Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /* ZD1211 USB-WLAN driver for Linux
0003  *
0004  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
0005  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
0006  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
0007  */
0008 
0009 #include <linux/kernel.h>
0010 #include <linux/init.h>
0011 #include <linux/firmware.h>
0012 #include <linux/device.h>
0013 #include <linux/errno.h>
0014 #include <linux/slab.h>
0015 #include <linux/skbuff.h>
0016 #include <linux/usb.h>
0017 #include <linux/workqueue.h>
0018 #include <linux/module.h>
0019 #include <net/mac80211.h>
0020 #include <asm/unaligned.h>
0021 
0022 #include "zd_def.h"
0023 #include "zd_mac.h"
0024 #include "zd_usb.h"
0025 
0026 static const struct usb_device_id usb_ids[] = {
0027     /* ZD1211 */
0028     { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
0029     { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
0030     { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
0031     { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
0032     { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
0033     { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
0034     { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
0035     { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
0036     { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
0037     { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
0038     { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
0039     { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
0040     { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
0041     { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
0042     { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
0043     { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
0044     { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
0045     { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
0046     { USB_DEVICE(0x14ea, 0xab10), .driver_info = DEVICE_ZD1211 },
0047     { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
0048     { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
0049     { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
0050     { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
0051     { USB_DEVICE(0x157e, 0x3207), .driver_info = DEVICE_ZD1211 },
0052     { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
0053     { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
0054     /* ZD1211B */
0055     { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
0056     { USB_DEVICE(0x0409, 0x0248), .driver_info = DEVICE_ZD1211B },
0057     { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
0058     { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
0059     { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
0060     { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
0061     { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
0062     { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
0063     { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
0064     { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
0065     { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
0066     { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
0067     { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
0068     { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
0069     { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
0070     { USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
0071     { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
0072     { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
0073     { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
0074     { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
0075     { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
0076     { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
0077     { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
0078     { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
0079     { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
0080     { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
0081     { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
0082     { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
0083     { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
0084     { USB_DEVICE(0x2019, 0xed01), .driver_info = DEVICE_ZD1211B },
0085     /* "Driverless" devices that need ejecting */
0086     { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
0087     { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
0088     {}
0089 };
0090 
0091 MODULE_LICENSE("GPL");
0092 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
0093 MODULE_AUTHOR("Ulrich Kunitz");
0094 MODULE_AUTHOR("Daniel Drake");
0095 MODULE_VERSION("1.0");
0096 MODULE_DEVICE_TABLE(usb, usb_ids);
0097 
0098 #define FW_ZD1211_PREFIX    "zd1211/zd1211_"
0099 #define FW_ZD1211B_PREFIX   "zd1211/zd1211b_"
0100 
0101 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
0102                 unsigned int count);
0103 
0104 /* USB device initialization */
0105 static void int_urb_complete(struct urb *urb);
0106 
0107 static int request_fw_file(
0108     const struct firmware **fw, const char *name, struct device *device)
0109 {
0110     int r;
0111 
0112     dev_dbg_f(device, "fw name %s\n", name);
0113 
0114     r = request_firmware(fw, name, device);
0115     if (r)
0116         dev_err(device,
0117                "Could not load firmware file %s. Error number %d\n",
0118                name, r);
0119     return r;
0120 }
0121 
0122 static inline u16 get_bcdDevice(const struct usb_device *udev)
0123 {
0124     return le16_to_cpu(udev->descriptor.bcdDevice);
0125 }
0126 
0127 enum upload_code_flags {
0128     REBOOT = 1,
0129 };
0130 
0131 /* Ensures that MAX_TRANSFER_SIZE is even. */
0132 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
0133 
0134 static int upload_code(struct usb_device *udev,
0135     const u8 *data, size_t size, u16 code_offset, int flags)
0136 {
0137     u8 *p;
0138     int r;
0139 
0140     /* USB request blocks need "kmalloced" buffers.
0141      */
0142     p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
0143     if (!p) {
0144         r = -ENOMEM;
0145         goto error;
0146     }
0147 
0148     size &= ~1;
0149     while (size > 0) {
0150         size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
0151             size : MAX_TRANSFER_SIZE;
0152 
0153         dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
0154 
0155         memcpy(p, data, transfer_size);
0156         r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
0157             USB_REQ_FIRMWARE_DOWNLOAD,
0158             USB_DIR_OUT | USB_TYPE_VENDOR,
0159             code_offset, 0, p, transfer_size, 1000 /* ms */);
0160         if (r < 0) {
0161             dev_err(&udev->dev,
0162                    "USB control request for firmware upload"
0163                    " failed. Error number %d\n", r);
0164             goto error;
0165         }
0166         transfer_size = r & ~1;
0167 
0168         size -= transfer_size;
0169         data += transfer_size;
0170         code_offset += transfer_size/sizeof(u16);
0171     }
0172 
0173     if (flags & REBOOT) {
0174         u8 ret;
0175 
0176         /* Use "DMA-aware" buffer. */
0177         r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
0178             USB_REQ_FIRMWARE_CONFIRM,
0179             USB_DIR_IN | USB_TYPE_VENDOR,
0180             0, 0, p, sizeof(ret), 5000 /* ms */);
0181         if (r != sizeof(ret)) {
0182             dev_err(&udev->dev,
0183                 "control request firmware confirmation failed."
0184                 " Return value %d\n", r);
0185             if (r >= 0)
0186                 r = -ENODEV;
0187             goto error;
0188         }
0189         ret = p[0];
0190         if (ret & 0x80) {
0191             dev_err(&udev->dev,
0192                 "Internal error while downloading."
0193                 " Firmware confirm return value %#04x\n",
0194                 (unsigned int)ret);
0195             r = -ENODEV;
0196             goto error;
0197         }
0198         dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
0199             (unsigned int)ret);
0200     }
0201 
0202     r = 0;
0203 error:
0204     kfree(p);
0205     return r;
0206 }
0207 
0208 static u16 get_word(const void *data, u16 offset)
0209 {
0210     const __le16 *p = data;
0211     return le16_to_cpu(p[offset]);
0212 }
0213 
0214 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
0215                    const char* postfix)
0216 {
0217     scnprintf(buffer, size, "%s%s",
0218         usb->is_zd1211b ?
0219             FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
0220         postfix);
0221     return buffer;
0222 }
0223 
0224 static int handle_version_mismatch(struct zd_usb *usb,
0225     const struct firmware *ub_fw)
0226 {
0227     struct usb_device *udev = zd_usb_to_usbdev(usb);
0228     const struct firmware *ur_fw = NULL;
0229     int offset;
0230     int r = 0;
0231     char fw_name[128];
0232 
0233     r = request_fw_file(&ur_fw,
0234         get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
0235         &udev->dev);
0236     if (r)
0237         goto error;
0238 
0239     r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
0240     if (r)
0241         goto error;
0242 
0243     offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
0244     r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
0245         E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
0246 
0247     /* At this point, the vendor driver downloads the whole firmware
0248      * image, hacks around with version IDs, and uploads it again,
0249      * completely overwriting the boot code. We do not do this here as
0250      * it is not required on any tested devices, and it is suspected to
0251      * cause problems. */
0252 error:
0253     release_firmware(ur_fw);
0254     return r;
0255 }
0256 
0257 static int upload_firmware(struct zd_usb *usb)
0258 {
0259     int r;
0260     u16 fw_bcdDevice;
0261     u16 bcdDevice;
0262     struct usb_device *udev = zd_usb_to_usbdev(usb);
0263     const struct firmware *ub_fw = NULL;
0264     const struct firmware *uph_fw = NULL;
0265     char fw_name[128];
0266 
0267     bcdDevice = get_bcdDevice(udev);
0268 
0269     r = request_fw_file(&ub_fw,
0270         get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
0271         &udev->dev);
0272     if (r)
0273         goto error;
0274 
0275     fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
0276 
0277     if (fw_bcdDevice != bcdDevice) {
0278         dev_info(&udev->dev,
0279             "firmware version %#06x and device bootcode version "
0280             "%#06x differ\n", fw_bcdDevice, bcdDevice);
0281         if (bcdDevice <= 0x4313)
0282             dev_warn(&udev->dev, "device has old bootcode, please "
0283                 "report success or failure\n");
0284 
0285         r = handle_version_mismatch(usb, ub_fw);
0286         if (r)
0287             goto error;
0288     } else {
0289         dev_dbg_f(&udev->dev,
0290             "firmware device id %#06x is equal to the "
0291             "actual device id\n", fw_bcdDevice);
0292     }
0293 
0294 
0295     r = request_fw_file(&uph_fw,
0296         get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
0297         &udev->dev);
0298     if (r)
0299         goto error;
0300 
0301     r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
0302     if (r) {
0303         dev_err(&udev->dev,
0304             "Could not upload firmware code uph. Error number %d\n",
0305             r);
0306     }
0307 
0308     /* FALL-THROUGH */
0309 error:
0310     release_firmware(ub_fw);
0311     release_firmware(uph_fw);
0312     return r;
0313 }
0314 
0315 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ur");
0316 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ur");
0317 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ub");
0318 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ub");
0319 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "uphr");
0320 MODULE_FIRMWARE(FW_ZD1211_PREFIX "uphr");
0321 
0322 /* Read data from device address space using "firmware interface" which does
0323  * not require firmware to be loaded. */
0324 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
0325 {
0326     int r;
0327     struct usb_device *udev = zd_usb_to_usbdev(usb);
0328     u8 *buf;
0329 
0330     /* Use "DMA-aware" buffer. */
0331     buf = kmalloc(len, GFP_KERNEL);
0332     if (!buf)
0333         return -ENOMEM;
0334     r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
0335         USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
0336         buf, len, 5000);
0337     if (r < 0) {
0338         dev_err(&udev->dev,
0339             "read over firmware interface failed: %d\n", r);
0340         goto exit;
0341     } else if (r != len) {
0342         dev_err(&udev->dev,
0343             "incomplete read over firmware interface: %d/%d\n",
0344             r, len);
0345         r = -EIO;
0346         goto exit;
0347     }
0348     r = 0;
0349     memcpy(data, buf, len);
0350 exit:
0351     kfree(buf);
0352     return r;
0353 }
0354 
0355 #define urb_dev(urb) (&(urb)->dev->dev)
0356 
0357 static inline void handle_regs_int_override(struct urb *urb)
0358 {
0359     struct zd_usb *usb = urb->context;
0360     struct zd_usb_interrupt *intr = &usb->intr;
0361     unsigned long flags;
0362 
0363     spin_lock_irqsave(&intr->lock, flags);
0364     if (atomic_read(&intr->read_regs_enabled)) {
0365         atomic_set(&intr->read_regs_enabled, 0);
0366         intr->read_regs_int_overridden = 1;
0367         complete(&intr->read_regs.completion);
0368     }
0369     spin_unlock_irqrestore(&intr->lock, flags);
0370 }
0371 
0372 static inline void handle_regs_int(struct urb *urb)
0373 {
0374     struct zd_usb *usb = urb->context;
0375     struct zd_usb_interrupt *intr = &usb->intr;
0376     unsigned long flags;
0377     int len;
0378     u16 int_num;
0379 
0380     spin_lock_irqsave(&intr->lock, flags);
0381 
0382     int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
0383     if (int_num == CR_INTERRUPT) {
0384         struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
0385         spin_lock(&mac->lock);
0386         memcpy(&mac->intr_buffer, urb->transfer_buffer,
0387                 USB_MAX_EP_INT_BUFFER);
0388         spin_unlock(&mac->lock);
0389         schedule_work(&mac->process_intr);
0390     } else if (atomic_read(&intr->read_regs_enabled)) {
0391         len = urb->actual_length;
0392         intr->read_regs.length = urb->actual_length;
0393         if (len > sizeof(intr->read_regs.buffer))
0394             len = sizeof(intr->read_regs.buffer);
0395 
0396         memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
0397 
0398         /* Sometimes USB_INT_ID_REGS is not overridden, but comes after
0399          * USB_INT_ID_RETRY_FAILED. Read-reg retry then gets this
0400          * delayed USB_INT_ID_REGS, but leaves USB_INT_ID_REGS of
0401          * retry unhandled. Next read-reg command then might catch
0402          * this wrong USB_INT_ID_REGS. Fix by ignoring wrong reads.
0403          */
0404         if (!check_read_regs(usb, intr->read_regs.req,
0405                         intr->read_regs.req_count))
0406             goto out;
0407 
0408         atomic_set(&intr->read_regs_enabled, 0);
0409         intr->read_regs_int_overridden = 0;
0410         complete(&intr->read_regs.completion);
0411 
0412         goto out;
0413     }
0414 
0415 out:
0416     spin_unlock_irqrestore(&intr->lock, flags);
0417 
0418     /* CR_INTERRUPT might override read_reg too. */
0419     if (int_num == CR_INTERRUPT && atomic_read(&intr->read_regs_enabled))
0420         handle_regs_int_override(urb);
0421 }
0422 
0423 static void int_urb_complete(struct urb *urb)
0424 {
0425     int r;
0426     struct usb_int_header *hdr;
0427     struct zd_usb *usb;
0428     struct zd_usb_interrupt *intr;
0429 
0430     switch (urb->status) {
0431     case 0:
0432         break;
0433     case -ESHUTDOWN:
0434     case -EINVAL:
0435     case -ENODEV:
0436     case -ENOENT:
0437     case -ECONNRESET:
0438     case -EPIPE:
0439         dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
0440         return;
0441     default:
0442         dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
0443         goto resubmit;
0444     }
0445 
0446     if (urb->actual_length < sizeof(hdr)) {
0447         dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
0448         goto resubmit;
0449     }
0450 
0451     hdr = urb->transfer_buffer;
0452     if (hdr->type != USB_INT_TYPE) {
0453         dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
0454         goto resubmit;
0455     }
0456 
0457     /* USB_INT_ID_RETRY_FAILED triggered by tx-urb submit can override
0458      * pending USB_INT_ID_REGS causing read command timeout.
0459      */
0460     usb = urb->context;
0461     intr = &usb->intr;
0462     if (hdr->id != USB_INT_ID_REGS && atomic_read(&intr->read_regs_enabled))
0463         handle_regs_int_override(urb);
0464 
0465     switch (hdr->id) {
0466     case USB_INT_ID_REGS:
0467         handle_regs_int(urb);
0468         break;
0469     case USB_INT_ID_RETRY_FAILED:
0470         zd_mac_tx_failed(urb);
0471         break;
0472     default:
0473         dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
0474             (unsigned int)hdr->id);
0475         goto resubmit;
0476     }
0477 
0478 resubmit:
0479     r = usb_submit_urb(urb, GFP_ATOMIC);
0480     if (r) {
0481         dev_dbg_f(urb_dev(urb), "error: resubmit urb %p err code %d\n",
0482               urb, r);
0483         /* TODO: add worker to reset intr->urb */
0484     }
0485     return;
0486 }
0487 
0488 static inline int int_urb_interval(struct usb_device *udev)
0489 {
0490     switch (udev->speed) {
0491     case USB_SPEED_HIGH:
0492         return 4;
0493     case USB_SPEED_LOW:
0494         return 10;
0495     case USB_SPEED_FULL:
0496     default:
0497         return 1;
0498     }
0499 }
0500 
0501 static inline int usb_int_enabled(struct zd_usb *usb)
0502 {
0503     unsigned long flags;
0504     struct zd_usb_interrupt *intr = &usb->intr;
0505     struct urb *urb;
0506 
0507     spin_lock_irqsave(&intr->lock, flags);
0508     urb = intr->urb;
0509     spin_unlock_irqrestore(&intr->lock, flags);
0510     return urb != NULL;
0511 }
0512 
0513 int zd_usb_enable_int(struct zd_usb *usb)
0514 {
0515     int r;
0516     struct usb_device *udev = zd_usb_to_usbdev(usb);
0517     struct zd_usb_interrupt *intr = &usb->intr;
0518     struct urb *urb;
0519 
0520     dev_dbg_f(zd_usb_dev(usb), "\n");
0521 
0522     urb = usb_alloc_urb(0, GFP_KERNEL);
0523     if (!urb) {
0524         r = -ENOMEM;
0525         goto out;
0526     }
0527 
0528     ZD_ASSERT(!irqs_disabled());
0529     spin_lock_irq(&intr->lock);
0530     if (intr->urb) {
0531         spin_unlock_irq(&intr->lock);
0532         r = 0;
0533         goto error_free_urb;
0534     }
0535     intr->urb = urb;
0536     spin_unlock_irq(&intr->lock);
0537 
0538     r = -ENOMEM;
0539     intr->buffer = usb_alloc_coherent(udev, USB_MAX_EP_INT_BUFFER,
0540                       GFP_KERNEL, &intr->buffer_dma);
0541     if (!intr->buffer) {
0542         dev_dbg_f(zd_usb_dev(usb),
0543             "couldn't allocate transfer_buffer\n");
0544         goto error_set_urb_null;
0545     }
0546 
0547     usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
0548              intr->buffer, USB_MAX_EP_INT_BUFFER,
0549              int_urb_complete, usb,
0550              intr->interval);
0551     urb->transfer_dma = intr->buffer_dma;
0552     urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
0553 
0554     dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
0555     r = usb_submit_urb(urb, GFP_KERNEL);
0556     if (r) {
0557         dev_dbg_f(zd_usb_dev(usb),
0558              "Couldn't submit urb. Error number %d\n", r);
0559         goto error;
0560     }
0561 
0562     return 0;
0563 error:
0564     usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
0565               intr->buffer, intr->buffer_dma);
0566 error_set_urb_null:
0567     spin_lock_irq(&intr->lock);
0568     intr->urb = NULL;
0569     spin_unlock_irq(&intr->lock);
0570 error_free_urb:
0571     usb_free_urb(urb);
0572 out:
0573     return r;
0574 }
0575 
0576 void zd_usb_disable_int(struct zd_usb *usb)
0577 {
0578     unsigned long flags;
0579     struct usb_device *udev = zd_usb_to_usbdev(usb);
0580     struct zd_usb_interrupt *intr = &usb->intr;
0581     struct urb *urb;
0582     void *buffer;
0583     dma_addr_t buffer_dma;
0584 
0585     spin_lock_irqsave(&intr->lock, flags);
0586     urb = intr->urb;
0587     if (!urb) {
0588         spin_unlock_irqrestore(&intr->lock, flags);
0589         return;
0590     }
0591     intr->urb = NULL;
0592     buffer = intr->buffer;
0593     buffer_dma = intr->buffer_dma;
0594     intr->buffer = NULL;
0595     spin_unlock_irqrestore(&intr->lock, flags);
0596 
0597     usb_kill_urb(urb);
0598     dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
0599     usb_free_urb(urb);
0600 
0601     usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER, buffer, buffer_dma);
0602 }
0603 
0604 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
0605                  unsigned int length)
0606 {
0607     int i;
0608     const struct rx_length_info *length_info;
0609 
0610     if (length < sizeof(struct rx_length_info)) {
0611         /* It's not a complete packet anyhow. */
0612         dev_dbg_f(zd_usb_dev(usb), "invalid, small RX packet : %d\n",
0613                        length);
0614         return;
0615     }
0616     length_info = (struct rx_length_info *)
0617         (buffer + length - sizeof(struct rx_length_info));
0618 
0619     /* It might be that three frames are merged into a single URB
0620      * transaction. We have to check for the length info tag.
0621      *
0622      * While testing we discovered that length_info might be unaligned,
0623      * because if USB transactions are merged, the last packet will not
0624      * be padded. Unaligned access might also happen if the length_info
0625      * structure is not present.
0626      */
0627     if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
0628     {
0629         unsigned int l, k, n;
0630         for (i = 0, l = 0;; i++) {
0631             k = get_unaligned_le16(&length_info->length[i]);
0632             if (k == 0)
0633                 return;
0634             n = l+k;
0635             if (n > length)
0636                 return;
0637             zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
0638             if (i >= 2)
0639                 return;
0640             l = (n+3) & ~3;
0641         }
0642     } else {
0643         zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
0644     }
0645 }
0646 
0647 static void rx_urb_complete(struct urb *urb)
0648 {
0649     int r;
0650     struct zd_usb *usb;
0651     struct zd_usb_rx *rx;
0652     const u8 *buffer;
0653     unsigned int length;
0654     unsigned long flags;
0655 
0656     switch (urb->status) {
0657     case 0:
0658         break;
0659     case -ESHUTDOWN:
0660     case -EINVAL:
0661     case -ENODEV:
0662     case -ENOENT:
0663     case -ECONNRESET:
0664     case -EPIPE:
0665         dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
0666         return;
0667     default:
0668         dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
0669         goto resubmit;
0670     }
0671 
0672     buffer = urb->transfer_buffer;
0673     length = urb->actual_length;
0674     usb = urb->context;
0675     rx = &usb->rx;
0676 
0677     tasklet_schedule(&rx->reset_timer_tasklet);
0678 
0679     if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
0680         /* If there is an old first fragment, we don't care. */
0681         dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
0682         ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
0683         spin_lock_irqsave(&rx->lock, flags);
0684         memcpy(rx->fragment, buffer, length);
0685         rx->fragment_length = length;
0686         spin_unlock_irqrestore(&rx->lock, flags);
0687         goto resubmit;
0688     }
0689 
0690     spin_lock_irqsave(&rx->lock, flags);
0691     if (rx->fragment_length > 0) {
0692         /* We are on a second fragment, we believe */
0693         ZD_ASSERT(length + rx->fragment_length <=
0694               ARRAY_SIZE(rx->fragment));
0695         dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
0696         memcpy(rx->fragment+rx->fragment_length, buffer, length);
0697         handle_rx_packet(usb, rx->fragment,
0698                      rx->fragment_length + length);
0699         rx->fragment_length = 0;
0700         spin_unlock_irqrestore(&rx->lock, flags);
0701     } else {
0702         spin_unlock_irqrestore(&rx->lock, flags);
0703         handle_rx_packet(usb, buffer, length);
0704     }
0705 
0706 resubmit:
0707     r = usb_submit_urb(urb, GFP_ATOMIC);
0708     if (r)
0709         dev_dbg_f(urb_dev(urb), "urb %p resubmit error %d\n", urb, r);
0710 }
0711 
0712 static struct urb *alloc_rx_urb(struct zd_usb *usb)
0713 {
0714     struct usb_device *udev = zd_usb_to_usbdev(usb);
0715     struct urb *urb;
0716     void *buffer;
0717 
0718     urb = usb_alloc_urb(0, GFP_KERNEL);
0719     if (!urb)
0720         return NULL;
0721     buffer = usb_alloc_coherent(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
0722                     &urb->transfer_dma);
0723     if (!buffer) {
0724         usb_free_urb(urb);
0725         return NULL;
0726     }
0727 
0728     usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
0729               buffer, USB_MAX_RX_SIZE,
0730               rx_urb_complete, usb);
0731     urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
0732 
0733     return urb;
0734 }
0735 
0736 static void free_rx_urb(struct urb *urb)
0737 {
0738     if (!urb)
0739         return;
0740     usb_free_coherent(urb->dev, urb->transfer_buffer_length,
0741               urb->transfer_buffer, urb->transfer_dma);
0742     usb_free_urb(urb);
0743 }
0744 
0745 static int __zd_usb_enable_rx(struct zd_usb *usb)
0746 {
0747     int i, r;
0748     struct zd_usb_rx *rx = &usb->rx;
0749     struct urb **urbs;
0750 
0751     dev_dbg_f(zd_usb_dev(usb), "\n");
0752 
0753     r = -ENOMEM;
0754     urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
0755     if (!urbs)
0756         goto error;
0757     for (i = 0; i < RX_URBS_COUNT; i++) {
0758         urbs[i] = alloc_rx_urb(usb);
0759         if (!urbs[i])
0760             goto error;
0761     }
0762 
0763     ZD_ASSERT(!irqs_disabled());
0764     spin_lock_irq(&rx->lock);
0765     if (rx->urbs) {
0766         spin_unlock_irq(&rx->lock);
0767         r = 0;
0768         goto error;
0769     }
0770     rx->urbs = urbs;
0771     rx->urbs_count = RX_URBS_COUNT;
0772     spin_unlock_irq(&rx->lock);
0773 
0774     for (i = 0; i < RX_URBS_COUNT; i++) {
0775         r = usb_submit_urb(urbs[i], GFP_KERNEL);
0776         if (r)
0777             goto error_submit;
0778     }
0779 
0780     return 0;
0781 error_submit:
0782     for (i = 0; i < RX_URBS_COUNT; i++) {
0783         usb_kill_urb(urbs[i]);
0784     }
0785     spin_lock_irq(&rx->lock);
0786     rx->urbs = NULL;
0787     rx->urbs_count = 0;
0788     spin_unlock_irq(&rx->lock);
0789 error:
0790     if (urbs) {
0791         for (i = 0; i < RX_URBS_COUNT; i++)
0792             free_rx_urb(urbs[i]);
0793     }
0794     return r;
0795 }
0796 
0797 int zd_usb_enable_rx(struct zd_usb *usb)
0798 {
0799     int r;
0800     struct zd_usb_rx *rx = &usb->rx;
0801 
0802     mutex_lock(&rx->setup_mutex);
0803     r = __zd_usb_enable_rx(usb);
0804     mutex_unlock(&rx->setup_mutex);
0805 
0806     zd_usb_reset_rx_idle_timer(usb);
0807 
0808     return r;
0809 }
0810 
0811 static void __zd_usb_disable_rx(struct zd_usb *usb)
0812 {
0813     int i;
0814     unsigned long flags;
0815     struct urb **urbs;
0816     unsigned int count;
0817     struct zd_usb_rx *rx = &usb->rx;
0818 
0819     spin_lock_irqsave(&rx->lock, flags);
0820     urbs = rx->urbs;
0821     count = rx->urbs_count;
0822     spin_unlock_irqrestore(&rx->lock, flags);
0823     if (!urbs)
0824         return;
0825 
0826     for (i = 0; i < count; i++) {
0827         usb_kill_urb(urbs[i]);
0828         free_rx_urb(urbs[i]);
0829     }
0830     kfree(urbs);
0831 
0832     spin_lock_irqsave(&rx->lock, flags);
0833     rx->urbs = NULL;
0834     rx->urbs_count = 0;
0835     spin_unlock_irqrestore(&rx->lock, flags);
0836 }
0837 
0838 void zd_usb_disable_rx(struct zd_usb *usb)
0839 {
0840     struct zd_usb_rx *rx = &usb->rx;
0841 
0842     mutex_lock(&rx->setup_mutex);
0843     __zd_usb_disable_rx(usb);
0844     mutex_unlock(&rx->setup_mutex);
0845 
0846     tasklet_kill(&rx->reset_timer_tasklet);
0847     cancel_delayed_work_sync(&rx->idle_work);
0848 }
0849 
0850 static void zd_usb_reset_rx(struct zd_usb *usb)
0851 {
0852     bool do_reset;
0853     struct zd_usb_rx *rx = &usb->rx;
0854     unsigned long flags;
0855 
0856     mutex_lock(&rx->setup_mutex);
0857 
0858     spin_lock_irqsave(&rx->lock, flags);
0859     do_reset = rx->urbs != NULL;
0860     spin_unlock_irqrestore(&rx->lock, flags);
0861 
0862     if (do_reset) {
0863         __zd_usb_disable_rx(usb);
0864         __zd_usb_enable_rx(usb);
0865     }
0866 
0867     mutex_unlock(&rx->setup_mutex);
0868 
0869     if (do_reset)
0870         zd_usb_reset_rx_idle_timer(usb);
0871 }
0872 
0873 /**
0874  * zd_usb_disable_tx - disable transmission
0875  * @usb: the zd1211rw-private USB structure
0876  *
0877  * Frees all URBs in the free list and marks the transmission as disabled.
0878  */
0879 void zd_usb_disable_tx(struct zd_usb *usb)
0880 {
0881     struct zd_usb_tx *tx = &usb->tx;
0882     unsigned long flags;
0883 
0884     atomic_set(&tx->enabled, 0);
0885 
0886     /* kill all submitted tx-urbs */
0887     usb_kill_anchored_urbs(&tx->submitted);
0888 
0889     spin_lock_irqsave(&tx->lock, flags);
0890     WARN_ON(!skb_queue_empty(&tx->submitted_skbs));
0891     WARN_ON(tx->submitted_urbs != 0);
0892     tx->submitted_urbs = 0;
0893     spin_unlock_irqrestore(&tx->lock, flags);
0894 
0895     /* The stopped state is ignored, relying on ieee80211_wake_queues()
0896      * in a potentionally following zd_usb_enable_tx().
0897      */
0898 }
0899 
0900 /**
0901  * zd_usb_enable_tx - enables transmission
0902  * @usb: a &struct zd_usb pointer
0903  *
0904  * This function enables transmission and prepares the &zd_usb_tx data
0905  * structure.
0906  */
0907 void zd_usb_enable_tx(struct zd_usb *usb)
0908 {
0909     unsigned long flags;
0910     struct zd_usb_tx *tx = &usb->tx;
0911 
0912     spin_lock_irqsave(&tx->lock, flags);
0913     atomic_set(&tx->enabled, 1);
0914     tx->submitted_urbs = 0;
0915     ieee80211_wake_queues(zd_usb_to_hw(usb));
0916     tx->stopped = 0;
0917     spin_unlock_irqrestore(&tx->lock, flags);
0918 }
0919 
0920 static void tx_dec_submitted_urbs(struct zd_usb *usb)
0921 {
0922     struct zd_usb_tx *tx = &usb->tx;
0923     unsigned long flags;
0924 
0925     spin_lock_irqsave(&tx->lock, flags);
0926     --tx->submitted_urbs;
0927     if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
0928         ieee80211_wake_queues(zd_usb_to_hw(usb));
0929         tx->stopped = 0;
0930     }
0931     spin_unlock_irqrestore(&tx->lock, flags);
0932 }
0933 
0934 static void tx_inc_submitted_urbs(struct zd_usb *usb)
0935 {
0936     struct zd_usb_tx *tx = &usb->tx;
0937     unsigned long flags;
0938 
0939     spin_lock_irqsave(&tx->lock, flags);
0940     ++tx->submitted_urbs;
0941     if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
0942         ieee80211_stop_queues(zd_usb_to_hw(usb));
0943         tx->stopped = 1;
0944     }
0945     spin_unlock_irqrestore(&tx->lock, flags);
0946 }
0947 
0948 /**
0949  * tx_urb_complete - completes the execution of an URB
0950  * @urb: a URB
0951  *
0952  * This function is called if the URB has been transferred to a device or an
0953  * error has happened.
0954  */
0955 static void tx_urb_complete(struct urb *urb)
0956 {
0957     int r;
0958     struct sk_buff *skb;
0959     struct ieee80211_tx_info *info;
0960     struct zd_usb *usb;
0961     struct zd_usb_tx *tx;
0962 
0963     skb = (struct sk_buff *)urb->context;
0964     info = IEEE80211_SKB_CB(skb);
0965     /*
0966      * grab 'usb' pointer before handing off the skb (since
0967      * it might be freed by zd_mac_tx_to_dev or mac80211)
0968      */
0969     usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
0970     tx = &usb->tx;
0971 
0972     switch (urb->status) {
0973     case 0:
0974         break;
0975     case -ESHUTDOWN:
0976     case -EINVAL:
0977     case -ENODEV:
0978     case -ENOENT:
0979     case -ECONNRESET:
0980     case -EPIPE:
0981         dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
0982         break;
0983     default:
0984         dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
0985         goto resubmit;
0986     }
0987 free_urb:
0988     skb_unlink(skb, &usb->tx.submitted_skbs);
0989     zd_mac_tx_to_dev(skb, urb->status);
0990     usb_free_urb(urb);
0991     tx_dec_submitted_urbs(usb);
0992     return;
0993 resubmit:
0994     usb_anchor_urb(urb, &tx->submitted);
0995     r = usb_submit_urb(urb, GFP_ATOMIC);
0996     if (r) {
0997         usb_unanchor_urb(urb);
0998         dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
0999         goto free_urb;
1000     }
1001 }
1002 
1003 /**
1004  * zd_usb_tx: initiates transfer of a frame of the device
1005  *
1006  * @usb: the zd1211rw-private USB structure
1007  * @skb: a &struct sk_buff pointer
1008  *
1009  * This function tranmits a frame to the device. It doesn't wait for
1010  * completion. The frame must contain the control set and have all the
1011  * control set information available.
1012  *
1013  * The function returns 0 if the transfer has been successfully initiated.
1014  */
1015 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
1016 {
1017     int r;
1018     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1019     struct usb_device *udev = zd_usb_to_usbdev(usb);
1020     struct urb *urb;
1021     struct zd_usb_tx *tx = &usb->tx;
1022 
1023     if (!atomic_read(&tx->enabled)) {
1024         r = -ENOENT;
1025         goto out;
1026     }
1027 
1028     urb = usb_alloc_urb(0, GFP_ATOMIC);
1029     if (!urb) {
1030         r = -ENOMEM;
1031         goto out;
1032     }
1033 
1034     usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
1035                   skb->data, skb->len, tx_urb_complete, skb);
1036 
1037     info->rate_driver_data[1] = (void *)jiffies;
1038     skb_queue_tail(&tx->submitted_skbs, skb);
1039     usb_anchor_urb(urb, &tx->submitted);
1040 
1041     r = usb_submit_urb(urb, GFP_ATOMIC);
1042     if (r) {
1043         dev_dbg_f(zd_usb_dev(usb), "error submit urb %p %d\n", urb, r);
1044         usb_unanchor_urb(urb);
1045         skb_unlink(skb, &tx->submitted_skbs);
1046         goto error;
1047     }
1048     tx_inc_submitted_urbs(usb);
1049     return 0;
1050 error:
1051     usb_free_urb(urb);
1052 out:
1053     return r;
1054 }
1055 
1056 static bool zd_tx_timeout(struct zd_usb *usb)
1057 {
1058     struct zd_usb_tx *tx = &usb->tx;
1059     struct sk_buff_head *q = &tx->submitted_skbs;
1060     struct sk_buff *skb, *skbnext;
1061     struct ieee80211_tx_info *info;
1062     unsigned long flags, trans_start;
1063     bool have_timedout = false;
1064 
1065     spin_lock_irqsave(&q->lock, flags);
1066     skb_queue_walk_safe(q, skb, skbnext) {
1067         info = IEEE80211_SKB_CB(skb);
1068         trans_start = (unsigned long)info->rate_driver_data[1];
1069 
1070         if (time_is_before_jiffies(trans_start + ZD_TX_TIMEOUT)) {
1071             have_timedout = true;
1072             break;
1073         }
1074     }
1075     spin_unlock_irqrestore(&q->lock, flags);
1076 
1077     return have_timedout;
1078 }
1079 
1080 static void zd_tx_watchdog_handler(struct work_struct *work)
1081 {
1082     struct zd_usb *usb =
1083         container_of(work, struct zd_usb, tx.watchdog_work.work);
1084     struct zd_usb_tx *tx = &usb->tx;
1085 
1086     if (!atomic_read(&tx->enabled) || !tx->watchdog_enabled)
1087         goto out;
1088     if (!zd_tx_timeout(usb))
1089         goto out;
1090 
1091     /* TX halted, try reset */
1092     dev_warn(zd_usb_dev(usb), "TX-stall detected, resetting device...");
1093 
1094     usb_queue_reset_device(usb->intf);
1095 
1096     /* reset will stop this worker, don't rearm */
1097     return;
1098 out:
1099     queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1100                ZD_TX_WATCHDOG_INTERVAL);
1101 }
1102 
1103 void zd_tx_watchdog_enable(struct zd_usb *usb)
1104 {
1105     struct zd_usb_tx *tx = &usb->tx;
1106 
1107     if (!tx->watchdog_enabled) {
1108         dev_dbg_f(zd_usb_dev(usb), "\n");
1109         queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1110                    ZD_TX_WATCHDOG_INTERVAL);
1111         tx->watchdog_enabled = 1;
1112     }
1113 }
1114 
1115 void zd_tx_watchdog_disable(struct zd_usb *usb)
1116 {
1117     struct zd_usb_tx *tx = &usb->tx;
1118 
1119     if (tx->watchdog_enabled) {
1120         dev_dbg_f(zd_usb_dev(usb), "\n");
1121         tx->watchdog_enabled = 0;
1122         cancel_delayed_work_sync(&tx->watchdog_work);
1123     }
1124 }
1125 
1126 static void zd_rx_idle_timer_handler(struct work_struct *work)
1127 {
1128     struct zd_usb *usb =
1129         container_of(work, struct zd_usb, rx.idle_work.work);
1130     struct zd_mac *mac = zd_usb_to_mac(usb);
1131 
1132     if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1133         return;
1134 
1135     dev_dbg_f(zd_usb_dev(usb), "\n");
1136 
1137     /* 30 seconds since last rx, reset rx */
1138     zd_usb_reset_rx(usb);
1139 }
1140 
1141 static void zd_usb_reset_rx_idle_timer_tasklet(struct tasklet_struct *t)
1142 {
1143     struct zd_usb *usb = from_tasklet(usb, t, rx.reset_timer_tasklet);
1144 
1145     zd_usb_reset_rx_idle_timer(usb);
1146 }
1147 
1148 void zd_usb_reset_rx_idle_timer(struct zd_usb *usb)
1149 {
1150     struct zd_usb_rx *rx = &usb->rx;
1151 
1152     mod_delayed_work(zd_workqueue, &rx->idle_work, ZD_RX_IDLE_INTERVAL);
1153 }
1154 
1155 static inline void init_usb_interrupt(struct zd_usb *usb)
1156 {
1157     struct zd_usb_interrupt *intr = &usb->intr;
1158 
1159     spin_lock_init(&intr->lock);
1160     intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
1161     init_completion(&intr->read_regs.completion);
1162     atomic_set(&intr->read_regs_enabled, 0);
1163     intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
1164 }
1165 
1166 static inline void init_usb_rx(struct zd_usb *usb)
1167 {
1168     struct zd_usb_rx *rx = &usb->rx;
1169 
1170     spin_lock_init(&rx->lock);
1171     mutex_init(&rx->setup_mutex);
1172     if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
1173         rx->usb_packet_size = 512;
1174     } else {
1175         rx->usb_packet_size = 64;
1176     }
1177     ZD_ASSERT(rx->fragment_length == 0);
1178     INIT_DELAYED_WORK(&rx->idle_work, zd_rx_idle_timer_handler);
1179     rx->reset_timer_tasklet.func = (void (*))
1180                     zd_usb_reset_rx_idle_timer_tasklet;
1181     rx->reset_timer_tasklet.data = (unsigned long)&rx->reset_timer_tasklet;
1182 }
1183 
1184 static inline void init_usb_tx(struct zd_usb *usb)
1185 {
1186     struct zd_usb_tx *tx = &usb->tx;
1187 
1188     spin_lock_init(&tx->lock);
1189     atomic_set(&tx->enabled, 0);
1190     tx->stopped = 0;
1191     skb_queue_head_init(&tx->submitted_skbs);
1192     init_usb_anchor(&tx->submitted);
1193     tx->submitted_urbs = 0;
1194     tx->watchdog_enabled = 0;
1195     INIT_DELAYED_WORK(&tx->watchdog_work, zd_tx_watchdog_handler);
1196 }
1197 
1198 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1199              struct usb_interface *intf)
1200 {
1201     memset(usb, 0, sizeof(*usb));
1202     usb->intf = usb_get_intf(intf);
1203     usb_set_intfdata(usb->intf, hw);
1204     init_usb_anchor(&usb->submitted_cmds);
1205     init_usb_interrupt(usb);
1206     init_usb_tx(usb);
1207     init_usb_rx(usb);
1208 }
1209 
1210 void zd_usb_clear(struct zd_usb *usb)
1211 {
1212     usb_set_intfdata(usb->intf, NULL);
1213     usb_put_intf(usb->intf);
1214     ZD_MEMCLEAR(usb, sizeof(*usb));
1215     /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1216 }
1217 
1218 static const char *speed(enum usb_device_speed speed)
1219 {
1220     switch (speed) {
1221     case USB_SPEED_LOW:
1222         return "low";
1223     case USB_SPEED_FULL:
1224         return "full";
1225     case USB_SPEED_HIGH:
1226         return "high";
1227     default:
1228         return "unknown speed";
1229     }
1230 }
1231 
1232 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1233 {
1234     return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1235         le16_to_cpu(udev->descriptor.idVendor),
1236         le16_to_cpu(udev->descriptor.idProduct),
1237         get_bcdDevice(udev),
1238         speed(udev->speed));
1239 }
1240 
1241 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1242 {
1243     struct usb_device *udev = interface_to_usbdev(usb->intf);
1244     return scnprint_id(udev, buffer, size);
1245 }
1246 
1247 #ifdef DEBUG
1248 static void print_id(struct usb_device *udev)
1249 {
1250     char buffer[40];
1251 
1252     scnprint_id(udev, buffer, sizeof(buffer));
1253     buffer[sizeof(buffer)-1] = 0;
1254     dev_dbg_f(&udev->dev, "%s\n", buffer);
1255 }
1256 #else
1257 #define print_id(udev) do { } while (0)
1258 #endif
1259 
1260 static int eject_installer(struct usb_interface *intf)
1261 {
1262     struct usb_device *udev = interface_to_usbdev(intf);
1263     struct usb_host_interface *iface_desc = intf->cur_altsetting;
1264     struct usb_endpoint_descriptor *endpoint;
1265     unsigned char *cmd;
1266     u8 bulk_out_ep;
1267     int r;
1268 
1269     if (iface_desc->desc.bNumEndpoints < 2)
1270         return -ENODEV;
1271 
1272     /* Find bulk out endpoint */
1273     for (r = 1; r >= 0; r--) {
1274         endpoint = &iface_desc->endpoint[r].desc;
1275         if (usb_endpoint_dir_out(endpoint) &&
1276             usb_endpoint_xfer_bulk(endpoint)) {
1277             bulk_out_ep = endpoint->bEndpointAddress;
1278             break;
1279         }
1280     }
1281     if (r == -1) {
1282         dev_err(&udev->dev,
1283             "zd1211rw: Could not find bulk out endpoint\n");
1284         return -ENODEV;
1285     }
1286 
1287     cmd = kzalloc(31, GFP_KERNEL);
1288     if (cmd == NULL)
1289         return -ENODEV;
1290 
1291     /* USB bulk command block */
1292     cmd[0] = 0x55;  /* bulk command signature */
1293     cmd[1] = 0x53;  /* bulk command signature */
1294     cmd[2] = 0x42;  /* bulk command signature */
1295     cmd[3] = 0x43;  /* bulk command signature */
1296     cmd[14] = 6;    /* command length */
1297 
1298     cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1299     cmd[19] = 0x2;  /* eject disc */
1300 
1301     dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1302     r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1303         cmd, 31, NULL, 2000);
1304     kfree(cmd);
1305     if (r)
1306         return r;
1307 
1308     /* At this point, the device disconnects and reconnects with the real
1309      * ID numbers. */
1310 
1311     usb_set_intfdata(intf, NULL);
1312     return 0;
1313 }
1314 
1315 int zd_usb_init_hw(struct zd_usb *usb)
1316 {
1317     int r;
1318     struct zd_mac *mac = zd_usb_to_mac(usb);
1319 
1320     dev_dbg_f(zd_usb_dev(usb), "\n");
1321 
1322     r = upload_firmware(usb);
1323     if (r) {
1324         dev_err(zd_usb_dev(usb),
1325                "couldn't load firmware. Error number %d\n", r);
1326         return r;
1327     }
1328 
1329     r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1330     if (r) {
1331         dev_dbg_f(zd_usb_dev(usb),
1332             "couldn't reset configuration. Error number %d\n", r);
1333         return r;
1334     }
1335 
1336     r = zd_mac_init_hw(mac->hw);
1337     if (r) {
1338         dev_dbg_f(zd_usb_dev(usb),
1339                  "couldn't initialize mac. Error number %d\n", r);
1340         return r;
1341     }
1342 
1343     usb->initialized = 1;
1344     return 0;
1345 }
1346 
1347 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1348 {
1349     int r;
1350     struct usb_device *udev = interface_to_usbdev(intf);
1351     struct zd_usb *usb;
1352     struct ieee80211_hw *hw = NULL;
1353 
1354     print_id(udev);
1355 
1356     if (id->driver_info & DEVICE_INSTALLER)
1357         return eject_installer(intf);
1358 
1359     switch (udev->speed) {
1360     case USB_SPEED_LOW:
1361     case USB_SPEED_FULL:
1362     case USB_SPEED_HIGH:
1363         break;
1364     default:
1365         dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1366         r = -ENODEV;
1367         goto error;
1368     }
1369 
1370     r = usb_reset_device(udev);
1371     if (r) {
1372         dev_err(&intf->dev,
1373             "couldn't reset usb device. Error number %d\n", r);
1374         goto error;
1375     }
1376 
1377     hw = zd_mac_alloc_hw(intf);
1378     if (hw == NULL) {
1379         r = -ENOMEM;
1380         goto error;
1381     }
1382 
1383     usb = &zd_hw_mac(hw)->chip.usb;
1384     usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1385 
1386     r = zd_mac_preinit_hw(hw);
1387     if (r) {
1388         dev_dbg_f(&intf->dev,
1389                  "couldn't initialize mac. Error number %d\n", r);
1390         goto error;
1391     }
1392 
1393     r = ieee80211_register_hw(hw);
1394     if (r) {
1395         dev_dbg_f(&intf->dev,
1396              "couldn't register device. Error number %d\n", r);
1397         goto error;
1398     }
1399 
1400     dev_dbg_f(&intf->dev, "successful\n");
1401     dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1402     return 0;
1403 error:
1404     usb_reset_device(interface_to_usbdev(intf));
1405     if (hw) {
1406         zd_mac_clear(zd_hw_mac(hw));
1407         ieee80211_free_hw(hw);
1408     }
1409     return r;
1410 }
1411 
1412 static void disconnect(struct usb_interface *intf)
1413 {
1414     struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1415     struct zd_mac *mac;
1416     struct zd_usb *usb;
1417 
1418     /* Either something really bad happened, or we're just dealing with
1419      * a DEVICE_INSTALLER. */
1420     if (hw == NULL)
1421         return;
1422 
1423     mac = zd_hw_mac(hw);
1424     usb = &mac->chip.usb;
1425 
1426     dev_dbg_f(zd_usb_dev(usb), "\n");
1427 
1428     ieee80211_unregister_hw(hw);
1429 
1430     /* Just in case something has gone wrong! */
1431     zd_usb_disable_tx(usb);
1432     zd_usb_disable_rx(usb);
1433     zd_usb_disable_int(usb);
1434 
1435     /* If the disconnect has been caused by a removal of the
1436      * driver module, the reset allows reloading of the driver. If the
1437      * reset will not be executed here, the upload of the firmware in the
1438      * probe function caused by the reloading of the driver will fail.
1439      */
1440     usb_reset_device(interface_to_usbdev(intf));
1441 
1442     zd_mac_clear(mac);
1443     ieee80211_free_hw(hw);
1444     dev_dbg(&intf->dev, "disconnected\n");
1445 }
1446 
1447 static void zd_usb_resume(struct zd_usb *usb)
1448 {
1449     struct zd_mac *mac = zd_usb_to_mac(usb);
1450     int r;
1451 
1452     dev_dbg_f(zd_usb_dev(usb), "\n");
1453 
1454     r = zd_op_start(zd_usb_to_hw(usb));
1455     if (r < 0) {
1456         dev_warn(zd_usb_dev(usb), "Device resume failed "
1457              "with error code %d. Retrying...\n", r);
1458         if (usb->was_running)
1459             set_bit(ZD_DEVICE_RUNNING, &mac->flags);
1460         usb_queue_reset_device(usb->intf);
1461         return;
1462     }
1463 
1464     if (mac->type != NL80211_IFTYPE_UNSPECIFIED) {
1465         r = zd_restore_settings(mac);
1466         if (r < 0) {
1467             dev_dbg(zd_usb_dev(usb),
1468                 "failed to restore settings, %d\n", r);
1469             return;
1470         }
1471     }
1472 }
1473 
1474 static void zd_usb_stop(struct zd_usb *usb)
1475 {
1476     dev_dbg_f(zd_usb_dev(usb), "\n");
1477 
1478     zd_op_stop(zd_usb_to_hw(usb));
1479 
1480     zd_usb_disable_tx(usb);
1481     zd_usb_disable_rx(usb);
1482     zd_usb_disable_int(usb);
1483 
1484     usb->initialized = 0;
1485 }
1486 
1487 static int pre_reset(struct usb_interface *intf)
1488 {
1489     struct ieee80211_hw *hw = usb_get_intfdata(intf);
1490     struct zd_mac *mac;
1491     struct zd_usb *usb;
1492 
1493     if (!hw || intf->condition != USB_INTERFACE_BOUND)
1494         return 0;
1495 
1496     mac = zd_hw_mac(hw);
1497     usb = &mac->chip.usb;
1498 
1499     usb->was_running = test_bit(ZD_DEVICE_RUNNING, &mac->flags);
1500 
1501     zd_usb_stop(usb);
1502 
1503     mutex_lock(&mac->chip.mutex);
1504     return 0;
1505 }
1506 
1507 static int post_reset(struct usb_interface *intf)
1508 {
1509     struct ieee80211_hw *hw = usb_get_intfdata(intf);
1510     struct zd_mac *mac;
1511     struct zd_usb *usb;
1512 
1513     if (!hw || intf->condition != USB_INTERFACE_BOUND)
1514         return 0;
1515 
1516     mac = zd_hw_mac(hw);
1517     usb = &mac->chip.usb;
1518 
1519     mutex_unlock(&mac->chip.mutex);
1520 
1521     if (usb->was_running)
1522         zd_usb_resume(usb);
1523     return 0;
1524 }
1525 
1526 static struct usb_driver driver = {
1527     .name       = KBUILD_MODNAME,
1528     .id_table   = usb_ids,
1529     .probe      = probe,
1530     .disconnect = disconnect,
1531     .pre_reset  = pre_reset,
1532     .post_reset = post_reset,
1533     .disable_hub_initiated_lpm = 1,
1534 };
1535 
1536 struct workqueue_struct *zd_workqueue;
1537 
1538 static int __init usb_init(void)
1539 {
1540     int r;
1541 
1542     pr_debug("%s usb_init()\n", driver.name);
1543 
1544     zd_workqueue = create_singlethread_workqueue(driver.name);
1545     if (zd_workqueue == NULL) {
1546         pr_err("%s couldn't create workqueue\n", driver.name);
1547         return -ENOMEM;
1548     }
1549 
1550     r = usb_register(&driver);
1551     if (r) {
1552         destroy_workqueue(zd_workqueue);
1553         pr_err("%s usb_register() failed. Error number %d\n",
1554                driver.name, r);
1555         return r;
1556     }
1557 
1558     pr_debug("%s initialized\n", driver.name);
1559     return 0;
1560 }
1561 
1562 static void __exit usb_exit(void)
1563 {
1564     pr_debug("%s usb_exit()\n", driver.name);
1565     usb_deregister(&driver);
1566     destroy_workqueue(zd_workqueue);
1567 }
1568 
1569 module_init(usb_init);
1570 module_exit(usb_exit);
1571 
1572 static int zd_ep_regs_out_msg(struct usb_device *udev, void *data, int len,
1573                   int *actual_length, int timeout)
1574 {
1575     /* In USB 2.0 mode EP_REGS_OUT endpoint is interrupt type. However in
1576      * USB 1.1 mode endpoint is bulk. Select correct type URB by endpoint
1577      * descriptor.
1578      */
1579     struct usb_host_endpoint *ep;
1580     unsigned int pipe;
1581 
1582     pipe = usb_sndintpipe(udev, EP_REGS_OUT);
1583     ep = usb_pipe_endpoint(udev, pipe);
1584     if (!ep)
1585         return -EINVAL;
1586 
1587     if (usb_endpoint_xfer_int(&ep->desc)) {
1588         return usb_interrupt_msg(udev, pipe, data, len,
1589                      actual_length, timeout);
1590     } else {
1591         pipe = usb_sndbulkpipe(udev, EP_REGS_OUT);
1592         return usb_bulk_msg(udev, pipe, data, len, actual_length,
1593                     timeout);
1594     }
1595 }
1596 
1597 static void prepare_read_regs_int(struct zd_usb *usb,
1598                   struct usb_req_read_regs *req,
1599                   unsigned int count)
1600 {
1601     struct zd_usb_interrupt *intr = &usb->intr;
1602 
1603     spin_lock_irq(&intr->lock);
1604     atomic_set(&intr->read_regs_enabled, 1);
1605     intr->read_regs.req = req;
1606     intr->read_regs.req_count = count;
1607     reinit_completion(&intr->read_regs.completion);
1608     spin_unlock_irq(&intr->lock);
1609 }
1610 
1611 static void disable_read_regs_int(struct zd_usb *usb)
1612 {
1613     struct zd_usb_interrupt *intr = &usb->intr;
1614 
1615     spin_lock_irq(&intr->lock);
1616     atomic_set(&intr->read_regs_enabled, 0);
1617     spin_unlock_irq(&intr->lock);
1618 }
1619 
1620 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
1621                 unsigned int count)
1622 {
1623     int i;
1624     struct zd_usb_interrupt *intr = &usb->intr;
1625     struct read_regs_int *rr = &intr->read_regs;
1626     struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1627 
1628     /* The created block size seems to be larger than expected.
1629      * However results appear to be correct.
1630      */
1631     if (rr->length < struct_size(regs, regs, count)) {
1632         dev_dbg_f(zd_usb_dev(usb),
1633              "error: actual length %d less than expected %zu\n",
1634              rr->length, struct_size(regs, regs, count));
1635         return false;
1636     }
1637 
1638     if (rr->length > sizeof(rr->buffer)) {
1639         dev_dbg_f(zd_usb_dev(usb),
1640              "error: actual length %d exceeds buffer size %zu\n",
1641              rr->length, sizeof(rr->buffer));
1642         return false;
1643     }
1644 
1645     for (i = 0; i < count; i++) {
1646         struct reg_data *rd = &regs->regs[i];
1647         if (rd->addr != req->addr[i]) {
1648             dev_dbg_f(zd_usb_dev(usb),
1649                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1650                  le16_to_cpu(rd->addr),
1651                  le16_to_cpu(req->addr[i]));
1652             return false;
1653         }
1654     }
1655 
1656     return true;
1657 }
1658 
1659 static int get_results(struct zd_usb *usb, u16 *values,
1660                struct usb_req_read_regs *req, unsigned int count,
1661                bool *retry)
1662 {
1663     int r;
1664     int i;
1665     struct zd_usb_interrupt *intr = &usb->intr;
1666     struct read_regs_int *rr = &intr->read_regs;
1667     struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1668 
1669     spin_lock_irq(&intr->lock);
1670 
1671     r = -EIO;
1672 
1673     /* Read failed because firmware bug? */
1674     *retry = !!intr->read_regs_int_overridden;
1675     if (*retry)
1676         goto error_unlock;
1677 
1678     if (!check_read_regs(usb, req, count)) {
1679         dev_dbg_f(zd_usb_dev(usb), "error: invalid read regs\n");
1680         goto error_unlock;
1681     }
1682 
1683     for (i = 0; i < count; i++) {
1684         struct reg_data *rd = &regs->regs[i];
1685         values[i] = le16_to_cpu(rd->value);
1686     }
1687 
1688     r = 0;
1689 error_unlock:
1690     spin_unlock_irq(&intr->lock);
1691     return r;
1692 }
1693 
1694 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1695                  const zd_addr_t *addresses, unsigned int count)
1696 {
1697     int r, i, req_len, actual_req_len, try_count = 0;
1698     struct usb_device *udev;
1699     struct usb_req_read_regs *req = NULL;
1700     unsigned long timeout;
1701     bool retry = false;
1702 
1703     if (count < 1) {
1704         dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1705         return -EINVAL;
1706     }
1707     if (count > USB_MAX_IOREAD16_COUNT) {
1708         dev_dbg_f(zd_usb_dev(usb),
1709              "error: count %u exceeds possible max %u\n",
1710              count, USB_MAX_IOREAD16_COUNT);
1711         return -EINVAL;
1712     }
1713     if (!usb_int_enabled(usb)) {
1714         dev_dbg_f(zd_usb_dev(usb),
1715               "error: usb interrupt not enabled\n");
1716         return -EWOULDBLOCK;
1717     }
1718 
1719     ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1720     BUILD_BUG_ON(sizeof(struct usb_req_read_regs) + USB_MAX_IOREAD16_COUNT *
1721              sizeof(__le16) > sizeof(usb->req_buf));
1722     BUG_ON(sizeof(struct usb_req_read_regs) + count * sizeof(__le16) >
1723            sizeof(usb->req_buf));
1724 
1725     req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1726     req = (void *)usb->req_buf;
1727 
1728     req->id = cpu_to_le16(USB_REQ_READ_REGS);
1729     for (i = 0; i < count; i++)
1730         req->addr[i] = cpu_to_le16((u16)addresses[i]);
1731 
1732 retry_read:
1733     try_count++;
1734     udev = zd_usb_to_usbdev(usb);
1735     prepare_read_regs_int(usb, req, count);
1736     r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
1737     if (r) {
1738         dev_dbg_f(zd_usb_dev(usb),
1739             "error in zd_ep_regs_out_msg(). Error number %d\n", r);
1740         goto error;
1741     }
1742     if (req_len != actual_req_len) {
1743         dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()\n"
1744             " req_len %d != actual_req_len %d\n",
1745             req_len, actual_req_len);
1746         r = -EIO;
1747         goto error;
1748     }
1749 
1750     timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1751                           msecs_to_jiffies(50));
1752     if (!timeout) {
1753         disable_read_regs_int(usb);
1754         dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1755         r = -ETIMEDOUT;
1756         goto error;
1757     }
1758 
1759     r = get_results(usb, values, req, count, &retry);
1760     if (retry && try_count < 20) {
1761         dev_dbg_f(zd_usb_dev(usb), "read retry, tries so far: %d\n",
1762                 try_count);
1763         goto retry_read;
1764     }
1765 error:
1766     return r;
1767 }
1768 
1769 static void iowrite16v_urb_complete(struct urb *urb)
1770 {
1771     struct zd_usb *usb = urb->context;
1772 
1773     if (urb->status && !usb->cmd_error)
1774         usb->cmd_error = urb->status;
1775 
1776     if (!usb->cmd_error &&
1777             urb->actual_length != urb->transfer_buffer_length)
1778         usb->cmd_error = -EIO;
1779 }
1780 
1781 static int zd_submit_waiting_urb(struct zd_usb *usb, bool last)
1782 {
1783     int r = 0;
1784     struct urb *urb = usb->urb_async_waiting;
1785 
1786     if (!urb)
1787         return 0;
1788 
1789     usb->urb_async_waiting = NULL;
1790 
1791     if (!last)
1792         urb->transfer_flags |= URB_NO_INTERRUPT;
1793 
1794     usb_anchor_urb(urb, &usb->submitted_cmds);
1795     r = usb_submit_urb(urb, GFP_KERNEL);
1796     if (r) {
1797         usb_unanchor_urb(urb);
1798         dev_dbg_f(zd_usb_dev(usb),
1799             "error in usb_submit_urb(). Error number %d\n", r);
1800         goto error;
1801     }
1802 
1803     /* fall-through with r == 0 */
1804 error:
1805     usb_free_urb(urb);
1806     return r;
1807 }
1808 
1809 void zd_usb_iowrite16v_async_start(struct zd_usb *usb)
1810 {
1811     ZD_ASSERT(usb_anchor_empty(&usb->submitted_cmds));
1812     ZD_ASSERT(usb->urb_async_waiting == NULL);
1813     ZD_ASSERT(!usb->in_async);
1814 
1815     ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1816 
1817     usb->in_async = 1;
1818     usb->cmd_error = 0;
1819     usb->urb_async_waiting = NULL;
1820 }
1821 
1822 int zd_usb_iowrite16v_async_end(struct zd_usb *usb, unsigned int timeout)
1823 {
1824     int r;
1825 
1826     ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1827     ZD_ASSERT(usb->in_async);
1828 
1829     /* Submit last iowrite16v URB */
1830     r = zd_submit_waiting_urb(usb, true);
1831     if (r) {
1832         dev_dbg_f(zd_usb_dev(usb),
1833             "error in zd_submit_waiting_usb(). "
1834             "Error number %d\n", r);
1835 
1836         usb_kill_anchored_urbs(&usb->submitted_cmds);
1837         goto error;
1838     }
1839 
1840     if (timeout)
1841         timeout = usb_wait_anchor_empty_timeout(&usb->submitted_cmds,
1842                             timeout);
1843     if (!timeout) {
1844         usb_kill_anchored_urbs(&usb->submitted_cmds);
1845         if (usb->cmd_error == -ENOENT) {
1846             dev_dbg_f(zd_usb_dev(usb), "timed out");
1847             r = -ETIMEDOUT;
1848             goto error;
1849         }
1850     }
1851 
1852     r = usb->cmd_error;
1853 error:
1854     usb->in_async = 0;
1855     return r;
1856 }
1857 
1858 int zd_usb_iowrite16v_async(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1859                 unsigned int count)
1860 {
1861     int r;
1862     struct usb_device *udev;
1863     struct usb_req_write_regs *req = NULL;
1864     int i, req_len;
1865     struct urb *urb;
1866     struct usb_host_endpoint *ep;
1867 
1868     ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1869     ZD_ASSERT(usb->in_async);
1870 
1871     if (count == 0)
1872         return 0;
1873     if (count > USB_MAX_IOWRITE16_COUNT) {
1874         dev_dbg_f(zd_usb_dev(usb),
1875             "error: count %u exceeds possible max %u\n",
1876             count, USB_MAX_IOWRITE16_COUNT);
1877         return -EINVAL;
1878     }
1879 
1880     udev = zd_usb_to_usbdev(usb);
1881 
1882     ep = usb_pipe_endpoint(udev, usb_sndintpipe(udev, EP_REGS_OUT));
1883     if (!ep)
1884         return -ENOENT;
1885 
1886     urb = usb_alloc_urb(0, GFP_KERNEL);
1887     if (!urb)
1888         return -ENOMEM;
1889 
1890     req_len = struct_size(req, reg_writes, count);
1891     req = kmalloc(req_len, GFP_KERNEL);
1892     if (!req) {
1893         r = -ENOMEM;
1894         goto error;
1895     }
1896 
1897     req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1898     for (i = 0; i < count; i++) {
1899         struct reg_data *rw  = &req->reg_writes[i];
1900         rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1901         rw->value = cpu_to_le16(ioreqs[i].value);
1902     }
1903 
1904     /* In USB 2.0 mode endpoint is interrupt type. However in USB 1.1 mode
1905      * endpoint is bulk. Select correct type URB by endpoint descriptor.
1906      */
1907     if (usb_endpoint_xfer_int(&ep->desc))
1908         usb_fill_int_urb(urb, udev, usb_sndintpipe(udev, EP_REGS_OUT),
1909                  req, req_len, iowrite16v_urb_complete, usb,
1910                  ep->desc.bInterval);
1911     else
1912         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1913                   req, req_len, iowrite16v_urb_complete, usb);
1914 
1915     urb->transfer_flags |= URB_FREE_BUFFER;
1916 
1917     /* Submit previous URB */
1918     r = zd_submit_waiting_urb(usb, false);
1919     if (r) {
1920         dev_dbg_f(zd_usb_dev(usb),
1921             "error in zd_submit_waiting_usb(). "
1922             "Error number %d\n", r);
1923         goto error;
1924     }
1925 
1926     /* Delay submit so that URB_NO_INTERRUPT flag can be set for all URBs
1927      * of currect batch except for very last.
1928      */
1929     usb->urb_async_waiting = urb;
1930     return 0;
1931 error:
1932     usb_free_urb(urb);
1933     return r;
1934 }
1935 
1936 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1937             unsigned int count)
1938 {
1939     int r;
1940 
1941     zd_usb_iowrite16v_async_start(usb);
1942     r = zd_usb_iowrite16v_async(usb, ioreqs, count);
1943     if (r) {
1944         zd_usb_iowrite16v_async_end(usb, 0);
1945         return r;
1946     }
1947     return zd_usb_iowrite16v_async_end(usb, 50 /* ms */);
1948 }
1949 
1950 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1951 {
1952     int r;
1953     struct usb_device *udev;
1954     struct usb_req_rfwrite *req = NULL;
1955     int i, req_len, actual_req_len;
1956     u16 bit_value_template;
1957 
1958     if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1959         dev_dbg_f(zd_usb_dev(usb),
1960             "error: bits %d are smaller than"
1961             " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1962             bits, USB_MIN_RFWRITE_BIT_COUNT);
1963         return -EINVAL;
1964     }
1965     if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1966         dev_dbg_f(zd_usb_dev(usb),
1967             "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1968             bits, USB_MAX_RFWRITE_BIT_COUNT);
1969         return -EINVAL;
1970     }
1971 #ifdef DEBUG
1972     if (value & (~0UL << bits)) {
1973         dev_dbg_f(zd_usb_dev(usb),
1974             "error: value %#09x has bits >= %d set\n",
1975             value, bits);
1976         return -EINVAL;
1977     }
1978 #endif /* DEBUG */
1979 
1980     dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1981 
1982     r = zd_usb_ioread16(usb, &bit_value_template, ZD_CR203);
1983     if (r) {
1984         dev_dbg_f(zd_usb_dev(usb),
1985             "error %d: Couldn't read ZD_CR203\n", r);
1986         return r;
1987     }
1988     bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1989 
1990     ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1991     BUILD_BUG_ON(sizeof(struct usb_req_rfwrite) +
1992              USB_MAX_RFWRITE_BIT_COUNT * sizeof(__le16) >
1993              sizeof(usb->req_buf));
1994     BUG_ON(sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16) >
1995            sizeof(usb->req_buf));
1996 
1997     req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1998     req = (void *)usb->req_buf;
1999 
2000     req->id = cpu_to_le16(USB_REQ_WRITE_RF);
2001     /* 1: 3683a, but not used in ZYDAS driver */
2002     req->value = cpu_to_le16(2);
2003     req->bits = cpu_to_le16(bits);
2004 
2005     for (i = 0; i < bits; i++) {
2006         u16 bv = bit_value_template;
2007         if (value & (1 << (bits-1-i)))
2008             bv |= RF_DATA;
2009         req->bit_values[i] = cpu_to_le16(bv);
2010     }
2011 
2012     udev = zd_usb_to_usbdev(usb);
2013     r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
2014     if (r) {
2015         dev_dbg_f(zd_usb_dev(usb),
2016             "error in zd_ep_regs_out_msg(). Error number %d\n", r);
2017         goto out;
2018     }
2019     if (req_len != actual_req_len) {
2020         dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()"
2021             " req_len %d != actual_req_len %d\n",
2022             req_len, actual_req_len);
2023         r = -EIO;
2024         goto out;
2025     }
2026 
2027     /* FALL-THROUGH with r == 0 */
2028 out:
2029     return r;
2030 }