Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
0004  */
0005 #include <linux/scatterlist.h>
0006 #include <linux/memregion.h>
0007 #include <linux/highmem.h>
0008 #include <linux/sched.h>
0009 #include <linux/slab.h>
0010 #include <linux/hash.h>
0011 #include <linux/sort.h>
0012 #include <linux/io.h>
0013 #include <linux/nd.h>
0014 #include "nd-core.h"
0015 #include "nd.h"
0016 
0017 /*
0018  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
0019  * irrelevant.
0020  */
0021 #include <linux/io-64-nonatomic-hi-lo.h>
0022 
0023 static DEFINE_PER_CPU(int, flush_idx);
0024 
0025 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
0026         struct nd_region_data *ndrd)
0027 {
0028     int i, j;
0029 
0030     dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
0031             nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
0032     for (i = 0; i < (1 << ndrd->hints_shift); i++) {
0033         struct resource *res = &nvdimm->flush_wpq[i];
0034         unsigned long pfn = PHYS_PFN(res->start);
0035         void __iomem *flush_page;
0036 
0037         /* check if flush hints share a page */
0038         for (j = 0; j < i; j++) {
0039             struct resource *res_j = &nvdimm->flush_wpq[j];
0040             unsigned long pfn_j = PHYS_PFN(res_j->start);
0041 
0042             if (pfn == pfn_j)
0043                 break;
0044         }
0045 
0046         if (j < i)
0047             flush_page = (void __iomem *) ((unsigned long)
0048                     ndrd_get_flush_wpq(ndrd, dimm, j)
0049                     & PAGE_MASK);
0050         else
0051             flush_page = devm_nvdimm_ioremap(dev,
0052                     PFN_PHYS(pfn), PAGE_SIZE);
0053         if (!flush_page)
0054             return -ENXIO;
0055         ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
0056                 + (res->start & ~PAGE_MASK));
0057     }
0058 
0059     return 0;
0060 }
0061 
0062 int nd_region_activate(struct nd_region *nd_region)
0063 {
0064     int i, j, num_flush = 0;
0065     struct nd_region_data *ndrd;
0066     struct device *dev = &nd_region->dev;
0067     size_t flush_data_size = sizeof(void *);
0068 
0069     nvdimm_bus_lock(&nd_region->dev);
0070     for (i = 0; i < nd_region->ndr_mappings; i++) {
0071         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
0072         struct nvdimm *nvdimm = nd_mapping->nvdimm;
0073 
0074         if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
0075             nvdimm_bus_unlock(&nd_region->dev);
0076             return -EBUSY;
0077         }
0078 
0079         /* at least one null hint slot per-dimm for the "no-hint" case */
0080         flush_data_size += sizeof(void *);
0081         num_flush = min_not_zero(num_flush, nvdimm->num_flush);
0082         if (!nvdimm->num_flush)
0083             continue;
0084         flush_data_size += nvdimm->num_flush * sizeof(void *);
0085     }
0086     nvdimm_bus_unlock(&nd_region->dev);
0087 
0088     ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
0089     if (!ndrd)
0090         return -ENOMEM;
0091     dev_set_drvdata(dev, ndrd);
0092 
0093     if (!num_flush)
0094         return 0;
0095 
0096     ndrd->hints_shift = ilog2(num_flush);
0097     for (i = 0; i < nd_region->ndr_mappings; i++) {
0098         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
0099         struct nvdimm *nvdimm = nd_mapping->nvdimm;
0100         int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
0101 
0102         if (rc)
0103             return rc;
0104     }
0105 
0106     /*
0107      * Clear out entries that are duplicates. This should prevent the
0108      * extra flushings.
0109      */
0110     for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
0111         /* ignore if NULL already */
0112         if (!ndrd_get_flush_wpq(ndrd, i, 0))
0113             continue;
0114 
0115         for (j = i + 1; j < nd_region->ndr_mappings; j++)
0116             if (ndrd_get_flush_wpq(ndrd, i, 0) ==
0117                 ndrd_get_flush_wpq(ndrd, j, 0))
0118                 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
0119     }
0120 
0121     return 0;
0122 }
0123 
0124 static void nd_region_release(struct device *dev)
0125 {
0126     struct nd_region *nd_region = to_nd_region(dev);
0127     u16 i;
0128 
0129     for (i = 0; i < nd_region->ndr_mappings; i++) {
0130         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
0131         struct nvdimm *nvdimm = nd_mapping->nvdimm;
0132 
0133         put_device(&nvdimm->dev);
0134     }
0135     free_percpu(nd_region->lane);
0136     if (!test_bit(ND_REGION_CXL, &nd_region->flags))
0137         memregion_free(nd_region->id);
0138     kfree(nd_region);
0139 }
0140 
0141 struct nd_region *to_nd_region(struct device *dev)
0142 {
0143     struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
0144 
0145     WARN_ON(dev->type->release != nd_region_release);
0146     return nd_region;
0147 }
0148 EXPORT_SYMBOL_GPL(to_nd_region);
0149 
0150 struct device *nd_region_dev(struct nd_region *nd_region)
0151 {
0152     if (!nd_region)
0153         return NULL;
0154     return &nd_region->dev;
0155 }
0156 EXPORT_SYMBOL_GPL(nd_region_dev);
0157 
0158 void *nd_region_provider_data(struct nd_region *nd_region)
0159 {
0160     return nd_region->provider_data;
0161 }
0162 EXPORT_SYMBOL_GPL(nd_region_provider_data);
0163 
0164 /**
0165  * nd_region_to_nstype() - region to an integer namespace type
0166  * @nd_region: region-device to interrogate
0167  *
0168  * This is the 'nstype' attribute of a region as well, an input to the
0169  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
0170  * namespace devices with namespace drivers.
0171  */
0172 int nd_region_to_nstype(struct nd_region *nd_region)
0173 {
0174     if (is_memory(&nd_region->dev)) {
0175         u16 i, label;
0176 
0177         for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
0178             struct nd_mapping *nd_mapping = &nd_region->mapping[i];
0179             struct nvdimm *nvdimm = nd_mapping->nvdimm;
0180 
0181             if (test_bit(NDD_LABELING, &nvdimm->flags))
0182                 label++;
0183         }
0184         if (label)
0185             return ND_DEVICE_NAMESPACE_PMEM;
0186         else
0187             return ND_DEVICE_NAMESPACE_IO;
0188     }
0189 
0190     return 0;
0191 }
0192 EXPORT_SYMBOL(nd_region_to_nstype);
0193 
0194 static unsigned long long region_size(struct nd_region *nd_region)
0195 {
0196     if (is_memory(&nd_region->dev)) {
0197         return nd_region->ndr_size;
0198     } else if (nd_region->ndr_mappings == 1) {
0199         struct nd_mapping *nd_mapping = &nd_region->mapping[0];
0200 
0201         return nd_mapping->size;
0202     }
0203 
0204     return 0;
0205 }
0206 
0207 static ssize_t size_show(struct device *dev,
0208         struct device_attribute *attr, char *buf)
0209 {
0210     struct nd_region *nd_region = to_nd_region(dev);
0211 
0212     return sprintf(buf, "%llu\n", region_size(nd_region));
0213 }
0214 static DEVICE_ATTR_RO(size);
0215 
0216 static ssize_t deep_flush_show(struct device *dev,
0217         struct device_attribute *attr, char *buf)
0218 {
0219     struct nd_region *nd_region = to_nd_region(dev);
0220 
0221     /*
0222      * NOTE: in the nvdimm_has_flush() error case this attribute is
0223      * not visible.
0224      */
0225     return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
0226 }
0227 
0228 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
0229         const char *buf, size_t len)
0230 {
0231     bool flush;
0232     int rc = strtobool(buf, &flush);
0233     struct nd_region *nd_region = to_nd_region(dev);
0234 
0235     if (rc)
0236         return rc;
0237     if (!flush)
0238         return -EINVAL;
0239     rc = nvdimm_flush(nd_region, NULL);
0240     if (rc)
0241         return rc;
0242 
0243     return len;
0244 }
0245 static DEVICE_ATTR_RW(deep_flush);
0246 
0247 static ssize_t mappings_show(struct device *dev,
0248         struct device_attribute *attr, char *buf)
0249 {
0250     struct nd_region *nd_region = to_nd_region(dev);
0251 
0252     return sprintf(buf, "%d\n", nd_region->ndr_mappings);
0253 }
0254 static DEVICE_ATTR_RO(mappings);
0255 
0256 static ssize_t nstype_show(struct device *dev,
0257         struct device_attribute *attr, char *buf)
0258 {
0259     struct nd_region *nd_region = to_nd_region(dev);
0260 
0261     return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
0262 }
0263 static DEVICE_ATTR_RO(nstype);
0264 
0265 static ssize_t set_cookie_show(struct device *dev,
0266         struct device_attribute *attr, char *buf)
0267 {
0268     struct nd_region *nd_region = to_nd_region(dev);
0269     struct nd_interleave_set *nd_set = nd_region->nd_set;
0270     ssize_t rc = 0;
0271 
0272     if (is_memory(dev) && nd_set)
0273         /* pass, should be precluded by region_visible */;
0274     else
0275         return -ENXIO;
0276 
0277     /*
0278      * The cookie to show depends on which specification of the
0279      * labels we are using. If there are not labels then default to
0280      * the v1.1 namespace label cookie definition. To read all this
0281      * data we need to wait for probing to settle.
0282      */
0283     device_lock(dev);
0284     nvdimm_bus_lock(dev);
0285     wait_nvdimm_bus_probe_idle(dev);
0286     if (nd_region->ndr_mappings) {
0287         struct nd_mapping *nd_mapping = &nd_region->mapping[0];
0288         struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
0289 
0290         if (ndd) {
0291             struct nd_namespace_index *nsindex;
0292 
0293             nsindex = to_namespace_index(ndd, ndd->ns_current);
0294             rc = sprintf(buf, "%#llx\n",
0295                     nd_region_interleave_set_cookie(nd_region,
0296                         nsindex));
0297         }
0298     }
0299     nvdimm_bus_unlock(dev);
0300     device_unlock(dev);
0301 
0302     if (rc)
0303         return rc;
0304     return sprintf(buf, "%#llx\n", nd_set->cookie1);
0305 }
0306 static DEVICE_ATTR_RO(set_cookie);
0307 
0308 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
0309 {
0310     resource_size_t available;
0311     int i;
0312 
0313     WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
0314 
0315     available = 0;
0316     for (i = 0; i < nd_region->ndr_mappings; i++) {
0317         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
0318         struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
0319 
0320         /* if a dimm is disabled the available capacity is zero */
0321         if (!ndd)
0322             return 0;
0323 
0324         available += nd_pmem_available_dpa(nd_region, nd_mapping);
0325     }
0326 
0327     return available;
0328 }
0329 
0330 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
0331 {
0332     resource_size_t avail = 0;
0333     int i;
0334 
0335     WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
0336     for (i = 0; i < nd_region->ndr_mappings; i++) {
0337         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
0338 
0339         avail = min_not_zero(avail, nd_pmem_max_contiguous_dpa(
0340                             nd_region, nd_mapping));
0341     }
0342     return avail * nd_region->ndr_mappings;
0343 }
0344 
0345 static ssize_t available_size_show(struct device *dev,
0346         struct device_attribute *attr, char *buf)
0347 {
0348     struct nd_region *nd_region = to_nd_region(dev);
0349     unsigned long long available = 0;
0350 
0351     /*
0352      * Flush in-flight updates and grab a snapshot of the available
0353      * size.  Of course, this value is potentially invalidated the
0354      * memory nvdimm_bus_lock() is dropped, but that's userspace's
0355      * problem to not race itself.
0356      */
0357     device_lock(dev);
0358     nvdimm_bus_lock(dev);
0359     wait_nvdimm_bus_probe_idle(dev);
0360     available = nd_region_available_dpa(nd_region);
0361     nvdimm_bus_unlock(dev);
0362     device_unlock(dev);
0363 
0364     return sprintf(buf, "%llu\n", available);
0365 }
0366 static DEVICE_ATTR_RO(available_size);
0367 
0368 static ssize_t max_available_extent_show(struct device *dev,
0369         struct device_attribute *attr, char *buf)
0370 {
0371     struct nd_region *nd_region = to_nd_region(dev);
0372     unsigned long long available = 0;
0373 
0374     device_lock(dev);
0375     nvdimm_bus_lock(dev);
0376     wait_nvdimm_bus_probe_idle(dev);
0377     available = nd_region_allocatable_dpa(nd_region);
0378     nvdimm_bus_unlock(dev);
0379     device_unlock(dev);
0380 
0381     return sprintf(buf, "%llu\n", available);
0382 }
0383 static DEVICE_ATTR_RO(max_available_extent);
0384 
0385 static ssize_t init_namespaces_show(struct device *dev,
0386         struct device_attribute *attr, char *buf)
0387 {
0388     struct nd_region_data *ndrd = dev_get_drvdata(dev);
0389     ssize_t rc;
0390 
0391     nvdimm_bus_lock(dev);
0392     if (ndrd)
0393         rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
0394     else
0395         rc = -ENXIO;
0396     nvdimm_bus_unlock(dev);
0397 
0398     return rc;
0399 }
0400 static DEVICE_ATTR_RO(init_namespaces);
0401 
0402 static ssize_t namespace_seed_show(struct device *dev,
0403         struct device_attribute *attr, char *buf)
0404 {
0405     struct nd_region *nd_region = to_nd_region(dev);
0406     ssize_t rc;
0407 
0408     nvdimm_bus_lock(dev);
0409     if (nd_region->ns_seed)
0410         rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
0411     else
0412         rc = sprintf(buf, "\n");
0413     nvdimm_bus_unlock(dev);
0414     return rc;
0415 }
0416 static DEVICE_ATTR_RO(namespace_seed);
0417 
0418 static ssize_t btt_seed_show(struct device *dev,
0419         struct device_attribute *attr, char *buf)
0420 {
0421     struct nd_region *nd_region = to_nd_region(dev);
0422     ssize_t rc;
0423 
0424     nvdimm_bus_lock(dev);
0425     if (nd_region->btt_seed)
0426         rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
0427     else
0428         rc = sprintf(buf, "\n");
0429     nvdimm_bus_unlock(dev);
0430 
0431     return rc;
0432 }
0433 static DEVICE_ATTR_RO(btt_seed);
0434 
0435 static ssize_t pfn_seed_show(struct device *dev,
0436         struct device_attribute *attr, char *buf)
0437 {
0438     struct nd_region *nd_region = to_nd_region(dev);
0439     ssize_t rc;
0440 
0441     nvdimm_bus_lock(dev);
0442     if (nd_region->pfn_seed)
0443         rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
0444     else
0445         rc = sprintf(buf, "\n");
0446     nvdimm_bus_unlock(dev);
0447 
0448     return rc;
0449 }
0450 static DEVICE_ATTR_RO(pfn_seed);
0451 
0452 static ssize_t dax_seed_show(struct device *dev,
0453         struct device_attribute *attr, char *buf)
0454 {
0455     struct nd_region *nd_region = to_nd_region(dev);
0456     ssize_t rc;
0457 
0458     nvdimm_bus_lock(dev);
0459     if (nd_region->dax_seed)
0460         rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
0461     else
0462         rc = sprintf(buf, "\n");
0463     nvdimm_bus_unlock(dev);
0464 
0465     return rc;
0466 }
0467 static DEVICE_ATTR_RO(dax_seed);
0468 
0469 static ssize_t read_only_show(struct device *dev,
0470         struct device_attribute *attr, char *buf)
0471 {
0472     struct nd_region *nd_region = to_nd_region(dev);
0473 
0474     return sprintf(buf, "%d\n", nd_region->ro);
0475 }
0476 
0477 static int revalidate_read_only(struct device *dev, void *data)
0478 {
0479     nd_device_notify(dev, NVDIMM_REVALIDATE_REGION);
0480     return 0;
0481 }
0482 
0483 static ssize_t read_only_store(struct device *dev,
0484         struct device_attribute *attr, const char *buf, size_t len)
0485 {
0486     bool ro;
0487     int rc = strtobool(buf, &ro);
0488     struct nd_region *nd_region = to_nd_region(dev);
0489 
0490     if (rc)
0491         return rc;
0492 
0493     nd_region->ro = ro;
0494     device_for_each_child(dev, NULL, revalidate_read_only);
0495     return len;
0496 }
0497 static DEVICE_ATTR_RW(read_only);
0498 
0499 static ssize_t align_show(struct device *dev,
0500         struct device_attribute *attr, char *buf)
0501 {
0502     struct nd_region *nd_region = to_nd_region(dev);
0503 
0504     return sprintf(buf, "%#lx\n", nd_region->align);
0505 }
0506 
0507 static ssize_t align_store(struct device *dev,
0508         struct device_attribute *attr, const char *buf, size_t len)
0509 {
0510     struct nd_region *nd_region = to_nd_region(dev);
0511     unsigned long val, dpa;
0512     u32 remainder;
0513     int rc;
0514 
0515     rc = kstrtoul(buf, 0, &val);
0516     if (rc)
0517         return rc;
0518 
0519     if (!nd_region->ndr_mappings)
0520         return -ENXIO;
0521 
0522     /*
0523      * Ensure space-align is evenly divisible by the region
0524      * interleave-width because the kernel typically has no facility
0525      * to determine which DIMM(s), dimm-physical-addresses, would
0526      * contribute to the tail capacity in system-physical-address
0527      * space for the namespace.
0528      */
0529     dpa = div_u64_rem(val, nd_region->ndr_mappings, &remainder);
0530     if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
0531             || val > region_size(nd_region) || remainder)
0532         return -EINVAL;
0533 
0534     /*
0535      * Given that space allocation consults this value multiple
0536      * times ensure it does not change for the duration of the
0537      * allocation.
0538      */
0539     nvdimm_bus_lock(dev);
0540     nd_region->align = val;
0541     nvdimm_bus_unlock(dev);
0542 
0543     return len;
0544 }
0545 static DEVICE_ATTR_RW(align);
0546 
0547 static ssize_t region_badblocks_show(struct device *dev,
0548         struct device_attribute *attr, char *buf)
0549 {
0550     struct nd_region *nd_region = to_nd_region(dev);
0551     ssize_t rc;
0552 
0553     device_lock(dev);
0554     if (dev->driver)
0555         rc = badblocks_show(&nd_region->bb, buf, 0);
0556     else
0557         rc = -ENXIO;
0558     device_unlock(dev);
0559 
0560     return rc;
0561 }
0562 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
0563 
0564 static ssize_t resource_show(struct device *dev,
0565         struct device_attribute *attr, char *buf)
0566 {
0567     struct nd_region *nd_region = to_nd_region(dev);
0568 
0569     return sprintf(buf, "%#llx\n", nd_region->ndr_start);
0570 }
0571 static DEVICE_ATTR_ADMIN_RO(resource);
0572 
0573 static ssize_t persistence_domain_show(struct device *dev,
0574         struct device_attribute *attr, char *buf)
0575 {
0576     struct nd_region *nd_region = to_nd_region(dev);
0577 
0578     if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
0579         return sprintf(buf, "cpu_cache\n");
0580     else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
0581         return sprintf(buf, "memory_controller\n");
0582     else
0583         return sprintf(buf, "\n");
0584 }
0585 static DEVICE_ATTR_RO(persistence_domain);
0586 
0587 static struct attribute *nd_region_attributes[] = {
0588     &dev_attr_size.attr,
0589     &dev_attr_align.attr,
0590     &dev_attr_nstype.attr,
0591     &dev_attr_mappings.attr,
0592     &dev_attr_btt_seed.attr,
0593     &dev_attr_pfn_seed.attr,
0594     &dev_attr_dax_seed.attr,
0595     &dev_attr_deep_flush.attr,
0596     &dev_attr_read_only.attr,
0597     &dev_attr_set_cookie.attr,
0598     &dev_attr_available_size.attr,
0599     &dev_attr_max_available_extent.attr,
0600     &dev_attr_namespace_seed.attr,
0601     &dev_attr_init_namespaces.attr,
0602     &dev_attr_badblocks.attr,
0603     &dev_attr_resource.attr,
0604     &dev_attr_persistence_domain.attr,
0605     NULL,
0606 };
0607 
0608 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
0609 {
0610     struct device *dev = container_of(kobj, typeof(*dev), kobj);
0611     struct nd_region *nd_region = to_nd_region(dev);
0612     struct nd_interleave_set *nd_set = nd_region->nd_set;
0613     int type = nd_region_to_nstype(nd_region);
0614 
0615     if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
0616         return 0;
0617 
0618     if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
0619         return 0;
0620 
0621     if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
0622         return 0;
0623 
0624     if (a == &dev_attr_resource.attr && !is_memory(dev))
0625         return 0;
0626 
0627     if (a == &dev_attr_deep_flush.attr) {
0628         int has_flush = nvdimm_has_flush(nd_region);
0629 
0630         if (has_flush == 1)
0631             return a->mode;
0632         else if (has_flush == 0)
0633             return 0444;
0634         else
0635             return 0;
0636     }
0637 
0638     if (a == &dev_attr_persistence_domain.attr) {
0639         if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
0640                     | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
0641             return 0;
0642         return a->mode;
0643     }
0644 
0645     if (a == &dev_attr_align.attr)
0646         return a->mode;
0647 
0648     if (a != &dev_attr_set_cookie.attr
0649             && a != &dev_attr_available_size.attr)
0650         return a->mode;
0651 
0652     if (type == ND_DEVICE_NAMESPACE_PMEM &&
0653         a == &dev_attr_available_size.attr)
0654         return a->mode;
0655     else if (is_memory(dev) && nd_set)
0656         return a->mode;
0657 
0658     return 0;
0659 }
0660 
0661 static ssize_t mappingN(struct device *dev, char *buf, int n)
0662 {
0663     struct nd_region *nd_region = to_nd_region(dev);
0664     struct nd_mapping *nd_mapping;
0665     struct nvdimm *nvdimm;
0666 
0667     if (n >= nd_region->ndr_mappings)
0668         return -ENXIO;
0669     nd_mapping = &nd_region->mapping[n];
0670     nvdimm = nd_mapping->nvdimm;
0671 
0672     return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
0673             nd_mapping->start, nd_mapping->size,
0674             nd_mapping->position);
0675 }
0676 
0677 #define REGION_MAPPING(idx) \
0678 static ssize_t mapping##idx##_show(struct device *dev,      \
0679         struct device_attribute *attr, char *buf)   \
0680 {                               \
0681     return mappingN(dev, buf, idx);             \
0682 }                               \
0683 static DEVICE_ATTR_RO(mapping##idx)
0684 
0685 /*
0686  * 32 should be enough for a while, even in the presence of socket
0687  * interleave a 32-way interleave set is a degenerate case.
0688  */
0689 REGION_MAPPING(0);
0690 REGION_MAPPING(1);
0691 REGION_MAPPING(2);
0692 REGION_MAPPING(3);
0693 REGION_MAPPING(4);
0694 REGION_MAPPING(5);
0695 REGION_MAPPING(6);
0696 REGION_MAPPING(7);
0697 REGION_MAPPING(8);
0698 REGION_MAPPING(9);
0699 REGION_MAPPING(10);
0700 REGION_MAPPING(11);
0701 REGION_MAPPING(12);
0702 REGION_MAPPING(13);
0703 REGION_MAPPING(14);
0704 REGION_MAPPING(15);
0705 REGION_MAPPING(16);
0706 REGION_MAPPING(17);
0707 REGION_MAPPING(18);
0708 REGION_MAPPING(19);
0709 REGION_MAPPING(20);
0710 REGION_MAPPING(21);
0711 REGION_MAPPING(22);
0712 REGION_MAPPING(23);
0713 REGION_MAPPING(24);
0714 REGION_MAPPING(25);
0715 REGION_MAPPING(26);
0716 REGION_MAPPING(27);
0717 REGION_MAPPING(28);
0718 REGION_MAPPING(29);
0719 REGION_MAPPING(30);
0720 REGION_MAPPING(31);
0721 
0722 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
0723 {
0724     struct device *dev = container_of(kobj, struct device, kobj);
0725     struct nd_region *nd_region = to_nd_region(dev);
0726 
0727     if (n < nd_region->ndr_mappings)
0728         return a->mode;
0729     return 0;
0730 }
0731 
0732 static struct attribute *mapping_attributes[] = {
0733     &dev_attr_mapping0.attr,
0734     &dev_attr_mapping1.attr,
0735     &dev_attr_mapping2.attr,
0736     &dev_attr_mapping3.attr,
0737     &dev_attr_mapping4.attr,
0738     &dev_attr_mapping5.attr,
0739     &dev_attr_mapping6.attr,
0740     &dev_attr_mapping7.attr,
0741     &dev_attr_mapping8.attr,
0742     &dev_attr_mapping9.attr,
0743     &dev_attr_mapping10.attr,
0744     &dev_attr_mapping11.attr,
0745     &dev_attr_mapping12.attr,
0746     &dev_attr_mapping13.attr,
0747     &dev_attr_mapping14.attr,
0748     &dev_attr_mapping15.attr,
0749     &dev_attr_mapping16.attr,
0750     &dev_attr_mapping17.attr,
0751     &dev_attr_mapping18.attr,
0752     &dev_attr_mapping19.attr,
0753     &dev_attr_mapping20.attr,
0754     &dev_attr_mapping21.attr,
0755     &dev_attr_mapping22.attr,
0756     &dev_attr_mapping23.attr,
0757     &dev_attr_mapping24.attr,
0758     &dev_attr_mapping25.attr,
0759     &dev_attr_mapping26.attr,
0760     &dev_attr_mapping27.attr,
0761     &dev_attr_mapping28.attr,
0762     &dev_attr_mapping29.attr,
0763     &dev_attr_mapping30.attr,
0764     &dev_attr_mapping31.attr,
0765     NULL,
0766 };
0767 
0768 static const struct attribute_group nd_mapping_attribute_group = {
0769     .is_visible = mapping_visible,
0770     .attrs = mapping_attributes,
0771 };
0772 
0773 static const struct attribute_group nd_region_attribute_group = {
0774     .attrs = nd_region_attributes,
0775     .is_visible = region_visible,
0776 };
0777 
0778 static const struct attribute_group *nd_region_attribute_groups[] = {
0779     &nd_device_attribute_group,
0780     &nd_region_attribute_group,
0781     &nd_numa_attribute_group,
0782     &nd_mapping_attribute_group,
0783     NULL,
0784 };
0785 
0786 static const struct device_type nd_pmem_device_type = {
0787     .name = "nd_pmem",
0788     .release = nd_region_release,
0789     .groups = nd_region_attribute_groups,
0790 };
0791 
0792 static const struct device_type nd_volatile_device_type = {
0793     .name = "nd_volatile",
0794     .release = nd_region_release,
0795     .groups = nd_region_attribute_groups,
0796 };
0797 
0798 bool is_nd_pmem(struct device *dev)
0799 {
0800     return dev ? dev->type == &nd_pmem_device_type : false;
0801 }
0802 
0803 bool is_nd_volatile(struct device *dev)
0804 {
0805     return dev ? dev->type == &nd_volatile_device_type : false;
0806 }
0807 
0808 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
0809         struct nd_namespace_index *nsindex)
0810 {
0811     struct nd_interleave_set *nd_set = nd_region->nd_set;
0812 
0813     if (!nd_set)
0814         return 0;
0815 
0816     if (nsindex && __le16_to_cpu(nsindex->major) == 1
0817             && __le16_to_cpu(nsindex->minor) == 1)
0818         return nd_set->cookie1;
0819     return nd_set->cookie2;
0820 }
0821 
0822 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
0823 {
0824     struct nd_interleave_set *nd_set = nd_region->nd_set;
0825 
0826     if (nd_set)
0827         return nd_set->altcookie;
0828     return 0;
0829 }
0830 
0831 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
0832 {
0833     struct nd_label_ent *label_ent, *e;
0834 
0835     lockdep_assert_held(&nd_mapping->lock);
0836     list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
0837         list_del(&label_ent->list);
0838         kfree(label_ent);
0839     }
0840 }
0841 
0842 /*
0843  * When a namespace is activated create new seeds for the next
0844  * namespace, or namespace-personality to be configured.
0845  */
0846 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
0847 {
0848     nvdimm_bus_lock(dev);
0849     if (nd_region->ns_seed == dev) {
0850         nd_region_create_ns_seed(nd_region);
0851     } else if (is_nd_btt(dev)) {
0852         struct nd_btt *nd_btt = to_nd_btt(dev);
0853 
0854         if (nd_region->btt_seed == dev)
0855             nd_region_create_btt_seed(nd_region);
0856         if (nd_region->ns_seed == &nd_btt->ndns->dev)
0857             nd_region_create_ns_seed(nd_region);
0858     } else if (is_nd_pfn(dev)) {
0859         struct nd_pfn *nd_pfn = to_nd_pfn(dev);
0860 
0861         if (nd_region->pfn_seed == dev)
0862             nd_region_create_pfn_seed(nd_region);
0863         if (nd_region->ns_seed == &nd_pfn->ndns->dev)
0864             nd_region_create_ns_seed(nd_region);
0865     } else if (is_nd_dax(dev)) {
0866         struct nd_dax *nd_dax = to_nd_dax(dev);
0867 
0868         if (nd_region->dax_seed == dev)
0869             nd_region_create_dax_seed(nd_region);
0870         if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
0871             nd_region_create_ns_seed(nd_region);
0872     }
0873     nvdimm_bus_unlock(dev);
0874 }
0875 
0876 /**
0877  * nd_region_acquire_lane - allocate and lock a lane
0878  * @nd_region: region id and number of lanes possible
0879  *
0880  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
0881  * We optimize for the common case where there are 256 lanes, one
0882  * per-cpu.  For larger systems we need to lock to share lanes.  For now
0883  * this implementation assumes the cost of maintaining an allocator for
0884  * free lanes is on the order of the lock hold time, so it implements a
0885  * static lane = cpu % num_lanes mapping.
0886  *
0887  * In the case of a BTT instance on top of a BLK namespace a lane may be
0888  * acquired recursively.  We lock on the first instance.
0889  *
0890  * In the case of a BTT instance on top of PMEM, we only acquire a lane
0891  * for the BTT metadata updates.
0892  */
0893 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
0894 {
0895     unsigned int cpu, lane;
0896 
0897     cpu = get_cpu();
0898     if (nd_region->num_lanes < nr_cpu_ids) {
0899         struct nd_percpu_lane *ndl_lock, *ndl_count;
0900 
0901         lane = cpu % nd_region->num_lanes;
0902         ndl_count = per_cpu_ptr(nd_region->lane, cpu);
0903         ndl_lock = per_cpu_ptr(nd_region->lane, lane);
0904         if (ndl_count->count++ == 0)
0905             spin_lock(&ndl_lock->lock);
0906     } else
0907         lane = cpu;
0908 
0909     return lane;
0910 }
0911 EXPORT_SYMBOL(nd_region_acquire_lane);
0912 
0913 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
0914 {
0915     if (nd_region->num_lanes < nr_cpu_ids) {
0916         unsigned int cpu = get_cpu();
0917         struct nd_percpu_lane *ndl_lock, *ndl_count;
0918 
0919         ndl_count = per_cpu_ptr(nd_region->lane, cpu);
0920         ndl_lock = per_cpu_ptr(nd_region->lane, lane);
0921         if (--ndl_count->count == 0)
0922             spin_unlock(&ndl_lock->lock);
0923         put_cpu();
0924     }
0925     put_cpu();
0926 }
0927 EXPORT_SYMBOL(nd_region_release_lane);
0928 
0929 /*
0930  * PowerPC requires this alignment for memremap_pages(). All other archs
0931  * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
0932  */
0933 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
0934 
0935 static unsigned long default_align(struct nd_region *nd_region)
0936 {
0937     unsigned long align;
0938     u32 remainder;
0939     int mappings;
0940 
0941     align = MEMREMAP_COMPAT_ALIGN_MAX;
0942     if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX)
0943         align = PAGE_SIZE;
0944 
0945     mappings = max_t(u16, 1, nd_region->ndr_mappings);
0946     div_u64_rem(align, mappings, &remainder);
0947     if (remainder)
0948         align *= mappings;
0949 
0950     return align;
0951 }
0952 
0953 static struct lock_class_key nvdimm_region_key;
0954 
0955 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
0956         struct nd_region_desc *ndr_desc,
0957         const struct device_type *dev_type, const char *caller)
0958 {
0959     struct nd_region *nd_region;
0960     struct device *dev;
0961     unsigned int i;
0962     int ro = 0;
0963 
0964     for (i = 0; i < ndr_desc->num_mappings; i++) {
0965         struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
0966         struct nvdimm *nvdimm = mapping->nvdimm;
0967 
0968         if ((mapping->start | mapping->size) % PAGE_SIZE) {
0969             dev_err(&nvdimm_bus->dev,
0970                 "%s: %s mapping%d is not %ld aligned\n",
0971                 caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
0972             return NULL;
0973         }
0974 
0975         if (test_bit(NDD_UNARMED, &nvdimm->flags))
0976             ro = 1;
0977 
0978     }
0979 
0980     nd_region =
0981         kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings),
0982             GFP_KERNEL);
0983 
0984     if (!nd_region)
0985         return NULL;
0986     /* CXL pre-assigns memregion ids before creating nvdimm regions */
0987     if (test_bit(ND_REGION_CXL, &ndr_desc->flags)) {
0988         nd_region->id = ndr_desc->memregion;
0989     } else {
0990         nd_region->id = memregion_alloc(GFP_KERNEL);
0991         if (nd_region->id < 0)
0992             goto err_id;
0993     }
0994 
0995     nd_region->lane = alloc_percpu(struct nd_percpu_lane);
0996     if (!nd_region->lane)
0997         goto err_percpu;
0998 
0999         for (i = 0; i < nr_cpu_ids; i++) {
1000         struct nd_percpu_lane *ndl;
1001 
1002         ndl = per_cpu_ptr(nd_region->lane, i);
1003         spin_lock_init(&ndl->lock);
1004         ndl->count = 0;
1005     }
1006 
1007     for (i = 0; i < ndr_desc->num_mappings; i++) {
1008         struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1009         struct nvdimm *nvdimm = mapping->nvdimm;
1010 
1011         nd_region->mapping[i].nvdimm = nvdimm;
1012         nd_region->mapping[i].start = mapping->start;
1013         nd_region->mapping[i].size = mapping->size;
1014         nd_region->mapping[i].position = mapping->position;
1015         INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1016         mutex_init(&nd_region->mapping[i].lock);
1017 
1018         get_device(&nvdimm->dev);
1019     }
1020     nd_region->ndr_mappings = ndr_desc->num_mappings;
1021     nd_region->provider_data = ndr_desc->provider_data;
1022     nd_region->nd_set = ndr_desc->nd_set;
1023     nd_region->num_lanes = ndr_desc->num_lanes;
1024     nd_region->flags = ndr_desc->flags;
1025     nd_region->ro = ro;
1026     nd_region->numa_node = ndr_desc->numa_node;
1027     nd_region->target_node = ndr_desc->target_node;
1028     ida_init(&nd_region->ns_ida);
1029     ida_init(&nd_region->btt_ida);
1030     ida_init(&nd_region->pfn_ida);
1031     ida_init(&nd_region->dax_ida);
1032     dev = &nd_region->dev;
1033     dev_set_name(dev, "region%d", nd_region->id);
1034     dev->parent = &nvdimm_bus->dev;
1035     dev->type = dev_type;
1036     dev->groups = ndr_desc->attr_groups;
1037     dev->of_node = ndr_desc->of_node;
1038     nd_region->ndr_size = resource_size(ndr_desc->res);
1039     nd_region->ndr_start = ndr_desc->res->start;
1040     nd_region->align = default_align(nd_region);
1041     if (ndr_desc->flush)
1042         nd_region->flush = ndr_desc->flush;
1043     else
1044         nd_region->flush = NULL;
1045 
1046     device_initialize(dev);
1047     lockdep_set_class(&dev->mutex, &nvdimm_region_key);
1048     nd_device_register(dev);
1049 
1050     return nd_region;
1051 
1052 err_percpu:
1053     if (!test_bit(ND_REGION_CXL, &ndr_desc->flags))
1054         memregion_free(nd_region->id);
1055 err_id:
1056     kfree(nd_region);
1057     return NULL;
1058 }
1059 
1060 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1061         struct nd_region_desc *ndr_desc)
1062 {
1063     ndr_desc->num_lanes = ND_MAX_LANES;
1064     return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1065             __func__);
1066 }
1067 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1068 
1069 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1070         struct nd_region_desc *ndr_desc)
1071 {
1072     ndr_desc->num_lanes = ND_MAX_LANES;
1073     return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1074             __func__);
1075 }
1076 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1077 
1078 void nvdimm_region_delete(struct nd_region *nd_region)
1079 {
1080     if (nd_region)
1081         nd_device_unregister(&nd_region->dev, ND_SYNC);
1082 }
1083 EXPORT_SYMBOL_GPL(nvdimm_region_delete);
1084 
1085 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1086 {
1087     int rc = 0;
1088 
1089     if (!nd_region->flush)
1090         rc = generic_nvdimm_flush(nd_region);
1091     else {
1092         if (nd_region->flush(nd_region, bio))
1093             rc = -EIO;
1094     }
1095 
1096     return rc;
1097 }
1098 /**
1099  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1100  * @nd_region: interleaved pmem region
1101  */
1102 int generic_nvdimm_flush(struct nd_region *nd_region)
1103 {
1104     struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1105     int i, idx;
1106 
1107     /*
1108      * Try to encourage some diversity in flush hint addresses
1109      * across cpus assuming a limited number of flush hints.
1110      */
1111     idx = this_cpu_read(flush_idx);
1112     idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1113 
1114     /*
1115      * The pmem_wmb() is needed to 'sfence' all
1116      * previous writes such that they are architecturally visible for
1117      * the platform buffer flush. Note that we've already arranged for pmem
1118      * writes to avoid the cache via memcpy_flushcache().  The final
1119      * wmb() ensures ordering for the NVDIMM flush write.
1120      */
1121     pmem_wmb();
1122     for (i = 0; i < nd_region->ndr_mappings; i++)
1123         if (ndrd_get_flush_wpq(ndrd, i, 0))
1124             writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1125     wmb();
1126 
1127     return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(nvdimm_flush);
1130 
1131 /**
1132  * nvdimm_has_flush - determine write flushing requirements
1133  * @nd_region: interleaved pmem region
1134  *
1135  * Returns 1 if writes require flushing
1136  * Returns 0 if writes do not require flushing
1137  * Returns -ENXIO if flushing capability can not be determined
1138  */
1139 int nvdimm_has_flush(struct nd_region *nd_region)
1140 {
1141     int i;
1142 
1143     /* no nvdimm or pmem api == flushing capability unknown */
1144     if (nd_region->ndr_mappings == 0
1145             || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1146         return -ENXIO;
1147 
1148     /* Test if an explicit flush function is defined */
1149     if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush)
1150         return 1;
1151 
1152     /* Test if any flush hints for the region are available */
1153     for (i = 0; i < nd_region->ndr_mappings; i++) {
1154         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1155         struct nvdimm *nvdimm = nd_mapping->nvdimm;
1156 
1157         /* flush hints present / available */
1158         if (nvdimm->num_flush)
1159             return 1;
1160     }
1161 
1162     /*
1163      * The platform defines dimm devices without hints nor explicit flush,
1164      * assume platform persistence mechanism like ADR
1165      */
1166     return 0;
1167 }
1168 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1169 
1170 int nvdimm_has_cache(struct nd_region *nd_region)
1171 {
1172     return is_nd_pmem(&nd_region->dev) &&
1173         !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1174 }
1175 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1176 
1177 bool is_nvdimm_sync(struct nd_region *nd_region)
1178 {
1179     if (is_nd_volatile(&nd_region->dev))
1180         return true;
1181 
1182     return is_nd_pmem(&nd_region->dev) &&
1183         !test_bit(ND_REGION_ASYNC, &nd_region->flags);
1184 }
1185 EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1186 
1187 struct conflict_context {
1188     struct nd_region *nd_region;
1189     resource_size_t start, size;
1190 };
1191 
1192 static int region_conflict(struct device *dev, void *data)
1193 {
1194     struct nd_region *nd_region;
1195     struct conflict_context *ctx = data;
1196     resource_size_t res_end, region_end, region_start;
1197 
1198     if (!is_memory(dev))
1199         return 0;
1200 
1201     nd_region = to_nd_region(dev);
1202     if (nd_region == ctx->nd_region)
1203         return 0;
1204 
1205     res_end = ctx->start + ctx->size;
1206     region_start = nd_region->ndr_start;
1207     region_end = region_start + nd_region->ndr_size;
1208     if (ctx->start >= region_start && ctx->start < region_end)
1209         return -EBUSY;
1210     if (res_end > region_start && res_end <= region_end)
1211         return -EBUSY;
1212     return 0;
1213 }
1214 
1215 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1216         resource_size_t size)
1217 {
1218     struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1219     struct conflict_context ctx = {
1220         .nd_region = nd_region,
1221         .start = start,
1222         .size = size,
1223     };
1224 
1225     return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1226 }