1024 struct nvmem_device *nvmem;
1025
1026 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1027
1028 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1029 return nvmem;
1030
1031 }
1032
1033 return __nvmem_device_get((void *)dev_name, device_match_name);
1034 }
1035 EXPORT_SYMBOL_GPL(nvmem_device_get);
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046 struct nvmem_device *nvmem_device_find(void *data,
1047 int (*match)(struct device *dev, const void *data))
1048 {
1049 return __nvmem_device_get(data, match);
1050 }
1051 EXPORT_SYMBOL_GPL(nvmem_device_find);
1052
1053 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1054 {
1055 struct nvmem_device **nvmem = res;
1056
1057 if (WARN_ON(!nvmem || !*nvmem))
1058 return 0;
1059
1060 return *nvmem == data;
1061 }
1062
1063 static void devm_nvmem_device_release(struct device *dev, void *res)
1064 {
1065 nvmem_device_put(*(struct nvmem_device **)res);
1066 }
1067
1068
1069
1070
1071
1072
1073
1074
1075 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1076 {
1077 int ret;
1078
1079 ret = devres_release(dev, devm_nvmem_device_release,
1080 devm_nvmem_device_match, nvmem);
1081
1082 WARN_ON(ret);
1083 }
1084 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1085
1086
1087
1088
1089
1090
1091 void nvmem_device_put(struct nvmem_device *nvmem)
1092 {
1093 __nvmem_device_put(nvmem);
1094 }
1095 EXPORT_SYMBOL_GPL(nvmem_device_put);
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1108 {
1109 struct nvmem_device **ptr, *nvmem;
1110
1111 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1112 if (!ptr)
1113 return ERR_PTR(-ENOMEM);
1114
1115 nvmem = nvmem_device_get(dev, id);
1116 if (!IS_ERR(nvmem)) {
1117 *ptr = nvmem;
1118 devres_add(dev, ptr);
1119 } else {
1120 devres_free(ptr);
1121 }
1122
1123 return nvmem;
1124 }
1125 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1126
1127 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry, const char *id)
1128 {
1129 struct nvmem_cell *cell;
1130 const char *name = NULL;
1131
1132 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1133 if (!cell)
1134 return ERR_PTR(-ENOMEM);
1135
1136 if (id) {
1137 name = kstrdup_const(id, GFP_KERNEL);
1138 if (!name) {
1139 kfree(cell);
1140 return ERR_PTR(-ENOMEM);
1141 }
1142 }
1143
1144 cell->id = name;
1145 cell->entry = entry;
1146
1147 return cell;
1148 }
1149
1150 static struct nvmem_cell *
1151 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1152 {
1153 struct nvmem_cell_entry *cell_entry;
1154 struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1155 struct nvmem_cell_lookup *lookup;
1156 struct nvmem_device *nvmem;
1157 const char *dev_id;
1158
1159 if (!dev)
1160 return ERR_PTR(-EINVAL);
1161
1162 dev_id = dev_name(dev);
1163
1164 mutex_lock(&nvmem_lookup_mutex);
1165
1166 list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1167 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1168 (strcmp(lookup->con_id, con_id) == 0)) {
1169
1170 nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1171 device_match_name);
1172 if (IS_ERR(nvmem)) {
1173
1174 cell = ERR_CAST(nvmem);
1175 break;
1176 }
1177
1178 cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1179 lookup->cell_name);
1180 if (!cell_entry) {
1181 __nvmem_device_put(nvmem);
1182 cell = ERR_PTR(-ENOENT);
1183 } else {
1184 cell = nvmem_create_cell(cell_entry, con_id);
1185 if (IS_ERR(cell))
1186 __nvmem_device_put(nvmem);
1187 }
1188 break;
1189 }
1190 }
1191
1192 mutex_unlock(&nvmem_lookup_mutex);
1193 return cell;
1194 }
1195
1196 #if IS_ENABLED(CONFIG_OF)
1197 static struct nvmem_cell_entry *
1198 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1199 {
1200 struct nvmem_cell_entry *iter, *cell = NULL;
1201
1202 mutex_lock(&nvmem_mutex);
1203 list_for_each_entry(iter, &nvmem->cells, node) {
1204 if (np == iter->np) {
1205 cell = iter;
1206 break;
1207 }
1208 }
1209 mutex_unlock(&nvmem_mutex);
1210
1211 return cell;
1212 }
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1227 {
1228 struct device_node *cell_np, *nvmem_np;
1229 struct nvmem_device *nvmem;
1230 struct nvmem_cell_entry *cell_entry;
1231 struct nvmem_cell *cell;
1232 int index = 0;
1233
1234
1235 if (id)
1236 index = of_property_match_string(np, "nvmem-cell-names", id);
1237
1238 cell_np = of_parse_phandle(np, "nvmem-cells", index);
1239 if (!cell_np)
1240 return ERR_PTR(-ENOENT);
1241
1242 nvmem_np = of_get_next_parent(cell_np);
1243 if (!nvmem_np)
1244 return ERR_PTR(-EINVAL);
1245
1246 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1247 of_node_put(nvmem_np);
1248 if (IS_ERR(nvmem))
1249 return ERR_CAST(nvmem);
1250
1251 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1252 if (!cell_entry) {
1253 __nvmem_device_put(nvmem);
1254 return ERR_PTR(-ENOENT);
1255 }
1256
1257 cell = nvmem_create_cell(cell_entry, id);
1258 if (IS_ERR(cell))
1259 __nvmem_device_put(nvmem);
1260
1261 return cell;
1262 }
1263 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1264 #endif
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1279 {
1280 struct nvmem_cell *cell;
1281
1282 if (dev->of_node) {
1283 cell = of_nvmem_cell_get(dev->of_node, id);
1284 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1285 return cell;
1286 }
1287
1288
1289 if (!id)
1290 return ERR_PTR(-EINVAL);
1291
1292 return nvmem_cell_get_from_lookup(dev, id);
1293 }
1294 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1295
1296 static void devm_nvmem_cell_release(struct device *dev, void *res)
1297 {
1298 nvmem_cell_put(*(struct nvmem_cell **)res);
1299 }
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1312 {
1313 struct nvmem_cell **ptr, *cell;
1314
1315 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1316 if (!ptr)
1317 return ERR_PTR(-ENOMEM);
1318
1319 cell = nvmem_cell_get(dev, id);
1320 if (!IS_ERR(cell)) {
1321 *ptr = cell;
1322 devres_add(dev, ptr);
1323 } else {
1324 devres_free(ptr);
1325 }
1326
1327 return cell;
1328 }
1329 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1330
1331 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1332 {
1333 struct nvmem_cell **c = res;
1334
1335 if (WARN_ON(!c || !*c))
1336 return 0;
1337
1338 return *c == data;
1339 }
1340
1341
1342
1343
1344
1345
1346
1347
1348 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1349 {
1350 int ret;
1351
1352 ret = devres_release(dev, devm_nvmem_cell_release,
1353 devm_nvmem_cell_match, cell);
1354
1355 WARN_ON(ret);
1356 }
1357 EXPORT_SYMBOL(devm_nvmem_cell_put);
1358
1359
1360
1361
1362
1363
1364 void nvmem_cell_put(struct nvmem_cell *cell)
1365 {
1366 struct nvmem_device *nvmem = cell->entry->nvmem;
1367
1368 if (cell->id)
1369 kfree_const(cell->id);
1370
1371 kfree(cell);
1372 __nvmem_device_put(nvmem);
1373 }
1374 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1375
1376 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1377 {
1378 u8 *p, *b;
1379 int i, extra, bit_offset = cell->bit_offset;
1380
1381 p = b = buf;
1382 if (bit_offset) {
1383
1384 *b++ >>= bit_offset;
1385
1386
1387 for (i = 1; i < cell->bytes; i++) {
1388
1389 *p |= *b << (BITS_PER_BYTE - bit_offset);
1390
1391 p = b;
1392 *b++ >>= bit_offset;
1393 }
1394 } else {
1395
1396 p += cell->bytes - 1;
1397 }
1398
1399
1400 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1401 while (--extra >= 0)
1402 *p-- = 0;
1403
1404
1405 if (cell->nbits % BITS_PER_BYTE)
1406 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1407 }
1408
1409 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1410 struct nvmem_cell_entry *cell,
1411 void *buf, size_t *len, const char *id)
1412 {
1413 int rc;
1414
1415 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1416
1417 if (rc)
1418 return rc;
1419
1420
1421 if (cell->bit_offset || cell->nbits)
1422 nvmem_shift_read_buffer_in_place(cell, buf);
1423
1424 if (nvmem->cell_post_process) {
1425 rc = nvmem->cell_post_process(nvmem->priv, id,
1426 cell->offset, buf, cell->bytes);
1427 if (rc)
1428 return rc;
1429 }
1430
1431 if (len)
1432 *len = cell->bytes;
1433
1434 return 0;
1435 }
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1448 {
1449 struct nvmem_device *nvmem = cell->entry->nvmem;
1450 u8 *buf;
1451 int rc;
1452
1453 if (!nvmem)
1454 return ERR_PTR(-EINVAL);
1455
1456 buf = kzalloc(cell->entry->bytes, GFP_KERNEL);
1457 if (!buf)
1458 return ERR_PTR(-ENOMEM);
1459
1460 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id);
1461 if (rc) {
1462 kfree(buf);
1463 return ERR_PTR(rc);
1464 }
1465
1466 return buf;
1467 }
1468 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1469
1470 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1471 u8 *_buf, int len)
1472 {
1473 struct nvmem_device *nvmem = cell->nvmem;
1474 int i, rc, nbits, bit_offset = cell->bit_offset;
1475 u8 v, *p, *buf, *b, pbyte, pbits;
1476
1477 nbits = cell->nbits;
1478 buf = kzalloc(cell->bytes, GFP_KERNEL);
1479 if (!buf)
1480 return ERR_PTR(-ENOMEM);
1481
1482 memcpy(buf, _buf, len);
1483 p = b = buf;
1484
1485 if (bit_offset) {
1486 pbyte = *b;
1487 *b <<= bit_offset;
1488
1489
1490 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1491 if (rc)
1492 goto err;
1493 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1494
1495
1496 for (i = 1; i < cell->bytes; i++) {
1497
1498 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1499 pbyte = *b;
1500 p = b;
1501 *b <<= bit_offset;
1502 *b++ |= pbits;
1503 }
1504 }
1505
1506
1507 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1508
1509 rc = nvmem_reg_read(nvmem,
1510 cell->offset + cell->bytes - 1, &v, 1);
1511 if (rc)
1512 goto err;
1513 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1514
1515 }
1516
1517 return buf;
1518 err:
1519 kfree(buf);
1520 return ERR_PTR(rc);
1521 }
1522
1523 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1524 {
1525 struct nvmem_device *nvmem = cell->nvmem;
1526 int rc;
1527
1528 if (!nvmem || nvmem->read_only ||
1529 (cell->bit_offset == 0 && len != cell->bytes))
1530 return -EINVAL;
1531
1532 if (cell->bit_offset || cell->nbits) {
1533 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1534 if (IS_ERR(buf))
1535 return PTR_ERR(buf);
1536 }
1537
1538 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1539
1540
1541 if (cell->bit_offset || cell->nbits)
1542 kfree(buf);
1543
1544 if (rc)
1545 return rc;
1546
1547 return len;
1548 }
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1560 {
1561 return __nvmem_cell_entry_write(cell->entry, buf, len);
1562 }
1563
1564 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1565
1566 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1567 void *val, size_t count)
1568 {
1569 struct nvmem_cell *cell;
1570 void *buf;
1571 size_t len;
1572
1573 cell = nvmem_cell_get(dev, cell_id);
1574 if (IS_ERR(cell))
1575 return PTR_ERR(cell);
1576
1577 buf = nvmem_cell_read(cell, &len);
1578 if (IS_ERR(buf)) {
1579 nvmem_cell_put(cell);
1580 return PTR_ERR(buf);
1581 }
1582 if (len != count) {
1583 kfree(buf);
1584 nvmem_cell_put(cell);
1585 return -EINVAL;
1586 }
1587 memcpy(val, buf, count);
1588 kfree(buf);
1589 nvmem_cell_put(cell);
1590
1591 return 0;
1592 }
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1604 {
1605 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1606 }
1607 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1619 {
1620 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1621 }
1622 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1634 {
1635 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1636 }
1637 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1649 {
1650 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1651 }
1652 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1653
1654 static const void *nvmem_cell_read_variable_common(struct device *dev,
1655 const char *cell_id,
1656 size_t max_len, size_t *len)
1657 {
1658 struct nvmem_cell *cell;
1659 int nbits;
1660 void *buf;
1661
1662 cell = nvmem_cell_get(dev, cell_id);
1663 if (IS_ERR(cell))
1664 return cell;
1665
1666 nbits = cell->entry->nbits;
1667 buf = nvmem_cell_read(cell, len);
1668 nvmem_cell_put(cell);
1669 if (IS_ERR(buf))
1670 return buf;
1671
1672
1673
1674
1675
1676 if (nbits)
1677 *len = DIV_ROUND_UP(nbits, 8);
1678
1679 if (*len > max_len) {
1680 kfree(buf);
1681 return ERR_PTR(-ERANGE);
1682 }
1683
1684 return buf;
1685 }
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1697 u32 *val)
1698 {
1699 size_t len;
1700 const u8 *buf;
1701 int i;
1702
1703 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1704 if (IS_ERR(buf))
1705 return PTR_ERR(buf);
1706
1707
1708 *val = 0;
1709 for (i = 0; i < len; i++)
1710 *val |= buf[i] << (8 * i);
1711
1712 kfree(buf);
1713
1714 return 0;
1715 }
1716 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1728 u64 *val)
1729 {
1730 size_t len;
1731 const u8 *buf;
1732 int i;
1733
1734 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1735 if (IS_ERR(buf))
1736 return PTR_ERR(buf);
1737
1738
1739 *val = 0;
1740 for (i = 0; i < len; i++)
1741 *val |= (uint64_t)buf[i] << (8 * i);
1742
1743 kfree(buf);
1744
1745 return 0;
1746 }
1747 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1760 struct nvmem_cell_info *info, void *buf)
1761 {
1762 struct nvmem_cell_entry cell;
1763 int rc;
1764 ssize_t len;
1765
1766 if (!nvmem)
1767 return -EINVAL;
1768
1769 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1770 if (rc)
1771 return rc;
1772
1773 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL);
1774 if (rc)
1775 return rc;
1776
1777 return len;
1778 }
1779 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1791 struct nvmem_cell_info *info, void *buf)
1792 {
1793 struct nvmem_cell_entry cell;
1794 int rc;
1795
1796 if (!nvmem)
1797 return -EINVAL;
1798
1799 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1800 if (rc)
1801 return rc;
1802
1803 return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1804 }
1805 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818 int nvmem_device_read(struct nvmem_device *nvmem,
1819 unsigned int offset,
1820 size_t bytes, void *buf)
1821 {
1822 int rc;
1823
1824 if (!nvmem)
1825 return -EINVAL;
1826
1827 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1828
1829 if (rc)
1830 return rc;
1831
1832 return bytes;
1833 }
1834 EXPORT_SYMBOL_GPL(nvmem_device_read);
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846 int nvmem_device_write(struct nvmem_device *nvmem,
1847 unsigned int offset,
1848 size_t bytes, void *buf)
1849 {
1850 int rc;
1851
1852 if (!nvmem)
1853 return -EINVAL;
1854
1855 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1856
1857 if (rc)
1858 return rc;
1859
1860
1861 return bytes;
1862 }
1863 EXPORT_SYMBOL_GPL(nvmem_device_write);
1864
1865
1866
1867
1868
1869
1870 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1871 {
1872 mutex_lock(&nvmem_cell_mutex);
1873 list_add_tail(&table->node, &nvmem_cell_tables);
1874 mutex_unlock(&nvmem_cell_mutex);
1875 }
1876 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1877
1878
1879
1880
1881
1882
1883 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1884 {
1885 mutex_lock(&nvmem_cell_mutex);
1886 list_del(&table->node);
1887 mutex_unlock(&nvmem_cell_mutex);
1888 }
1889 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1890
1891
1892
1893
1894
1895
1896
1897 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1898 {
1899 int i;
1900
1901 mutex_lock(&nvmem_lookup_mutex);
1902 for (i = 0; i < nentries; i++)
1903 list_add_tail(&entries[i].node, &nvmem_lookup_list);
1904 mutex_unlock(&nvmem_lookup_mutex);
1905 }
1906 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1907
1908
1909
1910
1911
1912
1913
1914
1915 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1916 {
1917 int i;
1918
1919 mutex_lock(&nvmem_lookup_mutex);
1920 for (i = 0; i < nentries; i++)
1921 list_del(&entries[i].node);
1922 mutex_unlock(&nvmem_lookup_mutex);
1923 }
1924 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1925
1926
1927
1928
1929
1930
1931
1932
1933 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1934 {
1935 return dev_name(&nvmem->dev);
1936 }
1937 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1938
1939 static int __init nvmem_init(void)
1940 {
1941 return bus_register(&nvmem_bus_type);
1942 }
1943
1944 static void __exit nvmem_exit(void)
1945 {
1946 bus_unregister(&nvmem_bus_type);
1947 }
1948
1949 subsys_initcall(nvmem_init);
1950 module_exit(nvmem_exit);
1951
1952 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1953 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1954 MODULE_DESCRIPTION("nvmem Driver Core");
1955 MODULE_LICENSE("GPL v2");