Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * NVM Express device driver
0004  * Copyright (c) 2011-2014, Intel Corporation.
0005  */
0006 
0007 #include <linux/blkdev.h>
0008 #include <linux/blk-mq.h>
0009 #include <linux/blk-integrity.h>
0010 #include <linux/compat.h>
0011 #include <linux/delay.h>
0012 #include <linux/errno.h>
0013 #include <linux/hdreg.h>
0014 #include <linux/kernel.h>
0015 #include <linux/module.h>
0016 #include <linux/backing-dev.h>
0017 #include <linux/slab.h>
0018 #include <linux/types.h>
0019 #include <linux/pr.h>
0020 #include <linux/ptrace.h>
0021 #include <linux/nvme_ioctl.h>
0022 #include <linux/pm_qos.h>
0023 #include <asm/unaligned.h>
0024 
0025 #include "nvme.h"
0026 #include "fabrics.h"
0027 #include <linux/nvme-auth.h>
0028 
0029 #define CREATE_TRACE_POINTS
0030 #include "trace.h"
0031 
0032 #define NVME_MINORS     (1U << MINORBITS)
0033 
0034 struct nvme_ns_info {
0035     struct nvme_ns_ids ids;
0036     u32 nsid;
0037     __le32 anagrpid;
0038     bool is_shared;
0039     bool is_readonly;
0040     bool is_ready;
0041 };
0042 
0043 unsigned int admin_timeout = 60;
0044 module_param(admin_timeout, uint, 0644);
0045 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
0046 EXPORT_SYMBOL_GPL(admin_timeout);
0047 
0048 unsigned int nvme_io_timeout = 30;
0049 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
0050 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
0051 EXPORT_SYMBOL_GPL(nvme_io_timeout);
0052 
0053 static unsigned char shutdown_timeout = 5;
0054 module_param(shutdown_timeout, byte, 0644);
0055 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
0056 
0057 static u8 nvme_max_retries = 5;
0058 module_param_named(max_retries, nvme_max_retries, byte, 0644);
0059 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
0060 
0061 static unsigned long default_ps_max_latency_us = 100000;
0062 module_param(default_ps_max_latency_us, ulong, 0644);
0063 MODULE_PARM_DESC(default_ps_max_latency_us,
0064          "max power saving latency for new devices; use PM QOS to change per device");
0065 
0066 static bool force_apst;
0067 module_param(force_apst, bool, 0644);
0068 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
0069 
0070 static unsigned long apst_primary_timeout_ms = 100;
0071 module_param(apst_primary_timeout_ms, ulong, 0644);
0072 MODULE_PARM_DESC(apst_primary_timeout_ms,
0073     "primary APST timeout in ms");
0074 
0075 static unsigned long apst_secondary_timeout_ms = 2000;
0076 module_param(apst_secondary_timeout_ms, ulong, 0644);
0077 MODULE_PARM_DESC(apst_secondary_timeout_ms,
0078     "secondary APST timeout in ms");
0079 
0080 static unsigned long apst_primary_latency_tol_us = 15000;
0081 module_param(apst_primary_latency_tol_us, ulong, 0644);
0082 MODULE_PARM_DESC(apst_primary_latency_tol_us,
0083     "primary APST latency tolerance in us");
0084 
0085 static unsigned long apst_secondary_latency_tol_us = 100000;
0086 module_param(apst_secondary_latency_tol_us, ulong, 0644);
0087 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
0088     "secondary APST latency tolerance in us");
0089 
0090 /*
0091  * nvme_wq - hosts nvme related works that are not reset or delete
0092  * nvme_reset_wq - hosts nvme reset works
0093  * nvme_delete_wq - hosts nvme delete works
0094  *
0095  * nvme_wq will host works such as scan, aen handling, fw activation,
0096  * keep-alive, periodic reconnects etc. nvme_reset_wq
0097  * runs reset works which also flush works hosted on nvme_wq for
0098  * serialization purposes. nvme_delete_wq host controller deletion
0099  * works which flush reset works for serialization.
0100  */
0101 struct workqueue_struct *nvme_wq;
0102 EXPORT_SYMBOL_GPL(nvme_wq);
0103 
0104 struct workqueue_struct *nvme_reset_wq;
0105 EXPORT_SYMBOL_GPL(nvme_reset_wq);
0106 
0107 struct workqueue_struct *nvme_delete_wq;
0108 EXPORT_SYMBOL_GPL(nvme_delete_wq);
0109 
0110 static LIST_HEAD(nvme_subsystems);
0111 static DEFINE_MUTEX(nvme_subsystems_lock);
0112 
0113 static DEFINE_IDA(nvme_instance_ida);
0114 static dev_t nvme_ctrl_base_chr_devt;
0115 static struct class *nvme_class;
0116 static struct class *nvme_subsys_class;
0117 
0118 static DEFINE_IDA(nvme_ns_chr_minor_ida);
0119 static dev_t nvme_ns_chr_devt;
0120 static struct class *nvme_ns_chr_class;
0121 
0122 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
0123 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
0124                        unsigned nsid);
0125 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
0126                    struct nvme_command *cmd);
0127 
0128 void nvme_queue_scan(struct nvme_ctrl *ctrl)
0129 {
0130     /*
0131      * Only new queue scan work when admin and IO queues are both alive
0132      */
0133     if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
0134         queue_work(nvme_wq, &ctrl->scan_work);
0135 }
0136 
0137 /*
0138  * Use this function to proceed with scheduling reset_work for a controller
0139  * that had previously been set to the resetting state. This is intended for
0140  * code paths that can't be interrupted by other reset attempts. A hot removal
0141  * may prevent this from succeeding.
0142  */
0143 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
0144 {
0145     if (ctrl->state != NVME_CTRL_RESETTING)
0146         return -EBUSY;
0147     if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
0148         return -EBUSY;
0149     return 0;
0150 }
0151 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
0152 
0153 static void nvme_failfast_work(struct work_struct *work)
0154 {
0155     struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
0156             struct nvme_ctrl, failfast_work);
0157 
0158     if (ctrl->state != NVME_CTRL_CONNECTING)
0159         return;
0160 
0161     set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
0162     dev_info(ctrl->device, "failfast expired\n");
0163     nvme_kick_requeue_lists(ctrl);
0164 }
0165 
0166 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
0167 {
0168     if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
0169         return;
0170 
0171     schedule_delayed_work(&ctrl->failfast_work,
0172                   ctrl->opts->fast_io_fail_tmo * HZ);
0173 }
0174 
0175 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
0176 {
0177     if (!ctrl->opts)
0178         return;
0179 
0180     cancel_delayed_work_sync(&ctrl->failfast_work);
0181     clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
0182 }
0183 
0184 
0185 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
0186 {
0187     if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
0188         return -EBUSY;
0189     if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
0190         return -EBUSY;
0191     return 0;
0192 }
0193 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
0194 
0195 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
0196 {
0197     int ret;
0198 
0199     ret = nvme_reset_ctrl(ctrl);
0200     if (!ret) {
0201         flush_work(&ctrl->reset_work);
0202         if (ctrl->state != NVME_CTRL_LIVE)
0203             ret = -ENETRESET;
0204     }
0205 
0206     return ret;
0207 }
0208 
0209 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
0210 {
0211     dev_info(ctrl->device,
0212          "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
0213 
0214     flush_work(&ctrl->reset_work);
0215     nvme_stop_ctrl(ctrl);
0216     nvme_remove_namespaces(ctrl);
0217     ctrl->ops->delete_ctrl(ctrl);
0218     nvme_uninit_ctrl(ctrl);
0219 }
0220 
0221 static void nvme_delete_ctrl_work(struct work_struct *work)
0222 {
0223     struct nvme_ctrl *ctrl =
0224         container_of(work, struct nvme_ctrl, delete_work);
0225 
0226     nvme_do_delete_ctrl(ctrl);
0227 }
0228 
0229 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
0230 {
0231     if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
0232         return -EBUSY;
0233     if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
0234         return -EBUSY;
0235     return 0;
0236 }
0237 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
0238 
0239 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
0240 {
0241     /*
0242      * Keep a reference until nvme_do_delete_ctrl() complete,
0243      * since ->delete_ctrl can free the controller.
0244      */
0245     nvme_get_ctrl(ctrl);
0246     if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
0247         nvme_do_delete_ctrl(ctrl);
0248     nvme_put_ctrl(ctrl);
0249 }
0250 
0251 static blk_status_t nvme_error_status(u16 status)
0252 {
0253     switch (status & 0x7ff) {
0254     case NVME_SC_SUCCESS:
0255         return BLK_STS_OK;
0256     case NVME_SC_CAP_EXCEEDED:
0257         return BLK_STS_NOSPC;
0258     case NVME_SC_LBA_RANGE:
0259     case NVME_SC_CMD_INTERRUPTED:
0260     case NVME_SC_NS_NOT_READY:
0261         return BLK_STS_TARGET;
0262     case NVME_SC_BAD_ATTRIBUTES:
0263     case NVME_SC_ONCS_NOT_SUPPORTED:
0264     case NVME_SC_INVALID_OPCODE:
0265     case NVME_SC_INVALID_FIELD:
0266     case NVME_SC_INVALID_NS:
0267         return BLK_STS_NOTSUPP;
0268     case NVME_SC_WRITE_FAULT:
0269     case NVME_SC_READ_ERROR:
0270     case NVME_SC_UNWRITTEN_BLOCK:
0271     case NVME_SC_ACCESS_DENIED:
0272     case NVME_SC_READ_ONLY:
0273     case NVME_SC_COMPARE_FAILED:
0274         return BLK_STS_MEDIUM;
0275     case NVME_SC_GUARD_CHECK:
0276     case NVME_SC_APPTAG_CHECK:
0277     case NVME_SC_REFTAG_CHECK:
0278     case NVME_SC_INVALID_PI:
0279         return BLK_STS_PROTECTION;
0280     case NVME_SC_RESERVATION_CONFLICT:
0281         return BLK_STS_NEXUS;
0282     case NVME_SC_HOST_PATH_ERROR:
0283         return BLK_STS_TRANSPORT;
0284     case NVME_SC_ZONE_TOO_MANY_ACTIVE:
0285         return BLK_STS_ZONE_ACTIVE_RESOURCE;
0286     case NVME_SC_ZONE_TOO_MANY_OPEN:
0287         return BLK_STS_ZONE_OPEN_RESOURCE;
0288     default:
0289         return BLK_STS_IOERR;
0290     }
0291 }
0292 
0293 static void nvme_retry_req(struct request *req)
0294 {
0295     unsigned long delay = 0;
0296     u16 crd;
0297 
0298     /* The mask and shift result must be <= 3 */
0299     crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
0300     if (crd)
0301         delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
0302 
0303     nvme_req(req)->retries++;
0304     blk_mq_requeue_request(req, false);
0305     blk_mq_delay_kick_requeue_list(req->q, delay);
0306 }
0307 
0308 static void nvme_log_error(struct request *req)
0309 {
0310     struct nvme_ns *ns = req->q->queuedata;
0311     struct nvme_request *nr = nvme_req(req);
0312 
0313     if (ns) {
0314         pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
0315                ns->disk ? ns->disk->disk_name : "?",
0316                nvme_get_opcode_str(nr->cmd->common.opcode),
0317                nr->cmd->common.opcode,
0318                (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
0319                (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
0320                nvme_get_error_status_str(nr->status),
0321                nr->status >> 8 & 7, /* Status Code Type */
0322                nr->status & 0xff,   /* Status Code */
0323                nr->status & NVME_SC_MORE ? "MORE " : "",
0324                nr->status & NVME_SC_DNR  ? "DNR "  : "");
0325         return;
0326     }
0327 
0328     pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
0329                dev_name(nr->ctrl->device),
0330                nvme_get_admin_opcode_str(nr->cmd->common.opcode),
0331                nr->cmd->common.opcode,
0332                nvme_get_error_status_str(nr->status),
0333                nr->status >> 8 & 7, /* Status Code Type */
0334                nr->status & 0xff,   /* Status Code */
0335                nr->status & NVME_SC_MORE ? "MORE " : "",
0336                nr->status & NVME_SC_DNR  ? "DNR "  : "");
0337 }
0338 
0339 enum nvme_disposition {
0340     COMPLETE,
0341     RETRY,
0342     FAILOVER,
0343     AUTHENTICATE,
0344 };
0345 
0346 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
0347 {
0348     if (likely(nvme_req(req)->status == 0))
0349         return COMPLETE;
0350 
0351     if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
0352         return AUTHENTICATE;
0353 
0354     if (blk_noretry_request(req) ||
0355         (nvme_req(req)->status & NVME_SC_DNR) ||
0356         nvme_req(req)->retries >= nvme_max_retries)
0357         return COMPLETE;
0358 
0359     if (req->cmd_flags & REQ_NVME_MPATH) {
0360         if (nvme_is_path_error(nvme_req(req)->status) ||
0361             blk_queue_dying(req->q))
0362             return FAILOVER;
0363     } else {
0364         if (blk_queue_dying(req->q))
0365             return COMPLETE;
0366     }
0367 
0368     return RETRY;
0369 }
0370 
0371 static inline void nvme_end_req_zoned(struct request *req)
0372 {
0373     if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
0374         req_op(req) == REQ_OP_ZONE_APPEND)
0375         req->__sector = nvme_lba_to_sect(req->q->queuedata,
0376             le64_to_cpu(nvme_req(req)->result.u64));
0377 }
0378 
0379 static inline void nvme_end_req(struct request *req)
0380 {
0381     blk_status_t status = nvme_error_status(nvme_req(req)->status);
0382 
0383     if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
0384         nvme_log_error(req);
0385     nvme_end_req_zoned(req);
0386     nvme_trace_bio_complete(req);
0387     blk_mq_end_request(req, status);
0388 }
0389 
0390 void nvme_complete_rq(struct request *req)
0391 {
0392     struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
0393 
0394     trace_nvme_complete_rq(req);
0395     nvme_cleanup_cmd(req);
0396 
0397     if (ctrl->kas)
0398         ctrl->comp_seen = true;
0399 
0400     switch (nvme_decide_disposition(req)) {
0401     case COMPLETE:
0402         nvme_end_req(req);
0403         return;
0404     case RETRY:
0405         nvme_retry_req(req);
0406         return;
0407     case FAILOVER:
0408         nvme_failover_req(req);
0409         return;
0410     case AUTHENTICATE:
0411 #ifdef CONFIG_NVME_AUTH
0412         queue_work(nvme_wq, &ctrl->dhchap_auth_work);
0413         nvme_retry_req(req);
0414 #else
0415         nvme_end_req(req);
0416 #endif
0417         return;
0418     }
0419 }
0420 EXPORT_SYMBOL_GPL(nvme_complete_rq);
0421 
0422 void nvme_complete_batch_req(struct request *req)
0423 {
0424     trace_nvme_complete_rq(req);
0425     nvme_cleanup_cmd(req);
0426     nvme_end_req_zoned(req);
0427 }
0428 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
0429 
0430 /*
0431  * Called to unwind from ->queue_rq on a failed command submission so that the
0432  * multipathing code gets called to potentially failover to another path.
0433  * The caller needs to unwind all transport specific resource allocations and
0434  * must return propagate the return value.
0435  */
0436 blk_status_t nvme_host_path_error(struct request *req)
0437 {
0438     nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
0439     blk_mq_set_request_complete(req);
0440     nvme_complete_rq(req);
0441     return BLK_STS_OK;
0442 }
0443 EXPORT_SYMBOL_GPL(nvme_host_path_error);
0444 
0445 bool nvme_cancel_request(struct request *req, void *data)
0446 {
0447     dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
0448                 "Cancelling I/O %d", req->tag);
0449 
0450     /* don't abort one completed request */
0451     if (blk_mq_request_completed(req))
0452         return true;
0453 
0454     nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
0455     nvme_req(req)->flags |= NVME_REQ_CANCELLED;
0456     blk_mq_complete_request(req);
0457     return true;
0458 }
0459 EXPORT_SYMBOL_GPL(nvme_cancel_request);
0460 
0461 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
0462 {
0463     if (ctrl->tagset) {
0464         blk_mq_tagset_busy_iter(ctrl->tagset,
0465                 nvme_cancel_request, ctrl);
0466         blk_mq_tagset_wait_completed_request(ctrl->tagset);
0467     }
0468 }
0469 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
0470 
0471 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
0472 {
0473     if (ctrl->admin_tagset) {
0474         blk_mq_tagset_busy_iter(ctrl->admin_tagset,
0475                 nvme_cancel_request, ctrl);
0476         blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
0477     }
0478 }
0479 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
0480 
0481 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
0482         enum nvme_ctrl_state new_state)
0483 {
0484     enum nvme_ctrl_state old_state;
0485     unsigned long flags;
0486     bool changed = false;
0487 
0488     spin_lock_irqsave(&ctrl->lock, flags);
0489 
0490     old_state = ctrl->state;
0491     switch (new_state) {
0492     case NVME_CTRL_LIVE:
0493         switch (old_state) {
0494         case NVME_CTRL_NEW:
0495         case NVME_CTRL_RESETTING:
0496         case NVME_CTRL_CONNECTING:
0497             changed = true;
0498             fallthrough;
0499         default:
0500             break;
0501         }
0502         break;
0503     case NVME_CTRL_RESETTING:
0504         switch (old_state) {
0505         case NVME_CTRL_NEW:
0506         case NVME_CTRL_LIVE:
0507             changed = true;
0508             fallthrough;
0509         default:
0510             break;
0511         }
0512         break;
0513     case NVME_CTRL_CONNECTING:
0514         switch (old_state) {
0515         case NVME_CTRL_NEW:
0516         case NVME_CTRL_RESETTING:
0517             changed = true;
0518             fallthrough;
0519         default:
0520             break;
0521         }
0522         break;
0523     case NVME_CTRL_DELETING:
0524         switch (old_state) {
0525         case NVME_CTRL_LIVE:
0526         case NVME_CTRL_RESETTING:
0527         case NVME_CTRL_CONNECTING:
0528             changed = true;
0529             fallthrough;
0530         default:
0531             break;
0532         }
0533         break;
0534     case NVME_CTRL_DELETING_NOIO:
0535         switch (old_state) {
0536         case NVME_CTRL_DELETING:
0537         case NVME_CTRL_DEAD:
0538             changed = true;
0539             fallthrough;
0540         default:
0541             break;
0542         }
0543         break;
0544     case NVME_CTRL_DEAD:
0545         switch (old_state) {
0546         case NVME_CTRL_DELETING:
0547             changed = true;
0548             fallthrough;
0549         default:
0550             break;
0551         }
0552         break;
0553     default:
0554         break;
0555     }
0556 
0557     if (changed) {
0558         ctrl->state = new_state;
0559         wake_up_all(&ctrl->state_wq);
0560     }
0561 
0562     spin_unlock_irqrestore(&ctrl->lock, flags);
0563     if (!changed)
0564         return false;
0565 
0566     if (ctrl->state == NVME_CTRL_LIVE) {
0567         if (old_state == NVME_CTRL_CONNECTING)
0568             nvme_stop_failfast_work(ctrl);
0569         nvme_kick_requeue_lists(ctrl);
0570     } else if (ctrl->state == NVME_CTRL_CONNECTING &&
0571         old_state == NVME_CTRL_RESETTING) {
0572         nvme_start_failfast_work(ctrl);
0573     }
0574     return changed;
0575 }
0576 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
0577 
0578 /*
0579  * Returns true for sink states that can't ever transition back to live.
0580  */
0581 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
0582 {
0583     switch (ctrl->state) {
0584     case NVME_CTRL_NEW:
0585     case NVME_CTRL_LIVE:
0586     case NVME_CTRL_RESETTING:
0587     case NVME_CTRL_CONNECTING:
0588         return false;
0589     case NVME_CTRL_DELETING:
0590     case NVME_CTRL_DELETING_NOIO:
0591     case NVME_CTRL_DEAD:
0592         return true;
0593     default:
0594         WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
0595         return true;
0596     }
0597 }
0598 
0599 /*
0600  * Waits for the controller state to be resetting, or returns false if it is
0601  * not possible to ever transition to that state.
0602  */
0603 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
0604 {
0605     wait_event(ctrl->state_wq,
0606            nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
0607            nvme_state_terminal(ctrl));
0608     return ctrl->state == NVME_CTRL_RESETTING;
0609 }
0610 EXPORT_SYMBOL_GPL(nvme_wait_reset);
0611 
0612 static void nvme_free_ns_head(struct kref *ref)
0613 {
0614     struct nvme_ns_head *head =
0615         container_of(ref, struct nvme_ns_head, ref);
0616 
0617     nvme_mpath_remove_disk(head);
0618     ida_free(&head->subsys->ns_ida, head->instance);
0619     cleanup_srcu_struct(&head->srcu);
0620     nvme_put_subsystem(head->subsys);
0621     kfree(head);
0622 }
0623 
0624 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
0625 {
0626     return kref_get_unless_zero(&head->ref);
0627 }
0628 
0629 void nvme_put_ns_head(struct nvme_ns_head *head)
0630 {
0631     kref_put(&head->ref, nvme_free_ns_head);
0632 }
0633 
0634 static void nvme_free_ns(struct kref *kref)
0635 {
0636     struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
0637 
0638     put_disk(ns->disk);
0639     nvme_put_ns_head(ns->head);
0640     nvme_put_ctrl(ns->ctrl);
0641     kfree(ns);
0642 }
0643 
0644 static inline bool nvme_get_ns(struct nvme_ns *ns)
0645 {
0646     return kref_get_unless_zero(&ns->kref);
0647 }
0648 
0649 void nvme_put_ns(struct nvme_ns *ns)
0650 {
0651     kref_put(&ns->kref, nvme_free_ns);
0652 }
0653 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
0654 
0655 static inline void nvme_clear_nvme_request(struct request *req)
0656 {
0657     nvme_req(req)->status = 0;
0658     nvme_req(req)->retries = 0;
0659     nvme_req(req)->flags = 0;
0660     req->rq_flags |= RQF_DONTPREP;
0661 }
0662 
0663 /* initialize a passthrough request */
0664 void nvme_init_request(struct request *req, struct nvme_command *cmd)
0665 {
0666     if (req->q->queuedata)
0667         req->timeout = NVME_IO_TIMEOUT;
0668     else /* no queuedata implies admin queue */
0669         req->timeout = NVME_ADMIN_TIMEOUT;
0670 
0671     /* passthru commands should let the driver set the SGL flags */
0672     cmd->common.flags &= ~NVME_CMD_SGL_ALL;
0673 
0674     req->cmd_flags |= REQ_FAILFAST_DRIVER;
0675     if (req->mq_hctx->type == HCTX_TYPE_POLL)
0676         req->cmd_flags |= REQ_POLLED;
0677     nvme_clear_nvme_request(req);
0678     memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
0679 }
0680 EXPORT_SYMBOL_GPL(nvme_init_request);
0681 
0682 /*
0683  * For something we're not in a state to send to the device the default action
0684  * is to busy it and retry it after the controller state is recovered.  However,
0685  * if the controller is deleting or if anything is marked for failfast or
0686  * nvme multipath it is immediately failed.
0687  *
0688  * Note: commands used to initialize the controller will be marked for failfast.
0689  * Note: nvme cli/ioctl commands are marked for failfast.
0690  */
0691 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
0692         struct request *rq)
0693 {
0694     if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
0695         ctrl->state != NVME_CTRL_DELETING &&
0696         ctrl->state != NVME_CTRL_DEAD &&
0697         !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
0698         !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
0699         return BLK_STS_RESOURCE;
0700     return nvme_host_path_error(rq);
0701 }
0702 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
0703 
0704 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
0705         bool queue_live)
0706 {
0707     struct nvme_request *req = nvme_req(rq);
0708 
0709     /*
0710      * currently we have a problem sending passthru commands
0711      * on the admin_q if the controller is not LIVE because we can't
0712      * make sure that they are going out after the admin connect,
0713      * controller enable and/or other commands in the initialization
0714      * sequence. until the controller will be LIVE, fail with
0715      * BLK_STS_RESOURCE so that they will be rescheduled.
0716      */
0717     if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
0718         return false;
0719 
0720     if (ctrl->ops->flags & NVME_F_FABRICS) {
0721         /*
0722          * Only allow commands on a live queue, except for the connect
0723          * command, which is require to set the queue live in the
0724          * appropinquate states.
0725          */
0726         switch (ctrl->state) {
0727         case NVME_CTRL_CONNECTING:
0728             if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
0729                 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
0730                  req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
0731                  req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
0732                 return true;
0733             break;
0734         default:
0735             break;
0736         case NVME_CTRL_DEAD:
0737             return false;
0738         }
0739     }
0740 
0741     return queue_live;
0742 }
0743 EXPORT_SYMBOL_GPL(__nvme_check_ready);
0744 
0745 static inline void nvme_setup_flush(struct nvme_ns *ns,
0746         struct nvme_command *cmnd)
0747 {
0748     memset(cmnd, 0, sizeof(*cmnd));
0749     cmnd->common.opcode = nvme_cmd_flush;
0750     cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
0751 }
0752 
0753 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
0754         struct nvme_command *cmnd)
0755 {
0756     unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
0757     struct nvme_dsm_range *range;
0758     struct bio *bio;
0759 
0760     /*
0761      * Some devices do not consider the DSM 'Number of Ranges' field when
0762      * determining how much data to DMA. Always allocate memory for maximum
0763      * number of segments to prevent device reading beyond end of buffer.
0764      */
0765     static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
0766 
0767     range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
0768     if (!range) {
0769         /*
0770          * If we fail allocation our range, fallback to the controller
0771          * discard page. If that's also busy, it's safe to return
0772          * busy, as we know we can make progress once that's freed.
0773          */
0774         if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
0775             return BLK_STS_RESOURCE;
0776 
0777         range = page_address(ns->ctrl->discard_page);
0778     }
0779 
0780     __rq_for_each_bio(bio, req) {
0781         u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
0782         u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
0783 
0784         if (n < segments) {
0785             range[n].cattr = cpu_to_le32(0);
0786             range[n].nlb = cpu_to_le32(nlb);
0787             range[n].slba = cpu_to_le64(slba);
0788         }
0789         n++;
0790     }
0791 
0792     if (WARN_ON_ONCE(n != segments)) {
0793         if (virt_to_page(range) == ns->ctrl->discard_page)
0794             clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
0795         else
0796             kfree(range);
0797         return BLK_STS_IOERR;
0798     }
0799 
0800     memset(cmnd, 0, sizeof(*cmnd));
0801     cmnd->dsm.opcode = nvme_cmd_dsm;
0802     cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
0803     cmnd->dsm.nr = cpu_to_le32(segments - 1);
0804     cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
0805 
0806     req->special_vec.bv_page = virt_to_page(range);
0807     req->special_vec.bv_offset = offset_in_page(range);
0808     req->special_vec.bv_len = alloc_size;
0809     req->rq_flags |= RQF_SPECIAL_PAYLOAD;
0810 
0811     return BLK_STS_OK;
0812 }
0813 
0814 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
0815                   struct request *req)
0816 {
0817     u32 upper, lower;
0818     u64 ref48;
0819 
0820     /* both rw and write zeroes share the same reftag format */
0821     switch (ns->guard_type) {
0822     case NVME_NVM_NS_16B_GUARD:
0823         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
0824         break;
0825     case NVME_NVM_NS_64B_GUARD:
0826         ref48 = ext_pi_ref_tag(req);
0827         lower = lower_32_bits(ref48);
0828         upper = upper_32_bits(ref48);
0829 
0830         cmnd->rw.reftag = cpu_to_le32(lower);
0831         cmnd->rw.cdw3 = cpu_to_le32(upper);
0832         break;
0833     default:
0834         break;
0835     }
0836 }
0837 
0838 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
0839         struct request *req, struct nvme_command *cmnd)
0840 {
0841     memset(cmnd, 0, sizeof(*cmnd));
0842 
0843     if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
0844         return nvme_setup_discard(ns, req, cmnd);
0845 
0846     cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
0847     cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
0848     cmnd->write_zeroes.slba =
0849         cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
0850     cmnd->write_zeroes.length =
0851         cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
0852 
0853     if (nvme_ns_has_pi(ns)) {
0854         cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
0855 
0856         switch (ns->pi_type) {
0857         case NVME_NS_DPS_PI_TYPE1:
0858         case NVME_NS_DPS_PI_TYPE2:
0859             nvme_set_ref_tag(ns, cmnd, req);
0860             break;
0861         }
0862     }
0863 
0864     return BLK_STS_OK;
0865 }
0866 
0867 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
0868         struct request *req, struct nvme_command *cmnd,
0869         enum nvme_opcode op)
0870 {
0871     u16 control = 0;
0872     u32 dsmgmt = 0;
0873 
0874     if (req->cmd_flags & REQ_FUA)
0875         control |= NVME_RW_FUA;
0876     if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
0877         control |= NVME_RW_LR;
0878 
0879     if (req->cmd_flags & REQ_RAHEAD)
0880         dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
0881 
0882     cmnd->rw.opcode = op;
0883     cmnd->rw.flags = 0;
0884     cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
0885     cmnd->rw.cdw2 = 0;
0886     cmnd->rw.cdw3 = 0;
0887     cmnd->rw.metadata = 0;
0888     cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
0889     cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
0890     cmnd->rw.reftag = 0;
0891     cmnd->rw.apptag = 0;
0892     cmnd->rw.appmask = 0;
0893 
0894     if (ns->ms) {
0895         /*
0896          * If formated with metadata, the block layer always provides a
0897          * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
0898          * we enable the PRACT bit for protection information or set the
0899          * namespace capacity to zero to prevent any I/O.
0900          */
0901         if (!blk_integrity_rq(req)) {
0902             if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
0903                 return BLK_STS_NOTSUPP;
0904             control |= NVME_RW_PRINFO_PRACT;
0905         }
0906 
0907         switch (ns->pi_type) {
0908         case NVME_NS_DPS_PI_TYPE3:
0909             control |= NVME_RW_PRINFO_PRCHK_GUARD;
0910             break;
0911         case NVME_NS_DPS_PI_TYPE1:
0912         case NVME_NS_DPS_PI_TYPE2:
0913             control |= NVME_RW_PRINFO_PRCHK_GUARD |
0914                     NVME_RW_PRINFO_PRCHK_REF;
0915             if (op == nvme_cmd_zone_append)
0916                 control |= NVME_RW_APPEND_PIREMAP;
0917             nvme_set_ref_tag(ns, cmnd, req);
0918             break;
0919         }
0920     }
0921 
0922     cmnd->rw.control = cpu_to_le16(control);
0923     cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
0924     return 0;
0925 }
0926 
0927 void nvme_cleanup_cmd(struct request *req)
0928 {
0929     if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
0930         struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
0931 
0932         if (req->special_vec.bv_page == ctrl->discard_page)
0933             clear_bit_unlock(0, &ctrl->discard_page_busy);
0934         else
0935             kfree(bvec_virt(&req->special_vec));
0936     }
0937 }
0938 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
0939 
0940 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
0941 {
0942     struct nvme_command *cmd = nvme_req(req)->cmd;
0943     blk_status_t ret = BLK_STS_OK;
0944 
0945     if (!(req->rq_flags & RQF_DONTPREP))
0946         nvme_clear_nvme_request(req);
0947 
0948     switch (req_op(req)) {
0949     case REQ_OP_DRV_IN:
0950     case REQ_OP_DRV_OUT:
0951         /* these are setup prior to execution in nvme_init_request() */
0952         break;
0953     case REQ_OP_FLUSH:
0954         nvme_setup_flush(ns, cmd);
0955         break;
0956     case REQ_OP_ZONE_RESET_ALL:
0957     case REQ_OP_ZONE_RESET:
0958         ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
0959         break;
0960     case REQ_OP_ZONE_OPEN:
0961         ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
0962         break;
0963     case REQ_OP_ZONE_CLOSE:
0964         ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
0965         break;
0966     case REQ_OP_ZONE_FINISH:
0967         ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
0968         break;
0969     case REQ_OP_WRITE_ZEROES:
0970         ret = nvme_setup_write_zeroes(ns, req, cmd);
0971         break;
0972     case REQ_OP_DISCARD:
0973         ret = nvme_setup_discard(ns, req, cmd);
0974         break;
0975     case REQ_OP_READ:
0976         ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
0977         break;
0978     case REQ_OP_WRITE:
0979         ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
0980         break;
0981     case REQ_OP_ZONE_APPEND:
0982         ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
0983         break;
0984     default:
0985         WARN_ON_ONCE(1);
0986         return BLK_STS_IOERR;
0987     }
0988 
0989     cmd->common.command_id = nvme_cid(req);
0990     trace_nvme_setup_cmd(req, cmd);
0991     return ret;
0992 }
0993 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
0994 
0995 /*
0996  * Return values:
0997  * 0:  success
0998  * >0: nvme controller's cqe status response
0999  * <0: kernel error in lieu of controller response
1000  */
1001 static int nvme_execute_rq(struct request *rq, bool at_head)
1002 {
1003     blk_status_t status;
1004 
1005     status = blk_execute_rq(rq, at_head);
1006     if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1007         return -EINTR;
1008     if (nvme_req(rq)->status)
1009         return nvme_req(rq)->status;
1010     return blk_status_to_errno(status);
1011 }
1012 
1013 /*
1014  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1015  * if the result is positive, it's an NVM Express status code
1016  */
1017 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1018         union nvme_result *result, void *buffer, unsigned bufflen,
1019         int qid, int at_head, blk_mq_req_flags_t flags)
1020 {
1021     struct request *req;
1022     int ret;
1023 
1024     if (qid == NVME_QID_ANY)
1025         req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1026     else
1027         req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1028                         qid - 1);
1029 
1030     if (IS_ERR(req))
1031         return PTR_ERR(req);
1032     nvme_init_request(req, cmd);
1033 
1034     if (buffer && bufflen) {
1035         ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1036         if (ret)
1037             goto out;
1038     }
1039 
1040     req->rq_flags |= RQF_QUIET;
1041     ret = nvme_execute_rq(req, at_head);
1042     if (result && ret >= 0)
1043         *result = nvme_req(req)->result;
1044  out:
1045     blk_mq_free_request(req);
1046     return ret;
1047 }
1048 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1049 
1050 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1051         void *buffer, unsigned bufflen)
1052 {
1053     return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1054             NVME_QID_ANY, 0, 0);
1055 }
1056 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1057 
1058 static u32 nvme_known_admin_effects(u8 opcode)
1059 {
1060     switch (opcode) {
1061     case nvme_admin_format_nvm:
1062         return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1063             NVME_CMD_EFFECTS_CSE_MASK;
1064     case nvme_admin_sanitize_nvm:
1065         return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1066     default:
1067         break;
1068     }
1069     return 0;
1070 }
1071 
1072 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1073 {
1074     u32 effects = 0;
1075 
1076     if (ns) {
1077         if (ns->head->effects)
1078             effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1079         if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1080             dev_warn_once(ctrl->device,
1081                 "IO command:%02x has unhandled effects:%08x\n",
1082                 opcode, effects);
1083         return 0;
1084     }
1085 
1086     if (ctrl->effects)
1087         effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1088     effects |= nvme_known_admin_effects(opcode);
1089 
1090     return effects;
1091 }
1092 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1093 
1094 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1095                    u8 opcode)
1096 {
1097     u32 effects = nvme_command_effects(ctrl, ns, opcode);
1098 
1099     /*
1100      * For simplicity, IO to all namespaces is quiesced even if the command
1101      * effects say only one namespace is affected.
1102      */
1103     if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1104         mutex_lock(&ctrl->scan_lock);
1105         mutex_lock(&ctrl->subsys->lock);
1106         nvme_mpath_start_freeze(ctrl->subsys);
1107         nvme_mpath_wait_freeze(ctrl->subsys);
1108         nvme_start_freeze(ctrl);
1109         nvme_wait_freeze(ctrl);
1110     }
1111     return effects;
1112 }
1113 
1114 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1115                   struct nvme_command *cmd, int status)
1116 {
1117     if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1118         nvme_unfreeze(ctrl);
1119         nvme_mpath_unfreeze(ctrl->subsys);
1120         mutex_unlock(&ctrl->subsys->lock);
1121         nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1122         mutex_unlock(&ctrl->scan_lock);
1123     }
1124     if (effects & NVME_CMD_EFFECTS_CCC)
1125         nvme_init_ctrl_finish(ctrl);
1126     if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1127         nvme_queue_scan(ctrl);
1128         flush_work(&ctrl->scan_work);
1129     }
1130 
1131     switch (cmd->common.opcode) {
1132     case nvme_admin_set_features:
1133         switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1134         case NVME_FEAT_KATO:
1135             /*
1136              * Keep alive commands interval on the host should be
1137              * updated when KATO is modified by Set Features
1138              * commands.
1139              */
1140             if (!status)
1141                 nvme_update_keep_alive(ctrl, cmd);
1142             break;
1143         default:
1144             break;
1145         }
1146         break;
1147     default:
1148         break;
1149     }
1150 }
1151 
1152 int nvme_execute_passthru_rq(struct request *rq)
1153 {
1154     struct nvme_command *cmd = nvme_req(rq)->cmd;
1155     struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1156     struct nvme_ns *ns = rq->q->queuedata;
1157     u32 effects;
1158     int  ret;
1159 
1160     effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1161     ret = nvme_execute_rq(rq, false);
1162     if (effects) /* nothing to be done for zero cmd effects */
1163         nvme_passthru_end(ctrl, effects, cmd, ret);
1164 
1165     return ret;
1166 }
1167 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1168 
1169 /*
1170  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1171  * 
1172  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1173  *   accounting for transport roundtrip times [..].
1174  */
1175 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1176 {
1177     queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1178 }
1179 
1180 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1181 {
1182     struct nvme_ctrl *ctrl = rq->end_io_data;
1183     unsigned long flags;
1184     bool startka = false;
1185 
1186     blk_mq_free_request(rq);
1187 
1188     if (status) {
1189         dev_err(ctrl->device,
1190             "failed nvme_keep_alive_end_io error=%d\n",
1191                 status);
1192         return;
1193     }
1194 
1195     ctrl->comp_seen = false;
1196     spin_lock_irqsave(&ctrl->lock, flags);
1197     if (ctrl->state == NVME_CTRL_LIVE ||
1198         ctrl->state == NVME_CTRL_CONNECTING)
1199         startka = true;
1200     spin_unlock_irqrestore(&ctrl->lock, flags);
1201     if (startka)
1202         nvme_queue_keep_alive_work(ctrl);
1203 }
1204 
1205 static void nvme_keep_alive_work(struct work_struct *work)
1206 {
1207     struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1208             struct nvme_ctrl, ka_work);
1209     bool comp_seen = ctrl->comp_seen;
1210     struct request *rq;
1211 
1212     if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1213         dev_dbg(ctrl->device,
1214             "reschedule traffic based keep-alive timer\n");
1215         ctrl->comp_seen = false;
1216         nvme_queue_keep_alive_work(ctrl);
1217         return;
1218     }
1219 
1220     rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1221                   BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1222     if (IS_ERR(rq)) {
1223         /* allocation failure, reset the controller */
1224         dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1225         nvme_reset_ctrl(ctrl);
1226         return;
1227     }
1228     nvme_init_request(rq, &ctrl->ka_cmd);
1229 
1230     rq->timeout = ctrl->kato * HZ;
1231     rq->end_io = nvme_keep_alive_end_io;
1232     rq->end_io_data = ctrl;
1233     rq->rq_flags |= RQF_QUIET;
1234     blk_execute_rq_nowait(rq, false);
1235 }
1236 
1237 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1238 {
1239     if (unlikely(ctrl->kato == 0))
1240         return;
1241 
1242     nvme_queue_keep_alive_work(ctrl);
1243 }
1244 
1245 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1246 {
1247     if (unlikely(ctrl->kato == 0))
1248         return;
1249 
1250     cancel_delayed_work_sync(&ctrl->ka_work);
1251 }
1252 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1253 
1254 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1255                    struct nvme_command *cmd)
1256 {
1257     unsigned int new_kato =
1258         DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1259 
1260     dev_info(ctrl->device,
1261          "keep alive interval updated from %u ms to %u ms\n",
1262          ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1263 
1264     nvme_stop_keep_alive(ctrl);
1265     ctrl->kato = new_kato;
1266     nvme_start_keep_alive(ctrl);
1267 }
1268 
1269 /*
1270  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1271  * flag, thus sending any new CNS opcodes has a big chance of not working.
1272  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1273  * (but not for any later version).
1274  */
1275 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1276 {
1277     if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1278         return ctrl->vs < NVME_VS(1, 2, 0);
1279     return ctrl->vs < NVME_VS(1, 1, 0);
1280 }
1281 
1282 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1283 {
1284     struct nvme_command c = { };
1285     int error;
1286 
1287     /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1288     c.identify.opcode = nvme_admin_identify;
1289     c.identify.cns = NVME_ID_CNS_CTRL;
1290 
1291     *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1292     if (!*id)
1293         return -ENOMEM;
1294 
1295     error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1296             sizeof(struct nvme_id_ctrl));
1297     if (error)
1298         kfree(*id);
1299     return error;
1300 }
1301 
1302 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1303         struct nvme_ns_id_desc *cur, bool *csi_seen)
1304 {
1305     const char *warn_str = "ctrl returned bogus length:";
1306     void *data = cur;
1307 
1308     switch (cur->nidt) {
1309     case NVME_NIDT_EUI64:
1310         if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1311             dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1312                  warn_str, cur->nidl);
1313             return -1;
1314         }
1315         if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1316             return NVME_NIDT_EUI64_LEN;
1317         memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1318         return NVME_NIDT_EUI64_LEN;
1319     case NVME_NIDT_NGUID:
1320         if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1321             dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1322                  warn_str, cur->nidl);
1323             return -1;
1324         }
1325         if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1326             return NVME_NIDT_NGUID_LEN;
1327         memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1328         return NVME_NIDT_NGUID_LEN;
1329     case NVME_NIDT_UUID:
1330         if (cur->nidl != NVME_NIDT_UUID_LEN) {
1331             dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1332                  warn_str, cur->nidl);
1333             return -1;
1334         }
1335         if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1336             return NVME_NIDT_UUID_LEN;
1337         uuid_copy(&ids->uuid, data + sizeof(*cur));
1338         return NVME_NIDT_UUID_LEN;
1339     case NVME_NIDT_CSI:
1340         if (cur->nidl != NVME_NIDT_CSI_LEN) {
1341             dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1342                  warn_str, cur->nidl);
1343             return -1;
1344         }
1345         memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1346         *csi_seen = true;
1347         return NVME_NIDT_CSI_LEN;
1348     default:
1349         /* Skip unknown types */
1350         return cur->nidl;
1351     }
1352 }
1353 
1354 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1355         struct nvme_ns_info *info)
1356 {
1357     struct nvme_command c = { };
1358     bool csi_seen = false;
1359     int status, pos, len;
1360     void *data;
1361 
1362     if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1363         return 0;
1364     if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1365         return 0;
1366 
1367     c.identify.opcode = nvme_admin_identify;
1368     c.identify.nsid = cpu_to_le32(info->nsid);
1369     c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1370 
1371     data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1372     if (!data)
1373         return -ENOMEM;
1374 
1375     status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1376                       NVME_IDENTIFY_DATA_SIZE);
1377     if (status) {
1378         dev_warn(ctrl->device,
1379             "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1380             info->nsid, status);
1381         goto free_data;
1382     }
1383 
1384     for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1385         struct nvme_ns_id_desc *cur = data + pos;
1386 
1387         if (cur->nidl == 0)
1388             break;
1389 
1390         len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1391         if (len < 0)
1392             break;
1393 
1394         len += sizeof(*cur);
1395     }
1396 
1397     if (nvme_multi_css(ctrl) && !csi_seen) {
1398         dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1399              info->nsid);
1400         status = -EINVAL;
1401     }
1402 
1403 free_data:
1404     kfree(data);
1405     return status;
1406 }
1407 
1408 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1409             struct nvme_id_ns **id)
1410 {
1411     struct nvme_command c = { };
1412     int error;
1413 
1414     /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1415     c.identify.opcode = nvme_admin_identify;
1416     c.identify.nsid = cpu_to_le32(nsid);
1417     c.identify.cns = NVME_ID_CNS_NS;
1418 
1419     *id = kmalloc(sizeof(**id), GFP_KERNEL);
1420     if (!*id)
1421         return -ENOMEM;
1422 
1423     error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1424     if (error) {
1425         dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1426         goto out_free_id;
1427     }
1428 
1429     error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1430     if ((*id)->ncap == 0) /* namespace not allocated or attached */
1431         goto out_free_id;
1432     return 0;
1433 
1434 out_free_id:
1435     kfree(*id);
1436     return error;
1437 }
1438 
1439 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1440         struct nvme_ns_info *info)
1441 {
1442     struct nvme_ns_ids *ids = &info->ids;
1443     struct nvme_id_ns *id;
1444     int ret;
1445 
1446     ret = nvme_identify_ns(ctrl, info->nsid, &id);
1447     if (ret)
1448         return ret;
1449     info->anagrpid = id->anagrpid;
1450     info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1451     info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1452     info->is_ready = true;
1453     if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1454         dev_info(ctrl->device,
1455              "Ignoring bogus Namespace Identifiers\n");
1456     } else {
1457         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1458             !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1459             memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1460         if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1461             !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1462             memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1463     }
1464     kfree(id);
1465     return 0;
1466 }
1467 
1468 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1469         struct nvme_ns_info *info)
1470 {
1471     struct nvme_id_ns_cs_indep *id;
1472     struct nvme_command c = {
1473         .identify.opcode    = nvme_admin_identify,
1474         .identify.nsid      = cpu_to_le32(info->nsid),
1475         .identify.cns       = NVME_ID_CNS_NS_CS_INDEP,
1476     };
1477     int ret;
1478 
1479     id = kmalloc(sizeof(*id), GFP_KERNEL);
1480     if (!id)
1481         return -ENOMEM;
1482 
1483     ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1484     if (!ret) {
1485         info->anagrpid = id->anagrpid;
1486         info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1487         info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1488         info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1489     }
1490     kfree(id);
1491     return ret;
1492 }
1493 
1494 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1495         unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1496 {
1497     union nvme_result res = { 0 };
1498     struct nvme_command c = { };
1499     int ret;
1500 
1501     c.features.opcode = op;
1502     c.features.fid = cpu_to_le32(fid);
1503     c.features.dword11 = cpu_to_le32(dword11);
1504 
1505     ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1506             buffer, buflen, NVME_QID_ANY, 0, 0);
1507     if (ret >= 0 && result)
1508         *result = le32_to_cpu(res.u32);
1509     return ret;
1510 }
1511 
1512 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1513               unsigned int dword11, void *buffer, size_t buflen,
1514               u32 *result)
1515 {
1516     return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1517                  buflen, result);
1518 }
1519 EXPORT_SYMBOL_GPL(nvme_set_features);
1520 
1521 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1522               unsigned int dword11, void *buffer, size_t buflen,
1523               u32 *result)
1524 {
1525     return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1526                  buflen, result);
1527 }
1528 EXPORT_SYMBOL_GPL(nvme_get_features);
1529 
1530 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1531 {
1532     u32 q_count = (*count - 1) | ((*count - 1) << 16);
1533     u32 result;
1534     int status, nr_io_queues;
1535 
1536     status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1537             &result);
1538     if (status < 0)
1539         return status;
1540 
1541     /*
1542      * Degraded controllers might return an error when setting the queue
1543      * count.  We still want to be able to bring them online and offer
1544      * access to the admin queue, as that might be only way to fix them up.
1545      */
1546     if (status > 0) {
1547         dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1548         *count = 0;
1549     } else {
1550         nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1551         *count = min(*count, nr_io_queues);
1552     }
1553 
1554     return 0;
1555 }
1556 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1557 
1558 #define NVME_AEN_SUPPORTED \
1559     (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1560      NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1561 
1562 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1563 {
1564     u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1565     int status;
1566 
1567     if (!supported_aens)
1568         return;
1569 
1570     status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1571             NULL, 0, &result);
1572     if (status)
1573         dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1574              supported_aens);
1575 
1576     queue_work(nvme_wq, &ctrl->async_event_work);
1577 }
1578 
1579 static int nvme_ns_open(struct nvme_ns *ns)
1580 {
1581 
1582     /* should never be called due to GENHD_FL_HIDDEN */
1583     if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1584         goto fail;
1585     if (!nvme_get_ns(ns))
1586         goto fail;
1587     if (!try_module_get(ns->ctrl->ops->module))
1588         goto fail_put_ns;
1589 
1590     return 0;
1591 
1592 fail_put_ns:
1593     nvme_put_ns(ns);
1594 fail:
1595     return -ENXIO;
1596 }
1597 
1598 static void nvme_ns_release(struct nvme_ns *ns)
1599 {
1600 
1601     module_put(ns->ctrl->ops->module);
1602     nvme_put_ns(ns);
1603 }
1604 
1605 static int nvme_open(struct block_device *bdev, fmode_t mode)
1606 {
1607     return nvme_ns_open(bdev->bd_disk->private_data);
1608 }
1609 
1610 static void nvme_release(struct gendisk *disk, fmode_t mode)
1611 {
1612     nvme_ns_release(disk->private_data);
1613 }
1614 
1615 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1616 {
1617     /* some standard values */
1618     geo->heads = 1 << 6;
1619     geo->sectors = 1 << 5;
1620     geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1621     return 0;
1622 }
1623 
1624 #ifdef CONFIG_BLK_DEV_INTEGRITY
1625 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1626                 u32 max_integrity_segments)
1627 {
1628     struct blk_integrity integrity = { };
1629 
1630     switch (ns->pi_type) {
1631     case NVME_NS_DPS_PI_TYPE3:
1632         switch (ns->guard_type) {
1633         case NVME_NVM_NS_16B_GUARD:
1634             integrity.profile = &t10_pi_type3_crc;
1635             integrity.tag_size = sizeof(u16) + sizeof(u32);
1636             integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1637             break;
1638         case NVME_NVM_NS_64B_GUARD:
1639             integrity.profile = &ext_pi_type3_crc64;
1640             integrity.tag_size = sizeof(u16) + 6;
1641             integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1642             break;
1643         default:
1644             integrity.profile = NULL;
1645             break;
1646         }
1647         break;
1648     case NVME_NS_DPS_PI_TYPE1:
1649     case NVME_NS_DPS_PI_TYPE2:
1650         switch (ns->guard_type) {
1651         case NVME_NVM_NS_16B_GUARD:
1652             integrity.profile = &t10_pi_type1_crc;
1653             integrity.tag_size = sizeof(u16);
1654             integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1655             break;
1656         case NVME_NVM_NS_64B_GUARD:
1657             integrity.profile = &ext_pi_type1_crc64;
1658             integrity.tag_size = sizeof(u16);
1659             integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1660             break;
1661         default:
1662             integrity.profile = NULL;
1663             break;
1664         }
1665         break;
1666     default:
1667         integrity.profile = NULL;
1668         break;
1669     }
1670 
1671     integrity.tuple_size = ns->ms;
1672     blk_integrity_register(disk, &integrity);
1673     blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1674 }
1675 #else
1676 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1677                 u32 max_integrity_segments)
1678 {
1679 }
1680 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1681 
1682 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1683 {
1684     struct nvme_ctrl *ctrl = ns->ctrl;
1685     struct request_queue *queue = disk->queue;
1686     u32 size = queue_logical_block_size(queue);
1687 
1688     if (ctrl->max_discard_sectors == 0) {
1689         blk_queue_max_discard_sectors(queue, 0);
1690         return;
1691     }
1692 
1693     BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1694             NVME_DSM_MAX_RANGES);
1695 
1696     queue->limits.discard_granularity = size;
1697 
1698     /* If discard is already enabled, don't reset queue limits */
1699     if (queue->limits.max_discard_sectors)
1700         return;
1701 
1702     if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1703         ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1704 
1705     blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1706     blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1707 
1708     if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1709         blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1710 }
1711 
1712 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1713 {
1714     return uuid_equal(&a->uuid, &b->uuid) &&
1715         memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1716         memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1717         a->csi == b->csi;
1718 }
1719 
1720 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1721 {
1722     bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1723     unsigned lbaf = nvme_lbaf_index(id->flbas);
1724     struct nvme_ctrl *ctrl = ns->ctrl;
1725     struct nvme_command c = { };
1726     struct nvme_id_ns_nvm *nvm;
1727     int ret = 0;
1728     u32 elbaf;
1729 
1730     ns->pi_size = 0;
1731     ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1732     if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1733         ns->pi_size = sizeof(struct t10_pi_tuple);
1734         ns->guard_type = NVME_NVM_NS_16B_GUARD;
1735         goto set_pi;
1736     }
1737 
1738     nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1739     if (!nvm)
1740         return -ENOMEM;
1741 
1742     c.identify.opcode = nvme_admin_identify;
1743     c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1744     c.identify.cns = NVME_ID_CNS_CS_NS;
1745     c.identify.csi = NVME_CSI_NVM;
1746 
1747     ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1748     if (ret)
1749         goto free_data;
1750 
1751     elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1752 
1753     /* no support for storage tag formats right now */
1754     if (nvme_elbaf_sts(elbaf))
1755         goto free_data;
1756 
1757     ns->guard_type = nvme_elbaf_guard_type(elbaf);
1758     switch (ns->guard_type) {
1759     case NVME_NVM_NS_64B_GUARD:
1760         ns->pi_size = sizeof(struct crc64_pi_tuple);
1761         break;
1762     case NVME_NVM_NS_16B_GUARD:
1763         ns->pi_size = sizeof(struct t10_pi_tuple);
1764         break;
1765     default:
1766         break;
1767     }
1768 
1769 free_data:
1770     kfree(nvm);
1771 set_pi:
1772     if (ns->pi_size && (first || ns->ms == ns->pi_size))
1773         ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1774     else
1775         ns->pi_type = 0;
1776 
1777     return ret;
1778 }
1779 
1780 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1781 {
1782     struct nvme_ctrl *ctrl = ns->ctrl;
1783 
1784     if (nvme_init_ms(ns, id))
1785         return;
1786 
1787     ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1788     if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1789         return;
1790 
1791     if (ctrl->ops->flags & NVME_F_FABRICS) {
1792         /*
1793          * The NVMe over Fabrics specification only supports metadata as
1794          * part of the extended data LBA.  We rely on HCA/HBA support to
1795          * remap the separate metadata buffer from the block layer.
1796          */
1797         if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1798             return;
1799 
1800         ns->features |= NVME_NS_EXT_LBAS;
1801 
1802         /*
1803          * The current fabrics transport drivers support namespace
1804          * metadata formats only if nvme_ns_has_pi() returns true.
1805          * Suppress support for all other formats so the namespace will
1806          * have a 0 capacity and not be usable through the block stack.
1807          *
1808          * Note, this check will need to be modified if any drivers
1809          * gain the ability to use other metadata formats.
1810          */
1811         if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1812             ns->features |= NVME_NS_METADATA_SUPPORTED;
1813     } else {
1814         /*
1815          * For PCIe controllers, we can't easily remap the separate
1816          * metadata buffer from the block layer and thus require a
1817          * separate metadata buffer for block layer metadata/PI support.
1818          * We allow extended LBAs for the passthrough interface, though.
1819          */
1820         if (id->flbas & NVME_NS_FLBAS_META_EXT)
1821             ns->features |= NVME_NS_EXT_LBAS;
1822         else
1823             ns->features |= NVME_NS_METADATA_SUPPORTED;
1824     }
1825 }
1826 
1827 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1828         struct request_queue *q)
1829 {
1830     bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1831 
1832     if (ctrl->max_hw_sectors) {
1833         u32 max_segments =
1834             (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1835 
1836         max_segments = min_not_zero(max_segments, ctrl->max_segments);
1837         blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1838         blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1839     }
1840     blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1841     blk_queue_dma_alignment(q, 3);
1842     blk_queue_write_cache(q, vwc, vwc);
1843 }
1844 
1845 static void nvme_update_disk_info(struct gendisk *disk,
1846         struct nvme_ns *ns, struct nvme_id_ns *id)
1847 {
1848     sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1849     unsigned short bs = 1 << ns->lba_shift;
1850     u32 atomic_bs, phys_bs, io_opt = 0;
1851 
1852     /*
1853      * The block layer can't support LBA sizes larger than the page size
1854      * yet, so catch this early and don't allow block I/O.
1855      */
1856     if (ns->lba_shift > PAGE_SHIFT) {
1857         capacity = 0;
1858         bs = (1 << 9);
1859     }
1860 
1861     blk_integrity_unregister(disk);
1862 
1863     atomic_bs = phys_bs = bs;
1864     if (id->nabo == 0) {
1865         /*
1866          * Bit 1 indicates whether NAWUPF is defined for this namespace
1867          * and whether it should be used instead of AWUPF. If NAWUPF ==
1868          * 0 then AWUPF must be used instead.
1869          */
1870         if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1871             atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1872         else
1873             atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1874     }
1875 
1876     if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1877         /* NPWG = Namespace Preferred Write Granularity */
1878         phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1879         /* NOWS = Namespace Optimal Write Size */
1880         io_opt = bs * (1 + le16_to_cpu(id->nows));
1881     }
1882 
1883     blk_queue_logical_block_size(disk->queue, bs);
1884     /*
1885      * Linux filesystems assume writing a single physical block is
1886      * an atomic operation. Hence limit the physical block size to the
1887      * value of the Atomic Write Unit Power Fail parameter.
1888      */
1889     blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1890     blk_queue_io_min(disk->queue, phys_bs);
1891     blk_queue_io_opt(disk->queue, io_opt);
1892 
1893     /*
1894      * Register a metadata profile for PI, or the plain non-integrity NVMe
1895      * metadata masquerading as Type 0 if supported, otherwise reject block
1896      * I/O to namespaces with metadata except when the namespace supports
1897      * PI, as it can strip/insert in that case.
1898      */
1899     if (ns->ms) {
1900         if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1901             (ns->features & NVME_NS_METADATA_SUPPORTED))
1902             nvme_init_integrity(disk, ns,
1903                         ns->ctrl->max_integrity_segments);
1904         else if (!nvme_ns_has_pi(ns))
1905             capacity = 0;
1906     }
1907 
1908     set_capacity_and_notify(disk, capacity);
1909 
1910     nvme_config_discard(disk, ns);
1911     blk_queue_max_write_zeroes_sectors(disk->queue,
1912                        ns->ctrl->max_zeroes_sectors);
1913 }
1914 
1915 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1916 {
1917     return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1918 }
1919 
1920 static inline bool nvme_first_scan(struct gendisk *disk)
1921 {
1922     /* nvme_alloc_ns() scans the disk prior to adding it */
1923     return !disk_live(disk);
1924 }
1925 
1926 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1927 {
1928     struct nvme_ctrl *ctrl = ns->ctrl;
1929     u32 iob;
1930 
1931     if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1932         is_power_of_2(ctrl->max_hw_sectors))
1933         iob = ctrl->max_hw_sectors;
1934     else
1935         iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1936 
1937     if (!iob)
1938         return;
1939 
1940     if (!is_power_of_2(iob)) {
1941         if (nvme_first_scan(ns->disk))
1942             pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1943                 ns->disk->disk_name, iob);
1944         return;
1945     }
1946 
1947     if (blk_queue_is_zoned(ns->disk->queue)) {
1948         if (nvme_first_scan(ns->disk))
1949             pr_warn("%s: ignoring zoned namespace IO boundary\n",
1950                 ns->disk->disk_name);
1951         return;
1952     }
1953 
1954     blk_queue_chunk_sectors(ns->queue, iob);
1955 }
1956 
1957 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
1958         struct nvme_ns_info *info)
1959 {
1960     blk_mq_freeze_queue(ns->disk->queue);
1961     nvme_set_queue_limits(ns->ctrl, ns->queue);
1962     set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
1963     blk_mq_unfreeze_queue(ns->disk->queue);
1964 
1965     if (nvme_ns_head_multipath(ns->head)) {
1966         blk_mq_freeze_queue(ns->head->disk->queue);
1967         set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
1968         nvme_mpath_revalidate_paths(ns);
1969         blk_stack_limits(&ns->head->disk->queue->limits,
1970                  &ns->queue->limits, 0);
1971         ns->head->disk->flags |= GENHD_FL_HIDDEN;
1972         blk_mq_unfreeze_queue(ns->head->disk->queue);
1973     }
1974 
1975     /* Hide the block-interface for these devices */
1976     ns->disk->flags |= GENHD_FL_HIDDEN;
1977     set_bit(NVME_NS_READY, &ns->flags);
1978 
1979     return 0;
1980 }
1981 
1982 static int nvme_update_ns_info_block(struct nvme_ns *ns,
1983         struct nvme_ns_info *info)
1984 {
1985     struct nvme_id_ns *id;
1986     unsigned lbaf;
1987     int ret;
1988 
1989     ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
1990     if (ret)
1991         return ret;
1992 
1993     blk_mq_freeze_queue(ns->disk->queue);
1994     lbaf = nvme_lbaf_index(id->flbas);
1995     ns->lba_shift = id->lbaf[lbaf].ds;
1996     nvme_set_queue_limits(ns->ctrl, ns->queue);
1997 
1998     nvme_configure_metadata(ns, id);
1999     nvme_set_chunk_sectors(ns, id);
2000     nvme_update_disk_info(ns->disk, ns, id);
2001 
2002     if (ns->head->ids.csi == NVME_CSI_ZNS) {
2003         ret = nvme_update_zone_info(ns, lbaf);
2004         if (ret) {
2005             blk_mq_unfreeze_queue(ns->disk->queue);
2006             goto out;
2007         }
2008     }
2009 
2010     set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2011     set_bit(NVME_NS_READY, &ns->flags);
2012     blk_mq_unfreeze_queue(ns->disk->queue);
2013 
2014     if (blk_queue_is_zoned(ns->queue)) {
2015         ret = nvme_revalidate_zones(ns);
2016         if (ret && !nvme_first_scan(ns->disk))
2017             goto out;
2018     }
2019 
2020     if (nvme_ns_head_multipath(ns->head)) {
2021         blk_mq_freeze_queue(ns->head->disk->queue);
2022         nvme_update_disk_info(ns->head->disk, ns, id);
2023         set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2024         nvme_mpath_revalidate_paths(ns);
2025         blk_stack_limits(&ns->head->disk->queue->limits,
2026                  &ns->queue->limits, 0);
2027         disk_update_readahead(ns->head->disk);
2028         blk_mq_unfreeze_queue(ns->head->disk->queue);
2029     }
2030 
2031     ret = 0;
2032 out:
2033     /*
2034      * If probing fails due an unsupported feature, hide the block device,
2035      * but still allow other access.
2036      */
2037     if (ret == -ENODEV) {
2038         ns->disk->flags |= GENHD_FL_HIDDEN;
2039         set_bit(NVME_NS_READY, &ns->flags);
2040         ret = 0;
2041     }
2042     kfree(id);
2043     return ret;
2044 }
2045 
2046 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2047 {
2048     switch (info->ids.csi) {
2049     case NVME_CSI_ZNS:
2050         if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2051             dev_info(ns->ctrl->device,
2052     "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2053                 info->nsid);
2054             return nvme_update_ns_info_generic(ns, info);
2055         }
2056         return nvme_update_ns_info_block(ns, info);
2057     case NVME_CSI_NVM:
2058         return nvme_update_ns_info_block(ns, info);
2059     default:
2060         dev_info(ns->ctrl->device,
2061             "block device for nsid %u not supported (csi %u)\n",
2062             info->nsid, info->ids.csi);
2063         return nvme_update_ns_info_generic(ns, info);
2064     }
2065 }
2066 
2067 static char nvme_pr_type(enum pr_type type)
2068 {
2069     switch (type) {
2070     case PR_WRITE_EXCLUSIVE:
2071         return 1;
2072     case PR_EXCLUSIVE_ACCESS:
2073         return 2;
2074     case PR_WRITE_EXCLUSIVE_REG_ONLY:
2075         return 3;
2076     case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2077         return 4;
2078     case PR_WRITE_EXCLUSIVE_ALL_REGS:
2079         return 5;
2080     case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2081         return 6;
2082     default:
2083         return 0;
2084     }
2085 }
2086 
2087 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
2088         struct nvme_command *c, u8 data[16])
2089 {
2090     struct nvme_ns_head *head = bdev->bd_disk->private_data;
2091     int srcu_idx = srcu_read_lock(&head->srcu);
2092     struct nvme_ns *ns = nvme_find_path(head);
2093     int ret = -EWOULDBLOCK;
2094 
2095     if (ns) {
2096         c->common.nsid = cpu_to_le32(ns->head->ns_id);
2097         ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
2098     }
2099     srcu_read_unlock(&head->srcu, srcu_idx);
2100     return ret;
2101 }
2102     
2103 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
2104         u8 data[16])
2105 {
2106     c->common.nsid = cpu_to_le32(ns->head->ns_id);
2107     return nvme_submit_sync_cmd(ns->queue, c, data, 16);
2108 }
2109 
2110 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2111                 u64 key, u64 sa_key, u8 op)
2112 {
2113     struct nvme_command c = { };
2114     u8 data[16] = { 0, };
2115 
2116     put_unaligned_le64(key, &data[0]);
2117     put_unaligned_le64(sa_key, &data[8]);
2118 
2119     c.common.opcode = op;
2120     c.common.cdw10 = cpu_to_le32(cdw10);
2121 
2122     if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2123         bdev->bd_disk->fops == &nvme_ns_head_ops)
2124         return nvme_send_ns_head_pr_command(bdev, &c, data);
2125     return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
2126 }
2127 
2128 static int nvme_pr_register(struct block_device *bdev, u64 old,
2129         u64 new, unsigned flags)
2130 {
2131     u32 cdw10;
2132 
2133     if (flags & ~PR_FL_IGNORE_KEY)
2134         return -EOPNOTSUPP;
2135 
2136     cdw10 = old ? 2 : 0;
2137     cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2138     cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2139     return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2140 }
2141 
2142 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2143         enum pr_type type, unsigned flags)
2144 {
2145     u32 cdw10;
2146 
2147     if (flags & ~PR_FL_IGNORE_KEY)
2148         return -EOPNOTSUPP;
2149 
2150     cdw10 = nvme_pr_type(type) << 8;
2151     cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2152     return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2153 }
2154 
2155 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2156         enum pr_type type, bool abort)
2157 {
2158     u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2159 
2160     return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2161 }
2162 
2163 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2164 {
2165     u32 cdw10 = 1 | (key ? 0 : 1 << 3);
2166 
2167     return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2168 }
2169 
2170 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2171 {
2172     u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 0 : 1 << 3);
2173 
2174     return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2175 }
2176 
2177 const struct pr_ops nvme_pr_ops = {
2178     .pr_register    = nvme_pr_register,
2179     .pr_reserve = nvme_pr_reserve,
2180     .pr_release = nvme_pr_release,
2181     .pr_preempt = nvme_pr_preempt,
2182     .pr_clear   = nvme_pr_clear,
2183 };
2184 
2185 #ifdef CONFIG_BLK_SED_OPAL
2186 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2187         bool send)
2188 {
2189     struct nvme_ctrl *ctrl = data;
2190     struct nvme_command cmd = { };
2191 
2192     if (send)
2193         cmd.common.opcode = nvme_admin_security_send;
2194     else
2195         cmd.common.opcode = nvme_admin_security_recv;
2196     cmd.common.nsid = 0;
2197     cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2198     cmd.common.cdw11 = cpu_to_le32(len);
2199 
2200     return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2201             NVME_QID_ANY, 1, 0);
2202 }
2203 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2204 #endif /* CONFIG_BLK_SED_OPAL */
2205 
2206 #ifdef CONFIG_BLK_DEV_ZONED
2207 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2208         unsigned int nr_zones, report_zones_cb cb, void *data)
2209 {
2210     return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2211             data);
2212 }
2213 #else
2214 #define nvme_report_zones   NULL
2215 #endif /* CONFIG_BLK_DEV_ZONED */
2216 
2217 static const struct block_device_operations nvme_bdev_ops = {
2218     .owner      = THIS_MODULE,
2219     .ioctl      = nvme_ioctl,
2220     .compat_ioctl   = blkdev_compat_ptr_ioctl,
2221     .open       = nvme_open,
2222     .release    = nvme_release,
2223     .getgeo     = nvme_getgeo,
2224     .report_zones   = nvme_report_zones,
2225     .pr_ops     = &nvme_pr_ops,
2226 };
2227 
2228 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 timeout, bool enabled)
2229 {
2230     unsigned long timeout_jiffies = ((timeout + 1) * HZ / 2) + jiffies;
2231     u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2232     int ret;
2233 
2234     while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2235         if (csts == ~0)
2236             return -ENODEV;
2237         if ((csts & NVME_CSTS_RDY) == bit)
2238             break;
2239 
2240         usleep_range(1000, 2000);
2241         if (fatal_signal_pending(current))
2242             return -EINTR;
2243         if (time_after(jiffies, timeout_jiffies)) {
2244             dev_err(ctrl->device,
2245                 "Device not ready; aborting %s, CSTS=0x%x\n",
2246                 enabled ? "initialisation" : "reset", csts);
2247             return -ENODEV;
2248         }
2249     }
2250 
2251     return ret;
2252 }
2253 
2254 /*
2255  * If the device has been passed off to us in an enabled state, just clear
2256  * the enabled bit.  The spec says we should set the 'shutdown notification
2257  * bits', but doing so may cause the device to complete commands to the
2258  * admin queue ... and we don't know what memory that might be pointing at!
2259  */
2260 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2261 {
2262     int ret;
2263 
2264     ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2265     ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2266 
2267     ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2268     if (ret)
2269         return ret;
2270 
2271     if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2272         msleep(NVME_QUIRK_DELAY_AMOUNT);
2273 
2274     return nvme_wait_ready(ctrl, NVME_CAP_TIMEOUT(ctrl->cap), false);
2275 }
2276 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2277 
2278 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2279 {
2280     unsigned dev_page_min;
2281     u32 timeout;
2282     int ret;
2283 
2284     ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2285     if (ret) {
2286         dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2287         return ret;
2288     }
2289     dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2290 
2291     if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2292         dev_err(ctrl->device,
2293             "Minimum device page size %u too large for host (%u)\n",
2294             1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2295         return -ENODEV;
2296     }
2297 
2298     if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2299         ctrl->ctrl_config = NVME_CC_CSS_CSI;
2300     else
2301         ctrl->ctrl_config = NVME_CC_CSS_NVM;
2302 
2303     if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2304         u32 crto;
2305 
2306         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2307         if (ret) {
2308             dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2309                 ret);
2310             return ret;
2311         }
2312 
2313         if (ctrl->cap & NVME_CAP_CRMS_CRIMS) {
2314             ctrl->ctrl_config |= NVME_CC_CRIME;
2315             timeout = NVME_CRTO_CRIMT(crto);
2316         } else {
2317             timeout = NVME_CRTO_CRWMT(crto);
2318         }
2319     } else {
2320         timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2321     }
2322 
2323     ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2324     ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2325     ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2326     ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2327     if (ret)
2328         return ret;
2329 
2330     /* Flush write to device (required if transport is PCI) */
2331     ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2332     if (ret)
2333         return ret;
2334 
2335     ctrl->ctrl_config |= NVME_CC_ENABLE;
2336     ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2337     if (ret)
2338         return ret;
2339     return nvme_wait_ready(ctrl, timeout, true);
2340 }
2341 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2342 
2343 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2344 {
2345     unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2346     u32 csts;
2347     int ret;
2348 
2349     ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2350     ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2351 
2352     ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2353     if (ret)
2354         return ret;
2355 
2356     while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2357         if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2358             break;
2359 
2360         msleep(100);
2361         if (fatal_signal_pending(current))
2362             return -EINTR;
2363         if (time_after(jiffies, timeout)) {
2364             dev_err(ctrl->device,
2365                 "Device shutdown incomplete; abort shutdown\n");
2366             return -ENODEV;
2367         }
2368     }
2369 
2370     return ret;
2371 }
2372 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2373 
2374 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2375 {
2376     __le64 ts;
2377     int ret;
2378 
2379     if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2380         return 0;
2381 
2382     ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2383     ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2384             NULL);
2385     if (ret)
2386         dev_warn_once(ctrl->device,
2387             "could not set timestamp (%d)\n", ret);
2388     return ret;
2389 }
2390 
2391 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2392 {
2393     struct nvme_feat_host_behavior *host;
2394     u8 acre = 0, lbafee = 0;
2395     int ret;
2396 
2397     /* Don't bother enabling the feature if retry delay is not reported */
2398     if (ctrl->crdt[0])
2399         acre = NVME_ENABLE_ACRE;
2400     if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2401         lbafee = NVME_ENABLE_LBAFEE;
2402 
2403     if (!acre && !lbafee)
2404         return 0;
2405 
2406     host = kzalloc(sizeof(*host), GFP_KERNEL);
2407     if (!host)
2408         return 0;
2409 
2410     host->acre = acre;
2411     host->lbafee = lbafee;
2412     ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2413                 host, sizeof(*host), NULL);
2414     kfree(host);
2415     return ret;
2416 }
2417 
2418 /*
2419  * The function checks whether the given total (exlat + enlat) latency of
2420  * a power state allows the latter to be used as an APST transition target.
2421  * It does so by comparing the latency to the primary and secondary latency
2422  * tolerances defined by module params. If there's a match, the corresponding
2423  * timeout value is returned and the matching tolerance index (1 or 2) is
2424  * reported.
2425  */
2426 static bool nvme_apst_get_transition_time(u64 total_latency,
2427         u64 *transition_time, unsigned *last_index)
2428 {
2429     if (total_latency <= apst_primary_latency_tol_us) {
2430         if (*last_index == 1)
2431             return false;
2432         *last_index = 1;
2433         *transition_time = apst_primary_timeout_ms;
2434         return true;
2435     }
2436     if (apst_secondary_timeout_ms &&
2437         total_latency <= apst_secondary_latency_tol_us) {
2438         if (*last_index <= 2)
2439             return false;
2440         *last_index = 2;
2441         *transition_time = apst_secondary_timeout_ms;
2442         return true;
2443     }
2444     return false;
2445 }
2446 
2447 /*
2448  * APST (Autonomous Power State Transition) lets us program a table of power
2449  * state transitions that the controller will perform automatically.
2450  *
2451  * Depending on module params, one of the two supported techniques will be used:
2452  *
2453  * - If the parameters provide explicit timeouts and tolerances, they will be
2454  *   used to build a table with up to 2 non-operational states to transition to.
2455  *   The default parameter values were selected based on the values used by
2456  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2457  *   regeneration of the APST table in the event of switching between external
2458  *   and battery power, the timeouts and tolerances reflect a compromise
2459  *   between values used by Microsoft for AC and battery scenarios.
2460  * - If not, we'll configure the table with a simple heuristic: we are willing
2461  *   to spend at most 2% of the time transitioning between power states.
2462  *   Therefore, when running in any given state, we will enter the next
2463  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2464  *   microseconds, as long as that state's exit latency is under the requested
2465  *   maximum latency.
2466  *
2467  * We will not autonomously enter any non-operational state for which the total
2468  * latency exceeds ps_max_latency_us.
2469  *
2470  * Users can set ps_max_latency_us to zero to turn off APST.
2471  */
2472 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2473 {
2474     struct nvme_feat_auto_pst *table;
2475     unsigned apste = 0;
2476     u64 max_lat_us = 0;
2477     __le64 target = 0;
2478     int max_ps = -1;
2479     int state;
2480     int ret;
2481     unsigned last_lt_index = UINT_MAX;
2482 
2483     /*
2484      * If APST isn't supported or if we haven't been initialized yet,
2485      * then don't do anything.
2486      */
2487     if (!ctrl->apsta)
2488         return 0;
2489 
2490     if (ctrl->npss > 31) {
2491         dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2492         return 0;
2493     }
2494 
2495     table = kzalloc(sizeof(*table), GFP_KERNEL);
2496     if (!table)
2497         return 0;
2498 
2499     if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2500         /* Turn off APST. */
2501         dev_dbg(ctrl->device, "APST disabled\n");
2502         goto done;
2503     }
2504 
2505     /*
2506      * Walk through all states from lowest- to highest-power.
2507      * According to the spec, lower-numbered states use more power.  NPSS,
2508      * despite the name, is the index of the lowest-power state, not the
2509      * number of states.
2510      */
2511     for (state = (int)ctrl->npss; state >= 0; state--) {
2512         u64 total_latency_us, exit_latency_us, transition_ms;
2513 
2514         if (target)
2515             table->entries[state] = target;
2516 
2517         /*
2518          * Don't allow transitions to the deepest state if it's quirked
2519          * off.
2520          */
2521         if (state == ctrl->npss &&
2522             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2523             continue;
2524 
2525         /*
2526          * Is this state a useful non-operational state for higher-power
2527          * states to autonomously transition to?
2528          */
2529         if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2530             continue;
2531 
2532         exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2533         if (exit_latency_us > ctrl->ps_max_latency_us)
2534             continue;
2535 
2536         total_latency_us = exit_latency_us +
2537             le32_to_cpu(ctrl->psd[state].entry_lat);
2538 
2539         /*
2540          * This state is good. It can be used as the APST idle target
2541          * for higher power states.
2542          */
2543         if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2544             if (!nvme_apst_get_transition_time(total_latency_us,
2545                     &transition_ms, &last_lt_index))
2546                 continue;
2547         } else {
2548             transition_ms = total_latency_us + 19;
2549             do_div(transition_ms, 20);
2550             if (transition_ms > (1 << 24) - 1)
2551                 transition_ms = (1 << 24) - 1;
2552         }
2553 
2554         target = cpu_to_le64((state << 3) | (transition_ms << 8));
2555         if (max_ps == -1)
2556             max_ps = state;
2557         if (total_latency_us > max_lat_us)
2558             max_lat_us = total_latency_us;
2559     }
2560 
2561     if (max_ps == -1)
2562         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2563     else
2564         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2565             max_ps, max_lat_us, (int)sizeof(*table), table);
2566     apste = 1;
2567 
2568 done:
2569     ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2570                 table, sizeof(*table), NULL);
2571     if (ret)
2572         dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2573     kfree(table);
2574     return ret;
2575 }
2576 
2577 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2578 {
2579     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2580     u64 latency;
2581 
2582     switch (val) {
2583     case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2584     case PM_QOS_LATENCY_ANY:
2585         latency = U64_MAX;
2586         break;
2587 
2588     default:
2589         latency = val;
2590     }
2591 
2592     if (ctrl->ps_max_latency_us != latency) {
2593         ctrl->ps_max_latency_us = latency;
2594         if (ctrl->state == NVME_CTRL_LIVE)
2595             nvme_configure_apst(ctrl);
2596     }
2597 }
2598 
2599 struct nvme_core_quirk_entry {
2600     /*
2601      * NVMe model and firmware strings are padded with spaces.  For
2602      * simplicity, strings in the quirk table are padded with NULLs
2603      * instead.
2604      */
2605     u16 vid;
2606     const char *mn;
2607     const char *fr;
2608     unsigned long quirks;
2609 };
2610 
2611 static const struct nvme_core_quirk_entry core_quirks[] = {
2612     {
2613         /*
2614          * This Toshiba device seems to die using any APST states.  See:
2615          * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2616          */
2617         .vid = 0x1179,
2618         .mn = "THNSF5256GPUK TOSHIBA",
2619         .quirks = NVME_QUIRK_NO_APST,
2620     },
2621     {
2622         /*
2623          * This LiteON CL1-3D*-Q11 firmware version has a race
2624          * condition associated with actions related to suspend to idle
2625          * LiteON has resolved the problem in future firmware
2626          */
2627         .vid = 0x14a4,
2628         .fr = "22301111",
2629         .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2630     },
2631     {
2632         /*
2633          * This Kioxia CD6-V Series / HPE PE8030 device times out and
2634          * aborts I/O during any load, but more easily reproducible
2635          * with discards (fstrim).
2636          *
2637          * The device is left in a state where it is also not possible
2638          * to use "nvme set-feature" to disable APST, but booting with
2639          * nvme_core.default_ps_max_latency=0 works.
2640          */
2641         .vid = 0x1e0f,
2642         .mn = "KCD6XVUL6T40",
2643         .quirks = NVME_QUIRK_NO_APST,
2644     },
2645     {
2646         /*
2647          * The external Samsung X5 SSD fails initialization without a
2648          * delay before checking if it is ready and has a whole set of
2649          * other problems.  To make this even more interesting, it
2650          * shares the PCI ID with internal Samsung 970 Evo Plus that
2651          * does not need or want these quirks.
2652          */
2653         .vid = 0x144d,
2654         .mn = "Samsung Portable SSD X5",
2655         .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2656               NVME_QUIRK_NO_DEEPEST_PS |
2657               NVME_QUIRK_IGNORE_DEV_SUBNQN,
2658     }
2659 };
2660 
2661 /* match is null-terminated but idstr is space-padded. */
2662 static bool string_matches(const char *idstr, const char *match, size_t len)
2663 {
2664     size_t matchlen;
2665 
2666     if (!match)
2667         return true;
2668 
2669     matchlen = strlen(match);
2670     WARN_ON_ONCE(matchlen > len);
2671 
2672     if (memcmp(idstr, match, matchlen))
2673         return false;
2674 
2675     for (; matchlen < len; matchlen++)
2676         if (idstr[matchlen] != ' ')
2677             return false;
2678 
2679     return true;
2680 }
2681 
2682 static bool quirk_matches(const struct nvme_id_ctrl *id,
2683               const struct nvme_core_quirk_entry *q)
2684 {
2685     return q->vid == le16_to_cpu(id->vid) &&
2686         string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2687         string_matches(id->fr, q->fr, sizeof(id->fr));
2688 }
2689 
2690 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2691         struct nvme_id_ctrl *id)
2692 {
2693     size_t nqnlen;
2694     int off;
2695 
2696     if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2697         nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2698         if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2699             strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2700             return;
2701         }
2702 
2703         if (ctrl->vs >= NVME_VS(1, 2, 1))
2704             dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2705     }
2706 
2707     /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2708     off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2709             "nqn.2014.08.org.nvmexpress:%04x%04x",
2710             le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2711     memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2712     off += sizeof(id->sn);
2713     memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2714     off += sizeof(id->mn);
2715     memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2716 }
2717 
2718 static void nvme_release_subsystem(struct device *dev)
2719 {
2720     struct nvme_subsystem *subsys =
2721         container_of(dev, struct nvme_subsystem, dev);
2722 
2723     if (subsys->instance >= 0)
2724         ida_free(&nvme_instance_ida, subsys->instance);
2725     kfree(subsys);
2726 }
2727 
2728 static void nvme_destroy_subsystem(struct kref *ref)
2729 {
2730     struct nvme_subsystem *subsys =
2731             container_of(ref, struct nvme_subsystem, ref);
2732 
2733     mutex_lock(&nvme_subsystems_lock);
2734     list_del(&subsys->entry);
2735     mutex_unlock(&nvme_subsystems_lock);
2736 
2737     ida_destroy(&subsys->ns_ida);
2738     device_del(&subsys->dev);
2739     put_device(&subsys->dev);
2740 }
2741 
2742 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2743 {
2744     kref_put(&subsys->ref, nvme_destroy_subsystem);
2745 }
2746 
2747 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2748 {
2749     struct nvme_subsystem *subsys;
2750 
2751     lockdep_assert_held(&nvme_subsystems_lock);
2752 
2753     /*
2754      * Fail matches for discovery subsystems. This results
2755      * in each discovery controller bound to a unique subsystem.
2756      * This avoids issues with validating controller values
2757      * that can only be true when there is a single unique subsystem.
2758      * There may be multiple and completely independent entities
2759      * that provide discovery controllers.
2760      */
2761     if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2762         return NULL;
2763 
2764     list_for_each_entry(subsys, &nvme_subsystems, entry) {
2765         if (strcmp(subsys->subnqn, subsysnqn))
2766             continue;
2767         if (!kref_get_unless_zero(&subsys->ref))
2768             continue;
2769         return subsys;
2770     }
2771 
2772     return NULL;
2773 }
2774 
2775 #define SUBSYS_ATTR_RO(_name, _mode, _show)         \
2776     struct device_attribute subsys_attr_##_name = \
2777         __ATTR(_name, _mode, _show, NULL)
2778 
2779 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2780                     struct device_attribute *attr,
2781                     char *buf)
2782 {
2783     struct nvme_subsystem *subsys =
2784         container_of(dev, struct nvme_subsystem, dev);
2785 
2786     return sysfs_emit(buf, "%s\n", subsys->subnqn);
2787 }
2788 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2789 
2790 static ssize_t nvme_subsys_show_type(struct device *dev,
2791                     struct device_attribute *attr,
2792                     char *buf)
2793 {
2794     struct nvme_subsystem *subsys =
2795         container_of(dev, struct nvme_subsystem, dev);
2796 
2797     switch (subsys->subtype) {
2798     case NVME_NQN_DISC:
2799         return sysfs_emit(buf, "discovery\n");
2800     case NVME_NQN_NVME:
2801         return sysfs_emit(buf, "nvm\n");
2802     default:
2803         return sysfs_emit(buf, "reserved\n");
2804     }
2805 }
2806 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type);
2807 
2808 #define nvme_subsys_show_str_function(field)                \
2809 static ssize_t subsys_##field##_show(struct device *dev,        \
2810                 struct device_attribute *attr, char *buf)   \
2811 {                                   \
2812     struct nvme_subsystem *subsys =                 \
2813         container_of(dev, struct nvme_subsystem, dev);      \
2814     return sysfs_emit(buf, "%.*s\n",                \
2815                (int)sizeof(subsys->field), subsys->field);  \
2816 }                                   \
2817 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2818 
2819 nvme_subsys_show_str_function(model);
2820 nvme_subsys_show_str_function(serial);
2821 nvme_subsys_show_str_function(firmware_rev);
2822 
2823 static struct attribute *nvme_subsys_attrs[] = {
2824     &subsys_attr_model.attr,
2825     &subsys_attr_serial.attr,
2826     &subsys_attr_firmware_rev.attr,
2827     &subsys_attr_subsysnqn.attr,
2828     &subsys_attr_subsystype.attr,
2829 #ifdef CONFIG_NVME_MULTIPATH
2830     &subsys_attr_iopolicy.attr,
2831 #endif
2832     NULL,
2833 };
2834 
2835 static const struct attribute_group nvme_subsys_attrs_group = {
2836     .attrs = nvme_subsys_attrs,
2837 };
2838 
2839 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2840     &nvme_subsys_attrs_group,
2841     NULL,
2842 };
2843 
2844 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2845 {
2846     return ctrl->opts && ctrl->opts->discovery_nqn;
2847 }
2848 
2849 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2850         struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2851 {
2852     struct nvme_ctrl *tmp;
2853 
2854     lockdep_assert_held(&nvme_subsystems_lock);
2855 
2856     list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2857         if (nvme_state_terminal(tmp))
2858             continue;
2859 
2860         if (tmp->cntlid == ctrl->cntlid) {
2861             dev_err(ctrl->device,
2862                 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2863                 ctrl->cntlid, dev_name(tmp->device),
2864                 subsys->subnqn);
2865             return false;
2866         }
2867 
2868         if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2869             nvme_discovery_ctrl(ctrl))
2870             continue;
2871 
2872         dev_err(ctrl->device,
2873             "Subsystem does not support multiple controllers\n");
2874         return false;
2875     }
2876 
2877     return true;
2878 }
2879 
2880 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2881 {
2882     struct nvme_subsystem *subsys, *found;
2883     int ret;
2884 
2885     subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2886     if (!subsys)
2887         return -ENOMEM;
2888 
2889     subsys->instance = -1;
2890     mutex_init(&subsys->lock);
2891     kref_init(&subsys->ref);
2892     INIT_LIST_HEAD(&subsys->ctrls);
2893     INIT_LIST_HEAD(&subsys->nsheads);
2894     nvme_init_subnqn(subsys, ctrl, id);
2895     memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2896     memcpy(subsys->model, id->mn, sizeof(subsys->model));
2897     memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2898     subsys->vendor_id = le16_to_cpu(id->vid);
2899     subsys->cmic = id->cmic;
2900 
2901     /* Versions prior to 1.4 don't necessarily report a valid type */
2902     if (id->cntrltype == NVME_CTRL_DISC ||
2903         !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2904         subsys->subtype = NVME_NQN_DISC;
2905     else
2906         subsys->subtype = NVME_NQN_NVME;
2907 
2908     if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2909         dev_err(ctrl->device,
2910             "Subsystem %s is not a discovery controller",
2911             subsys->subnqn);
2912         kfree(subsys);
2913         return -EINVAL;
2914     }
2915     subsys->awupf = le16_to_cpu(id->awupf);
2916     nvme_mpath_default_iopolicy(subsys);
2917 
2918     subsys->dev.class = nvme_subsys_class;
2919     subsys->dev.release = nvme_release_subsystem;
2920     subsys->dev.groups = nvme_subsys_attrs_groups;
2921     dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2922     device_initialize(&subsys->dev);
2923 
2924     mutex_lock(&nvme_subsystems_lock);
2925     found = __nvme_find_get_subsystem(subsys->subnqn);
2926     if (found) {
2927         put_device(&subsys->dev);
2928         subsys = found;
2929 
2930         if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2931             ret = -EINVAL;
2932             goto out_put_subsystem;
2933         }
2934     } else {
2935         ret = device_add(&subsys->dev);
2936         if (ret) {
2937             dev_err(ctrl->device,
2938                 "failed to register subsystem device.\n");
2939             put_device(&subsys->dev);
2940             goto out_unlock;
2941         }
2942         ida_init(&subsys->ns_ida);
2943         list_add_tail(&subsys->entry, &nvme_subsystems);
2944     }
2945 
2946     ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2947                 dev_name(ctrl->device));
2948     if (ret) {
2949         dev_err(ctrl->device,
2950             "failed to create sysfs link from subsystem.\n");
2951         goto out_put_subsystem;
2952     }
2953 
2954     if (!found)
2955         subsys->instance = ctrl->instance;
2956     ctrl->subsys = subsys;
2957     list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2958     mutex_unlock(&nvme_subsystems_lock);
2959     return 0;
2960 
2961 out_put_subsystem:
2962     nvme_put_subsystem(subsys);
2963 out_unlock:
2964     mutex_unlock(&nvme_subsystems_lock);
2965     return ret;
2966 }
2967 
2968 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2969         void *log, size_t size, u64 offset)
2970 {
2971     struct nvme_command c = { };
2972     u32 dwlen = nvme_bytes_to_numd(size);
2973 
2974     c.get_log_page.opcode = nvme_admin_get_log_page;
2975     c.get_log_page.nsid = cpu_to_le32(nsid);
2976     c.get_log_page.lid = log_page;
2977     c.get_log_page.lsp = lsp;
2978     c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2979     c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2980     c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2981     c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2982     c.get_log_page.csi = csi;
2983 
2984     return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2985 }
2986 
2987 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2988                 struct nvme_effects_log **log)
2989 {
2990     struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2991     int ret;
2992 
2993     if (cel)
2994         goto out;
2995 
2996     cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2997     if (!cel)
2998         return -ENOMEM;
2999 
3000     ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3001             cel, sizeof(*cel), 0);
3002     if (ret) {
3003         kfree(cel);
3004         return ret;
3005     }
3006 
3007     xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3008 out:
3009     *log = cel;
3010     return 0;
3011 }
3012 
3013 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3014 {
3015     u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3016 
3017     if (check_shl_overflow(1U, units + page_shift - 9, &val))
3018         return UINT_MAX;
3019     return val;
3020 }
3021 
3022 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3023 {
3024     struct nvme_command c = { };
3025     struct nvme_id_ctrl_nvm *id;
3026     int ret;
3027 
3028     if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
3029         ctrl->max_discard_sectors = UINT_MAX;
3030         ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
3031     } else {
3032         ctrl->max_discard_sectors = 0;
3033         ctrl->max_discard_segments = 0;
3034     }
3035 
3036     /*
3037      * Even though NVMe spec explicitly states that MDTS is not applicable
3038      * to the write-zeroes, we are cautious and limit the size to the
3039      * controllers max_hw_sectors value, which is based on the MDTS field
3040      * and possibly other limiting factors.
3041      */
3042     if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3043         !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3044         ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3045     else
3046         ctrl->max_zeroes_sectors = 0;
3047 
3048     if (nvme_ctrl_limited_cns(ctrl))
3049         return 0;
3050 
3051     id = kzalloc(sizeof(*id), GFP_KERNEL);
3052     if (!id)
3053         return 0;
3054 
3055     c.identify.opcode = nvme_admin_identify;
3056     c.identify.cns = NVME_ID_CNS_CS_CTRL;
3057     c.identify.csi = NVME_CSI_NVM;
3058 
3059     ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3060     if (ret)
3061         goto free_data;
3062 
3063     if (id->dmrl)
3064         ctrl->max_discard_segments = id->dmrl;
3065     ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3066     if (id->wzsl)
3067         ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3068 
3069 free_data:
3070     kfree(id);
3071     return ret;
3072 }
3073 
3074 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3075 {
3076     struct nvme_id_ctrl *id;
3077     u32 max_hw_sectors;
3078     bool prev_apst_enabled;
3079     int ret;
3080 
3081     ret = nvme_identify_ctrl(ctrl, &id);
3082     if (ret) {
3083         dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3084         return -EIO;
3085     }
3086 
3087     if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3088         ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3089         if (ret < 0)
3090             goto out_free;
3091     }
3092 
3093     if (!(ctrl->ops->flags & NVME_F_FABRICS))
3094         ctrl->cntlid = le16_to_cpu(id->cntlid);
3095 
3096     if (!ctrl->identified) {
3097         unsigned int i;
3098 
3099         ret = nvme_init_subsystem(ctrl, id);
3100         if (ret)
3101             goto out_free;
3102 
3103         /*
3104          * Check for quirks.  Quirk can depend on firmware version,
3105          * so, in principle, the set of quirks present can change
3106          * across a reset.  As a possible future enhancement, we
3107          * could re-scan for quirks every time we reinitialize
3108          * the device, but we'd have to make sure that the driver
3109          * behaves intelligently if the quirks change.
3110          */
3111         for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3112             if (quirk_matches(id, &core_quirks[i]))
3113                 ctrl->quirks |= core_quirks[i].quirks;
3114         }
3115     }
3116 
3117     if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3118         dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3119         ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3120     }
3121 
3122     ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3123     ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3124     ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3125 
3126     ctrl->oacs = le16_to_cpu(id->oacs);
3127     ctrl->oncs = le16_to_cpu(id->oncs);
3128     ctrl->mtfa = le16_to_cpu(id->mtfa);
3129     ctrl->oaes = le32_to_cpu(id->oaes);
3130     ctrl->wctemp = le16_to_cpu(id->wctemp);
3131     ctrl->cctemp = le16_to_cpu(id->cctemp);
3132 
3133     atomic_set(&ctrl->abort_limit, id->acl + 1);
3134     ctrl->vwc = id->vwc;
3135     if (id->mdts)
3136         max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3137     else
3138         max_hw_sectors = UINT_MAX;
3139     ctrl->max_hw_sectors =
3140         min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3141 
3142     nvme_set_queue_limits(ctrl, ctrl->admin_q);
3143     ctrl->sgls = le32_to_cpu(id->sgls);
3144     ctrl->kas = le16_to_cpu(id->kas);
3145     ctrl->max_namespaces = le32_to_cpu(id->mnan);
3146     ctrl->ctratt = le32_to_cpu(id->ctratt);
3147 
3148     ctrl->cntrltype = id->cntrltype;
3149     ctrl->dctype = id->dctype;
3150 
3151     if (id->rtd3e) {
3152         /* us -> s */
3153         u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3154 
3155         ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3156                          shutdown_timeout, 60);
3157 
3158         if (ctrl->shutdown_timeout != shutdown_timeout)
3159             dev_info(ctrl->device,
3160                  "Shutdown timeout set to %u seconds\n",
3161                  ctrl->shutdown_timeout);
3162     } else
3163         ctrl->shutdown_timeout = shutdown_timeout;
3164 
3165     ctrl->npss = id->npss;
3166     ctrl->apsta = id->apsta;
3167     prev_apst_enabled = ctrl->apst_enabled;
3168     if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3169         if (force_apst && id->apsta) {
3170             dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3171             ctrl->apst_enabled = true;
3172         } else {
3173             ctrl->apst_enabled = false;
3174         }
3175     } else {
3176         ctrl->apst_enabled = id->apsta;
3177     }
3178     memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3179 
3180     if (ctrl->ops->flags & NVME_F_FABRICS) {
3181         ctrl->icdoff = le16_to_cpu(id->icdoff);
3182         ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3183         ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3184         ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3185 
3186         /*
3187          * In fabrics we need to verify the cntlid matches the
3188          * admin connect
3189          */
3190         if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3191             dev_err(ctrl->device,
3192                 "Mismatching cntlid: Connect %u vs Identify "
3193                 "%u, rejecting\n",
3194                 ctrl->cntlid, le16_to_cpu(id->cntlid));
3195             ret = -EINVAL;
3196             goto out_free;
3197         }
3198 
3199         if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3200             dev_err(ctrl->device,
3201                 "keep-alive support is mandatory for fabrics\n");
3202             ret = -EINVAL;
3203             goto out_free;
3204         }
3205     } else {
3206         ctrl->hmpre = le32_to_cpu(id->hmpre);
3207         ctrl->hmmin = le32_to_cpu(id->hmmin);
3208         ctrl->hmminds = le32_to_cpu(id->hmminds);
3209         ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3210     }
3211 
3212     ret = nvme_mpath_init_identify(ctrl, id);
3213     if (ret < 0)
3214         goto out_free;
3215 
3216     if (ctrl->apst_enabled && !prev_apst_enabled)
3217         dev_pm_qos_expose_latency_tolerance(ctrl->device);
3218     else if (!ctrl->apst_enabled && prev_apst_enabled)
3219         dev_pm_qos_hide_latency_tolerance(ctrl->device);
3220 
3221 out_free:
3222     kfree(id);
3223     return ret;
3224 }
3225 
3226 /*
3227  * Initialize the cached copies of the Identify data and various controller
3228  * register in our nvme_ctrl structure.  This should be called as soon as
3229  * the admin queue is fully up and running.
3230  */
3231 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
3232 {
3233     int ret;
3234 
3235     ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3236     if (ret) {
3237         dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3238         return ret;
3239     }
3240 
3241     ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3242 
3243     if (ctrl->vs >= NVME_VS(1, 1, 0))
3244         ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3245 
3246     ret = nvme_init_identify(ctrl);
3247     if (ret)
3248         return ret;
3249 
3250     ret = nvme_configure_apst(ctrl);
3251     if (ret < 0)
3252         return ret;
3253 
3254     ret = nvme_configure_timestamp(ctrl);
3255     if (ret < 0)
3256         return ret;
3257 
3258     ret = nvme_configure_host_options(ctrl);
3259     if (ret < 0)
3260         return ret;
3261 
3262     if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3263         ret = nvme_hwmon_init(ctrl);
3264         if (ret < 0)
3265             return ret;
3266     }
3267 
3268     ctrl->identified = true;
3269 
3270     return 0;
3271 }
3272 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3273 
3274 static int nvme_dev_open(struct inode *inode, struct file *file)
3275 {
3276     struct nvme_ctrl *ctrl =
3277         container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3278 
3279     switch (ctrl->state) {
3280     case NVME_CTRL_LIVE:
3281         break;
3282     default:
3283         return -EWOULDBLOCK;
3284     }
3285 
3286     nvme_get_ctrl(ctrl);
3287     if (!try_module_get(ctrl->ops->module)) {
3288         nvme_put_ctrl(ctrl);
3289         return -EINVAL;
3290     }
3291 
3292     file->private_data = ctrl;
3293     return 0;
3294 }
3295 
3296 static int nvme_dev_release(struct inode *inode, struct file *file)
3297 {
3298     struct nvme_ctrl *ctrl =
3299         container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3300 
3301     module_put(ctrl->ops->module);
3302     nvme_put_ctrl(ctrl);
3303     return 0;
3304 }
3305 
3306 static const struct file_operations nvme_dev_fops = {
3307     .owner      = THIS_MODULE,
3308     .open       = nvme_dev_open,
3309     .release    = nvme_dev_release,
3310     .unlocked_ioctl = nvme_dev_ioctl,
3311     .compat_ioctl   = compat_ptr_ioctl,
3312     .uring_cmd  = nvme_dev_uring_cmd,
3313 };
3314 
3315 static ssize_t nvme_sysfs_reset(struct device *dev,
3316                 struct device_attribute *attr, const char *buf,
3317                 size_t count)
3318 {
3319     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3320     int ret;
3321 
3322     ret = nvme_reset_ctrl_sync(ctrl);
3323     if (ret < 0)
3324         return ret;
3325     return count;
3326 }
3327 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3328 
3329 static ssize_t nvme_sysfs_rescan(struct device *dev,
3330                 struct device_attribute *attr, const char *buf,
3331                 size_t count)
3332 {
3333     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3334 
3335     nvme_queue_scan(ctrl);
3336     return count;
3337 }
3338 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3339 
3340 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3341 {
3342     struct gendisk *disk = dev_to_disk(dev);
3343 
3344     if (disk->fops == &nvme_bdev_ops)
3345         return nvme_get_ns_from_dev(dev)->head;
3346     else
3347         return disk->private_data;
3348 }
3349 
3350 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3351         char *buf)
3352 {
3353     struct nvme_ns_head *head = dev_to_ns_head(dev);
3354     struct nvme_ns_ids *ids = &head->ids;
3355     struct nvme_subsystem *subsys = head->subsys;
3356     int serial_len = sizeof(subsys->serial);
3357     int model_len = sizeof(subsys->model);
3358 
3359     if (!uuid_is_null(&ids->uuid))
3360         return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3361 
3362     if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3363         return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3364 
3365     if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3366         return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3367 
3368     while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3369                   subsys->serial[serial_len - 1] == '\0'))
3370         serial_len--;
3371     while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3372                  subsys->model[model_len - 1] == '\0'))
3373         model_len--;
3374 
3375     return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3376         serial_len, subsys->serial, model_len, subsys->model,
3377         head->ns_id);
3378 }
3379 static DEVICE_ATTR_RO(wwid);
3380 
3381 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3382         char *buf)
3383 {
3384     return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3385 }
3386 static DEVICE_ATTR_RO(nguid);
3387 
3388 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3389         char *buf)
3390 {
3391     struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3392 
3393     /* For backward compatibility expose the NGUID to userspace if
3394      * we have no UUID set
3395      */
3396     if (uuid_is_null(&ids->uuid)) {
3397         dev_warn_ratelimited(dev,
3398             "No UUID available providing old NGUID\n");
3399         return sysfs_emit(buf, "%pU\n", ids->nguid);
3400     }
3401     return sysfs_emit(buf, "%pU\n", &ids->uuid);
3402 }
3403 static DEVICE_ATTR_RO(uuid);
3404 
3405 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3406         char *buf)
3407 {
3408     return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3409 }
3410 static DEVICE_ATTR_RO(eui);
3411 
3412 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3413         char *buf)
3414 {
3415     return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3416 }
3417 static DEVICE_ATTR_RO(nsid);
3418 
3419 static struct attribute *nvme_ns_id_attrs[] = {
3420     &dev_attr_wwid.attr,
3421     &dev_attr_uuid.attr,
3422     &dev_attr_nguid.attr,
3423     &dev_attr_eui.attr,
3424     &dev_attr_nsid.attr,
3425 #ifdef CONFIG_NVME_MULTIPATH
3426     &dev_attr_ana_grpid.attr,
3427     &dev_attr_ana_state.attr,
3428 #endif
3429     NULL,
3430 };
3431 
3432 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3433         struct attribute *a, int n)
3434 {
3435     struct device *dev = container_of(kobj, struct device, kobj);
3436     struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3437 
3438     if (a == &dev_attr_uuid.attr) {
3439         if (uuid_is_null(&ids->uuid) &&
3440             !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3441             return 0;
3442     }
3443     if (a == &dev_attr_nguid.attr) {
3444         if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3445             return 0;
3446     }
3447     if (a == &dev_attr_eui.attr) {
3448         if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3449             return 0;
3450     }
3451 #ifdef CONFIG_NVME_MULTIPATH
3452     if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3453         if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3454             return 0;
3455         if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3456             return 0;
3457     }
3458 #endif
3459     return a->mode;
3460 }
3461 
3462 static const struct attribute_group nvme_ns_id_attr_group = {
3463     .attrs      = nvme_ns_id_attrs,
3464     .is_visible = nvme_ns_id_attrs_are_visible,
3465 };
3466 
3467 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3468     &nvme_ns_id_attr_group,
3469     NULL,
3470 };
3471 
3472 #define nvme_show_str_function(field)                       \
3473 static ssize_t  field##_show(struct device *dev,                \
3474                 struct device_attribute *attr, char *buf)       \
3475 {                                       \
3476         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);              \
3477         return sysfs_emit(buf, "%.*s\n",                    \
3478         (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);     \
3479 }                                       \
3480 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3481 
3482 nvme_show_str_function(model);
3483 nvme_show_str_function(serial);
3484 nvme_show_str_function(firmware_rev);
3485 
3486 #define nvme_show_int_function(field)                       \
3487 static ssize_t  field##_show(struct device *dev,                \
3488                 struct device_attribute *attr, char *buf)       \
3489 {                                       \
3490         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);              \
3491         return sysfs_emit(buf, "%d\n", ctrl->field);                \
3492 }                                       \
3493 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3494 
3495 nvme_show_int_function(cntlid);
3496 nvme_show_int_function(numa_node);
3497 nvme_show_int_function(queue_count);
3498 nvme_show_int_function(sqsize);
3499 nvme_show_int_function(kato);
3500 
3501 static ssize_t nvme_sysfs_delete(struct device *dev,
3502                 struct device_attribute *attr, const char *buf,
3503                 size_t count)
3504 {
3505     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3506 
3507     if (device_remove_file_self(dev, attr))
3508         nvme_delete_ctrl_sync(ctrl);
3509     return count;
3510 }
3511 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3512 
3513 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3514                      struct device_attribute *attr,
3515                      char *buf)
3516 {
3517     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3518 
3519     return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3520 }
3521 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3522 
3523 static ssize_t nvme_sysfs_show_state(struct device *dev,
3524                      struct device_attribute *attr,
3525                      char *buf)
3526 {
3527     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3528     static const char *const state_name[] = {
3529         [NVME_CTRL_NEW]     = "new",
3530         [NVME_CTRL_LIVE]    = "live",
3531         [NVME_CTRL_RESETTING]   = "resetting",
3532         [NVME_CTRL_CONNECTING]  = "connecting",
3533         [NVME_CTRL_DELETING]    = "deleting",
3534         [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3535         [NVME_CTRL_DEAD]    = "dead",
3536     };
3537 
3538     if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3539         state_name[ctrl->state])
3540         return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3541 
3542     return sysfs_emit(buf, "unknown state\n");
3543 }
3544 
3545 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3546 
3547 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3548                      struct device_attribute *attr,
3549                      char *buf)
3550 {
3551     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3552 
3553     return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3554 }
3555 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3556 
3557 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3558                     struct device_attribute *attr,
3559                     char *buf)
3560 {
3561     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3562 
3563     return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3564 }
3565 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3566 
3567 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3568                     struct device_attribute *attr,
3569                     char *buf)
3570 {
3571     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3572 
3573     return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3574 }
3575 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3576 
3577 static ssize_t nvme_sysfs_show_address(struct device *dev,
3578                      struct device_attribute *attr,
3579                      char *buf)
3580 {
3581     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3582 
3583     return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3584 }
3585 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3586 
3587 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3588         struct device_attribute *attr, char *buf)
3589 {
3590     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3591     struct nvmf_ctrl_options *opts = ctrl->opts;
3592 
3593     if (ctrl->opts->max_reconnects == -1)
3594         return sysfs_emit(buf, "off\n");
3595     return sysfs_emit(buf, "%d\n",
3596               opts->max_reconnects * opts->reconnect_delay);
3597 }
3598 
3599 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3600         struct device_attribute *attr, const char *buf, size_t count)
3601 {
3602     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3603     struct nvmf_ctrl_options *opts = ctrl->opts;
3604     int ctrl_loss_tmo, err;
3605 
3606     err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3607     if (err)
3608         return -EINVAL;
3609 
3610     if (ctrl_loss_tmo < 0)
3611         opts->max_reconnects = -1;
3612     else
3613         opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3614                         opts->reconnect_delay);
3615     return count;
3616 }
3617 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3618     nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3619 
3620 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3621         struct device_attribute *attr, char *buf)
3622 {
3623     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3624 
3625     if (ctrl->opts->reconnect_delay == -1)
3626         return sysfs_emit(buf, "off\n");
3627     return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3628 }
3629 
3630 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3631         struct device_attribute *attr, const char *buf, size_t count)
3632 {
3633     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3634     unsigned int v;
3635     int err;
3636 
3637     err = kstrtou32(buf, 10, &v);
3638     if (err)
3639         return err;
3640 
3641     ctrl->opts->reconnect_delay = v;
3642     return count;
3643 }
3644 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3645     nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3646 
3647 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3648         struct device_attribute *attr, char *buf)
3649 {
3650     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3651 
3652     if (ctrl->opts->fast_io_fail_tmo == -1)
3653         return sysfs_emit(buf, "off\n");
3654     return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3655 }
3656 
3657 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3658         struct device_attribute *attr, const char *buf, size_t count)
3659 {
3660     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3661     struct nvmf_ctrl_options *opts = ctrl->opts;
3662     int fast_io_fail_tmo, err;
3663 
3664     err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3665     if (err)
3666         return -EINVAL;
3667 
3668     if (fast_io_fail_tmo < 0)
3669         opts->fast_io_fail_tmo = -1;
3670     else
3671         opts->fast_io_fail_tmo = fast_io_fail_tmo;
3672     return count;
3673 }
3674 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3675     nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3676 
3677 static ssize_t cntrltype_show(struct device *dev,
3678                   struct device_attribute *attr, char *buf)
3679 {
3680     static const char * const type[] = {
3681         [NVME_CTRL_IO] = "io\n",
3682         [NVME_CTRL_DISC] = "discovery\n",
3683         [NVME_CTRL_ADMIN] = "admin\n",
3684     };
3685     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3686 
3687     if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype])
3688         return sysfs_emit(buf, "reserved\n");
3689 
3690     return sysfs_emit(buf, type[ctrl->cntrltype]);
3691 }
3692 static DEVICE_ATTR_RO(cntrltype);
3693 
3694 static ssize_t dctype_show(struct device *dev,
3695                struct device_attribute *attr, char *buf)
3696 {
3697     static const char * const type[] = {
3698         [NVME_DCTYPE_NOT_REPORTED] = "none\n",
3699         [NVME_DCTYPE_DDC] = "ddc\n",
3700         [NVME_DCTYPE_CDC] = "cdc\n",
3701     };
3702     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3703 
3704     if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype])
3705         return sysfs_emit(buf, "reserved\n");
3706 
3707     return sysfs_emit(buf, type[ctrl->dctype]);
3708 }
3709 static DEVICE_ATTR_RO(dctype);
3710 
3711 #ifdef CONFIG_NVME_AUTH
3712 static ssize_t nvme_ctrl_dhchap_secret_show(struct device *dev,
3713         struct device_attribute *attr, char *buf)
3714 {
3715     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3716     struct nvmf_ctrl_options *opts = ctrl->opts;
3717 
3718     if (!opts->dhchap_secret)
3719         return sysfs_emit(buf, "none\n");
3720     return sysfs_emit(buf, "%s\n", opts->dhchap_secret);
3721 }
3722 
3723 static ssize_t nvme_ctrl_dhchap_secret_store(struct device *dev,
3724         struct device_attribute *attr, const char *buf, size_t count)
3725 {
3726     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3727     struct nvmf_ctrl_options *opts = ctrl->opts;
3728     char *dhchap_secret;
3729 
3730     if (!ctrl->opts->dhchap_secret)
3731         return -EINVAL;
3732     if (count < 7)
3733         return -EINVAL;
3734     if (memcmp(buf, "DHHC-1:", 7))
3735         return -EINVAL;
3736 
3737     dhchap_secret = kzalloc(count + 1, GFP_KERNEL);
3738     if (!dhchap_secret)
3739         return -ENOMEM;
3740     memcpy(dhchap_secret, buf, count);
3741     nvme_auth_stop(ctrl);
3742     if (strcmp(dhchap_secret, opts->dhchap_secret)) {
3743         int ret;
3744 
3745         ret = nvme_auth_generate_key(dhchap_secret, &ctrl->host_key);
3746         if (ret)
3747             return ret;
3748         kfree(opts->dhchap_secret);
3749         opts->dhchap_secret = dhchap_secret;
3750         /* Key has changed; re-authentication with new key */
3751         nvme_auth_reset(ctrl);
3752     }
3753     /* Start re-authentication */
3754     dev_info(ctrl->device, "re-authenticating controller\n");
3755     queue_work(nvme_wq, &ctrl->dhchap_auth_work);
3756 
3757     return count;
3758 }
3759 static DEVICE_ATTR(dhchap_secret, S_IRUGO | S_IWUSR,
3760     nvme_ctrl_dhchap_secret_show, nvme_ctrl_dhchap_secret_store);
3761 
3762 static ssize_t nvme_ctrl_dhchap_ctrl_secret_show(struct device *dev,
3763         struct device_attribute *attr, char *buf)
3764 {
3765     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3766     struct nvmf_ctrl_options *opts = ctrl->opts;
3767 
3768     if (!opts->dhchap_ctrl_secret)
3769         return sysfs_emit(buf, "none\n");
3770     return sysfs_emit(buf, "%s\n", opts->dhchap_ctrl_secret);
3771 }
3772 
3773 static ssize_t nvme_ctrl_dhchap_ctrl_secret_store(struct device *dev,
3774         struct device_attribute *attr, const char *buf, size_t count)
3775 {
3776     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3777     struct nvmf_ctrl_options *opts = ctrl->opts;
3778     char *dhchap_secret;
3779 
3780     if (!ctrl->opts->dhchap_ctrl_secret)
3781         return -EINVAL;
3782     if (count < 7)
3783         return -EINVAL;
3784     if (memcmp(buf, "DHHC-1:", 7))
3785         return -EINVAL;
3786 
3787     dhchap_secret = kzalloc(count + 1, GFP_KERNEL);
3788     if (!dhchap_secret)
3789         return -ENOMEM;
3790     memcpy(dhchap_secret, buf, count);
3791     nvme_auth_stop(ctrl);
3792     if (strcmp(dhchap_secret, opts->dhchap_ctrl_secret)) {
3793         int ret;
3794 
3795         ret = nvme_auth_generate_key(dhchap_secret, &ctrl->ctrl_key);
3796         if (ret)
3797             return ret;
3798         kfree(opts->dhchap_ctrl_secret);
3799         opts->dhchap_ctrl_secret = dhchap_secret;
3800         /* Key has changed; re-authentication with new key */
3801         nvme_auth_reset(ctrl);
3802     }
3803     /* Start re-authentication */
3804     dev_info(ctrl->device, "re-authenticating controller\n");
3805     queue_work(nvme_wq, &ctrl->dhchap_auth_work);
3806 
3807     return count;
3808 }
3809 static DEVICE_ATTR(dhchap_ctrl_secret, S_IRUGO | S_IWUSR,
3810     nvme_ctrl_dhchap_ctrl_secret_show, nvme_ctrl_dhchap_ctrl_secret_store);
3811 #endif
3812 
3813 static struct attribute *nvme_dev_attrs[] = {
3814     &dev_attr_reset_controller.attr,
3815     &dev_attr_rescan_controller.attr,
3816     &dev_attr_model.attr,
3817     &dev_attr_serial.attr,
3818     &dev_attr_firmware_rev.attr,
3819     &dev_attr_cntlid.attr,
3820     &dev_attr_delete_controller.attr,
3821     &dev_attr_transport.attr,
3822     &dev_attr_subsysnqn.attr,
3823     &dev_attr_address.attr,
3824     &dev_attr_state.attr,
3825     &dev_attr_numa_node.attr,
3826     &dev_attr_queue_count.attr,
3827     &dev_attr_sqsize.attr,
3828     &dev_attr_hostnqn.attr,
3829     &dev_attr_hostid.attr,
3830     &dev_attr_ctrl_loss_tmo.attr,
3831     &dev_attr_reconnect_delay.attr,
3832     &dev_attr_fast_io_fail_tmo.attr,
3833     &dev_attr_kato.attr,
3834     &dev_attr_cntrltype.attr,
3835     &dev_attr_dctype.attr,
3836 #ifdef CONFIG_NVME_AUTH
3837     &dev_attr_dhchap_secret.attr,
3838     &dev_attr_dhchap_ctrl_secret.attr,
3839 #endif
3840     NULL
3841 };
3842 
3843 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3844         struct attribute *a, int n)
3845 {
3846     struct device *dev = container_of(kobj, struct device, kobj);
3847     struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3848 
3849     if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3850         return 0;
3851     if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3852         return 0;
3853     if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3854         return 0;
3855     if (a == &dev_attr_hostid.attr && !ctrl->opts)
3856         return 0;
3857     if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3858         return 0;
3859     if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3860         return 0;
3861     if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3862         return 0;
3863 #ifdef CONFIG_NVME_AUTH
3864     if (a == &dev_attr_dhchap_secret.attr && !ctrl->opts)
3865         return 0;
3866     if (a == &dev_attr_dhchap_ctrl_secret.attr && !ctrl->opts)
3867         return 0;
3868 #endif
3869 
3870     return a->mode;
3871 }
3872 
3873 static const struct attribute_group nvme_dev_attrs_group = {
3874     .attrs      = nvme_dev_attrs,
3875     .is_visible = nvme_dev_attrs_are_visible,
3876 };
3877 
3878 static const struct attribute_group *nvme_dev_attr_groups[] = {
3879     &nvme_dev_attrs_group,
3880     NULL,
3881 };
3882 
3883 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3884         unsigned nsid)
3885 {
3886     struct nvme_ns_head *h;
3887 
3888     lockdep_assert_held(&ctrl->subsys->lock);
3889 
3890     list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3891         /*
3892          * Private namespaces can share NSIDs under some conditions.
3893          * In that case we can't use the same ns_head for namespaces
3894          * with the same NSID.
3895          */
3896         if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3897             continue;
3898         if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3899             return h;
3900     }
3901 
3902     return NULL;
3903 }
3904 
3905 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3906         struct nvme_ns_ids *ids)
3907 {
3908     bool has_uuid = !uuid_is_null(&ids->uuid);
3909     bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3910     bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3911     struct nvme_ns_head *h;
3912 
3913     lockdep_assert_held(&subsys->lock);
3914 
3915     list_for_each_entry(h, &subsys->nsheads, entry) {
3916         if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3917             return -EINVAL;
3918         if (has_nguid &&
3919             memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3920             return -EINVAL;
3921         if (has_eui64 &&
3922             memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3923             return -EINVAL;
3924     }
3925 
3926     return 0;
3927 }
3928 
3929 static void nvme_cdev_rel(struct device *dev)
3930 {
3931     ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3932 }
3933 
3934 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3935 {
3936     cdev_device_del(cdev, cdev_device);
3937     put_device(cdev_device);
3938 }
3939 
3940 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3941         const struct file_operations *fops, struct module *owner)
3942 {
3943     int minor, ret;
3944 
3945     minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3946     if (minor < 0)
3947         return minor;
3948     cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3949     cdev_device->class = nvme_ns_chr_class;
3950     cdev_device->release = nvme_cdev_rel;
3951     device_initialize(cdev_device);
3952     cdev_init(cdev, fops);
3953     cdev->owner = owner;
3954     ret = cdev_device_add(cdev, cdev_device);
3955     if (ret)
3956         put_device(cdev_device);
3957 
3958     return ret;
3959 }
3960 
3961 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3962 {
3963     return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3964 }
3965 
3966 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3967 {
3968     nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3969     return 0;
3970 }
3971 
3972 static const struct file_operations nvme_ns_chr_fops = {
3973     .owner      = THIS_MODULE,
3974     .open       = nvme_ns_chr_open,
3975     .release    = nvme_ns_chr_release,
3976     .unlocked_ioctl = nvme_ns_chr_ioctl,
3977     .compat_ioctl   = compat_ptr_ioctl,
3978     .uring_cmd  = nvme_ns_chr_uring_cmd,
3979 };
3980 
3981 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3982 {
3983     int ret;
3984 
3985     ns->cdev_device.parent = ns->ctrl->device;
3986     ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3987                ns->ctrl->instance, ns->head->instance);
3988     if (ret)
3989         return ret;
3990 
3991     return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3992                  ns->ctrl->ops->module);
3993 }
3994 
3995 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3996         struct nvme_ns_info *info)
3997 {
3998     struct nvme_ns_head *head;
3999     size_t size = sizeof(*head);
4000     int ret = -ENOMEM;
4001 
4002 #ifdef CONFIG_NVME_MULTIPATH
4003     size += num_possible_nodes() * sizeof(struct nvme_ns *);
4004 #endif
4005 
4006     head = kzalloc(size, GFP_KERNEL);
4007     if (!head)
4008         goto out;
4009     ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
4010     if (ret < 0)
4011         goto out_free_head;
4012     head->instance = ret;
4013     INIT_LIST_HEAD(&head->list);
4014     ret = init_srcu_struct(&head->srcu);
4015     if (ret)
4016         goto out_ida_remove;
4017     head->subsys = ctrl->subsys;
4018     head->ns_id = info->nsid;
4019     head->ids = info->ids;
4020     head->shared = info->is_shared;
4021     kref_init(&head->ref);
4022 
4023     if (head->ids.csi) {
4024         ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
4025         if (ret)
4026             goto out_cleanup_srcu;
4027     } else
4028         head->effects = ctrl->effects;
4029 
4030     ret = nvme_mpath_alloc_disk(ctrl, head);
4031     if (ret)
4032         goto out_cleanup_srcu;
4033 
4034     list_add_tail(&head->entry, &ctrl->subsys->nsheads);
4035 
4036     kref_get(&ctrl->subsys->ref);
4037 
4038     return head;
4039 out_cleanup_srcu:
4040     cleanup_srcu_struct(&head->srcu);
4041 out_ida_remove:
4042     ida_free(&ctrl->subsys->ns_ida, head->instance);
4043 out_free_head:
4044     kfree(head);
4045 out:
4046     if (ret > 0)
4047         ret = blk_status_to_errno(nvme_error_status(ret));
4048     return ERR_PTR(ret);
4049 }
4050 
4051 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
4052         struct nvme_ns_ids *ids)
4053 {
4054     struct nvme_subsystem *s;
4055     int ret = 0;
4056 
4057     /*
4058      * Note that this check is racy as we try to avoid holding the global
4059      * lock over the whole ns_head creation.  But it is only intended as
4060      * a sanity check anyway.
4061      */
4062     mutex_lock(&nvme_subsystems_lock);
4063     list_for_each_entry(s, &nvme_subsystems, entry) {
4064         if (s == this)
4065             continue;
4066         mutex_lock(&s->lock);
4067         ret = nvme_subsys_check_duplicate_ids(s, ids);
4068         mutex_unlock(&s->lock);
4069         if (ret)
4070             break;
4071     }
4072     mutex_unlock(&nvme_subsystems_lock);
4073 
4074     return ret;
4075 }
4076 
4077 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
4078 {
4079     struct nvme_ctrl *ctrl = ns->ctrl;
4080     struct nvme_ns_head *head = NULL;
4081     int ret;
4082 
4083     ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
4084     if (ret) {
4085         dev_err(ctrl->device,
4086             "globally duplicate IDs for nsid %d\n", info->nsid);
4087         nvme_print_device_info(ctrl);
4088         return ret;
4089     }
4090 
4091     mutex_lock(&ctrl->subsys->lock);
4092     head = nvme_find_ns_head(ctrl, info->nsid);
4093     if (!head) {
4094         ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
4095         if (ret) {
4096             dev_err(ctrl->device,
4097                 "duplicate IDs in subsystem for nsid %d\n",
4098                 info->nsid);
4099             goto out_unlock;
4100         }
4101         head = nvme_alloc_ns_head(ctrl, info);
4102         if (IS_ERR(head)) {
4103             ret = PTR_ERR(head);
4104             goto out_unlock;
4105         }
4106     } else {
4107         ret = -EINVAL;
4108         if (!info->is_shared || !head->shared) {
4109             dev_err(ctrl->device,
4110                 "Duplicate unshared namespace %d\n",
4111                 info->nsid);
4112             goto out_put_ns_head;
4113         }
4114         if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
4115             dev_err(ctrl->device,
4116                 "IDs don't match for shared namespace %d\n",
4117                     info->nsid);
4118             goto out_put_ns_head;
4119         }
4120 
4121         if (!multipath && !list_empty(&head->list)) {
4122             dev_warn(ctrl->device,
4123                 "Found shared namespace %d, but multipathing not supported.\n",
4124                 info->nsid);
4125             dev_warn_once(ctrl->device,
4126                 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
4127         }
4128     }
4129 
4130     list_add_tail_rcu(&ns->siblings, &head->list);
4131     ns->head = head;
4132     mutex_unlock(&ctrl->subsys->lock);
4133     return 0;
4134 
4135 out_put_ns_head:
4136     nvme_put_ns_head(head);
4137 out_unlock:
4138     mutex_unlock(&ctrl->subsys->lock);
4139     return ret;
4140 }
4141 
4142 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4143 {
4144     struct nvme_ns *ns, *ret = NULL;
4145 
4146     down_read(&ctrl->namespaces_rwsem);
4147     list_for_each_entry(ns, &ctrl->namespaces, list) {
4148         if (ns->head->ns_id == nsid) {
4149             if (!nvme_get_ns(ns))
4150                 continue;
4151             ret = ns;
4152             break;
4153         }
4154         if (ns->head->ns_id > nsid)
4155             break;
4156     }
4157     up_read(&ctrl->namespaces_rwsem);
4158     return ret;
4159 }
4160 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
4161 
4162 /*
4163  * Add the namespace to the controller list while keeping the list ordered.
4164  */
4165 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
4166 {
4167     struct nvme_ns *tmp;
4168 
4169     list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
4170         if (tmp->head->ns_id < ns->head->ns_id) {
4171             list_add(&ns->list, &tmp->list);
4172             return;
4173         }
4174     }
4175     list_add(&ns->list, &ns->ctrl->namespaces);
4176 }
4177 
4178 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
4179 {
4180     struct nvme_ns *ns;
4181     struct gendisk *disk;
4182     int node = ctrl->numa_node;
4183 
4184     ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
4185     if (!ns)
4186         return;
4187 
4188     disk = blk_mq_alloc_disk(ctrl->tagset, ns);
4189     if (IS_ERR(disk))
4190         goto out_free_ns;
4191     disk->fops = &nvme_bdev_ops;
4192     disk->private_data = ns;
4193 
4194     ns->disk = disk;
4195     ns->queue = disk->queue;
4196 
4197     if (ctrl->opts && ctrl->opts->data_digest)
4198         blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
4199 
4200     blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
4201     if (ctrl->ops->supports_pci_p2pdma &&
4202         ctrl->ops->supports_pci_p2pdma(ctrl))
4203         blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
4204 
4205     ns->ctrl = ctrl;
4206     kref_init(&ns->kref);
4207 
4208     if (nvme_init_ns_head(ns, info))
4209         goto out_cleanup_disk;
4210 
4211     /*
4212      * If multipathing is enabled, the device name for all disks and not
4213      * just those that represent shared namespaces needs to be based on the
4214      * subsystem instance.  Using the controller instance for private
4215      * namespaces could lead to naming collisions between shared and private
4216      * namespaces if they don't use a common numbering scheme.
4217      *
4218      * If multipathing is not enabled, disk names must use the controller
4219      * instance as shared namespaces will show up as multiple block
4220      * devices.
4221      */
4222     if (ns->head->disk) {
4223         sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
4224             ctrl->instance, ns->head->instance);
4225         disk->flags |= GENHD_FL_HIDDEN;
4226     } else if (multipath) {
4227         sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
4228             ns->head->instance);
4229     } else {
4230         sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
4231             ns->head->instance);
4232     }
4233 
4234     if (nvme_update_ns_info(ns, info))
4235         goto out_unlink_ns;
4236 
4237     down_write(&ctrl->namespaces_rwsem);
4238     nvme_ns_add_to_ctrl_list(ns);
4239     up_write(&ctrl->namespaces_rwsem);
4240     nvme_get_ctrl(ctrl);
4241 
4242     if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
4243         goto out_cleanup_ns_from_list;
4244 
4245     if (!nvme_ns_head_multipath(ns->head))
4246         nvme_add_ns_cdev(ns);
4247 
4248     nvme_mpath_add_disk(ns, info->anagrpid);
4249     nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
4250 
4251     return;
4252 
4253  out_cleanup_ns_from_list:
4254     nvme_put_ctrl(ctrl);
4255     down_write(&ctrl->namespaces_rwsem);
4256     list_del_init(&ns->list);
4257     up_write(&ctrl->namespaces_rwsem);
4258  out_unlink_ns:
4259     mutex_lock(&ctrl->subsys->lock);
4260     list_del_rcu(&ns->siblings);
4261     if (list_empty(&ns->head->list))
4262         list_del_init(&ns->head->entry);
4263     mutex_unlock(&ctrl->subsys->lock);
4264     nvme_put_ns_head(ns->head);
4265  out_cleanup_disk:
4266     put_disk(disk);
4267  out_free_ns:
4268     kfree(ns);
4269 }
4270 
4271 static void nvme_ns_remove(struct nvme_ns *ns)
4272 {
4273     bool last_path = false;
4274 
4275     if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
4276         return;
4277 
4278     clear_bit(NVME_NS_READY, &ns->flags);
4279     set_capacity(ns->disk, 0);
4280     nvme_fault_inject_fini(&ns->fault_inject);
4281 
4282     /*
4283      * Ensure that !NVME_NS_READY is seen by other threads to prevent
4284      * this ns going back into current_path.
4285      */
4286     synchronize_srcu(&ns->head->srcu);
4287 
4288     /* wait for concurrent submissions */
4289     if (nvme_mpath_clear_current_path(ns))
4290         synchronize_srcu(&ns->head->srcu);
4291 
4292     mutex_lock(&ns->ctrl->subsys->lock);
4293     list_del_rcu(&ns->siblings);
4294     if (list_empty(&ns->head->list)) {
4295         list_del_init(&ns->head->entry);
4296         last_path = true;
4297     }
4298     mutex_unlock(&ns->ctrl->subsys->lock);
4299 
4300     /* guarantee not available in head->list */
4301     synchronize_rcu();
4302 
4303     if (!nvme_ns_head_multipath(ns->head))
4304         nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4305     del_gendisk(ns->disk);
4306 
4307     down_write(&ns->ctrl->namespaces_rwsem);
4308     list_del_init(&ns->list);
4309     up_write(&ns->ctrl->namespaces_rwsem);
4310 
4311     if (last_path)
4312         nvme_mpath_shutdown_disk(ns->head);
4313     nvme_put_ns(ns);
4314 }
4315 
4316 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4317 {
4318     struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4319 
4320     if (ns) {
4321         nvme_ns_remove(ns);
4322         nvme_put_ns(ns);
4323     }
4324 }
4325 
4326 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4327 {
4328     int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4329 
4330     if (test_bit(NVME_NS_DEAD, &ns->flags))
4331         goto out;
4332 
4333     ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4334     if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4335         dev_err(ns->ctrl->device,
4336             "identifiers changed for nsid %d\n", ns->head->ns_id);
4337         goto out;
4338     }
4339 
4340     ret = nvme_update_ns_info(ns, info);
4341 out:
4342     /*
4343      * Only remove the namespace if we got a fatal error back from the
4344      * device, otherwise ignore the error and just move on.
4345      *
4346      * TODO: we should probably schedule a delayed retry here.
4347      */
4348     if (ret > 0 && (ret & NVME_SC_DNR))
4349         nvme_ns_remove(ns);
4350 }
4351 
4352 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4353 {
4354     struct nvme_ns_info info = { .nsid = nsid };
4355     struct nvme_ns *ns;
4356 
4357     if (nvme_identify_ns_descs(ctrl, &info))
4358         return;
4359 
4360     if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4361         dev_warn(ctrl->device,
4362             "command set not reported for nsid: %d\n", nsid);
4363         return;
4364     }
4365 
4366     /*
4367      * If available try to use the Command Set Idependent Identify Namespace
4368      * data structure to find all the generic information that is needed to
4369      * set up a namespace.  If not fall back to the legacy version.
4370      */
4371     if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4372         (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) {
4373         if (nvme_ns_info_from_id_cs_indep(ctrl, &info))
4374             return;
4375     } else {
4376         if (nvme_ns_info_from_identify(ctrl, &info))
4377             return;
4378     }
4379 
4380     /*
4381      * Ignore the namespace if it is not ready. We will get an AEN once it
4382      * becomes ready and restart the scan.
4383      */
4384     if (!info.is_ready)
4385         return;
4386 
4387     ns = nvme_find_get_ns(ctrl, nsid);
4388     if (ns) {
4389         nvme_validate_ns(ns, &info);
4390         nvme_put_ns(ns);
4391     } else {
4392         nvme_alloc_ns(ctrl, &info);
4393     }
4394 }
4395 
4396 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4397                     unsigned nsid)
4398 {
4399     struct nvme_ns *ns, *next;
4400     LIST_HEAD(rm_list);
4401 
4402     down_write(&ctrl->namespaces_rwsem);
4403     list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4404         if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4405             list_move_tail(&ns->list, &rm_list);
4406     }
4407     up_write(&ctrl->namespaces_rwsem);
4408 
4409     list_for_each_entry_safe(ns, next, &rm_list, list)
4410         nvme_ns_remove(ns);
4411 
4412 }
4413 
4414 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4415 {
4416     const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4417     __le32 *ns_list;
4418     u32 prev = 0;
4419     int ret = 0, i;
4420 
4421     if (nvme_ctrl_limited_cns(ctrl))
4422         return -EOPNOTSUPP;
4423 
4424     ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4425     if (!ns_list)
4426         return -ENOMEM;
4427 
4428     for (;;) {
4429         struct nvme_command cmd = {
4430             .identify.opcode    = nvme_admin_identify,
4431             .identify.cns       = NVME_ID_CNS_NS_ACTIVE_LIST,
4432             .identify.nsid      = cpu_to_le32(prev),
4433         };
4434 
4435         ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4436                         NVME_IDENTIFY_DATA_SIZE);
4437         if (ret) {
4438             dev_warn(ctrl->device,
4439                 "Identify NS List failed (status=0x%x)\n", ret);
4440             goto free;
4441         }
4442 
4443         for (i = 0; i < nr_entries; i++) {
4444             u32 nsid = le32_to_cpu(ns_list[i]);
4445 
4446             if (!nsid)  /* end of the list? */
4447                 goto out;
4448             nvme_scan_ns(ctrl, nsid);
4449             while (++prev < nsid)
4450                 nvme_ns_remove_by_nsid(ctrl, prev);
4451         }
4452     }
4453  out:
4454     nvme_remove_invalid_namespaces(ctrl, prev);
4455  free:
4456     kfree(ns_list);
4457     return ret;
4458 }
4459 
4460 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4461 {
4462     struct nvme_id_ctrl *id;
4463     u32 nn, i;
4464 
4465     if (nvme_identify_ctrl(ctrl, &id))
4466         return;
4467     nn = le32_to_cpu(id->nn);
4468     kfree(id);
4469 
4470     for (i = 1; i <= nn; i++)
4471         nvme_scan_ns(ctrl, i);
4472 
4473     nvme_remove_invalid_namespaces(ctrl, nn);
4474 }
4475 
4476 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4477 {
4478     size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4479     __le32 *log;
4480     int error;
4481 
4482     log = kzalloc(log_size, GFP_KERNEL);
4483     if (!log)
4484         return;
4485 
4486     /*
4487      * We need to read the log to clear the AEN, but we don't want to rely
4488      * on it for the changed namespace information as userspace could have
4489      * raced with us in reading the log page, which could cause us to miss
4490      * updates.
4491      */
4492     error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4493             NVME_CSI_NVM, log, log_size, 0);
4494     if (error)
4495         dev_warn(ctrl->device,
4496             "reading changed ns log failed: %d\n", error);
4497 
4498     kfree(log);
4499 }
4500 
4501 static void nvme_scan_work(struct work_struct *work)
4502 {
4503     struct nvme_ctrl *ctrl =
4504         container_of(work, struct nvme_ctrl, scan_work);
4505     int ret;
4506 
4507     /* No tagset on a live ctrl means IO queues could not created */
4508     if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4509         return;
4510 
4511     /*
4512      * Identify controller limits can change at controller reset due to
4513      * new firmware download, even though it is not common we cannot ignore
4514      * such scenario. Controller's non-mdts limits are reported in the unit
4515      * of logical blocks that is dependent on the format of attached
4516      * namespace. Hence re-read the limits at the time of ns allocation.
4517      */
4518     ret = nvme_init_non_mdts_limits(ctrl);
4519     if (ret < 0) {
4520         dev_warn(ctrl->device,
4521             "reading non-mdts-limits failed: %d\n", ret);
4522         return;
4523     }
4524 
4525     if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4526         dev_info(ctrl->device, "rescanning namespaces.\n");
4527         nvme_clear_changed_ns_log(ctrl);
4528     }
4529 
4530     mutex_lock(&ctrl->scan_lock);
4531     if (nvme_scan_ns_list(ctrl) != 0)
4532         nvme_scan_ns_sequential(ctrl);
4533     mutex_unlock(&ctrl->scan_lock);
4534 }
4535 
4536 /*
4537  * This function iterates the namespace list unlocked to allow recovery from
4538  * controller failure. It is up to the caller to ensure the namespace list is
4539  * not modified by scan work while this function is executing.
4540  */
4541 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4542 {
4543     struct nvme_ns *ns, *next;
4544     LIST_HEAD(ns_list);
4545 
4546     /*
4547      * make sure to requeue I/O to all namespaces as these
4548      * might result from the scan itself and must complete
4549      * for the scan_work to make progress
4550      */
4551     nvme_mpath_clear_ctrl_paths(ctrl);
4552 
4553     /* prevent racing with ns scanning */
4554     flush_work(&ctrl->scan_work);
4555 
4556     /*
4557      * The dead states indicates the controller was not gracefully
4558      * disconnected. In that case, we won't be able to flush any data while
4559      * removing the namespaces' disks; fail all the queues now to avoid
4560      * potentially having to clean up the failed sync later.
4561      */
4562     if (ctrl->state == NVME_CTRL_DEAD)
4563         nvme_kill_queues(ctrl);
4564 
4565     /* this is a no-op when called from the controller reset handler */
4566     nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4567 
4568     down_write(&ctrl->namespaces_rwsem);
4569     list_splice_init(&ctrl->namespaces, &ns_list);
4570     up_write(&ctrl->namespaces_rwsem);
4571 
4572     list_for_each_entry_safe(ns, next, &ns_list, list)
4573         nvme_ns_remove(ns);
4574 }
4575 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4576 
4577 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4578 {
4579     struct nvme_ctrl *ctrl =
4580         container_of(dev, struct nvme_ctrl, ctrl_device);
4581     struct nvmf_ctrl_options *opts = ctrl->opts;
4582     int ret;
4583 
4584     ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4585     if (ret)
4586         return ret;
4587 
4588     if (opts) {
4589         ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4590         if (ret)
4591             return ret;
4592 
4593         ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4594                 opts->trsvcid ?: "none");
4595         if (ret)
4596             return ret;
4597 
4598         ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4599                 opts->host_traddr ?: "none");
4600         if (ret)
4601             return ret;
4602 
4603         ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4604                 opts->host_iface ?: "none");
4605     }
4606     return ret;
4607 }
4608 
4609 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4610 {
4611     char *envp[2] = { envdata, NULL };
4612 
4613     kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4614 }
4615 
4616 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4617 {
4618     char *envp[2] = { NULL, NULL };
4619     u32 aen_result = ctrl->aen_result;
4620 
4621     ctrl->aen_result = 0;
4622     if (!aen_result)
4623         return;
4624 
4625     envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4626     if (!envp[0])
4627         return;
4628     kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4629     kfree(envp[0]);
4630 }
4631 
4632 static void nvme_async_event_work(struct work_struct *work)
4633 {
4634     struct nvme_ctrl *ctrl =
4635         container_of(work, struct nvme_ctrl, async_event_work);
4636 
4637     nvme_aen_uevent(ctrl);
4638 
4639     /*
4640      * The transport drivers must guarantee AER submission here is safe by
4641      * flushing ctrl async_event_work after changing the controller state
4642      * from LIVE and before freeing the admin queue.
4643     */
4644     if (ctrl->state == NVME_CTRL_LIVE)
4645         ctrl->ops->submit_async_event(ctrl);
4646 }
4647 
4648 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4649 {
4650 
4651     u32 csts;
4652 
4653     if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4654         return false;
4655 
4656     if (csts == ~0)
4657         return false;
4658 
4659     return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4660 }
4661 
4662 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4663 {
4664     struct nvme_fw_slot_info_log *log;
4665 
4666     log = kmalloc(sizeof(*log), GFP_KERNEL);
4667     if (!log)
4668         return;
4669 
4670     if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4671             log, sizeof(*log), 0))
4672         dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4673     kfree(log);
4674 }
4675 
4676 static void nvme_fw_act_work(struct work_struct *work)
4677 {
4678     struct nvme_ctrl *ctrl = container_of(work,
4679                 struct nvme_ctrl, fw_act_work);
4680     unsigned long fw_act_timeout;
4681 
4682     if (ctrl->mtfa)
4683         fw_act_timeout = jiffies +
4684                 msecs_to_jiffies(ctrl->mtfa * 100);
4685     else
4686         fw_act_timeout = jiffies +
4687                 msecs_to_jiffies(admin_timeout * 1000);
4688 
4689     nvme_stop_queues(ctrl);
4690     while (nvme_ctrl_pp_status(ctrl)) {
4691         if (time_after(jiffies, fw_act_timeout)) {
4692             dev_warn(ctrl->device,
4693                 "Fw activation timeout, reset controller\n");
4694             nvme_try_sched_reset(ctrl);
4695             return;
4696         }
4697         msleep(100);
4698     }
4699 
4700     if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4701         return;
4702 
4703     nvme_start_queues(ctrl);
4704     /* read FW slot information to clear the AER */
4705     nvme_get_fw_slot_info(ctrl);
4706 
4707     queue_work(nvme_wq, &ctrl->async_event_work);
4708 }
4709 
4710 static u32 nvme_aer_type(u32 result)
4711 {
4712     return result & 0x7;
4713 }
4714 
4715 static u32 nvme_aer_subtype(u32 result)
4716 {
4717     return (result & 0xff00) >> 8;
4718 }
4719 
4720 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4721 {
4722     u32 aer_notice_type = nvme_aer_subtype(result);
4723     bool requeue = true;
4724 
4725     trace_nvme_async_event(ctrl, aer_notice_type);
4726 
4727     switch (aer_notice_type) {
4728     case NVME_AER_NOTICE_NS_CHANGED:
4729         set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4730         nvme_queue_scan(ctrl);
4731         break;
4732     case NVME_AER_NOTICE_FW_ACT_STARTING:
4733         /*
4734          * We are (ab)using the RESETTING state to prevent subsequent
4735          * recovery actions from interfering with the controller's
4736          * firmware activation.
4737          */
4738         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4739             nvme_auth_stop(ctrl);
4740             requeue = false;
4741             queue_work(nvme_wq, &ctrl->fw_act_work);
4742         }
4743         break;
4744 #ifdef CONFIG_NVME_MULTIPATH
4745     case NVME_AER_NOTICE_ANA:
4746         if (!ctrl->ana_log_buf)
4747             break;
4748         queue_work(nvme_wq, &ctrl->ana_work);
4749         break;
4750 #endif
4751     case NVME_AER_NOTICE_DISC_CHANGED:
4752         ctrl->aen_result = result;
4753         break;
4754     default:
4755         dev_warn(ctrl->device, "async event result %08x\n", result);
4756     }
4757     return requeue;
4758 }
4759 
4760 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4761 {
4762     trace_nvme_async_event(ctrl, NVME_AER_ERROR);
4763     dev_warn(ctrl->device, "resetting controller due to AER\n");
4764     nvme_reset_ctrl(ctrl);
4765 }
4766 
4767 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4768         volatile union nvme_result *res)
4769 {
4770     u32 result = le32_to_cpu(res->u32);
4771     u32 aer_type = nvme_aer_type(result);
4772     u32 aer_subtype = nvme_aer_subtype(result);
4773     bool requeue = true;
4774 
4775     if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4776         return;
4777 
4778     switch (aer_type) {
4779     case NVME_AER_NOTICE:
4780         requeue = nvme_handle_aen_notice(ctrl, result);
4781         break;
4782     case NVME_AER_ERROR:
4783         /*
4784          * For a persistent internal error, don't run async_event_work
4785          * to submit a new AER. The controller reset will do it.
4786          */
4787         if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4788             nvme_handle_aer_persistent_error(ctrl);
4789             return;
4790         }
4791         fallthrough;
4792     case NVME_AER_SMART:
4793     case NVME_AER_CSS:
4794     case NVME_AER_VS:
4795         trace_nvme_async_event(ctrl, aer_type);
4796         ctrl->aen_result = result;
4797         break;
4798     default:
4799         break;
4800     }
4801 
4802     if (requeue)
4803         queue_work(nvme_wq, &ctrl->async_event_work);
4804 }
4805 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4806 
4807 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4808 {
4809     nvme_mpath_stop(ctrl);
4810     nvme_auth_stop(ctrl);
4811     nvme_stop_keep_alive(ctrl);
4812     nvme_stop_failfast_work(ctrl);
4813     flush_work(&ctrl->async_event_work);
4814     cancel_work_sync(&ctrl->fw_act_work);
4815     if (ctrl->ops->stop_ctrl)
4816         ctrl->ops->stop_ctrl(ctrl);
4817 }
4818 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4819 
4820 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4821 {
4822     nvme_start_keep_alive(ctrl);
4823 
4824     nvme_enable_aen(ctrl);
4825 
4826     if (ctrl->queue_count > 1) {
4827         nvme_queue_scan(ctrl);
4828         nvme_start_queues(ctrl);
4829         nvme_mpath_update(ctrl);
4830     }
4831 
4832     nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4833 }
4834 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4835 
4836 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4837 {
4838     nvme_hwmon_exit(ctrl);
4839     nvme_fault_inject_fini(&ctrl->fault_inject);
4840     dev_pm_qos_hide_latency_tolerance(ctrl->device);
4841     cdev_device_del(&ctrl->cdev, ctrl->device);
4842     nvme_put_ctrl(ctrl);
4843 }
4844 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4845 
4846 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4847 {
4848     struct nvme_effects_log *cel;
4849     unsigned long i;
4850 
4851     xa_for_each(&ctrl->cels, i, cel) {
4852         xa_erase(&ctrl->cels, i);
4853         kfree(cel);
4854     }
4855 
4856     xa_destroy(&ctrl->cels);
4857 }
4858 
4859 static void nvme_free_ctrl(struct device *dev)
4860 {
4861     struct nvme_ctrl *ctrl =
4862         container_of(dev, struct nvme_ctrl, ctrl_device);
4863     struct nvme_subsystem *subsys = ctrl->subsys;
4864 
4865     if (!subsys || ctrl->instance != subsys->instance)
4866         ida_free(&nvme_instance_ida, ctrl->instance);
4867 
4868     nvme_free_cels(ctrl);
4869     nvme_mpath_uninit(ctrl);
4870     nvme_auth_stop(ctrl);
4871     nvme_auth_free(ctrl);
4872     __free_page(ctrl->discard_page);
4873 
4874     if (subsys) {
4875         mutex_lock(&nvme_subsystems_lock);
4876         list_del(&ctrl->subsys_entry);
4877         sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4878         mutex_unlock(&nvme_subsystems_lock);
4879     }
4880 
4881     ctrl->ops->free_ctrl(ctrl);
4882 
4883     if (subsys)
4884         nvme_put_subsystem(subsys);
4885 }
4886 
4887 /*
4888  * Initialize a NVMe controller structures.  This needs to be called during
4889  * earliest initialization so that we have the initialized structured around
4890  * during probing.
4891  */
4892 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4893         const struct nvme_ctrl_ops *ops, unsigned long quirks)
4894 {
4895     int ret;
4896 
4897     ctrl->state = NVME_CTRL_NEW;
4898     clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4899     spin_lock_init(&ctrl->lock);
4900     mutex_init(&ctrl->scan_lock);
4901     INIT_LIST_HEAD(&ctrl->namespaces);
4902     xa_init(&ctrl->cels);
4903     init_rwsem(&ctrl->namespaces_rwsem);
4904     ctrl->dev = dev;
4905     ctrl->ops = ops;
4906     ctrl->quirks = quirks;
4907     ctrl->numa_node = NUMA_NO_NODE;
4908     INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4909     INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4910     INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4911     INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4912     init_waitqueue_head(&ctrl->state_wq);
4913 
4914     INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4915     INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4916     memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4917     ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4918 
4919     BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4920             PAGE_SIZE);
4921     ctrl->discard_page = alloc_page(GFP_KERNEL);
4922     if (!ctrl->discard_page) {
4923         ret = -ENOMEM;
4924         goto out;
4925     }
4926 
4927     ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4928     if (ret < 0)
4929         goto out;
4930     ctrl->instance = ret;
4931 
4932     device_initialize(&ctrl->ctrl_device);
4933     ctrl->device = &ctrl->ctrl_device;
4934     ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4935             ctrl->instance);
4936     ctrl->device->class = nvme_class;
4937     ctrl->device->parent = ctrl->dev;
4938     ctrl->device->groups = nvme_dev_attr_groups;
4939     ctrl->device->release = nvme_free_ctrl;
4940     dev_set_drvdata(ctrl->device, ctrl);
4941     ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4942     if (ret)
4943         goto out_release_instance;
4944 
4945     nvme_get_ctrl(ctrl);
4946     cdev_init(&ctrl->cdev, &nvme_dev_fops);
4947     ctrl->cdev.owner = ops->module;
4948     ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4949     if (ret)
4950         goto out_free_name;
4951 
4952     /*
4953      * Initialize latency tolerance controls.  The sysfs files won't
4954      * be visible to userspace unless the device actually supports APST.
4955      */
4956     ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4957     dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4958         min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4959 
4960     nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4961     nvme_mpath_init_ctrl(ctrl);
4962     nvme_auth_init_ctrl(ctrl);
4963 
4964     return 0;
4965 out_free_name:
4966     nvme_put_ctrl(ctrl);
4967     kfree_const(ctrl->device->kobj.name);
4968 out_release_instance:
4969     ida_free(&nvme_instance_ida, ctrl->instance);
4970 out:
4971     if (ctrl->discard_page)
4972         __free_page(ctrl->discard_page);
4973     return ret;
4974 }
4975 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4976 
4977 static void nvme_start_ns_queue(struct nvme_ns *ns)
4978 {
4979     if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags))
4980         blk_mq_unquiesce_queue(ns->queue);
4981 }
4982 
4983 static void nvme_stop_ns_queue(struct nvme_ns *ns)
4984 {
4985     if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags))
4986         blk_mq_quiesce_queue(ns->queue);
4987     else
4988         blk_mq_wait_quiesce_done(ns->queue);
4989 }
4990 
4991 /*
4992  * Prepare a queue for teardown.
4993  *
4994  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
4995  * the capacity to 0 after that to avoid blocking dispatchers that may be
4996  * holding bd_butex.  This will end buffered writers dirtying pages that can't
4997  * be synced.
4998  */
4999 static void nvme_set_queue_dying(struct nvme_ns *ns)
5000 {
5001     if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
5002         return;
5003 
5004     blk_mark_disk_dead(ns->disk);
5005     nvme_start_ns_queue(ns);
5006 
5007     set_capacity_and_notify(ns->disk, 0);
5008 }
5009 
5010 /**
5011  * nvme_kill_queues(): Ends all namespace queues
5012  * @ctrl: the dead controller that needs to end
5013  *
5014  * Call this function when the driver determines it is unable to get the
5015  * controller in a state capable of servicing IO.
5016  */
5017 void nvme_kill_queues(struct nvme_ctrl *ctrl)
5018 {
5019     struct nvme_ns *ns;
5020 
5021     down_read(&ctrl->namespaces_rwsem);
5022 
5023     /* Forcibly unquiesce queues to avoid blocking dispatch */
5024     if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
5025         nvme_start_admin_queue(ctrl);
5026 
5027     list_for_each_entry(ns, &ctrl->namespaces, list)
5028         nvme_set_queue_dying(ns);
5029 
5030     up_read(&ctrl->namespaces_rwsem);
5031 }
5032 EXPORT_SYMBOL_GPL(nvme_kill_queues);
5033 
5034 void nvme_unfreeze(struct nvme_ctrl *ctrl)
5035 {
5036     struct nvme_ns *ns;
5037 
5038     down_read(&ctrl->namespaces_rwsem);
5039     list_for_each_entry(ns, &ctrl->namespaces, list)
5040         blk_mq_unfreeze_queue(ns->queue);
5041     up_read(&ctrl->namespaces_rwsem);
5042 }
5043 EXPORT_SYMBOL_GPL(nvme_unfreeze);
5044 
5045 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
5046 {
5047     struct nvme_ns *ns;
5048 
5049     down_read(&ctrl->namespaces_rwsem);
5050     list_for_each_entry(ns, &ctrl->namespaces, list) {
5051         timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
5052         if (timeout <= 0)
5053             break;
5054     }
5055     up_read(&ctrl->namespaces_rwsem);
5056     return timeout;
5057 }
5058 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
5059 
5060 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
5061 {
5062     struct nvme_ns *ns;
5063 
5064     down_read(&ctrl->namespaces_rwsem);
5065     list_for_each_entry(ns, &ctrl->namespaces, list)
5066         blk_mq_freeze_queue_wait(ns->queue);
5067     up_read(&ctrl->namespaces_rwsem);
5068 }
5069 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
5070 
5071 void nvme_start_freeze(struct nvme_ctrl *ctrl)
5072 {
5073     struct nvme_ns *ns;
5074 
5075     down_read(&ctrl->namespaces_rwsem);
5076     list_for_each_entry(ns, &ctrl->namespaces, list)
5077         blk_freeze_queue_start(ns->queue);
5078     up_read(&ctrl->namespaces_rwsem);
5079 }
5080 EXPORT_SYMBOL_GPL(nvme_start_freeze);
5081 
5082 void nvme_stop_queues(struct nvme_ctrl *ctrl)
5083 {
5084     struct nvme_ns *ns;
5085 
5086     down_read(&ctrl->namespaces_rwsem);
5087     list_for_each_entry(ns, &ctrl->namespaces, list)
5088         nvme_stop_ns_queue(ns);
5089     up_read(&ctrl->namespaces_rwsem);
5090 }
5091 EXPORT_SYMBOL_GPL(nvme_stop_queues);
5092 
5093 void nvme_start_queues(struct nvme_ctrl *ctrl)
5094 {
5095     struct nvme_ns *ns;
5096 
5097     down_read(&ctrl->namespaces_rwsem);
5098     list_for_each_entry(ns, &ctrl->namespaces, list)
5099         nvme_start_ns_queue(ns);
5100     up_read(&ctrl->namespaces_rwsem);
5101 }
5102 EXPORT_SYMBOL_GPL(nvme_start_queues);
5103 
5104 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl)
5105 {
5106     if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5107         blk_mq_quiesce_queue(ctrl->admin_q);
5108     else
5109         blk_mq_wait_quiesce_done(ctrl->admin_q);
5110 }
5111 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue);
5112 
5113 void nvme_start_admin_queue(struct nvme_ctrl *ctrl)
5114 {
5115     if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5116         blk_mq_unquiesce_queue(ctrl->admin_q);
5117 }
5118 EXPORT_SYMBOL_GPL(nvme_start_admin_queue);
5119 
5120 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5121 {
5122     struct nvme_ns *ns;
5123 
5124     down_read(&ctrl->namespaces_rwsem);
5125     list_for_each_entry(ns, &ctrl->namespaces, list)
5126         blk_sync_queue(ns->queue);
5127     up_read(&ctrl->namespaces_rwsem);
5128 }
5129 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5130 
5131 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5132 {
5133     nvme_sync_io_queues(ctrl);
5134     if (ctrl->admin_q)
5135         blk_sync_queue(ctrl->admin_q);
5136 }
5137 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5138 
5139 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5140 {
5141     if (file->f_op != &nvme_dev_fops)
5142         return NULL;
5143     return file->private_data;
5144 }
5145 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
5146 
5147 /*
5148  * Check we didn't inadvertently grow the command structure sizes:
5149  */
5150 static inline void _nvme_check_size(void)
5151 {
5152     BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5153     BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5154     BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5155     BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5156     BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5157     BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5158     BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5159     BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5160     BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5161     BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5162     BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5163     BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5164     BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5165     BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5166             NVME_IDENTIFY_DATA_SIZE);
5167     BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5168     BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5169     BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5170     BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5171     BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5172     BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5173     BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5174     BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5175     BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5176 }
5177 
5178 
5179 static int __init nvme_core_init(void)
5180 {
5181     int result = -ENOMEM;
5182 
5183     _nvme_check_size();
5184 
5185     nvme_wq = alloc_workqueue("nvme-wq",
5186             WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5187     if (!nvme_wq)
5188         goto out;
5189 
5190     nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
5191             WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5192     if (!nvme_reset_wq)
5193         goto destroy_wq;
5194 
5195     nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
5196             WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5197     if (!nvme_delete_wq)
5198         goto destroy_reset_wq;
5199 
5200     result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5201             NVME_MINORS, "nvme");
5202     if (result < 0)
5203         goto destroy_delete_wq;
5204 
5205     nvme_class = class_create(THIS_MODULE, "nvme");
5206     if (IS_ERR(nvme_class)) {
5207         result = PTR_ERR(nvme_class);
5208         goto unregister_chrdev;
5209     }
5210     nvme_class->dev_uevent = nvme_class_uevent;
5211 
5212     nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
5213     if (IS_ERR(nvme_subsys_class)) {
5214         result = PTR_ERR(nvme_subsys_class);
5215         goto destroy_class;
5216     }
5217 
5218     result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5219                      "nvme-generic");
5220     if (result < 0)
5221         goto destroy_subsys_class;
5222 
5223     nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
5224     if (IS_ERR(nvme_ns_chr_class)) {
5225         result = PTR_ERR(nvme_ns_chr_class);
5226         goto unregister_generic_ns;
5227     }
5228 
5229     return 0;
5230 
5231 unregister_generic_ns:
5232     unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5233 destroy_subsys_class:
5234     class_destroy(nvme_subsys_class);
5235 destroy_class:
5236     class_destroy(nvme_class);
5237 unregister_chrdev:
5238     unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5239 destroy_delete_wq:
5240     destroy_workqueue(nvme_delete_wq);
5241 destroy_reset_wq:
5242     destroy_workqueue(nvme_reset_wq);
5243 destroy_wq:
5244     destroy_workqueue(nvme_wq);
5245 out:
5246     return result;
5247 }
5248 
5249 static void __exit nvme_core_exit(void)
5250 {
5251     class_destroy(nvme_ns_chr_class);
5252     class_destroy(nvme_subsys_class);
5253     class_destroy(nvme_class);
5254     unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5255     unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5256     destroy_workqueue(nvme_delete_wq);
5257     destroy_workqueue(nvme_reset_wq);
5258     destroy_workqueue(nvme_wq);
5259     ida_destroy(&nvme_ns_chr_minor_ida);
5260     ida_destroy(&nvme_instance_ida);
5261 }
5262 
5263 MODULE_LICENSE("GPL");
5264 MODULE_VERSION("1.0");
5265 module_init(nvme_core_init);
5266 module_exit(nvme_core_exit);