Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Block Translation Table
0004  * Copyright (c) 2014-2015, Intel Corporation.
0005  */
0006 #include <linux/highmem.h>
0007 #include <linux/debugfs.h>
0008 #include <linux/blkdev.h>
0009 #include <linux/pagemap.h>
0010 #include <linux/module.h>
0011 #include <linux/device.h>
0012 #include <linux/mutex.h>
0013 #include <linux/hdreg.h>
0014 #include <linux/sizes.h>
0015 #include <linux/ndctl.h>
0016 #include <linux/fs.h>
0017 #include <linux/nd.h>
0018 #include <linux/backing-dev.h>
0019 #include "btt.h"
0020 #include "nd.h"
0021 
0022 enum log_ent_request {
0023     LOG_NEW_ENT = 0,
0024     LOG_OLD_ENT
0025 };
0026 
0027 static struct device *to_dev(struct arena_info *arena)
0028 {
0029     return &arena->nd_btt->dev;
0030 }
0031 
0032 static u64 adjust_initial_offset(struct nd_btt *nd_btt, u64 offset)
0033 {
0034     return offset + nd_btt->initial_offset;
0035 }
0036 
0037 static int arena_read_bytes(struct arena_info *arena, resource_size_t offset,
0038         void *buf, size_t n, unsigned long flags)
0039 {
0040     struct nd_btt *nd_btt = arena->nd_btt;
0041     struct nd_namespace_common *ndns = nd_btt->ndns;
0042 
0043     /* arena offsets may be shifted from the base of the device */
0044     offset = adjust_initial_offset(nd_btt, offset);
0045     return nvdimm_read_bytes(ndns, offset, buf, n, flags);
0046 }
0047 
0048 static int arena_write_bytes(struct arena_info *arena, resource_size_t offset,
0049         void *buf, size_t n, unsigned long flags)
0050 {
0051     struct nd_btt *nd_btt = arena->nd_btt;
0052     struct nd_namespace_common *ndns = nd_btt->ndns;
0053 
0054     /* arena offsets may be shifted from the base of the device */
0055     offset = adjust_initial_offset(nd_btt, offset);
0056     return nvdimm_write_bytes(ndns, offset, buf, n, flags);
0057 }
0058 
0059 static int btt_info_write(struct arena_info *arena, struct btt_sb *super)
0060 {
0061     int ret;
0062 
0063     /*
0064      * infooff and info2off should always be at least 512B aligned.
0065      * We rely on that to make sure rw_bytes does error clearing
0066      * correctly, so make sure that is the case.
0067      */
0068     dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->infooff, 512),
0069         "arena->infooff: %#llx is unaligned\n", arena->infooff);
0070     dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->info2off, 512),
0071         "arena->info2off: %#llx is unaligned\n", arena->info2off);
0072 
0073     ret = arena_write_bytes(arena, arena->info2off, super,
0074             sizeof(struct btt_sb), 0);
0075     if (ret)
0076         return ret;
0077 
0078     return arena_write_bytes(arena, arena->infooff, super,
0079             sizeof(struct btt_sb), 0);
0080 }
0081 
0082 static int btt_info_read(struct arena_info *arena, struct btt_sb *super)
0083 {
0084     return arena_read_bytes(arena, arena->infooff, super,
0085             sizeof(struct btt_sb), 0);
0086 }
0087 
0088 /*
0089  * 'raw' version of btt_map write
0090  * Assumptions:
0091  *   mapping is in little-endian
0092  *   mapping contains 'E' and 'Z' flags as desired
0093  */
0094 static int __btt_map_write(struct arena_info *arena, u32 lba, __le32 mapping,
0095         unsigned long flags)
0096 {
0097     u64 ns_off = arena->mapoff + (lba * MAP_ENT_SIZE);
0098 
0099     if (unlikely(lba >= arena->external_nlba))
0100         dev_err_ratelimited(to_dev(arena),
0101             "%s: lba %#x out of range (max: %#x)\n",
0102             __func__, lba, arena->external_nlba);
0103     return arena_write_bytes(arena, ns_off, &mapping, MAP_ENT_SIZE, flags);
0104 }
0105 
0106 static int btt_map_write(struct arena_info *arena, u32 lba, u32 mapping,
0107             u32 z_flag, u32 e_flag, unsigned long rwb_flags)
0108 {
0109     u32 ze;
0110     __le32 mapping_le;
0111 
0112     /*
0113      * This 'mapping' is supposed to be just the LBA mapping, without
0114      * any flags set, so strip the flag bits.
0115      */
0116     mapping = ent_lba(mapping);
0117 
0118     ze = (z_flag << 1) + e_flag;
0119     switch (ze) {
0120     case 0:
0121         /*
0122          * We want to set neither of the Z or E flags, and
0123          * in the actual layout, this means setting the bit
0124          * positions of both to '1' to indicate a 'normal'
0125          * map entry
0126          */
0127         mapping |= MAP_ENT_NORMAL;
0128         break;
0129     case 1:
0130         mapping |= (1 << MAP_ERR_SHIFT);
0131         break;
0132     case 2:
0133         mapping |= (1 << MAP_TRIM_SHIFT);
0134         break;
0135     default:
0136         /*
0137          * The case where Z and E are both sent in as '1' could be
0138          * construed as a valid 'normal' case, but we decide not to,
0139          * to avoid confusion
0140          */
0141         dev_err_ratelimited(to_dev(arena),
0142             "Invalid use of Z and E flags\n");
0143         return -EIO;
0144     }
0145 
0146     mapping_le = cpu_to_le32(mapping);
0147     return __btt_map_write(arena, lba, mapping_le, rwb_flags);
0148 }
0149 
0150 static int btt_map_read(struct arena_info *arena, u32 lba, u32 *mapping,
0151             int *trim, int *error, unsigned long rwb_flags)
0152 {
0153     int ret;
0154     __le32 in;
0155     u32 raw_mapping, postmap, ze, z_flag, e_flag;
0156     u64 ns_off = arena->mapoff + (lba * MAP_ENT_SIZE);
0157 
0158     if (unlikely(lba >= arena->external_nlba))
0159         dev_err_ratelimited(to_dev(arena),
0160             "%s: lba %#x out of range (max: %#x)\n",
0161             __func__, lba, arena->external_nlba);
0162 
0163     ret = arena_read_bytes(arena, ns_off, &in, MAP_ENT_SIZE, rwb_flags);
0164     if (ret)
0165         return ret;
0166 
0167     raw_mapping = le32_to_cpu(in);
0168 
0169     z_flag = ent_z_flag(raw_mapping);
0170     e_flag = ent_e_flag(raw_mapping);
0171     ze = (z_flag << 1) + e_flag;
0172     postmap = ent_lba(raw_mapping);
0173 
0174     /* Reuse the {z,e}_flag variables for *trim and *error */
0175     z_flag = 0;
0176     e_flag = 0;
0177 
0178     switch (ze) {
0179     case 0:
0180         /* Initial state. Return postmap = premap */
0181         *mapping = lba;
0182         break;
0183     case 1:
0184         *mapping = postmap;
0185         e_flag = 1;
0186         break;
0187     case 2:
0188         *mapping = postmap;
0189         z_flag = 1;
0190         break;
0191     case 3:
0192         *mapping = postmap;
0193         break;
0194     default:
0195         return -EIO;
0196     }
0197 
0198     if (trim)
0199         *trim = z_flag;
0200     if (error)
0201         *error = e_flag;
0202 
0203     return ret;
0204 }
0205 
0206 static int btt_log_group_read(struct arena_info *arena, u32 lane,
0207             struct log_group *log)
0208 {
0209     return arena_read_bytes(arena,
0210             arena->logoff + (lane * LOG_GRP_SIZE), log,
0211             LOG_GRP_SIZE, 0);
0212 }
0213 
0214 static struct dentry *debugfs_root;
0215 
0216 static void arena_debugfs_init(struct arena_info *a, struct dentry *parent,
0217                 int idx)
0218 {
0219     char dirname[32];
0220     struct dentry *d;
0221 
0222     /* If for some reason, parent bttN was not created, exit */
0223     if (!parent)
0224         return;
0225 
0226     snprintf(dirname, 32, "arena%d", idx);
0227     d = debugfs_create_dir(dirname, parent);
0228     if (IS_ERR_OR_NULL(d))
0229         return;
0230     a->debugfs_dir = d;
0231 
0232     debugfs_create_x64("size", S_IRUGO, d, &a->size);
0233     debugfs_create_x64("external_lba_start", S_IRUGO, d,
0234                 &a->external_lba_start);
0235     debugfs_create_x32("internal_nlba", S_IRUGO, d, &a->internal_nlba);
0236     debugfs_create_u32("internal_lbasize", S_IRUGO, d,
0237                 &a->internal_lbasize);
0238     debugfs_create_x32("external_nlba", S_IRUGO, d, &a->external_nlba);
0239     debugfs_create_u32("external_lbasize", S_IRUGO, d,
0240                 &a->external_lbasize);
0241     debugfs_create_u32("nfree", S_IRUGO, d, &a->nfree);
0242     debugfs_create_u16("version_major", S_IRUGO, d, &a->version_major);
0243     debugfs_create_u16("version_minor", S_IRUGO, d, &a->version_minor);
0244     debugfs_create_x64("nextoff", S_IRUGO, d, &a->nextoff);
0245     debugfs_create_x64("infooff", S_IRUGO, d, &a->infooff);
0246     debugfs_create_x64("dataoff", S_IRUGO, d, &a->dataoff);
0247     debugfs_create_x64("mapoff", S_IRUGO, d, &a->mapoff);
0248     debugfs_create_x64("logoff", S_IRUGO, d, &a->logoff);
0249     debugfs_create_x64("info2off", S_IRUGO, d, &a->info2off);
0250     debugfs_create_x32("flags", S_IRUGO, d, &a->flags);
0251     debugfs_create_u32("log_index_0", S_IRUGO, d, &a->log_index[0]);
0252     debugfs_create_u32("log_index_1", S_IRUGO, d, &a->log_index[1]);
0253 }
0254 
0255 static void btt_debugfs_init(struct btt *btt)
0256 {
0257     int i = 0;
0258     struct arena_info *arena;
0259 
0260     btt->debugfs_dir = debugfs_create_dir(dev_name(&btt->nd_btt->dev),
0261                         debugfs_root);
0262     if (IS_ERR_OR_NULL(btt->debugfs_dir))
0263         return;
0264 
0265     list_for_each_entry(arena, &btt->arena_list, list) {
0266         arena_debugfs_init(arena, btt->debugfs_dir, i);
0267         i++;
0268     }
0269 }
0270 
0271 static u32 log_seq(struct log_group *log, int log_idx)
0272 {
0273     return le32_to_cpu(log->ent[log_idx].seq);
0274 }
0275 
0276 /*
0277  * This function accepts two log entries, and uses the
0278  * sequence number to find the 'older' entry.
0279  * It also updates the sequence number in this old entry to
0280  * make it the 'new' one if the mark_flag is set.
0281  * Finally, it returns which of the entries was the older one.
0282  *
0283  * TODO The logic feels a bit kludge-y. make it better..
0284  */
0285 static int btt_log_get_old(struct arena_info *a, struct log_group *log)
0286 {
0287     int idx0 = a->log_index[0];
0288     int idx1 = a->log_index[1];
0289     int old;
0290 
0291     /*
0292      * the first ever time this is seen, the entry goes into [0]
0293      * the next time, the following logic works out to put this
0294      * (next) entry into [1]
0295      */
0296     if (log_seq(log, idx0) == 0) {
0297         log->ent[idx0].seq = cpu_to_le32(1);
0298         return 0;
0299     }
0300 
0301     if (log_seq(log, idx0) == log_seq(log, idx1))
0302         return -EINVAL;
0303     if (log_seq(log, idx0) + log_seq(log, idx1) > 5)
0304         return -EINVAL;
0305 
0306     if (log_seq(log, idx0) < log_seq(log, idx1)) {
0307         if ((log_seq(log, idx1) - log_seq(log, idx0)) == 1)
0308             old = 0;
0309         else
0310             old = 1;
0311     } else {
0312         if ((log_seq(log, idx0) - log_seq(log, idx1)) == 1)
0313             old = 1;
0314         else
0315             old = 0;
0316     }
0317 
0318     return old;
0319 }
0320 
0321 /*
0322  * This function copies the desired (old/new) log entry into ent if
0323  * it is not NULL. It returns the sub-slot number (0 or 1)
0324  * where the desired log entry was found. Negative return values
0325  * indicate errors.
0326  */
0327 static int btt_log_read(struct arena_info *arena, u32 lane,
0328             struct log_entry *ent, int old_flag)
0329 {
0330     int ret;
0331     int old_ent, ret_ent;
0332     struct log_group log;
0333 
0334     ret = btt_log_group_read(arena, lane, &log);
0335     if (ret)
0336         return -EIO;
0337 
0338     old_ent = btt_log_get_old(arena, &log);
0339     if (old_ent < 0 || old_ent > 1) {
0340         dev_err(to_dev(arena),
0341                 "log corruption (%d): lane %d seq [%d, %d]\n",
0342                 old_ent, lane, log.ent[arena->log_index[0]].seq,
0343                 log.ent[arena->log_index[1]].seq);
0344         /* TODO set error state? */
0345         return -EIO;
0346     }
0347 
0348     ret_ent = (old_flag ? old_ent : (1 - old_ent));
0349 
0350     if (ent != NULL)
0351         memcpy(ent, &log.ent[arena->log_index[ret_ent]], LOG_ENT_SIZE);
0352 
0353     return ret_ent;
0354 }
0355 
0356 /*
0357  * This function commits a log entry to media
0358  * It does _not_ prepare the freelist entry for the next write
0359  * btt_flog_write is the wrapper for updating the freelist elements
0360  */
0361 static int __btt_log_write(struct arena_info *arena, u32 lane,
0362             u32 sub, struct log_entry *ent, unsigned long flags)
0363 {
0364     int ret;
0365     u32 group_slot = arena->log_index[sub];
0366     unsigned int log_half = LOG_ENT_SIZE / 2;
0367     void *src = ent;
0368     u64 ns_off;
0369 
0370     ns_off = arena->logoff + (lane * LOG_GRP_SIZE) +
0371         (group_slot * LOG_ENT_SIZE);
0372     /* split the 16B write into atomic, durable halves */
0373     ret = arena_write_bytes(arena, ns_off, src, log_half, flags);
0374     if (ret)
0375         return ret;
0376 
0377     ns_off += log_half;
0378     src += log_half;
0379     return arena_write_bytes(arena, ns_off, src, log_half, flags);
0380 }
0381 
0382 static int btt_flog_write(struct arena_info *arena, u32 lane, u32 sub,
0383             struct log_entry *ent)
0384 {
0385     int ret;
0386 
0387     ret = __btt_log_write(arena, lane, sub, ent, NVDIMM_IO_ATOMIC);
0388     if (ret)
0389         return ret;
0390 
0391     /* prepare the next free entry */
0392     arena->freelist[lane].sub = 1 - arena->freelist[lane].sub;
0393     if (++(arena->freelist[lane].seq) == 4)
0394         arena->freelist[lane].seq = 1;
0395     if (ent_e_flag(le32_to_cpu(ent->old_map)))
0396         arena->freelist[lane].has_err = 1;
0397     arena->freelist[lane].block = ent_lba(le32_to_cpu(ent->old_map));
0398 
0399     return ret;
0400 }
0401 
0402 /*
0403  * This function initializes the BTT map to the initial state, which is
0404  * all-zeroes, and indicates an identity mapping
0405  */
0406 static int btt_map_init(struct arena_info *arena)
0407 {
0408     int ret = -EINVAL;
0409     void *zerobuf;
0410     size_t offset = 0;
0411     size_t chunk_size = SZ_2M;
0412     size_t mapsize = arena->logoff - arena->mapoff;
0413 
0414     zerobuf = kzalloc(chunk_size, GFP_KERNEL);
0415     if (!zerobuf)
0416         return -ENOMEM;
0417 
0418     /*
0419      * mapoff should always be at least 512B  aligned. We rely on that to
0420      * make sure rw_bytes does error clearing correctly, so make sure that
0421      * is the case.
0422      */
0423     dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->mapoff, 512),
0424         "arena->mapoff: %#llx is unaligned\n", arena->mapoff);
0425 
0426     while (mapsize) {
0427         size_t size = min(mapsize, chunk_size);
0428 
0429         dev_WARN_ONCE(to_dev(arena), size < 512,
0430             "chunk size: %#zx is unaligned\n", size);
0431         ret = arena_write_bytes(arena, arena->mapoff + offset, zerobuf,
0432                 size, 0);
0433         if (ret)
0434             goto free;
0435 
0436         offset += size;
0437         mapsize -= size;
0438         cond_resched();
0439     }
0440 
0441  free:
0442     kfree(zerobuf);
0443     return ret;
0444 }
0445 
0446 /*
0447  * This function initializes the BTT log with 'fake' entries pointing
0448  * to the initial reserved set of blocks as being free
0449  */
0450 static int btt_log_init(struct arena_info *arena)
0451 {
0452     size_t logsize = arena->info2off - arena->logoff;
0453     size_t chunk_size = SZ_4K, offset = 0;
0454     struct log_entry ent;
0455     void *zerobuf;
0456     int ret;
0457     u32 i;
0458 
0459     zerobuf = kzalloc(chunk_size, GFP_KERNEL);
0460     if (!zerobuf)
0461         return -ENOMEM;
0462     /*
0463      * logoff should always be at least 512B  aligned. We rely on that to
0464      * make sure rw_bytes does error clearing correctly, so make sure that
0465      * is the case.
0466      */
0467     dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->logoff, 512),
0468         "arena->logoff: %#llx is unaligned\n", arena->logoff);
0469 
0470     while (logsize) {
0471         size_t size = min(logsize, chunk_size);
0472 
0473         dev_WARN_ONCE(to_dev(arena), size < 512,
0474             "chunk size: %#zx is unaligned\n", size);
0475         ret = arena_write_bytes(arena, arena->logoff + offset, zerobuf,
0476                 size, 0);
0477         if (ret)
0478             goto free;
0479 
0480         offset += size;
0481         logsize -= size;
0482         cond_resched();
0483     }
0484 
0485     for (i = 0; i < arena->nfree; i++) {
0486         ent.lba = cpu_to_le32(i);
0487         ent.old_map = cpu_to_le32(arena->external_nlba + i);
0488         ent.new_map = cpu_to_le32(arena->external_nlba + i);
0489         ent.seq = cpu_to_le32(LOG_SEQ_INIT);
0490         ret = __btt_log_write(arena, i, 0, &ent, 0);
0491         if (ret)
0492             goto free;
0493     }
0494 
0495  free:
0496     kfree(zerobuf);
0497     return ret;
0498 }
0499 
0500 static u64 to_namespace_offset(struct arena_info *arena, u64 lba)
0501 {
0502     return arena->dataoff + ((u64)lba * arena->internal_lbasize);
0503 }
0504 
0505 static int arena_clear_freelist_error(struct arena_info *arena, u32 lane)
0506 {
0507     int ret = 0;
0508 
0509     if (arena->freelist[lane].has_err) {
0510         void *zero_page = page_address(ZERO_PAGE(0));
0511         u32 lba = arena->freelist[lane].block;
0512         u64 nsoff = to_namespace_offset(arena, lba);
0513         unsigned long len = arena->sector_size;
0514 
0515         mutex_lock(&arena->err_lock);
0516 
0517         while (len) {
0518             unsigned long chunk = min(len, PAGE_SIZE);
0519 
0520             ret = arena_write_bytes(arena, nsoff, zero_page,
0521                 chunk, 0);
0522             if (ret)
0523                 break;
0524             len -= chunk;
0525             nsoff += chunk;
0526             if (len == 0)
0527                 arena->freelist[lane].has_err = 0;
0528         }
0529         mutex_unlock(&arena->err_lock);
0530     }
0531     return ret;
0532 }
0533 
0534 static int btt_freelist_init(struct arena_info *arena)
0535 {
0536     int new, ret;
0537     struct log_entry log_new;
0538     u32 i, map_entry, log_oldmap, log_newmap;
0539 
0540     arena->freelist = kcalloc(arena->nfree, sizeof(struct free_entry),
0541                     GFP_KERNEL);
0542     if (!arena->freelist)
0543         return -ENOMEM;
0544 
0545     for (i = 0; i < arena->nfree; i++) {
0546         new = btt_log_read(arena, i, &log_new, LOG_NEW_ENT);
0547         if (new < 0)
0548             return new;
0549 
0550         /* old and new map entries with any flags stripped out */
0551         log_oldmap = ent_lba(le32_to_cpu(log_new.old_map));
0552         log_newmap = ent_lba(le32_to_cpu(log_new.new_map));
0553 
0554         /* sub points to the next one to be overwritten */
0555         arena->freelist[i].sub = 1 - new;
0556         arena->freelist[i].seq = nd_inc_seq(le32_to_cpu(log_new.seq));
0557         arena->freelist[i].block = log_oldmap;
0558 
0559         /*
0560          * FIXME: if error clearing fails during init, we want to make
0561          * the BTT read-only
0562          */
0563         if (ent_e_flag(le32_to_cpu(log_new.old_map)) &&
0564             !ent_normal(le32_to_cpu(log_new.old_map))) {
0565             arena->freelist[i].has_err = 1;
0566             ret = arena_clear_freelist_error(arena, i);
0567             if (ret)
0568                 dev_err_ratelimited(to_dev(arena),
0569                     "Unable to clear known errors\n");
0570         }
0571 
0572         /* This implies a newly created or untouched flog entry */
0573         if (log_oldmap == log_newmap)
0574             continue;
0575 
0576         /* Check if map recovery is needed */
0577         ret = btt_map_read(arena, le32_to_cpu(log_new.lba), &map_entry,
0578                 NULL, NULL, 0);
0579         if (ret)
0580             return ret;
0581 
0582         /*
0583          * The map_entry from btt_read_map is stripped of any flag bits,
0584          * so use the stripped out versions from the log as well for
0585          * testing whether recovery is needed. For restoration, use the
0586          * 'raw' version of the log entries as that captured what we
0587          * were going to write originally.
0588          */
0589         if ((log_newmap != map_entry) && (log_oldmap == map_entry)) {
0590             /*
0591              * Last transaction wrote the flog, but wasn't able
0592              * to complete the map write. So fix up the map.
0593              */
0594             ret = btt_map_write(arena, le32_to_cpu(log_new.lba),
0595                     le32_to_cpu(log_new.new_map), 0, 0, 0);
0596             if (ret)
0597                 return ret;
0598         }
0599     }
0600 
0601     return 0;
0602 }
0603 
0604 static bool ent_is_padding(struct log_entry *ent)
0605 {
0606     return (ent->lba == 0) && (ent->old_map == 0) && (ent->new_map == 0)
0607         && (ent->seq == 0);
0608 }
0609 
0610 /*
0611  * Detecting valid log indices: We read a log group (see the comments in btt.h
0612  * for a description of a 'log_group' and its 'slots'), and iterate over its
0613  * four slots. We expect that a padding slot will be all-zeroes, and use this
0614  * to detect a padding slot vs. an actual entry.
0615  *
0616  * If a log_group is in the initial state, i.e. hasn't been used since the
0617  * creation of this BTT layout, it will have three of the four slots with
0618  * zeroes. We skip over these log_groups for the detection of log_index. If
0619  * all log_groups are in the initial state (i.e. the BTT has never been
0620  * written to), it is safe to assume the 'new format' of log entries in slots
0621  * (0, 1).
0622  */
0623 static int log_set_indices(struct arena_info *arena)
0624 {
0625     bool idx_set = false, initial_state = true;
0626     int ret, log_index[2] = {-1, -1};
0627     u32 i, j, next_idx = 0;
0628     struct log_group log;
0629     u32 pad_count = 0;
0630 
0631     for (i = 0; i < arena->nfree; i++) {
0632         ret = btt_log_group_read(arena, i, &log);
0633         if (ret < 0)
0634             return ret;
0635 
0636         for (j = 0; j < 4; j++) {
0637             if (!idx_set) {
0638                 if (ent_is_padding(&log.ent[j])) {
0639                     pad_count++;
0640                     continue;
0641                 } else {
0642                     /* Skip if index has been recorded */
0643                     if ((next_idx == 1) &&
0644                         (j == log_index[0]))
0645                         continue;
0646                     /* valid entry, record index */
0647                     log_index[next_idx] = j;
0648                     next_idx++;
0649                 }
0650                 if (next_idx == 2) {
0651                     /* two valid entries found */
0652                     idx_set = true;
0653                 } else if (next_idx > 2) {
0654                     /* too many valid indices */
0655                     return -ENXIO;
0656                 }
0657             } else {
0658                 /*
0659                  * once the indices have been set, just verify
0660                  * that all subsequent log groups are either in
0661                  * their initial state or follow the same
0662                  * indices.
0663                  */
0664                 if (j == log_index[0]) {
0665                     /* entry must be 'valid' */
0666                     if (ent_is_padding(&log.ent[j]))
0667                         return -ENXIO;
0668                 } else if (j == log_index[1]) {
0669                     ;
0670                     /*
0671                      * log_index[1] can be padding if the
0672                      * lane never got used and it is still
0673                      * in the initial state (three 'padding'
0674                      * entries)
0675                      */
0676                 } else {
0677                     /* entry must be invalid (padding) */
0678                     if (!ent_is_padding(&log.ent[j]))
0679                         return -ENXIO;
0680                 }
0681             }
0682         }
0683         /*
0684          * If any of the log_groups have more than one valid,
0685          * non-padding entry, then the we are no longer in the
0686          * initial_state
0687          */
0688         if (pad_count < 3)
0689             initial_state = false;
0690         pad_count = 0;
0691     }
0692 
0693     if (!initial_state && !idx_set)
0694         return -ENXIO;
0695 
0696     /*
0697      * If all the entries in the log were in the initial state,
0698      * assume new padding scheme
0699      */
0700     if (initial_state)
0701         log_index[1] = 1;
0702 
0703     /*
0704      * Only allow the known permutations of log/padding indices,
0705      * i.e. (0, 1), and (0, 2)
0706      */
0707     if ((log_index[0] == 0) && ((log_index[1] == 1) || (log_index[1] == 2)))
0708         ; /* known index possibilities */
0709     else {
0710         dev_err(to_dev(arena), "Found an unknown padding scheme\n");
0711         return -ENXIO;
0712     }
0713 
0714     arena->log_index[0] = log_index[0];
0715     arena->log_index[1] = log_index[1];
0716     dev_dbg(to_dev(arena), "log_index_0 = %d\n", log_index[0]);
0717     dev_dbg(to_dev(arena), "log_index_1 = %d\n", log_index[1]);
0718     return 0;
0719 }
0720 
0721 static int btt_rtt_init(struct arena_info *arena)
0722 {
0723     arena->rtt = kcalloc(arena->nfree, sizeof(u32), GFP_KERNEL);
0724     if (arena->rtt == NULL)
0725         return -ENOMEM;
0726 
0727     return 0;
0728 }
0729 
0730 static int btt_maplocks_init(struct arena_info *arena)
0731 {
0732     u32 i;
0733 
0734     arena->map_locks = kcalloc(arena->nfree, sizeof(struct aligned_lock),
0735                 GFP_KERNEL);
0736     if (!arena->map_locks)
0737         return -ENOMEM;
0738 
0739     for (i = 0; i < arena->nfree; i++)
0740         spin_lock_init(&arena->map_locks[i].lock);
0741 
0742     return 0;
0743 }
0744 
0745 static struct arena_info *alloc_arena(struct btt *btt, size_t size,
0746                 size_t start, size_t arena_off)
0747 {
0748     struct arena_info *arena;
0749     u64 logsize, mapsize, datasize;
0750     u64 available = size;
0751 
0752     arena = kzalloc(sizeof(struct arena_info), GFP_KERNEL);
0753     if (!arena)
0754         return NULL;
0755     arena->nd_btt = btt->nd_btt;
0756     arena->sector_size = btt->sector_size;
0757     mutex_init(&arena->err_lock);
0758 
0759     if (!size)
0760         return arena;
0761 
0762     arena->size = size;
0763     arena->external_lba_start = start;
0764     arena->external_lbasize = btt->lbasize;
0765     arena->internal_lbasize = roundup(arena->external_lbasize,
0766                     INT_LBASIZE_ALIGNMENT);
0767     arena->nfree = BTT_DEFAULT_NFREE;
0768     arena->version_major = btt->nd_btt->version_major;
0769     arena->version_minor = btt->nd_btt->version_minor;
0770 
0771     if (available % BTT_PG_SIZE)
0772         available -= (available % BTT_PG_SIZE);
0773 
0774     /* Two pages are reserved for the super block and its copy */
0775     available -= 2 * BTT_PG_SIZE;
0776 
0777     /* The log takes a fixed amount of space based on nfree */
0778     logsize = roundup(arena->nfree * LOG_GRP_SIZE, BTT_PG_SIZE);
0779     available -= logsize;
0780 
0781     /* Calculate optimal split between map and data area */
0782     arena->internal_nlba = div_u64(available - BTT_PG_SIZE,
0783             arena->internal_lbasize + MAP_ENT_SIZE);
0784     arena->external_nlba = arena->internal_nlba - arena->nfree;
0785 
0786     mapsize = roundup((arena->external_nlba * MAP_ENT_SIZE), BTT_PG_SIZE);
0787     datasize = available - mapsize;
0788 
0789     /* 'Absolute' values, relative to start of storage space */
0790     arena->infooff = arena_off;
0791     arena->dataoff = arena->infooff + BTT_PG_SIZE;
0792     arena->mapoff = arena->dataoff + datasize;
0793     arena->logoff = arena->mapoff + mapsize;
0794     arena->info2off = arena->logoff + logsize;
0795 
0796     /* Default log indices are (0,1) */
0797     arena->log_index[0] = 0;
0798     arena->log_index[1] = 1;
0799     return arena;
0800 }
0801 
0802 static void free_arenas(struct btt *btt)
0803 {
0804     struct arena_info *arena, *next;
0805 
0806     list_for_each_entry_safe(arena, next, &btt->arena_list, list) {
0807         list_del(&arena->list);
0808         kfree(arena->rtt);
0809         kfree(arena->map_locks);
0810         kfree(arena->freelist);
0811         debugfs_remove_recursive(arena->debugfs_dir);
0812         kfree(arena);
0813     }
0814 }
0815 
0816 /*
0817  * This function reads an existing valid btt superblock and
0818  * populates the corresponding arena_info struct
0819  */
0820 static void parse_arena_meta(struct arena_info *arena, struct btt_sb *super,
0821                 u64 arena_off)
0822 {
0823     arena->internal_nlba = le32_to_cpu(super->internal_nlba);
0824     arena->internal_lbasize = le32_to_cpu(super->internal_lbasize);
0825     arena->external_nlba = le32_to_cpu(super->external_nlba);
0826     arena->external_lbasize = le32_to_cpu(super->external_lbasize);
0827     arena->nfree = le32_to_cpu(super->nfree);
0828     arena->version_major = le16_to_cpu(super->version_major);
0829     arena->version_minor = le16_to_cpu(super->version_minor);
0830 
0831     arena->nextoff = (super->nextoff == 0) ? 0 : (arena_off +
0832             le64_to_cpu(super->nextoff));
0833     arena->infooff = arena_off;
0834     arena->dataoff = arena_off + le64_to_cpu(super->dataoff);
0835     arena->mapoff = arena_off + le64_to_cpu(super->mapoff);
0836     arena->logoff = arena_off + le64_to_cpu(super->logoff);
0837     arena->info2off = arena_off + le64_to_cpu(super->info2off);
0838 
0839     arena->size = (le64_to_cpu(super->nextoff) > 0)
0840         ? (le64_to_cpu(super->nextoff))
0841         : (arena->info2off - arena->infooff + BTT_PG_SIZE);
0842 
0843     arena->flags = le32_to_cpu(super->flags);
0844 }
0845 
0846 static int discover_arenas(struct btt *btt)
0847 {
0848     int ret = 0;
0849     struct arena_info *arena;
0850     struct btt_sb *super;
0851     size_t remaining = btt->rawsize;
0852     u64 cur_nlba = 0;
0853     size_t cur_off = 0;
0854     int num_arenas = 0;
0855 
0856     super = kzalloc(sizeof(*super), GFP_KERNEL);
0857     if (!super)
0858         return -ENOMEM;
0859 
0860     while (remaining) {
0861         /* Alloc memory for arena */
0862         arena = alloc_arena(btt, 0, 0, 0);
0863         if (!arena) {
0864             ret = -ENOMEM;
0865             goto out_super;
0866         }
0867 
0868         arena->infooff = cur_off;
0869         ret = btt_info_read(arena, super);
0870         if (ret)
0871             goto out;
0872 
0873         if (!nd_btt_arena_is_valid(btt->nd_btt, super)) {
0874             if (remaining == btt->rawsize) {
0875                 btt->init_state = INIT_NOTFOUND;
0876                 dev_info(to_dev(arena), "No existing arenas\n");
0877                 goto out;
0878             } else {
0879                 dev_err(to_dev(arena),
0880                         "Found corrupted metadata!\n");
0881                 ret = -ENODEV;
0882                 goto out;
0883             }
0884         }
0885 
0886         arena->external_lba_start = cur_nlba;
0887         parse_arena_meta(arena, super, cur_off);
0888 
0889         ret = log_set_indices(arena);
0890         if (ret) {
0891             dev_err(to_dev(arena),
0892                 "Unable to deduce log/padding indices\n");
0893             goto out;
0894         }
0895 
0896         ret = btt_freelist_init(arena);
0897         if (ret)
0898             goto out;
0899 
0900         ret = btt_rtt_init(arena);
0901         if (ret)
0902             goto out;
0903 
0904         ret = btt_maplocks_init(arena);
0905         if (ret)
0906             goto out;
0907 
0908         list_add_tail(&arena->list, &btt->arena_list);
0909 
0910         remaining -= arena->size;
0911         cur_off += arena->size;
0912         cur_nlba += arena->external_nlba;
0913         num_arenas++;
0914 
0915         if (arena->nextoff == 0)
0916             break;
0917     }
0918     btt->num_arenas = num_arenas;
0919     btt->nlba = cur_nlba;
0920     btt->init_state = INIT_READY;
0921 
0922     kfree(super);
0923     return ret;
0924 
0925  out:
0926     kfree(arena);
0927     free_arenas(btt);
0928  out_super:
0929     kfree(super);
0930     return ret;
0931 }
0932 
0933 static int create_arenas(struct btt *btt)
0934 {
0935     size_t remaining = btt->rawsize;
0936     size_t cur_off = 0;
0937 
0938     while (remaining) {
0939         struct arena_info *arena;
0940         size_t arena_size = min_t(u64, ARENA_MAX_SIZE, remaining);
0941 
0942         remaining -= arena_size;
0943         if (arena_size < ARENA_MIN_SIZE)
0944             break;
0945 
0946         arena = alloc_arena(btt, arena_size, btt->nlba, cur_off);
0947         if (!arena) {
0948             free_arenas(btt);
0949             return -ENOMEM;
0950         }
0951         btt->nlba += arena->external_nlba;
0952         if (remaining >= ARENA_MIN_SIZE)
0953             arena->nextoff = arena->size;
0954         else
0955             arena->nextoff = 0;
0956         cur_off += arena_size;
0957         list_add_tail(&arena->list, &btt->arena_list);
0958     }
0959 
0960     return 0;
0961 }
0962 
0963 /*
0964  * This function completes arena initialization by writing
0965  * all the metadata.
0966  * It is only called for an uninitialized arena when a write
0967  * to that arena occurs for the first time.
0968  */
0969 static int btt_arena_write_layout(struct arena_info *arena)
0970 {
0971     int ret;
0972     u64 sum;
0973     struct btt_sb *super;
0974     struct nd_btt *nd_btt = arena->nd_btt;
0975     const uuid_t *parent_uuid = nd_dev_to_uuid(&nd_btt->ndns->dev);
0976 
0977     ret = btt_map_init(arena);
0978     if (ret)
0979         return ret;
0980 
0981     ret = btt_log_init(arena);
0982     if (ret)
0983         return ret;
0984 
0985     super = kzalloc(sizeof(struct btt_sb), GFP_NOIO);
0986     if (!super)
0987         return -ENOMEM;
0988 
0989     strncpy(super->signature, BTT_SIG, BTT_SIG_LEN);
0990     export_uuid(super->uuid, nd_btt->uuid);
0991     export_uuid(super->parent_uuid, parent_uuid);
0992     super->flags = cpu_to_le32(arena->flags);
0993     super->version_major = cpu_to_le16(arena->version_major);
0994     super->version_minor = cpu_to_le16(arena->version_minor);
0995     super->external_lbasize = cpu_to_le32(arena->external_lbasize);
0996     super->external_nlba = cpu_to_le32(arena->external_nlba);
0997     super->internal_lbasize = cpu_to_le32(arena->internal_lbasize);
0998     super->internal_nlba = cpu_to_le32(arena->internal_nlba);
0999     super->nfree = cpu_to_le32(arena->nfree);
1000     super->infosize = cpu_to_le32(sizeof(struct btt_sb));
1001     super->nextoff = cpu_to_le64(arena->nextoff);
1002     /*
1003      * Subtract arena->infooff (arena start) so numbers are relative
1004      * to 'this' arena
1005      */
1006     super->dataoff = cpu_to_le64(arena->dataoff - arena->infooff);
1007     super->mapoff = cpu_to_le64(arena->mapoff - arena->infooff);
1008     super->logoff = cpu_to_le64(arena->logoff - arena->infooff);
1009     super->info2off = cpu_to_le64(arena->info2off - arena->infooff);
1010 
1011     super->flags = 0;
1012     sum = nd_sb_checksum((struct nd_gen_sb *) super);
1013     super->checksum = cpu_to_le64(sum);
1014 
1015     ret = btt_info_write(arena, super);
1016 
1017     kfree(super);
1018     return ret;
1019 }
1020 
1021 /*
1022  * This function completes the initialization for the BTT namespace
1023  * such that it is ready to accept IOs
1024  */
1025 static int btt_meta_init(struct btt *btt)
1026 {
1027     int ret = 0;
1028     struct arena_info *arena;
1029 
1030     mutex_lock(&btt->init_lock);
1031     list_for_each_entry(arena, &btt->arena_list, list) {
1032         ret = btt_arena_write_layout(arena);
1033         if (ret)
1034             goto unlock;
1035 
1036         ret = btt_freelist_init(arena);
1037         if (ret)
1038             goto unlock;
1039 
1040         ret = btt_rtt_init(arena);
1041         if (ret)
1042             goto unlock;
1043 
1044         ret = btt_maplocks_init(arena);
1045         if (ret)
1046             goto unlock;
1047     }
1048 
1049     btt->init_state = INIT_READY;
1050 
1051  unlock:
1052     mutex_unlock(&btt->init_lock);
1053     return ret;
1054 }
1055 
1056 static u32 btt_meta_size(struct btt *btt)
1057 {
1058     return btt->lbasize - btt->sector_size;
1059 }
1060 
1061 /*
1062  * This function calculates the arena in which the given LBA lies
1063  * by doing a linear walk. This is acceptable since we expect only
1064  * a few arenas. If we have backing devices that get much larger,
1065  * we can construct a balanced binary tree of arenas at init time
1066  * so that this range search becomes faster.
1067  */
1068 static int lba_to_arena(struct btt *btt, sector_t sector, __u32 *premap,
1069                 struct arena_info **arena)
1070 {
1071     struct arena_info *arena_list;
1072     __u64 lba = div_u64(sector << SECTOR_SHIFT, btt->sector_size);
1073 
1074     list_for_each_entry(arena_list, &btt->arena_list, list) {
1075         if (lba < arena_list->external_nlba) {
1076             *arena = arena_list;
1077             *premap = lba;
1078             return 0;
1079         }
1080         lba -= arena_list->external_nlba;
1081     }
1082 
1083     return -EIO;
1084 }
1085 
1086 /*
1087  * The following (lock_map, unlock_map) are mostly just to improve
1088  * readability, since they index into an array of locks
1089  */
1090 static void lock_map(struct arena_info *arena, u32 premap)
1091         __acquires(&arena->map_locks[idx].lock)
1092 {
1093     u32 idx = (premap * MAP_ENT_SIZE / L1_CACHE_BYTES) % arena->nfree;
1094 
1095     spin_lock(&arena->map_locks[idx].lock);
1096 }
1097 
1098 static void unlock_map(struct arena_info *arena, u32 premap)
1099         __releases(&arena->map_locks[idx].lock)
1100 {
1101     u32 idx = (premap * MAP_ENT_SIZE / L1_CACHE_BYTES) % arena->nfree;
1102 
1103     spin_unlock(&arena->map_locks[idx].lock);
1104 }
1105 
1106 static int btt_data_read(struct arena_info *arena, struct page *page,
1107             unsigned int off, u32 lba, u32 len)
1108 {
1109     int ret;
1110     u64 nsoff = to_namespace_offset(arena, lba);
1111     void *mem = kmap_atomic(page);
1112 
1113     ret = arena_read_bytes(arena, nsoff, mem + off, len, NVDIMM_IO_ATOMIC);
1114     kunmap_atomic(mem);
1115 
1116     return ret;
1117 }
1118 
1119 static int btt_data_write(struct arena_info *arena, u32 lba,
1120             struct page *page, unsigned int off, u32 len)
1121 {
1122     int ret;
1123     u64 nsoff = to_namespace_offset(arena, lba);
1124     void *mem = kmap_atomic(page);
1125 
1126     ret = arena_write_bytes(arena, nsoff, mem + off, len, NVDIMM_IO_ATOMIC);
1127     kunmap_atomic(mem);
1128 
1129     return ret;
1130 }
1131 
1132 static void zero_fill_data(struct page *page, unsigned int off, u32 len)
1133 {
1134     void *mem = kmap_atomic(page);
1135 
1136     memset(mem + off, 0, len);
1137     kunmap_atomic(mem);
1138 }
1139 
1140 #ifdef CONFIG_BLK_DEV_INTEGRITY
1141 static int btt_rw_integrity(struct btt *btt, struct bio_integrity_payload *bip,
1142             struct arena_info *arena, u32 postmap, int rw)
1143 {
1144     unsigned int len = btt_meta_size(btt);
1145     u64 meta_nsoff;
1146     int ret = 0;
1147 
1148     if (bip == NULL)
1149         return 0;
1150 
1151     meta_nsoff = to_namespace_offset(arena, postmap) + btt->sector_size;
1152 
1153     while (len) {
1154         unsigned int cur_len;
1155         struct bio_vec bv;
1156         void *mem;
1157 
1158         bv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1159         /*
1160          * The 'bv' obtained from bvec_iter_bvec has its .bv_len and
1161          * .bv_offset already adjusted for iter->bi_bvec_done, and we
1162          * can use those directly
1163          */
1164 
1165         cur_len = min(len, bv.bv_len);
1166         mem = bvec_kmap_local(&bv);
1167         if (rw)
1168             ret = arena_write_bytes(arena, meta_nsoff, mem, cur_len,
1169                     NVDIMM_IO_ATOMIC);
1170         else
1171             ret = arena_read_bytes(arena, meta_nsoff, mem, cur_len,
1172                     NVDIMM_IO_ATOMIC);
1173 
1174         kunmap_local(mem);
1175         if (ret)
1176             return ret;
1177 
1178         len -= cur_len;
1179         meta_nsoff += cur_len;
1180         if (!bvec_iter_advance(bip->bip_vec, &bip->bip_iter, cur_len))
1181             return -EIO;
1182     }
1183 
1184     return ret;
1185 }
1186 
1187 #else /* CONFIG_BLK_DEV_INTEGRITY */
1188 static int btt_rw_integrity(struct btt *btt, struct bio_integrity_payload *bip,
1189             struct arena_info *arena, u32 postmap, int rw)
1190 {
1191     return 0;
1192 }
1193 #endif
1194 
1195 static int btt_read_pg(struct btt *btt, struct bio_integrity_payload *bip,
1196             struct page *page, unsigned int off, sector_t sector,
1197             unsigned int len)
1198 {
1199     int ret = 0;
1200     int t_flag, e_flag;
1201     struct arena_info *arena = NULL;
1202     u32 lane = 0, premap, postmap;
1203 
1204     while (len) {
1205         u32 cur_len;
1206 
1207         lane = nd_region_acquire_lane(btt->nd_region);
1208 
1209         ret = lba_to_arena(btt, sector, &premap, &arena);
1210         if (ret)
1211             goto out_lane;
1212 
1213         cur_len = min(btt->sector_size, len);
1214 
1215         ret = btt_map_read(arena, premap, &postmap, &t_flag, &e_flag,
1216                 NVDIMM_IO_ATOMIC);
1217         if (ret)
1218             goto out_lane;
1219 
1220         /*
1221          * We loop to make sure that the post map LBA didn't change
1222          * from under us between writing the RTT and doing the actual
1223          * read.
1224          */
1225         while (1) {
1226             u32 new_map;
1227             int new_t, new_e;
1228 
1229             if (t_flag) {
1230                 zero_fill_data(page, off, cur_len);
1231                 goto out_lane;
1232             }
1233 
1234             if (e_flag) {
1235                 ret = -EIO;
1236                 goto out_lane;
1237             }
1238 
1239             arena->rtt[lane] = RTT_VALID | postmap;
1240             /*
1241              * Barrier to make sure this write is not reordered
1242              * to do the verification map_read before the RTT store
1243              */
1244             barrier();
1245 
1246             ret = btt_map_read(arena, premap, &new_map, &new_t,
1247                         &new_e, NVDIMM_IO_ATOMIC);
1248             if (ret)
1249                 goto out_rtt;
1250 
1251             if ((postmap == new_map) && (t_flag == new_t) &&
1252                     (e_flag == new_e))
1253                 break;
1254 
1255             postmap = new_map;
1256             t_flag = new_t;
1257             e_flag = new_e;
1258         }
1259 
1260         ret = btt_data_read(arena, page, off, postmap, cur_len);
1261         if (ret) {
1262             /* Media error - set the e_flag */
1263             if (btt_map_write(arena, premap, postmap, 0, 1, NVDIMM_IO_ATOMIC))
1264                 dev_warn_ratelimited(to_dev(arena),
1265                     "Error persistently tracking bad blocks at %#x\n",
1266                     premap);
1267             goto out_rtt;
1268         }
1269 
1270         if (bip) {
1271             ret = btt_rw_integrity(btt, bip, arena, postmap, READ);
1272             if (ret)
1273                 goto out_rtt;
1274         }
1275 
1276         arena->rtt[lane] = RTT_INVALID;
1277         nd_region_release_lane(btt->nd_region, lane);
1278 
1279         len -= cur_len;
1280         off += cur_len;
1281         sector += btt->sector_size >> SECTOR_SHIFT;
1282     }
1283 
1284     return 0;
1285 
1286  out_rtt:
1287     arena->rtt[lane] = RTT_INVALID;
1288  out_lane:
1289     nd_region_release_lane(btt->nd_region, lane);
1290     return ret;
1291 }
1292 
1293 /*
1294  * Normally, arena_{read,write}_bytes will take care of the initial offset
1295  * adjustment, but in the case of btt_is_badblock, where we query is_bad_pmem,
1296  * we need the final, raw namespace offset here
1297  */
1298 static bool btt_is_badblock(struct btt *btt, struct arena_info *arena,
1299         u32 postmap)
1300 {
1301     u64 nsoff = adjust_initial_offset(arena->nd_btt,
1302             to_namespace_offset(arena, postmap));
1303     sector_t phys_sector = nsoff >> 9;
1304 
1305     return is_bad_pmem(btt->phys_bb, phys_sector, arena->internal_lbasize);
1306 }
1307 
1308 static int btt_write_pg(struct btt *btt, struct bio_integrity_payload *bip,
1309             sector_t sector, struct page *page, unsigned int off,
1310             unsigned int len)
1311 {
1312     int ret = 0;
1313     struct arena_info *arena = NULL;
1314     u32 premap = 0, old_postmap, new_postmap, lane = 0, i;
1315     struct log_entry log;
1316     int sub;
1317 
1318     while (len) {
1319         u32 cur_len;
1320         int e_flag;
1321 
1322  retry:
1323         lane = nd_region_acquire_lane(btt->nd_region);
1324 
1325         ret = lba_to_arena(btt, sector, &premap, &arena);
1326         if (ret)
1327             goto out_lane;
1328         cur_len = min(btt->sector_size, len);
1329 
1330         if ((arena->flags & IB_FLAG_ERROR_MASK) != 0) {
1331             ret = -EIO;
1332             goto out_lane;
1333         }
1334 
1335         if (btt_is_badblock(btt, arena, arena->freelist[lane].block))
1336             arena->freelist[lane].has_err = 1;
1337 
1338         if (mutex_is_locked(&arena->err_lock)
1339                 || arena->freelist[lane].has_err) {
1340             nd_region_release_lane(btt->nd_region, lane);
1341 
1342             ret = arena_clear_freelist_error(arena, lane);
1343             if (ret)
1344                 return ret;
1345 
1346             /* OK to acquire a different lane/free block */
1347             goto retry;
1348         }
1349 
1350         new_postmap = arena->freelist[lane].block;
1351 
1352         /* Wait if the new block is being read from */
1353         for (i = 0; i < arena->nfree; i++)
1354             while (arena->rtt[i] == (RTT_VALID | new_postmap))
1355                 cpu_relax();
1356 
1357 
1358         if (new_postmap >= arena->internal_nlba) {
1359             ret = -EIO;
1360             goto out_lane;
1361         }
1362 
1363         ret = btt_data_write(arena, new_postmap, page, off, cur_len);
1364         if (ret)
1365             goto out_lane;
1366 
1367         if (bip) {
1368             ret = btt_rw_integrity(btt, bip, arena, new_postmap,
1369                         WRITE);
1370             if (ret)
1371                 goto out_lane;
1372         }
1373 
1374         lock_map(arena, premap);
1375         ret = btt_map_read(arena, premap, &old_postmap, NULL, &e_flag,
1376                 NVDIMM_IO_ATOMIC);
1377         if (ret)
1378             goto out_map;
1379         if (old_postmap >= arena->internal_nlba) {
1380             ret = -EIO;
1381             goto out_map;
1382         }
1383         if (e_flag)
1384             set_e_flag(old_postmap);
1385 
1386         log.lba = cpu_to_le32(premap);
1387         log.old_map = cpu_to_le32(old_postmap);
1388         log.new_map = cpu_to_le32(new_postmap);
1389         log.seq = cpu_to_le32(arena->freelist[lane].seq);
1390         sub = arena->freelist[lane].sub;
1391         ret = btt_flog_write(arena, lane, sub, &log);
1392         if (ret)
1393             goto out_map;
1394 
1395         ret = btt_map_write(arena, premap, new_postmap, 0, 0,
1396             NVDIMM_IO_ATOMIC);
1397         if (ret)
1398             goto out_map;
1399 
1400         unlock_map(arena, premap);
1401         nd_region_release_lane(btt->nd_region, lane);
1402 
1403         if (e_flag) {
1404             ret = arena_clear_freelist_error(arena, lane);
1405             if (ret)
1406                 return ret;
1407         }
1408 
1409         len -= cur_len;
1410         off += cur_len;
1411         sector += btt->sector_size >> SECTOR_SHIFT;
1412     }
1413 
1414     return 0;
1415 
1416  out_map:
1417     unlock_map(arena, premap);
1418  out_lane:
1419     nd_region_release_lane(btt->nd_region, lane);
1420     return ret;
1421 }
1422 
1423 static int btt_do_bvec(struct btt *btt, struct bio_integrity_payload *bip,
1424             struct page *page, unsigned int len, unsigned int off,
1425             enum req_op op, sector_t sector)
1426 {
1427     int ret;
1428 
1429     if (!op_is_write(op)) {
1430         ret = btt_read_pg(btt, bip, page, off, sector, len);
1431         flush_dcache_page(page);
1432     } else {
1433         flush_dcache_page(page);
1434         ret = btt_write_pg(btt, bip, sector, page, off, len);
1435     }
1436 
1437     return ret;
1438 }
1439 
1440 static void btt_submit_bio(struct bio *bio)
1441 {
1442     struct bio_integrity_payload *bip = bio_integrity(bio);
1443     struct btt *btt = bio->bi_bdev->bd_disk->private_data;
1444     struct bvec_iter iter;
1445     unsigned long start;
1446     struct bio_vec bvec;
1447     int err = 0;
1448     bool do_acct;
1449 
1450     if (!bio_integrity_prep(bio))
1451         return;
1452 
1453     do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue);
1454     if (do_acct)
1455         start = bio_start_io_acct(bio);
1456     bio_for_each_segment(bvec, bio, iter) {
1457         unsigned int len = bvec.bv_len;
1458 
1459         if (len > PAGE_SIZE || len < btt->sector_size ||
1460                 len % btt->sector_size) {
1461             dev_err_ratelimited(&btt->nd_btt->dev,
1462                 "unaligned bio segment (len: %d)\n", len);
1463             bio->bi_status = BLK_STS_IOERR;
1464             break;
1465         }
1466 
1467         err = btt_do_bvec(btt, bip, bvec.bv_page, len, bvec.bv_offset,
1468                   bio_op(bio), iter.bi_sector);
1469         if (err) {
1470             dev_err(&btt->nd_btt->dev,
1471                     "io error in %s sector %lld, len %d,\n",
1472                     (op_is_write(bio_op(bio))) ? "WRITE" :
1473                     "READ",
1474                     (unsigned long long) iter.bi_sector, len);
1475             bio->bi_status = errno_to_blk_status(err);
1476             break;
1477         }
1478     }
1479     if (do_acct)
1480         bio_end_io_acct(bio, start);
1481 
1482     bio_endio(bio);
1483 }
1484 
1485 static int btt_rw_page(struct block_device *bdev, sector_t sector,
1486         struct page *page, enum req_op op)
1487 {
1488     struct btt *btt = bdev->bd_disk->private_data;
1489     int rc;
1490 
1491     rc = btt_do_bvec(btt, NULL, page, thp_size(page), 0, op, sector);
1492     if (rc == 0)
1493         page_endio(page, op_is_write(op), 0);
1494 
1495     return rc;
1496 }
1497 
1498 
1499 static int btt_getgeo(struct block_device *bd, struct hd_geometry *geo)
1500 {
1501     /* some standard values */
1502     geo->heads = 1 << 6;
1503     geo->sectors = 1 << 5;
1504     geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1505     return 0;
1506 }
1507 
1508 static const struct block_device_operations btt_fops = {
1509     .owner =        THIS_MODULE,
1510     .submit_bio =       btt_submit_bio,
1511     .rw_page =      btt_rw_page,
1512     .getgeo =       btt_getgeo,
1513 };
1514 
1515 static int btt_blk_init(struct btt *btt)
1516 {
1517     struct nd_btt *nd_btt = btt->nd_btt;
1518     struct nd_namespace_common *ndns = nd_btt->ndns;
1519     int rc = -ENOMEM;
1520 
1521     btt->btt_disk = blk_alloc_disk(NUMA_NO_NODE);
1522     if (!btt->btt_disk)
1523         return -ENOMEM;
1524 
1525     nvdimm_namespace_disk_name(ndns, btt->btt_disk->disk_name);
1526     btt->btt_disk->first_minor = 0;
1527     btt->btt_disk->fops = &btt_fops;
1528     btt->btt_disk->private_data = btt;
1529 
1530     blk_queue_logical_block_size(btt->btt_disk->queue, btt->sector_size);
1531     blk_queue_max_hw_sectors(btt->btt_disk->queue, UINT_MAX);
1532     blk_queue_flag_set(QUEUE_FLAG_NONROT, btt->btt_disk->queue);
1533 
1534     if (btt_meta_size(btt)) {
1535         rc = nd_integrity_init(btt->btt_disk, btt_meta_size(btt));
1536         if (rc)
1537             goto out_cleanup_disk;
1538     }
1539 
1540     set_capacity(btt->btt_disk, btt->nlba * btt->sector_size >> 9);
1541     rc = device_add_disk(&btt->nd_btt->dev, btt->btt_disk, NULL);
1542     if (rc)
1543         goto out_cleanup_disk;
1544 
1545     btt->nd_btt->size = btt->nlba * (u64)btt->sector_size;
1546     nvdimm_check_and_set_ro(btt->btt_disk);
1547 
1548     return 0;
1549 
1550 out_cleanup_disk:
1551     put_disk(btt->btt_disk);
1552     return rc;
1553 }
1554 
1555 static void btt_blk_cleanup(struct btt *btt)
1556 {
1557     del_gendisk(btt->btt_disk);
1558     put_disk(btt->btt_disk);
1559 }
1560 
1561 /**
1562  * btt_init - initialize a block translation table for the given device
1563  * @nd_btt: device with BTT geometry and backing device info
1564  * @rawsize:    raw size in bytes of the backing device
1565  * @lbasize:    lba size of the backing device
1566  * @uuid:   A uuid for the backing device - this is stored on media
1567  * @maxlane:    maximum number of parallel requests the device can handle
1568  *
1569  * Initialize a Block Translation Table on a backing device to provide
1570  * single sector power fail atomicity.
1571  *
1572  * Context:
1573  * Might sleep.
1574  *
1575  * Returns:
1576  * Pointer to a new struct btt on success, NULL on failure.
1577  */
1578 static struct btt *btt_init(struct nd_btt *nd_btt, unsigned long long rawsize,
1579                 u32 lbasize, uuid_t *uuid,
1580                 struct nd_region *nd_region)
1581 {
1582     int ret;
1583     struct btt *btt;
1584     struct nd_namespace_io *nsio;
1585     struct device *dev = &nd_btt->dev;
1586 
1587     btt = devm_kzalloc(dev, sizeof(struct btt), GFP_KERNEL);
1588     if (!btt)
1589         return NULL;
1590 
1591     btt->nd_btt = nd_btt;
1592     btt->rawsize = rawsize;
1593     btt->lbasize = lbasize;
1594     btt->sector_size = ((lbasize >= 4096) ? 4096 : 512);
1595     INIT_LIST_HEAD(&btt->arena_list);
1596     mutex_init(&btt->init_lock);
1597     btt->nd_region = nd_region;
1598     nsio = to_nd_namespace_io(&nd_btt->ndns->dev);
1599     btt->phys_bb = &nsio->bb;
1600 
1601     ret = discover_arenas(btt);
1602     if (ret) {
1603         dev_err(dev, "init: error in arena_discover: %d\n", ret);
1604         return NULL;
1605     }
1606 
1607     if (btt->init_state != INIT_READY && nd_region->ro) {
1608         dev_warn(dev, "%s is read-only, unable to init btt metadata\n",
1609                 dev_name(&nd_region->dev));
1610         return NULL;
1611     } else if (btt->init_state != INIT_READY) {
1612         btt->num_arenas = (rawsize / ARENA_MAX_SIZE) +
1613             ((rawsize % ARENA_MAX_SIZE) ? 1 : 0);
1614         dev_dbg(dev, "init: %d arenas for %llu rawsize\n",
1615                 btt->num_arenas, rawsize);
1616 
1617         ret = create_arenas(btt);
1618         if (ret) {
1619             dev_info(dev, "init: create_arenas: %d\n", ret);
1620             return NULL;
1621         }
1622 
1623         ret = btt_meta_init(btt);
1624         if (ret) {
1625             dev_err(dev, "init: error in meta_init: %d\n", ret);
1626             return NULL;
1627         }
1628     }
1629 
1630     ret = btt_blk_init(btt);
1631     if (ret) {
1632         dev_err(dev, "init: error in blk_init: %d\n", ret);
1633         return NULL;
1634     }
1635 
1636     btt_debugfs_init(btt);
1637 
1638     return btt;
1639 }
1640 
1641 /**
1642  * btt_fini - de-initialize a BTT
1643  * @btt:    the BTT handle that was generated by btt_init
1644  *
1645  * De-initialize a Block Translation Table on device removal
1646  *
1647  * Context:
1648  * Might sleep.
1649  */
1650 static void btt_fini(struct btt *btt)
1651 {
1652     if (btt) {
1653         btt_blk_cleanup(btt);
1654         free_arenas(btt);
1655         debugfs_remove_recursive(btt->debugfs_dir);
1656     }
1657 }
1658 
1659 int nvdimm_namespace_attach_btt(struct nd_namespace_common *ndns)
1660 {
1661     struct nd_btt *nd_btt = to_nd_btt(ndns->claim);
1662     struct nd_region *nd_region;
1663     struct btt_sb *btt_sb;
1664     struct btt *btt;
1665     size_t size, rawsize;
1666     int rc;
1667 
1668     if (!nd_btt->uuid || !nd_btt->ndns || !nd_btt->lbasize) {
1669         dev_dbg(&nd_btt->dev, "incomplete btt configuration\n");
1670         return -ENODEV;
1671     }
1672 
1673     btt_sb = devm_kzalloc(&nd_btt->dev, sizeof(*btt_sb), GFP_KERNEL);
1674     if (!btt_sb)
1675         return -ENOMEM;
1676 
1677     size = nvdimm_namespace_capacity(ndns);
1678     rc = devm_namespace_enable(&nd_btt->dev, ndns, size);
1679     if (rc)
1680         return rc;
1681 
1682     /*
1683      * If this returns < 0, that is ok as it just means there wasn't
1684      * an existing BTT, and we're creating a new one. We still need to
1685      * call this as we need the version dependent fields in nd_btt to be
1686      * set correctly based on the holder class
1687      */
1688     nd_btt_version(nd_btt, ndns, btt_sb);
1689 
1690     rawsize = size - nd_btt->initial_offset;
1691     if (rawsize < ARENA_MIN_SIZE) {
1692         dev_dbg(&nd_btt->dev, "%s must be at least %ld bytes\n",
1693                 dev_name(&ndns->dev),
1694                 ARENA_MIN_SIZE + nd_btt->initial_offset);
1695         return -ENXIO;
1696     }
1697     nd_region = to_nd_region(nd_btt->dev.parent);
1698     btt = btt_init(nd_btt, rawsize, nd_btt->lbasize, nd_btt->uuid,
1699                nd_region);
1700     if (!btt)
1701         return -ENOMEM;
1702     nd_btt->btt = btt;
1703 
1704     return 0;
1705 }
1706 EXPORT_SYMBOL(nvdimm_namespace_attach_btt);
1707 
1708 int nvdimm_namespace_detach_btt(struct nd_btt *nd_btt)
1709 {
1710     struct btt *btt = nd_btt->btt;
1711 
1712     btt_fini(btt);
1713     nd_btt->btt = NULL;
1714 
1715     return 0;
1716 }
1717 EXPORT_SYMBOL(nvdimm_namespace_detach_btt);
1718 
1719 static int __init nd_btt_init(void)
1720 {
1721     int rc = 0;
1722 
1723     debugfs_root = debugfs_create_dir("btt", NULL);
1724     if (IS_ERR_OR_NULL(debugfs_root))
1725         rc = -ENXIO;
1726 
1727     return rc;
1728 }
1729 
1730 static void __exit nd_btt_exit(void)
1731 {
1732     debugfs_remove_recursive(debugfs_root);
1733 }
1734 
1735 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_BTT);
1736 MODULE_AUTHOR("Vishal Verma <vishal.l.verma@linux.intel.com>");
1737 MODULE_LICENSE("GPL v2");
1738 module_init(nd_btt_init);
1739 module_exit(nd_btt_exit);