Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * NVM Express device driver
0004  * Copyright (c) 2011-2014, Intel Corporation.
0005  */
0006 
0007 #include <linux/acpi.h>
0008 #include <linux/aer.h>
0009 #include <linux/async.h>
0010 #include <linux/blkdev.h>
0011 #include <linux/blk-mq.h>
0012 #include <linux/blk-mq-pci.h>
0013 #include <linux/blk-integrity.h>
0014 #include <linux/dmi.h>
0015 #include <linux/init.h>
0016 #include <linux/interrupt.h>
0017 #include <linux/io.h>
0018 #include <linux/memremap.h>
0019 #include <linux/mm.h>
0020 #include <linux/module.h>
0021 #include <linux/mutex.h>
0022 #include <linux/once.h>
0023 #include <linux/pci.h>
0024 #include <linux/suspend.h>
0025 #include <linux/t10-pi.h>
0026 #include <linux/types.h>
0027 #include <linux/io-64-nonatomic-lo-hi.h>
0028 #include <linux/io-64-nonatomic-hi-lo.h>
0029 #include <linux/sed-opal.h>
0030 #include <linux/pci-p2pdma.h>
0031 
0032 #include "trace.h"
0033 #include "nvme.h"
0034 
0035 #define SQ_SIZE(q)  ((q)->q_depth << (q)->sqes)
0036 #define CQ_SIZE(q)  ((q)->q_depth * sizeof(struct nvme_completion))
0037 
0038 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
0039 
0040 /*
0041  * These can be higher, but we need to ensure that any command doesn't
0042  * require an sg allocation that needs more than a page of data.
0043  */
0044 #define NVME_MAX_KB_SZ  4096
0045 #define NVME_MAX_SEGS   127
0046 
0047 static int use_threaded_interrupts;
0048 module_param(use_threaded_interrupts, int, 0444);
0049 
0050 static bool use_cmb_sqes = true;
0051 module_param(use_cmb_sqes, bool, 0444);
0052 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
0053 
0054 static unsigned int max_host_mem_size_mb = 128;
0055 module_param(max_host_mem_size_mb, uint, 0444);
0056 MODULE_PARM_DESC(max_host_mem_size_mb,
0057     "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
0058 
0059 static unsigned int sgl_threshold = SZ_32K;
0060 module_param(sgl_threshold, uint, 0644);
0061 MODULE_PARM_DESC(sgl_threshold,
0062         "Use SGLs when average request segment size is larger or equal to "
0063         "this size. Use 0 to disable SGLs.");
0064 
0065 #define NVME_PCI_MIN_QUEUE_SIZE 2
0066 #define NVME_PCI_MAX_QUEUE_SIZE 4095
0067 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
0068 static const struct kernel_param_ops io_queue_depth_ops = {
0069     .set = io_queue_depth_set,
0070     .get = param_get_uint,
0071 };
0072 
0073 static unsigned int io_queue_depth = 1024;
0074 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
0075 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
0076 
0077 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
0078 {
0079     unsigned int n;
0080     int ret;
0081 
0082     ret = kstrtouint(val, 10, &n);
0083     if (ret != 0 || n > num_possible_cpus())
0084         return -EINVAL;
0085     return param_set_uint(val, kp);
0086 }
0087 
0088 static const struct kernel_param_ops io_queue_count_ops = {
0089     .set = io_queue_count_set,
0090     .get = param_get_uint,
0091 };
0092 
0093 static unsigned int write_queues;
0094 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
0095 MODULE_PARM_DESC(write_queues,
0096     "Number of queues to use for writes. If not set, reads and writes "
0097     "will share a queue set.");
0098 
0099 static unsigned int poll_queues;
0100 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
0101 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
0102 
0103 static bool noacpi;
0104 module_param(noacpi, bool, 0444);
0105 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
0106 
0107 struct nvme_dev;
0108 struct nvme_queue;
0109 
0110 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
0111 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
0112 
0113 /*
0114  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
0115  */
0116 struct nvme_dev {
0117     struct nvme_queue *queues;
0118     struct blk_mq_tag_set tagset;
0119     struct blk_mq_tag_set admin_tagset;
0120     u32 __iomem *dbs;
0121     struct device *dev;
0122     struct dma_pool *prp_page_pool;
0123     struct dma_pool *prp_small_pool;
0124     unsigned online_queues;
0125     unsigned max_qid;
0126     unsigned io_queues[HCTX_MAX_TYPES];
0127     unsigned int num_vecs;
0128     u32 q_depth;
0129     int io_sqes;
0130     u32 db_stride;
0131     void __iomem *bar;
0132     unsigned long bar_mapped_size;
0133     struct work_struct remove_work;
0134     struct mutex shutdown_lock;
0135     bool subsystem;
0136     u64 cmb_size;
0137     bool cmb_use_sqes;
0138     u32 cmbsz;
0139     u32 cmbloc;
0140     struct nvme_ctrl ctrl;
0141     u32 last_ps;
0142     bool hmb;
0143 
0144     mempool_t *iod_mempool;
0145 
0146     /* shadow doorbell buffer support: */
0147     u32 *dbbuf_dbs;
0148     dma_addr_t dbbuf_dbs_dma_addr;
0149     u32 *dbbuf_eis;
0150     dma_addr_t dbbuf_eis_dma_addr;
0151 
0152     /* host memory buffer support: */
0153     u64 host_mem_size;
0154     u32 nr_host_mem_descs;
0155     dma_addr_t host_mem_descs_dma;
0156     struct nvme_host_mem_buf_desc *host_mem_descs;
0157     void **host_mem_desc_bufs;
0158     unsigned int nr_allocated_queues;
0159     unsigned int nr_write_queues;
0160     unsigned int nr_poll_queues;
0161 
0162     bool attrs_added;
0163 };
0164 
0165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
0166 {
0167     return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
0168             NVME_PCI_MAX_QUEUE_SIZE);
0169 }
0170 
0171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
0172 {
0173     return qid * 2 * stride;
0174 }
0175 
0176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
0177 {
0178     return (qid * 2 + 1) * stride;
0179 }
0180 
0181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
0182 {
0183     return container_of(ctrl, struct nvme_dev, ctrl);
0184 }
0185 
0186 /*
0187  * An NVM Express queue.  Each device has at least two (one for admin
0188  * commands and one for I/O commands).
0189  */
0190 struct nvme_queue {
0191     struct nvme_dev *dev;
0192     spinlock_t sq_lock;
0193     void *sq_cmds;
0194      /* only used for poll queues: */
0195     spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
0196     struct nvme_completion *cqes;
0197     dma_addr_t sq_dma_addr;
0198     dma_addr_t cq_dma_addr;
0199     u32 __iomem *q_db;
0200     u32 q_depth;
0201     u16 cq_vector;
0202     u16 sq_tail;
0203     u16 last_sq_tail;
0204     u16 cq_head;
0205     u16 qid;
0206     u8 cq_phase;
0207     u8 sqes;
0208     unsigned long flags;
0209 #define NVMEQ_ENABLED       0
0210 #define NVMEQ_SQ_CMB        1
0211 #define NVMEQ_DELETE_ERROR  2
0212 #define NVMEQ_POLLED        3
0213     u32 *dbbuf_sq_db;
0214     u32 *dbbuf_cq_db;
0215     u32 *dbbuf_sq_ei;
0216     u32 *dbbuf_cq_ei;
0217     struct completion delete_done;
0218 };
0219 
0220 /*
0221  * The nvme_iod describes the data in an I/O.
0222  *
0223  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
0224  * to the actual struct scatterlist.
0225  */
0226 struct nvme_iod {
0227     struct nvme_request req;
0228     struct nvme_command cmd;
0229     struct nvme_queue *nvmeq;
0230     bool use_sgl;
0231     int aborted;
0232     int npages;     /* In the PRP list. 0 means small pool in use */
0233     dma_addr_t first_dma;
0234     unsigned int dma_len;   /* length of single DMA segment mapping */
0235     dma_addr_t meta_dma;
0236     struct sg_table sgt;
0237 };
0238 
0239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
0240 {
0241     return dev->nr_allocated_queues * 8 * dev->db_stride;
0242 }
0243 
0244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
0245 {
0246     unsigned int mem_size = nvme_dbbuf_size(dev);
0247 
0248     if (dev->dbbuf_dbs) {
0249         /*
0250          * Clear the dbbuf memory so the driver doesn't observe stale
0251          * values from the previous instantiation.
0252          */
0253         memset(dev->dbbuf_dbs, 0, mem_size);
0254         memset(dev->dbbuf_eis, 0, mem_size);
0255         return 0;
0256     }
0257 
0258     dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
0259                         &dev->dbbuf_dbs_dma_addr,
0260                         GFP_KERNEL);
0261     if (!dev->dbbuf_dbs)
0262         return -ENOMEM;
0263     dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
0264                         &dev->dbbuf_eis_dma_addr,
0265                         GFP_KERNEL);
0266     if (!dev->dbbuf_eis) {
0267         dma_free_coherent(dev->dev, mem_size,
0268                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
0269         dev->dbbuf_dbs = NULL;
0270         return -ENOMEM;
0271     }
0272 
0273     return 0;
0274 }
0275 
0276 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
0277 {
0278     unsigned int mem_size = nvme_dbbuf_size(dev);
0279 
0280     if (dev->dbbuf_dbs) {
0281         dma_free_coherent(dev->dev, mem_size,
0282                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
0283         dev->dbbuf_dbs = NULL;
0284     }
0285     if (dev->dbbuf_eis) {
0286         dma_free_coherent(dev->dev, mem_size,
0287                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
0288         dev->dbbuf_eis = NULL;
0289     }
0290 }
0291 
0292 static void nvme_dbbuf_init(struct nvme_dev *dev,
0293                 struct nvme_queue *nvmeq, int qid)
0294 {
0295     if (!dev->dbbuf_dbs || !qid)
0296         return;
0297 
0298     nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
0299     nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
0300     nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
0301     nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
0302 }
0303 
0304 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
0305 {
0306     if (!nvmeq->qid)
0307         return;
0308 
0309     nvmeq->dbbuf_sq_db = NULL;
0310     nvmeq->dbbuf_cq_db = NULL;
0311     nvmeq->dbbuf_sq_ei = NULL;
0312     nvmeq->dbbuf_cq_ei = NULL;
0313 }
0314 
0315 static void nvme_dbbuf_set(struct nvme_dev *dev)
0316 {
0317     struct nvme_command c = { };
0318     unsigned int i;
0319 
0320     if (!dev->dbbuf_dbs)
0321         return;
0322 
0323     c.dbbuf.opcode = nvme_admin_dbbuf;
0324     c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
0325     c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
0326 
0327     if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
0328         dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
0329         /* Free memory and continue on */
0330         nvme_dbbuf_dma_free(dev);
0331 
0332         for (i = 1; i <= dev->online_queues; i++)
0333             nvme_dbbuf_free(&dev->queues[i]);
0334     }
0335 }
0336 
0337 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
0338 {
0339     return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
0340 }
0341 
0342 /* Update dbbuf and return true if an MMIO is required */
0343 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
0344                           volatile u32 *dbbuf_ei)
0345 {
0346     if (dbbuf_db) {
0347         u16 old_value;
0348 
0349         /*
0350          * Ensure that the queue is written before updating
0351          * the doorbell in memory
0352          */
0353         wmb();
0354 
0355         old_value = *dbbuf_db;
0356         *dbbuf_db = value;
0357 
0358         /*
0359          * Ensure that the doorbell is updated before reading the event
0360          * index from memory.  The controller needs to provide similar
0361          * ordering to ensure the envent index is updated before reading
0362          * the doorbell.
0363          */
0364         mb();
0365 
0366         if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
0367             return false;
0368     }
0369 
0370     return true;
0371 }
0372 
0373 /*
0374  * Will slightly overestimate the number of pages needed.  This is OK
0375  * as it only leads to a small amount of wasted memory for the lifetime of
0376  * the I/O.
0377  */
0378 static int nvme_pci_npages_prp(void)
0379 {
0380     unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
0381                       NVME_CTRL_PAGE_SIZE);
0382     return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
0383 }
0384 
0385 /*
0386  * Calculates the number of pages needed for the SGL segments. For example a 4k
0387  * page can accommodate 256 SGL descriptors.
0388  */
0389 static int nvme_pci_npages_sgl(void)
0390 {
0391     return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
0392             PAGE_SIZE);
0393 }
0394 
0395 static size_t nvme_pci_iod_alloc_size(void)
0396 {
0397     size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
0398 
0399     return sizeof(__le64 *) * npages +
0400         sizeof(struct scatterlist) * NVME_MAX_SEGS;
0401 }
0402 
0403 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
0404                 unsigned int hctx_idx)
0405 {
0406     struct nvme_dev *dev = data;
0407     struct nvme_queue *nvmeq = &dev->queues[0];
0408 
0409     WARN_ON(hctx_idx != 0);
0410     WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
0411 
0412     hctx->driver_data = nvmeq;
0413     return 0;
0414 }
0415 
0416 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
0417               unsigned int hctx_idx)
0418 {
0419     struct nvme_dev *dev = data;
0420     struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
0421 
0422     WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
0423     hctx->driver_data = nvmeq;
0424     return 0;
0425 }
0426 
0427 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
0428         struct request *req, unsigned int hctx_idx,
0429         unsigned int numa_node)
0430 {
0431     struct nvme_dev *dev = set->driver_data;
0432     struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0433     int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
0434     struct nvme_queue *nvmeq = &dev->queues[queue_idx];
0435 
0436     BUG_ON(!nvmeq);
0437     iod->nvmeq = nvmeq;
0438 
0439     nvme_req(req)->ctrl = &dev->ctrl;
0440     nvme_req(req)->cmd = &iod->cmd;
0441     return 0;
0442 }
0443 
0444 static int queue_irq_offset(struct nvme_dev *dev)
0445 {
0446     /* if we have more than 1 vec, admin queue offsets us by 1 */
0447     if (dev->num_vecs > 1)
0448         return 1;
0449 
0450     return 0;
0451 }
0452 
0453 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
0454 {
0455     struct nvme_dev *dev = set->driver_data;
0456     int i, qoff, offset;
0457 
0458     offset = queue_irq_offset(dev);
0459     for (i = 0, qoff = 0; i < set->nr_maps; i++) {
0460         struct blk_mq_queue_map *map = &set->map[i];
0461 
0462         map->nr_queues = dev->io_queues[i];
0463         if (!map->nr_queues) {
0464             BUG_ON(i == HCTX_TYPE_DEFAULT);
0465             continue;
0466         }
0467 
0468         /*
0469          * The poll queue(s) doesn't have an IRQ (and hence IRQ
0470          * affinity), so use the regular blk-mq cpu mapping
0471          */
0472         map->queue_offset = qoff;
0473         if (i != HCTX_TYPE_POLL && offset)
0474             blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
0475         else
0476             blk_mq_map_queues(map);
0477         qoff += map->nr_queues;
0478         offset += map->nr_queues;
0479     }
0480 
0481     return 0;
0482 }
0483 
0484 /*
0485  * Write sq tail if we are asked to, or if the next command would wrap.
0486  */
0487 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
0488 {
0489     if (!write_sq) {
0490         u16 next_tail = nvmeq->sq_tail + 1;
0491 
0492         if (next_tail == nvmeq->q_depth)
0493             next_tail = 0;
0494         if (next_tail != nvmeq->last_sq_tail)
0495             return;
0496     }
0497 
0498     if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
0499             nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
0500         writel(nvmeq->sq_tail, nvmeq->q_db);
0501     nvmeq->last_sq_tail = nvmeq->sq_tail;
0502 }
0503 
0504 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
0505                     struct nvme_command *cmd)
0506 {
0507     memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
0508         absolute_pointer(cmd), sizeof(*cmd));
0509     if (++nvmeq->sq_tail == nvmeq->q_depth)
0510         nvmeq->sq_tail = 0;
0511 }
0512 
0513 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
0514 {
0515     struct nvme_queue *nvmeq = hctx->driver_data;
0516 
0517     spin_lock(&nvmeq->sq_lock);
0518     if (nvmeq->sq_tail != nvmeq->last_sq_tail)
0519         nvme_write_sq_db(nvmeq, true);
0520     spin_unlock(&nvmeq->sq_lock);
0521 }
0522 
0523 static void **nvme_pci_iod_list(struct request *req)
0524 {
0525     struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0526     return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req));
0527 }
0528 
0529 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
0530 {
0531     struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0532     int nseg = blk_rq_nr_phys_segments(req);
0533     unsigned int avg_seg_size;
0534 
0535     avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
0536 
0537     if (!nvme_ctrl_sgl_supported(&dev->ctrl))
0538         return false;
0539     if (!iod->nvmeq->qid)
0540         return false;
0541     if (!sgl_threshold || avg_seg_size < sgl_threshold)
0542         return false;
0543     return true;
0544 }
0545 
0546 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
0547 {
0548     const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
0549     struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0550     dma_addr_t dma_addr = iod->first_dma;
0551     int i;
0552 
0553     for (i = 0; i < iod->npages; i++) {
0554         __le64 *prp_list = nvme_pci_iod_list(req)[i];
0555         dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
0556 
0557         dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
0558         dma_addr = next_dma_addr;
0559     }
0560 }
0561 
0562 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
0563 {
0564     const int last_sg = SGES_PER_PAGE - 1;
0565     struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0566     dma_addr_t dma_addr = iod->first_dma;
0567     int i;
0568 
0569     for (i = 0; i < iod->npages; i++) {
0570         struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
0571         dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
0572 
0573         dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
0574         dma_addr = next_dma_addr;
0575     }
0576 }
0577 
0578 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
0579 {
0580     struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0581 
0582     if (iod->dma_len) {
0583         dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
0584                    rq_dma_dir(req));
0585         return;
0586     }
0587 
0588     WARN_ON_ONCE(!iod->sgt.nents);
0589 
0590     dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
0591 
0592     if (iod->npages == 0)
0593         dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
0594                   iod->first_dma);
0595     else if (iod->use_sgl)
0596         nvme_free_sgls(dev, req);
0597     else
0598         nvme_free_prps(dev, req);
0599     mempool_free(iod->sgt.sgl, dev->iod_mempool);
0600 }
0601 
0602 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
0603 {
0604     int i;
0605     struct scatterlist *sg;
0606 
0607     for_each_sg(sgl, sg, nents, i) {
0608         dma_addr_t phys = sg_phys(sg);
0609         pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
0610             "dma_address:%pad dma_length:%d\n",
0611             i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
0612             sg_dma_len(sg));
0613     }
0614 }
0615 
0616 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
0617         struct request *req, struct nvme_rw_command *cmnd)
0618 {
0619     struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0620     struct dma_pool *pool;
0621     int length = blk_rq_payload_bytes(req);
0622     struct scatterlist *sg = iod->sgt.sgl;
0623     int dma_len = sg_dma_len(sg);
0624     u64 dma_addr = sg_dma_address(sg);
0625     int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
0626     __le64 *prp_list;
0627     void **list = nvme_pci_iod_list(req);
0628     dma_addr_t prp_dma;
0629     int nprps, i;
0630 
0631     length -= (NVME_CTRL_PAGE_SIZE - offset);
0632     if (length <= 0) {
0633         iod->first_dma = 0;
0634         goto done;
0635     }
0636 
0637     dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
0638     if (dma_len) {
0639         dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
0640     } else {
0641         sg = sg_next(sg);
0642         dma_addr = sg_dma_address(sg);
0643         dma_len = sg_dma_len(sg);
0644     }
0645 
0646     if (length <= NVME_CTRL_PAGE_SIZE) {
0647         iod->first_dma = dma_addr;
0648         goto done;
0649     }
0650 
0651     nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
0652     if (nprps <= (256 / 8)) {
0653         pool = dev->prp_small_pool;
0654         iod->npages = 0;
0655     } else {
0656         pool = dev->prp_page_pool;
0657         iod->npages = 1;
0658     }
0659 
0660     prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
0661     if (!prp_list) {
0662         iod->npages = -1;
0663         return BLK_STS_RESOURCE;
0664     }
0665     list[0] = prp_list;
0666     iod->first_dma = prp_dma;
0667     i = 0;
0668     for (;;) {
0669         if (i == NVME_CTRL_PAGE_SIZE >> 3) {
0670             __le64 *old_prp_list = prp_list;
0671             prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
0672             if (!prp_list)
0673                 goto free_prps;
0674             list[iod->npages++] = prp_list;
0675             prp_list[0] = old_prp_list[i - 1];
0676             old_prp_list[i - 1] = cpu_to_le64(prp_dma);
0677             i = 1;
0678         }
0679         prp_list[i++] = cpu_to_le64(dma_addr);
0680         dma_len -= NVME_CTRL_PAGE_SIZE;
0681         dma_addr += NVME_CTRL_PAGE_SIZE;
0682         length -= NVME_CTRL_PAGE_SIZE;
0683         if (length <= 0)
0684             break;
0685         if (dma_len > 0)
0686             continue;
0687         if (unlikely(dma_len < 0))
0688             goto bad_sgl;
0689         sg = sg_next(sg);
0690         dma_addr = sg_dma_address(sg);
0691         dma_len = sg_dma_len(sg);
0692     }
0693 done:
0694     cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
0695     cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
0696     return BLK_STS_OK;
0697 free_prps:
0698     nvme_free_prps(dev, req);
0699     return BLK_STS_RESOURCE;
0700 bad_sgl:
0701     WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
0702             "Invalid SGL for payload:%d nents:%d\n",
0703             blk_rq_payload_bytes(req), iod->sgt.nents);
0704     return BLK_STS_IOERR;
0705 }
0706 
0707 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
0708         struct scatterlist *sg)
0709 {
0710     sge->addr = cpu_to_le64(sg_dma_address(sg));
0711     sge->length = cpu_to_le32(sg_dma_len(sg));
0712     sge->type = NVME_SGL_FMT_DATA_DESC << 4;
0713 }
0714 
0715 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
0716         dma_addr_t dma_addr, int entries)
0717 {
0718     sge->addr = cpu_to_le64(dma_addr);
0719     if (entries < SGES_PER_PAGE) {
0720         sge->length = cpu_to_le32(entries * sizeof(*sge));
0721         sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
0722     } else {
0723         sge->length = cpu_to_le32(PAGE_SIZE);
0724         sge->type = NVME_SGL_FMT_SEG_DESC << 4;
0725     }
0726 }
0727 
0728 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
0729         struct request *req, struct nvme_rw_command *cmd)
0730 {
0731     struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0732     struct dma_pool *pool;
0733     struct nvme_sgl_desc *sg_list;
0734     struct scatterlist *sg = iod->sgt.sgl;
0735     unsigned int entries = iod->sgt.nents;
0736     dma_addr_t sgl_dma;
0737     int i = 0;
0738 
0739     /* setting the transfer type as SGL */
0740     cmd->flags = NVME_CMD_SGL_METABUF;
0741 
0742     if (entries == 1) {
0743         nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
0744         return BLK_STS_OK;
0745     }
0746 
0747     if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
0748         pool = dev->prp_small_pool;
0749         iod->npages = 0;
0750     } else {
0751         pool = dev->prp_page_pool;
0752         iod->npages = 1;
0753     }
0754 
0755     sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
0756     if (!sg_list) {
0757         iod->npages = -1;
0758         return BLK_STS_RESOURCE;
0759     }
0760 
0761     nvme_pci_iod_list(req)[0] = sg_list;
0762     iod->first_dma = sgl_dma;
0763 
0764     nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
0765 
0766     do {
0767         if (i == SGES_PER_PAGE) {
0768             struct nvme_sgl_desc *old_sg_desc = sg_list;
0769             struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
0770 
0771             sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
0772             if (!sg_list)
0773                 goto free_sgls;
0774 
0775             i = 0;
0776             nvme_pci_iod_list(req)[iod->npages++] = sg_list;
0777             sg_list[i++] = *link;
0778             nvme_pci_sgl_set_seg(link, sgl_dma, entries);
0779         }
0780 
0781         nvme_pci_sgl_set_data(&sg_list[i++], sg);
0782         sg = sg_next(sg);
0783     } while (--entries > 0);
0784 
0785     return BLK_STS_OK;
0786 free_sgls:
0787     nvme_free_sgls(dev, req);
0788     return BLK_STS_RESOURCE;
0789 }
0790 
0791 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
0792         struct request *req, struct nvme_rw_command *cmnd,
0793         struct bio_vec *bv)
0794 {
0795     struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0796     unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
0797     unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
0798 
0799     iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
0800     if (dma_mapping_error(dev->dev, iod->first_dma))
0801         return BLK_STS_RESOURCE;
0802     iod->dma_len = bv->bv_len;
0803 
0804     cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
0805     if (bv->bv_len > first_prp_len)
0806         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
0807     return BLK_STS_OK;
0808 }
0809 
0810 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
0811         struct request *req, struct nvme_rw_command *cmnd,
0812         struct bio_vec *bv)
0813 {
0814     struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0815 
0816     iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
0817     if (dma_mapping_error(dev->dev, iod->first_dma))
0818         return BLK_STS_RESOURCE;
0819     iod->dma_len = bv->bv_len;
0820 
0821     cmnd->flags = NVME_CMD_SGL_METABUF;
0822     cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
0823     cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
0824     cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
0825     return BLK_STS_OK;
0826 }
0827 
0828 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
0829         struct nvme_command *cmnd)
0830 {
0831     struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0832     blk_status_t ret = BLK_STS_RESOURCE;
0833     int rc;
0834 
0835     if (blk_rq_nr_phys_segments(req) == 1) {
0836         struct bio_vec bv = req_bvec(req);
0837 
0838         if (!is_pci_p2pdma_page(bv.bv_page)) {
0839             if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
0840                 return nvme_setup_prp_simple(dev, req,
0841                                  &cmnd->rw, &bv);
0842 
0843             if (iod->nvmeq->qid && sgl_threshold &&
0844                 nvme_ctrl_sgl_supported(&dev->ctrl))
0845                 return nvme_setup_sgl_simple(dev, req,
0846                                  &cmnd->rw, &bv);
0847         }
0848     }
0849 
0850     iod->dma_len = 0;
0851     iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
0852     if (!iod->sgt.sgl)
0853         return BLK_STS_RESOURCE;
0854     sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
0855     iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
0856     if (!iod->sgt.orig_nents)
0857         goto out_free_sg;
0858 
0859     rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
0860                  DMA_ATTR_NO_WARN);
0861     if (rc) {
0862         if (rc == -EREMOTEIO)
0863             ret = BLK_STS_TARGET;
0864         goto out_free_sg;
0865     }
0866 
0867     iod->use_sgl = nvme_pci_use_sgls(dev, req);
0868     if (iod->use_sgl)
0869         ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
0870     else
0871         ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
0872     if (ret != BLK_STS_OK)
0873         goto out_unmap_sg;
0874     return BLK_STS_OK;
0875 
0876 out_unmap_sg:
0877     dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
0878 out_free_sg:
0879     mempool_free(iod->sgt.sgl, dev->iod_mempool);
0880     return ret;
0881 }
0882 
0883 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
0884         struct nvme_command *cmnd)
0885 {
0886     struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0887 
0888     iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
0889             rq_dma_dir(req), 0);
0890     if (dma_mapping_error(dev->dev, iod->meta_dma))
0891         return BLK_STS_IOERR;
0892     cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
0893     return BLK_STS_OK;
0894 }
0895 
0896 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
0897 {
0898     struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0899     blk_status_t ret;
0900 
0901     iod->aborted = 0;
0902     iod->npages = -1;
0903     iod->sgt.nents = 0;
0904 
0905     ret = nvme_setup_cmd(req->q->queuedata, req);
0906     if (ret)
0907         return ret;
0908 
0909     if (blk_rq_nr_phys_segments(req)) {
0910         ret = nvme_map_data(dev, req, &iod->cmd);
0911         if (ret)
0912             goto out_free_cmd;
0913     }
0914 
0915     if (blk_integrity_rq(req)) {
0916         ret = nvme_map_metadata(dev, req, &iod->cmd);
0917         if (ret)
0918             goto out_unmap_data;
0919     }
0920 
0921     blk_mq_start_request(req);
0922     return BLK_STS_OK;
0923 out_unmap_data:
0924     nvme_unmap_data(dev, req);
0925 out_free_cmd:
0926     nvme_cleanup_cmd(req);
0927     return ret;
0928 }
0929 
0930 /*
0931  * NOTE: ns is NULL when called on the admin queue.
0932  */
0933 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
0934              const struct blk_mq_queue_data *bd)
0935 {
0936     struct nvme_queue *nvmeq = hctx->driver_data;
0937     struct nvme_dev *dev = nvmeq->dev;
0938     struct request *req = bd->rq;
0939     struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0940     blk_status_t ret;
0941 
0942     /*
0943      * We should not need to do this, but we're still using this to
0944      * ensure we can drain requests on a dying queue.
0945      */
0946     if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
0947         return BLK_STS_IOERR;
0948 
0949     if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
0950         return nvme_fail_nonready_command(&dev->ctrl, req);
0951 
0952     ret = nvme_prep_rq(dev, req);
0953     if (unlikely(ret))
0954         return ret;
0955     spin_lock(&nvmeq->sq_lock);
0956     nvme_sq_copy_cmd(nvmeq, &iod->cmd);
0957     nvme_write_sq_db(nvmeq, bd->last);
0958     spin_unlock(&nvmeq->sq_lock);
0959     return BLK_STS_OK;
0960 }
0961 
0962 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
0963 {
0964     spin_lock(&nvmeq->sq_lock);
0965     while (!rq_list_empty(*rqlist)) {
0966         struct request *req = rq_list_pop(rqlist);
0967         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0968 
0969         nvme_sq_copy_cmd(nvmeq, &iod->cmd);
0970     }
0971     nvme_write_sq_db(nvmeq, true);
0972     spin_unlock(&nvmeq->sq_lock);
0973 }
0974 
0975 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
0976 {
0977     /*
0978      * We should not need to do this, but we're still using this to
0979      * ensure we can drain requests on a dying queue.
0980      */
0981     if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
0982         return false;
0983     if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
0984         return false;
0985 
0986     req->mq_hctx->tags->rqs[req->tag] = req;
0987     return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
0988 }
0989 
0990 static void nvme_queue_rqs(struct request **rqlist)
0991 {
0992     struct request *req, *next, *prev = NULL;
0993     struct request *requeue_list = NULL;
0994 
0995     rq_list_for_each_safe(rqlist, req, next) {
0996         struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
0997 
0998         if (!nvme_prep_rq_batch(nvmeq, req)) {
0999             /* detach 'req' and add to remainder list */
1000             rq_list_move(rqlist, &requeue_list, req, prev);
1001 
1002             req = prev;
1003             if (!req)
1004                 continue;
1005         }
1006 
1007         if (!next || req->mq_hctx != next->mq_hctx) {
1008             /* detach rest of list, and submit */
1009             req->rq_next = NULL;
1010             nvme_submit_cmds(nvmeq, rqlist);
1011             *rqlist = next;
1012             prev = NULL;
1013         } else
1014             prev = req;
1015     }
1016 
1017     *rqlist = requeue_list;
1018 }
1019 
1020 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1021 {
1022     struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1023     struct nvme_dev *dev = iod->nvmeq->dev;
1024 
1025     if (blk_integrity_rq(req))
1026         dma_unmap_page(dev->dev, iod->meta_dma,
1027                    rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1028     if (blk_rq_nr_phys_segments(req))
1029         nvme_unmap_data(dev, req);
1030 }
1031 
1032 static void nvme_pci_complete_rq(struct request *req)
1033 {
1034     nvme_pci_unmap_rq(req);
1035     nvme_complete_rq(req);
1036 }
1037 
1038 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1039 {
1040     nvme_complete_batch(iob, nvme_pci_unmap_rq);
1041 }
1042 
1043 /* We read the CQE phase first to check if the rest of the entry is valid */
1044 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1045 {
1046     struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1047 
1048     return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1049 }
1050 
1051 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1052 {
1053     u16 head = nvmeq->cq_head;
1054 
1055     if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1056                           nvmeq->dbbuf_cq_ei))
1057         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1058 }
1059 
1060 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1061 {
1062     if (!nvmeq->qid)
1063         return nvmeq->dev->admin_tagset.tags[0];
1064     return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1065 }
1066 
1067 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1068                    struct io_comp_batch *iob, u16 idx)
1069 {
1070     struct nvme_completion *cqe = &nvmeq->cqes[idx];
1071     __u16 command_id = READ_ONCE(cqe->command_id);
1072     struct request *req;
1073 
1074     /*
1075      * AEN requests are special as they don't time out and can
1076      * survive any kind of queue freeze and often don't respond to
1077      * aborts.  We don't even bother to allocate a struct request
1078      * for them but rather special case them here.
1079      */
1080     if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1081         nvme_complete_async_event(&nvmeq->dev->ctrl,
1082                 cqe->status, &cqe->result);
1083         return;
1084     }
1085 
1086     req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1087     if (unlikely(!req)) {
1088         dev_warn(nvmeq->dev->ctrl.device,
1089             "invalid id %d completed on queue %d\n",
1090             command_id, le16_to_cpu(cqe->sq_id));
1091         return;
1092     }
1093 
1094     trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1095     if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1096         !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1097                     nvme_pci_complete_batch))
1098         nvme_pci_complete_rq(req);
1099 }
1100 
1101 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1102 {
1103     u32 tmp = nvmeq->cq_head + 1;
1104 
1105     if (tmp == nvmeq->q_depth) {
1106         nvmeq->cq_head = 0;
1107         nvmeq->cq_phase ^= 1;
1108     } else {
1109         nvmeq->cq_head = tmp;
1110     }
1111 }
1112 
1113 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1114                    struct io_comp_batch *iob)
1115 {
1116     int found = 0;
1117 
1118     while (nvme_cqe_pending(nvmeq)) {
1119         found++;
1120         /*
1121          * load-load control dependency between phase and the rest of
1122          * the cqe requires a full read memory barrier
1123          */
1124         dma_rmb();
1125         nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1126         nvme_update_cq_head(nvmeq);
1127     }
1128 
1129     if (found)
1130         nvme_ring_cq_doorbell(nvmeq);
1131     return found;
1132 }
1133 
1134 static irqreturn_t nvme_irq(int irq, void *data)
1135 {
1136     struct nvme_queue *nvmeq = data;
1137     DEFINE_IO_COMP_BATCH(iob);
1138 
1139     if (nvme_poll_cq(nvmeq, &iob)) {
1140         if (!rq_list_empty(iob.req_list))
1141             nvme_pci_complete_batch(&iob);
1142         return IRQ_HANDLED;
1143     }
1144     return IRQ_NONE;
1145 }
1146 
1147 static irqreturn_t nvme_irq_check(int irq, void *data)
1148 {
1149     struct nvme_queue *nvmeq = data;
1150 
1151     if (nvme_cqe_pending(nvmeq))
1152         return IRQ_WAKE_THREAD;
1153     return IRQ_NONE;
1154 }
1155 
1156 /*
1157  * Poll for completions for any interrupt driven queue
1158  * Can be called from any context.
1159  */
1160 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1161 {
1162     struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1163 
1164     WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1165 
1166     disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1167     nvme_poll_cq(nvmeq, NULL);
1168     enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1169 }
1170 
1171 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1172 {
1173     struct nvme_queue *nvmeq = hctx->driver_data;
1174     bool found;
1175 
1176     if (!nvme_cqe_pending(nvmeq))
1177         return 0;
1178 
1179     spin_lock(&nvmeq->cq_poll_lock);
1180     found = nvme_poll_cq(nvmeq, iob);
1181     spin_unlock(&nvmeq->cq_poll_lock);
1182 
1183     return found;
1184 }
1185 
1186 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1187 {
1188     struct nvme_dev *dev = to_nvme_dev(ctrl);
1189     struct nvme_queue *nvmeq = &dev->queues[0];
1190     struct nvme_command c = { };
1191 
1192     c.common.opcode = nvme_admin_async_event;
1193     c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1194 
1195     spin_lock(&nvmeq->sq_lock);
1196     nvme_sq_copy_cmd(nvmeq, &c);
1197     nvme_write_sq_db(nvmeq, true);
1198     spin_unlock(&nvmeq->sq_lock);
1199 }
1200 
1201 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1202 {
1203     struct nvme_command c = { };
1204 
1205     c.delete_queue.opcode = opcode;
1206     c.delete_queue.qid = cpu_to_le16(id);
1207 
1208     return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1209 }
1210 
1211 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1212         struct nvme_queue *nvmeq, s16 vector)
1213 {
1214     struct nvme_command c = { };
1215     int flags = NVME_QUEUE_PHYS_CONTIG;
1216 
1217     if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1218         flags |= NVME_CQ_IRQ_ENABLED;
1219 
1220     /*
1221      * Note: we (ab)use the fact that the prp fields survive if no data
1222      * is attached to the request.
1223      */
1224     c.create_cq.opcode = nvme_admin_create_cq;
1225     c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1226     c.create_cq.cqid = cpu_to_le16(qid);
1227     c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1228     c.create_cq.cq_flags = cpu_to_le16(flags);
1229     c.create_cq.irq_vector = cpu_to_le16(vector);
1230 
1231     return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1232 }
1233 
1234 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1235                         struct nvme_queue *nvmeq)
1236 {
1237     struct nvme_ctrl *ctrl = &dev->ctrl;
1238     struct nvme_command c = { };
1239     int flags = NVME_QUEUE_PHYS_CONTIG;
1240 
1241     /*
1242      * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1243      * set. Since URGENT priority is zeroes, it makes all queues
1244      * URGENT.
1245      */
1246     if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1247         flags |= NVME_SQ_PRIO_MEDIUM;
1248 
1249     /*
1250      * Note: we (ab)use the fact that the prp fields survive if no data
1251      * is attached to the request.
1252      */
1253     c.create_sq.opcode = nvme_admin_create_sq;
1254     c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1255     c.create_sq.sqid = cpu_to_le16(qid);
1256     c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1257     c.create_sq.sq_flags = cpu_to_le16(flags);
1258     c.create_sq.cqid = cpu_to_le16(qid);
1259 
1260     return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1261 }
1262 
1263 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1264 {
1265     return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1266 }
1267 
1268 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1269 {
1270     return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1271 }
1272 
1273 static void abort_endio(struct request *req, blk_status_t error)
1274 {
1275     struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1276     struct nvme_queue *nvmeq = iod->nvmeq;
1277 
1278     dev_warn(nvmeq->dev->ctrl.device,
1279          "Abort status: 0x%x", nvme_req(req)->status);
1280     atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1281     blk_mq_free_request(req);
1282 }
1283 
1284 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1285 {
1286     /* If true, indicates loss of adapter communication, possibly by a
1287      * NVMe Subsystem reset.
1288      */
1289     bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1290 
1291     /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1292     switch (dev->ctrl.state) {
1293     case NVME_CTRL_RESETTING:
1294     case NVME_CTRL_CONNECTING:
1295         return false;
1296     default:
1297         break;
1298     }
1299 
1300     /* We shouldn't reset unless the controller is on fatal error state
1301      * _or_ if we lost the communication with it.
1302      */
1303     if (!(csts & NVME_CSTS_CFS) && !nssro)
1304         return false;
1305 
1306     return true;
1307 }
1308 
1309 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1310 {
1311     /* Read a config register to help see what died. */
1312     u16 pci_status;
1313     int result;
1314 
1315     result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1316                       &pci_status);
1317     if (result == PCIBIOS_SUCCESSFUL)
1318         dev_warn(dev->ctrl.device,
1319              "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1320              csts, pci_status);
1321     else
1322         dev_warn(dev->ctrl.device,
1323              "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1324              csts, result);
1325 
1326     if (csts != ~0)
1327         return;
1328 
1329     dev_warn(dev->ctrl.device,
1330          "Does your device have a faulty power saving mode enabled?\n");
1331     dev_warn(dev->ctrl.device,
1332          "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1333 }
1334 
1335 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1336 {
1337     struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1338     struct nvme_queue *nvmeq = iod->nvmeq;
1339     struct nvme_dev *dev = nvmeq->dev;
1340     struct request *abort_req;
1341     struct nvme_command cmd = { };
1342     u32 csts = readl(dev->bar + NVME_REG_CSTS);
1343 
1344     /* If PCI error recovery process is happening, we cannot reset or
1345      * the recovery mechanism will surely fail.
1346      */
1347     mb();
1348     if (pci_channel_offline(to_pci_dev(dev->dev)))
1349         return BLK_EH_RESET_TIMER;
1350 
1351     /*
1352      * Reset immediately if the controller is failed
1353      */
1354     if (nvme_should_reset(dev, csts)) {
1355         nvme_warn_reset(dev, csts);
1356         nvme_dev_disable(dev, false);
1357         nvme_reset_ctrl(&dev->ctrl);
1358         return BLK_EH_DONE;
1359     }
1360 
1361     /*
1362      * Did we miss an interrupt?
1363      */
1364     if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1365         nvme_poll(req->mq_hctx, NULL);
1366     else
1367         nvme_poll_irqdisable(nvmeq);
1368 
1369     if (blk_mq_request_completed(req)) {
1370         dev_warn(dev->ctrl.device,
1371              "I/O %d QID %d timeout, completion polled\n",
1372              req->tag, nvmeq->qid);
1373         return BLK_EH_DONE;
1374     }
1375 
1376     /*
1377      * Shutdown immediately if controller times out while starting. The
1378      * reset work will see the pci device disabled when it gets the forced
1379      * cancellation error. All outstanding requests are completed on
1380      * shutdown, so we return BLK_EH_DONE.
1381      */
1382     switch (dev->ctrl.state) {
1383     case NVME_CTRL_CONNECTING:
1384         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1385         fallthrough;
1386     case NVME_CTRL_DELETING:
1387         dev_warn_ratelimited(dev->ctrl.device,
1388              "I/O %d QID %d timeout, disable controller\n",
1389              req->tag, nvmeq->qid);
1390         nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1391         nvme_dev_disable(dev, true);
1392         return BLK_EH_DONE;
1393     case NVME_CTRL_RESETTING:
1394         return BLK_EH_RESET_TIMER;
1395     default:
1396         break;
1397     }
1398 
1399     /*
1400      * Shutdown the controller immediately and schedule a reset if the
1401      * command was already aborted once before and still hasn't been
1402      * returned to the driver, or if this is the admin queue.
1403      */
1404     if (!nvmeq->qid || iod->aborted) {
1405         dev_warn(dev->ctrl.device,
1406              "I/O %d QID %d timeout, reset controller\n",
1407              req->tag, nvmeq->qid);
1408         nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1409         nvme_dev_disable(dev, false);
1410         nvme_reset_ctrl(&dev->ctrl);
1411 
1412         return BLK_EH_DONE;
1413     }
1414 
1415     if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1416         atomic_inc(&dev->ctrl.abort_limit);
1417         return BLK_EH_RESET_TIMER;
1418     }
1419     iod->aborted = 1;
1420 
1421     cmd.abort.opcode = nvme_admin_abort_cmd;
1422     cmd.abort.cid = nvme_cid(req);
1423     cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1424 
1425     dev_warn(nvmeq->dev->ctrl.device,
1426         "I/O %d (%s) QID %d timeout, aborting\n",
1427          req->tag,
1428          nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1429          nvmeq->qid);
1430 
1431     abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1432                      BLK_MQ_REQ_NOWAIT);
1433     if (IS_ERR(abort_req)) {
1434         atomic_inc(&dev->ctrl.abort_limit);
1435         return BLK_EH_RESET_TIMER;
1436     }
1437     nvme_init_request(abort_req, &cmd);
1438 
1439     abort_req->end_io = abort_endio;
1440     abort_req->end_io_data = NULL;
1441     abort_req->rq_flags |= RQF_QUIET;
1442     blk_execute_rq_nowait(abort_req, false);
1443 
1444     /*
1445      * The aborted req will be completed on receiving the abort req.
1446      * We enable the timer again. If hit twice, it'll cause a device reset,
1447      * as the device then is in a faulty state.
1448      */
1449     return BLK_EH_RESET_TIMER;
1450 }
1451 
1452 static void nvme_free_queue(struct nvme_queue *nvmeq)
1453 {
1454     dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1455                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1456     if (!nvmeq->sq_cmds)
1457         return;
1458 
1459     if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1460         pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1461                 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1462     } else {
1463         dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1464                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1465     }
1466 }
1467 
1468 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1469 {
1470     int i;
1471 
1472     for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1473         dev->ctrl.queue_count--;
1474         nvme_free_queue(&dev->queues[i]);
1475     }
1476 }
1477 
1478 /**
1479  * nvme_suspend_queue - put queue into suspended state
1480  * @nvmeq: queue to suspend
1481  */
1482 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1483 {
1484     if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1485         return 1;
1486 
1487     /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1488     mb();
1489 
1490     nvmeq->dev->online_queues--;
1491     if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1492         nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1493     if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1494         pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1495     return 0;
1496 }
1497 
1498 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1499 {
1500     int i;
1501 
1502     for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1503         nvme_suspend_queue(&dev->queues[i]);
1504 }
1505 
1506 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1507 {
1508     struct nvme_queue *nvmeq = &dev->queues[0];
1509 
1510     if (shutdown)
1511         nvme_shutdown_ctrl(&dev->ctrl);
1512     else
1513         nvme_disable_ctrl(&dev->ctrl);
1514 
1515     nvme_poll_irqdisable(nvmeq);
1516 }
1517 
1518 /*
1519  * Called only on a device that has been disabled and after all other threads
1520  * that can check this device's completion queues have synced, except
1521  * nvme_poll(). This is the last chance for the driver to see a natural
1522  * completion before nvme_cancel_request() terminates all incomplete requests.
1523  */
1524 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1525 {
1526     int i;
1527 
1528     for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1529         spin_lock(&dev->queues[i].cq_poll_lock);
1530         nvme_poll_cq(&dev->queues[i], NULL);
1531         spin_unlock(&dev->queues[i].cq_poll_lock);
1532     }
1533 }
1534 
1535 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1536                 int entry_size)
1537 {
1538     int q_depth = dev->q_depth;
1539     unsigned q_size_aligned = roundup(q_depth * entry_size,
1540                       NVME_CTRL_PAGE_SIZE);
1541 
1542     if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1543         u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1544 
1545         mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1546         q_depth = div_u64(mem_per_q, entry_size);
1547 
1548         /*
1549          * Ensure the reduced q_depth is above some threshold where it
1550          * would be better to map queues in system memory with the
1551          * original depth
1552          */
1553         if (q_depth < 64)
1554             return -ENOMEM;
1555     }
1556 
1557     return q_depth;
1558 }
1559 
1560 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1561                 int qid)
1562 {
1563     struct pci_dev *pdev = to_pci_dev(dev->dev);
1564 
1565     if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1566         nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1567         if (nvmeq->sq_cmds) {
1568             nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1569                             nvmeq->sq_cmds);
1570             if (nvmeq->sq_dma_addr) {
1571                 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1572                 return 0;
1573             }
1574 
1575             pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1576         }
1577     }
1578 
1579     nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1580                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1581     if (!nvmeq->sq_cmds)
1582         return -ENOMEM;
1583     return 0;
1584 }
1585 
1586 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1587 {
1588     struct nvme_queue *nvmeq = &dev->queues[qid];
1589 
1590     if (dev->ctrl.queue_count > qid)
1591         return 0;
1592 
1593     nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1594     nvmeq->q_depth = depth;
1595     nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1596                      &nvmeq->cq_dma_addr, GFP_KERNEL);
1597     if (!nvmeq->cqes)
1598         goto free_nvmeq;
1599 
1600     if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1601         goto free_cqdma;
1602 
1603     nvmeq->dev = dev;
1604     spin_lock_init(&nvmeq->sq_lock);
1605     spin_lock_init(&nvmeq->cq_poll_lock);
1606     nvmeq->cq_head = 0;
1607     nvmeq->cq_phase = 1;
1608     nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1609     nvmeq->qid = qid;
1610     dev->ctrl.queue_count++;
1611 
1612     return 0;
1613 
1614  free_cqdma:
1615     dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1616               nvmeq->cq_dma_addr);
1617  free_nvmeq:
1618     return -ENOMEM;
1619 }
1620 
1621 static int queue_request_irq(struct nvme_queue *nvmeq)
1622 {
1623     struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1624     int nr = nvmeq->dev->ctrl.instance;
1625 
1626     if (use_threaded_interrupts) {
1627         return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1628                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1629     } else {
1630         return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1631                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1632     }
1633 }
1634 
1635 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1636 {
1637     struct nvme_dev *dev = nvmeq->dev;
1638 
1639     nvmeq->sq_tail = 0;
1640     nvmeq->last_sq_tail = 0;
1641     nvmeq->cq_head = 0;
1642     nvmeq->cq_phase = 1;
1643     nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1644     memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1645     nvme_dbbuf_init(dev, nvmeq, qid);
1646     dev->online_queues++;
1647     wmb(); /* ensure the first interrupt sees the initialization */
1648 }
1649 
1650 /*
1651  * Try getting shutdown_lock while setting up IO queues.
1652  */
1653 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1654 {
1655     /*
1656      * Give up if the lock is being held by nvme_dev_disable.
1657      */
1658     if (!mutex_trylock(&dev->shutdown_lock))
1659         return -ENODEV;
1660 
1661     /*
1662      * Controller is in wrong state, fail early.
1663      */
1664     if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1665         mutex_unlock(&dev->shutdown_lock);
1666         return -ENODEV;
1667     }
1668 
1669     return 0;
1670 }
1671 
1672 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1673 {
1674     struct nvme_dev *dev = nvmeq->dev;
1675     int result;
1676     u16 vector = 0;
1677 
1678     clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1679 
1680     /*
1681      * A queue's vector matches the queue identifier unless the controller
1682      * has only one vector available.
1683      */
1684     if (!polled)
1685         vector = dev->num_vecs == 1 ? 0 : qid;
1686     else
1687         set_bit(NVMEQ_POLLED, &nvmeq->flags);
1688 
1689     result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1690     if (result)
1691         return result;
1692 
1693     result = adapter_alloc_sq(dev, qid, nvmeq);
1694     if (result < 0)
1695         return result;
1696     if (result)
1697         goto release_cq;
1698 
1699     nvmeq->cq_vector = vector;
1700 
1701     result = nvme_setup_io_queues_trylock(dev);
1702     if (result)
1703         return result;
1704     nvme_init_queue(nvmeq, qid);
1705     if (!polled) {
1706         result = queue_request_irq(nvmeq);
1707         if (result < 0)
1708             goto release_sq;
1709     }
1710 
1711     set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1712     mutex_unlock(&dev->shutdown_lock);
1713     return result;
1714 
1715 release_sq:
1716     dev->online_queues--;
1717     mutex_unlock(&dev->shutdown_lock);
1718     adapter_delete_sq(dev, qid);
1719 release_cq:
1720     adapter_delete_cq(dev, qid);
1721     return result;
1722 }
1723 
1724 static const struct blk_mq_ops nvme_mq_admin_ops = {
1725     .queue_rq   = nvme_queue_rq,
1726     .complete   = nvme_pci_complete_rq,
1727     .init_hctx  = nvme_admin_init_hctx,
1728     .init_request   = nvme_pci_init_request,
1729     .timeout    = nvme_timeout,
1730 };
1731 
1732 static const struct blk_mq_ops nvme_mq_ops = {
1733     .queue_rq   = nvme_queue_rq,
1734     .queue_rqs  = nvme_queue_rqs,
1735     .complete   = nvme_pci_complete_rq,
1736     .commit_rqs = nvme_commit_rqs,
1737     .init_hctx  = nvme_init_hctx,
1738     .init_request   = nvme_pci_init_request,
1739     .map_queues = nvme_pci_map_queues,
1740     .timeout    = nvme_timeout,
1741     .poll       = nvme_poll,
1742 };
1743 
1744 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1745 {
1746     if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1747         /*
1748          * If the controller was reset during removal, it's possible
1749          * user requests may be waiting on a stopped queue. Start the
1750          * queue to flush these to completion.
1751          */
1752         nvme_start_admin_queue(&dev->ctrl);
1753         blk_mq_destroy_queue(dev->ctrl.admin_q);
1754         blk_mq_free_tag_set(&dev->admin_tagset);
1755     }
1756 }
1757 
1758 static int nvme_pci_alloc_admin_tag_set(struct nvme_dev *dev)
1759 {
1760     struct blk_mq_tag_set *set = &dev->admin_tagset;
1761 
1762     set->ops = &nvme_mq_admin_ops;
1763     set->nr_hw_queues = 1;
1764 
1765     set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1766     set->timeout = NVME_ADMIN_TIMEOUT;
1767     set->numa_node = dev->ctrl.numa_node;
1768     set->cmd_size = sizeof(struct nvme_iod);
1769     set->flags = BLK_MQ_F_NO_SCHED;
1770     set->driver_data = dev;
1771 
1772     if (blk_mq_alloc_tag_set(set))
1773         return -ENOMEM;
1774     dev->ctrl.admin_tagset = set;
1775 
1776     dev->ctrl.admin_q = blk_mq_init_queue(set);
1777     if (IS_ERR(dev->ctrl.admin_q)) {
1778         blk_mq_free_tag_set(set);
1779         dev->ctrl.admin_q = NULL;
1780         return -ENOMEM;
1781     }
1782     if (!blk_get_queue(dev->ctrl.admin_q)) {
1783         nvme_dev_remove_admin(dev);
1784         dev->ctrl.admin_q = NULL;
1785         return -ENODEV;
1786     }
1787     return 0;
1788 }
1789 
1790 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1791 {
1792     return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1793 }
1794 
1795 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1796 {
1797     struct pci_dev *pdev = to_pci_dev(dev->dev);
1798 
1799     if (size <= dev->bar_mapped_size)
1800         return 0;
1801     if (size > pci_resource_len(pdev, 0))
1802         return -ENOMEM;
1803     if (dev->bar)
1804         iounmap(dev->bar);
1805     dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1806     if (!dev->bar) {
1807         dev->bar_mapped_size = 0;
1808         return -ENOMEM;
1809     }
1810     dev->bar_mapped_size = size;
1811     dev->dbs = dev->bar + NVME_REG_DBS;
1812 
1813     return 0;
1814 }
1815 
1816 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1817 {
1818     int result;
1819     u32 aqa;
1820     struct nvme_queue *nvmeq;
1821 
1822     result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1823     if (result < 0)
1824         return result;
1825 
1826     dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1827                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1828 
1829     if (dev->subsystem &&
1830         (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1831         writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1832 
1833     result = nvme_disable_ctrl(&dev->ctrl);
1834     if (result < 0)
1835         return result;
1836 
1837     result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1838     if (result)
1839         return result;
1840 
1841     dev->ctrl.numa_node = dev_to_node(dev->dev);
1842 
1843     nvmeq = &dev->queues[0];
1844     aqa = nvmeq->q_depth - 1;
1845     aqa |= aqa << 16;
1846 
1847     writel(aqa, dev->bar + NVME_REG_AQA);
1848     lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1849     lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1850 
1851     result = nvme_enable_ctrl(&dev->ctrl);
1852     if (result)
1853         return result;
1854 
1855     nvmeq->cq_vector = 0;
1856     nvme_init_queue(nvmeq, 0);
1857     result = queue_request_irq(nvmeq);
1858     if (result) {
1859         dev->online_queues--;
1860         return result;
1861     }
1862 
1863     set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1864     return result;
1865 }
1866 
1867 static int nvme_create_io_queues(struct nvme_dev *dev)
1868 {
1869     unsigned i, max, rw_queues;
1870     int ret = 0;
1871 
1872     for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1873         if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1874             ret = -ENOMEM;
1875             break;
1876         }
1877     }
1878 
1879     max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1880     if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1881         rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1882                 dev->io_queues[HCTX_TYPE_READ];
1883     } else {
1884         rw_queues = max;
1885     }
1886 
1887     for (i = dev->online_queues; i <= max; i++) {
1888         bool polled = i > rw_queues;
1889 
1890         ret = nvme_create_queue(&dev->queues[i], i, polled);
1891         if (ret)
1892             break;
1893     }
1894 
1895     /*
1896      * Ignore failing Create SQ/CQ commands, we can continue with less
1897      * than the desired amount of queues, and even a controller without
1898      * I/O queues can still be used to issue admin commands.  This might
1899      * be useful to upgrade a buggy firmware for example.
1900      */
1901     return ret >= 0 ? 0 : ret;
1902 }
1903 
1904 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1905 {
1906     u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1907 
1908     return 1ULL << (12 + 4 * szu);
1909 }
1910 
1911 static u32 nvme_cmb_size(struct nvme_dev *dev)
1912 {
1913     return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1914 }
1915 
1916 static void nvme_map_cmb(struct nvme_dev *dev)
1917 {
1918     u64 size, offset;
1919     resource_size_t bar_size;
1920     struct pci_dev *pdev = to_pci_dev(dev->dev);
1921     int bar;
1922 
1923     if (dev->cmb_size)
1924         return;
1925 
1926     if (NVME_CAP_CMBS(dev->ctrl.cap))
1927         writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1928 
1929     dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1930     if (!dev->cmbsz)
1931         return;
1932     dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1933 
1934     size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1935     offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1936     bar = NVME_CMB_BIR(dev->cmbloc);
1937     bar_size = pci_resource_len(pdev, bar);
1938 
1939     if (offset > bar_size)
1940         return;
1941 
1942     /*
1943      * Tell the controller about the host side address mapping the CMB,
1944      * and enable CMB decoding for the NVMe 1.4+ scheme:
1945      */
1946     if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1947         hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1948                  (pci_bus_address(pdev, bar) + offset),
1949                  dev->bar + NVME_REG_CMBMSC);
1950     }
1951 
1952     /*
1953      * Controllers may support a CMB size larger than their BAR,
1954      * for example, due to being behind a bridge. Reduce the CMB to
1955      * the reported size of the BAR
1956      */
1957     if (size > bar_size - offset)
1958         size = bar_size - offset;
1959 
1960     if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1961         dev_warn(dev->ctrl.device,
1962              "failed to register the CMB\n");
1963         return;
1964     }
1965 
1966     dev->cmb_size = size;
1967     dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1968 
1969     if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1970             (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1971         pci_p2pmem_publish(pdev, true);
1972 }
1973 
1974 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1975 {
1976     u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1977     u64 dma_addr = dev->host_mem_descs_dma;
1978     struct nvme_command c = { };
1979     int ret;
1980 
1981     c.features.opcode   = nvme_admin_set_features;
1982     c.features.fid      = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1983     c.features.dword11  = cpu_to_le32(bits);
1984     c.features.dword12  = cpu_to_le32(host_mem_size);
1985     c.features.dword13  = cpu_to_le32(lower_32_bits(dma_addr));
1986     c.features.dword14  = cpu_to_le32(upper_32_bits(dma_addr));
1987     c.features.dword15  = cpu_to_le32(dev->nr_host_mem_descs);
1988 
1989     ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1990     if (ret) {
1991         dev_warn(dev->ctrl.device,
1992              "failed to set host mem (err %d, flags %#x).\n",
1993              ret, bits);
1994     } else
1995         dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1996 
1997     return ret;
1998 }
1999 
2000 static void nvme_free_host_mem(struct nvme_dev *dev)
2001 {
2002     int i;
2003 
2004     for (i = 0; i < dev->nr_host_mem_descs; i++) {
2005         struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2006         size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2007 
2008         dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2009                    le64_to_cpu(desc->addr),
2010                    DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2011     }
2012 
2013     kfree(dev->host_mem_desc_bufs);
2014     dev->host_mem_desc_bufs = NULL;
2015     dma_free_coherent(dev->dev,
2016             dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
2017             dev->host_mem_descs, dev->host_mem_descs_dma);
2018     dev->host_mem_descs = NULL;
2019     dev->nr_host_mem_descs = 0;
2020 }
2021 
2022 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2023         u32 chunk_size)
2024 {
2025     struct nvme_host_mem_buf_desc *descs;
2026     u32 max_entries, len;
2027     dma_addr_t descs_dma;
2028     int i = 0;
2029     void **bufs;
2030     u64 size, tmp;
2031 
2032     tmp = (preferred + chunk_size - 1);
2033     do_div(tmp, chunk_size);
2034     max_entries = tmp;
2035 
2036     if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2037         max_entries = dev->ctrl.hmmaxd;
2038 
2039     descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
2040                    &descs_dma, GFP_KERNEL);
2041     if (!descs)
2042         goto out;
2043 
2044     bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2045     if (!bufs)
2046         goto out_free_descs;
2047 
2048     for (size = 0; size < preferred && i < max_entries; size += len) {
2049         dma_addr_t dma_addr;
2050 
2051         len = min_t(u64, chunk_size, preferred - size);
2052         bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2053                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2054         if (!bufs[i])
2055             break;
2056 
2057         descs[i].addr = cpu_to_le64(dma_addr);
2058         descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2059         i++;
2060     }
2061 
2062     if (!size)
2063         goto out_free_bufs;
2064 
2065     dev->nr_host_mem_descs = i;
2066     dev->host_mem_size = size;
2067     dev->host_mem_descs = descs;
2068     dev->host_mem_descs_dma = descs_dma;
2069     dev->host_mem_desc_bufs = bufs;
2070     return 0;
2071 
2072 out_free_bufs:
2073     while (--i >= 0) {
2074         size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2075 
2076         dma_free_attrs(dev->dev, size, bufs[i],
2077                    le64_to_cpu(descs[i].addr),
2078                    DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2079     }
2080 
2081     kfree(bufs);
2082 out_free_descs:
2083     dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2084             descs_dma);
2085 out:
2086     dev->host_mem_descs = NULL;
2087     return -ENOMEM;
2088 }
2089 
2090 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2091 {
2092     u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2093     u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2094     u64 chunk_size;
2095 
2096     /* start big and work our way down */
2097     for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2098         if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2099             if (!min || dev->host_mem_size >= min)
2100                 return 0;
2101             nvme_free_host_mem(dev);
2102         }
2103     }
2104 
2105     return -ENOMEM;
2106 }
2107 
2108 static int nvme_setup_host_mem(struct nvme_dev *dev)
2109 {
2110     u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2111     u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2112     u64 min = (u64)dev->ctrl.hmmin * 4096;
2113     u32 enable_bits = NVME_HOST_MEM_ENABLE;
2114     int ret;
2115 
2116     preferred = min(preferred, max);
2117     if (min > max) {
2118         dev_warn(dev->ctrl.device,
2119             "min host memory (%lld MiB) above limit (%d MiB).\n",
2120             min >> ilog2(SZ_1M), max_host_mem_size_mb);
2121         nvme_free_host_mem(dev);
2122         return 0;
2123     }
2124 
2125     /*
2126      * If we already have a buffer allocated check if we can reuse it.
2127      */
2128     if (dev->host_mem_descs) {
2129         if (dev->host_mem_size >= min)
2130             enable_bits |= NVME_HOST_MEM_RETURN;
2131         else
2132             nvme_free_host_mem(dev);
2133     }
2134 
2135     if (!dev->host_mem_descs) {
2136         if (nvme_alloc_host_mem(dev, min, preferred)) {
2137             dev_warn(dev->ctrl.device,
2138                 "failed to allocate host memory buffer.\n");
2139             return 0; /* controller must work without HMB */
2140         }
2141 
2142         dev_info(dev->ctrl.device,
2143             "allocated %lld MiB host memory buffer.\n",
2144             dev->host_mem_size >> ilog2(SZ_1M));
2145     }
2146 
2147     ret = nvme_set_host_mem(dev, enable_bits);
2148     if (ret)
2149         nvme_free_host_mem(dev);
2150     return ret;
2151 }
2152 
2153 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2154         char *buf)
2155 {
2156     struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2157 
2158     return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2159                ndev->cmbloc, ndev->cmbsz);
2160 }
2161 static DEVICE_ATTR_RO(cmb);
2162 
2163 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2164         char *buf)
2165 {
2166     struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2167 
2168     return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2169 }
2170 static DEVICE_ATTR_RO(cmbloc);
2171 
2172 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2173         char *buf)
2174 {
2175     struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2176 
2177     return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2178 }
2179 static DEVICE_ATTR_RO(cmbsz);
2180 
2181 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2182             char *buf)
2183 {
2184     struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2185 
2186     return sysfs_emit(buf, "%d\n", ndev->hmb);
2187 }
2188 
2189 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2190              const char *buf, size_t count)
2191 {
2192     struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2193     bool new;
2194     int ret;
2195 
2196     if (strtobool(buf, &new) < 0)
2197         return -EINVAL;
2198 
2199     if (new == ndev->hmb)
2200         return count;
2201 
2202     if (new) {
2203         ret = nvme_setup_host_mem(ndev);
2204     } else {
2205         ret = nvme_set_host_mem(ndev, 0);
2206         if (!ret)
2207             nvme_free_host_mem(ndev);
2208     }
2209 
2210     if (ret < 0)
2211         return ret;
2212 
2213     return count;
2214 }
2215 static DEVICE_ATTR_RW(hmb);
2216 
2217 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2218         struct attribute *a, int n)
2219 {
2220     struct nvme_ctrl *ctrl =
2221         dev_get_drvdata(container_of(kobj, struct device, kobj));
2222     struct nvme_dev *dev = to_nvme_dev(ctrl);
2223 
2224     if (a == &dev_attr_cmb.attr ||
2225         a == &dev_attr_cmbloc.attr ||
2226         a == &dev_attr_cmbsz.attr) {
2227             if (!dev->cmbsz)
2228             return 0;
2229     }
2230     if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2231         return 0;
2232 
2233     return a->mode;
2234 }
2235 
2236 static struct attribute *nvme_pci_attrs[] = {
2237     &dev_attr_cmb.attr,
2238     &dev_attr_cmbloc.attr,
2239     &dev_attr_cmbsz.attr,
2240     &dev_attr_hmb.attr,
2241     NULL,
2242 };
2243 
2244 static const struct attribute_group nvme_pci_attr_group = {
2245     .attrs      = nvme_pci_attrs,
2246     .is_visible = nvme_pci_attrs_are_visible,
2247 };
2248 
2249 /*
2250  * nirqs is the number of interrupts available for write and read
2251  * queues. The core already reserved an interrupt for the admin queue.
2252  */
2253 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2254 {
2255     struct nvme_dev *dev = affd->priv;
2256     unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2257 
2258     /*
2259      * If there is no interrupt available for queues, ensure that
2260      * the default queue is set to 1. The affinity set size is
2261      * also set to one, but the irq core ignores it for this case.
2262      *
2263      * If only one interrupt is available or 'write_queue' == 0, combine
2264      * write and read queues.
2265      *
2266      * If 'write_queues' > 0, ensure it leaves room for at least one read
2267      * queue.
2268      */
2269     if (!nrirqs) {
2270         nrirqs = 1;
2271         nr_read_queues = 0;
2272     } else if (nrirqs == 1 || !nr_write_queues) {
2273         nr_read_queues = 0;
2274     } else if (nr_write_queues >= nrirqs) {
2275         nr_read_queues = 1;
2276     } else {
2277         nr_read_queues = nrirqs - nr_write_queues;
2278     }
2279 
2280     dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2281     affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2282     dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2283     affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2284     affd->nr_sets = nr_read_queues ? 2 : 1;
2285 }
2286 
2287 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2288 {
2289     struct pci_dev *pdev = to_pci_dev(dev->dev);
2290     struct irq_affinity affd = {
2291         .pre_vectors    = 1,
2292         .calc_sets  = nvme_calc_irq_sets,
2293         .priv       = dev,
2294     };
2295     unsigned int irq_queues, poll_queues;
2296 
2297     /*
2298      * Poll queues don't need interrupts, but we need at least one I/O queue
2299      * left over for non-polled I/O.
2300      */
2301     poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2302     dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2303 
2304     /*
2305      * Initialize for the single interrupt case, will be updated in
2306      * nvme_calc_irq_sets().
2307      */
2308     dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2309     dev->io_queues[HCTX_TYPE_READ] = 0;
2310 
2311     /*
2312      * We need interrupts for the admin queue and each non-polled I/O queue,
2313      * but some Apple controllers require all queues to use the first
2314      * vector.
2315      */
2316     irq_queues = 1;
2317     if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2318         irq_queues += (nr_io_queues - poll_queues);
2319     return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2320                   PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2321 }
2322 
2323 static void nvme_disable_io_queues(struct nvme_dev *dev)
2324 {
2325     if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2326         __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2327 }
2328 
2329 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2330 {
2331     /*
2332      * If tags are shared with admin queue (Apple bug), then
2333      * make sure we only use one IO queue.
2334      */
2335     if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2336         return 1;
2337     return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2338 }
2339 
2340 static int nvme_setup_io_queues(struct nvme_dev *dev)
2341 {
2342     struct nvme_queue *adminq = &dev->queues[0];
2343     struct pci_dev *pdev = to_pci_dev(dev->dev);
2344     unsigned int nr_io_queues;
2345     unsigned long size;
2346     int result;
2347 
2348     /*
2349      * Sample the module parameters once at reset time so that we have
2350      * stable values to work with.
2351      */
2352     dev->nr_write_queues = write_queues;
2353     dev->nr_poll_queues = poll_queues;
2354 
2355     nr_io_queues = dev->nr_allocated_queues - 1;
2356     result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2357     if (result < 0)
2358         return result;
2359 
2360     if (nr_io_queues == 0)
2361         return 0;
2362 
2363     /*
2364      * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2365      * from set to unset. If there is a window to it is truely freed,
2366      * pci_free_irq_vectors() jumping into this window will crash.
2367      * And take lock to avoid racing with pci_free_irq_vectors() in
2368      * nvme_dev_disable() path.
2369      */
2370     result = nvme_setup_io_queues_trylock(dev);
2371     if (result)
2372         return result;
2373     if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2374         pci_free_irq(pdev, 0, adminq);
2375 
2376     if (dev->cmb_use_sqes) {
2377         result = nvme_cmb_qdepth(dev, nr_io_queues,
2378                 sizeof(struct nvme_command));
2379         if (result > 0)
2380             dev->q_depth = result;
2381         else
2382             dev->cmb_use_sqes = false;
2383     }
2384 
2385     do {
2386         size = db_bar_size(dev, nr_io_queues);
2387         result = nvme_remap_bar(dev, size);
2388         if (!result)
2389             break;
2390         if (!--nr_io_queues) {
2391             result = -ENOMEM;
2392             goto out_unlock;
2393         }
2394     } while (1);
2395     adminq->q_db = dev->dbs;
2396 
2397  retry:
2398     /* Deregister the admin queue's interrupt */
2399     if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2400         pci_free_irq(pdev, 0, adminq);
2401 
2402     /*
2403      * If we enable msix early due to not intx, disable it again before
2404      * setting up the full range we need.
2405      */
2406     pci_free_irq_vectors(pdev);
2407 
2408     result = nvme_setup_irqs(dev, nr_io_queues);
2409     if (result <= 0) {
2410         result = -EIO;
2411         goto out_unlock;
2412     }
2413 
2414     dev->num_vecs = result;
2415     result = max(result - 1, 1);
2416     dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2417 
2418     /*
2419      * Should investigate if there's a performance win from allocating
2420      * more queues than interrupt vectors; it might allow the submission
2421      * path to scale better, even if the receive path is limited by the
2422      * number of interrupts.
2423      */
2424     result = queue_request_irq(adminq);
2425     if (result)
2426         goto out_unlock;
2427     set_bit(NVMEQ_ENABLED, &adminq->flags);
2428     mutex_unlock(&dev->shutdown_lock);
2429 
2430     result = nvme_create_io_queues(dev);
2431     if (result || dev->online_queues < 2)
2432         return result;
2433 
2434     if (dev->online_queues - 1 < dev->max_qid) {
2435         nr_io_queues = dev->online_queues - 1;
2436         nvme_disable_io_queues(dev);
2437         result = nvme_setup_io_queues_trylock(dev);
2438         if (result)
2439             return result;
2440         nvme_suspend_io_queues(dev);
2441         goto retry;
2442     }
2443     dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2444                     dev->io_queues[HCTX_TYPE_DEFAULT],
2445                     dev->io_queues[HCTX_TYPE_READ],
2446                     dev->io_queues[HCTX_TYPE_POLL]);
2447     return 0;
2448 out_unlock:
2449     mutex_unlock(&dev->shutdown_lock);
2450     return result;
2451 }
2452 
2453 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2454 {
2455     struct nvme_queue *nvmeq = req->end_io_data;
2456 
2457     blk_mq_free_request(req);
2458     complete(&nvmeq->delete_done);
2459 }
2460 
2461 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2462 {
2463     struct nvme_queue *nvmeq = req->end_io_data;
2464 
2465     if (error)
2466         set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2467 
2468     nvme_del_queue_end(req, error);
2469 }
2470 
2471 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2472 {
2473     struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2474     struct request *req;
2475     struct nvme_command cmd = { };
2476 
2477     cmd.delete_queue.opcode = opcode;
2478     cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2479 
2480     req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2481     if (IS_ERR(req))
2482         return PTR_ERR(req);
2483     nvme_init_request(req, &cmd);
2484 
2485     if (opcode == nvme_admin_delete_cq)
2486         req->end_io = nvme_del_cq_end;
2487     else
2488         req->end_io = nvme_del_queue_end;
2489     req->end_io_data = nvmeq;
2490 
2491     init_completion(&nvmeq->delete_done);
2492     req->rq_flags |= RQF_QUIET;
2493     blk_execute_rq_nowait(req, false);
2494     return 0;
2495 }
2496 
2497 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2498 {
2499     int nr_queues = dev->online_queues - 1, sent = 0;
2500     unsigned long timeout;
2501 
2502  retry:
2503     timeout = NVME_ADMIN_TIMEOUT;
2504     while (nr_queues > 0) {
2505         if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2506             break;
2507         nr_queues--;
2508         sent++;
2509     }
2510     while (sent) {
2511         struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2512 
2513         timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2514                 timeout);
2515         if (timeout == 0)
2516             return false;
2517 
2518         sent--;
2519         if (nr_queues)
2520             goto retry;
2521     }
2522     return true;
2523 }
2524 
2525 static void nvme_pci_alloc_tag_set(struct nvme_dev *dev)
2526 {
2527     struct blk_mq_tag_set * set = &dev->tagset;
2528     int ret;
2529 
2530     set->ops = &nvme_mq_ops;
2531     set->nr_hw_queues = dev->online_queues - 1;
2532     set->nr_maps = 2; /* default + read */
2533     if (dev->io_queues[HCTX_TYPE_POLL])
2534         set->nr_maps++;
2535     set->timeout = NVME_IO_TIMEOUT;
2536     set->numa_node = dev->ctrl.numa_node;
2537     set->queue_depth = min_t(unsigned, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2538     set->cmd_size = sizeof(struct nvme_iod);
2539     set->flags = BLK_MQ_F_SHOULD_MERGE;
2540     set->driver_data = dev;
2541 
2542     /*
2543      * Some Apple controllers requires tags to be unique
2544      * across admin and IO queue, so reserve the first 32
2545      * tags of the IO queue.
2546      */
2547     if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2548         set->reserved_tags = NVME_AQ_DEPTH;
2549 
2550     ret = blk_mq_alloc_tag_set(set);
2551     if (ret) {
2552         dev_warn(dev->ctrl.device,
2553             "IO queues tagset allocation failed %d\n", ret);
2554         return;
2555     }
2556     dev->ctrl.tagset = set;
2557 }
2558 
2559 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2560 {
2561     blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2562     /* free previously allocated queues that are no longer usable */
2563     nvme_free_queues(dev, dev->online_queues);
2564 }
2565 
2566 static int nvme_pci_enable(struct nvme_dev *dev)
2567 {
2568     int result = -ENOMEM;
2569     struct pci_dev *pdev = to_pci_dev(dev->dev);
2570     int dma_address_bits = 64;
2571 
2572     if (pci_enable_device_mem(pdev))
2573         return result;
2574 
2575     pci_set_master(pdev);
2576 
2577     if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2578         dma_address_bits = 48;
2579     if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2580         goto disable;
2581 
2582     if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2583         result = -ENODEV;
2584         goto disable;
2585     }
2586 
2587     /*
2588      * Some devices and/or platforms don't advertise or work with INTx
2589      * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2590      * adjust this later.
2591      */
2592     result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2593     if (result < 0)
2594         return result;
2595 
2596     dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2597 
2598     dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2599                 io_queue_depth);
2600     dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2601     dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2602     dev->dbs = dev->bar + 4096;
2603 
2604     /*
2605      * Some Apple controllers require a non-standard SQE size.
2606      * Interestingly they also seem to ignore the CC:IOSQES register
2607      * so we don't bother updating it here.
2608      */
2609     if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2610         dev->io_sqes = 7;
2611     else
2612         dev->io_sqes = NVME_NVM_IOSQES;
2613 
2614     /*
2615      * Temporary fix for the Apple controller found in the MacBook8,1 and
2616      * some MacBook7,1 to avoid controller resets and data loss.
2617      */
2618     if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2619         dev->q_depth = 2;
2620         dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2621             "set queue depth=%u to work around controller resets\n",
2622             dev->q_depth);
2623     } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2624            (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2625            NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2626         dev->q_depth = 64;
2627         dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2628                         "set queue depth=%u\n", dev->q_depth);
2629     }
2630 
2631     /*
2632      * Controllers with the shared tags quirk need the IO queue to be
2633      * big enough so that we get 32 tags for the admin queue
2634      */
2635     if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2636         (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2637         dev->q_depth = NVME_AQ_DEPTH + 2;
2638         dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2639              dev->q_depth);
2640     }
2641 
2642 
2643     nvme_map_cmb(dev);
2644 
2645     pci_enable_pcie_error_reporting(pdev);
2646     pci_save_state(pdev);
2647     return 0;
2648 
2649  disable:
2650     pci_disable_device(pdev);
2651     return result;
2652 }
2653 
2654 static void nvme_dev_unmap(struct nvme_dev *dev)
2655 {
2656     if (dev->bar)
2657         iounmap(dev->bar);
2658     pci_release_mem_regions(to_pci_dev(dev->dev));
2659 }
2660 
2661 static void nvme_pci_disable(struct nvme_dev *dev)
2662 {
2663     struct pci_dev *pdev = to_pci_dev(dev->dev);
2664 
2665     pci_free_irq_vectors(pdev);
2666 
2667     if (pci_is_enabled(pdev)) {
2668         pci_disable_pcie_error_reporting(pdev);
2669         pci_disable_device(pdev);
2670     }
2671 }
2672 
2673 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2674 {
2675     bool dead = true, freeze = false;
2676     struct pci_dev *pdev = to_pci_dev(dev->dev);
2677 
2678     mutex_lock(&dev->shutdown_lock);
2679     if (pci_is_enabled(pdev)) {
2680         u32 csts;
2681 
2682         if (pci_device_is_present(pdev))
2683             csts = readl(dev->bar + NVME_REG_CSTS);
2684         else
2685             csts = ~0;
2686 
2687         if (dev->ctrl.state == NVME_CTRL_LIVE ||
2688             dev->ctrl.state == NVME_CTRL_RESETTING) {
2689             freeze = true;
2690             nvme_start_freeze(&dev->ctrl);
2691         }
2692         dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2693             pdev->error_state  != pci_channel_io_normal);
2694     }
2695 
2696     /*
2697      * Give the controller a chance to complete all entered requests if
2698      * doing a safe shutdown.
2699      */
2700     if (!dead && shutdown && freeze)
2701         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2702 
2703     nvme_stop_queues(&dev->ctrl);
2704 
2705     if (!dead && dev->ctrl.queue_count > 0) {
2706         nvme_disable_io_queues(dev);
2707         nvme_disable_admin_queue(dev, shutdown);
2708     }
2709     nvme_suspend_io_queues(dev);
2710     nvme_suspend_queue(&dev->queues[0]);
2711     nvme_pci_disable(dev);
2712     nvme_reap_pending_cqes(dev);
2713 
2714     nvme_cancel_tagset(&dev->ctrl);
2715     nvme_cancel_admin_tagset(&dev->ctrl);
2716 
2717     /*
2718      * The driver will not be starting up queues again if shutting down so
2719      * must flush all entered requests to their failed completion to avoid
2720      * deadlocking blk-mq hot-cpu notifier.
2721      */
2722     if (shutdown) {
2723         nvme_start_queues(&dev->ctrl);
2724         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2725             nvme_start_admin_queue(&dev->ctrl);
2726     }
2727     mutex_unlock(&dev->shutdown_lock);
2728 }
2729 
2730 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2731 {
2732     if (!nvme_wait_reset(&dev->ctrl))
2733         return -EBUSY;
2734     nvme_dev_disable(dev, shutdown);
2735     return 0;
2736 }
2737 
2738 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2739 {
2740     dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2741                         NVME_CTRL_PAGE_SIZE,
2742                         NVME_CTRL_PAGE_SIZE, 0);
2743     if (!dev->prp_page_pool)
2744         return -ENOMEM;
2745 
2746     /* Optimisation for I/Os between 4k and 128k */
2747     dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2748                         256, 256, 0);
2749     if (!dev->prp_small_pool) {
2750         dma_pool_destroy(dev->prp_page_pool);
2751         return -ENOMEM;
2752     }
2753     return 0;
2754 }
2755 
2756 static void nvme_release_prp_pools(struct nvme_dev *dev)
2757 {
2758     dma_pool_destroy(dev->prp_page_pool);
2759     dma_pool_destroy(dev->prp_small_pool);
2760 }
2761 
2762 static void nvme_free_tagset(struct nvme_dev *dev)
2763 {
2764     if (dev->tagset.tags)
2765         blk_mq_free_tag_set(&dev->tagset);
2766     dev->ctrl.tagset = NULL;
2767 }
2768 
2769 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2770 {
2771     struct nvme_dev *dev = to_nvme_dev(ctrl);
2772 
2773     nvme_dbbuf_dma_free(dev);
2774     nvme_free_tagset(dev);
2775     if (dev->ctrl.admin_q)
2776         blk_put_queue(dev->ctrl.admin_q);
2777     free_opal_dev(dev->ctrl.opal_dev);
2778     mempool_destroy(dev->iod_mempool);
2779     put_device(dev->dev);
2780     kfree(dev->queues);
2781     kfree(dev);
2782 }
2783 
2784 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2785 {
2786     /*
2787      * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2788      * may be holding this pci_dev's device lock.
2789      */
2790     nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2791     nvme_get_ctrl(&dev->ctrl);
2792     nvme_dev_disable(dev, false);
2793     nvme_kill_queues(&dev->ctrl);
2794     if (!queue_work(nvme_wq, &dev->remove_work))
2795         nvme_put_ctrl(&dev->ctrl);
2796 }
2797 
2798 static void nvme_reset_work(struct work_struct *work)
2799 {
2800     struct nvme_dev *dev =
2801         container_of(work, struct nvme_dev, ctrl.reset_work);
2802     bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2803     int result;
2804 
2805     if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2806         dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2807              dev->ctrl.state);
2808         result = -ENODEV;
2809         goto out;
2810     }
2811 
2812     /*
2813      * If we're called to reset a live controller first shut it down before
2814      * moving on.
2815      */
2816     if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2817         nvme_dev_disable(dev, false);
2818     nvme_sync_queues(&dev->ctrl);
2819 
2820     mutex_lock(&dev->shutdown_lock);
2821     result = nvme_pci_enable(dev);
2822     if (result)
2823         goto out_unlock;
2824 
2825     result = nvme_pci_configure_admin_queue(dev);
2826     if (result)
2827         goto out_unlock;
2828 
2829     if (!dev->ctrl.admin_q) {
2830         result = nvme_pci_alloc_admin_tag_set(dev);
2831         if (result)
2832             goto out_unlock;
2833     } else {
2834         nvme_start_admin_queue(&dev->ctrl);
2835     }
2836 
2837     /*
2838      * Limit the max command size to prevent iod->sg allocations going
2839      * over a single page.
2840      */
2841     dev->ctrl.max_hw_sectors = min_t(u32,
2842         NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2843     dev->ctrl.max_segments = NVME_MAX_SEGS;
2844 
2845     /*
2846      * Don't limit the IOMMU merged segment size.
2847      */
2848     dma_set_max_seg_size(dev->dev, 0xffffffff);
2849     dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2850 
2851     mutex_unlock(&dev->shutdown_lock);
2852 
2853     /*
2854      * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2855      * initializing procedure here.
2856      */
2857     if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2858         dev_warn(dev->ctrl.device,
2859             "failed to mark controller CONNECTING\n");
2860         result = -EBUSY;
2861         goto out;
2862     }
2863 
2864     /*
2865      * We do not support an SGL for metadata (yet), so we are limited to a
2866      * single integrity segment for the separate metadata pointer.
2867      */
2868     dev->ctrl.max_integrity_segments = 1;
2869 
2870     result = nvme_init_ctrl_finish(&dev->ctrl);
2871     if (result)
2872         goto out;
2873 
2874     if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2875         if (!dev->ctrl.opal_dev)
2876             dev->ctrl.opal_dev =
2877                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2878         else if (was_suspend)
2879             opal_unlock_from_suspend(dev->ctrl.opal_dev);
2880     } else {
2881         free_opal_dev(dev->ctrl.opal_dev);
2882         dev->ctrl.opal_dev = NULL;
2883     }
2884 
2885     if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2886         result = nvme_dbbuf_dma_alloc(dev);
2887         if (result)
2888             dev_warn(dev->dev,
2889                  "unable to allocate dma for dbbuf\n");
2890     }
2891 
2892     if (dev->ctrl.hmpre) {
2893         result = nvme_setup_host_mem(dev);
2894         if (result < 0)
2895             goto out;
2896     }
2897 
2898     result = nvme_setup_io_queues(dev);
2899     if (result)
2900         goto out;
2901 
2902     /*
2903      * Keep the controller around but remove all namespaces if we don't have
2904      * any working I/O queue.
2905      */
2906     if (dev->online_queues < 2) {
2907         dev_warn(dev->ctrl.device, "IO queues not created\n");
2908         nvme_kill_queues(&dev->ctrl);
2909         nvme_remove_namespaces(&dev->ctrl);
2910         nvme_free_tagset(dev);
2911     } else {
2912         nvme_start_queues(&dev->ctrl);
2913         nvme_wait_freeze(&dev->ctrl);
2914         if (!dev->ctrl.tagset)
2915             nvme_pci_alloc_tag_set(dev);
2916         else
2917             nvme_pci_update_nr_queues(dev);
2918         nvme_dbbuf_set(dev);
2919         nvme_unfreeze(&dev->ctrl);
2920     }
2921 
2922     /*
2923      * If only admin queue live, keep it to do further investigation or
2924      * recovery.
2925      */
2926     if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2927         dev_warn(dev->ctrl.device,
2928             "failed to mark controller live state\n");
2929         result = -ENODEV;
2930         goto out;
2931     }
2932 
2933     if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2934             &nvme_pci_attr_group))
2935         dev->attrs_added = true;
2936 
2937     nvme_start_ctrl(&dev->ctrl);
2938     return;
2939 
2940  out_unlock:
2941     mutex_unlock(&dev->shutdown_lock);
2942  out:
2943     if (result)
2944         dev_warn(dev->ctrl.device,
2945              "Removing after probe failure status: %d\n", result);
2946     nvme_remove_dead_ctrl(dev);
2947 }
2948 
2949 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2950 {
2951     struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2952     struct pci_dev *pdev = to_pci_dev(dev->dev);
2953 
2954     if (pci_get_drvdata(pdev))
2955         device_release_driver(&pdev->dev);
2956     nvme_put_ctrl(&dev->ctrl);
2957 }
2958 
2959 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2960 {
2961     *val = readl(to_nvme_dev(ctrl)->bar + off);
2962     return 0;
2963 }
2964 
2965 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2966 {
2967     writel(val, to_nvme_dev(ctrl)->bar + off);
2968     return 0;
2969 }
2970 
2971 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2972 {
2973     *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2974     return 0;
2975 }
2976 
2977 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2978 {
2979     struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2980 
2981     return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2982 }
2983 
2984 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2985 {
2986     struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2987     struct nvme_subsystem *subsys = ctrl->subsys;
2988 
2989     dev_err(ctrl->device,
2990         "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2991         pdev->vendor, pdev->device,
2992         nvme_strlen(subsys->model, sizeof(subsys->model)),
2993         subsys->model, nvme_strlen(subsys->firmware_rev,
2994                        sizeof(subsys->firmware_rev)),
2995         subsys->firmware_rev);
2996 }
2997 
2998 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2999 {
3000     struct nvme_dev *dev = to_nvme_dev(ctrl);
3001 
3002     return dma_pci_p2pdma_supported(dev->dev);
3003 }
3004 
3005 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3006     .name           = "pcie",
3007     .module         = THIS_MODULE,
3008     .flags          = NVME_F_METADATA_SUPPORTED,
3009     .reg_read32     = nvme_pci_reg_read32,
3010     .reg_write32        = nvme_pci_reg_write32,
3011     .reg_read64     = nvme_pci_reg_read64,
3012     .free_ctrl      = nvme_pci_free_ctrl,
3013     .submit_async_event = nvme_pci_submit_async_event,
3014     .get_address        = nvme_pci_get_address,
3015     .print_device_info  = nvme_pci_print_device_info,
3016     .supports_pci_p2pdma    = nvme_pci_supports_pci_p2pdma,
3017 };
3018 
3019 static int nvme_dev_map(struct nvme_dev *dev)
3020 {
3021     struct pci_dev *pdev = to_pci_dev(dev->dev);
3022 
3023     if (pci_request_mem_regions(pdev, "nvme"))
3024         return -ENODEV;
3025 
3026     if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3027         goto release;
3028 
3029     return 0;
3030   release:
3031     pci_release_mem_regions(pdev);
3032     return -ENODEV;
3033 }
3034 
3035 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3036 {
3037     if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3038         /*
3039          * Several Samsung devices seem to drop off the PCIe bus
3040          * randomly when APST is on and uses the deepest sleep state.
3041          * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3042          * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3043          * 950 PRO 256GB", but it seems to be restricted to two Dell
3044          * laptops.
3045          */
3046         if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3047             (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3048              dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3049             return NVME_QUIRK_NO_DEEPEST_PS;
3050     } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3051         /*
3052          * Samsung SSD 960 EVO drops off the PCIe bus after system
3053          * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3054          * within few minutes after bootup on a Coffee Lake board -
3055          * ASUS PRIME Z370-A
3056          */
3057         if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3058             (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3059              dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3060             return NVME_QUIRK_NO_APST;
3061     } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3062             pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3063            (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3064         /*
3065          * Forcing to use host managed nvme power settings for
3066          * lowest idle power with quick resume latency on
3067          * Samsung and Toshiba SSDs based on suspend behavior
3068          * on Coffee Lake board for LENOVO C640
3069          */
3070         if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3071              dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3072             return NVME_QUIRK_SIMPLE_SUSPEND;
3073     }
3074 
3075     return 0;
3076 }
3077 
3078 static void nvme_async_probe(void *data, async_cookie_t cookie)
3079 {
3080     struct nvme_dev *dev = data;
3081 
3082     flush_work(&dev->ctrl.reset_work);
3083     flush_work(&dev->ctrl.scan_work);
3084     nvme_put_ctrl(&dev->ctrl);
3085 }
3086 
3087 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3088 {
3089     int node, result = -ENOMEM;
3090     struct nvme_dev *dev;
3091     unsigned long quirks = id->driver_data;
3092     size_t alloc_size;
3093 
3094     node = dev_to_node(&pdev->dev);
3095     if (node == NUMA_NO_NODE)
3096         set_dev_node(&pdev->dev, first_memory_node);
3097 
3098     dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3099     if (!dev)
3100         return -ENOMEM;
3101 
3102     dev->nr_write_queues = write_queues;
3103     dev->nr_poll_queues = poll_queues;
3104     dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3105     dev->queues = kcalloc_node(dev->nr_allocated_queues,
3106             sizeof(struct nvme_queue), GFP_KERNEL, node);
3107     if (!dev->queues)
3108         goto free;
3109 
3110     dev->dev = get_device(&pdev->dev);
3111     pci_set_drvdata(pdev, dev);
3112 
3113     result = nvme_dev_map(dev);
3114     if (result)
3115         goto put_pci;
3116 
3117     INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3118     INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
3119     mutex_init(&dev->shutdown_lock);
3120 
3121     result = nvme_setup_prp_pools(dev);
3122     if (result)
3123         goto unmap;
3124 
3125     quirks |= check_vendor_combination_bug(pdev);
3126 
3127     if (!noacpi && acpi_storage_d3(&pdev->dev)) {
3128         /*
3129          * Some systems use a bios work around to ask for D3 on
3130          * platforms that support kernel managed suspend.
3131          */
3132         dev_info(&pdev->dev,
3133              "platform quirk: setting simple suspend\n");
3134         quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3135     }
3136 
3137     /*
3138      * Double check that our mempool alloc size will cover the biggest
3139      * command we support.
3140      */
3141     alloc_size = nvme_pci_iod_alloc_size();
3142     WARN_ON_ONCE(alloc_size > PAGE_SIZE);
3143 
3144     dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
3145                         mempool_kfree,
3146                         (void *) alloc_size,
3147                         GFP_KERNEL, node);
3148     if (!dev->iod_mempool) {
3149         result = -ENOMEM;
3150         goto release_pools;
3151     }
3152 
3153     result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3154             quirks);
3155     if (result)
3156         goto release_mempool;
3157 
3158     dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3159 
3160     nvme_reset_ctrl(&dev->ctrl);
3161     async_schedule(nvme_async_probe, dev);
3162 
3163     return 0;
3164 
3165  release_mempool:
3166     mempool_destroy(dev->iod_mempool);
3167  release_pools:
3168     nvme_release_prp_pools(dev);
3169  unmap:
3170     nvme_dev_unmap(dev);
3171  put_pci:
3172     put_device(dev->dev);
3173  free:
3174     kfree(dev->queues);
3175     kfree(dev);
3176     return result;
3177 }
3178 
3179 static void nvme_reset_prepare(struct pci_dev *pdev)
3180 {
3181     struct nvme_dev *dev = pci_get_drvdata(pdev);
3182 
3183     /*
3184      * We don't need to check the return value from waiting for the reset
3185      * state as pci_dev device lock is held, making it impossible to race
3186      * with ->remove().
3187      */
3188     nvme_disable_prepare_reset(dev, false);
3189     nvme_sync_queues(&dev->ctrl);
3190 }
3191 
3192 static void nvme_reset_done(struct pci_dev *pdev)
3193 {
3194     struct nvme_dev *dev = pci_get_drvdata(pdev);
3195 
3196     if (!nvme_try_sched_reset(&dev->ctrl))
3197         flush_work(&dev->ctrl.reset_work);
3198 }
3199 
3200 static void nvme_shutdown(struct pci_dev *pdev)
3201 {
3202     struct nvme_dev *dev = pci_get_drvdata(pdev);
3203 
3204     nvme_disable_prepare_reset(dev, true);
3205 }
3206 
3207 static void nvme_remove_attrs(struct nvme_dev *dev)
3208 {
3209     if (dev->attrs_added)
3210         sysfs_remove_group(&dev->ctrl.device->kobj,
3211                    &nvme_pci_attr_group);
3212 }
3213 
3214 /*
3215  * The driver's remove may be called on a device in a partially initialized
3216  * state. This function must not have any dependencies on the device state in
3217  * order to proceed.
3218  */
3219 static void nvme_remove(struct pci_dev *pdev)
3220 {
3221     struct nvme_dev *dev = pci_get_drvdata(pdev);
3222 
3223     nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3224     pci_set_drvdata(pdev, NULL);
3225 
3226     if (!pci_device_is_present(pdev)) {
3227         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3228         nvme_dev_disable(dev, true);
3229     }
3230 
3231     flush_work(&dev->ctrl.reset_work);
3232     nvme_stop_ctrl(&dev->ctrl);
3233     nvme_remove_namespaces(&dev->ctrl);
3234     nvme_dev_disable(dev, true);
3235     nvme_remove_attrs(dev);
3236     nvme_free_host_mem(dev);
3237     nvme_dev_remove_admin(dev);
3238     nvme_free_queues(dev, 0);
3239     nvme_release_prp_pools(dev);
3240     nvme_dev_unmap(dev);
3241     nvme_uninit_ctrl(&dev->ctrl);
3242 }
3243 
3244 #ifdef CONFIG_PM_SLEEP
3245 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3246 {
3247     return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3248 }
3249 
3250 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3251 {
3252     return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3253 }
3254 
3255 static int nvme_resume(struct device *dev)
3256 {
3257     struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3258     struct nvme_ctrl *ctrl = &ndev->ctrl;
3259 
3260     if (ndev->last_ps == U32_MAX ||
3261         nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3262         goto reset;
3263     if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3264         goto reset;
3265 
3266     return 0;
3267 reset:
3268     return nvme_try_sched_reset(ctrl);
3269 }
3270 
3271 static int nvme_suspend(struct device *dev)
3272 {
3273     struct pci_dev *pdev = to_pci_dev(dev);
3274     struct nvme_dev *ndev = pci_get_drvdata(pdev);
3275     struct nvme_ctrl *ctrl = &ndev->ctrl;
3276     int ret = -EBUSY;
3277 
3278     ndev->last_ps = U32_MAX;
3279 
3280     /*
3281      * The platform does not remove power for a kernel managed suspend so
3282      * use host managed nvme power settings for lowest idle power if
3283      * possible. This should have quicker resume latency than a full device
3284      * shutdown.  But if the firmware is involved after the suspend or the
3285      * device does not support any non-default power states, shut down the
3286      * device fully.
3287      *
3288      * If ASPM is not enabled for the device, shut down the device and allow
3289      * the PCI bus layer to put it into D3 in order to take the PCIe link
3290      * down, so as to allow the platform to achieve its minimum low-power
3291      * state (which may not be possible if the link is up).
3292      */
3293     if (pm_suspend_via_firmware() || !ctrl->npss ||
3294         !pcie_aspm_enabled(pdev) ||
3295         (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3296         return nvme_disable_prepare_reset(ndev, true);
3297 
3298     nvme_start_freeze(ctrl);
3299     nvme_wait_freeze(ctrl);
3300     nvme_sync_queues(ctrl);
3301 
3302     if (ctrl->state != NVME_CTRL_LIVE)
3303         goto unfreeze;
3304 
3305     /*
3306      * Host memory access may not be successful in a system suspend state,
3307      * but the specification allows the controller to access memory in a
3308      * non-operational power state.
3309      */
3310     if (ndev->hmb) {
3311         ret = nvme_set_host_mem(ndev, 0);
3312         if (ret < 0)
3313             goto unfreeze;
3314     }
3315 
3316     ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3317     if (ret < 0)
3318         goto unfreeze;
3319 
3320     /*
3321      * A saved state prevents pci pm from generically controlling the
3322      * device's power. If we're using protocol specific settings, we don't
3323      * want pci interfering.
3324      */
3325     pci_save_state(pdev);
3326 
3327     ret = nvme_set_power_state(ctrl, ctrl->npss);
3328     if (ret < 0)
3329         goto unfreeze;
3330 
3331     if (ret) {
3332         /* discard the saved state */
3333         pci_load_saved_state(pdev, NULL);
3334 
3335         /*
3336          * Clearing npss forces a controller reset on resume. The
3337          * correct value will be rediscovered then.
3338          */
3339         ret = nvme_disable_prepare_reset(ndev, true);
3340         ctrl->npss = 0;
3341     }
3342 unfreeze:
3343     nvme_unfreeze(ctrl);
3344     return ret;
3345 }
3346 
3347 static int nvme_simple_suspend(struct device *dev)
3348 {
3349     struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3350 
3351     return nvme_disable_prepare_reset(ndev, true);
3352 }
3353 
3354 static int nvme_simple_resume(struct device *dev)
3355 {
3356     struct pci_dev *pdev = to_pci_dev(dev);
3357     struct nvme_dev *ndev = pci_get_drvdata(pdev);
3358 
3359     return nvme_try_sched_reset(&ndev->ctrl);
3360 }
3361 
3362 static const struct dev_pm_ops nvme_dev_pm_ops = {
3363     .suspend    = nvme_suspend,
3364     .resume     = nvme_resume,
3365     .freeze     = nvme_simple_suspend,
3366     .thaw       = nvme_simple_resume,
3367     .poweroff   = nvme_simple_suspend,
3368     .restore    = nvme_simple_resume,
3369 };
3370 #endif /* CONFIG_PM_SLEEP */
3371 
3372 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3373                         pci_channel_state_t state)
3374 {
3375     struct nvme_dev *dev = pci_get_drvdata(pdev);
3376 
3377     /*
3378      * A frozen channel requires a reset. When detected, this method will
3379      * shutdown the controller to quiesce. The controller will be restarted
3380      * after the slot reset through driver's slot_reset callback.
3381      */
3382     switch (state) {
3383     case pci_channel_io_normal:
3384         return PCI_ERS_RESULT_CAN_RECOVER;
3385     case pci_channel_io_frozen:
3386         dev_warn(dev->ctrl.device,
3387             "frozen state error detected, reset controller\n");
3388         nvme_dev_disable(dev, false);
3389         return PCI_ERS_RESULT_NEED_RESET;
3390     case pci_channel_io_perm_failure:
3391         dev_warn(dev->ctrl.device,
3392             "failure state error detected, request disconnect\n");
3393         return PCI_ERS_RESULT_DISCONNECT;
3394     }
3395     return PCI_ERS_RESULT_NEED_RESET;
3396 }
3397 
3398 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3399 {
3400     struct nvme_dev *dev = pci_get_drvdata(pdev);
3401 
3402     dev_info(dev->ctrl.device, "restart after slot reset\n");
3403     pci_restore_state(pdev);
3404     nvme_reset_ctrl(&dev->ctrl);
3405     return PCI_ERS_RESULT_RECOVERED;
3406 }
3407 
3408 static void nvme_error_resume(struct pci_dev *pdev)
3409 {
3410     struct nvme_dev *dev = pci_get_drvdata(pdev);
3411 
3412     flush_work(&dev->ctrl.reset_work);
3413 }
3414 
3415 static const struct pci_error_handlers nvme_err_handler = {
3416     .error_detected = nvme_error_detected,
3417     .slot_reset = nvme_slot_reset,
3418     .resume     = nvme_error_resume,
3419     .reset_prepare  = nvme_reset_prepare,
3420     .reset_done = nvme_reset_done,
3421 };
3422 
3423 static const struct pci_device_id nvme_id_table[] = {
3424     { PCI_VDEVICE(INTEL, 0x0953),   /* Intel 750/P3500/P3600/P3700 */
3425         .driver_data = NVME_QUIRK_STRIPE_SIZE |
3426                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3427     { PCI_VDEVICE(INTEL, 0x0a53),   /* Intel P3520 */
3428         .driver_data = NVME_QUIRK_STRIPE_SIZE |
3429                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3430     { PCI_VDEVICE(INTEL, 0x0a54),   /* Intel P4500/P4600 */
3431         .driver_data = NVME_QUIRK_STRIPE_SIZE |
3432                 NVME_QUIRK_DEALLOCATE_ZEROES |
3433                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3434     { PCI_VDEVICE(INTEL, 0x0a55),   /* Dell Express Flash P4600 */
3435         .driver_data = NVME_QUIRK_STRIPE_SIZE |
3436                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3437     { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3438         .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3439                 NVME_QUIRK_MEDIUM_PRIO_SQ |
3440                 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3441                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3442     { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3443         .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3444     { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3445         .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3446                 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3447                 NVME_QUIRK_BOGUS_NID, },
3448     { PCI_VDEVICE(REDHAT, 0x0010),  /* Qemu emulated controller */
3449         .driver_data = NVME_QUIRK_BOGUS_NID, },
3450     { PCI_DEVICE(0x126f, 0x2263),   /* Silicon Motion unidentified */
3451         .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3452                 NVME_QUIRK_BOGUS_NID, },
3453     { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3454         .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3455                 NVME_QUIRK_NO_NS_DESC_LIST, },
3456     { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3457         .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3458     { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3459         .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3460     { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3461         .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3462     { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3463         .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3464     { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3465         .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3466                 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3467                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3468     { PCI_DEVICE(0x1987, 0x5012),   /* Phison E12 */
3469         .driver_data = NVME_QUIRK_BOGUS_NID, },
3470     { PCI_DEVICE(0x1987, 0x5016),   /* Phison E16 */
3471         .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3472                 NVME_QUIRK_BOGUS_NID, },
3473     { PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3474         .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3475     { PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3476         .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3477     { PCI_DEVICE(0x1b4b, 0x1092),   /* Lexar 256 GB SSD */
3478         .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3479                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3480     { PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3481         .driver_data = NVME_QUIRK_BOGUS_NID, },
3482     { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3483         .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3484                 NVME_QUIRK_BOGUS_NID, },
3485     { PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3486         .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3487                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3488      { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3489         .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3490     { PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3491         .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3492     { PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3493         .driver_data = NVME_QUIRK_BOGUS_NID, },
3494     { PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3495         .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3496     { PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3497         .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3498     { PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3499         .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3500     { PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3501         .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3502     { PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3503         .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3504     { PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3505         .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3506     { PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3507         .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3508     { PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3509         .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3510     { PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3511         .driver_data = NVME_QUIRK_BOGUS_NID, },
3512     { PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3513         .driver_data = NVME_QUIRK_BOGUS_NID, },
3514     { PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3515         .driver_data = NVME_QUIRK_BOGUS_NID, },
3516     { PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3517         .driver_data = NVME_QUIRK_BOGUS_NID, },
3518     { PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3519         .driver_data = NVME_QUIRK_BOGUS_NID, },
3520     { PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3521         .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3522     { PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3523         .driver_data = NVME_QUIRK_BOGUS_NID, },
3524     { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3525         .driver_data = NVME_QUIRK_BOGUS_NID, },
3526     { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3527         .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3528     { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3529         .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3530     { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3531         .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3532     { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3533         .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3534     { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3535         .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3536     { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3537         .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3538     { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3539         .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3540     { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3541     { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3542         .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3543                 NVME_QUIRK_128_BYTES_SQES |
3544                 NVME_QUIRK_SHARED_TAGS |
3545                 NVME_QUIRK_SKIP_CID_GEN },
3546     { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3547     { 0, }
3548 };
3549 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3550 
3551 static struct pci_driver nvme_driver = {
3552     .name       = "nvme",
3553     .id_table   = nvme_id_table,
3554     .probe      = nvme_probe,
3555     .remove     = nvme_remove,
3556     .shutdown   = nvme_shutdown,
3557 #ifdef CONFIG_PM_SLEEP
3558     .driver     = {
3559         .pm = &nvme_dev_pm_ops,
3560     },
3561 #endif
3562     .sriov_configure = pci_sriov_configure_simple,
3563     .err_handler    = &nvme_err_handler,
3564 };
3565 
3566 static int __init nvme_init(void)
3567 {
3568     BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3569     BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3570     BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3571     BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3572 
3573     return pci_register_driver(&nvme_driver);
3574 }
3575 
3576 static void __exit nvme_exit(void)
3577 {
3578     pci_unregister_driver(&nvme_driver);
3579     flush_workqueue(nvme_wq);
3580 }
3581 
3582 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3583 MODULE_LICENSE("GPL");
3584 MODULE_VERSION("1.0");
3585 module_init(nvme_init);
3586 module_exit(nvme_exit);