0001
0002
0003
0004
0005
0006 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0007 #include <linux/blkdev.h>
0008 #include <linux/blk-integrity.h>
0009 #include <linux/memremap.h>
0010 #include <linux/module.h>
0011 #include "nvmet.h"
0012
0013 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
0014 {
0015 const struct queue_limits *ql = &bdev_get_queue(bdev)->limits;
0016
0017 const u32 lpp = ql->physical_block_size / ql->logical_block_size;
0018
0019 const __le16 lpp0b = to0based(lpp);
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029 id->nsfeat |= 1 << 1;
0030 id->nawun = lpp0b;
0031 id->nawupf = lpp0b;
0032 id->nacwu = lpp0b;
0033
0034
0035
0036
0037
0038
0039 id->nsfeat |= 1 << 4;
0040
0041 id->npwg = lpp0b;
0042
0043 id->npwa = id->npwg;
0044
0045 id->npdg = to0based(ql->discard_granularity / ql->logical_block_size);
0046
0047 id->npda = id->npdg;
0048
0049 id->nows = to0based(ql->io_opt / ql->logical_block_size);
0050 }
0051
0052 void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
0053 {
0054 if (ns->bdev) {
0055 blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ);
0056 ns->bdev = NULL;
0057 }
0058 }
0059
0060 static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns)
0061 {
0062 struct blk_integrity *bi = bdev_get_integrity(ns->bdev);
0063
0064 if (bi) {
0065 ns->metadata_size = bi->tuple_size;
0066 if (bi->profile == &t10_pi_type1_crc)
0067 ns->pi_type = NVME_NS_DPS_PI_TYPE1;
0068 else if (bi->profile == &t10_pi_type3_crc)
0069 ns->pi_type = NVME_NS_DPS_PI_TYPE3;
0070 else
0071
0072 ns->metadata_size = 0;
0073 }
0074 }
0075
0076 int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
0077 {
0078 int ret;
0079
0080
0081
0082
0083
0084
0085 if (ns->buffered_io)
0086 return -ENOTBLK;
0087
0088 ns->bdev = blkdev_get_by_path(ns->device_path,
0089 FMODE_READ | FMODE_WRITE, NULL);
0090 if (IS_ERR(ns->bdev)) {
0091 ret = PTR_ERR(ns->bdev);
0092 if (ret != -ENOTBLK) {
0093 pr_err("failed to open block device %s: (%ld)\n",
0094 ns->device_path, PTR_ERR(ns->bdev));
0095 }
0096 ns->bdev = NULL;
0097 return ret;
0098 }
0099 ns->size = bdev_nr_bytes(ns->bdev);
0100 ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
0101
0102 ns->pi_type = 0;
0103 ns->metadata_size = 0;
0104 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10))
0105 nvmet_bdev_ns_enable_integrity(ns);
0106
0107 if (bdev_is_zoned(ns->bdev)) {
0108 if (!nvmet_bdev_zns_enable(ns)) {
0109 nvmet_bdev_ns_disable(ns);
0110 return -EINVAL;
0111 }
0112 ns->csi = NVME_CSI_ZNS;
0113 }
0114
0115 return 0;
0116 }
0117
0118 void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns)
0119 {
0120 ns->size = bdev_nr_bytes(ns->bdev);
0121 }
0122
0123 u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
0124 {
0125 u16 status = NVME_SC_SUCCESS;
0126
0127 if (likely(blk_sts == BLK_STS_OK))
0128 return status;
0129
0130
0131
0132
0133
0134
0135 switch (blk_sts) {
0136 case BLK_STS_NOSPC:
0137 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
0138 req->error_loc = offsetof(struct nvme_rw_command, length);
0139 break;
0140 case BLK_STS_TARGET:
0141 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
0142 req->error_loc = offsetof(struct nvme_rw_command, slba);
0143 break;
0144 case BLK_STS_NOTSUPP:
0145 req->error_loc = offsetof(struct nvme_common_command, opcode);
0146 switch (req->cmd->common.opcode) {
0147 case nvme_cmd_dsm:
0148 case nvme_cmd_write_zeroes:
0149 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
0150 break;
0151 default:
0152 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
0153 }
0154 break;
0155 case BLK_STS_MEDIUM:
0156 status = NVME_SC_ACCESS_DENIED;
0157 req->error_loc = offsetof(struct nvme_rw_command, nsid);
0158 break;
0159 case BLK_STS_IOERR:
0160 default:
0161 status = NVME_SC_INTERNAL | NVME_SC_DNR;
0162 req->error_loc = offsetof(struct nvme_common_command, opcode);
0163 }
0164
0165 switch (req->cmd->common.opcode) {
0166 case nvme_cmd_read:
0167 case nvme_cmd_write:
0168 req->error_slba = le64_to_cpu(req->cmd->rw.slba);
0169 break;
0170 case nvme_cmd_write_zeroes:
0171 req->error_slba =
0172 le64_to_cpu(req->cmd->write_zeroes.slba);
0173 break;
0174 default:
0175 req->error_slba = 0;
0176 }
0177 return status;
0178 }
0179
0180 static void nvmet_bio_done(struct bio *bio)
0181 {
0182 struct nvmet_req *req = bio->bi_private;
0183
0184 nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
0185 nvmet_req_bio_put(req, bio);
0186 }
0187
0188 #ifdef CONFIG_BLK_DEV_INTEGRITY
0189 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
0190 struct sg_mapping_iter *miter)
0191 {
0192 struct blk_integrity *bi;
0193 struct bio_integrity_payload *bip;
0194 int rc;
0195 size_t resid, len;
0196
0197 bi = bdev_get_integrity(req->ns->bdev);
0198 if (unlikely(!bi)) {
0199 pr_err("Unable to locate bio_integrity\n");
0200 return -ENODEV;
0201 }
0202
0203 bip = bio_integrity_alloc(bio, GFP_NOIO,
0204 bio_max_segs(req->metadata_sg_cnt));
0205 if (IS_ERR(bip)) {
0206 pr_err("Unable to allocate bio_integrity_payload\n");
0207 return PTR_ERR(bip);
0208 }
0209
0210 bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
0211
0212 bip_set_seed(bip, bio->bi_iter.bi_sector >>
0213 (bi->interval_exp - SECTOR_SHIFT));
0214
0215 resid = bip->bip_iter.bi_size;
0216 while (resid > 0 && sg_miter_next(miter)) {
0217 len = min_t(size_t, miter->length, resid);
0218 rc = bio_integrity_add_page(bio, miter->page, len,
0219 offset_in_page(miter->addr));
0220 if (unlikely(rc != len)) {
0221 pr_err("bio_integrity_add_page() failed; %d\n", rc);
0222 sg_miter_stop(miter);
0223 return -ENOMEM;
0224 }
0225
0226 resid -= len;
0227 if (len < miter->length)
0228 miter->consumed -= miter->length - len;
0229 }
0230 sg_miter_stop(miter);
0231
0232 return 0;
0233 }
0234 #else
0235 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
0236 struct sg_mapping_iter *miter)
0237 {
0238 return -EINVAL;
0239 }
0240 #endif
0241
0242 static void nvmet_bdev_execute_rw(struct nvmet_req *req)
0243 {
0244 unsigned int sg_cnt = req->sg_cnt;
0245 struct bio *bio;
0246 struct scatterlist *sg;
0247 struct blk_plug plug;
0248 sector_t sector;
0249 blk_opf_t opf;
0250 int i, rc;
0251 struct sg_mapping_iter prot_miter;
0252 unsigned int iter_flags;
0253 unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len;
0254
0255 if (!nvmet_check_transfer_len(req, total_len))
0256 return;
0257
0258 if (!req->sg_cnt) {
0259 nvmet_req_complete(req, 0);
0260 return;
0261 }
0262
0263 if (req->cmd->rw.opcode == nvme_cmd_write) {
0264 opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
0265 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
0266 opf |= REQ_FUA;
0267 iter_flags = SG_MITER_TO_SG;
0268 } else {
0269 opf = REQ_OP_READ;
0270 iter_flags = SG_MITER_FROM_SG;
0271 }
0272
0273 if (is_pci_p2pdma_page(sg_page(req->sg)))
0274 opf |= REQ_NOMERGE;
0275
0276 sector = nvmet_lba_to_sect(req->ns, req->cmd->rw.slba);
0277
0278 if (nvmet_use_inline_bvec(req)) {
0279 bio = &req->b.inline_bio;
0280 bio_init(bio, req->ns->bdev, req->inline_bvec,
0281 ARRAY_SIZE(req->inline_bvec), opf);
0282 } else {
0283 bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt), opf,
0284 GFP_KERNEL);
0285 }
0286 bio->bi_iter.bi_sector = sector;
0287 bio->bi_private = req;
0288 bio->bi_end_io = nvmet_bio_done;
0289
0290 blk_start_plug(&plug);
0291 if (req->metadata_len)
0292 sg_miter_start(&prot_miter, req->metadata_sg,
0293 req->metadata_sg_cnt, iter_flags);
0294
0295 for_each_sg(req->sg, sg, req->sg_cnt, i) {
0296 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
0297 != sg->length) {
0298 struct bio *prev = bio;
0299
0300 if (req->metadata_len) {
0301 rc = nvmet_bdev_alloc_bip(req, bio,
0302 &prot_miter);
0303 if (unlikely(rc)) {
0304 bio_io_error(bio);
0305 return;
0306 }
0307 }
0308
0309 bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt),
0310 opf, GFP_KERNEL);
0311 bio->bi_iter.bi_sector = sector;
0312
0313 bio_chain(bio, prev);
0314 submit_bio(prev);
0315 }
0316
0317 sector += sg->length >> 9;
0318 sg_cnt--;
0319 }
0320
0321 if (req->metadata_len) {
0322 rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter);
0323 if (unlikely(rc)) {
0324 bio_io_error(bio);
0325 return;
0326 }
0327 }
0328
0329 submit_bio(bio);
0330 blk_finish_plug(&plug);
0331 }
0332
0333 static void nvmet_bdev_execute_flush(struct nvmet_req *req)
0334 {
0335 struct bio *bio = &req->b.inline_bio;
0336
0337 if (!nvmet_check_transfer_len(req, 0))
0338 return;
0339
0340 bio_init(bio, req->ns->bdev, req->inline_bvec,
0341 ARRAY_SIZE(req->inline_bvec), REQ_OP_WRITE | REQ_PREFLUSH);
0342 bio->bi_private = req;
0343 bio->bi_end_io = nvmet_bio_done;
0344
0345 submit_bio(bio);
0346 }
0347
0348 u16 nvmet_bdev_flush(struct nvmet_req *req)
0349 {
0350 if (blkdev_issue_flush(req->ns->bdev))
0351 return NVME_SC_INTERNAL | NVME_SC_DNR;
0352 return 0;
0353 }
0354
0355 static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
0356 struct nvme_dsm_range *range, struct bio **bio)
0357 {
0358 struct nvmet_ns *ns = req->ns;
0359 int ret;
0360
0361 ret = __blkdev_issue_discard(ns->bdev,
0362 nvmet_lba_to_sect(ns, range->slba),
0363 le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
0364 GFP_KERNEL, bio);
0365 if (ret && ret != -EOPNOTSUPP) {
0366 req->error_slba = le64_to_cpu(range->slba);
0367 return errno_to_nvme_status(req, ret);
0368 }
0369 return NVME_SC_SUCCESS;
0370 }
0371
0372 static void nvmet_bdev_execute_discard(struct nvmet_req *req)
0373 {
0374 struct nvme_dsm_range range;
0375 struct bio *bio = NULL;
0376 int i;
0377 u16 status;
0378
0379 for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
0380 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
0381 sizeof(range));
0382 if (status)
0383 break;
0384
0385 status = nvmet_bdev_discard_range(req, &range, &bio);
0386 if (status)
0387 break;
0388 }
0389
0390 if (bio) {
0391 bio->bi_private = req;
0392 bio->bi_end_io = nvmet_bio_done;
0393 if (status)
0394 bio_io_error(bio);
0395 else
0396 submit_bio(bio);
0397 } else {
0398 nvmet_req_complete(req, status);
0399 }
0400 }
0401
0402 static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
0403 {
0404 if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req)))
0405 return;
0406
0407 switch (le32_to_cpu(req->cmd->dsm.attributes)) {
0408 case NVME_DSMGMT_AD:
0409 nvmet_bdev_execute_discard(req);
0410 return;
0411 case NVME_DSMGMT_IDR:
0412 case NVME_DSMGMT_IDW:
0413 default:
0414
0415 nvmet_req_complete(req, 0);
0416 return;
0417 }
0418 }
0419
0420 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
0421 {
0422 struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
0423 struct bio *bio = NULL;
0424 sector_t sector;
0425 sector_t nr_sector;
0426 int ret;
0427
0428 if (!nvmet_check_transfer_len(req, 0))
0429 return;
0430
0431 sector = nvmet_lba_to_sect(req->ns, write_zeroes->slba);
0432 nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
0433 (req->ns->blksize_shift - 9));
0434
0435 ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
0436 GFP_KERNEL, &bio, 0);
0437 if (bio) {
0438 bio->bi_private = req;
0439 bio->bi_end_io = nvmet_bio_done;
0440 submit_bio(bio);
0441 } else {
0442 nvmet_req_complete(req, errno_to_nvme_status(req, ret));
0443 }
0444 }
0445
0446 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
0447 {
0448 switch (req->cmd->common.opcode) {
0449 case nvme_cmd_read:
0450 case nvme_cmd_write:
0451 req->execute = nvmet_bdev_execute_rw;
0452 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
0453 req->metadata_len = nvmet_rw_metadata_len(req);
0454 return 0;
0455 case nvme_cmd_flush:
0456 req->execute = nvmet_bdev_execute_flush;
0457 return 0;
0458 case nvme_cmd_dsm:
0459 req->execute = nvmet_bdev_execute_dsm;
0460 return 0;
0461 case nvme_cmd_write_zeroes:
0462 req->execute = nvmet_bdev_execute_write_zeroes;
0463 return 0;
0464 default:
0465 return nvmet_report_invalid_opcode(req);
0466 }
0467 }