Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * NVMe over Fabrics TCP target.
0004  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
0005  */
0006 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0007 #include <linux/module.h>
0008 #include <linux/init.h>
0009 #include <linux/slab.h>
0010 #include <linux/err.h>
0011 #include <linux/nvme-tcp.h>
0012 #include <net/sock.h>
0013 #include <net/tcp.h>
0014 #include <linux/inet.h>
0015 #include <linux/llist.h>
0016 #include <crypto/hash.h>
0017 
0018 #include "nvmet.h"
0019 
0020 #define NVMET_TCP_DEF_INLINE_DATA_SIZE  (4 * PAGE_SIZE)
0021 
0022 /* Define the socket priority to use for connections were it is desirable
0023  * that the NIC consider performing optimized packet processing or filtering.
0024  * A non-zero value being sufficient to indicate general consideration of any
0025  * possible optimization.  Making it a module param allows for alternative
0026  * values that may be unique for some NIC implementations.
0027  */
0028 static int so_priority;
0029 module_param(so_priority, int, 0644);
0030 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority");
0031 
0032 /* Define a time period (in usecs) that io_work() shall sample an activated
0033  * queue before determining it to be idle.  This optional module behavior
0034  * can enable NIC solutions that support socket optimized packet processing
0035  * using advanced interrupt moderation techniques.
0036  */
0037 static int idle_poll_period_usecs;
0038 module_param(idle_poll_period_usecs, int, 0644);
0039 MODULE_PARM_DESC(idle_poll_period_usecs,
0040         "nvmet tcp io_work poll till idle time period in usecs");
0041 
0042 #define NVMET_TCP_RECV_BUDGET       8
0043 #define NVMET_TCP_SEND_BUDGET       8
0044 #define NVMET_TCP_IO_WORK_BUDGET    64
0045 
0046 enum nvmet_tcp_send_state {
0047     NVMET_TCP_SEND_DATA_PDU,
0048     NVMET_TCP_SEND_DATA,
0049     NVMET_TCP_SEND_R2T,
0050     NVMET_TCP_SEND_DDGST,
0051     NVMET_TCP_SEND_RESPONSE
0052 };
0053 
0054 enum nvmet_tcp_recv_state {
0055     NVMET_TCP_RECV_PDU,
0056     NVMET_TCP_RECV_DATA,
0057     NVMET_TCP_RECV_DDGST,
0058     NVMET_TCP_RECV_ERR,
0059 };
0060 
0061 enum {
0062     NVMET_TCP_F_INIT_FAILED = (1 << 0),
0063 };
0064 
0065 struct nvmet_tcp_cmd {
0066     struct nvmet_tcp_queue      *queue;
0067     struct nvmet_req        req;
0068 
0069     struct nvme_tcp_cmd_pdu     *cmd_pdu;
0070     struct nvme_tcp_rsp_pdu     *rsp_pdu;
0071     struct nvme_tcp_data_pdu    *data_pdu;
0072     struct nvme_tcp_r2t_pdu     *r2t_pdu;
0073 
0074     u32             rbytes_done;
0075     u32             wbytes_done;
0076 
0077     u32             pdu_len;
0078     u32             pdu_recv;
0079     int             sg_idx;
0080     int             nr_mapped;
0081     struct msghdr           recv_msg;
0082     struct kvec         *iov;
0083     u32             flags;
0084 
0085     struct list_head        entry;
0086     struct llist_node       lentry;
0087 
0088     /* send state */
0089     u32             offset;
0090     struct scatterlist      *cur_sg;
0091     enum nvmet_tcp_send_state   state;
0092 
0093     __le32              exp_ddgst;
0094     __le32              recv_ddgst;
0095 };
0096 
0097 enum nvmet_tcp_queue_state {
0098     NVMET_TCP_Q_CONNECTING,
0099     NVMET_TCP_Q_LIVE,
0100     NVMET_TCP_Q_DISCONNECTING,
0101 };
0102 
0103 struct nvmet_tcp_queue {
0104     struct socket       *sock;
0105     struct nvmet_tcp_port   *port;
0106     struct work_struct  io_work;
0107     struct nvmet_cq     nvme_cq;
0108     struct nvmet_sq     nvme_sq;
0109 
0110     /* send state */
0111     struct nvmet_tcp_cmd    *cmds;
0112     unsigned int        nr_cmds;
0113     struct list_head    free_list;
0114     struct llist_head   resp_list;
0115     struct list_head    resp_send_list;
0116     int         send_list_len;
0117     struct nvmet_tcp_cmd    *snd_cmd;
0118 
0119     /* recv state */
0120     int         offset;
0121     int         left;
0122     enum nvmet_tcp_recv_state rcv_state;
0123     struct nvmet_tcp_cmd    *cmd;
0124     union nvme_tcp_pdu  pdu;
0125 
0126     /* digest state */
0127     bool            hdr_digest;
0128     bool            data_digest;
0129     struct ahash_request    *snd_hash;
0130     struct ahash_request    *rcv_hash;
0131 
0132     unsigned long           poll_end;
0133 
0134     spinlock_t      state_lock;
0135     enum nvmet_tcp_queue_state state;
0136 
0137     struct sockaddr_storage sockaddr;
0138     struct sockaddr_storage sockaddr_peer;
0139     struct work_struct  release_work;
0140 
0141     int         idx;
0142     struct list_head    queue_list;
0143 
0144     struct nvmet_tcp_cmd    connect;
0145 
0146     struct page_frag_cache  pf_cache;
0147 
0148     void (*data_ready)(struct sock *);
0149     void (*state_change)(struct sock *);
0150     void (*write_space)(struct sock *);
0151 };
0152 
0153 struct nvmet_tcp_port {
0154     struct socket       *sock;
0155     struct work_struct  accept_work;
0156     struct nvmet_port   *nport;
0157     struct sockaddr_storage addr;
0158     void (*data_ready)(struct sock *);
0159 };
0160 
0161 static DEFINE_IDA(nvmet_tcp_queue_ida);
0162 static LIST_HEAD(nvmet_tcp_queue_list);
0163 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
0164 
0165 static struct workqueue_struct *nvmet_tcp_wq;
0166 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
0167 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
0168 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd);
0169 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
0170 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd);
0171 
0172 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
0173         struct nvmet_tcp_cmd *cmd)
0174 {
0175     if (unlikely(!queue->nr_cmds)) {
0176         /* We didn't allocate cmds yet, send 0xffff */
0177         return USHRT_MAX;
0178     }
0179 
0180     return cmd - queue->cmds;
0181 }
0182 
0183 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
0184 {
0185     return nvme_is_write(cmd->req.cmd) &&
0186         cmd->rbytes_done < cmd->req.transfer_len;
0187 }
0188 
0189 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
0190 {
0191     return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
0192 }
0193 
0194 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
0195 {
0196     return !nvme_is_write(cmd->req.cmd) &&
0197         cmd->req.transfer_len > 0 &&
0198         !cmd->req.cqe->status;
0199 }
0200 
0201 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
0202 {
0203     return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
0204         !cmd->rbytes_done;
0205 }
0206 
0207 static inline struct nvmet_tcp_cmd *
0208 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
0209 {
0210     struct nvmet_tcp_cmd *cmd;
0211 
0212     cmd = list_first_entry_or_null(&queue->free_list,
0213                 struct nvmet_tcp_cmd, entry);
0214     if (!cmd)
0215         return NULL;
0216     list_del_init(&cmd->entry);
0217 
0218     cmd->rbytes_done = cmd->wbytes_done = 0;
0219     cmd->pdu_len = 0;
0220     cmd->pdu_recv = 0;
0221     cmd->iov = NULL;
0222     cmd->flags = 0;
0223     return cmd;
0224 }
0225 
0226 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
0227 {
0228     if (unlikely(cmd == &cmd->queue->connect))
0229         return;
0230 
0231     list_add_tail(&cmd->entry, &cmd->queue->free_list);
0232 }
0233 
0234 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
0235 {
0236     return queue->sock->sk->sk_incoming_cpu;
0237 }
0238 
0239 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
0240 {
0241     return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
0242 }
0243 
0244 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
0245 {
0246     return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
0247 }
0248 
0249 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
0250         void *pdu, size_t len)
0251 {
0252     struct scatterlist sg;
0253 
0254     sg_init_one(&sg, pdu, len);
0255     ahash_request_set_crypt(hash, &sg, pdu + len, len);
0256     crypto_ahash_digest(hash);
0257 }
0258 
0259 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
0260     void *pdu, size_t len)
0261 {
0262     struct nvme_tcp_hdr *hdr = pdu;
0263     __le32 recv_digest;
0264     __le32 exp_digest;
0265 
0266     if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
0267         pr_err("queue %d: header digest enabled but no header digest\n",
0268             queue->idx);
0269         return -EPROTO;
0270     }
0271 
0272     recv_digest = *(__le32 *)(pdu + hdr->hlen);
0273     nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
0274     exp_digest = *(__le32 *)(pdu + hdr->hlen);
0275     if (recv_digest != exp_digest) {
0276         pr_err("queue %d: header digest error: recv %#x expected %#x\n",
0277             queue->idx, le32_to_cpu(recv_digest),
0278             le32_to_cpu(exp_digest));
0279         return -EPROTO;
0280     }
0281 
0282     return 0;
0283 }
0284 
0285 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
0286 {
0287     struct nvme_tcp_hdr *hdr = pdu;
0288     u8 digest_len = nvmet_tcp_hdgst_len(queue);
0289     u32 len;
0290 
0291     len = le32_to_cpu(hdr->plen) - hdr->hlen -
0292         (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
0293 
0294     if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
0295         pr_err("queue %d: data digest flag is cleared\n", queue->idx);
0296         return -EPROTO;
0297     }
0298 
0299     return 0;
0300 }
0301 
0302 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
0303 {
0304     WARN_ON(unlikely(cmd->nr_mapped > 0));
0305 
0306     kfree(cmd->iov);
0307     sgl_free(cmd->req.sg);
0308     cmd->iov = NULL;
0309     cmd->req.sg = NULL;
0310 }
0311 
0312 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd)
0313 {
0314     struct scatterlist *sg;
0315     int i;
0316 
0317     sg = &cmd->req.sg[cmd->sg_idx];
0318 
0319     for (i = 0; i < cmd->nr_mapped; i++)
0320         kunmap(sg_page(&sg[i]));
0321 
0322     cmd->nr_mapped = 0;
0323 }
0324 
0325 static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd)
0326 {
0327     struct kvec *iov = cmd->iov;
0328     struct scatterlist *sg;
0329     u32 length, offset, sg_offset;
0330 
0331     length = cmd->pdu_len;
0332     cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE);
0333     offset = cmd->rbytes_done;
0334     cmd->sg_idx = offset / PAGE_SIZE;
0335     sg_offset = offset % PAGE_SIZE;
0336     sg = &cmd->req.sg[cmd->sg_idx];
0337 
0338     while (length) {
0339         u32 iov_len = min_t(u32, length, sg->length - sg_offset);
0340 
0341         iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset;
0342         iov->iov_len = iov_len;
0343 
0344         length -= iov_len;
0345         sg = sg_next(sg);
0346         iov++;
0347         sg_offset = 0;
0348     }
0349 
0350     iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov,
0351         cmd->nr_mapped, cmd->pdu_len);
0352 }
0353 
0354 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
0355 {
0356     queue->rcv_state = NVMET_TCP_RECV_ERR;
0357     if (queue->nvme_sq.ctrl)
0358         nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
0359     else
0360         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
0361 }
0362 
0363 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
0364 {
0365     if (status == -EPIPE || status == -ECONNRESET)
0366         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
0367     else
0368         nvmet_tcp_fatal_error(queue);
0369 }
0370 
0371 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
0372 {
0373     struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
0374     u32 len = le32_to_cpu(sgl->length);
0375 
0376     if (!len)
0377         return 0;
0378 
0379     if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
0380               NVME_SGL_FMT_OFFSET)) {
0381         if (!nvme_is_write(cmd->req.cmd))
0382             return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
0383 
0384         if (len > cmd->req.port->inline_data_size)
0385             return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
0386         cmd->pdu_len = len;
0387     }
0388     cmd->req.transfer_len += len;
0389 
0390     cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
0391     if (!cmd->req.sg)
0392         return NVME_SC_INTERNAL;
0393     cmd->cur_sg = cmd->req.sg;
0394 
0395     if (nvmet_tcp_has_data_in(cmd)) {
0396         cmd->iov = kmalloc_array(cmd->req.sg_cnt,
0397                 sizeof(*cmd->iov), GFP_KERNEL);
0398         if (!cmd->iov)
0399             goto err;
0400     }
0401 
0402     return 0;
0403 err:
0404     nvmet_tcp_free_cmd_buffers(cmd);
0405     return NVME_SC_INTERNAL;
0406 }
0407 
0408 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash,
0409         struct nvmet_tcp_cmd *cmd)
0410 {
0411     ahash_request_set_crypt(hash, cmd->req.sg,
0412         (void *)&cmd->exp_ddgst, cmd->req.transfer_len);
0413     crypto_ahash_digest(hash);
0414 }
0415 
0416 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
0417 {
0418     struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
0419     struct nvmet_tcp_queue *queue = cmd->queue;
0420     u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
0421     u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
0422 
0423     cmd->offset = 0;
0424     cmd->state = NVMET_TCP_SEND_DATA_PDU;
0425 
0426     pdu->hdr.type = nvme_tcp_c2h_data;
0427     pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
0428                         NVME_TCP_F_DATA_SUCCESS : 0);
0429     pdu->hdr.hlen = sizeof(*pdu);
0430     pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
0431     pdu->hdr.plen =
0432         cpu_to_le32(pdu->hdr.hlen + hdgst +
0433                 cmd->req.transfer_len + ddgst);
0434     pdu->command_id = cmd->req.cqe->command_id;
0435     pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
0436     pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
0437 
0438     if (queue->data_digest) {
0439         pdu->hdr.flags |= NVME_TCP_F_DDGST;
0440         nvmet_tcp_calc_ddgst(queue->snd_hash, cmd);
0441     }
0442 
0443     if (cmd->queue->hdr_digest) {
0444         pdu->hdr.flags |= NVME_TCP_F_HDGST;
0445         nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
0446     }
0447 }
0448 
0449 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
0450 {
0451     struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
0452     struct nvmet_tcp_queue *queue = cmd->queue;
0453     u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
0454 
0455     cmd->offset = 0;
0456     cmd->state = NVMET_TCP_SEND_R2T;
0457 
0458     pdu->hdr.type = nvme_tcp_r2t;
0459     pdu->hdr.flags = 0;
0460     pdu->hdr.hlen = sizeof(*pdu);
0461     pdu->hdr.pdo = 0;
0462     pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
0463 
0464     pdu->command_id = cmd->req.cmd->common.command_id;
0465     pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
0466     pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
0467     pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
0468     if (cmd->queue->hdr_digest) {
0469         pdu->hdr.flags |= NVME_TCP_F_HDGST;
0470         nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
0471     }
0472 }
0473 
0474 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
0475 {
0476     struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
0477     struct nvmet_tcp_queue *queue = cmd->queue;
0478     u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
0479 
0480     cmd->offset = 0;
0481     cmd->state = NVMET_TCP_SEND_RESPONSE;
0482 
0483     pdu->hdr.type = nvme_tcp_rsp;
0484     pdu->hdr.flags = 0;
0485     pdu->hdr.hlen = sizeof(*pdu);
0486     pdu->hdr.pdo = 0;
0487     pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
0488     if (cmd->queue->hdr_digest) {
0489         pdu->hdr.flags |= NVME_TCP_F_HDGST;
0490         nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
0491     }
0492 }
0493 
0494 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
0495 {
0496     struct llist_node *node;
0497     struct nvmet_tcp_cmd *cmd;
0498 
0499     for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
0500         cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
0501         list_add(&cmd->entry, &queue->resp_send_list);
0502         queue->send_list_len++;
0503     }
0504 }
0505 
0506 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
0507 {
0508     queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
0509                 struct nvmet_tcp_cmd, entry);
0510     if (!queue->snd_cmd) {
0511         nvmet_tcp_process_resp_list(queue);
0512         queue->snd_cmd =
0513             list_first_entry_or_null(&queue->resp_send_list,
0514                     struct nvmet_tcp_cmd, entry);
0515         if (unlikely(!queue->snd_cmd))
0516             return NULL;
0517     }
0518 
0519     list_del_init(&queue->snd_cmd->entry);
0520     queue->send_list_len--;
0521 
0522     if (nvmet_tcp_need_data_out(queue->snd_cmd))
0523         nvmet_setup_c2h_data_pdu(queue->snd_cmd);
0524     else if (nvmet_tcp_need_data_in(queue->snd_cmd))
0525         nvmet_setup_r2t_pdu(queue->snd_cmd);
0526     else
0527         nvmet_setup_response_pdu(queue->snd_cmd);
0528 
0529     return queue->snd_cmd;
0530 }
0531 
0532 static void nvmet_tcp_queue_response(struct nvmet_req *req)
0533 {
0534     struct nvmet_tcp_cmd *cmd =
0535         container_of(req, struct nvmet_tcp_cmd, req);
0536     struct nvmet_tcp_queue  *queue = cmd->queue;
0537     struct nvme_sgl_desc *sgl;
0538     u32 len;
0539 
0540     if (unlikely(cmd == queue->cmd)) {
0541         sgl = &cmd->req.cmd->common.dptr.sgl;
0542         len = le32_to_cpu(sgl->length);
0543 
0544         /*
0545          * Wait for inline data before processing the response.
0546          * Avoid using helpers, this might happen before
0547          * nvmet_req_init is completed.
0548          */
0549         if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
0550             len && len <= cmd->req.port->inline_data_size &&
0551             nvme_is_write(cmd->req.cmd))
0552             return;
0553     }
0554 
0555     llist_add(&cmd->lentry, &queue->resp_list);
0556     queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
0557 }
0558 
0559 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
0560 {
0561     if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
0562         nvmet_tcp_queue_response(&cmd->req);
0563     else
0564         cmd->req.execute(&cmd->req);
0565 }
0566 
0567 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
0568 {
0569     u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
0570     int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
0571     int ret;
0572 
0573     ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu),
0574             offset_in_page(cmd->data_pdu) + cmd->offset,
0575             left, MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
0576     if (ret <= 0)
0577         return ret;
0578 
0579     cmd->offset += ret;
0580     left -= ret;
0581 
0582     if (left)
0583         return -EAGAIN;
0584 
0585     cmd->state = NVMET_TCP_SEND_DATA;
0586     cmd->offset  = 0;
0587     return 1;
0588 }
0589 
0590 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
0591 {
0592     struct nvmet_tcp_queue *queue = cmd->queue;
0593     int ret;
0594 
0595     while (cmd->cur_sg) {
0596         struct page *page = sg_page(cmd->cur_sg);
0597         u32 left = cmd->cur_sg->length - cmd->offset;
0598         int flags = MSG_DONTWAIT;
0599 
0600         if ((!last_in_batch && cmd->queue->send_list_len) ||
0601             cmd->wbytes_done + left < cmd->req.transfer_len ||
0602             queue->data_digest || !queue->nvme_sq.sqhd_disabled)
0603             flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
0604 
0605         ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset,
0606                     left, flags);
0607         if (ret <= 0)
0608             return ret;
0609 
0610         cmd->offset += ret;
0611         cmd->wbytes_done += ret;
0612 
0613         /* Done with sg?*/
0614         if (cmd->offset == cmd->cur_sg->length) {
0615             cmd->cur_sg = sg_next(cmd->cur_sg);
0616             cmd->offset = 0;
0617         }
0618     }
0619 
0620     if (queue->data_digest) {
0621         cmd->state = NVMET_TCP_SEND_DDGST;
0622         cmd->offset = 0;
0623     } else {
0624         if (queue->nvme_sq.sqhd_disabled) {
0625             cmd->queue->snd_cmd = NULL;
0626             nvmet_tcp_put_cmd(cmd);
0627         } else {
0628             nvmet_setup_response_pdu(cmd);
0629         }
0630     }
0631 
0632     if (queue->nvme_sq.sqhd_disabled)
0633         nvmet_tcp_free_cmd_buffers(cmd);
0634 
0635     return 1;
0636 
0637 }
0638 
0639 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
0640         bool last_in_batch)
0641 {
0642     u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
0643     int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
0644     int flags = MSG_DONTWAIT;
0645     int ret;
0646 
0647     if (!last_in_batch && cmd->queue->send_list_len)
0648         flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
0649     else
0650         flags |= MSG_EOR;
0651 
0652     ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu),
0653         offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags);
0654     if (ret <= 0)
0655         return ret;
0656     cmd->offset += ret;
0657     left -= ret;
0658 
0659     if (left)
0660         return -EAGAIN;
0661 
0662     nvmet_tcp_free_cmd_buffers(cmd);
0663     cmd->queue->snd_cmd = NULL;
0664     nvmet_tcp_put_cmd(cmd);
0665     return 1;
0666 }
0667 
0668 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
0669 {
0670     u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
0671     int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
0672     int flags = MSG_DONTWAIT;
0673     int ret;
0674 
0675     if (!last_in_batch && cmd->queue->send_list_len)
0676         flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
0677     else
0678         flags |= MSG_EOR;
0679 
0680     ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu),
0681         offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags);
0682     if (ret <= 0)
0683         return ret;
0684     cmd->offset += ret;
0685     left -= ret;
0686 
0687     if (left)
0688         return -EAGAIN;
0689 
0690     cmd->queue->snd_cmd = NULL;
0691     return 1;
0692 }
0693 
0694 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
0695 {
0696     struct nvmet_tcp_queue *queue = cmd->queue;
0697     int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
0698     struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
0699     struct kvec iov = {
0700         .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
0701         .iov_len = left
0702     };
0703     int ret;
0704 
0705     if (!last_in_batch && cmd->queue->send_list_len)
0706         msg.msg_flags |= MSG_MORE;
0707     else
0708         msg.msg_flags |= MSG_EOR;
0709 
0710     ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
0711     if (unlikely(ret <= 0))
0712         return ret;
0713 
0714     cmd->offset += ret;
0715     left -= ret;
0716 
0717     if (left)
0718         return -EAGAIN;
0719 
0720     if (queue->nvme_sq.sqhd_disabled) {
0721         cmd->queue->snd_cmd = NULL;
0722         nvmet_tcp_put_cmd(cmd);
0723     } else {
0724         nvmet_setup_response_pdu(cmd);
0725     }
0726     return 1;
0727 }
0728 
0729 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
0730         bool last_in_batch)
0731 {
0732     struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
0733     int ret = 0;
0734 
0735     if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
0736         cmd = nvmet_tcp_fetch_cmd(queue);
0737         if (unlikely(!cmd))
0738             return 0;
0739     }
0740 
0741     if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
0742         ret = nvmet_try_send_data_pdu(cmd);
0743         if (ret <= 0)
0744             goto done_send;
0745     }
0746 
0747     if (cmd->state == NVMET_TCP_SEND_DATA) {
0748         ret = nvmet_try_send_data(cmd, last_in_batch);
0749         if (ret <= 0)
0750             goto done_send;
0751     }
0752 
0753     if (cmd->state == NVMET_TCP_SEND_DDGST) {
0754         ret = nvmet_try_send_ddgst(cmd, last_in_batch);
0755         if (ret <= 0)
0756             goto done_send;
0757     }
0758 
0759     if (cmd->state == NVMET_TCP_SEND_R2T) {
0760         ret = nvmet_try_send_r2t(cmd, last_in_batch);
0761         if (ret <= 0)
0762             goto done_send;
0763     }
0764 
0765     if (cmd->state == NVMET_TCP_SEND_RESPONSE)
0766         ret = nvmet_try_send_response(cmd, last_in_batch);
0767 
0768 done_send:
0769     if (ret < 0) {
0770         if (ret == -EAGAIN)
0771             return 0;
0772         return ret;
0773     }
0774 
0775     return 1;
0776 }
0777 
0778 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
0779         int budget, int *sends)
0780 {
0781     int i, ret = 0;
0782 
0783     for (i = 0; i < budget; i++) {
0784         ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
0785         if (unlikely(ret < 0)) {
0786             nvmet_tcp_socket_error(queue, ret);
0787             goto done;
0788         } else if (ret == 0) {
0789             break;
0790         }
0791         (*sends)++;
0792     }
0793 done:
0794     return ret;
0795 }
0796 
0797 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
0798 {
0799     queue->offset = 0;
0800     queue->left = sizeof(struct nvme_tcp_hdr);
0801     queue->cmd = NULL;
0802     queue->rcv_state = NVMET_TCP_RECV_PDU;
0803 }
0804 
0805 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
0806 {
0807     struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
0808 
0809     ahash_request_free(queue->rcv_hash);
0810     ahash_request_free(queue->snd_hash);
0811     crypto_free_ahash(tfm);
0812 }
0813 
0814 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
0815 {
0816     struct crypto_ahash *tfm;
0817 
0818     tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
0819     if (IS_ERR(tfm))
0820         return PTR_ERR(tfm);
0821 
0822     queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
0823     if (!queue->snd_hash)
0824         goto free_tfm;
0825     ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
0826 
0827     queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
0828     if (!queue->rcv_hash)
0829         goto free_snd_hash;
0830     ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
0831 
0832     return 0;
0833 free_snd_hash:
0834     ahash_request_free(queue->snd_hash);
0835 free_tfm:
0836     crypto_free_ahash(tfm);
0837     return -ENOMEM;
0838 }
0839 
0840 
0841 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
0842 {
0843     struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
0844     struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
0845     struct msghdr msg = {};
0846     struct kvec iov;
0847     int ret;
0848 
0849     if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
0850         pr_err("bad nvme-tcp pdu length (%d)\n",
0851             le32_to_cpu(icreq->hdr.plen));
0852         nvmet_tcp_fatal_error(queue);
0853     }
0854 
0855     if (icreq->pfv != NVME_TCP_PFV_1_0) {
0856         pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
0857         return -EPROTO;
0858     }
0859 
0860     if (icreq->hpda != 0) {
0861         pr_err("queue %d: unsupported hpda %d\n", queue->idx,
0862             icreq->hpda);
0863         return -EPROTO;
0864     }
0865 
0866     queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
0867     queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
0868     if (queue->hdr_digest || queue->data_digest) {
0869         ret = nvmet_tcp_alloc_crypto(queue);
0870         if (ret)
0871             return ret;
0872     }
0873 
0874     memset(icresp, 0, sizeof(*icresp));
0875     icresp->hdr.type = nvme_tcp_icresp;
0876     icresp->hdr.hlen = sizeof(*icresp);
0877     icresp->hdr.pdo = 0;
0878     icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
0879     icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
0880     icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */
0881     icresp->cpda = 0;
0882     if (queue->hdr_digest)
0883         icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
0884     if (queue->data_digest)
0885         icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
0886 
0887     iov.iov_base = icresp;
0888     iov.iov_len = sizeof(*icresp);
0889     ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
0890     if (ret < 0)
0891         goto free_crypto;
0892 
0893     queue->state = NVMET_TCP_Q_LIVE;
0894     nvmet_prepare_receive_pdu(queue);
0895     return 0;
0896 free_crypto:
0897     if (queue->hdr_digest || queue->data_digest)
0898         nvmet_tcp_free_crypto(queue);
0899     return ret;
0900 }
0901 
0902 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
0903         struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
0904 {
0905     size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
0906     int ret;
0907 
0908     /*
0909      * This command has not been processed yet, hence we are trying to
0910      * figure out if there is still pending data left to receive. If
0911      * we don't, we can simply prepare for the next pdu and bail out,
0912      * otherwise we will need to prepare a buffer and receive the
0913      * stale data before continuing forward.
0914      */
0915     if (!nvme_is_write(cmd->req.cmd) || !data_len ||
0916         data_len > cmd->req.port->inline_data_size) {
0917         nvmet_prepare_receive_pdu(queue);
0918         return;
0919     }
0920 
0921     ret = nvmet_tcp_map_data(cmd);
0922     if (unlikely(ret)) {
0923         pr_err("queue %d: failed to map data\n", queue->idx);
0924         nvmet_tcp_fatal_error(queue);
0925         return;
0926     }
0927 
0928     queue->rcv_state = NVMET_TCP_RECV_DATA;
0929     nvmet_tcp_map_pdu_iovec(cmd);
0930     cmd->flags |= NVMET_TCP_F_INIT_FAILED;
0931 }
0932 
0933 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
0934 {
0935     struct nvme_tcp_data_pdu *data = &queue->pdu.data;
0936     struct nvmet_tcp_cmd *cmd;
0937 
0938     if (likely(queue->nr_cmds))
0939         cmd = &queue->cmds[data->ttag];
0940     else
0941         cmd = &queue->connect;
0942 
0943     if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
0944         pr_err("ttag %u unexpected data offset %u (expected %u)\n",
0945             data->ttag, le32_to_cpu(data->data_offset),
0946             cmd->rbytes_done);
0947         /* FIXME: use path and transport errors */
0948         nvmet_req_complete(&cmd->req,
0949             NVME_SC_INVALID_FIELD | NVME_SC_DNR);
0950         return -EPROTO;
0951     }
0952 
0953     cmd->pdu_len = le32_to_cpu(data->data_length);
0954     cmd->pdu_recv = 0;
0955     nvmet_tcp_map_pdu_iovec(cmd);
0956     queue->cmd = cmd;
0957     queue->rcv_state = NVMET_TCP_RECV_DATA;
0958 
0959     return 0;
0960 }
0961 
0962 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
0963 {
0964     struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
0965     struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
0966     struct nvmet_req *req;
0967     int ret;
0968 
0969     if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
0970         if (hdr->type != nvme_tcp_icreq) {
0971             pr_err("unexpected pdu type (%d) before icreq\n",
0972                 hdr->type);
0973             nvmet_tcp_fatal_error(queue);
0974             return -EPROTO;
0975         }
0976         return nvmet_tcp_handle_icreq(queue);
0977     }
0978 
0979     if (hdr->type == nvme_tcp_h2c_data) {
0980         ret = nvmet_tcp_handle_h2c_data_pdu(queue);
0981         if (unlikely(ret))
0982             return ret;
0983         return 0;
0984     }
0985 
0986     queue->cmd = nvmet_tcp_get_cmd(queue);
0987     if (unlikely(!queue->cmd)) {
0988         /* This should never happen */
0989         pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
0990             queue->idx, queue->nr_cmds, queue->send_list_len,
0991             nvme_cmd->common.opcode);
0992         nvmet_tcp_fatal_error(queue);
0993         return -ENOMEM;
0994     }
0995 
0996     req = &queue->cmd->req;
0997     memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
0998 
0999     if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1000             &queue->nvme_sq, &nvmet_tcp_ops))) {
1001         pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1002             req->cmd, req->cmd->common.command_id,
1003             req->cmd->common.opcode,
1004             le32_to_cpu(req->cmd->common.dptr.sgl.length));
1005 
1006         nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1007         return 0;
1008     }
1009 
1010     ret = nvmet_tcp_map_data(queue->cmd);
1011     if (unlikely(ret)) {
1012         pr_err("queue %d: failed to map data\n", queue->idx);
1013         if (nvmet_tcp_has_inline_data(queue->cmd))
1014             nvmet_tcp_fatal_error(queue);
1015         else
1016             nvmet_req_complete(req, ret);
1017         ret = -EAGAIN;
1018         goto out;
1019     }
1020 
1021     if (nvmet_tcp_need_data_in(queue->cmd)) {
1022         if (nvmet_tcp_has_inline_data(queue->cmd)) {
1023             queue->rcv_state = NVMET_TCP_RECV_DATA;
1024             nvmet_tcp_map_pdu_iovec(queue->cmd);
1025             return 0;
1026         }
1027         /* send back R2T */
1028         nvmet_tcp_queue_response(&queue->cmd->req);
1029         goto out;
1030     }
1031 
1032     queue->cmd->req.execute(&queue->cmd->req);
1033 out:
1034     nvmet_prepare_receive_pdu(queue);
1035     return ret;
1036 }
1037 
1038 static const u8 nvme_tcp_pdu_sizes[] = {
1039     [nvme_tcp_icreq]    = sizeof(struct nvme_tcp_icreq_pdu),
1040     [nvme_tcp_cmd]      = sizeof(struct nvme_tcp_cmd_pdu),
1041     [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu),
1042 };
1043 
1044 static inline u8 nvmet_tcp_pdu_size(u8 type)
1045 {
1046     size_t idx = type;
1047 
1048     return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1049         nvme_tcp_pdu_sizes[idx]) ?
1050             nvme_tcp_pdu_sizes[idx] : 0;
1051 }
1052 
1053 static inline bool nvmet_tcp_pdu_valid(u8 type)
1054 {
1055     switch (type) {
1056     case nvme_tcp_icreq:
1057     case nvme_tcp_cmd:
1058     case nvme_tcp_h2c_data:
1059         /* fallthru */
1060         return true;
1061     }
1062 
1063     return false;
1064 }
1065 
1066 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1067 {
1068     struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1069     int len;
1070     struct kvec iov;
1071     struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1072 
1073 recv:
1074     iov.iov_base = (void *)&queue->pdu + queue->offset;
1075     iov.iov_len = queue->left;
1076     len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1077             iov.iov_len, msg.msg_flags);
1078     if (unlikely(len < 0))
1079         return len;
1080 
1081     queue->offset += len;
1082     queue->left -= len;
1083     if (queue->left)
1084         return -EAGAIN;
1085 
1086     if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1087         u8 hdgst = nvmet_tcp_hdgst_len(queue);
1088 
1089         if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1090             pr_err("unexpected pdu type %d\n", hdr->type);
1091             nvmet_tcp_fatal_error(queue);
1092             return -EIO;
1093         }
1094 
1095         if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1096             pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1097             return -EIO;
1098         }
1099 
1100         queue->left = hdr->hlen - queue->offset + hdgst;
1101         goto recv;
1102     }
1103 
1104     if (queue->hdr_digest &&
1105         nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1106         nvmet_tcp_fatal_error(queue); /* fatal */
1107         return -EPROTO;
1108     }
1109 
1110     if (queue->data_digest &&
1111         nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1112         nvmet_tcp_fatal_error(queue); /* fatal */
1113         return -EPROTO;
1114     }
1115 
1116     return nvmet_tcp_done_recv_pdu(queue);
1117 }
1118 
1119 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1120 {
1121     struct nvmet_tcp_queue *queue = cmd->queue;
1122 
1123     nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd);
1124     queue->offset = 0;
1125     queue->left = NVME_TCP_DIGEST_LENGTH;
1126     queue->rcv_state = NVMET_TCP_RECV_DDGST;
1127 }
1128 
1129 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1130 {
1131     struct nvmet_tcp_cmd  *cmd = queue->cmd;
1132     int ret;
1133 
1134     while (msg_data_left(&cmd->recv_msg)) {
1135         ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1136             cmd->recv_msg.msg_flags);
1137         if (ret <= 0)
1138             return ret;
1139 
1140         cmd->pdu_recv += ret;
1141         cmd->rbytes_done += ret;
1142     }
1143 
1144     nvmet_tcp_unmap_pdu_iovec(cmd);
1145     if (queue->data_digest) {
1146         nvmet_tcp_prep_recv_ddgst(cmd);
1147         return 0;
1148     }
1149 
1150     if (cmd->rbytes_done == cmd->req.transfer_len)
1151         nvmet_tcp_execute_request(cmd);
1152 
1153     nvmet_prepare_receive_pdu(queue);
1154     return 0;
1155 }
1156 
1157 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1158 {
1159     struct nvmet_tcp_cmd *cmd = queue->cmd;
1160     int ret;
1161     struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1162     struct kvec iov = {
1163         .iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1164         .iov_len = queue->left
1165     };
1166 
1167     ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1168             iov.iov_len, msg.msg_flags);
1169     if (unlikely(ret < 0))
1170         return ret;
1171 
1172     queue->offset += ret;
1173     queue->left -= ret;
1174     if (queue->left)
1175         return -EAGAIN;
1176 
1177     if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1178         pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1179             queue->idx, cmd->req.cmd->common.command_id,
1180             queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1181             le32_to_cpu(cmd->exp_ddgst));
1182         nvmet_tcp_finish_cmd(cmd);
1183         nvmet_tcp_fatal_error(queue);
1184         ret = -EPROTO;
1185         goto out;
1186     }
1187 
1188     if (cmd->rbytes_done == cmd->req.transfer_len)
1189         nvmet_tcp_execute_request(cmd);
1190 
1191     ret = 0;
1192 out:
1193     nvmet_prepare_receive_pdu(queue);
1194     return ret;
1195 }
1196 
1197 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1198 {
1199     int result = 0;
1200 
1201     if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1202         return 0;
1203 
1204     if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1205         result = nvmet_tcp_try_recv_pdu(queue);
1206         if (result != 0)
1207             goto done_recv;
1208     }
1209 
1210     if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1211         result = nvmet_tcp_try_recv_data(queue);
1212         if (result != 0)
1213             goto done_recv;
1214     }
1215 
1216     if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1217         result = nvmet_tcp_try_recv_ddgst(queue);
1218         if (result != 0)
1219             goto done_recv;
1220     }
1221 
1222 done_recv:
1223     if (result < 0) {
1224         if (result == -EAGAIN)
1225             return 0;
1226         return result;
1227     }
1228     return 1;
1229 }
1230 
1231 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1232         int budget, int *recvs)
1233 {
1234     int i, ret = 0;
1235 
1236     for (i = 0; i < budget; i++) {
1237         ret = nvmet_tcp_try_recv_one(queue);
1238         if (unlikely(ret < 0)) {
1239             nvmet_tcp_socket_error(queue, ret);
1240             goto done;
1241         } else if (ret == 0) {
1242             break;
1243         }
1244         (*recvs)++;
1245     }
1246 done:
1247     return ret;
1248 }
1249 
1250 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1251 {
1252     spin_lock(&queue->state_lock);
1253     if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1254         queue->state = NVMET_TCP_Q_DISCONNECTING;
1255         queue_work(nvmet_wq, &queue->release_work);
1256     }
1257     spin_unlock(&queue->state_lock);
1258 }
1259 
1260 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1261 {
1262     queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1263 }
1264 
1265 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1266         int ops)
1267 {
1268     if (!idle_poll_period_usecs)
1269         return false;
1270 
1271     if (ops)
1272         nvmet_tcp_arm_queue_deadline(queue);
1273 
1274     return !time_after(jiffies, queue->poll_end);
1275 }
1276 
1277 static void nvmet_tcp_io_work(struct work_struct *w)
1278 {
1279     struct nvmet_tcp_queue *queue =
1280         container_of(w, struct nvmet_tcp_queue, io_work);
1281     bool pending;
1282     int ret, ops = 0;
1283 
1284     do {
1285         pending = false;
1286 
1287         ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1288         if (ret > 0)
1289             pending = true;
1290         else if (ret < 0)
1291             return;
1292 
1293         ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1294         if (ret > 0)
1295             pending = true;
1296         else if (ret < 0)
1297             return;
1298 
1299     } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1300 
1301     /*
1302      * Requeue the worker if idle deadline period is in progress or any
1303      * ops activity was recorded during the do-while loop above.
1304      */
1305     if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1306         queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1307 }
1308 
1309 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1310         struct nvmet_tcp_cmd *c)
1311 {
1312     u8 hdgst = nvmet_tcp_hdgst_len(queue);
1313 
1314     c->queue = queue;
1315     c->req.port = queue->port->nport;
1316 
1317     c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1318             sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1319     if (!c->cmd_pdu)
1320         return -ENOMEM;
1321     c->req.cmd = &c->cmd_pdu->cmd;
1322 
1323     c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1324             sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1325     if (!c->rsp_pdu)
1326         goto out_free_cmd;
1327     c->req.cqe = &c->rsp_pdu->cqe;
1328 
1329     c->data_pdu = page_frag_alloc(&queue->pf_cache,
1330             sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1331     if (!c->data_pdu)
1332         goto out_free_rsp;
1333 
1334     c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1335             sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1336     if (!c->r2t_pdu)
1337         goto out_free_data;
1338 
1339     c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1340 
1341     list_add_tail(&c->entry, &queue->free_list);
1342 
1343     return 0;
1344 out_free_data:
1345     page_frag_free(c->data_pdu);
1346 out_free_rsp:
1347     page_frag_free(c->rsp_pdu);
1348 out_free_cmd:
1349     page_frag_free(c->cmd_pdu);
1350     return -ENOMEM;
1351 }
1352 
1353 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1354 {
1355     page_frag_free(c->r2t_pdu);
1356     page_frag_free(c->data_pdu);
1357     page_frag_free(c->rsp_pdu);
1358     page_frag_free(c->cmd_pdu);
1359 }
1360 
1361 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1362 {
1363     struct nvmet_tcp_cmd *cmds;
1364     int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1365 
1366     cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1367     if (!cmds)
1368         goto out;
1369 
1370     for (i = 0; i < nr_cmds; i++) {
1371         ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1372         if (ret)
1373             goto out_free;
1374     }
1375 
1376     queue->cmds = cmds;
1377 
1378     return 0;
1379 out_free:
1380     while (--i >= 0)
1381         nvmet_tcp_free_cmd(cmds + i);
1382     kfree(cmds);
1383 out:
1384     return ret;
1385 }
1386 
1387 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1388 {
1389     struct nvmet_tcp_cmd *cmds = queue->cmds;
1390     int i;
1391 
1392     for (i = 0; i < queue->nr_cmds; i++)
1393         nvmet_tcp_free_cmd(cmds + i);
1394 
1395     nvmet_tcp_free_cmd(&queue->connect);
1396     kfree(cmds);
1397 }
1398 
1399 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1400 {
1401     struct socket *sock = queue->sock;
1402 
1403     write_lock_bh(&sock->sk->sk_callback_lock);
1404     sock->sk->sk_data_ready =  queue->data_ready;
1405     sock->sk->sk_state_change = queue->state_change;
1406     sock->sk->sk_write_space = queue->write_space;
1407     sock->sk->sk_user_data = NULL;
1408     write_unlock_bh(&sock->sk->sk_callback_lock);
1409 }
1410 
1411 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd)
1412 {
1413     nvmet_req_uninit(&cmd->req);
1414     nvmet_tcp_unmap_pdu_iovec(cmd);
1415     nvmet_tcp_free_cmd_buffers(cmd);
1416 }
1417 
1418 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1419 {
1420     struct nvmet_tcp_cmd *cmd = queue->cmds;
1421     int i;
1422 
1423     for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1424         if (nvmet_tcp_need_data_in(cmd))
1425             nvmet_req_uninit(&cmd->req);
1426 
1427         nvmet_tcp_unmap_pdu_iovec(cmd);
1428         nvmet_tcp_free_cmd_buffers(cmd);
1429     }
1430 
1431     if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1432         /* failed in connect */
1433         nvmet_tcp_finish_cmd(&queue->connect);
1434     }
1435 }
1436 
1437 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1438 {
1439     struct page *page;
1440     struct nvmet_tcp_queue *queue =
1441         container_of(w, struct nvmet_tcp_queue, release_work);
1442 
1443     mutex_lock(&nvmet_tcp_queue_mutex);
1444     list_del_init(&queue->queue_list);
1445     mutex_unlock(&nvmet_tcp_queue_mutex);
1446 
1447     nvmet_tcp_restore_socket_callbacks(queue);
1448     cancel_work_sync(&queue->io_work);
1449     /* stop accepting incoming data */
1450     queue->rcv_state = NVMET_TCP_RECV_ERR;
1451 
1452     nvmet_tcp_uninit_data_in_cmds(queue);
1453     nvmet_sq_destroy(&queue->nvme_sq);
1454     cancel_work_sync(&queue->io_work);
1455     sock_release(queue->sock);
1456     nvmet_tcp_free_cmds(queue);
1457     if (queue->hdr_digest || queue->data_digest)
1458         nvmet_tcp_free_crypto(queue);
1459     ida_free(&nvmet_tcp_queue_ida, queue->idx);
1460 
1461     page = virt_to_head_page(queue->pf_cache.va);
1462     __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1463     kfree(queue);
1464 }
1465 
1466 static void nvmet_tcp_data_ready(struct sock *sk)
1467 {
1468     struct nvmet_tcp_queue *queue;
1469 
1470     read_lock_bh(&sk->sk_callback_lock);
1471     queue = sk->sk_user_data;
1472     if (likely(queue))
1473         queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1474     read_unlock_bh(&sk->sk_callback_lock);
1475 }
1476 
1477 static void nvmet_tcp_write_space(struct sock *sk)
1478 {
1479     struct nvmet_tcp_queue *queue;
1480 
1481     read_lock_bh(&sk->sk_callback_lock);
1482     queue = sk->sk_user_data;
1483     if (unlikely(!queue))
1484         goto out;
1485 
1486     if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1487         queue->write_space(sk);
1488         goto out;
1489     }
1490 
1491     if (sk_stream_is_writeable(sk)) {
1492         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1493         queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1494     }
1495 out:
1496     read_unlock_bh(&sk->sk_callback_lock);
1497 }
1498 
1499 static void nvmet_tcp_state_change(struct sock *sk)
1500 {
1501     struct nvmet_tcp_queue *queue;
1502 
1503     read_lock_bh(&sk->sk_callback_lock);
1504     queue = sk->sk_user_data;
1505     if (!queue)
1506         goto done;
1507 
1508     switch (sk->sk_state) {
1509     case TCP_FIN_WAIT2:
1510     case TCP_LAST_ACK:
1511         break;
1512     case TCP_FIN_WAIT1:
1513     case TCP_CLOSE_WAIT:
1514     case TCP_CLOSE:
1515         /* FALLTHRU */
1516         nvmet_tcp_schedule_release_queue(queue);
1517         break;
1518     default:
1519         pr_warn("queue %d unhandled state %d\n",
1520             queue->idx, sk->sk_state);
1521     }
1522 done:
1523     read_unlock_bh(&sk->sk_callback_lock);
1524 }
1525 
1526 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1527 {
1528     struct socket *sock = queue->sock;
1529     struct inet_sock *inet = inet_sk(sock->sk);
1530     int ret;
1531 
1532     ret = kernel_getsockname(sock,
1533         (struct sockaddr *)&queue->sockaddr);
1534     if (ret < 0)
1535         return ret;
1536 
1537     ret = kernel_getpeername(sock,
1538         (struct sockaddr *)&queue->sockaddr_peer);
1539     if (ret < 0)
1540         return ret;
1541 
1542     /*
1543      * Cleanup whatever is sitting in the TCP transmit queue on socket
1544      * close. This is done to prevent stale data from being sent should
1545      * the network connection be restored before TCP times out.
1546      */
1547     sock_no_linger(sock->sk);
1548 
1549     if (so_priority > 0)
1550         sock_set_priority(sock->sk, so_priority);
1551 
1552     /* Set socket type of service */
1553     if (inet->rcv_tos > 0)
1554         ip_sock_set_tos(sock->sk, inet->rcv_tos);
1555 
1556     ret = 0;
1557     write_lock_bh(&sock->sk->sk_callback_lock);
1558     if (sock->sk->sk_state != TCP_ESTABLISHED) {
1559         /*
1560          * If the socket is already closing, don't even start
1561          * consuming it
1562          */
1563         ret = -ENOTCONN;
1564     } else {
1565         sock->sk->sk_user_data = queue;
1566         queue->data_ready = sock->sk->sk_data_ready;
1567         sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1568         queue->state_change = sock->sk->sk_state_change;
1569         sock->sk->sk_state_change = nvmet_tcp_state_change;
1570         queue->write_space = sock->sk->sk_write_space;
1571         sock->sk->sk_write_space = nvmet_tcp_write_space;
1572         if (idle_poll_period_usecs)
1573             nvmet_tcp_arm_queue_deadline(queue);
1574         queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1575     }
1576     write_unlock_bh(&sock->sk->sk_callback_lock);
1577 
1578     return ret;
1579 }
1580 
1581 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1582         struct socket *newsock)
1583 {
1584     struct nvmet_tcp_queue *queue;
1585     int ret;
1586 
1587     queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1588     if (!queue)
1589         return -ENOMEM;
1590 
1591     INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1592     INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1593     queue->sock = newsock;
1594     queue->port = port;
1595     queue->nr_cmds = 0;
1596     spin_lock_init(&queue->state_lock);
1597     queue->state = NVMET_TCP_Q_CONNECTING;
1598     INIT_LIST_HEAD(&queue->free_list);
1599     init_llist_head(&queue->resp_list);
1600     INIT_LIST_HEAD(&queue->resp_send_list);
1601 
1602     queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
1603     if (queue->idx < 0) {
1604         ret = queue->idx;
1605         goto out_free_queue;
1606     }
1607 
1608     ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1609     if (ret)
1610         goto out_ida_remove;
1611 
1612     ret = nvmet_sq_init(&queue->nvme_sq);
1613     if (ret)
1614         goto out_free_connect;
1615 
1616     nvmet_prepare_receive_pdu(queue);
1617 
1618     mutex_lock(&nvmet_tcp_queue_mutex);
1619     list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1620     mutex_unlock(&nvmet_tcp_queue_mutex);
1621 
1622     ret = nvmet_tcp_set_queue_sock(queue);
1623     if (ret)
1624         goto out_destroy_sq;
1625 
1626     return 0;
1627 out_destroy_sq:
1628     mutex_lock(&nvmet_tcp_queue_mutex);
1629     list_del_init(&queue->queue_list);
1630     mutex_unlock(&nvmet_tcp_queue_mutex);
1631     nvmet_sq_destroy(&queue->nvme_sq);
1632 out_free_connect:
1633     nvmet_tcp_free_cmd(&queue->connect);
1634 out_ida_remove:
1635     ida_free(&nvmet_tcp_queue_ida, queue->idx);
1636 out_free_queue:
1637     kfree(queue);
1638     return ret;
1639 }
1640 
1641 static void nvmet_tcp_accept_work(struct work_struct *w)
1642 {
1643     struct nvmet_tcp_port *port =
1644         container_of(w, struct nvmet_tcp_port, accept_work);
1645     struct socket *newsock;
1646     int ret;
1647 
1648     while (true) {
1649         ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1650         if (ret < 0) {
1651             if (ret != -EAGAIN)
1652                 pr_warn("failed to accept err=%d\n", ret);
1653             return;
1654         }
1655         ret = nvmet_tcp_alloc_queue(port, newsock);
1656         if (ret) {
1657             pr_err("failed to allocate queue\n");
1658             sock_release(newsock);
1659         }
1660     }
1661 }
1662 
1663 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1664 {
1665     struct nvmet_tcp_port *port;
1666 
1667     read_lock_bh(&sk->sk_callback_lock);
1668     port = sk->sk_user_data;
1669     if (!port)
1670         goto out;
1671 
1672     if (sk->sk_state == TCP_LISTEN)
1673         queue_work(nvmet_wq, &port->accept_work);
1674 out:
1675     read_unlock_bh(&sk->sk_callback_lock);
1676 }
1677 
1678 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1679 {
1680     struct nvmet_tcp_port *port;
1681     __kernel_sa_family_t af;
1682     int ret;
1683 
1684     port = kzalloc(sizeof(*port), GFP_KERNEL);
1685     if (!port)
1686         return -ENOMEM;
1687 
1688     switch (nport->disc_addr.adrfam) {
1689     case NVMF_ADDR_FAMILY_IP4:
1690         af = AF_INET;
1691         break;
1692     case NVMF_ADDR_FAMILY_IP6:
1693         af = AF_INET6;
1694         break;
1695     default:
1696         pr_err("address family %d not supported\n",
1697                 nport->disc_addr.adrfam);
1698         ret = -EINVAL;
1699         goto err_port;
1700     }
1701 
1702     ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1703             nport->disc_addr.trsvcid, &port->addr);
1704     if (ret) {
1705         pr_err("malformed ip/port passed: %s:%s\n",
1706             nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1707         goto err_port;
1708     }
1709 
1710     port->nport = nport;
1711     INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1712     if (port->nport->inline_data_size < 0)
1713         port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1714 
1715     ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1716                 IPPROTO_TCP, &port->sock);
1717     if (ret) {
1718         pr_err("failed to create a socket\n");
1719         goto err_port;
1720     }
1721 
1722     port->sock->sk->sk_user_data = port;
1723     port->data_ready = port->sock->sk->sk_data_ready;
1724     port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1725     sock_set_reuseaddr(port->sock->sk);
1726     tcp_sock_set_nodelay(port->sock->sk);
1727     if (so_priority > 0)
1728         sock_set_priority(port->sock->sk, so_priority);
1729 
1730     ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1731             sizeof(port->addr));
1732     if (ret) {
1733         pr_err("failed to bind port socket %d\n", ret);
1734         goto err_sock;
1735     }
1736 
1737     ret = kernel_listen(port->sock, 128);
1738     if (ret) {
1739         pr_err("failed to listen %d on port sock\n", ret);
1740         goto err_sock;
1741     }
1742 
1743     nport->priv = port;
1744     pr_info("enabling port %d (%pISpc)\n",
1745         le16_to_cpu(nport->disc_addr.portid), &port->addr);
1746 
1747     return 0;
1748 
1749 err_sock:
1750     sock_release(port->sock);
1751 err_port:
1752     kfree(port);
1753     return ret;
1754 }
1755 
1756 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
1757 {
1758     struct nvmet_tcp_queue *queue;
1759 
1760     mutex_lock(&nvmet_tcp_queue_mutex);
1761     list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1762         if (queue->port == port)
1763             kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1764     mutex_unlock(&nvmet_tcp_queue_mutex);
1765 }
1766 
1767 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1768 {
1769     struct nvmet_tcp_port *port = nport->priv;
1770 
1771     write_lock_bh(&port->sock->sk->sk_callback_lock);
1772     port->sock->sk->sk_data_ready = port->data_ready;
1773     port->sock->sk->sk_user_data = NULL;
1774     write_unlock_bh(&port->sock->sk->sk_callback_lock);
1775     cancel_work_sync(&port->accept_work);
1776     /*
1777      * Destroy the remaining queues, which are not belong to any
1778      * controller yet.
1779      */
1780     nvmet_tcp_destroy_port_queues(port);
1781 
1782     sock_release(port->sock);
1783     kfree(port);
1784 }
1785 
1786 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1787 {
1788     struct nvmet_tcp_queue *queue;
1789 
1790     mutex_lock(&nvmet_tcp_queue_mutex);
1791     list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1792         if (queue->nvme_sq.ctrl == ctrl)
1793             kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1794     mutex_unlock(&nvmet_tcp_queue_mutex);
1795 }
1796 
1797 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1798 {
1799     struct nvmet_tcp_queue *queue =
1800         container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1801 
1802     if (sq->qid == 0) {
1803         /* Let inflight controller teardown complete */
1804         flush_workqueue(nvmet_wq);
1805     }
1806 
1807     queue->nr_cmds = sq->size * 2;
1808     if (nvmet_tcp_alloc_cmds(queue))
1809         return NVME_SC_INTERNAL;
1810     return 0;
1811 }
1812 
1813 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1814         struct nvmet_port *nport, char *traddr)
1815 {
1816     struct nvmet_tcp_port *port = nport->priv;
1817 
1818     if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1819         struct nvmet_tcp_cmd *cmd =
1820             container_of(req, struct nvmet_tcp_cmd, req);
1821         struct nvmet_tcp_queue *queue = cmd->queue;
1822 
1823         sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1824     } else {
1825         memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1826     }
1827 }
1828 
1829 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
1830     .owner          = THIS_MODULE,
1831     .type           = NVMF_TRTYPE_TCP,
1832     .msdbd          = 1,
1833     .add_port       = nvmet_tcp_add_port,
1834     .remove_port        = nvmet_tcp_remove_port,
1835     .queue_response     = nvmet_tcp_queue_response,
1836     .delete_ctrl        = nvmet_tcp_delete_ctrl,
1837     .install_queue      = nvmet_tcp_install_queue,
1838     .disc_traddr        = nvmet_tcp_disc_port_addr,
1839 };
1840 
1841 static int __init nvmet_tcp_init(void)
1842 {
1843     int ret;
1844 
1845     nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
1846                 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1847     if (!nvmet_tcp_wq)
1848         return -ENOMEM;
1849 
1850     ret = nvmet_register_transport(&nvmet_tcp_ops);
1851     if (ret)
1852         goto err;
1853 
1854     return 0;
1855 err:
1856     destroy_workqueue(nvmet_tcp_wq);
1857     return ret;
1858 }
1859 
1860 static void __exit nvmet_tcp_exit(void)
1861 {
1862     struct nvmet_tcp_queue *queue;
1863 
1864     nvmet_unregister_transport(&nvmet_tcp_ops);
1865 
1866     flush_workqueue(nvmet_wq);
1867     mutex_lock(&nvmet_tcp_queue_mutex);
1868     list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1869         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1870     mutex_unlock(&nvmet_tcp_queue_mutex);
1871     flush_workqueue(nvmet_wq);
1872 
1873     destroy_workqueue(nvmet_tcp_wq);
1874 }
1875 
1876 module_init(nvmet_tcp_init);
1877 module_exit(nvmet_tcp_exit);
1878 
1879 MODULE_LICENSE("GPL v2");
1880 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */