0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013 #include <linux/kernel.h>
0014 #include <linux/errno.h>
0015 #include <linux/slab.h>
0016
0017 #include "zd_def.h"
0018 #include "zd_chip.h"
0019 #include "zd_mac.h"
0020 #include "zd_rf.h"
0021
0022 void zd_chip_init(struct zd_chip *chip,
0023 struct ieee80211_hw *hw,
0024 struct usb_interface *intf)
0025 {
0026 memset(chip, 0, sizeof(*chip));
0027 mutex_init(&chip->mutex);
0028 zd_usb_init(&chip->usb, hw, intf);
0029 zd_rf_init(&chip->rf);
0030 }
0031
0032 void zd_chip_clear(struct zd_chip *chip)
0033 {
0034 ZD_ASSERT(!mutex_is_locked(&chip->mutex));
0035 zd_usb_clear(&chip->usb);
0036 zd_rf_clear(&chip->rf);
0037 mutex_destroy(&chip->mutex);
0038 ZD_MEMCLEAR(chip, sizeof(*chip));
0039 }
0040
0041 static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
0042 {
0043 u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip));
0044 return scnprintf(buffer, size, "%3phD", addr);
0045 }
0046
0047
0048 static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
0049 {
0050 int i = 0;
0051
0052 i = scnprintf(buffer, size, "zd1211%s chip ",
0053 zd_chip_is_zd1211b(chip) ? "b" : "");
0054 i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
0055 i += scnprintf(buffer+i, size-i, " ");
0056 i += scnprint_mac_oui(chip, buffer+i, size-i);
0057 i += scnprintf(buffer+i, size-i, " ");
0058 i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
0059 i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
0060 chip->patch_cck_gain ? 'g' : '-',
0061 chip->patch_cr157 ? '7' : '-',
0062 chip->patch_6m_band_edge ? '6' : '-',
0063 chip->new_phy_layout ? 'N' : '-',
0064 chip->al2230s_bit ? 'S' : '-');
0065 return i;
0066 }
0067
0068 static void print_id(struct zd_chip *chip)
0069 {
0070 char buffer[80];
0071
0072 scnprint_id(chip, buffer, sizeof(buffer));
0073 buffer[sizeof(buffer)-1] = 0;
0074 dev_info(zd_chip_dev(chip), "%s\n", buffer);
0075 }
0076
0077 static zd_addr_t inc_addr(zd_addr_t addr)
0078 {
0079 u16 a = (u16)addr;
0080
0081
0082 if ((a & 0xf000) == CR_START)
0083 a += 2;
0084 else
0085 a += 1;
0086 return (zd_addr_t)a;
0087 }
0088
0089
0090
0091
0092 int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
0093 unsigned int count)
0094 {
0095 int r;
0096 int i;
0097 zd_addr_t a16[USB_MAX_IOREAD32_COUNT * 2];
0098 u16 v16[USB_MAX_IOREAD32_COUNT * 2];
0099 unsigned int count16;
0100
0101 if (count > USB_MAX_IOREAD32_COUNT)
0102 return -EINVAL;
0103
0104
0105 count16 = 2 * count;
0106 BUG_ON(count16 * sizeof(zd_addr_t) > sizeof(a16));
0107 BUG_ON(count16 * sizeof(u16) > sizeof(v16));
0108
0109 for (i = 0; i < count; i++) {
0110 int j = 2*i;
0111
0112 a16[j] = inc_addr(addr[i]);
0113 a16[j+1] = addr[i];
0114 }
0115
0116 r = zd_ioread16v_locked(chip, v16, a16, count16);
0117 if (r) {
0118 dev_dbg_f(zd_chip_dev(chip),
0119 "error: %s. Error number %d\n", __func__, r);
0120 return r;
0121 }
0122
0123 for (i = 0; i < count; i++) {
0124 int j = 2*i;
0125 values[i] = (v16[j] << 16) | v16[j+1];
0126 }
0127
0128 return 0;
0129 }
0130
0131 static int _zd_iowrite32v_async_locked(struct zd_chip *chip,
0132 const struct zd_ioreq32 *ioreqs,
0133 unsigned int count)
0134 {
0135 int i, j, r;
0136 struct zd_ioreq16 ioreqs16[USB_MAX_IOWRITE32_COUNT * 2];
0137 unsigned int count16;
0138
0139
0140
0141 ZD_ASSERT(mutex_is_locked(&chip->mutex));
0142
0143 if (count == 0)
0144 return 0;
0145 if (count > USB_MAX_IOWRITE32_COUNT)
0146 return -EINVAL;
0147
0148 count16 = 2 * count;
0149 BUG_ON(count16 * sizeof(struct zd_ioreq16) > sizeof(ioreqs16));
0150
0151 for (i = 0; i < count; i++) {
0152 j = 2*i;
0153
0154 ioreqs16[j].value = ioreqs[i].value >> 16;
0155 ioreqs16[j].addr = inc_addr(ioreqs[i].addr);
0156 ioreqs16[j+1].value = ioreqs[i].value;
0157 ioreqs16[j+1].addr = ioreqs[i].addr;
0158 }
0159
0160 r = zd_usb_iowrite16v_async(&chip->usb, ioreqs16, count16);
0161 #ifdef DEBUG
0162 if (r) {
0163 dev_dbg_f(zd_chip_dev(chip),
0164 "error %d in zd_usb_write16v\n", r);
0165 }
0166 #endif
0167 return r;
0168 }
0169
0170 int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
0171 unsigned int count)
0172 {
0173 int r;
0174
0175 zd_usb_iowrite16v_async_start(&chip->usb);
0176 r = _zd_iowrite32v_async_locked(chip, ioreqs, count);
0177 if (r) {
0178 zd_usb_iowrite16v_async_end(&chip->usb, 0);
0179 return r;
0180 }
0181 return zd_usb_iowrite16v_async_end(&chip->usb, 50 );
0182 }
0183
0184 int zd_iowrite16a_locked(struct zd_chip *chip,
0185 const struct zd_ioreq16 *ioreqs, unsigned int count)
0186 {
0187 int r;
0188 unsigned int i, j, t, max;
0189
0190 ZD_ASSERT(mutex_is_locked(&chip->mutex));
0191 zd_usb_iowrite16v_async_start(&chip->usb);
0192
0193 for (i = 0; i < count; i += j + t) {
0194 t = 0;
0195 max = count-i;
0196 if (max > USB_MAX_IOWRITE16_COUNT)
0197 max = USB_MAX_IOWRITE16_COUNT;
0198 for (j = 0; j < max; j++) {
0199 if (!ioreqs[i+j].addr) {
0200 t = 1;
0201 break;
0202 }
0203 }
0204
0205 r = zd_usb_iowrite16v_async(&chip->usb, &ioreqs[i], j);
0206 if (r) {
0207 zd_usb_iowrite16v_async_end(&chip->usb, 0);
0208 dev_dbg_f(zd_chip_dev(chip),
0209 "error zd_usb_iowrite16v. Error number %d\n",
0210 r);
0211 return r;
0212 }
0213 }
0214
0215 return zd_usb_iowrite16v_async_end(&chip->usb, 50 );
0216 }
0217
0218
0219
0220
0221
0222 int zd_iowrite32a_locked(struct zd_chip *chip,
0223 const struct zd_ioreq32 *ioreqs, unsigned int count)
0224 {
0225 int r;
0226 unsigned int i, j, t, max;
0227
0228 zd_usb_iowrite16v_async_start(&chip->usb);
0229
0230 for (i = 0; i < count; i += j + t) {
0231 t = 0;
0232 max = count-i;
0233 if (max > USB_MAX_IOWRITE32_COUNT)
0234 max = USB_MAX_IOWRITE32_COUNT;
0235 for (j = 0; j < max; j++) {
0236 if (!ioreqs[i+j].addr) {
0237 t = 1;
0238 break;
0239 }
0240 }
0241
0242 r = _zd_iowrite32v_async_locked(chip, &ioreqs[i], j);
0243 if (r) {
0244 zd_usb_iowrite16v_async_end(&chip->usb, 0);
0245 dev_dbg_f(zd_chip_dev(chip),
0246 "error _%s. Error number %d\n", __func__,
0247 r);
0248 return r;
0249 }
0250 }
0251
0252 return zd_usb_iowrite16v_async_end(&chip->usb, 50 );
0253 }
0254
0255 int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
0256 {
0257 int r;
0258
0259 mutex_lock(&chip->mutex);
0260 r = zd_ioread16_locked(chip, value, addr);
0261 mutex_unlock(&chip->mutex);
0262 return r;
0263 }
0264
0265 int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
0266 {
0267 int r;
0268
0269 mutex_lock(&chip->mutex);
0270 r = zd_ioread32_locked(chip, value, addr);
0271 mutex_unlock(&chip->mutex);
0272 return r;
0273 }
0274
0275 int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
0276 {
0277 int r;
0278
0279 mutex_lock(&chip->mutex);
0280 r = zd_iowrite16_locked(chip, value, addr);
0281 mutex_unlock(&chip->mutex);
0282 return r;
0283 }
0284
0285 int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
0286 {
0287 int r;
0288
0289 mutex_lock(&chip->mutex);
0290 r = zd_iowrite32_locked(chip, value, addr);
0291 mutex_unlock(&chip->mutex);
0292 return r;
0293 }
0294
0295 int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
0296 u32 *values, unsigned int count)
0297 {
0298 int r;
0299
0300 mutex_lock(&chip->mutex);
0301 r = zd_ioread32v_locked(chip, values, addresses, count);
0302 mutex_unlock(&chip->mutex);
0303 return r;
0304 }
0305
0306 int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
0307 unsigned int count)
0308 {
0309 int r;
0310
0311 mutex_lock(&chip->mutex);
0312 r = zd_iowrite32a_locked(chip, ioreqs, count);
0313 mutex_unlock(&chip->mutex);
0314 return r;
0315 }
0316
0317 static int read_pod(struct zd_chip *chip, u8 *rf_type)
0318 {
0319 int r;
0320 u32 value;
0321
0322 ZD_ASSERT(mutex_is_locked(&chip->mutex));
0323 r = zd_ioread32_locked(chip, &value, E2P_POD);
0324 if (r)
0325 goto error;
0326 dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
0327
0328
0329 *rf_type = value & 0x0f;
0330 chip->pa_type = (value >> 16) & 0x0f;
0331 chip->patch_cck_gain = (value >> 8) & 0x1;
0332 chip->patch_cr157 = (value >> 13) & 0x1;
0333 chip->patch_6m_band_edge = (value >> 21) & 0x1;
0334 chip->new_phy_layout = (value >> 31) & 0x1;
0335 chip->al2230s_bit = (value >> 7) & 0x1;
0336 chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
0337 chip->supports_tx_led = 1;
0338 if (value & (1 << 24)) {
0339 if (value & (1 << 29))
0340 chip->supports_tx_led = 0;
0341 }
0342
0343 dev_dbg_f(zd_chip_dev(chip),
0344 "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
0345 "patch 6M %d new PHY %d link LED%d tx led %d\n",
0346 zd_rf_name(*rf_type), *rf_type,
0347 chip->pa_type, chip->patch_cck_gain,
0348 chip->patch_cr157, chip->patch_6m_band_edge,
0349 chip->new_phy_layout,
0350 chip->link_led == LED1 ? 1 : 2,
0351 chip->supports_tx_led);
0352 return 0;
0353 error:
0354 *rf_type = 0;
0355 chip->pa_type = 0;
0356 chip->patch_cck_gain = 0;
0357 chip->patch_cr157 = 0;
0358 chip->patch_6m_band_edge = 0;
0359 chip->new_phy_layout = 0;
0360 return r;
0361 }
0362
0363 static int zd_write_mac_addr_common(struct zd_chip *chip, const u8 *mac_addr,
0364 const struct zd_ioreq32 *in_reqs,
0365 const char *type)
0366 {
0367 int r;
0368 struct zd_ioreq32 reqs[2] = {in_reqs[0], in_reqs[1]};
0369
0370 if (mac_addr) {
0371 reqs[0].value = (mac_addr[3] << 24)
0372 | (mac_addr[2] << 16)
0373 | (mac_addr[1] << 8)
0374 | mac_addr[0];
0375 reqs[1].value = (mac_addr[5] << 8)
0376 | mac_addr[4];
0377 dev_dbg_f(zd_chip_dev(chip), "%s addr %pM\n", type, mac_addr);
0378 } else {
0379 dev_dbg_f(zd_chip_dev(chip), "set NULL %s\n", type);
0380 }
0381
0382 mutex_lock(&chip->mutex);
0383 r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
0384 mutex_unlock(&chip->mutex);
0385 return r;
0386 }
0387
0388
0389
0390
0391 int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
0392 {
0393 static const struct zd_ioreq32 reqs[2] = {
0394 [0] = { .addr = CR_MAC_ADDR_P1 },
0395 [1] = { .addr = CR_MAC_ADDR_P2 },
0396 };
0397
0398 return zd_write_mac_addr_common(chip, mac_addr, reqs, "mac");
0399 }
0400
0401 int zd_write_bssid(struct zd_chip *chip, const u8 *bssid)
0402 {
0403 static const struct zd_ioreq32 reqs[2] = {
0404 [0] = { .addr = CR_BSSID_P1 },
0405 [1] = { .addr = CR_BSSID_P2 },
0406 };
0407
0408 return zd_write_mac_addr_common(chip, bssid, reqs, "bssid");
0409 }
0410
0411 int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
0412 {
0413 int r;
0414 u32 value;
0415
0416 mutex_lock(&chip->mutex);
0417 r = zd_ioread32_locked(chip, &value, E2P_SUBID);
0418 mutex_unlock(&chip->mutex);
0419 if (r)
0420 return r;
0421
0422 *regdomain = value >> 16;
0423 dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
0424
0425 return 0;
0426 }
0427
0428 static int read_values(struct zd_chip *chip, u8 *values, size_t count,
0429 zd_addr_t e2p_addr, u32 guard)
0430 {
0431 int r;
0432 int i;
0433 u32 v;
0434
0435 ZD_ASSERT(mutex_is_locked(&chip->mutex));
0436 for (i = 0;;) {
0437 r = zd_ioread32_locked(chip, &v,
0438 (zd_addr_t)((u16)e2p_addr+i/2));
0439 if (r)
0440 return r;
0441 v -= guard;
0442 if (i+4 < count) {
0443 values[i++] = v;
0444 values[i++] = v >> 8;
0445 values[i++] = v >> 16;
0446 values[i++] = v >> 24;
0447 continue;
0448 }
0449 for (;i < count; i++)
0450 values[i] = v >> (8*(i%3));
0451 return 0;
0452 }
0453 }
0454
0455 static int read_pwr_cal_values(struct zd_chip *chip)
0456 {
0457 return read_values(chip, chip->pwr_cal_values,
0458 E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
0459 0);
0460 }
0461
0462 static int read_pwr_int_values(struct zd_chip *chip)
0463 {
0464 return read_values(chip, chip->pwr_int_values,
0465 E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
0466 E2P_PWR_INT_GUARD);
0467 }
0468
0469 static int read_ofdm_cal_values(struct zd_chip *chip)
0470 {
0471 int r;
0472 int i;
0473 static const zd_addr_t addresses[] = {
0474 E2P_36M_CAL_VALUE1,
0475 E2P_48M_CAL_VALUE1,
0476 E2P_54M_CAL_VALUE1,
0477 };
0478
0479 for (i = 0; i < 3; i++) {
0480 r = read_values(chip, chip->ofdm_cal_values[i],
0481 E2P_CHANNEL_COUNT, addresses[i], 0);
0482 if (r)
0483 return r;
0484 }
0485 return 0;
0486 }
0487
0488 static int read_cal_int_tables(struct zd_chip *chip)
0489 {
0490 int r;
0491
0492 r = read_pwr_cal_values(chip);
0493 if (r)
0494 return r;
0495 r = read_pwr_int_values(chip);
0496 if (r)
0497 return r;
0498 r = read_ofdm_cal_values(chip);
0499 if (r)
0500 return r;
0501 return 0;
0502 }
0503
0504
0505 int zd_chip_lock_phy_regs(struct zd_chip *chip)
0506 {
0507 int r;
0508 u32 tmp;
0509
0510 ZD_ASSERT(mutex_is_locked(&chip->mutex));
0511 r = zd_ioread32_locked(chip, &tmp, CR_REG1);
0512 if (r) {
0513 dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
0514 return r;
0515 }
0516
0517 tmp &= ~UNLOCK_PHY_REGS;
0518
0519 r = zd_iowrite32_locked(chip, tmp, CR_REG1);
0520 if (r)
0521 dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
0522 return r;
0523 }
0524
0525 int zd_chip_unlock_phy_regs(struct zd_chip *chip)
0526 {
0527 int r;
0528 u32 tmp;
0529
0530 ZD_ASSERT(mutex_is_locked(&chip->mutex));
0531 r = zd_ioread32_locked(chip, &tmp, CR_REG1);
0532 if (r) {
0533 dev_err(zd_chip_dev(chip),
0534 "error ioread32(CR_REG1): %d\n", r);
0535 return r;
0536 }
0537
0538 tmp |= UNLOCK_PHY_REGS;
0539
0540 r = zd_iowrite32_locked(chip, tmp, CR_REG1);
0541 if (r)
0542 dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
0543 return r;
0544 }
0545
0546
0547 static int patch_cr157(struct zd_chip *chip)
0548 {
0549 int r;
0550 u16 value;
0551
0552 if (!chip->patch_cr157)
0553 return 0;
0554
0555 r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
0556 if (r)
0557 return r;
0558
0559 dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
0560 return zd_iowrite32_locked(chip, value >> 8, ZD_CR157);
0561 }
0562
0563
0564
0565
0566
0567
0568 static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
0569 {
0570 ZD_ASSERT(mutex_is_locked(&chip->mutex));
0571 if (!chip->patch_6m_band_edge)
0572 return 0;
0573
0574 return zd_rf_patch_6m_band_edge(&chip->rf, channel);
0575 }
0576
0577
0578
0579 int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
0580 {
0581 struct zd_ioreq16 ioreqs[] = {
0582 { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
0583 { ZD_CR47, 0x1e },
0584 };
0585
0586
0587 if (channel == 1 || channel == 11)
0588 ioreqs[0].value = 0x12;
0589
0590 dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
0591 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
0592 }
0593
0594 static int zd1211_hw_reset_phy(struct zd_chip *chip)
0595 {
0596 static const struct zd_ioreq16 ioreqs[] = {
0597 { ZD_CR0, 0x0a }, { ZD_CR1, 0x06 }, { ZD_CR2, 0x26 },
0598 { ZD_CR3, 0x38 }, { ZD_CR4, 0x80 }, { ZD_CR9, 0xa0 },
0599 { ZD_CR10, 0x81 }, { ZD_CR11, 0x00 }, { ZD_CR12, 0x7f },
0600 { ZD_CR13, 0x8c }, { ZD_CR14, 0x80 }, { ZD_CR15, 0x3d },
0601 { ZD_CR16, 0x20 }, { ZD_CR17, 0x1e }, { ZD_CR18, 0x0a },
0602 { ZD_CR19, 0x48 }, { ZD_CR20, 0x0c }, { ZD_CR21, 0x0c },
0603 { ZD_CR22, 0x23 }, { ZD_CR23, 0x90 }, { ZD_CR24, 0x14 },
0604 { ZD_CR25, 0x40 }, { ZD_CR26, 0x10 }, { ZD_CR27, 0x19 },
0605 { ZD_CR28, 0x7f }, { ZD_CR29, 0x80 }, { ZD_CR30, 0x4b },
0606 { ZD_CR31, 0x60 }, { ZD_CR32, 0x43 }, { ZD_CR33, 0x08 },
0607 { ZD_CR34, 0x06 }, { ZD_CR35, 0x0a }, { ZD_CR36, 0x00 },
0608 { ZD_CR37, 0x00 }, { ZD_CR38, 0x38 }, { ZD_CR39, 0x0c },
0609 { ZD_CR40, 0x84 }, { ZD_CR41, 0x2a }, { ZD_CR42, 0x80 },
0610 { ZD_CR43, 0x10 }, { ZD_CR44, 0x12 }, { ZD_CR46, 0xff },
0611 { ZD_CR47, 0x1E }, { ZD_CR48, 0x26 }, { ZD_CR49, 0x5b },
0612 { ZD_CR64, 0xd0 }, { ZD_CR65, 0x04 }, { ZD_CR66, 0x58 },
0613 { ZD_CR67, 0xc9 }, { ZD_CR68, 0x88 }, { ZD_CR69, 0x41 },
0614 { ZD_CR70, 0x23 }, { ZD_CR71, 0x10 }, { ZD_CR72, 0xff },
0615 { ZD_CR73, 0x32 }, { ZD_CR74, 0x30 }, { ZD_CR75, 0x65 },
0616 { ZD_CR76, 0x41 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x30 },
0617 { ZD_CR79, 0x68 }, { ZD_CR80, 0x64 }, { ZD_CR81, 0x64 },
0618 { ZD_CR82, 0x00 }, { ZD_CR83, 0x00 }, { ZD_CR84, 0x00 },
0619 { ZD_CR85, 0x02 }, { ZD_CR86, 0x00 }, { ZD_CR87, 0x00 },
0620 { ZD_CR88, 0xff }, { ZD_CR89, 0xfc }, { ZD_CR90, 0x00 },
0621 { ZD_CR91, 0x00 }, { ZD_CR92, 0x00 }, { ZD_CR93, 0x08 },
0622 { ZD_CR94, 0x00 }, { ZD_CR95, 0x00 }, { ZD_CR96, 0xff },
0623 { ZD_CR97, 0xe7 }, { ZD_CR98, 0x00 }, { ZD_CR99, 0x00 },
0624 { ZD_CR100, 0x00 }, { ZD_CR101, 0xae }, { ZD_CR102, 0x02 },
0625 { ZD_CR103, 0x00 }, { ZD_CR104, 0x03 }, { ZD_CR105, 0x65 },
0626 { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 }, { ZD_CR108, 0x0a },
0627 { ZD_CR109, 0xaa }, { ZD_CR110, 0xaa }, { ZD_CR111, 0x25 },
0628 { ZD_CR112, 0x25 }, { ZD_CR113, 0x00 }, { ZD_CR119, 0x1e },
0629 { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
0630 { },
0631 { ZD_CR5, 0x00 }, { ZD_CR6, 0x00 }, { ZD_CR7, 0x00 },
0632 { ZD_CR8, 0x00 }, { ZD_CR9, 0x20 }, { ZD_CR12, 0xf0 },
0633 { ZD_CR20, 0x0e }, { ZD_CR21, 0x0e }, { ZD_CR27, 0x10 },
0634 { ZD_CR44, 0x33 }, { ZD_CR47, 0x1E }, { ZD_CR83, 0x24 },
0635 { ZD_CR84, 0x04 }, { ZD_CR85, 0x00 }, { ZD_CR86, 0x0C },
0636 { ZD_CR87, 0x12 }, { ZD_CR88, 0x0C }, { ZD_CR89, 0x00 },
0637 { ZD_CR90, 0x10 }, { ZD_CR91, 0x08 }, { ZD_CR93, 0x00 },
0638 { ZD_CR94, 0x01 }, { ZD_CR95, 0x00 }, { ZD_CR96, 0x50 },
0639 { ZD_CR97, 0x37 }, { ZD_CR98, 0x35 }, { ZD_CR101, 0x13 },
0640 { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
0641 { ZD_CR105, 0x12 }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
0642 { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
0643 { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
0644 { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR120, 0x4f },
0645 { ZD_CR125, 0xaa }, { ZD_CR127, 0x03 }, { ZD_CR128, 0x14 },
0646 { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, { ZD_CR131, 0x0C },
0647 { ZD_CR136, 0xdf }, { ZD_CR137, 0x40 }, { ZD_CR138, 0xa0 },
0648 { ZD_CR139, 0xb0 }, { ZD_CR140, 0x99 }, { ZD_CR141, 0x82 },
0649 { ZD_CR142, 0x54 }, { ZD_CR143, 0x1c }, { ZD_CR144, 0x6c },
0650 { ZD_CR147, 0x07 }, { ZD_CR148, 0x4c }, { ZD_CR149, 0x50 },
0651 { ZD_CR150, 0x0e }, { ZD_CR151, 0x18 }, { ZD_CR160, 0xfe },
0652 { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
0653 { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
0654 { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
0655 { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
0656
0657 { ZD_CR204, 0x7d },
0658 { },
0659 { ZD_CR203, 0x30 },
0660 };
0661
0662 int r, t;
0663
0664 dev_dbg_f(zd_chip_dev(chip), "\n");
0665
0666 r = zd_chip_lock_phy_regs(chip);
0667 if (r)
0668 goto out;
0669
0670 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
0671 if (r)
0672 goto unlock;
0673
0674 r = patch_cr157(chip);
0675 unlock:
0676 t = zd_chip_unlock_phy_regs(chip);
0677 if (t && !r)
0678 r = t;
0679 out:
0680 return r;
0681 }
0682
0683 static int zd1211b_hw_reset_phy(struct zd_chip *chip)
0684 {
0685 static const struct zd_ioreq16 ioreqs[] = {
0686 { ZD_CR0, 0x14 }, { ZD_CR1, 0x06 }, { ZD_CR2, 0x26 },
0687 { ZD_CR3, 0x38 }, { ZD_CR4, 0x80 }, { ZD_CR9, 0xe0 },
0688 { ZD_CR10, 0x81 },
0689
0690 { ZD_CR11, 0x00 },
0691 { ZD_CR12, 0xf0 }, { ZD_CR13, 0x8c }, { ZD_CR14, 0x80 },
0692 { ZD_CR15, 0x3d }, { ZD_CR16, 0x20 }, { ZD_CR17, 0x1e },
0693 { ZD_CR18, 0x0a }, { ZD_CR19, 0x48 },
0694 { ZD_CR20, 0x10 },
0695 { ZD_CR21, 0x0e }, { ZD_CR22, 0x23 }, { ZD_CR23, 0x90 },
0696 { ZD_CR24, 0x14 }, { ZD_CR25, 0x40 }, { ZD_CR26, 0x10 },
0697 { ZD_CR27, 0x10 }, { ZD_CR28, 0x7f }, { ZD_CR29, 0x80 },
0698 { ZD_CR30, 0x4b },
0699 { ZD_CR31, 0x60 }, { ZD_CR32, 0x43 }, { ZD_CR33, 0x08 },
0700 { ZD_CR34, 0x06 }, { ZD_CR35, 0x0a }, { ZD_CR36, 0x00 },
0701 { ZD_CR37, 0x00 }, { ZD_CR38, 0x38 }, { ZD_CR39, 0x0c },
0702 { ZD_CR40, 0x84 }, { ZD_CR41, 0x2a }, { ZD_CR42, 0x80 },
0703 { ZD_CR43, 0x10 }, { ZD_CR44, 0x33 }, { ZD_CR46, 0xff },
0704 { ZD_CR47, 0x1E }, { ZD_CR48, 0x26 }, { ZD_CR49, 0x5b },
0705 { ZD_CR64, 0xd0 }, { ZD_CR65, 0x04 }, { ZD_CR66, 0x58 },
0706 { ZD_CR67, 0xc9 }, { ZD_CR68, 0x88 }, { ZD_CR69, 0x41 },
0707 { ZD_CR70, 0x23 }, { ZD_CR71, 0x10 }, { ZD_CR72, 0xff },
0708 { ZD_CR73, 0x32 }, { ZD_CR74, 0x30 }, { ZD_CR75, 0x65 },
0709 { ZD_CR76, 0x41 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x30 },
0710 { ZD_CR79, 0xf0 }, { ZD_CR80, 0x64 }, { ZD_CR81, 0x64 },
0711 { ZD_CR82, 0x00 }, { ZD_CR83, 0x24 }, { ZD_CR84, 0x04 },
0712 { ZD_CR85, 0x00 }, { ZD_CR86, 0x0c }, { ZD_CR87, 0x12 },
0713 { ZD_CR88, 0x0c }, { ZD_CR89, 0x00 }, { ZD_CR90, 0x58 },
0714 { ZD_CR91, 0x04 }, { ZD_CR92, 0x00 }, { ZD_CR93, 0x00 },
0715 { ZD_CR94, 0x01 },
0716 { ZD_CR95, 0x20 },
0717 { ZD_CR96, 0x50 }, { ZD_CR97, 0x37 }, { ZD_CR98, 0x35 },
0718 { ZD_CR99, 0x00 }, { ZD_CR100, 0x01 }, { ZD_CR101, 0x13 },
0719 { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
0720 { ZD_CR105, 0x12 }, { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 },
0721 { ZD_CR108, 0x0a }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
0722 { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
0723 { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
0724 { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR119, 0x1e },
0725 { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
0726 { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
0727 { ZD_CR131, 0x0c }, { ZD_CR136, 0xdf }, { ZD_CR137, 0xa0 },
0728 { ZD_CR138, 0xa8 }, { ZD_CR139, 0xb4 }, { ZD_CR140, 0x98 },
0729 { ZD_CR141, 0x82 }, { ZD_CR142, 0x53 }, { ZD_CR143, 0x1c },
0730 { ZD_CR144, 0x6c }, { ZD_CR147, 0x07 }, { ZD_CR148, 0x40 },
0731 { ZD_CR149, 0x40 },
0732 { ZD_CR150, 0x14 },
0733 { ZD_CR151, 0x18 }, { ZD_CR159, 0x70 }, { ZD_CR160, 0xfe },
0734 { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
0735 { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
0736 { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
0737 { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
0738
0739 { ZD_CR204, 0x7d },
0740 {},
0741 { ZD_CR203, 0x30 },
0742 };
0743
0744 int r, t;
0745
0746 dev_dbg_f(zd_chip_dev(chip), "\n");
0747
0748 r = zd_chip_lock_phy_regs(chip);
0749 if (r)
0750 goto out;
0751
0752 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
0753 t = zd_chip_unlock_phy_regs(chip);
0754 if (t && !r)
0755 r = t;
0756 out:
0757 return r;
0758 }
0759
0760 static int hw_reset_phy(struct zd_chip *chip)
0761 {
0762 return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
0763 zd1211_hw_reset_phy(chip);
0764 }
0765
0766 static int zd1211_hw_init_hmac(struct zd_chip *chip)
0767 {
0768 static const struct zd_ioreq32 ioreqs[] = {
0769 { CR_ZD1211_RETRY_MAX, ZD1211_RETRY_COUNT },
0770 { CR_RX_THRESHOLD, 0x000c0640 },
0771 };
0772
0773 dev_dbg_f(zd_chip_dev(chip), "\n");
0774 ZD_ASSERT(mutex_is_locked(&chip->mutex));
0775 return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
0776 }
0777
0778 static int zd1211b_hw_init_hmac(struct zd_chip *chip)
0779 {
0780 static const struct zd_ioreq32 ioreqs[] = {
0781 { CR_ZD1211B_RETRY_MAX, ZD1211B_RETRY_COUNT },
0782 { CR_ZD1211B_CWIN_MAX_MIN_AC0, 0x007f003f },
0783 { CR_ZD1211B_CWIN_MAX_MIN_AC1, 0x007f003f },
0784 { CR_ZD1211B_CWIN_MAX_MIN_AC2, 0x003f001f },
0785 { CR_ZD1211B_CWIN_MAX_MIN_AC3, 0x001f000f },
0786 { CR_ZD1211B_AIFS_CTL1, 0x00280028 },
0787 { CR_ZD1211B_AIFS_CTL2, 0x008C003C },
0788 { CR_ZD1211B_TXOP, 0x01800824 },
0789 { CR_RX_THRESHOLD, 0x000c0eff, },
0790 };
0791
0792 dev_dbg_f(zd_chip_dev(chip), "\n");
0793 ZD_ASSERT(mutex_is_locked(&chip->mutex));
0794 return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
0795 }
0796
0797 static int hw_init_hmac(struct zd_chip *chip)
0798 {
0799 int r;
0800 static const struct zd_ioreq32 ioreqs[] = {
0801 { CR_ACK_TIMEOUT_EXT, 0x20 },
0802 { CR_ADDA_MBIAS_WARMTIME, 0x30000808 },
0803 { CR_SNIFFER_ON, 0 },
0804 { CR_RX_FILTER, STA_RX_FILTER },
0805 { CR_GROUP_HASH_P1, 0x00 },
0806 { CR_GROUP_HASH_P2, 0x80000000 },
0807 { CR_REG1, 0xa4 },
0808 { CR_ADDA_PWR_DWN, 0x7f },
0809 { CR_BCN_PLCP_CFG, 0x00f00401 },
0810 { CR_PHY_DELAY, 0x00 },
0811 { CR_ACK_TIMEOUT_EXT, 0x80 },
0812 { CR_ADDA_PWR_DWN, 0x00 },
0813 { CR_ACK_TIME_80211, 0x100 },
0814 { CR_RX_PE_DELAY, 0x70 },
0815 { CR_PS_CTRL, 0x10000000 },
0816 { CR_RTS_CTS_RATE, 0x02030203 },
0817 { CR_AFTER_PNP, 0x1 },
0818 { CR_WEP_PROTECT, 0x114 },
0819 { CR_IFS_VALUE, IFS_VALUE_DEFAULT },
0820 { CR_CAM_MODE, MODE_AP_WDS},
0821 };
0822
0823 ZD_ASSERT(mutex_is_locked(&chip->mutex));
0824 r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
0825 if (r)
0826 return r;
0827
0828 return zd_chip_is_zd1211b(chip) ?
0829 zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
0830 }
0831
0832 struct aw_pt_bi {
0833 u32 atim_wnd_period;
0834 u32 pre_tbtt;
0835 u32 beacon_interval;
0836 };
0837
0838 static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
0839 {
0840 int r;
0841 static const zd_addr_t aw_pt_bi_addr[] =
0842 { CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
0843 u32 values[3];
0844
0845 r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
0846 ARRAY_SIZE(aw_pt_bi_addr));
0847 if (r) {
0848 memset(s, 0, sizeof(*s));
0849 return r;
0850 }
0851
0852 s->atim_wnd_period = values[0];
0853 s->pre_tbtt = values[1];
0854 s->beacon_interval = values[2];
0855 return 0;
0856 }
0857
0858 static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
0859 {
0860 struct zd_ioreq32 reqs[3];
0861 u16 b_interval = s->beacon_interval & 0xffff;
0862
0863 if (b_interval <= 5)
0864 b_interval = 5;
0865 if (s->pre_tbtt < 4 || s->pre_tbtt >= b_interval)
0866 s->pre_tbtt = b_interval - 1;
0867 if (s->atim_wnd_period >= s->pre_tbtt)
0868 s->atim_wnd_period = s->pre_tbtt - 1;
0869
0870 reqs[0].addr = CR_ATIM_WND_PERIOD;
0871 reqs[0].value = s->atim_wnd_period;
0872 reqs[1].addr = CR_PRE_TBTT;
0873 reqs[1].value = s->pre_tbtt;
0874 reqs[2].addr = CR_BCN_INTERVAL;
0875 reqs[2].value = (s->beacon_interval & ~0xffff) | b_interval;
0876
0877 return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
0878 }
0879
0880
0881 static int set_beacon_interval(struct zd_chip *chip, u16 interval,
0882 u8 dtim_period, int type)
0883 {
0884 int r;
0885 struct aw_pt_bi s;
0886 u32 b_interval, mode_flag;
0887
0888 ZD_ASSERT(mutex_is_locked(&chip->mutex));
0889
0890 if (interval > 0) {
0891 switch (type) {
0892 case NL80211_IFTYPE_ADHOC:
0893 case NL80211_IFTYPE_MESH_POINT:
0894 mode_flag = BCN_MODE_IBSS;
0895 break;
0896 case NL80211_IFTYPE_AP:
0897 mode_flag = BCN_MODE_AP;
0898 break;
0899 default:
0900 mode_flag = 0;
0901 break;
0902 }
0903 } else {
0904 dtim_period = 0;
0905 mode_flag = 0;
0906 }
0907
0908 b_interval = mode_flag | (dtim_period << 16) | interval;
0909
0910 r = zd_iowrite32_locked(chip, b_interval, CR_BCN_INTERVAL);
0911 if (r)
0912 return r;
0913 r = get_aw_pt_bi(chip, &s);
0914 if (r)
0915 return r;
0916 return set_aw_pt_bi(chip, &s);
0917 }
0918
0919 int zd_set_beacon_interval(struct zd_chip *chip, u16 interval, u8 dtim_period,
0920 int type)
0921 {
0922 int r;
0923
0924 mutex_lock(&chip->mutex);
0925 r = set_beacon_interval(chip, interval, dtim_period, type);
0926 mutex_unlock(&chip->mutex);
0927 return r;
0928 }
0929
0930 static int hw_init(struct zd_chip *chip)
0931 {
0932 int r;
0933
0934 dev_dbg_f(zd_chip_dev(chip), "\n");
0935 ZD_ASSERT(mutex_is_locked(&chip->mutex));
0936 r = hw_reset_phy(chip);
0937 if (r)
0938 return r;
0939
0940 r = hw_init_hmac(chip);
0941 if (r)
0942 return r;
0943
0944 return set_beacon_interval(chip, 100, 0, NL80211_IFTYPE_UNSPECIFIED);
0945 }
0946
0947 static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
0948 {
0949 return (zd_addr_t)((u16)chip->fw_regs_base + offset);
0950 }
0951
0952 #ifdef DEBUG
0953 static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
0954 const char *addr_string)
0955 {
0956 int r;
0957 u32 value;
0958
0959 r = zd_ioread32_locked(chip, &value, addr);
0960 if (r) {
0961 dev_dbg_f(zd_chip_dev(chip),
0962 "error reading %s. Error number %d\n", addr_string, r);
0963 return r;
0964 }
0965
0966 dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
0967 addr_string, (unsigned int)value);
0968 return 0;
0969 }
0970
0971 static int test_init(struct zd_chip *chip)
0972 {
0973 int r;
0974
0975 r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
0976 if (r)
0977 return r;
0978 r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
0979 if (r)
0980 return r;
0981 return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
0982 }
0983
0984 static void dump_fw_registers(struct zd_chip *chip)
0985 {
0986 const zd_addr_t addr[4] = {
0987 fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
0988 fw_reg_addr(chip, FW_REG_USB_SPEED),
0989 fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
0990 fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
0991 };
0992
0993 int r;
0994 u16 values[4];
0995
0996 r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
0997 ARRAY_SIZE(addr));
0998 if (r) {
0999 dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
1000 r);
1001 return;
1002 }
1003
1004 dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
1005 dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
1006 dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
1007 dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
1008 }
1009 #endif
1010
1011 static int print_fw_version(struct zd_chip *chip)
1012 {
1013 struct wiphy *wiphy = zd_chip_to_mac(chip)->hw->wiphy;
1014 int r;
1015 u16 version;
1016
1017 r = zd_ioread16_locked(chip, &version,
1018 fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
1019 if (r)
1020 return r;
1021
1022 dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
1023
1024 snprintf(wiphy->fw_version, sizeof(wiphy->fw_version),
1025 "%04hx", version);
1026
1027 return 0;
1028 }
1029
1030 static int set_mandatory_rates(struct zd_chip *chip, int gmode)
1031 {
1032 u32 rates;
1033 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1034
1035
1036
1037
1038 if (!gmode)
1039 rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
1040 else
1041 rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
1042 CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
1043
1044 return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
1045 }
1046
1047 int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
1048 int preamble)
1049 {
1050 u32 value = 0;
1051
1052 dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
1053 value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
1054 value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
1055
1056
1057 value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE;
1058 value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
1059 value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
1060 value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
1061
1062 return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
1063 }
1064
1065 int zd_chip_enable_hwint(struct zd_chip *chip)
1066 {
1067 int r;
1068
1069 mutex_lock(&chip->mutex);
1070 r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
1071 mutex_unlock(&chip->mutex);
1072 return r;
1073 }
1074
1075 static int disable_hwint(struct zd_chip *chip)
1076 {
1077 return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
1078 }
1079
1080 int zd_chip_disable_hwint(struct zd_chip *chip)
1081 {
1082 int r;
1083
1084 mutex_lock(&chip->mutex);
1085 r = disable_hwint(chip);
1086 mutex_unlock(&chip->mutex);
1087 return r;
1088 }
1089
1090 static int read_fw_regs_offset(struct zd_chip *chip)
1091 {
1092 int r;
1093
1094 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1095 r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
1096 FWRAW_REGS_ADDR);
1097 if (r)
1098 return r;
1099 dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
1100 (u16)chip->fw_regs_base);
1101
1102 return 0;
1103 }
1104
1105
1106 int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
1107 {
1108 dev_dbg_f(zd_chip_dev(chip), "\n");
1109 return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
1110 ETH_ALEN);
1111 }
1112
1113 int zd_chip_init_hw(struct zd_chip *chip)
1114 {
1115 int r;
1116 u8 rf_type;
1117
1118 dev_dbg_f(zd_chip_dev(chip), "\n");
1119
1120 mutex_lock(&chip->mutex);
1121
1122 #ifdef DEBUG
1123 r = test_init(chip);
1124 if (r)
1125 goto out;
1126 #endif
1127 r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
1128 if (r)
1129 goto out;
1130
1131 r = read_fw_regs_offset(chip);
1132 if (r)
1133 goto out;
1134
1135
1136
1137 r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
1138 if (r)
1139 goto out;
1140 r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
1141 if (r)
1142 goto out;
1143
1144
1145
1146
1147 r = set_mandatory_rates(chip, 1);
1148 if (r)
1149 goto out;
1150
1151
1152 r = disable_hwint(chip);
1153 if (r)
1154 goto out;
1155 r = read_pod(chip, &rf_type);
1156 if (r)
1157 goto out;
1158 r = hw_init(chip);
1159 if (r)
1160 goto out;
1161 r = zd_rf_init_hw(&chip->rf, rf_type);
1162 if (r)
1163 goto out;
1164
1165 r = print_fw_version(chip);
1166 if (r)
1167 goto out;
1168
1169 #ifdef DEBUG
1170 dump_fw_registers(chip);
1171 r = test_init(chip);
1172 if (r)
1173 goto out;
1174 #endif
1175
1176 r = read_cal_int_tables(chip);
1177 if (r)
1178 goto out;
1179
1180 print_id(chip);
1181 out:
1182 mutex_unlock(&chip->mutex);
1183 return r;
1184 }
1185
1186 static int update_pwr_int(struct zd_chip *chip, u8 channel)
1187 {
1188 u8 value = chip->pwr_int_values[channel - 1];
1189 return zd_iowrite16_locked(chip, value, ZD_CR31);
1190 }
1191
1192 static int update_pwr_cal(struct zd_chip *chip, u8 channel)
1193 {
1194 u8 value = chip->pwr_cal_values[channel-1];
1195 return zd_iowrite16_locked(chip, value, ZD_CR68);
1196 }
1197
1198 static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
1199 {
1200 struct zd_ioreq16 ioreqs[3];
1201
1202 ioreqs[0].addr = ZD_CR67;
1203 ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
1204 ioreqs[1].addr = ZD_CR66;
1205 ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
1206 ioreqs[2].addr = ZD_CR65;
1207 ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
1208
1209 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1210 }
1211
1212 static int update_channel_integration_and_calibration(struct zd_chip *chip,
1213 u8 channel)
1214 {
1215 int r;
1216
1217 if (!zd_rf_should_update_pwr_int(&chip->rf))
1218 return 0;
1219
1220 r = update_pwr_int(chip, channel);
1221 if (r)
1222 return r;
1223 if (zd_chip_is_zd1211b(chip)) {
1224 static const struct zd_ioreq16 ioreqs[] = {
1225 { ZD_CR69, 0x28 },
1226 {},
1227 { ZD_CR69, 0x2a },
1228 };
1229
1230 r = update_ofdm_cal(chip, channel);
1231 if (r)
1232 return r;
1233 r = update_pwr_cal(chip, channel);
1234 if (r)
1235 return r;
1236 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1237 if (r)
1238 return r;
1239 }
1240
1241 return 0;
1242 }
1243
1244
1245 static int patch_cck_gain(struct zd_chip *chip)
1246 {
1247 int r;
1248 u32 value;
1249
1250 if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
1251 return 0;
1252
1253 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1254 r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
1255 if (r)
1256 return r;
1257 dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
1258 return zd_iowrite16_locked(chip, value & 0xff, ZD_CR47);
1259 }
1260
1261 int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
1262 {
1263 int r, t;
1264
1265 mutex_lock(&chip->mutex);
1266 r = zd_chip_lock_phy_regs(chip);
1267 if (r)
1268 goto out;
1269 r = zd_rf_set_channel(&chip->rf, channel);
1270 if (r)
1271 goto unlock;
1272 r = update_channel_integration_and_calibration(chip, channel);
1273 if (r)
1274 goto unlock;
1275 r = patch_cck_gain(chip);
1276 if (r)
1277 goto unlock;
1278 r = patch_6m_band_edge(chip, channel);
1279 if (r)
1280 goto unlock;
1281 r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
1282 unlock:
1283 t = zd_chip_unlock_phy_regs(chip);
1284 if (t && !r)
1285 r = t;
1286 out:
1287 mutex_unlock(&chip->mutex);
1288 return r;
1289 }
1290
1291 u8 zd_chip_get_channel(struct zd_chip *chip)
1292 {
1293 u8 channel;
1294
1295 mutex_lock(&chip->mutex);
1296 channel = chip->rf.channel;
1297 mutex_unlock(&chip->mutex);
1298 return channel;
1299 }
1300
1301 int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
1302 {
1303 const zd_addr_t a[] = {
1304 fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1305 CR_LED,
1306 };
1307
1308 int r;
1309 u16 v[ARRAY_SIZE(a)];
1310 struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
1311 [0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
1312 [1] = { CR_LED },
1313 };
1314 u16 other_led;
1315
1316 mutex_lock(&chip->mutex);
1317 r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
1318 if (r)
1319 goto out;
1320
1321 other_led = chip->link_led == LED1 ? LED2 : LED1;
1322
1323 switch (status) {
1324 case ZD_LED_OFF:
1325 ioreqs[0].value = FW_LINK_OFF;
1326 ioreqs[1].value = v[1] & ~(LED1|LED2);
1327 break;
1328 case ZD_LED_SCANNING:
1329 ioreqs[0].value = FW_LINK_OFF;
1330 ioreqs[1].value = v[1] & ~other_led;
1331 if ((u32)ktime_get_seconds() % 3 == 0) {
1332 ioreqs[1].value &= ~chip->link_led;
1333 } else {
1334 ioreqs[1].value |= chip->link_led;
1335 }
1336 break;
1337 case ZD_LED_ASSOCIATED:
1338 ioreqs[0].value = FW_LINK_TX;
1339 ioreqs[1].value = v[1] & ~other_led;
1340 ioreqs[1].value |= chip->link_led;
1341 break;
1342 default:
1343 r = -EINVAL;
1344 goto out;
1345 }
1346
1347 if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
1348 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1349 if (r)
1350 goto out;
1351 }
1352 r = 0;
1353 out:
1354 mutex_unlock(&chip->mutex);
1355 return r;
1356 }
1357
1358 int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
1359 {
1360 int r;
1361
1362 if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
1363 return -EINVAL;
1364
1365 mutex_lock(&chip->mutex);
1366 r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
1367 mutex_unlock(&chip->mutex);
1368 return r;
1369 }
1370
1371 static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
1372 {
1373 return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
1374 }
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384 u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
1385 {
1386 u8 zd_rate;
1387 if (status->frame_status & ZD_RX_OFDM) {
1388 zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
1389 } else {
1390 switch (zd_cck_plcp_header_signal(rx_frame)) {
1391 case ZD_CCK_PLCP_SIGNAL_1M:
1392 zd_rate = ZD_CCK_RATE_1M;
1393 break;
1394 case ZD_CCK_PLCP_SIGNAL_2M:
1395 zd_rate = ZD_CCK_RATE_2M;
1396 break;
1397 case ZD_CCK_PLCP_SIGNAL_5M5:
1398 zd_rate = ZD_CCK_RATE_5_5M;
1399 break;
1400 case ZD_CCK_PLCP_SIGNAL_11M:
1401 zd_rate = ZD_CCK_RATE_11M;
1402 break;
1403 default:
1404 zd_rate = 0;
1405 }
1406 }
1407
1408 return zd_rate;
1409 }
1410
1411 int zd_chip_switch_radio_on(struct zd_chip *chip)
1412 {
1413 int r;
1414
1415 mutex_lock(&chip->mutex);
1416 r = zd_switch_radio_on(&chip->rf);
1417 mutex_unlock(&chip->mutex);
1418 return r;
1419 }
1420
1421 int zd_chip_switch_radio_off(struct zd_chip *chip)
1422 {
1423 int r;
1424
1425 mutex_lock(&chip->mutex);
1426 r = zd_switch_radio_off(&chip->rf);
1427 mutex_unlock(&chip->mutex);
1428 return r;
1429 }
1430
1431 int zd_chip_enable_int(struct zd_chip *chip)
1432 {
1433 int r;
1434
1435 mutex_lock(&chip->mutex);
1436 r = zd_usb_enable_int(&chip->usb);
1437 mutex_unlock(&chip->mutex);
1438 return r;
1439 }
1440
1441 void zd_chip_disable_int(struct zd_chip *chip)
1442 {
1443 mutex_lock(&chip->mutex);
1444 zd_usb_disable_int(&chip->usb);
1445 mutex_unlock(&chip->mutex);
1446
1447
1448 cancel_work_sync(&zd_chip_to_mac(chip)->process_intr);
1449 }
1450
1451 int zd_chip_enable_rxtx(struct zd_chip *chip)
1452 {
1453 int r;
1454
1455 mutex_lock(&chip->mutex);
1456 zd_usb_enable_tx(&chip->usb);
1457 r = zd_usb_enable_rx(&chip->usb);
1458 zd_tx_watchdog_enable(&chip->usb);
1459 mutex_unlock(&chip->mutex);
1460 return r;
1461 }
1462
1463 void zd_chip_disable_rxtx(struct zd_chip *chip)
1464 {
1465 mutex_lock(&chip->mutex);
1466 zd_tx_watchdog_disable(&chip->usb);
1467 zd_usb_disable_rx(&chip->usb);
1468 zd_usb_disable_tx(&chip->usb);
1469 mutex_unlock(&chip->mutex);
1470 }
1471
1472 int zd_rfwritev_locked(struct zd_chip *chip,
1473 const u32* values, unsigned int count, u8 bits)
1474 {
1475 int r;
1476 unsigned int i;
1477
1478 for (i = 0; i < count; i++) {
1479 r = zd_rfwrite_locked(chip, values[i], bits);
1480 if (r)
1481 return r;
1482 }
1483
1484 return 0;
1485 }
1486
1487
1488
1489
1490
1491 int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
1492 {
1493 const struct zd_ioreq16 ioreqs[] = {
1494 { ZD_CR244, (value >> 16) & 0xff },
1495 { ZD_CR243, (value >> 8) & 0xff },
1496 { ZD_CR242, value & 0xff },
1497 };
1498 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1499 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1500 }
1501
1502 int zd_rfwritev_cr_locked(struct zd_chip *chip,
1503 const u32 *values, unsigned int count)
1504 {
1505 int r;
1506 unsigned int i;
1507
1508 for (i = 0; i < count; i++) {
1509 r = zd_rfwrite_cr_locked(chip, values[i]);
1510 if (r)
1511 return r;
1512 }
1513
1514 return 0;
1515 }
1516
1517 int zd_chip_set_multicast_hash(struct zd_chip *chip,
1518 struct zd_mc_hash *hash)
1519 {
1520 const struct zd_ioreq32 ioreqs[] = {
1521 { CR_GROUP_HASH_P1, hash->low },
1522 { CR_GROUP_HASH_P2, hash->high },
1523 };
1524
1525 return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
1526 }
1527
1528 u64 zd_chip_get_tsf(struct zd_chip *chip)
1529 {
1530 int r;
1531 static const zd_addr_t aw_pt_bi_addr[] =
1532 { CR_TSF_LOW_PART, CR_TSF_HIGH_PART };
1533 u32 values[2];
1534 u64 tsf;
1535
1536 mutex_lock(&chip->mutex);
1537 r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
1538 ARRAY_SIZE(aw_pt_bi_addr));
1539 mutex_unlock(&chip->mutex);
1540 if (r)
1541 return 0;
1542
1543 tsf = values[1];
1544 tsf = (tsf << 32) | values[0];
1545
1546 return tsf;
1547 }