0001
0002
0003
0004
0005
0006
0007 #include <linux/acpi.h>
0008 #include <linux/aer.h>
0009 #include <linux/async.h>
0010 #include <linux/blkdev.h>
0011 #include <linux/blk-mq.h>
0012 #include <linux/blk-mq-pci.h>
0013 #include <linux/blk-integrity.h>
0014 #include <linux/dmi.h>
0015 #include <linux/init.h>
0016 #include <linux/interrupt.h>
0017 #include <linux/io.h>
0018 #include <linux/memremap.h>
0019 #include <linux/mm.h>
0020 #include <linux/module.h>
0021 #include <linux/mutex.h>
0022 #include <linux/once.h>
0023 #include <linux/pci.h>
0024 #include <linux/suspend.h>
0025 #include <linux/t10-pi.h>
0026 #include <linux/types.h>
0027 #include <linux/io-64-nonatomic-lo-hi.h>
0028 #include <linux/io-64-nonatomic-hi-lo.h>
0029 #include <linux/sed-opal.h>
0030 #include <linux/pci-p2pdma.h>
0031
0032 #include "trace.h"
0033 #include "nvme.h"
0034
0035 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
0036 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
0037
0038 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
0039
0040
0041
0042
0043
0044 #define NVME_MAX_KB_SZ 4096
0045 #define NVME_MAX_SEGS 127
0046
0047 static int use_threaded_interrupts;
0048 module_param(use_threaded_interrupts, int, 0444);
0049
0050 static bool use_cmb_sqes = true;
0051 module_param(use_cmb_sqes, bool, 0444);
0052 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
0053
0054 static unsigned int max_host_mem_size_mb = 128;
0055 module_param(max_host_mem_size_mb, uint, 0444);
0056 MODULE_PARM_DESC(max_host_mem_size_mb,
0057 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
0058
0059 static unsigned int sgl_threshold = SZ_32K;
0060 module_param(sgl_threshold, uint, 0644);
0061 MODULE_PARM_DESC(sgl_threshold,
0062 "Use SGLs when average request segment size is larger or equal to "
0063 "this size. Use 0 to disable SGLs.");
0064
0065 #define NVME_PCI_MIN_QUEUE_SIZE 2
0066 #define NVME_PCI_MAX_QUEUE_SIZE 4095
0067 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
0068 static const struct kernel_param_ops io_queue_depth_ops = {
0069 .set = io_queue_depth_set,
0070 .get = param_get_uint,
0071 };
0072
0073 static unsigned int io_queue_depth = 1024;
0074 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
0075 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
0076
0077 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
0078 {
0079 unsigned int n;
0080 int ret;
0081
0082 ret = kstrtouint(val, 10, &n);
0083 if (ret != 0 || n > num_possible_cpus())
0084 return -EINVAL;
0085 return param_set_uint(val, kp);
0086 }
0087
0088 static const struct kernel_param_ops io_queue_count_ops = {
0089 .set = io_queue_count_set,
0090 .get = param_get_uint,
0091 };
0092
0093 static unsigned int write_queues;
0094 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
0095 MODULE_PARM_DESC(write_queues,
0096 "Number of queues to use for writes. If not set, reads and writes "
0097 "will share a queue set.");
0098
0099 static unsigned int poll_queues;
0100 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
0101 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
0102
0103 static bool noacpi;
0104 module_param(noacpi, bool, 0444);
0105 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
0106
0107 struct nvme_dev;
0108 struct nvme_queue;
0109
0110 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
0111 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
0112
0113
0114
0115
0116 struct nvme_dev {
0117 struct nvme_queue *queues;
0118 struct blk_mq_tag_set tagset;
0119 struct blk_mq_tag_set admin_tagset;
0120 u32 __iomem *dbs;
0121 struct device *dev;
0122 struct dma_pool *prp_page_pool;
0123 struct dma_pool *prp_small_pool;
0124 unsigned online_queues;
0125 unsigned max_qid;
0126 unsigned io_queues[HCTX_MAX_TYPES];
0127 unsigned int num_vecs;
0128 u32 q_depth;
0129 int io_sqes;
0130 u32 db_stride;
0131 void __iomem *bar;
0132 unsigned long bar_mapped_size;
0133 struct work_struct remove_work;
0134 struct mutex shutdown_lock;
0135 bool subsystem;
0136 u64 cmb_size;
0137 bool cmb_use_sqes;
0138 u32 cmbsz;
0139 u32 cmbloc;
0140 struct nvme_ctrl ctrl;
0141 u32 last_ps;
0142 bool hmb;
0143
0144 mempool_t *iod_mempool;
0145
0146
0147 u32 *dbbuf_dbs;
0148 dma_addr_t dbbuf_dbs_dma_addr;
0149 u32 *dbbuf_eis;
0150 dma_addr_t dbbuf_eis_dma_addr;
0151
0152
0153 u64 host_mem_size;
0154 u32 nr_host_mem_descs;
0155 dma_addr_t host_mem_descs_dma;
0156 struct nvme_host_mem_buf_desc *host_mem_descs;
0157 void **host_mem_desc_bufs;
0158 unsigned int nr_allocated_queues;
0159 unsigned int nr_write_queues;
0160 unsigned int nr_poll_queues;
0161
0162 bool attrs_added;
0163 };
0164
0165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
0166 {
0167 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
0168 NVME_PCI_MAX_QUEUE_SIZE);
0169 }
0170
0171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
0172 {
0173 return qid * 2 * stride;
0174 }
0175
0176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
0177 {
0178 return (qid * 2 + 1) * stride;
0179 }
0180
0181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
0182 {
0183 return container_of(ctrl, struct nvme_dev, ctrl);
0184 }
0185
0186
0187
0188
0189
0190 struct nvme_queue {
0191 struct nvme_dev *dev;
0192 spinlock_t sq_lock;
0193 void *sq_cmds;
0194
0195 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
0196 struct nvme_completion *cqes;
0197 dma_addr_t sq_dma_addr;
0198 dma_addr_t cq_dma_addr;
0199 u32 __iomem *q_db;
0200 u32 q_depth;
0201 u16 cq_vector;
0202 u16 sq_tail;
0203 u16 last_sq_tail;
0204 u16 cq_head;
0205 u16 qid;
0206 u8 cq_phase;
0207 u8 sqes;
0208 unsigned long flags;
0209 #define NVMEQ_ENABLED 0
0210 #define NVMEQ_SQ_CMB 1
0211 #define NVMEQ_DELETE_ERROR 2
0212 #define NVMEQ_POLLED 3
0213 u32 *dbbuf_sq_db;
0214 u32 *dbbuf_cq_db;
0215 u32 *dbbuf_sq_ei;
0216 u32 *dbbuf_cq_ei;
0217 struct completion delete_done;
0218 };
0219
0220
0221
0222
0223
0224
0225
0226 struct nvme_iod {
0227 struct nvme_request req;
0228 struct nvme_command cmd;
0229 struct nvme_queue *nvmeq;
0230 bool use_sgl;
0231 int aborted;
0232 int npages;
0233 dma_addr_t first_dma;
0234 unsigned int dma_len;
0235 dma_addr_t meta_dma;
0236 struct sg_table sgt;
0237 };
0238
0239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
0240 {
0241 return dev->nr_allocated_queues * 8 * dev->db_stride;
0242 }
0243
0244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
0245 {
0246 unsigned int mem_size = nvme_dbbuf_size(dev);
0247
0248 if (dev->dbbuf_dbs) {
0249
0250
0251
0252
0253 memset(dev->dbbuf_dbs, 0, mem_size);
0254 memset(dev->dbbuf_eis, 0, mem_size);
0255 return 0;
0256 }
0257
0258 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
0259 &dev->dbbuf_dbs_dma_addr,
0260 GFP_KERNEL);
0261 if (!dev->dbbuf_dbs)
0262 return -ENOMEM;
0263 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
0264 &dev->dbbuf_eis_dma_addr,
0265 GFP_KERNEL);
0266 if (!dev->dbbuf_eis) {
0267 dma_free_coherent(dev->dev, mem_size,
0268 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
0269 dev->dbbuf_dbs = NULL;
0270 return -ENOMEM;
0271 }
0272
0273 return 0;
0274 }
0275
0276 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
0277 {
0278 unsigned int mem_size = nvme_dbbuf_size(dev);
0279
0280 if (dev->dbbuf_dbs) {
0281 dma_free_coherent(dev->dev, mem_size,
0282 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
0283 dev->dbbuf_dbs = NULL;
0284 }
0285 if (dev->dbbuf_eis) {
0286 dma_free_coherent(dev->dev, mem_size,
0287 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
0288 dev->dbbuf_eis = NULL;
0289 }
0290 }
0291
0292 static void nvme_dbbuf_init(struct nvme_dev *dev,
0293 struct nvme_queue *nvmeq, int qid)
0294 {
0295 if (!dev->dbbuf_dbs || !qid)
0296 return;
0297
0298 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
0299 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
0300 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
0301 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
0302 }
0303
0304 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
0305 {
0306 if (!nvmeq->qid)
0307 return;
0308
0309 nvmeq->dbbuf_sq_db = NULL;
0310 nvmeq->dbbuf_cq_db = NULL;
0311 nvmeq->dbbuf_sq_ei = NULL;
0312 nvmeq->dbbuf_cq_ei = NULL;
0313 }
0314
0315 static void nvme_dbbuf_set(struct nvme_dev *dev)
0316 {
0317 struct nvme_command c = { };
0318 unsigned int i;
0319
0320 if (!dev->dbbuf_dbs)
0321 return;
0322
0323 c.dbbuf.opcode = nvme_admin_dbbuf;
0324 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
0325 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
0326
0327 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
0328 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
0329
0330 nvme_dbbuf_dma_free(dev);
0331
0332 for (i = 1; i <= dev->online_queues; i++)
0333 nvme_dbbuf_free(&dev->queues[i]);
0334 }
0335 }
0336
0337 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
0338 {
0339 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
0340 }
0341
0342
0343 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
0344 volatile u32 *dbbuf_ei)
0345 {
0346 if (dbbuf_db) {
0347 u16 old_value;
0348
0349
0350
0351
0352
0353 wmb();
0354
0355 old_value = *dbbuf_db;
0356 *dbbuf_db = value;
0357
0358
0359
0360
0361
0362
0363
0364 mb();
0365
0366 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
0367 return false;
0368 }
0369
0370 return true;
0371 }
0372
0373
0374
0375
0376
0377
0378 static int nvme_pci_npages_prp(void)
0379 {
0380 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
0381 NVME_CTRL_PAGE_SIZE);
0382 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
0383 }
0384
0385
0386
0387
0388
0389 static int nvme_pci_npages_sgl(void)
0390 {
0391 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
0392 PAGE_SIZE);
0393 }
0394
0395 static size_t nvme_pci_iod_alloc_size(void)
0396 {
0397 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
0398
0399 return sizeof(__le64 *) * npages +
0400 sizeof(struct scatterlist) * NVME_MAX_SEGS;
0401 }
0402
0403 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
0404 unsigned int hctx_idx)
0405 {
0406 struct nvme_dev *dev = data;
0407 struct nvme_queue *nvmeq = &dev->queues[0];
0408
0409 WARN_ON(hctx_idx != 0);
0410 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
0411
0412 hctx->driver_data = nvmeq;
0413 return 0;
0414 }
0415
0416 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
0417 unsigned int hctx_idx)
0418 {
0419 struct nvme_dev *dev = data;
0420 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
0421
0422 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
0423 hctx->driver_data = nvmeq;
0424 return 0;
0425 }
0426
0427 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
0428 struct request *req, unsigned int hctx_idx,
0429 unsigned int numa_node)
0430 {
0431 struct nvme_dev *dev = set->driver_data;
0432 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0433 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
0434 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
0435
0436 BUG_ON(!nvmeq);
0437 iod->nvmeq = nvmeq;
0438
0439 nvme_req(req)->ctrl = &dev->ctrl;
0440 nvme_req(req)->cmd = &iod->cmd;
0441 return 0;
0442 }
0443
0444 static int queue_irq_offset(struct nvme_dev *dev)
0445 {
0446
0447 if (dev->num_vecs > 1)
0448 return 1;
0449
0450 return 0;
0451 }
0452
0453 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
0454 {
0455 struct nvme_dev *dev = set->driver_data;
0456 int i, qoff, offset;
0457
0458 offset = queue_irq_offset(dev);
0459 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
0460 struct blk_mq_queue_map *map = &set->map[i];
0461
0462 map->nr_queues = dev->io_queues[i];
0463 if (!map->nr_queues) {
0464 BUG_ON(i == HCTX_TYPE_DEFAULT);
0465 continue;
0466 }
0467
0468
0469
0470
0471
0472 map->queue_offset = qoff;
0473 if (i != HCTX_TYPE_POLL && offset)
0474 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
0475 else
0476 blk_mq_map_queues(map);
0477 qoff += map->nr_queues;
0478 offset += map->nr_queues;
0479 }
0480
0481 return 0;
0482 }
0483
0484
0485
0486
0487 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
0488 {
0489 if (!write_sq) {
0490 u16 next_tail = nvmeq->sq_tail + 1;
0491
0492 if (next_tail == nvmeq->q_depth)
0493 next_tail = 0;
0494 if (next_tail != nvmeq->last_sq_tail)
0495 return;
0496 }
0497
0498 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
0499 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
0500 writel(nvmeq->sq_tail, nvmeq->q_db);
0501 nvmeq->last_sq_tail = nvmeq->sq_tail;
0502 }
0503
0504 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
0505 struct nvme_command *cmd)
0506 {
0507 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
0508 absolute_pointer(cmd), sizeof(*cmd));
0509 if (++nvmeq->sq_tail == nvmeq->q_depth)
0510 nvmeq->sq_tail = 0;
0511 }
0512
0513 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
0514 {
0515 struct nvme_queue *nvmeq = hctx->driver_data;
0516
0517 spin_lock(&nvmeq->sq_lock);
0518 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
0519 nvme_write_sq_db(nvmeq, true);
0520 spin_unlock(&nvmeq->sq_lock);
0521 }
0522
0523 static void **nvme_pci_iod_list(struct request *req)
0524 {
0525 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0526 return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req));
0527 }
0528
0529 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
0530 {
0531 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0532 int nseg = blk_rq_nr_phys_segments(req);
0533 unsigned int avg_seg_size;
0534
0535 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
0536
0537 if (!nvme_ctrl_sgl_supported(&dev->ctrl))
0538 return false;
0539 if (!iod->nvmeq->qid)
0540 return false;
0541 if (!sgl_threshold || avg_seg_size < sgl_threshold)
0542 return false;
0543 return true;
0544 }
0545
0546 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
0547 {
0548 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
0549 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0550 dma_addr_t dma_addr = iod->first_dma;
0551 int i;
0552
0553 for (i = 0; i < iod->npages; i++) {
0554 __le64 *prp_list = nvme_pci_iod_list(req)[i];
0555 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
0556
0557 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
0558 dma_addr = next_dma_addr;
0559 }
0560 }
0561
0562 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
0563 {
0564 const int last_sg = SGES_PER_PAGE - 1;
0565 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0566 dma_addr_t dma_addr = iod->first_dma;
0567 int i;
0568
0569 for (i = 0; i < iod->npages; i++) {
0570 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
0571 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
0572
0573 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
0574 dma_addr = next_dma_addr;
0575 }
0576 }
0577
0578 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
0579 {
0580 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0581
0582 if (iod->dma_len) {
0583 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
0584 rq_dma_dir(req));
0585 return;
0586 }
0587
0588 WARN_ON_ONCE(!iod->sgt.nents);
0589
0590 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
0591
0592 if (iod->npages == 0)
0593 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
0594 iod->first_dma);
0595 else if (iod->use_sgl)
0596 nvme_free_sgls(dev, req);
0597 else
0598 nvme_free_prps(dev, req);
0599 mempool_free(iod->sgt.sgl, dev->iod_mempool);
0600 }
0601
0602 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
0603 {
0604 int i;
0605 struct scatterlist *sg;
0606
0607 for_each_sg(sgl, sg, nents, i) {
0608 dma_addr_t phys = sg_phys(sg);
0609 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
0610 "dma_address:%pad dma_length:%d\n",
0611 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
0612 sg_dma_len(sg));
0613 }
0614 }
0615
0616 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
0617 struct request *req, struct nvme_rw_command *cmnd)
0618 {
0619 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0620 struct dma_pool *pool;
0621 int length = blk_rq_payload_bytes(req);
0622 struct scatterlist *sg = iod->sgt.sgl;
0623 int dma_len = sg_dma_len(sg);
0624 u64 dma_addr = sg_dma_address(sg);
0625 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
0626 __le64 *prp_list;
0627 void **list = nvme_pci_iod_list(req);
0628 dma_addr_t prp_dma;
0629 int nprps, i;
0630
0631 length -= (NVME_CTRL_PAGE_SIZE - offset);
0632 if (length <= 0) {
0633 iod->first_dma = 0;
0634 goto done;
0635 }
0636
0637 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
0638 if (dma_len) {
0639 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
0640 } else {
0641 sg = sg_next(sg);
0642 dma_addr = sg_dma_address(sg);
0643 dma_len = sg_dma_len(sg);
0644 }
0645
0646 if (length <= NVME_CTRL_PAGE_SIZE) {
0647 iod->first_dma = dma_addr;
0648 goto done;
0649 }
0650
0651 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
0652 if (nprps <= (256 / 8)) {
0653 pool = dev->prp_small_pool;
0654 iod->npages = 0;
0655 } else {
0656 pool = dev->prp_page_pool;
0657 iod->npages = 1;
0658 }
0659
0660 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
0661 if (!prp_list) {
0662 iod->npages = -1;
0663 return BLK_STS_RESOURCE;
0664 }
0665 list[0] = prp_list;
0666 iod->first_dma = prp_dma;
0667 i = 0;
0668 for (;;) {
0669 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
0670 __le64 *old_prp_list = prp_list;
0671 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
0672 if (!prp_list)
0673 goto free_prps;
0674 list[iod->npages++] = prp_list;
0675 prp_list[0] = old_prp_list[i - 1];
0676 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
0677 i = 1;
0678 }
0679 prp_list[i++] = cpu_to_le64(dma_addr);
0680 dma_len -= NVME_CTRL_PAGE_SIZE;
0681 dma_addr += NVME_CTRL_PAGE_SIZE;
0682 length -= NVME_CTRL_PAGE_SIZE;
0683 if (length <= 0)
0684 break;
0685 if (dma_len > 0)
0686 continue;
0687 if (unlikely(dma_len < 0))
0688 goto bad_sgl;
0689 sg = sg_next(sg);
0690 dma_addr = sg_dma_address(sg);
0691 dma_len = sg_dma_len(sg);
0692 }
0693 done:
0694 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
0695 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
0696 return BLK_STS_OK;
0697 free_prps:
0698 nvme_free_prps(dev, req);
0699 return BLK_STS_RESOURCE;
0700 bad_sgl:
0701 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
0702 "Invalid SGL for payload:%d nents:%d\n",
0703 blk_rq_payload_bytes(req), iod->sgt.nents);
0704 return BLK_STS_IOERR;
0705 }
0706
0707 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
0708 struct scatterlist *sg)
0709 {
0710 sge->addr = cpu_to_le64(sg_dma_address(sg));
0711 sge->length = cpu_to_le32(sg_dma_len(sg));
0712 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
0713 }
0714
0715 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
0716 dma_addr_t dma_addr, int entries)
0717 {
0718 sge->addr = cpu_to_le64(dma_addr);
0719 if (entries < SGES_PER_PAGE) {
0720 sge->length = cpu_to_le32(entries * sizeof(*sge));
0721 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
0722 } else {
0723 sge->length = cpu_to_le32(PAGE_SIZE);
0724 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
0725 }
0726 }
0727
0728 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
0729 struct request *req, struct nvme_rw_command *cmd)
0730 {
0731 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0732 struct dma_pool *pool;
0733 struct nvme_sgl_desc *sg_list;
0734 struct scatterlist *sg = iod->sgt.sgl;
0735 unsigned int entries = iod->sgt.nents;
0736 dma_addr_t sgl_dma;
0737 int i = 0;
0738
0739
0740 cmd->flags = NVME_CMD_SGL_METABUF;
0741
0742 if (entries == 1) {
0743 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
0744 return BLK_STS_OK;
0745 }
0746
0747 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
0748 pool = dev->prp_small_pool;
0749 iod->npages = 0;
0750 } else {
0751 pool = dev->prp_page_pool;
0752 iod->npages = 1;
0753 }
0754
0755 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
0756 if (!sg_list) {
0757 iod->npages = -1;
0758 return BLK_STS_RESOURCE;
0759 }
0760
0761 nvme_pci_iod_list(req)[0] = sg_list;
0762 iod->first_dma = sgl_dma;
0763
0764 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
0765
0766 do {
0767 if (i == SGES_PER_PAGE) {
0768 struct nvme_sgl_desc *old_sg_desc = sg_list;
0769 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
0770
0771 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
0772 if (!sg_list)
0773 goto free_sgls;
0774
0775 i = 0;
0776 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
0777 sg_list[i++] = *link;
0778 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
0779 }
0780
0781 nvme_pci_sgl_set_data(&sg_list[i++], sg);
0782 sg = sg_next(sg);
0783 } while (--entries > 0);
0784
0785 return BLK_STS_OK;
0786 free_sgls:
0787 nvme_free_sgls(dev, req);
0788 return BLK_STS_RESOURCE;
0789 }
0790
0791 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
0792 struct request *req, struct nvme_rw_command *cmnd,
0793 struct bio_vec *bv)
0794 {
0795 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0796 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
0797 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
0798
0799 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
0800 if (dma_mapping_error(dev->dev, iod->first_dma))
0801 return BLK_STS_RESOURCE;
0802 iod->dma_len = bv->bv_len;
0803
0804 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
0805 if (bv->bv_len > first_prp_len)
0806 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
0807 return BLK_STS_OK;
0808 }
0809
0810 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
0811 struct request *req, struct nvme_rw_command *cmnd,
0812 struct bio_vec *bv)
0813 {
0814 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0815
0816 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
0817 if (dma_mapping_error(dev->dev, iod->first_dma))
0818 return BLK_STS_RESOURCE;
0819 iod->dma_len = bv->bv_len;
0820
0821 cmnd->flags = NVME_CMD_SGL_METABUF;
0822 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
0823 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
0824 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
0825 return BLK_STS_OK;
0826 }
0827
0828 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
0829 struct nvme_command *cmnd)
0830 {
0831 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0832 blk_status_t ret = BLK_STS_RESOURCE;
0833 int rc;
0834
0835 if (blk_rq_nr_phys_segments(req) == 1) {
0836 struct bio_vec bv = req_bvec(req);
0837
0838 if (!is_pci_p2pdma_page(bv.bv_page)) {
0839 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
0840 return nvme_setup_prp_simple(dev, req,
0841 &cmnd->rw, &bv);
0842
0843 if (iod->nvmeq->qid && sgl_threshold &&
0844 nvme_ctrl_sgl_supported(&dev->ctrl))
0845 return nvme_setup_sgl_simple(dev, req,
0846 &cmnd->rw, &bv);
0847 }
0848 }
0849
0850 iod->dma_len = 0;
0851 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
0852 if (!iod->sgt.sgl)
0853 return BLK_STS_RESOURCE;
0854 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
0855 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
0856 if (!iod->sgt.orig_nents)
0857 goto out_free_sg;
0858
0859 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
0860 DMA_ATTR_NO_WARN);
0861 if (rc) {
0862 if (rc == -EREMOTEIO)
0863 ret = BLK_STS_TARGET;
0864 goto out_free_sg;
0865 }
0866
0867 iod->use_sgl = nvme_pci_use_sgls(dev, req);
0868 if (iod->use_sgl)
0869 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
0870 else
0871 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
0872 if (ret != BLK_STS_OK)
0873 goto out_unmap_sg;
0874 return BLK_STS_OK;
0875
0876 out_unmap_sg:
0877 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
0878 out_free_sg:
0879 mempool_free(iod->sgt.sgl, dev->iod_mempool);
0880 return ret;
0881 }
0882
0883 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
0884 struct nvme_command *cmnd)
0885 {
0886 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0887
0888 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
0889 rq_dma_dir(req), 0);
0890 if (dma_mapping_error(dev->dev, iod->meta_dma))
0891 return BLK_STS_IOERR;
0892 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
0893 return BLK_STS_OK;
0894 }
0895
0896 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
0897 {
0898 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0899 blk_status_t ret;
0900
0901 iod->aborted = 0;
0902 iod->npages = -1;
0903 iod->sgt.nents = 0;
0904
0905 ret = nvme_setup_cmd(req->q->queuedata, req);
0906 if (ret)
0907 return ret;
0908
0909 if (blk_rq_nr_phys_segments(req)) {
0910 ret = nvme_map_data(dev, req, &iod->cmd);
0911 if (ret)
0912 goto out_free_cmd;
0913 }
0914
0915 if (blk_integrity_rq(req)) {
0916 ret = nvme_map_metadata(dev, req, &iod->cmd);
0917 if (ret)
0918 goto out_unmap_data;
0919 }
0920
0921 blk_mq_start_request(req);
0922 return BLK_STS_OK;
0923 out_unmap_data:
0924 nvme_unmap_data(dev, req);
0925 out_free_cmd:
0926 nvme_cleanup_cmd(req);
0927 return ret;
0928 }
0929
0930
0931
0932
0933 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
0934 const struct blk_mq_queue_data *bd)
0935 {
0936 struct nvme_queue *nvmeq = hctx->driver_data;
0937 struct nvme_dev *dev = nvmeq->dev;
0938 struct request *req = bd->rq;
0939 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0940 blk_status_t ret;
0941
0942
0943
0944
0945
0946 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
0947 return BLK_STS_IOERR;
0948
0949 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
0950 return nvme_fail_nonready_command(&dev->ctrl, req);
0951
0952 ret = nvme_prep_rq(dev, req);
0953 if (unlikely(ret))
0954 return ret;
0955 spin_lock(&nvmeq->sq_lock);
0956 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
0957 nvme_write_sq_db(nvmeq, bd->last);
0958 spin_unlock(&nvmeq->sq_lock);
0959 return BLK_STS_OK;
0960 }
0961
0962 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
0963 {
0964 spin_lock(&nvmeq->sq_lock);
0965 while (!rq_list_empty(*rqlist)) {
0966 struct request *req = rq_list_pop(rqlist);
0967 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0968
0969 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
0970 }
0971 nvme_write_sq_db(nvmeq, true);
0972 spin_unlock(&nvmeq->sq_lock);
0973 }
0974
0975 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
0976 {
0977
0978
0979
0980
0981 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
0982 return false;
0983 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
0984 return false;
0985
0986 req->mq_hctx->tags->rqs[req->tag] = req;
0987 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
0988 }
0989
0990 static void nvme_queue_rqs(struct request **rqlist)
0991 {
0992 struct request *req, *next, *prev = NULL;
0993 struct request *requeue_list = NULL;
0994
0995 rq_list_for_each_safe(rqlist, req, next) {
0996 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
0997
0998 if (!nvme_prep_rq_batch(nvmeq, req)) {
0999
1000 rq_list_move(rqlist, &requeue_list, req, prev);
1001
1002 req = prev;
1003 if (!req)
1004 continue;
1005 }
1006
1007 if (!next || req->mq_hctx != next->mq_hctx) {
1008
1009 req->rq_next = NULL;
1010 nvme_submit_cmds(nvmeq, rqlist);
1011 *rqlist = next;
1012 prev = NULL;
1013 } else
1014 prev = req;
1015 }
1016
1017 *rqlist = requeue_list;
1018 }
1019
1020 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1021 {
1022 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1023 struct nvme_dev *dev = iod->nvmeq->dev;
1024
1025 if (blk_integrity_rq(req))
1026 dma_unmap_page(dev->dev, iod->meta_dma,
1027 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1028 if (blk_rq_nr_phys_segments(req))
1029 nvme_unmap_data(dev, req);
1030 }
1031
1032 static void nvme_pci_complete_rq(struct request *req)
1033 {
1034 nvme_pci_unmap_rq(req);
1035 nvme_complete_rq(req);
1036 }
1037
1038 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1039 {
1040 nvme_complete_batch(iob, nvme_pci_unmap_rq);
1041 }
1042
1043
1044 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1045 {
1046 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1047
1048 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1049 }
1050
1051 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1052 {
1053 u16 head = nvmeq->cq_head;
1054
1055 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1056 nvmeq->dbbuf_cq_ei))
1057 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1058 }
1059
1060 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1061 {
1062 if (!nvmeq->qid)
1063 return nvmeq->dev->admin_tagset.tags[0];
1064 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1065 }
1066
1067 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1068 struct io_comp_batch *iob, u16 idx)
1069 {
1070 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1071 __u16 command_id = READ_ONCE(cqe->command_id);
1072 struct request *req;
1073
1074
1075
1076
1077
1078
1079
1080 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1081 nvme_complete_async_event(&nvmeq->dev->ctrl,
1082 cqe->status, &cqe->result);
1083 return;
1084 }
1085
1086 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1087 if (unlikely(!req)) {
1088 dev_warn(nvmeq->dev->ctrl.device,
1089 "invalid id %d completed on queue %d\n",
1090 command_id, le16_to_cpu(cqe->sq_id));
1091 return;
1092 }
1093
1094 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1095 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1096 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1097 nvme_pci_complete_batch))
1098 nvme_pci_complete_rq(req);
1099 }
1100
1101 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1102 {
1103 u32 tmp = nvmeq->cq_head + 1;
1104
1105 if (tmp == nvmeq->q_depth) {
1106 nvmeq->cq_head = 0;
1107 nvmeq->cq_phase ^= 1;
1108 } else {
1109 nvmeq->cq_head = tmp;
1110 }
1111 }
1112
1113 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1114 struct io_comp_batch *iob)
1115 {
1116 int found = 0;
1117
1118 while (nvme_cqe_pending(nvmeq)) {
1119 found++;
1120
1121
1122
1123
1124 dma_rmb();
1125 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1126 nvme_update_cq_head(nvmeq);
1127 }
1128
1129 if (found)
1130 nvme_ring_cq_doorbell(nvmeq);
1131 return found;
1132 }
1133
1134 static irqreturn_t nvme_irq(int irq, void *data)
1135 {
1136 struct nvme_queue *nvmeq = data;
1137 DEFINE_IO_COMP_BATCH(iob);
1138
1139 if (nvme_poll_cq(nvmeq, &iob)) {
1140 if (!rq_list_empty(iob.req_list))
1141 nvme_pci_complete_batch(&iob);
1142 return IRQ_HANDLED;
1143 }
1144 return IRQ_NONE;
1145 }
1146
1147 static irqreturn_t nvme_irq_check(int irq, void *data)
1148 {
1149 struct nvme_queue *nvmeq = data;
1150
1151 if (nvme_cqe_pending(nvmeq))
1152 return IRQ_WAKE_THREAD;
1153 return IRQ_NONE;
1154 }
1155
1156
1157
1158
1159
1160 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1161 {
1162 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1163
1164 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1165
1166 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1167 nvme_poll_cq(nvmeq, NULL);
1168 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1169 }
1170
1171 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1172 {
1173 struct nvme_queue *nvmeq = hctx->driver_data;
1174 bool found;
1175
1176 if (!nvme_cqe_pending(nvmeq))
1177 return 0;
1178
1179 spin_lock(&nvmeq->cq_poll_lock);
1180 found = nvme_poll_cq(nvmeq, iob);
1181 spin_unlock(&nvmeq->cq_poll_lock);
1182
1183 return found;
1184 }
1185
1186 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1187 {
1188 struct nvme_dev *dev = to_nvme_dev(ctrl);
1189 struct nvme_queue *nvmeq = &dev->queues[0];
1190 struct nvme_command c = { };
1191
1192 c.common.opcode = nvme_admin_async_event;
1193 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1194
1195 spin_lock(&nvmeq->sq_lock);
1196 nvme_sq_copy_cmd(nvmeq, &c);
1197 nvme_write_sq_db(nvmeq, true);
1198 spin_unlock(&nvmeq->sq_lock);
1199 }
1200
1201 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1202 {
1203 struct nvme_command c = { };
1204
1205 c.delete_queue.opcode = opcode;
1206 c.delete_queue.qid = cpu_to_le16(id);
1207
1208 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1209 }
1210
1211 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1212 struct nvme_queue *nvmeq, s16 vector)
1213 {
1214 struct nvme_command c = { };
1215 int flags = NVME_QUEUE_PHYS_CONTIG;
1216
1217 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1218 flags |= NVME_CQ_IRQ_ENABLED;
1219
1220
1221
1222
1223
1224 c.create_cq.opcode = nvme_admin_create_cq;
1225 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1226 c.create_cq.cqid = cpu_to_le16(qid);
1227 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1228 c.create_cq.cq_flags = cpu_to_le16(flags);
1229 c.create_cq.irq_vector = cpu_to_le16(vector);
1230
1231 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1232 }
1233
1234 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1235 struct nvme_queue *nvmeq)
1236 {
1237 struct nvme_ctrl *ctrl = &dev->ctrl;
1238 struct nvme_command c = { };
1239 int flags = NVME_QUEUE_PHYS_CONTIG;
1240
1241
1242
1243
1244
1245
1246 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1247 flags |= NVME_SQ_PRIO_MEDIUM;
1248
1249
1250
1251
1252
1253 c.create_sq.opcode = nvme_admin_create_sq;
1254 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1255 c.create_sq.sqid = cpu_to_le16(qid);
1256 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1257 c.create_sq.sq_flags = cpu_to_le16(flags);
1258 c.create_sq.cqid = cpu_to_le16(qid);
1259
1260 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1261 }
1262
1263 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1264 {
1265 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1266 }
1267
1268 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1269 {
1270 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1271 }
1272
1273 static void abort_endio(struct request *req, blk_status_t error)
1274 {
1275 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1276 struct nvme_queue *nvmeq = iod->nvmeq;
1277
1278 dev_warn(nvmeq->dev->ctrl.device,
1279 "Abort status: 0x%x", nvme_req(req)->status);
1280 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1281 blk_mq_free_request(req);
1282 }
1283
1284 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1285 {
1286
1287
1288
1289 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1290
1291
1292 switch (dev->ctrl.state) {
1293 case NVME_CTRL_RESETTING:
1294 case NVME_CTRL_CONNECTING:
1295 return false;
1296 default:
1297 break;
1298 }
1299
1300
1301
1302
1303 if (!(csts & NVME_CSTS_CFS) && !nssro)
1304 return false;
1305
1306 return true;
1307 }
1308
1309 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1310 {
1311
1312 u16 pci_status;
1313 int result;
1314
1315 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1316 &pci_status);
1317 if (result == PCIBIOS_SUCCESSFUL)
1318 dev_warn(dev->ctrl.device,
1319 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1320 csts, pci_status);
1321 else
1322 dev_warn(dev->ctrl.device,
1323 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1324 csts, result);
1325
1326 if (csts != ~0)
1327 return;
1328
1329 dev_warn(dev->ctrl.device,
1330 "Does your device have a faulty power saving mode enabled?\n");
1331 dev_warn(dev->ctrl.device,
1332 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1333 }
1334
1335 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1336 {
1337 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1338 struct nvme_queue *nvmeq = iod->nvmeq;
1339 struct nvme_dev *dev = nvmeq->dev;
1340 struct request *abort_req;
1341 struct nvme_command cmd = { };
1342 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1343
1344
1345
1346
1347 mb();
1348 if (pci_channel_offline(to_pci_dev(dev->dev)))
1349 return BLK_EH_RESET_TIMER;
1350
1351
1352
1353
1354 if (nvme_should_reset(dev, csts)) {
1355 nvme_warn_reset(dev, csts);
1356 nvme_dev_disable(dev, false);
1357 nvme_reset_ctrl(&dev->ctrl);
1358 return BLK_EH_DONE;
1359 }
1360
1361
1362
1363
1364 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1365 nvme_poll(req->mq_hctx, NULL);
1366 else
1367 nvme_poll_irqdisable(nvmeq);
1368
1369 if (blk_mq_request_completed(req)) {
1370 dev_warn(dev->ctrl.device,
1371 "I/O %d QID %d timeout, completion polled\n",
1372 req->tag, nvmeq->qid);
1373 return BLK_EH_DONE;
1374 }
1375
1376
1377
1378
1379
1380
1381
1382 switch (dev->ctrl.state) {
1383 case NVME_CTRL_CONNECTING:
1384 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1385 fallthrough;
1386 case NVME_CTRL_DELETING:
1387 dev_warn_ratelimited(dev->ctrl.device,
1388 "I/O %d QID %d timeout, disable controller\n",
1389 req->tag, nvmeq->qid);
1390 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1391 nvme_dev_disable(dev, true);
1392 return BLK_EH_DONE;
1393 case NVME_CTRL_RESETTING:
1394 return BLK_EH_RESET_TIMER;
1395 default:
1396 break;
1397 }
1398
1399
1400
1401
1402
1403
1404 if (!nvmeq->qid || iod->aborted) {
1405 dev_warn(dev->ctrl.device,
1406 "I/O %d QID %d timeout, reset controller\n",
1407 req->tag, nvmeq->qid);
1408 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1409 nvme_dev_disable(dev, false);
1410 nvme_reset_ctrl(&dev->ctrl);
1411
1412 return BLK_EH_DONE;
1413 }
1414
1415 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1416 atomic_inc(&dev->ctrl.abort_limit);
1417 return BLK_EH_RESET_TIMER;
1418 }
1419 iod->aborted = 1;
1420
1421 cmd.abort.opcode = nvme_admin_abort_cmd;
1422 cmd.abort.cid = nvme_cid(req);
1423 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1424
1425 dev_warn(nvmeq->dev->ctrl.device,
1426 "I/O %d (%s) QID %d timeout, aborting\n",
1427 req->tag,
1428 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1429 nvmeq->qid);
1430
1431 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1432 BLK_MQ_REQ_NOWAIT);
1433 if (IS_ERR(abort_req)) {
1434 atomic_inc(&dev->ctrl.abort_limit);
1435 return BLK_EH_RESET_TIMER;
1436 }
1437 nvme_init_request(abort_req, &cmd);
1438
1439 abort_req->end_io = abort_endio;
1440 abort_req->end_io_data = NULL;
1441 abort_req->rq_flags |= RQF_QUIET;
1442 blk_execute_rq_nowait(abort_req, false);
1443
1444
1445
1446
1447
1448
1449 return BLK_EH_RESET_TIMER;
1450 }
1451
1452 static void nvme_free_queue(struct nvme_queue *nvmeq)
1453 {
1454 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1455 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1456 if (!nvmeq->sq_cmds)
1457 return;
1458
1459 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1460 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1461 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1462 } else {
1463 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1464 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1465 }
1466 }
1467
1468 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1469 {
1470 int i;
1471
1472 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1473 dev->ctrl.queue_count--;
1474 nvme_free_queue(&dev->queues[i]);
1475 }
1476 }
1477
1478
1479
1480
1481
1482 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1483 {
1484 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1485 return 1;
1486
1487
1488 mb();
1489
1490 nvmeq->dev->online_queues--;
1491 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1492 nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1493 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1494 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1495 return 0;
1496 }
1497
1498 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1499 {
1500 int i;
1501
1502 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1503 nvme_suspend_queue(&dev->queues[i]);
1504 }
1505
1506 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1507 {
1508 struct nvme_queue *nvmeq = &dev->queues[0];
1509
1510 if (shutdown)
1511 nvme_shutdown_ctrl(&dev->ctrl);
1512 else
1513 nvme_disable_ctrl(&dev->ctrl);
1514
1515 nvme_poll_irqdisable(nvmeq);
1516 }
1517
1518
1519
1520
1521
1522
1523
1524 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1525 {
1526 int i;
1527
1528 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1529 spin_lock(&dev->queues[i].cq_poll_lock);
1530 nvme_poll_cq(&dev->queues[i], NULL);
1531 spin_unlock(&dev->queues[i].cq_poll_lock);
1532 }
1533 }
1534
1535 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1536 int entry_size)
1537 {
1538 int q_depth = dev->q_depth;
1539 unsigned q_size_aligned = roundup(q_depth * entry_size,
1540 NVME_CTRL_PAGE_SIZE);
1541
1542 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1543 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1544
1545 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1546 q_depth = div_u64(mem_per_q, entry_size);
1547
1548
1549
1550
1551
1552
1553 if (q_depth < 64)
1554 return -ENOMEM;
1555 }
1556
1557 return q_depth;
1558 }
1559
1560 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1561 int qid)
1562 {
1563 struct pci_dev *pdev = to_pci_dev(dev->dev);
1564
1565 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1566 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1567 if (nvmeq->sq_cmds) {
1568 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1569 nvmeq->sq_cmds);
1570 if (nvmeq->sq_dma_addr) {
1571 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1572 return 0;
1573 }
1574
1575 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1576 }
1577 }
1578
1579 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1580 &nvmeq->sq_dma_addr, GFP_KERNEL);
1581 if (!nvmeq->sq_cmds)
1582 return -ENOMEM;
1583 return 0;
1584 }
1585
1586 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1587 {
1588 struct nvme_queue *nvmeq = &dev->queues[qid];
1589
1590 if (dev->ctrl.queue_count > qid)
1591 return 0;
1592
1593 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1594 nvmeq->q_depth = depth;
1595 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1596 &nvmeq->cq_dma_addr, GFP_KERNEL);
1597 if (!nvmeq->cqes)
1598 goto free_nvmeq;
1599
1600 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1601 goto free_cqdma;
1602
1603 nvmeq->dev = dev;
1604 spin_lock_init(&nvmeq->sq_lock);
1605 spin_lock_init(&nvmeq->cq_poll_lock);
1606 nvmeq->cq_head = 0;
1607 nvmeq->cq_phase = 1;
1608 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1609 nvmeq->qid = qid;
1610 dev->ctrl.queue_count++;
1611
1612 return 0;
1613
1614 free_cqdma:
1615 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1616 nvmeq->cq_dma_addr);
1617 free_nvmeq:
1618 return -ENOMEM;
1619 }
1620
1621 static int queue_request_irq(struct nvme_queue *nvmeq)
1622 {
1623 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1624 int nr = nvmeq->dev->ctrl.instance;
1625
1626 if (use_threaded_interrupts) {
1627 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1628 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1629 } else {
1630 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1631 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1632 }
1633 }
1634
1635 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1636 {
1637 struct nvme_dev *dev = nvmeq->dev;
1638
1639 nvmeq->sq_tail = 0;
1640 nvmeq->last_sq_tail = 0;
1641 nvmeq->cq_head = 0;
1642 nvmeq->cq_phase = 1;
1643 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1644 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1645 nvme_dbbuf_init(dev, nvmeq, qid);
1646 dev->online_queues++;
1647 wmb();
1648 }
1649
1650
1651
1652
1653 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1654 {
1655
1656
1657
1658 if (!mutex_trylock(&dev->shutdown_lock))
1659 return -ENODEV;
1660
1661
1662
1663
1664 if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1665 mutex_unlock(&dev->shutdown_lock);
1666 return -ENODEV;
1667 }
1668
1669 return 0;
1670 }
1671
1672 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1673 {
1674 struct nvme_dev *dev = nvmeq->dev;
1675 int result;
1676 u16 vector = 0;
1677
1678 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1679
1680
1681
1682
1683
1684 if (!polled)
1685 vector = dev->num_vecs == 1 ? 0 : qid;
1686 else
1687 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1688
1689 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1690 if (result)
1691 return result;
1692
1693 result = adapter_alloc_sq(dev, qid, nvmeq);
1694 if (result < 0)
1695 return result;
1696 if (result)
1697 goto release_cq;
1698
1699 nvmeq->cq_vector = vector;
1700
1701 result = nvme_setup_io_queues_trylock(dev);
1702 if (result)
1703 return result;
1704 nvme_init_queue(nvmeq, qid);
1705 if (!polled) {
1706 result = queue_request_irq(nvmeq);
1707 if (result < 0)
1708 goto release_sq;
1709 }
1710
1711 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1712 mutex_unlock(&dev->shutdown_lock);
1713 return result;
1714
1715 release_sq:
1716 dev->online_queues--;
1717 mutex_unlock(&dev->shutdown_lock);
1718 adapter_delete_sq(dev, qid);
1719 release_cq:
1720 adapter_delete_cq(dev, qid);
1721 return result;
1722 }
1723
1724 static const struct blk_mq_ops nvme_mq_admin_ops = {
1725 .queue_rq = nvme_queue_rq,
1726 .complete = nvme_pci_complete_rq,
1727 .init_hctx = nvme_admin_init_hctx,
1728 .init_request = nvme_pci_init_request,
1729 .timeout = nvme_timeout,
1730 };
1731
1732 static const struct blk_mq_ops nvme_mq_ops = {
1733 .queue_rq = nvme_queue_rq,
1734 .queue_rqs = nvme_queue_rqs,
1735 .complete = nvme_pci_complete_rq,
1736 .commit_rqs = nvme_commit_rqs,
1737 .init_hctx = nvme_init_hctx,
1738 .init_request = nvme_pci_init_request,
1739 .map_queues = nvme_pci_map_queues,
1740 .timeout = nvme_timeout,
1741 .poll = nvme_poll,
1742 };
1743
1744 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1745 {
1746 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1747
1748
1749
1750
1751
1752 nvme_start_admin_queue(&dev->ctrl);
1753 blk_mq_destroy_queue(dev->ctrl.admin_q);
1754 blk_mq_free_tag_set(&dev->admin_tagset);
1755 }
1756 }
1757
1758 static int nvme_pci_alloc_admin_tag_set(struct nvme_dev *dev)
1759 {
1760 struct blk_mq_tag_set *set = &dev->admin_tagset;
1761
1762 set->ops = &nvme_mq_admin_ops;
1763 set->nr_hw_queues = 1;
1764
1765 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1766 set->timeout = NVME_ADMIN_TIMEOUT;
1767 set->numa_node = dev->ctrl.numa_node;
1768 set->cmd_size = sizeof(struct nvme_iod);
1769 set->flags = BLK_MQ_F_NO_SCHED;
1770 set->driver_data = dev;
1771
1772 if (blk_mq_alloc_tag_set(set))
1773 return -ENOMEM;
1774 dev->ctrl.admin_tagset = set;
1775
1776 dev->ctrl.admin_q = blk_mq_init_queue(set);
1777 if (IS_ERR(dev->ctrl.admin_q)) {
1778 blk_mq_free_tag_set(set);
1779 dev->ctrl.admin_q = NULL;
1780 return -ENOMEM;
1781 }
1782 if (!blk_get_queue(dev->ctrl.admin_q)) {
1783 nvme_dev_remove_admin(dev);
1784 dev->ctrl.admin_q = NULL;
1785 return -ENODEV;
1786 }
1787 return 0;
1788 }
1789
1790 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1791 {
1792 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1793 }
1794
1795 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1796 {
1797 struct pci_dev *pdev = to_pci_dev(dev->dev);
1798
1799 if (size <= dev->bar_mapped_size)
1800 return 0;
1801 if (size > pci_resource_len(pdev, 0))
1802 return -ENOMEM;
1803 if (dev->bar)
1804 iounmap(dev->bar);
1805 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1806 if (!dev->bar) {
1807 dev->bar_mapped_size = 0;
1808 return -ENOMEM;
1809 }
1810 dev->bar_mapped_size = size;
1811 dev->dbs = dev->bar + NVME_REG_DBS;
1812
1813 return 0;
1814 }
1815
1816 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1817 {
1818 int result;
1819 u32 aqa;
1820 struct nvme_queue *nvmeq;
1821
1822 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1823 if (result < 0)
1824 return result;
1825
1826 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1827 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1828
1829 if (dev->subsystem &&
1830 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1831 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1832
1833 result = nvme_disable_ctrl(&dev->ctrl);
1834 if (result < 0)
1835 return result;
1836
1837 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1838 if (result)
1839 return result;
1840
1841 dev->ctrl.numa_node = dev_to_node(dev->dev);
1842
1843 nvmeq = &dev->queues[0];
1844 aqa = nvmeq->q_depth - 1;
1845 aqa |= aqa << 16;
1846
1847 writel(aqa, dev->bar + NVME_REG_AQA);
1848 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1849 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1850
1851 result = nvme_enable_ctrl(&dev->ctrl);
1852 if (result)
1853 return result;
1854
1855 nvmeq->cq_vector = 0;
1856 nvme_init_queue(nvmeq, 0);
1857 result = queue_request_irq(nvmeq);
1858 if (result) {
1859 dev->online_queues--;
1860 return result;
1861 }
1862
1863 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1864 return result;
1865 }
1866
1867 static int nvme_create_io_queues(struct nvme_dev *dev)
1868 {
1869 unsigned i, max, rw_queues;
1870 int ret = 0;
1871
1872 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1873 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1874 ret = -ENOMEM;
1875 break;
1876 }
1877 }
1878
1879 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1880 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1881 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1882 dev->io_queues[HCTX_TYPE_READ];
1883 } else {
1884 rw_queues = max;
1885 }
1886
1887 for (i = dev->online_queues; i <= max; i++) {
1888 bool polled = i > rw_queues;
1889
1890 ret = nvme_create_queue(&dev->queues[i], i, polled);
1891 if (ret)
1892 break;
1893 }
1894
1895
1896
1897
1898
1899
1900
1901 return ret >= 0 ? 0 : ret;
1902 }
1903
1904 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1905 {
1906 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1907
1908 return 1ULL << (12 + 4 * szu);
1909 }
1910
1911 static u32 nvme_cmb_size(struct nvme_dev *dev)
1912 {
1913 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1914 }
1915
1916 static void nvme_map_cmb(struct nvme_dev *dev)
1917 {
1918 u64 size, offset;
1919 resource_size_t bar_size;
1920 struct pci_dev *pdev = to_pci_dev(dev->dev);
1921 int bar;
1922
1923 if (dev->cmb_size)
1924 return;
1925
1926 if (NVME_CAP_CMBS(dev->ctrl.cap))
1927 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1928
1929 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1930 if (!dev->cmbsz)
1931 return;
1932 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1933
1934 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1935 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1936 bar = NVME_CMB_BIR(dev->cmbloc);
1937 bar_size = pci_resource_len(pdev, bar);
1938
1939 if (offset > bar_size)
1940 return;
1941
1942
1943
1944
1945
1946 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1947 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1948 (pci_bus_address(pdev, bar) + offset),
1949 dev->bar + NVME_REG_CMBMSC);
1950 }
1951
1952
1953
1954
1955
1956
1957 if (size > bar_size - offset)
1958 size = bar_size - offset;
1959
1960 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1961 dev_warn(dev->ctrl.device,
1962 "failed to register the CMB\n");
1963 return;
1964 }
1965
1966 dev->cmb_size = size;
1967 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1968
1969 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1970 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1971 pci_p2pmem_publish(pdev, true);
1972 }
1973
1974 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1975 {
1976 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1977 u64 dma_addr = dev->host_mem_descs_dma;
1978 struct nvme_command c = { };
1979 int ret;
1980
1981 c.features.opcode = nvme_admin_set_features;
1982 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1983 c.features.dword11 = cpu_to_le32(bits);
1984 c.features.dword12 = cpu_to_le32(host_mem_size);
1985 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1986 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1987 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1988
1989 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1990 if (ret) {
1991 dev_warn(dev->ctrl.device,
1992 "failed to set host mem (err %d, flags %#x).\n",
1993 ret, bits);
1994 } else
1995 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1996
1997 return ret;
1998 }
1999
2000 static void nvme_free_host_mem(struct nvme_dev *dev)
2001 {
2002 int i;
2003
2004 for (i = 0; i < dev->nr_host_mem_descs; i++) {
2005 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2006 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2007
2008 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2009 le64_to_cpu(desc->addr),
2010 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2011 }
2012
2013 kfree(dev->host_mem_desc_bufs);
2014 dev->host_mem_desc_bufs = NULL;
2015 dma_free_coherent(dev->dev,
2016 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
2017 dev->host_mem_descs, dev->host_mem_descs_dma);
2018 dev->host_mem_descs = NULL;
2019 dev->nr_host_mem_descs = 0;
2020 }
2021
2022 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2023 u32 chunk_size)
2024 {
2025 struct nvme_host_mem_buf_desc *descs;
2026 u32 max_entries, len;
2027 dma_addr_t descs_dma;
2028 int i = 0;
2029 void **bufs;
2030 u64 size, tmp;
2031
2032 tmp = (preferred + chunk_size - 1);
2033 do_div(tmp, chunk_size);
2034 max_entries = tmp;
2035
2036 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2037 max_entries = dev->ctrl.hmmaxd;
2038
2039 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
2040 &descs_dma, GFP_KERNEL);
2041 if (!descs)
2042 goto out;
2043
2044 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2045 if (!bufs)
2046 goto out_free_descs;
2047
2048 for (size = 0; size < preferred && i < max_entries; size += len) {
2049 dma_addr_t dma_addr;
2050
2051 len = min_t(u64, chunk_size, preferred - size);
2052 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2053 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2054 if (!bufs[i])
2055 break;
2056
2057 descs[i].addr = cpu_to_le64(dma_addr);
2058 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2059 i++;
2060 }
2061
2062 if (!size)
2063 goto out_free_bufs;
2064
2065 dev->nr_host_mem_descs = i;
2066 dev->host_mem_size = size;
2067 dev->host_mem_descs = descs;
2068 dev->host_mem_descs_dma = descs_dma;
2069 dev->host_mem_desc_bufs = bufs;
2070 return 0;
2071
2072 out_free_bufs:
2073 while (--i >= 0) {
2074 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2075
2076 dma_free_attrs(dev->dev, size, bufs[i],
2077 le64_to_cpu(descs[i].addr),
2078 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2079 }
2080
2081 kfree(bufs);
2082 out_free_descs:
2083 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2084 descs_dma);
2085 out:
2086 dev->host_mem_descs = NULL;
2087 return -ENOMEM;
2088 }
2089
2090 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2091 {
2092 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2093 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2094 u64 chunk_size;
2095
2096
2097 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2098 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2099 if (!min || dev->host_mem_size >= min)
2100 return 0;
2101 nvme_free_host_mem(dev);
2102 }
2103 }
2104
2105 return -ENOMEM;
2106 }
2107
2108 static int nvme_setup_host_mem(struct nvme_dev *dev)
2109 {
2110 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2111 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2112 u64 min = (u64)dev->ctrl.hmmin * 4096;
2113 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2114 int ret;
2115
2116 preferred = min(preferred, max);
2117 if (min > max) {
2118 dev_warn(dev->ctrl.device,
2119 "min host memory (%lld MiB) above limit (%d MiB).\n",
2120 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2121 nvme_free_host_mem(dev);
2122 return 0;
2123 }
2124
2125
2126
2127
2128 if (dev->host_mem_descs) {
2129 if (dev->host_mem_size >= min)
2130 enable_bits |= NVME_HOST_MEM_RETURN;
2131 else
2132 nvme_free_host_mem(dev);
2133 }
2134
2135 if (!dev->host_mem_descs) {
2136 if (nvme_alloc_host_mem(dev, min, preferred)) {
2137 dev_warn(dev->ctrl.device,
2138 "failed to allocate host memory buffer.\n");
2139 return 0;
2140 }
2141
2142 dev_info(dev->ctrl.device,
2143 "allocated %lld MiB host memory buffer.\n",
2144 dev->host_mem_size >> ilog2(SZ_1M));
2145 }
2146
2147 ret = nvme_set_host_mem(dev, enable_bits);
2148 if (ret)
2149 nvme_free_host_mem(dev);
2150 return ret;
2151 }
2152
2153 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2154 char *buf)
2155 {
2156 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2157
2158 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
2159 ndev->cmbloc, ndev->cmbsz);
2160 }
2161 static DEVICE_ATTR_RO(cmb);
2162
2163 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2164 char *buf)
2165 {
2166 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2167
2168 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2169 }
2170 static DEVICE_ATTR_RO(cmbloc);
2171
2172 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2173 char *buf)
2174 {
2175 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2176
2177 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2178 }
2179 static DEVICE_ATTR_RO(cmbsz);
2180
2181 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2182 char *buf)
2183 {
2184 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2185
2186 return sysfs_emit(buf, "%d\n", ndev->hmb);
2187 }
2188
2189 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2190 const char *buf, size_t count)
2191 {
2192 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2193 bool new;
2194 int ret;
2195
2196 if (strtobool(buf, &new) < 0)
2197 return -EINVAL;
2198
2199 if (new == ndev->hmb)
2200 return count;
2201
2202 if (new) {
2203 ret = nvme_setup_host_mem(ndev);
2204 } else {
2205 ret = nvme_set_host_mem(ndev, 0);
2206 if (!ret)
2207 nvme_free_host_mem(ndev);
2208 }
2209
2210 if (ret < 0)
2211 return ret;
2212
2213 return count;
2214 }
2215 static DEVICE_ATTR_RW(hmb);
2216
2217 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2218 struct attribute *a, int n)
2219 {
2220 struct nvme_ctrl *ctrl =
2221 dev_get_drvdata(container_of(kobj, struct device, kobj));
2222 struct nvme_dev *dev = to_nvme_dev(ctrl);
2223
2224 if (a == &dev_attr_cmb.attr ||
2225 a == &dev_attr_cmbloc.attr ||
2226 a == &dev_attr_cmbsz.attr) {
2227 if (!dev->cmbsz)
2228 return 0;
2229 }
2230 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2231 return 0;
2232
2233 return a->mode;
2234 }
2235
2236 static struct attribute *nvme_pci_attrs[] = {
2237 &dev_attr_cmb.attr,
2238 &dev_attr_cmbloc.attr,
2239 &dev_attr_cmbsz.attr,
2240 &dev_attr_hmb.attr,
2241 NULL,
2242 };
2243
2244 static const struct attribute_group nvme_pci_attr_group = {
2245 .attrs = nvme_pci_attrs,
2246 .is_visible = nvme_pci_attrs_are_visible,
2247 };
2248
2249
2250
2251
2252
2253 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2254 {
2255 struct nvme_dev *dev = affd->priv;
2256 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269 if (!nrirqs) {
2270 nrirqs = 1;
2271 nr_read_queues = 0;
2272 } else if (nrirqs == 1 || !nr_write_queues) {
2273 nr_read_queues = 0;
2274 } else if (nr_write_queues >= nrirqs) {
2275 nr_read_queues = 1;
2276 } else {
2277 nr_read_queues = nrirqs - nr_write_queues;
2278 }
2279
2280 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2281 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2282 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2283 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2284 affd->nr_sets = nr_read_queues ? 2 : 1;
2285 }
2286
2287 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2288 {
2289 struct pci_dev *pdev = to_pci_dev(dev->dev);
2290 struct irq_affinity affd = {
2291 .pre_vectors = 1,
2292 .calc_sets = nvme_calc_irq_sets,
2293 .priv = dev,
2294 };
2295 unsigned int irq_queues, poll_queues;
2296
2297
2298
2299
2300
2301 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2302 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2303
2304
2305
2306
2307
2308 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2309 dev->io_queues[HCTX_TYPE_READ] = 0;
2310
2311
2312
2313
2314
2315
2316 irq_queues = 1;
2317 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2318 irq_queues += (nr_io_queues - poll_queues);
2319 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2320 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2321 }
2322
2323 static void nvme_disable_io_queues(struct nvme_dev *dev)
2324 {
2325 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2326 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2327 }
2328
2329 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2330 {
2331
2332
2333
2334
2335 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2336 return 1;
2337 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2338 }
2339
2340 static int nvme_setup_io_queues(struct nvme_dev *dev)
2341 {
2342 struct nvme_queue *adminq = &dev->queues[0];
2343 struct pci_dev *pdev = to_pci_dev(dev->dev);
2344 unsigned int nr_io_queues;
2345 unsigned long size;
2346 int result;
2347
2348
2349
2350
2351
2352 dev->nr_write_queues = write_queues;
2353 dev->nr_poll_queues = poll_queues;
2354
2355 nr_io_queues = dev->nr_allocated_queues - 1;
2356 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2357 if (result < 0)
2358 return result;
2359
2360 if (nr_io_queues == 0)
2361 return 0;
2362
2363
2364
2365
2366
2367
2368
2369
2370 result = nvme_setup_io_queues_trylock(dev);
2371 if (result)
2372 return result;
2373 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2374 pci_free_irq(pdev, 0, adminq);
2375
2376 if (dev->cmb_use_sqes) {
2377 result = nvme_cmb_qdepth(dev, nr_io_queues,
2378 sizeof(struct nvme_command));
2379 if (result > 0)
2380 dev->q_depth = result;
2381 else
2382 dev->cmb_use_sqes = false;
2383 }
2384
2385 do {
2386 size = db_bar_size(dev, nr_io_queues);
2387 result = nvme_remap_bar(dev, size);
2388 if (!result)
2389 break;
2390 if (!--nr_io_queues) {
2391 result = -ENOMEM;
2392 goto out_unlock;
2393 }
2394 } while (1);
2395 adminq->q_db = dev->dbs;
2396
2397 retry:
2398
2399 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2400 pci_free_irq(pdev, 0, adminq);
2401
2402
2403
2404
2405
2406 pci_free_irq_vectors(pdev);
2407
2408 result = nvme_setup_irqs(dev, nr_io_queues);
2409 if (result <= 0) {
2410 result = -EIO;
2411 goto out_unlock;
2412 }
2413
2414 dev->num_vecs = result;
2415 result = max(result - 1, 1);
2416 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2417
2418
2419
2420
2421
2422
2423
2424 result = queue_request_irq(adminq);
2425 if (result)
2426 goto out_unlock;
2427 set_bit(NVMEQ_ENABLED, &adminq->flags);
2428 mutex_unlock(&dev->shutdown_lock);
2429
2430 result = nvme_create_io_queues(dev);
2431 if (result || dev->online_queues < 2)
2432 return result;
2433
2434 if (dev->online_queues - 1 < dev->max_qid) {
2435 nr_io_queues = dev->online_queues - 1;
2436 nvme_disable_io_queues(dev);
2437 result = nvme_setup_io_queues_trylock(dev);
2438 if (result)
2439 return result;
2440 nvme_suspend_io_queues(dev);
2441 goto retry;
2442 }
2443 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2444 dev->io_queues[HCTX_TYPE_DEFAULT],
2445 dev->io_queues[HCTX_TYPE_READ],
2446 dev->io_queues[HCTX_TYPE_POLL]);
2447 return 0;
2448 out_unlock:
2449 mutex_unlock(&dev->shutdown_lock);
2450 return result;
2451 }
2452
2453 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2454 {
2455 struct nvme_queue *nvmeq = req->end_io_data;
2456
2457 blk_mq_free_request(req);
2458 complete(&nvmeq->delete_done);
2459 }
2460
2461 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2462 {
2463 struct nvme_queue *nvmeq = req->end_io_data;
2464
2465 if (error)
2466 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2467
2468 nvme_del_queue_end(req, error);
2469 }
2470
2471 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2472 {
2473 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2474 struct request *req;
2475 struct nvme_command cmd = { };
2476
2477 cmd.delete_queue.opcode = opcode;
2478 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2479
2480 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2481 if (IS_ERR(req))
2482 return PTR_ERR(req);
2483 nvme_init_request(req, &cmd);
2484
2485 if (opcode == nvme_admin_delete_cq)
2486 req->end_io = nvme_del_cq_end;
2487 else
2488 req->end_io = nvme_del_queue_end;
2489 req->end_io_data = nvmeq;
2490
2491 init_completion(&nvmeq->delete_done);
2492 req->rq_flags |= RQF_QUIET;
2493 blk_execute_rq_nowait(req, false);
2494 return 0;
2495 }
2496
2497 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2498 {
2499 int nr_queues = dev->online_queues - 1, sent = 0;
2500 unsigned long timeout;
2501
2502 retry:
2503 timeout = NVME_ADMIN_TIMEOUT;
2504 while (nr_queues > 0) {
2505 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2506 break;
2507 nr_queues--;
2508 sent++;
2509 }
2510 while (sent) {
2511 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2512
2513 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2514 timeout);
2515 if (timeout == 0)
2516 return false;
2517
2518 sent--;
2519 if (nr_queues)
2520 goto retry;
2521 }
2522 return true;
2523 }
2524
2525 static void nvme_pci_alloc_tag_set(struct nvme_dev *dev)
2526 {
2527 struct blk_mq_tag_set * set = &dev->tagset;
2528 int ret;
2529
2530 set->ops = &nvme_mq_ops;
2531 set->nr_hw_queues = dev->online_queues - 1;
2532 set->nr_maps = 2;
2533 if (dev->io_queues[HCTX_TYPE_POLL])
2534 set->nr_maps++;
2535 set->timeout = NVME_IO_TIMEOUT;
2536 set->numa_node = dev->ctrl.numa_node;
2537 set->queue_depth = min_t(unsigned, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2538 set->cmd_size = sizeof(struct nvme_iod);
2539 set->flags = BLK_MQ_F_SHOULD_MERGE;
2540 set->driver_data = dev;
2541
2542
2543
2544
2545
2546
2547 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2548 set->reserved_tags = NVME_AQ_DEPTH;
2549
2550 ret = blk_mq_alloc_tag_set(set);
2551 if (ret) {
2552 dev_warn(dev->ctrl.device,
2553 "IO queues tagset allocation failed %d\n", ret);
2554 return;
2555 }
2556 dev->ctrl.tagset = set;
2557 }
2558
2559 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2560 {
2561 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2562
2563 nvme_free_queues(dev, dev->online_queues);
2564 }
2565
2566 static int nvme_pci_enable(struct nvme_dev *dev)
2567 {
2568 int result = -ENOMEM;
2569 struct pci_dev *pdev = to_pci_dev(dev->dev);
2570 int dma_address_bits = 64;
2571
2572 if (pci_enable_device_mem(pdev))
2573 return result;
2574
2575 pci_set_master(pdev);
2576
2577 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2578 dma_address_bits = 48;
2579 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2580 goto disable;
2581
2582 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2583 result = -ENODEV;
2584 goto disable;
2585 }
2586
2587
2588
2589
2590
2591
2592 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2593 if (result < 0)
2594 return result;
2595
2596 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2597
2598 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2599 io_queue_depth);
2600 dev->ctrl.sqsize = dev->q_depth - 1;
2601 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2602 dev->dbs = dev->bar + 4096;
2603
2604
2605
2606
2607
2608
2609 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2610 dev->io_sqes = 7;
2611 else
2612 dev->io_sqes = NVME_NVM_IOSQES;
2613
2614
2615
2616
2617
2618 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2619 dev->q_depth = 2;
2620 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2621 "set queue depth=%u to work around controller resets\n",
2622 dev->q_depth);
2623 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2624 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2625 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2626 dev->q_depth = 64;
2627 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2628 "set queue depth=%u\n", dev->q_depth);
2629 }
2630
2631
2632
2633
2634
2635 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2636 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2637 dev->q_depth = NVME_AQ_DEPTH + 2;
2638 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2639 dev->q_depth);
2640 }
2641
2642
2643 nvme_map_cmb(dev);
2644
2645 pci_enable_pcie_error_reporting(pdev);
2646 pci_save_state(pdev);
2647 return 0;
2648
2649 disable:
2650 pci_disable_device(pdev);
2651 return result;
2652 }
2653
2654 static void nvme_dev_unmap(struct nvme_dev *dev)
2655 {
2656 if (dev->bar)
2657 iounmap(dev->bar);
2658 pci_release_mem_regions(to_pci_dev(dev->dev));
2659 }
2660
2661 static void nvme_pci_disable(struct nvme_dev *dev)
2662 {
2663 struct pci_dev *pdev = to_pci_dev(dev->dev);
2664
2665 pci_free_irq_vectors(pdev);
2666
2667 if (pci_is_enabled(pdev)) {
2668 pci_disable_pcie_error_reporting(pdev);
2669 pci_disable_device(pdev);
2670 }
2671 }
2672
2673 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2674 {
2675 bool dead = true, freeze = false;
2676 struct pci_dev *pdev = to_pci_dev(dev->dev);
2677
2678 mutex_lock(&dev->shutdown_lock);
2679 if (pci_is_enabled(pdev)) {
2680 u32 csts;
2681
2682 if (pci_device_is_present(pdev))
2683 csts = readl(dev->bar + NVME_REG_CSTS);
2684 else
2685 csts = ~0;
2686
2687 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2688 dev->ctrl.state == NVME_CTRL_RESETTING) {
2689 freeze = true;
2690 nvme_start_freeze(&dev->ctrl);
2691 }
2692 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2693 pdev->error_state != pci_channel_io_normal);
2694 }
2695
2696
2697
2698
2699
2700 if (!dead && shutdown && freeze)
2701 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2702
2703 nvme_stop_queues(&dev->ctrl);
2704
2705 if (!dead && dev->ctrl.queue_count > 0) {
2706 nvme_disable_io_queues(dev);
2707 nvme_disable_admin_queue(dev, shutdown);
2708 }
2709 nvme_suspend_io_queues(dev);
2710 nvme_suspend_queue(&dev->queues[0]);
2711 nvme_pci_disable(dev);
2712 nvme_reap_pending_cqes(dev);
2713
2714 nvme_cancel_tagset(&dev->ctrl);
2715 nvme_cancel_admin_tagset(&dev->ctrl);
2716
2717
2718
2719
2720
2721
2722 if (shutdown) {
2723 nvme_start_queues(&dev->ctrl);
2724 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2725 nvme_start_admin_queue(&dev->ctrl);
2726 }
2727 mutex_unlock(&dev->shutdown_lock);
2728 }
2729
2730 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2731 {
2732 if (!nvme_wait_reset(&dev->ctrl))
2733 return -EBUSY;
2734 nvme_dev_disable(dev, shutdown);
2735 return 0;
2736 }
2737
2738 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2739 {
2740 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2741 NVME_CTRL_PAGE_SIZE,
2742 NVME_CTRL_PAGE_SIZE, 0);
2743 if (!dev->prp_page_pool)
2744 return -ENOMEM;
2745
2746
2747 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2748 256, 256, 0);
2749 if (!dev->prp_small_pool) {
2750 dma_pool_destroy(dev->prp_page_pool);
2751 return -ENOMEM;
2752 }
2753 return 0;
2754 }
2755
2756 static void nvme_release_prp_pools(struct nvme_dev *dev)
2757 {
2758 dma_pool_destroy(dev->prp_page_pool);
2759 dma_pool_destroy(dev->prp_small_pool);
2760 }
2761
2762 static void nvme_free_tagset(struct nvme_dev *dev)
2763 {
2764 if (dev->tagset.tags)
2765 blk_mq_free_tag_set(&dev->tagset);
2766 dev->ctrl.tagset = NULL;
2767 }
2768
2769 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2770 {
2771 struct nvme_dev *dev = to_nvme_dev(ctrl);
2772
2773 nvme_dbbuf_dma_free(dev);
2774 nvme_free_tagset(dev);
2775 if (dev->ctrl.admin_q)
2776 blk_put_queue(dev->ctrl.admin_q);
2777 free_opal_dev(dev->ctrl.opal_dev);
2778 mempool_destroy(dev->iod_mempool);
2779 put_device(dev->dev);
2780 kfree(dev->queues);
2781 kfree(dev);
2782 }
2783
2784 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2785 {
2786
2787
2788
2789
2790 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2791 nvme_get_ctrl(&dev->ctrl);
2792 nvme_dev_disable(dev, false);
2793 nvme_kill_queues(&dev->ctrl);
2794 if (!queue_work(nvme_wq, &dev->remove_work))
2795 nvme_put_ctrl(&dev->ctrl);
2796 }
2797
2798 static void nvme_reset_work(struct work_struct *work)
2799 {
2800 struct nvme_dev *dev =
2801 container_of(work, struct nvme_dev, ctrl.reset_work);
2802 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2803 int result;
2804
2805 if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2806 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2807 dev->ctrl.state);
2808 result = -ENODEV;
2809 goto out;
2810 }
2811
2812
2813
2814
2815
2816 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2817 nvme_dev_disable(dev, false);
2818 nvme_sync_queues(&dev->ctrl);
2819
2820 mutex_lock(&dev->shutdown_lock);
2821 result = nvme_pci_enable(dev);
2822 if (result)
2823 goto out_unlock;
2824
2825 result = nvme_pci_configure_admin_queue(dev);
2826 if (result)
2827 goto out_unlock;
2828
2829 if (!dev->ctrl.admin_q) {
2830 result = nvme_pci_alloc_admin_tag_set(dev);
2831 if (result)
2832 goto out_unlock;
2833 } else {
2834 nvme_start_admin_queue(&dev->ctrl);
2835 }
2836
2837
2838
2839
2840
2841 dev->ctrl.max_hw_sectors = min_t(u32,
2842 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2843 dev->ctrl.max_segments = NVME_MAX_SEGS;
2844
2845
2846
2847
2848 dma_set_max_seg_size(dev->dev, 0xffffffff);
2849 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2850
2851 mutex_unlock(&dev->shutdown_lock);
2852
2853
2854
2855
2856
2857 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2858 dev_warn(dev->ctrl.device,
2859 "failed to mark controller CONNECTING\n");
2860 result = -EBUSY;
2861 goto out;
2862 }
2863
2864
2865
2866
2867
2868 dev->ctrl.max_integrity_segments = 1;
2869
2870 result = nvme_init_ctrl_finish(&dev->ctrl);
2871 if (result)
2872 goto out;
2873
2874 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2875 if (!dev->ctrl.opal_dev)
2876 dev->ctrl.opal_dev =
2877 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2878 else if (was_suspend)
2879 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2880 } else {
2881 free_opal_dev(dev->ctrl.opal_dev);
2882 dev->ctrl.opal_dev = NULL;
2883 }
2884
2885 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2886 result = nvme_dbbuf_dma_alloc(dev);
2887 if (result)
2888 dev_warn(dev->dev,
2889 "unable to allocate dma for dbbuf\n");
2890 }
2891
2892 if (dev->ctrl.hmpre) {
2893 result = nvme_setup_host_mem(dev);
2894 if (result < 0)
2895 goto out;
2896 }
2897
2898 result = nvme_setup_io_queues(dev);
2899 if (result)
2900 goto out;
2901
2902
2903
2904
2905
2906 if (dev->online_queues < 2) {
2907 dev_warn(dev->ctrl.device, "IO queues not created\n");
2908 nvme_kill_queues(&dev->ctrl);
2909 nvme_remove_namespaces(&dev->ctrl);
2910 nvme_free_tagset(dev);
2911 } else {
2912 nvme_start_queues(&dev->ctrl);
2913 nvme_wait_freeze(&dev->ctrl);
2914 if (!dev->ctrl.tagset)
2915 nvme_pci_alloc_tag_set(dev);
2916 else
2917 nvme_pci_update_nr_queues(dev);
2918 nvme_dbbuf_set(dev);
2919 nvme_unfreeze(&dev->ctrl);
2920 }
2921
2922
2923
2924
2925
2926 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2927 dev_warn(dev->ctrl.device,
2928 "failed to mark controller live state\n");
2929 result = -ENODEV;
2930 goto out;
2931 }
2932
2933 if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2934 &nvme_pci_attr_group))
2935 dev->attrs_added = true;
2936
2937 nvme_start_ctrl(&dev->ctrl);
2938 return;
2939
2940 out_unlock:
2941 mutex_unlock(&dev->shutdown_lock);
2942 out:
2943 if (result)
2944 dev_warn(dev->ctrl.device,
2945 "Removing after probe failure status: %d\n", result);
2946 nvme_remove_dead_ctrl(dev);
2947 }
2948
2949 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2950 {
2951 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2952 struct pci_dev *pdev = to_pci_dev(dev->dev);
2953
2954 if (pci_get_drvdata(pdev))
2955 device_release_driver(&pdev->dev);
2956 nvme_put_ctrl(&dev->ctrl);
2957 }
2958
2959 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2960 {
2961 *val = readl(to_nvme_dev(ctrl)->bar + off);
2962 return 0;
2963 }
2964
2965 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2966 {
2967 writel(val, to_nvme_dev(ctrl)->bar + off);
2968 return 0;
2969 }
2970
2971 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2972 {
2973 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2974 return 0;
2975 }
2976
2977 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2978 {
2979 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2980
2981 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2982 }
2983
2984 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2985 {
2986 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2987 struct nvme_subsystem *subsys = ctrl->subsys;
2988
2989 dev_err(ctrl->device,
2990 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2991 pdev->vendor, pdev->device,
2992 nvme_strlen(subsys->model, sizeof(subsys->model)),
2993 subsys->model, nvme_strlen(subsys->firmware_rev,
2994 sizeof(subsys->firmware_rev)),
2995 subsys->firmware_rev);
2996 }
2997
2998 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2999 {
3000 struct nvme_dev *dev = to_nvme_dev(ctrl);
3001
3002 return dma_pci_p2pdma_supported(dev->dev);
3003 }
3004
3005 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3006 .name = "pcie",
3007 .module = THIS_MODULE,
3008 .flags = NVME_F_METADATA_SUPPORTED,
3009 .reg_read32 = nvme_pci_reg_read32,
3010 .reg_write32 = nvme_pci_reg_write32,
3011 .reg_read64 = nvme_pci_reg_read64,
3012 .free_ctrl = nvme_pci_free_ctrl,
3013 .submit_async_event = nvme_pci_submit_async_event,
3014 .get_address = nvme_pci_get_address,
3015 .print_device_info = nvme_pci_print_device_info,
3016 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
3017 };
3018
3019 static int nvme_dev_map(struct nvme_dev *dev)
3020 {
3021 struct pci_dev *pdev = to_pci_dev(dev->dev);
3022
3023 if (pci_request_mem_regions(pdev, "nvme"))
3024 return -ENODEV;
3025
3026 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3027 goto release;
3028
3029 return 0;
3030 release:
3031 pci_release_mem_regions(pdev);
3032 return -ENODEV;
3033 }
3034
3035 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3036 {
3037 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3038
3039
3040
3041
3042
3043
3044
3045
3046 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3047 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3048 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3049 return NVME_QUIRK_NO_DEEPEST_PS;
3050 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3051
3052
3053
3054
3055
3056
3057 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3058 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3059 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3060 return NVME_QUIRK_NO_APST;
3061 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3062 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3063 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3064
3065
3066
3067
3068
3069
3070 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3071 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3072 return NVME_QUIRK_SIMPLE_SUSPEND;
3073 }
3074
3075 return 0;
3076 }
3077
3078 static void nvme_async_probe(void *data, async_cookie_t cookie)
3079 {
3080 struct nvme_dev *dev = data;
3081
3082 flush_work(&dev->ctrl.reset_work);
3083 flush_work(&dev->ctrl.scan_work);
3084 nvme_put_ctrl(&dev->ctrl);
3085 }
3086
3087 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3088 {
3089 int node, result = -ENOMEM;
3090 struct nvme_dev *dev;
3091 unsigned long quirks = id->driver_data;
3092 size_t alloc_size;
3093
3094 node = dev_to_node(&pdev->dev);
3095 if (node == NUMA_NO_NODE)
3096 set_dev_node(&pdev->dev, first_memory_node);
3097
3098 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3099 if (!dev)
3100 return -ENOMEM;
3101
3102 dev->nr_write_queues = write_queues;
3103 dev->nr_poll_queues = poll_queues;
3104 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3105 dev->queues = kcalloc_node(dev->nr_allocated_queues,
3106 sizeof(struct nvme_queue), GFP_KERNEL, node);
3107 if (!dev->queues)
3108 goto free;
3109
3110 dev->dev = get_device(&pdev->dev);
3111 pci_set_drvdata(pdev, dev);
3112
3113 result = nvme_dev_map(dev);
3114 if (result)
3115 goto put_pci;
3116
3117 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3118 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
3119 mutex_init(&dev->shutdown_lock);
3120
3121 result = nvme_setup_prp_pools(dev);
3122 if (result)
3123 goto unmap;
3124
3125 quirks |= check_vendor_combination_bug(pdev);
3126
3127 if (!noacpi && acpi_storage_d3(&pdev->dev)) {
3128
3129
3130
3131
3132 dev_info(&pdev->dev,
3133 "platform quirk: setting simple suspend\n");
3134 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3135 }
3136
3137
3138
3139
3140
3141 alloc_size = nvme_pci_iod_alloc_size();
3142 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
3143
3144 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
3145 mempool_kfree,
3146 (void *) alloc_size,
3147 GFP_KERNEL, node);
3148 if (!dev->iod_mempool) {
3149 result = -ENOMEM;
3150 goto release_pools;
3151 }
3152
3153 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3154 quirks);
3155 if (result)
3156 goto release_mempool;
3157
3158 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3159
3160 nvme_reset_ctrl(&dev->ctrl);
3161 async_schedule(nvme_async_probe, dev);
3162
3163 return 0;
3164
3165 release_mempool:
3166 mempool_destroy(dev->iod_mempool);
3167 release_pools:
3168 nvme_release_prp_pools(dev);
3169 unmap:
3170 nvme_dev_unmap(dev);
3171 put_pci:
3172 put_device(dev->dev);
3173 free:
3174 kfree(dev->queues);
3175 kfree(dev);
3176 return result;
3177 }
3178
3179 static void nvme_reset_prepare(struct pci_dev *pdev)
3180 {
3181 struct nvme_dev *dev = pci_get_drvdata(pdev);
3182
3183
3184
3185
3186
3187
3188 nvme_disable_prepare_reset(dev, false);
3189 nvme_sync_queues(&dev->ctrl);
3190 }
3191
3192 static void nvme_reset_done(struct pci_dev *pdev)
3193 {
3194 struct nvme_dev *dev = pci_get_drvdata(pdev);
3195
3196 if (!nvme_try_sched_reset(&dev->ctrl))
3197 flush_work(&dev->ctrl.reset_work);
3198 }
3199
3200 static void nvme_shutdown(struct pci_dev *pdev)
3201 {
3202 struct nvme_dev *dev = pci_get_drvdata(pdev);
3203
3204 nvme_disable_prepare_reset(dev, true);
3205 }
3206
3207 static void nvme_remove_attrs(struct nvme_dev *dev)
3208 {
3209 if (dev->attrs_added)
3210 sysfs_remove_group(&dev->ctrl.device->kobj,
3211 &nvme_pci_attr_group);
3212 }
3213
3214
3215
3216
3217
3218
3219 static void nvme_remove(struct pci_dev *pdev)
3220 {
3221 struct nvme_dev *dev = pci_get_drvdata(pdev);
3222
3223 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3224 pci_set_drvdata(pdev, NULL);
3225
3226 if (!pci_device_is_present(pdev)) {
3227 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3228 nvme_dev_disable(dev, true);
3229 }
3230
3231 flush_work(&dev->ctrl.reset_work);
3232 nvme_stop_ctrl(&dev->ctrl);
3233 nvme_remove_namespaces(&dev->ctrl);
3234 nvme_dev_disable(dev, true);
3235 nvme_remove_attrs(dev);
3236 nvme_free_host_mem(dev);
3237 nvme_dev_remove_admin(dev);
3238 nvme_free_queues(dev, 0);
3239 nvme_release_prp_pools(dev);
3240 nvme_dev_unmap(dev);
3241 nvme_uninit_ctrl(&dev->ctrl);
3242 }
3243
3244 #ifdef CONFIG_PM_SLEEP
3245 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3246 {
3247 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3248 }
3249
3250 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3251 {
3252 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3253 }
3254
3255 static int nvme_resume(struct device *dev)
3256 {
3257 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3258 struct nvme_ctrl *ctrl = &ndev->ctrl;
3259
3260 if (ndev->last_ps == U32_MAX ||
3261 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3262 goto reset;
3263 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3264 goto reset;
3265
3266 return 0;
3267 reset:
3268 return nvme_try_sched_reset(ctrl);
3269 }
3270
3271 static int nvme_suspend(struct device *dev)
3272 {
3273 struct pci_dev *pdev = to_pci_dev(dev);
3274 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3275 struct nvme_ctrl *ctrl = &ndev->ctrl;
3276 int ret = -EBUSY;
3277
3278 ndev->last_ps = U32_MAX;
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293 if (pm_suspend_via_firmware() || !ctrl->npss ||
3294 !pcie_aspm_enabled(pdev) ||
3295 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3296 return nvme_disable_prepare_reset(ndev, true);
3297
3298 nvme_start_freeze(ctrl);
3299 nvme_wait_freeze(ctrl);
3300 nvme_sync_queues(ctrl);
3301
3302 if (ctrl->state != NVME_CTRL_LIVE)
3303 goto unfreeze;
3304
3305
3306
3307
3308
3309
3310 if (ndev->hmb) {
3311 ret = nvme_set_host_mem(ndev, 0);
3312 if (ret < 0)
3313 goto unfreeze;
3314 }
3315
3316 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3317 if (ret < 0)
3318 goto unfreeze;
3319
3320
3321
3322
3323
3324
3325 pci_save_state(pdev);
3326
3327 ret = nvme_set_power_state(ctrl, ctrl->npss);
3328 if (ret < 0)
3329 goto unfreeze;
3330
3331 if (ret) {
3332
3333 pci_load_saved_state(pdev, NULL);
3334
3335
3336
3337
3338
3339 ret = nvme_disable_prepare_reset(ndev, true);
3340 ctrl->npss = 0;
3341 }
3342 unfreeze:
3343 nvme_unfreeze(ctrl);
3344 return ret;
3345 }
3346
3347 static int nvme_simple_suspend(struct device *dev)
3348 {
3349 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3350
3351 return nvme_disable_prepare_reset(ndev, true);
3352 }
3353
3354 static int nvme_simple_resume(struct device *dev)
3355 {
3356 struct pci_dev *pdev = to_pci_dev(dev);
3357 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3358
3359 return nvme_try_sched_reset(&ndev->ctrl);
3360 }
3361
3362 static const struct dev_pm_ops nvme_dev_pm_ops = {
3363 .suspend = nvme_suspend,
3364 .resume = nvme_resume,
3365 .freeze = nvme_simple_suspend,
3366 .thaw = nvme_simple_resume,
3367 .poweroff = nvme_simple_suspend,
3368 .restore = nvme_simple_resume,
3369 };
3370 #endif
3371
3372 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3373 pci_channel_state_t state)
3374 {
3375 struct nvme_dev *dev = pci_get_drvdata(pdev);
3376
3377
3378
3379
3380
3381
3382 switch (state) {
3383 case pci_channel_io_normal:
3384 return PCI_ERS_RESULT_CAN_RECOVER;
3385 case pci_channel_io_frozen:
3386 dev_warn(dev->ctrl.device,
3387 "frozen state error detected, reset controller\n");
3388 nvme_dev_disable(dev, false);
3389 return PCI_ERS_RESULT_NEED_RESET;
3390 case pci_channel_io_perm_failure:
3391 dev_warn(dev->ctrl.device,
3392 "failure state error detected, request disconnect\n");
3393 return PCI_ERS_RESULT_DISCONNECT;
3394 }
3395 return PCI_ERS_RESULT_NEED_RESET;
3396 }
3397
3398 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3399 {
3400 struct nvme_dev *dev = pci_get_drvdata(pdev);
3401
3402 dev_info(dev->ctrl.device, "restart after slot reset\n");
3403 pci_restore_state(pdev);
3404 nvme_reset_ctrl(&dev->ctrl);
3405 return PCI_ERS_RESULT_RECOVERED;
3406 }
3407
3408 static void nvme_error_resume(struct pci_dev *pdev)
3409 {
3410 struct nvme_dev *dev = pci_get_drvdata(pdev);
3411
3412 flush_work(&dev->ctrl.reset_work);
3413 }
3414
3415 static const struct pci_error_handlers nvme_err_handler = {
3416 .error_detected = nvme_error_detected,
3417 .slot_reset = nvme_slot_reset,
3418 .resume = nvme_error_resume,
3419 .reset_prepare = nvme_reset_prepare,
3420 .reset_done = nvme_reset_done,
3421 };
3422
3423 static const struct pci_device_id nvme_id_table[] = {
3424 { PCI_VDEVICE(INTEL, 0x0953),
3425 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3426 NVME_QUIRK_DEALLOCATE_ZEROES, },
3427 { PCI_VDEVICE(INTEL, 0x0a53),
3428 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3429 NVME_QUIRK_DEALLOCATE_ZEROES, },
3430 { PCI_VDEVICE(INTEL, 0x0a54),
3431 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3432 NVME_QUIRK_DEALLOCATE_ZEROES |
3433 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3434 { PCI_VDEVICE(INTEL, 0x0a55),
3435 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3436 NVME_QUIRK_DEALLOCATE_ZEROES, },
3437 { PCI_VDEVICE(INTEL, 0xf1a5),
3438 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3439 NVME_QUIRK_MEDIUM_PRIO_SQ |
3440 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3441 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3442 { PCI_VDEVICE(INTEL, 0xf1a6),
3443 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3444 { PCI_VDEVICE(INTEL, 0x5845),
3445 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3446 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3447 NVME_QUIRK_BOGUS_NID, },
3448 { PCI_VDEVICE(REDHAT, 0x0010),
3449 .driver_data = NVME_QUIRK_BOGUS_NID, },
3450 { PCI_DEVICE(0x126f, 0x2263),
3451 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3452 NVME_QUIRK_BOGUS_NID, },
3453 { PCI_DEVICE(0x1bb1, 0x0100),
3454 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3455 NVME_QUIRK_NO_NS_DESC_LIST, },
3456 { PCI_DEVICE(0x1c58, 0x0003),
3457 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3458 { PCI_DEVICE(0x1c58, 0x0023),
3459 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3460 { PCI_DEVICE(0x1c5f, 0x0540),
3461 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3462 { PCI_DEVICE(0x144d, 0xa821),
3463 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3464 { PCI_DEVICE(0x144d, 0xa822),
3465 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3466 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3467 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3468 { PCI_DEVICE(0x1987, 0x5012),
3469 .driver_data = NVME_QUIRK_BOGUS_NID, },
3470 { PCI_DEVICE(0x1987, 0x5016),
3471 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3472 NVME_QUIRK_BOGUS_NID, },
3473 { PCI_DEVICE(0x1987, 0x5019),
3474 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3475 { PCI_DEVICE(0x1987, 0x5021),
3476 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3477 { PCI_DEVICE(0x1b4b, 0x1092),
3478 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3479 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3480 { PCI_DEVICE(0x1cc1, 0x33f8),
3481 .driver_data = NVME_QUIRK_BOGUS_NID, },
3482 { PCI_DEVICE(0x10ec, 0x5762),
3483 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3484 NVME_QUIRK_BOGUS_NID, },
3485 { PCI_DEVICE(0x1cc1, 0x8201),
3486 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3487 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3488 { PCI_DEVICE(0x1344, 0x5407),
3489 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3490 { PCI_DEVICE(0x1c5c, 0x1504),
3491 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3492 { PCI_DEVICE(0x1c5c, 0x174a),
3493 .driver_data = NVME_QUIRK_BOGUS_NID, },
3494 { PCI_DEVICE(0x15b7, 0x2001),
3495 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3496 { PCI_DEVICE(0x1d97, 0x2263),
3497 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3498 { PCI_DEVICE(0x144d, 0xa80b),
3499 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3500 { PCI_DEVICE(0x144d, 0xa809),
3501 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3502 { PCI_DEVICE(0x1cc4, 0x6303),
3503 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3504 { PCI_DEVICE(0x1cc4, 0x6302),
3505 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3506 { PCI_DEVICE(0x2646, 0x2262),
3507 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3508 { PCI_DEVICE(0x2646, 0x2263),
3509 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3510 { PCI_DEVICE(0x1e4B, 0x1001),
3511 .driver_data = NVME_QUIRK_BOGUS_NID, },
3512 { PCI_DEVICE(0x1e4B, 0x1002),
3513 .driver_data = NVME_QUIRK_BOGUS_NID, },
3514 { PCI_DEVICE(0x1e4B, 0x1202),
3515 .driver_data = NVME_QUIRK_BOGUS_NID, },
3516 { PCI_DEVICE(0x1cc1, 0x5350),
3517 .driver_data = NVME_QUIRK_BOGUS_NID, },
3518 { PCI_DEVICE(0x1dbe, 0x5236),
3519 .driver_data = NVME_QUIRK_BOGUS_NID, },
3520 { PCI_DEVICE(0x1e49, 0x0041),
3521 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3522 { PCI_DEVICE(0xc0a9, 0x540a),
3523 .driver_data = NVME_QUIRK_BOGUS_NID, },
3524 { PCI_DEVICE(0x1d97, 0x2263),
3525 .driver_data = NVME_QUIRK_BOGUS_NID, },
3526 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3527 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3528 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3529 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3530 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3531 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3532 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3533 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3534 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3535 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3536 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3537 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3538 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3539 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3540 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3541 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3542 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3543 NVME_QUIRK_128_BYTES_SQES |
3544 NVME_QUIRK_SHARED_TAGS |
3545 NVME_QUIRK_SKIP_CID_GEN },
3546 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3547 { 0, }
3548 };
3549 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3550
3551 static struct pci_driver nvme_driver = {
3552 .name = "nvme",
3553 .id_table = nvme_id_table,
3554 .probe = nvme_probe,
3555 .remove = nvme_remove,
3556 .shutdown = nvme_shutdown,
3557 #ifdef CONFIG_PM_SLEEP
3558 .driver = {
3559 .pm = &nvme_dev_pm_ops,
3560 },
3561 #endif
3562 .sriov_configure = pci_sriov_configure_simple,
3563 .err_handler = &nvme_err_handler,
3564 };
3565
3566 static int __init nvme_init(void)
3567 {
3568 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3569 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3570 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3571 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3572
3573 return pci_register_driver(&nvme_driver);
3574 }
3575
3576 static void __exit nvme_exit(void)
3577 {
3578 pci_unregister_driver(&nvme_driver);
3579 flush_workqueue(nvme_wq);
3580 }
3581
3582 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3583 MODULE_LICENSE("GPL");
3584 MODULE_VERSION("1.0");
3585 module_init(nvme_init);
3586 module_exit(nvme_exit);