Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright (c) 2014 Redpine Signals Inc.
0003  *
0004  * Permission to use, copy, modify, and/or distribute this software for any
0005  * purpose with or without fee is hereby granted, provided that the above
0006  * copyright notice and this permission notice appear in all copies.
0007  *
0008  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
0009  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
0010  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
0011  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
0012  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
0013  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
0014  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
0015  */
0016 
0017 #include <linux/etherdevice.h>
0018 #include <linux/timer.h>
0019 #include "rsi_mgmt.h"
0020 #include "rsi_common.h"
0021 #include "rsi_ps.h"
0022 #include "rsi_hal.h"
0023 
0024 static struct bootup_params boot_params_20 = {
0025     .magic_number = cpu_to_le16(0x5aa5),
0026     .crystal_good_time = 0x0,
0027     .valid = cpu_to_le32(VALID_20),
0028     .reserved_for_valids = 0x0,
0029     .bootup_mode_info = 0x0,
0030     .digital_loop_back_params = 0x0,
0031     .rtls_timestamp_en = 0x0,
0032     .host_spi_intr_cfg = 0x0,
0033     .device_clk_info = {{
0034         .pll_config_g = {
0035             .tapll_info_g = {
0036                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
0037                           (TA_PLL_M_VAL_20)),
0038                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
0039             },
0040             .pll960_info_g = {
0041                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
0042                              (PLL960_N_VAL_20)),
0043                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
0044                 .pll_reg_3 = 0x0,
0045             },
0046             .afepll_info_g = {
0047                 .pll_reg = cpu_to_le16(0x9f0),
0048             }
0049         },
0050         .switch_clk_g = {
0051             .switch_clk_info = cpu_to_le16(0xb),
0052             .bbp_lmac_clk_reg_val = cpu_to_le16(0x111),
0053             .umac_clock_reg_config = cpu_to_le16(0x48),
0054             .qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
0055         }
0056     },
0057     {
0058         .pll_config_g = {
0059             .tapll_info_g = {
0060                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
0061                              (TA_PLL_M_VAL_20)),
0062                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
0063             },
0064             .pll960_info_g = {
0065                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
0066                              (PLL960_N_VAL_20)),
0067                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
0068                 .pll_reg_3 = 0x0,
0069             },
0070             .afepll_info_g = {
0071                 .pll_reg = cpu_to_le16(0x9f0),
0072             }
0073         },
0074         .switch_clk_g = {
0075             .switch_clk_info = 0x0,
0076             .bbp_lmac_clk_reg_val = 0x0,
0077             .umac_clock_reg_config = 0x0,
0078             .qspi_uart_clock_reg_config = 0x0
0079         }
0080     },
0081     {
0082         .pll_config_g = {
0083             .tapll_info_g = {
0084                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
0085                              (TA_PLL_M_VAL_20)),
0086                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
0087             },
0088             .pll960_info_g = {
0089                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
0090                              (PLL960_N_VAL_20)),
0091                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
0092                 .pll_reg_3 = 0x0,
0093             },
0094             .afepll_info_g = {
0095                 .pll_reg = cpu_to_le16(0x9f0),
0096             }
0097         },
0098         .switch_clk_g = {
0099             .switch_clk_info = 0x0,
0100             .bbp_lmac_clk_reg_val = 0x0,
0101             .umac_clock_reg_config = 0x0,
0102             .qspi_uart_clock_reg_config = 0x0
0103         }
0104     } },
0105     .buckboost_wakeup_cnt = 0x0,
0106     .pmu_wakeup_wait = 0x0,
0107     .shutdown_wait_time = 0x0,
0108     .pmu_slp_clkout_sel = 0x0,
0109     .wdt_prog_value = 0x0,
0110     .wdt_soc_rst_delay = 0x0,
0111     .dcdc_operation_mode = 0x0,
0112     .soc_reset_wait_cnt = 0x0,
0113     .waiting_time_at_fresh_sleep = 0x0,
0114     .max_threshold_to_avoid_sleep = 0x0,
0115     .beacon_resedue_alg_en = 0,
0116 };
0117 
0118 static struct bootup_params boot_params_40 = {
0119     .magic_number = cpu_to_le16(0x5aa5),
0120     .crystal_good_time = 0x0,
0121     .valid = cpu_to_le32(VALID_40),
0122     .reserved_for_valids = 0x0,
0123     .bootup_mode_info = 0x0,
0124     .digital_loop_back_params = 0x0,
0125     .rtls_timestamp_en = 0x0,
0126     .host_spi_intr_cfg = 0x0,
0127     .device_clk_info = {{
0128         .pll_config_g = {
0129             .tapll_info_g = {
0130                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
0131                              (TA_PLL_M_VAL_40)),
0132                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
0133             },
0134             .pll960_info_g = {
0135                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
0136                              (PLL960_N_VAL_40)),
0137                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
0138                 .pll_reg_3 = 0x0,
0139             },
0140             .afepll_info_g = {
0141                 .pll_reg = cpu_to_le16(0x9f0),
0142             }
0143         },
0144         .switch_clk_g = {
0145             .switch_clk_info = cpu_to_le16(0x09),
0146             .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
0147             .umac_clock_reg_config = cpu_to_le16(0x48),
0148             .qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
0149         }
0150     },
0151     {
0152         .pll_config_g = {
0153             .tapll_info_g = {
0154                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
0155                              (TA_PLL_M_VAL_40)),
0156                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
0157             },
0158             .pll960_info_g = {
0159                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
0160                              (PLL960_N_VAL_40)),
0161                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
0162                 .pll_reg_3 = 0x0,
0163             },
0164             .afepll_info_g = {
0165                 .pll_reg = cpu_to_le16(0x9f0),
0166             }
0167         },
0168         .switch_clk_g = {
0169             .switch_clk_info = 0x0,
0170             .bbp_lmac_clk_reg_val = 0x0,
0171             .umac_clock_reg_config = 0x0,
0172             .qspi_uart_clock_reg_config = 0x0
0173         }
0174     },
0175     {
0176         .pll_config_g = {
0177             .tapll_info_g = {
0178                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
0179                              (TA_PLL_M_VAL_40)),
0180                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
0181             },
0182             .pll960_info_g = {
0183                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
0184                              (PLL960_N_VAL_40)),
0185                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
0186                 .pll_reg_3 = 0x0,
0187             },
0188             .afepll_info_g = {
0189                 .pll_reg = cpu_to_le16(0x9f0),
0190             }
0191         },
0192         .switch_clk_g = {
0193             .switch_clk_info = 0x0,
0194             .bbp_lmac_clk_reg_val = 0x0,
0195             .umac_clock_reg_config = 0x0,
0196             .qspi_uart_clock_reg_config = 0x0
0197         }
0198     } },
0199     .buckboost_wakeup_cnt = 0x0,
0200     .pmu_wakeup_wait = 0x0,
0201     .shutdown_wait_time = 0x0,
0202     .pmu_slp_clkout_sel = 0x0,
0203     .wdt_prog_value = 0x0,
0204     .wdt_soc_rst_delay = 0x0,
0205     .dcdc_operation_mode = 0x0,
0206     .soc_reset_wait_cnt = 0x0,
0207     .waiting_time_at_fresh_sleep = 0x0,
0208     .max_threshold_to_avoid_sleep = 0x0,
0209     .beacon_resedue_alg_en = 0,
0210 };
0211 
0212 static struct bootup_params_9116 boot_params_9116_20 = {
0213     .magic_number = cpu_to_le16(LOADED_TOKEN),
0214     .valid = cpu_to_le32(VALID_20),
0215     .device_clk_info_9116 = {{
0216         .pll_config_9116_g = {
0217             .pll_ctrl_set_reg = cpu_to_le16(0xd518),
0218             .pll_ctrl_clr_reg = cpu_to_le16(0x2ae7),
0219             .pll_modem_conig_reg = cpu_to_le16(0x2000),
0220             .soc_clk_config_reg = cpu_to_le16(0x0c18),
0221             .adc_dac_strm1_config_reg = cpu_to_le16(0x1100),
0222             .adc_dac_strm2_config_reg = cpu_to_le16(0x6600),
0223         },
0224         .switch_clk_9116_g = {
0225             .switch_clk_info =
0226                 cpu_to_le32((RSI_SWITCH_TASS_CLK |
0227                         RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG |
0228                         RSI_SWITCH_BBP_LMAC_CLK_REG)),
0229             .tass_clock_reg = cpu_to_le32(0x083C0503),
0230             .wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042001),
0231             .zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x02010001),
0232             .bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b),
0233         }
0234     },
0235     },
0236 };
0237 
0238 static struct bootup_params_9116 boot_params_9116_40 = {
0239     .magic_number = cpu_to_le16(LOADED_TOKEN),
0240     .valid = cpu_to_le32(VALID_40),
0241     .device_clk_info_9116 = {{
0242         .pll_config_9116_g = {
0243             .pll_ctrl_set_reg = cpu_to_le16(0xd518),
0244             .pll_ctrl_clr_reg = cpu_to_le16(0x2ae7),
0245             .pll_modem_conig_reg = cpu_to_le16(0x3000),
0246             .soc_clk_config_reg = cpu_to_le16(0x0c18),
0247             .adc_dac_strm1_config_reg = cpu_to_le16(0x0000),
0248             .adc_dac_strm2_config_reg = cpu_to_le16(0x6600),
0249         },
0250         .switch_clk_9116_g = {
0251             .switch_clk_info =
0252                 cpu_to_le32((RSI_SWITCH_TASS_CLK |
0253                         RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG |
0254                         RSI_SWITCH_BBP_LMAC_CLK_REG |
0255                         RSI_MODEM_CLK_160MHZ)),
0256             .tass_clock_reg = cpu_to_le32(0x083C0503),
0257             .wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042002),
0258             .zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x04010002),
0259             .bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b),
0260         }
0261     },
0262     },
0263 };
0264 
0265 static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
0266 
0267 /**
0268  * rsi_set_default_parameters() - This function sets default parameters.
0269  * @common: Pointer to the driver private structure.
0270  *
0271  * Return: none
0272  */
0273 static void rsi_set_default_parameters(struct rsi_common *common)
0274 {
0275     common->band = NL80211_BAND_2GHZ;
0276     common->channel_width = BW_20MHZ;
0277     common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
0278     common->channel = 1;
0279     memset(&common->rate_config, 0, sizeof(common->rate_config));
0280     common->fsm_state = FSM_CARD_NOT_READY;
0281     common->iface_down = true;
0282     common->endpoint = EP_2GHZ_20MHZ;
0283     common->driver_mode = 1; /* End to end mode */
0284     common->lp_ps_handshake_mode = 0; /* Default no handShake mode*/
0285     common->ulp_ps_handshake_mode = 2; /* Default PKT handShake mode*/
0286     common->rf_power_val = 0; /* Default 1.9V */
0287     common->wlan_rf_power_mode = 0;
0288     common->obm_ant_sel_val = 2;
0289     common->beacon_interval = RSI_BEACON_INTERVAL;
0290     common->dtim_cnt = RSI_DTIM_COUNT;
0291     common->w9116_features.pll_mode = 0x0;
0292     common->w9116_features.rf_type = 1;
0293     common->w9116_features.wireless_mode = 0;
0294     common->w9116_features.enable_ppe = 0;
0295     common->w9116_features.afe_type = 1;
0296     common->w9116_features.dpd = 0;
0297     common->w9116_features.sifs_tx_enable = 0;
0298     common->w9116_features.ps_options = 0;
0299 }
0300 
0301 void init_bgscan_params(struct rsi_common *common)
0302 {
0303     memset((u8 *)&common->bgscan, 0, sizeof(struct rsi_bgscan_params));
0304     common->bgscan.bgscan_threshold = RSI_DEF_BGSCAN_THRLD;
0305     common->bgscan.roam_threshold = RSI_DEF_ROAM_THRLD;
0306     common->bgscan.bgscan_periodicity = RSI_BGSCAN_PERIODICITY;
0307     common->bgscan.num_bgscan_channels = 0;
0308     common->bgscan.two_probe = 1;
0309     common->bgscan.active_scan_duration = RSI_ACTIVE_SCAN_TIME;
0310     common->bgscan.passive_scan_duration = RSI_PASSIVE_SCAN_TIME;
0311 }
0312 
0313 /**
0314  * rsi_set_contention_vals() - This function sets the contention values for the
0315  *                 backoff procedure.
0316  * @common: Pointer to the driver private structure.
0317  *
0318  * Return: None.
0319  */
0320 static void rsi_set_contention_vals(struct rsi_common *common)
0321 {
0322     u8 ii = 0;
0323 
0324     for (; ii < NUM_EDCA_QUEUES; ii++) {
0325         common->tx_qinfo[ii].wme_params =
0326             (((common->edca_params[ii].cw_min / 2) +
0327               (common->edca_params[ii].aifs)) *
0328               WMM_SHORT_SLOT_TIME + SIFS_DURATION);
0329         common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
0330         common->tx_qinfo[ii].pkt_contended = 0;
0331     }
0332 }
0333 
0334 /**
0335  * rsi_send_internal_mgmt_frame() - This function sends management frames to
0336  *                  firmware.Also schedules packet to queue
0337  *                  for transmission.
0338  * @common: Pointer to the driver private structure.
0339  * @skb: Pointer to the socket buffer structure.
0340  *
0341  * Return: 0 on success, -1 on failure.
0342  */
0343 static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
0344                     struct sk_buff *skb)
0345 {
0346     struct skb_info *tx_params;
0347     struct rsi_cmd_desc *desc;
0348 
0349     if (skb == NULL) {
0350         rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
0351         return -ENOMEM;
0352     }
0353     desc = (struct rsi_cmd_desc *)skb->data;
0354     desc->desc_dword0.len_qno |= cpu_to_le16(DESC_IMMEDIATE_WAKEUP);
0355     skb->priority = MGMT_SOFT_Q;
0356     tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
0357     tx_params->flags |= INTERNAL_MGMT_PKT;
0358     skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
0359     rsi_set_event(&common->tx_thread.event);
0360     return 0;
0361 }
0362 
0363 /**
0364  * rsi_load_radio_caps() - This function is used to send radio capabilities
0365  *             values to firmware.
0366  * @common: Pointer to the driver private structure.
0367  *
0368  * Return: 0 on success, corresponding negative error code on failure.
0369  */
0370 static int rsi_load_radio_caps(struct rsi_common *common)
0371 {
0372     struct rsi_radio_caps *radio_caps;
0373     struct rsi_hw *adapter = common->priv;
0374     u16 inx = 0;
0375     u8 ii;
0376     u8 radio_id = 0;
0377     u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
0378               0xf0, 0xf0, 0xf0, 0xf0,
0379               0xf0, 0xf0, 0xf0, 0xf0,
0380               0xf0, 0xf0, 0xf0, 0xf0,
0381               0xf0, 0xf0, 0xf0, 0xf0};
0382     struct sk_buff *skb;
0383     u16 frame_len = sizeof(struct rsi_radio_caps);
0384 
0385     rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
0386 
0387     skb = dev_alloc_skb(frame_len);
0388 
0389     if (!skb) {
0390         rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
0391             __func__);
0392         return -ENOMEM;
0393     }
0394 
0395     memset(skb->data, 0, frame_len);
0396     radio_caps = (struct rsi_radio_caps *)skb->data;
0397 
0398     radio_caps->desc_dword0.frame_type = RADIO_CAPABILITIES;
0399     radio_caps->channel_num = common->channel;
0400     radio_caps->rf_model = RSI_RF_TYPE;
0401 
0402     radio_caps->radio_cfg_info = RSI_LMAC_CLOCK_80MHZ;
0403     if (common->channel_width == BW_40MHZ) {
0404         radio_caps->radio_cfg_info |= RSI_ENABLE_40MHZ;
0405 
0406         if (common->fsm_state == FSM_MAC_INIT_DONE) {
0407             struct ieee80211_hw *hw = adapter->hw;
0408             struct ieee80211_conf *conf = &hw->conf;
0409 
0410             if (conf_is_ht40_plus(conf)) {
0411                 radio_caps->ppe_ack_rate =
0412                     cpu_to_le16(LOWER_20_ENABLE |
0413                             (LOWER_20_ENABLE >> 12));
0414             } else if (conf_is_ht40_minus(conf)) {
0415                 radio_caps->ppe_ack_rate =
0416                     cpu_to_le16(UPPER_20_ENABLE |
0417                             (UPPER_20_ENABLE >> 12));
0418             } else {
0419                 radio_caps->ppe_ack_rate =
0420                     cpu_to_le16((BW_40MHZ << 12) |
0421                             FULL40M_ENABLE);
0422             }
0423         }
0424     }
0425     radio_caps->radio_info |= radio_id;
0426 
0427     if (adapter->device_model == RSI_DEV_9116 &&
0428         common->channel_width == BW_20MHZ)
0429         radio_caps->radio_cfg_info &= ~0x3;
0430 
0431     radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE);
0432     radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE);
0433     radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE);
0434     radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE);
0435     radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE);
0436     radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE);
0437 
0438     for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
0439         radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
0440         radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
0441         radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
0442         radio_caps->qos_params[ii].txop_q = 0;
0443     }
0444 
0445     for (ii = 0; ii < NUM_EDCA_QUEUES; ii++) {
0446         if (common->edca_params[ii].cw_max > 0) {
0447             radio_caps->qos_params[ii].cont_win_min_q =
0448                 cpu_to_le16(common->edca_params[ii].cw_min);
0449             radio_caps->qos_params[ii].cont_win_max_q =
0450                 cpu_to_le16(common->edca_params[ii].cw_max);
0451             radio_caps->qos_params[ii].aifsn_val_q =
0452                 cpu_to_le16(common->edca_params[ii].aifs << 8);
0453             radio_caps->qos_params[ii].txop_q =
0454                 cpu_to_le16(common->edca_params[ii].txop);
0455         }
0456     }
0457 
0458     radio_caps->qos_params[BROADCAST_HW_Q].txop_q = cpu_to_le16(0xffff);
0459     radio_caps->qos_params[MGMT_HW_Q].txop_q = 0;
0460     radio_caps->qos_params[BEACON_HW_Q].txop_q = cpu_to_le16(0xffff);
0461 
0462     memcpy(&common->rate_pwr[0], &gc[0], 40);
0463     for (ii = 0; ii < 20; ii++)
0464         radio_caps->gcpd_per_rate[inx++] =
0465             cpu_to_le16(common->rate_pwr[ii]  & 0x00FF);
0466 
0467     rsi_set_len_qno(&radio_caps->desc_dword0.len_qno,
0468             (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
0469 
0470     skb_put(skb, frame_len);
0471 
0472     return rsi_send_internal_mgmt_frame(common, skb);
0473 }
0474 
0475 /**
0476  * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
0477  * @common: Pointer to the driver private structure.
0478  * @msg: Pointer to received packet.
0479  * @msg_len: Length of the received packet.
0480  *
0481  * Return: 0 on success, -1 on failure.
0482  */
0483 static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
0484                 u8 *msg,
0485                 s32 msg_len)
0486 {
0487     struct rsi_hw *adapter = common->priv;
0488     struct ieee80211_tx_info *info;
0489     struct skb_info *rx_params;
0490     u8 pad_bytes = msg[4];
0491     struct sk_buff *skb;
0492 
0493     if (!adapter->sc_nvifs)
0494         return -ENOLINK;
0495 
0496     msg_len -= pad_bytes;
0497     if (msg_len <= 0) {
0498         rsi_dbg(MGMT_RX_ZONE,
0499             "%s: Invalid rx msg of len = %d\n",
0500             __func__, msg_len);
0501         return -EINVAL;
0502     }
0503 
0504     skb = dev_alloc_skb(msg_len);
0505     if (!skb)
0506         return -ENOMEM;
0507 
0508     skb_put_data(skb,
0509              (u8 *)(msg + FRAME_DESC_SZ + pad_bytes),
0510              msg_len);
0511 
0512     info = IEEE80211_SKB_CB(skb);
0513     rx_params = (struct skb_info *)info->driver_data;
0514     rx_params->rssi = rsi_get_rssi(msg);
0515     rx_params->channel = rsi_get_channel(msg);
0516     rsi_indicate_pkt_to_os(common, skb);
0517 
0518     return 0;
0519 }
0520 
0521 /**
0522  * rsi_hal_send_sta_notify_frame() - This function sends the station notify
0523  *                   frame to firmware.
0524  * @common: Pointer to the driver private structure.
0525  * @opmode: Operating mode of device.
0526  * @notify_event: Notification about station connection.
0527  * @bssid: bssid.
0528  * @qos_enable: Qos is enabled.
0529  * @aid: Aid (unique for all STA).
0530  * @sta_id: station id.
0531  * @vif: Pointer to the ieee80211_vif structure.
0532  *
0533  * Return: status: 0 on success, corresponding negative error code on failure.
0534  */
0535 int rsi_hal_send_sta_notify_frame(struct rsi_common *common, enum opmode opmode,
0536                   u8 notify_event, const unsigned char *bssid,
0537                   u8 qos_enable, u16 aid, u16 sta_id,
0538                   struct ieee80211_vif *vif)
0539 {
0540     struct sk_buff *skb = NULL;
0541     struct rsi_peer_notify *peer_notify;
0542     u16 vap_id = ((struct vif_priv *)vif->drv_priv)->vap_id;
0543     int status;
0544     u16 frame_len = sizeof(struct rsi_peer_notify);
0545 
0546     rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
0547 
0548     skb = dev_alloc_skb(frame_len);
0549 
0550     if (!skb) {
0551         rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
0552             __func__);
0553         return -ENOMEM;
0554     }
0555 
0556     memset(skb->data, 0, frame_len);
0557     peer_notify = (struct rsi_peer_notify *)skb->data;
0558 
0559     if (opmode == RSI_OPMODE_STA)
0560         peer_notify->command = cpu_to_le16(PEER_TYPE_AP << 1);
0561     else if (opmode == RSI_OPMODE_AP)
0562         peer_notify->command = cpu_to_le16(PEER_TYPE_STA << 1);
0563 
0564     switch (notify_event) {
0565     case STA_CONNECTED:
0566         peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
0567         break;
0568     case STA_DISCONNECTED:
0569         peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
0570         break;
0571     default:
0572         break;
0573     }
0574 
0575     peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
0576     ether_addr_copy(peer_notify->mac_addr, bssid);
0577     peer_notify->mpdu_density = cpu_to_le16(RSI_MPDU_DENSITY);
0578     peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
0579 
0580     rsi_set_len_qno(&peer_notify->desc.desc_dword0.len_qno,
0581             (frame_len - FRAME_DESC_SZ),
0582             RSI_WIFI_MGMT_Q);
0583     peer_notify->desc.desc_dword0.frame_type = PEER_NOTIFY;
0584     peer_notify->desc.desc_dword3.qid_tid = sta_id;
0585     peer_notify->desc.desc_dword3.sta_id = vap_id;
0586 
0587     skb_put(skb, frame_len);
0588 
0589     status = rsi_send_internal_mgmt_frame(common, skb);
0590 
0591     if ((vif->type == NL80211_IFTYPE_STATION) &&
0592         (!status && qos_enable)) {
0593         rsi_set_contention_vals(common);
0594         status = rsi_load_radio_caps(common);
0595     }
0596     return status;
0597 }
0598 
0599 /**
0600  * rsi_send_aggregation_params_frame() - This function sends the ampdu
0601  *                   indication frame to firmware.
0602  * @common: Pointer to the driver private structure.
0603  * @tid: traffic identifier.
0604  * @ssn: ssn.
0605  * @buf_size: buffer size.
0606  * @event: notification about station connection.
0607  * @sta_id: station id.
0608  *
0609  * Return: 0 on success, corresponding negative error code on failure.
0610  */
0611 int rsi_send_aggregation_params_frame(struct rsi_common *common,
0612                       u16 tid,
0613                       u16 ssn,
0614                       u8 buf_size,
0615                       u8 event,
0616                       u8 sta_id)
0617 {
0618     struct sk_buff *skb = NULL;
0619     struct rsi_aggr_params *aggr_params;
0620     u16 frame_len = sizeof(struct rsi_aggr_params);
0621 
0622     skb = dev_alloc_skb(frame_len);
0623 
0624     if (!skb) {
0625         rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
0626             __func__);
0627         return -ENOMEM;
0628     }
0629 
0630     memset(skb->data, 0, frame_len);
0631     aggr_params = (struct rsi_aggr_params *)skb->data;
0632 
0633     rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
0634 
0635     rsi_set_len_qno(&aggr_params->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
0636     aggr_params->desc_dword0.frame_type = AMPDU_IND;
0637 
0638     aggr_params->aggr_params = tid & RSI_AGGR_PARAMS_TID_MASK;
0639     aggr_params->peer_id = sta_id;
0640     if (event == STA_TX_ADDBA_DONE) {
0641         aggr_params->seq_start = cpu_to_le16(ssn);
0642         aggr_params->baw_size = cpu_to_le16(buf_size);
0643         aggr_params->aggr_params |= RSI_AGGR_PARAMS_START;
0644     } else if (event == STA_RX_ADDBA_DONE) {
0645         aggr_params->seq_start = cpu_to_le16(ssn);
0646         aggr_params->aggr_params |= (RSI_AGGR_PARAMS_START |
0647                          RSI_AGGR_PARAMS_RX_AGGR);
0648     } else if (event == STA_RX_DELBA) {
0649         aggr_params->aggr_params |= RSI_AGGR_PARAMS_RX_AGGR;
0650     }
0651 
0652     skb_put(skb, frame_len);
0653 
0654     return rsi_send_internal_mgmt_frame(common, skb);
0655 }
0656 
0657 /**
0658  * rsi_program_bb_rf() - This function starts base band and RF programming.
0659  *           This is called after initial configurations are done.
0660  * @common: Pointer to the driver private structure.
0661  *
0662  * Return: 0 on success, corresponding negative error code on failure.
0663  */
0664 static int rsi_program_bb_rf(struct rsi_common *common)
0665 {
0666     struct sk_buff *skb;
0667     struct rsi_bb_rf_prog *bb_rf_prog;
0668     u16 frame_len = sizeof(struct rsi_bb_rf_prog);
0669 
0670     rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
0671 
0672     skb = dev_alloc_skb(frame_len);
0673     if (!skb) {
0674         rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
0675             __func__);
0676         return -ENOMEM;
0677     }
0678 
0679     memset(skb->data, 0, frame_len);
0680     bb_rf_prog = (struct rsi_bb_rf_prog *)skb->data;
0681 
0682     rsi_set_len_qno(&bb_rf_prog->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
0683     bb_rf_prog->desc_dword0.frame_type = BBP_PROG_IN_TA;
0684     bb_rf_prog->endpoint = common->endpoint;
0685     bb_rf_prog->rf_power_mode = common->wlan_rf_power_mode;
0686 
0687     if (common->rf_reset) {
0688         bb_rf_prog->flags =  cpu_to_le16(RF_RESET_ENABLE);
0689         rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
0690             __func__);
0691         common->rf_reset = 0;
0692     }
0693     common->bb_rf_prog_count = 1;
0694     bb_rf_prog->flags |= cpu_to_le16(PUT_BBP_RESET | BBP_REG_WRITE |
0695                      (RSI_RF_TYPE << 4));
0696     skb_put(skb, frame_len);
0697 
0698     return rsi_send_internal_mgmt_frame(common, skb);
0699 }
0700 
0701 /**
0702  * rsi_set_vap_capabilities() - This function send vap capability to firmware.
0703  * @common: Pointer to the driver private structure.
0704  * @mode: Operating mode of device.
0705  * @mac_addr: MAC address
0706  * @vap_id: Rate information - offset and mask
0707  * @vap_status: VAP status - ADD, DELETE or UPDATE
0708  *
0709  * Return: 0 on success, corresponding negative error code on failure.
0710  */
0711 int rsi_set_vap_capabilities(struct rsi_common *common,
0712                  enum opmode mode,
0713                  u8 *mac_addr,
0714                  u8 vap_id,
0715                  u8 vap_status)
0716 {
0717     struct sk_buff *skb = NULL;
0718     struct rsi_vap_caps *vap_caps;
0719     struct rsi_hw *adapter = common->priv;
0720     struct ieee80211_hw *hw = adapter->hw;
0721     struct ieee80211_conf *conf = &hw->conf;
0722     u16 frame_len = sizeof(struct rsi_vap_caps);
0723 
0724     rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
0725 
0726     skb = dev_alloc_skb(frame_len);
0727     if (!skb) {
0728         rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
0729             __func__);
0730         return -ENOMEM;
0731     }
0732 
0733     memset(skb->data, 0, frame_len);
0734     vap_caps = (struct rsi_vap_caps *)skb->data;
0735 
0736     rsi_set_len_qno(&vap_caps->desc_dword0.len_qno,
0737             (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
0738     vap_caps->desc_dword0.frame_type = VAP_CAPABILITIES;
0739     vap_caps->status = vap_status;
0740     vap_caps->vif_type = mode;
0741     vap_caps->channel_bw = common->channel_width;
0742     vap_caps->vap_id = vap_id;
0743     vap_caps->radioid_macid = ((common->mac_id & 0xf) << 4) |
0744                    (common->radio_id & 0xf);
0745 
0746     memcpy(vap_caps->mac_addr, mac_addr, IEEE80211_ADDR_LEN);
0747     vap_caps->keep_alive_period = cpu_to_le16(90);
0748     vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
0749 
0750     vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
0751 
0752     if (common->band == NL80211_BAND_5GHZ) {
0753         vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_6);
0754         vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6);
0755     } else {
0756         vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_1);
0757         vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_1);
0758     }
0759     if (conf_is_ht40(conf)) {
0760         if (conf_is_ht40_minus(conf))
0761             vap_caps->ctrl_rate_flags =
0762                 cpu_to_le16(UPPER_20_ENABLE);
0763         else if (conf_is_ht40_plus(conf))
0764             vap_caps->ctrl_rate_flags =
0765                 cpu_to_le16(LOWER_20_ENABLE);
0766         else
0767             vap_caps->ctrl_rate_flags =
0768                 cpu_to_le16(FULL40M_ENABLE);
0769     }
0770 
0771     vap_caps->default_data_rate = 0;
0772     vap_caps->beacon_interval = cpu_to_le16(common->beacon_interval);
0773     vap_caps->dtim_period = cpu_to_le16(common->dtim_cnt);
0774 
0775     skb_put(skb, frame_len);
0776 
0777     return rsi_send_internal_mgmt_frame(common, skb);
0778 }
0779 
0780 /**
0781  * rsi_hal_load_key() - This function is used to load keys within the firmware.
0782  * @common: Pointer to the driver private structure.
0783  * @data: Pointer to the key data.
0784  * @key_len: Key length to be loaded.
0785  * @key_type: Type of key: GROUP/PAIRWISE.
0786  * @key_id: Key index.
0787  * @cipher: Type of cipher used.
0788  * @sta_id: Station id.
0789  * @vif: Pointer to the ieee80211_vif structure.
0790  *
0791  * Return: 0 on success, -1 on failure.
0792  */
0793 int rsi_hal_load_key(struct rsi_common *common,
0794              u8 *data,
0795              u16 key_len,
0796              u8 key_type,
0797              u8 key_id,
0798              u32 cipher,
0799              s16 sta_id,
0800              struct ieee80211_vif *vif)
0801 {
0802     struct sk_buff *skb = NULL;
0803     struct rsi_set_key *set_key;
0804     u16 key_descriptor = 0;
0805     u16 frame_len = sizeof(struct rsi_set_key);
0806 
0807     rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
0808 
0809     skb = dev_alloc_skb(frame_len);
0810     if (!skb) {
0811         rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
0812             __func__);
0813         return -ENOMEM;
0814     }
0815 
0816     memset(skb->data, 0, frame_len);
0817     set_key = (struct rsi_set_key *)skb->data;
0818 
0819     if (key_type == RSI_GROUP_KEY) {
0820         key_descriptor = RSI_KEY_TYPE_BROADCAST;
0821         if (vif->type == NL80211_IFTYPE_AP)
0822             key_descriptor |= RSI_KEY_MODE_AP;
0823     }
0824     if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
0825         (cipher == WLAN_CIPHER_SUITE_WEP104)) {
0826         key_id = 0;
0827         key_descriptor |= RSI_WEP_KEY;
0828         if (key_len >= 13)
0829             key_descriptor |= RSI_WEP_KEY_104;
0830     } else if (cipher != KEY_TYPE_CLEAR) {
0831         key_descriptor |= RSI_CIPHER_WPA;
0832         if (cipher == WLAN_CIPHER_SUITE_TKIP)
0833             key_descriptor |= RSI_CIPHER_TKIP;
0834     }
0835     key_descriptor |= RSI_PROTECT_DATA_FRAMES;
0836     key_descriptor |= (key_id << RSI_KEY_ID_OFFSET);
0837 
0838     rsi_set_len_qno(&set_key->desc_dword0.len_qno,
0839             (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
0840     set_key->desc_dword0.frame_type = SET_KEY_REQ;
0841     set_key->key_desc = cpu_to_le16(key_descriptor);
0842     set_key->sta_id = sta_id;
0843 
0844     if (data) {
0845         if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
0846             (cipher == WLAN_CIPHER_SUITE_WEP104)) {
0847             memcpy(&set_key->key[key_id][1], data, key_len * 2);
0848         } else {
0849             memcpy(&set_key->key[0][0], data, key_len);
0850         }
0851         memcpy(set_key->tx_mic_key, &data[16], 8);
0852         memcpy(set_key->rx_mic_key, &data[24], 8);
0853     } else {
0854         memset(&set_key[FRAME_DESC_SZ], 0, frame_len - FRAME_DESC_SZ);
0855     }
0856 
0857     skb_put(skb, frame_len);
0858 
0859     return rsi_send_internal_mgmt_frame(common, skb);
0860 }
0861 
0862 /*
0863  * This function sends the common device configuration parameters to device.
0864  * This frame includes the useful information to make device works on
0865  * specific operating mode.
0866  */
0867 static int rsi_send_common_dev_params(struct rsi_common *common)
0868 {
0869     struct sk_buff *skb;
0870     u16 frame_len;
0871     struct rsi_config_vals *dev_cfgs;
0872 
0873     frame_len = sizeof(struct rsi_config_vals);
0874 
0875     rsi_dbg(MGMT_TX_ZONE, "Sending common device config params\n");
0876     skb = dev_alloc_skb(frame_len);
0877     if (!skb) {
0878         rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
0879         return -ENOMEM;
0880     }
0881 
0882     memset(skb->data, 0, frame_len);
0883 
0884     dev_cfgs = (struct rsi_config_vals *)skb->data;
0885     memset(dev_cfgs, 0, (sizeof(struct rsi_config_vals)));
0886 
0887     rsi_set_len_qno(&dev_cfgs->len_qno, (frame_len - FRAME_DESC_SZ),
0888             RSI_COEX_Q);
0889     dev_cfgs->pkt_type = COMMON_DEV_CONFIG;
0890 
0891     dev_cfgs->lp_ps_handshake = common->lp_ps_handshake_mode;
0892     dev_cfgs->ulp_ps_handshake = common->ulp_ps_handshake_mode;
0893 
0894     dev_cfgs->unused_ulp_gpio = RSI_UNUSED_ULP_GPIO_BITMAP;
0895     dev_cfgs->unused_soc_gpio_bitmap =
0896                 cpu_to_le32(RSI_UNUSED_SOC_GPIO_BITMAP);
0897 
0898     dev_cfgs->opermode = common->oper_mode;
0899     dev_cfgs->wlan_rf_pwr_mode = common->wlan_rf_power_mode;
0900     dev_cfgs->driver_mode = common->driver_mode;
0901     dev_cfgs->region_code = NL80211_DFS_FCC;
0902     dev_cfgs->antenna_sel_val = common->obm_ant_sel_val;
0903 
0904     skb_put(skb, frame_len);
0905 
0906     return rsi_send_internal_mgmt_frame(common, skb);
0907 }
0908 
0909 /*
0910  * rsi_load_bootup_params() - This function send bootup params to the firmware.
0911  * @common: Pointer to the driver private structure.
0912  *
0913  * Return: 0 on success, corresponding error code on failure.
0914  */
0915 static int rsi_load_bootup_params(struct rsi_common *common)
0916 {
0917     struct sk_buff *skb;
0918     struct rsi_boot_params *boot_params;
0919 
0920     rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
0921     skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
0922     if (!skb) {
0923         rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
0924             __func__);
0925         return -ENOMEM;
0926     }
0927 
0928     memset(skb->data, 0, sizeof(struct rsi_boot_params));
0929     boot_params = (struct rsi_boot_params *)skb->data;
0930 
0931     rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
0932 
0933     if (common->channel_width == BW_40MHZ) {
0934         memcpy(&boot_params->bootup_params,
0935                &boot_params_40,
0936                sizeof(struct bootup_params));
0937         rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
0938             UMAC_CLK_40BW);
0939         boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
0940     } else {
0941         memcpy(&boot_params->bootup_params,
0942                &boot_params_20,
0943                sizeof(struct bootup_params));
0944         if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
0945             boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
0946             rsi_dbg(MGMT_TX_ZONE,
0947                 "%s: Packet 20MHZ <=== %d\n", __func__,
0948                 UMAC_CLK_20BW);
0949         } else {
0950             boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
0951             rsi_dbg(MGMT_TX_ZONE,
0952                 "%s: Packet 20MHZ <=== %d\n", __func__,
0953                 UMAC_CLK_40MHZ);
0954         }
0955     }
0956 
0957     /**
0958      * Bit{0:11} indicates length of the Packet
0959      * Bit{12:15} indicates host queue number
0960      */
0961     boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
0962                     (RSI_WIFI_MGMT_Q << 12));
0963     boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
0964 
0965     skb_put(skb, sizeof(struct rsi_boot_params));
0966 
0967     return rsi_send_internal_mgmt_frame(common, skb);
0968 }
0969 
0970 static int rsi_load_9116_bootup_params(struct rsi_common *common)
0971 {
0972     struct sk_buff *skb;
0973     struct rsi_boot_params_9116 *boot_params;
0974 
0975     rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
0976 
0977     skb = dev_alloc_skb(sizeof(struct rsi_boot_params_9116));
0978     if (!skb)
0979         return -ENOMEM;
0980     memset(skb->data, 0, sizeof(struct rsi_boot_params));
0981     boot_params = (struct rsi_boot_params_9116 *)skb->data;
0982 
0983     if (common->channel_width == BW_40MHZ) {
0984         memcpy(&boot_params->bootup_params,
0985                &boot_params_9116_40,
0986                sizeof(struct bootup_params_9116));
0987         rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
0988             UMAC_CLK_40BW);
0989         boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40BW);
0990     } else {
0991         memcpy(&boot_params->bootup_params,
0992                &boot_params_9116_20,
0993                sizeof(struct bootup_params_9116));
0994         if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
0995             boot_params->umac_clk = cpu_to_le16(UMAC_CLK_20BW);
0996             rsi_dbg(MGMT_TX_ZONE,
0997                 "%s: Packet 20MHZ <=== %d\n", __func__,
0998                 UMAC_CLK_20BW);
0999         } else {
1000             boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40MHZ);
1001             rsi_dbg(MGMT_TX_ZONE,
1002                 "%s: Packet 20MHZ <=== %d\n", __func__,
1003                 UMAC_CLK_40MHZ);
1004         }
1005     }
1006     rsi_set_len_qno(&boot_params->desc_dword0.len_qno,
1007             sizeof(struct bootup_params_9116), RSI_WIFI_MGMT_Q);
1008     boot_params->desc_dword0.frame_type = BOOTUP_PARAMS_REQUEST;
1009     skb_put(skb, sizeof(struct rsi_boot_params_9116));
1010 
1011     return rsi_send_internal_mgmt_frame(common, skb);
1012 }
1013 
1014 /**
1015  * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
1016  *            internal management frame to indicate it to firmware.
1017  * @common: Pointer to the driver private structure.
1018  *
1019  * Return: 0 on success, corresponding error code on failure.
1020  */
1021 static int rsi_send_reset_mac(struct rsi_common *common)
1022 {
1023     struct sk_buff *skb;
1024     struct rsi_mac_frame *mgmt_frame;
1025 
1026     rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
1027 
1028     skb = dev_alloc_skb(FRAME_DESC_SZ);
1029     if (!skb) {
1030         rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1031             __func__);
1032         return -ENOMEM;
1033     }
1034 
1035     memset(skb->data, 0, FRAME_DESC_SZ);
1036     mgmt_frame = (struct rsi_mac_frame *)skb->data;
1037 
1038     mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1039     mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
1040     mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
1041 
1042 #define RSI_9116_DEF_TA_AGGR    3
1043     if (common->priv->device_model == RSI_DEV_9116)
1044         mgmt_frame->desc_word[3] |=
1045             cpu_to_le16(RSI_9116_DEF_TA_AGGR << 8);
1046 
1047     skb_put(skb, FRAME_DESC_SZ);
1048 
1049     return rsi_send_internal_mgmt_frame(common, skb);
1050 }
1051 
1052 /**
1053  * rsi_band_check() - This function programs the band
1054  * @common: Pointer to the driver private structure.
1055  * @curchan: Pointer to the current channel structure.
1056  *
1057  * Return: 0 on success, corresponding error code on failure.
1058  */
1059 int rsi_band_check(struct rsi_common *common,
1060            struct ieee80211_channel *curchan)
1061 {
1062     struct rsi_hw *adapter = common->priv;
1063     struct ieee80211_hw *hw = adapter->hw;
1064     u8 prev_bw = common->channel_width;
1065     u8 prev_ep = common->endpoint;
1066     int status = 0;
1067 
1068     if (common->band != curchan->band) {
1069         common->rf_reset = 1;
1070         common->band = curchan->band;
1071     }
1072 
1073     if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) ||
1074         (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20))
1075         common->channel_width = BW_20MHZ;
1076     else
1077         common->channel_width = BW_40MHZ;
1078 
1079     if (common->band == NL80211_BAND_2GHZ) {
1080         if (common->channel_width)
1081             common->endpoint = EP_2GHZ_40MHZ;
1082         else
1083             common->endpoint = EP_2GHZ_20MHZ;
1084     } else {
1085         if (common->channel_width)
1086             common->endpoint = EP_5GHZ_40MHZ;
1087         else
1088             common->endpoint = EP_5GHZ_20MHZ;
1089     }
1090 
1091     if (common->endpoint != prev_ep) {
1092         status = rsi_program_bb_rf(common);
1093         if (status)
1094             return status;
1095     }
1096 
1097     if (common->channel_width != prev_bw) {
1098         if (adapter->device_model == RSI_DEV_9116)
1099             status = rsi_load_9116_bootup_params(common);
1100         else
1101             status = rsi_load_bootup_params(common);
1102         if (status)
1103             return status;
1104 
1105         status = rsi_load_radio_caps(common);
1106         if (status)
1107             return status;
1108     }
1109 
1110     return status;
1111 }
1112 
1113 /**
1114  * rsi_set_channel() - This function programs the channel.
1115  * @common: Pointer to the driver private structure.
1116  * @channel: Channel value to be set.
1117  *
1118  * Return: 0 on success, corresponding error code on failure.
1119  */
1120 int rsi_set_channel(struct rsi_common *common,
1121             struct ieee80211_channel *channel)
1122 {
1123     struct sk_buff *skb = NULL;
1124     struct rsi_chan_config *chan_cfg;
1125     u16 frame_len = sizeof(struct rsi_chan_config);
1126 
1127     rsi_dbg(MGMT_TX_ZONE,
1128         "%s: Sending scan req frame\n", __func__);
1129 
1130     skb = dev_alloc_skb(frame_len);
1131     if (!skb) {
1132         rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1133             __func__);
1134         return -ENOMEM;
1135     }
1136 
1137     if (!channel) {
1138         dev_kfree_skb(skb);
1139         return 0;
1140     }
1141     memset(skb->data, 0, frame_len);
1142     chan_cfg = (struct rsi_chan_config *)skb->data;
1143 
1144     rsi_set_len_qno(&chan_cfg->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1145     chan_cfg->desc_dword0.frame_type = SCAN_REQUEST;
1146     chan_cfg->channel_number = channel->hw_value;
1147     chan_cfg->antenna_gain_offset_2g = channel->max_antenna_gain;
1148     chan_cfg->antenna_gain_offset_5g = channel->max_antenna_gain;
1149     chan_cfg->region_rftype = (RSI_RF_TYPE & 0xf) << 4;
1150 
1151     if ((channel->flags & IEEE80211_CHAN_NO_IR) ||
1152         (channel->flags & IEEE80211_CHAN_RADAR)) {
1153         chan_cfg->antenna_gain_offset_2g |= RSI_CHAN_RADAR;
1154     } else {
1155         if (common->tx_power < channel->max_power)
1156             chan_cfg->tx_power = cpu_to_le16(common->tx_power);
1157         else
1158             chan_cfg->tx_power = cpu_to_le16(channel->max_power);
1159     }
1160     chan_cfg->region_rftype |= (common->priv->dfs_region & 0xf);
1161 
1162     if (common->channel_width == BW_40MHZ)
1163         chan_cfg->channel_width = 0x1;
1164 
1165     common->channel = channel->hw_value;
1166 
1167     skb_put(skb, frame_len);
1168 
1169     return rsi_send_internal_mgmt_frame(common, skb);
1170 }
1171 
1172 /**
1173  * rsi_send_radio_params_update() - This function sends the radio
1174  *              parameters update to device
1175  * @common: Pointer to the driver private structure.
1176  *
1177  * Return: 0 on success, corresponding error code on failure.
1178  */
1179 int rsi_send_radio_params_update(struct rsi_common *common)
1180 {
1181     struct rsi_mac_frame *cmd_frame;
1182     struct sk_buff *skb = NULL;
1183 
1184     rsi_dbg(MGMT_TX_ZONE,
1185         "%s: Sending Radio Params update frame\n", __func__);
1186 
1187     skb = dev_alloc_skb(FRAME_DESC_SZ);
1188     if (!skb) {
1189         rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1190             __func__);
1191         return -ENOMEM;
1192     }
1193 
1194     memset(skb->data, 0, FRAME_DESC_SZ);
1195     cmd_frame = (struct rsi_mac_frame *)skb->data;
1196 
1197     cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1198     cmd_frame->desc_word[1] = cpu_to_le16(RADIO_PARAMS_UPDATE);
1199     cmd_frame->desc_word[3] = cpu_to_le16(BIT(0));
1200 
1201     cmd_frame->desc_word[3] |= cpu_to_le16(common->tx_power << 8);
1202 
1203     skb_put(skb, FRAME_DESC_SZ);
1204 
1205     return rsi_send_internal_mgmt_frame(common, skb);
1206 }
1207 
1208 /* This function programs the threshold. */
1209 int rsi_send_vap_dynamic_update(struct rsi_common *common)
1210 {
1211     struct sk_buff *skb;
1212     struct rsi_dynamic_s *dynamic_frame;
1213 
1214     rsi_dbg(MGMT_TX_ZONE,
1215         "%s: Sending vap update indication frame\n", __func__);
1216 
1217     skb = dev_alloc_skb(sizeof(struct rsi_dynamic_s));
1218     if (!skb)
1219         return -ENOMEM;
1220 
1221     memset(skb->data, 0, sizeof(struct rsi_dynamic_s));
1222     dynamic_frame = (struct rsi_dynamic_s *)skb->data;
1223     rsi_set_len_qno(&dynamic_frame->desc_dword0.len_qno,
1224             sizeof(dynamic_frame->frame_body), RSI_WIFI_MGMT_Q);
1225 
1226     dynamic_frame->desc_dword0.frame_type = VAP_DYNAMIC_UPDATE;
1227     dynamic_frame->desc_dword2.pkt_info =
1228                     cpu_to_le32(common->rts_threshold);
1229 
1230     if (common->wow_flags & RSI_WOW_ENABLED) {
1231         /* Beacon miss threshold */
1232         dynamic_frame->desc_dword3.token =
1233                     cpu_to_le16(RSI_BCN_MISS_THRESHOLD);
1234         dynamic_frame->frame_body.keep_alive_period =
1235                     cpu_to_le16(RSI_WOW_KEEPALIVE);
1236     } else {
1237         dynamic_frame->frame_body.keep_alive_period =
1238                     cpu_to_le16(RSI_DEF_KEEPALIVE);
1239     }
1240 
1241     dynamic_frame->desc_dword3.sta_id = 0; /* vap id */
1242 
1243     skb_put(skb, sizeof(struct rsi_dynamic_s));
1244 
1245     return rsi_send_internal_mgmt_frame(common, skb);
1246 }
1247 
1248 /**
1249  * rsi_compare() - This function is used to compare two integers
1250  * @a: pointer to the first integer
1251  * @b: pointer to the second integer
1252  *
1253  * Return: 0 if both are equal, -1 if the first is smaller, else 1
1254  */
1255 static int rsi_compare(const void *a, const void *b)
1256 {
1257     u16 _a = *(const u16 *)(a);
1258     u16 _b = *(const u16 *)(b);
1259 
1260     if (_a > _b)
1261         return -1;
1262 
1263     if (_a < _b)
1264         return 1;
1265 
1266     return 0;
1267 }
1268 
1269 /**
1270  * rsi_map_rates() - This function is used to map selected rates to hw rates.
1271  * @rate: The standard rate to be mapped.
1272  * @offset: Offset that will be returned.
1273  *
1274  * Return: 0 if it is a mcs rate, else 1
1275  */
1276 static bool rsi_map_rates(u16 rate, int *offset)
1277 {
1278     int kk;
1279     for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
1280         if (rate == mcs[kk]) {
1281             *offset = kk;
1282             return false;
1283         }
1284     }
1285 
1286     for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
1287         if (rate == rsi_rates[kk].bitrate / 5) {
1288             *offset = kk;
1289             break;
1290         }
1291     }
1292     return true;
1293 }
1294 
1295 /**
1296  * rsi_send_auto_rate_request() - This function is to set rates for connection
1297  *                and send autorate request to firmware.
1298  * @common: Pointer to the driver private structure.
1299  * @sta: mac80211 station.
1300  * @sta_id: station id.
1301  * @vif: Pointer to the ieee80211_vif structure.
1302  *
1303  * Return: 0 on success, corresponding error code on failure.
1304  */
1305 static int rsi_send_auto_rate_request(struct rsi_common *common,
1306                       struct ieee80211_sta *sta,
1307                       u16 sta_id,
1308                       struct ieee80211_vif *vif)
1309 {
1310     struct sk_buff *skb;
1311     struct rsi_auto_rate *auto_rate;
1312     int ii = 0, jj = 0, kk = 0;
1313     struct ieee80211_hw *hw = common->priv->hw;
1314     u8 band = hw->conf.chandef.chan->band;
1315     u8 num_supported_rates = 0;
1316     u8 rate_table_offset, rate_offset = 0;
1317     u32 rate_bitmap, configured_rates;
1318     u16 *selected_rates, min_rate;
1319     bool is_ht = false, is_sgi = false;
1320     u16 frame_len = sizeof(struct rsi_auto_rate);
1321 
1322     rsi_dbg(MGMT_TX_ZONE,
1323         "%s: Sending auto rate request frame\n", __func__);
1324 
1325     skb = dev_alloc_skb(frame_len);
1326     if (!skb) {
1327         rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1328             __func__);
1329         return -ENOMEM;
1330     }
1331 
1332     memset(skb->data, 0, frame_len);
1333     selected_rates = kzalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
1334     if (!selected_rates) {
1335         rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
1336             __func__);
1337         dev_kfree_skb(skb);
1338         return -ENOMEM;
1339     }
1340 
1341     auto_rate = (struct rsi_auto_rate *)skb->data;
1342 
1343     auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
1344     auto_rate->collision_tolerance = cpu_to_le16(3);
1345     auto_rate->failure_limit = cpu_to_le16(3);
1346     auto_rate->initial_boundary = cpu_to_le16(3);
1347     auto_rate->max_threshold_limt = cpu_to_le16(27);
1348 
1349     auto_rate->desc.desc_dword0.frame_type = AUTO_RATE_IND;
1350 
1351     if (common->channel_width == BW_40MHZ)
1352         auto_rate->desc.desc_dword3.qid_tid = BW_40MHZ;
1353     auto_rate->desc.desc_dword3.sta_id = sta_id;
1354 
1355     if (vif->type == NL80211_IFTYPE_STATION) {
1356         rate_bitmap = common->bitrate_mask[band];
1357         is_ht = common->vif_info[0].is_ht;
1358         is_sgi = common->vif_info[0].sgi;
1359     } else {
1360         rate_bitmap = sta->deflink.supp_rates[band];
1361         is_ht = sta->deflink.ht_cap.ht_supported;
1362         if ((sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ||
1363             (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40))
1364             is_sgi = true;
1365     }
1366 
1367     /* Limit to any rates administratively configured by cfg80211 */
1368     configured_rates = common->rate_config[band].configured_mask ?: 0xffffffff;
1369     rate_bitmap &= configured_rates;
1370 
1371     if (band == NL80211_BAND_2GHZ) {
1372         if ((rate_bitmap == 0) && (is_ht))
1373             min_rate = RSI_RATE_MCS0;
1374         else
1375             min_rate = RSI_RATE_1;
1376         rate_table_offset = 0;
1377     } else {
1378         if ((rate_bitmap == 0) && (is_ht))
1379             min_rate = RSI_RATE_MCS0;
1380         else
1381             min_rate = RSI_RATE_6;
1382         rate_table_offset = 4;
1383     }
1384 
1385     for (ii = 0, jj = 0;
1386          ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) {
1387         if (rate_bitmap & BIT(ii)) {
1388             selected_rates[jj++] =
1389             (rsi_rates[ii + rate_table_offset].bitrate / 5);
1390             rate_offset++;
1391         }
1392     }
1393     num_supported_rates = jj;
1394 
1395     if (is_ht) {
1396         for (ii = 0; ii < ARRAY_SIZE(mcs); ii++) {
1397             if (configured_rates & BIT(ii + ARRAY_SIZE(rsi_rates))) {
1398                 selected_rates[jj++] = mcs[ii];
1399                 num_supported_rates++;
1400                 rate_offset++;
1401             }
1402         }
1403     }
1404 
1405     sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1406 
1407     /* mapping the rates to RSI rates */
1408     for (ii = 0; ii < jj; ii++) {
1409         if (rsi_map_rates(selected_rates[ii], &kk)) {
1410             auto_rate->supported_rates[ii] =
1411                 cpu_to_le16(rsi_rates[kk].hw_value);
1412         } else {
1413             auto_rate->supported_rates[ii] =
1414                 cpu_to_le16(rsi_mcsrates[kk]);
1415         }
1416     }
1417 
1418     /* loading HT rates in the bottom half of the auto rate table */
1419     if (is_ht) {
1420         for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1421              ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1422             if (is_sgi || conf_is_ht40(&common->priv->hw->conf))
1423                 auto_rate->supported_rates[ii++] =
1424                     cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1425             else
1426                 auto_rate->supported_rates[ii++] =
1427                     cpu_to_le16(rsi_mcsrates[kk]);
1428             auto_rate->supported_rates[ii] =
1429                 cpu_to_le16(rsi_mcsrates[kk--]);
1430         }
1431 
1432         for (; ii < (RSI_TBL_SZ - 1); ii++) {
1433             auto_rate->supported_rates[ii] =
1434                 cpu_to_le16(rsi_mcsrates[0]);
1435         }
1436     }
1437 
1438     for (; ii < RSI_TBL_SZ; ii++)
1439         auto_rate->supported_rates[ii] = cpu_to_le16(min_rate);
1440 
1441     auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1442     auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1443     num_supported_rates *= 2;
1444 
1445     rsi_set_len_qno(&auto_rate->desc.desc_dword0.len_qno,
1446             (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1447 
1448     skb_put(skb, frame_len);
1449     kfree(selected_rates);
1450 
1451     return rsi_send_internal_mgmt_frame(common, skb);
1452 }
1453 
1454 /**
1455  * rsi_inform_bss_status() - This function informs about bss status with the
1456  *               help of sta notify params by sending an internal
1457  *               management frame to firmware.
1458  * @common: Pointer to the driver private structure.
1459  * @opmode: Operating mode of device.
1460  * @status: Bss status type.
1461  * @addr: Address of the register.
1462  * @qos_enable: Qos is enabled.
1463  * @aid: Aid (unique for all STAs).
1464  * @sta: mac80211 station.
1465  * @sta_id: station id.
1466  * @assoc_cap: capabilities.
1467  * @vif: Pointer to the ieee80211_vif structure.
1468  *
1469  * Return: None.
1470  */
1471 void rsi_inform_bss_status(struct rsi_common *common,
1472                enum opmode opmode,
1473                u8 status,
1474                const u8 *addr,
1475                u8 qos_enable,
1476                u16 aid,
1477                struct ieee80211_sta *sta,
1478                u16 sta_id,
1479                u16 assoc_cap,
1480                struct ieee80211_vif *vif)
1481 {
1482     if (status) {
1483         if (opmode == RSI_OPMODE_STA)
1484             common->hw_data_qs_blocked = true;
1485         rsi_hal_send_sta_notify_frame(common,
1486                           opmode,
1487                           STA_CONNECTED,
1488                           addr,
1489                           qos_enable,
1490                           aid, sta_id,
1491                           vif);
1492         if (!common->rate_config[common->band].fixed_enabled)
1493             rsi_send_auto_rate_request(common, sta, sta_id, vif);
1494         if (opmode == RSI_OPMODE_STA &&
1495             !(assoc_cap & WLAN_CAPABILITY_PRIVACY) &&
1496             !rsi_send_block_unblock_frame(common, false))
1497             common->hw_data_qs_blocked = false;
1498     } else {
1499         if (opmode == RSI_OPMODE_STA)
1500             common->hw_data_qs_blocked = true;
1501 
1502         if (!(common->wow_flags & RSI_WOW_ENABLED))
1503             rsi_hal_send_sta_notify_frame(common, opmode,
1504                               STA_DISCONNECTED, addr,
1505                               qos_enable, aid, sta_id,
1506                               vif);
1507         if (opmode == RSI_OPMODE_STA)
1508             rsi_send_block_unblock_frame(common, true);
1509     }
1510 }
1511 
1512 /**
1513  * rsi_eeprom_read() - This function sends a frame to read the mac address
1514  *             from the eeprom.
1515  * @common: Pointer to the driver private structure.
1516  *
1517  * Return: 0 on success, -1 on failure.
1518  */
1519 static int rsi_eeprom_read(struct rsi_common *common)
1520 {
1521     struct rsi_eeprom_read_frame *mgmt_frame;
1522     struct rsi_hw *adapter = common->priv;
1523     struct sk_buff *skb;
1524 
1525     rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1526 
1527     skb = dev_alloc_skb(FRAME_DESC_SZ);
1528     if (!skb) {
1529         rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1530             __func__);
1531         return -ENOMEM;
1532     }
1533 
1534     memset(skb->data, 0, FRAME_DESC_SZ);
1535     mgmt_frame = (struct rsi_eeprom_read_frame *)skb->data;
1536 
1537     /* FrameType */
1538     rsi_set_len_qno(&mgmt_frame->len_qno, 0, RSI_WIFI_MGMT_Q);
1539     mgmt_frame->pkt_type = EEPROM_READ;
1540 
1541     /* Number of bytes to read */
1542     mgmt_frame->pkt_info =
1543         cpu_to_le32((adapter->eeprom.length << RSI_EEPROM_LEN_OFFSET) &
1544                 RSI_EEPROM_LEN_MASK);
1545     mgmt_frame->pkt_info |= cpu_to_le32((3 << RSI_EEPROM_HDR_SIZE_OFFSET) &
1546                         RSI_EEPROM_HDR_SIZE_MASK);
1547 
1548     /* Address to read */
1549     mgmt_frame->eeprom_offset = cpu_to_le32(adapter->eeprom.offset);
1550 
1551     skb_put(skb, FRAME_DESC_SZ);
1552 
1553     return rsi_send_internal_mgmt_frame(common, skb);
1554 }
1555 
1556 /**
1557  * rsi_send_block_unblock_frame() - This function sends a frame to block/unblock
1558  *                                  data queues in the firmware
1559  *
1560  * @common: Pointer to the driver private structure.
1561  * @block_event: Event block if true, unblock if false
1562  * returns 0 on success, -1 on failure.
1563  */
1564 int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event)
1565 {
1566     struct rsi_block_unblock_data *mgmt_frame;
1567     struct sk_buff *skb;
1568 
1569     rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__);
1570 
1571     skb = dev_alloc_skb(FRAME_DESC_SZ);
1572     if (!skb) {
1573         rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1574             __func__);
1575         return -ENOMEM;
1576     }
1577 
1578     memset(skb->data, 0, FRAME_DESC_SZ);
1579     mgmt_frame = (struct rsi_block_unblock_data *)skb->data;
1580 
1581     rsi_set_len_qno(&mgmt_frame->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1582     mgmt_frame->desc_dword0.frame_type = BLOCK_HW_QUEUE;
1583     mgmt_frame->host_quiet_info = QUIET_INFO_VALID;
1584 
1585     if (block_event) {
1586         rsi_dbg(INFO_ZONE, "blocking the data qs\n");
1587         mgmt_frame->block_q_bitmap = cpu_to_le16(0xf);
1588         mgmt_frame->block_q_bitmap |= cpu_to_le16(0xf << 4);
1589     } else {
1590         rsi_dbg(INFO_ZONE, "unblocking the data qs\n");
1591         mgmt_frame->unblock_q_bitmap = cpu_to_le16(0xf);
1592         mgmt_frame->unblock_q_bitmap |= cpu_to_le16(0xf << 4);
1593     }
1594 
1595     skb_put(skb, FRAME_DESC_SZ);
1596 
1597     return rsi_send_internal_mgmt_frame(common, skb);
1598 }
1599 
1600 /**
1601  * rsi_send_rx_filter_frame() - Sends a frame to filter the RX packets
1602  *
1603  * @common: Pointer to the driver private structure.
1604  * @rx_filter_word: Flags of filter packets
1605  *
1606  * Returns 0 on success, -1 on failure.
1607  */
1608 int rsi_send_rx_filter_frame(struct rsi_common *common, u16 rx_filter_word)
1609 {
1610     struct rsi_mac_frame *cmd_frame;
1611     struct sk_buff *skb;
1612 
1613     rsi_dbg(MGMT_TX_ZONE, "Sending RX filter frame\n");
1614 
1615     skb = dev_alloc_skb(FRAME_DESC_SZ);
1616     if (!skb) {
1617         rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1618             __func__);
1619         return -ENOMEM;
1620     }
1621 
1622     memset(skb->data, 0, FRAME_DESC_SZ);
1623     cmd_frame = (struct rsi_mac_frame *)skb->data;
1624 
1625     cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1626     cmd_frame->desc_word[1] = cpu_to_le16(SET_RX_FILTER);
1627     cmd_frame->desc_word[4] = cpu_to_le16(rx_filter_word);
1628 
1629     skb_put(skb, FRAME_DESC_SZ);
1630 
1631     return rsi_send_internal_mgmt_frame(common, skb);
1632 }
1633 
1634 int rsi_send_ps_request(struct rsi_hw *adapter, bool enable,
1635             struct ieee80211_vif *vif)
1636 {
1637     struct rsi_common *common = adapter->priv;
1638     struct rsi_request_ps *ps;
1639     struct rsi_ps_info *ps_info;
1640     struct sk_buff *skb;
1641     int frame_len = sizeof(*ps);
1642 
1643     skb = dev_alloc_skb(frame_len);
1644     if (!skb)
1645         return -ENOMEM;
1646     memset(skb->data, 0, frame_len);
1647 
1648     ps = (struct rsi_request_ps *)skb->data;
1649     ps_info = &adapter->ps_info;
1650 
1651     rsi_set_len_qno(&ps->desc.desc_dword0.len_qno,
1652             (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1653     ps->desc.desc_dword0.frame_type = WAKEUP_SLEEP_REQUEST;
1654     if (enable) {
1655         ps->ps_sleep.enable = RSI_PS_ENABLE;
1656         ps->desc.desc_dword3.token = cpu_to_le16(RSI_SLEEP_REQUEST);
1657     } else {
1658         ps->ps_sleep.enable = RSI_PS_DISABLE;
1659         ps->desc.desc_dword0.len_qno |= cpu_to_le16(RSI_PS_DISABLE_IND);
1660         ps->desc.desc_dword3.token = cpu_to_le16(RSI_WAKEUP_REQUEST);
1661     }
1662 
1663     ps->ps_uapsd_acs = common->uapsd_bitmap;
1664 
1665     ps->ps_sleep.sleep_type = ps_info->sleep_type;
1666     ps->ps_sleep.num_bcns_per_lis_int =
1667         cpu_to_le16(ps_info->num_bcns_per_lis_int);
1668     ps->ps_sleep.sleep_duration =
1669         cpu_to_le32(ps_info->deep_sleep_wakeup_period);
1670 
1671     if (vif->cfg.assoc)
1672         ps->ps_sleep.connected_sleep = RSI_CONNECTED_SLEEP;
1673     else
1674         ps->ps_sleep.connected_sleep = RSI_DEEP_SLEEP;
1675 
1676     ps->ps_listen_interval = cpu_to_le32(ps_info->listen_interval);
1677     ps->ps_dtim_interval_duration =
1678         cpu_to_le32(ps_info->dtim_interval_duration);
1679 
1680     if (ps_info->listen_interval > ps_info->dtim_interval_duration)
1681         ps->ps_listen_interval = cpu_to_le32(RSI_PS_DISABLE);
1682 
1683     ps->ps_num_dtim_intervals = cpu_to_le16(ps_info->num_dtims_per_sleep);
1684     skb_put(skb, frame_len);
1685 
1686     return rsi_send_internal_mgmt_frame(common, skb);
1687 }
1688 
1689 static int rsi_send_w9116_features(struct rsi_common *common)
1690 {
1691     struct rsi_wlan_9116_features *w9116_features;
1692     u16 frame_len = sizeof(struct rsi_wlan_9116_features);
1693     struct sk_buff *skb;
1694 
1695     rsi_dbg(MGMT_TX_ZONE,
1696         "%s: Sending wlan 9116 features\n", __func__);
1697 
1698     skb = dev_alloc_skb(frame_len);
1699     if (!skb)
1700         return -ENOMEM;
1701     memset(skb->data, 0, frame_len);
1702 
1703     w9116_features = (struct rsi_wlan_9116_features *)skb->data;
1704 
1705     w9116_features->pll_mode = common->w9116_features.pll_mode;
1706     w9116_features->rf_type = common->w9116_features.rf_type;
1707     w9116_features->wireless_mode = common->w9116_features.wireless_mode;
1708     w9116_features->enable_ppe = common->w9116_features.enable_ppe;
1709     w9116_features->afe_type = common->w9116_features.afe_type;
1710     if (common->w9116_features.dpd)
1711         w9116_features->feature_enable |= cpu_to_le32(RSI_DPD);
1712     if (common->w9116_features.sifs_tx_enable)
1713         w9116_features->feature_enable |=
1714             cpu_to_le32(RSI_SIFS_TX_ENABLE);
1715     if (common->w9116_features.ps_options & RSI_DUTY_CYCLING)
1716         w9116_features->feature_enable |= cpu_to_le32(RSI_DUTY_CYCLING);
1717     if (common->w9116_features.ps_options & RSI_END_OF_FRAME)
1718         w9116_features->feature_enable |= cpu_to_le32(RSI_END_OF_FRAME);
1719     w9116_features->feature_enable |=
1720         cpu_to_le32((common->w9116_features.ps_options & ~0x3) << 2);
1721 
1722     rsi_set_len_qno(&w9116_features->desc.desc_dword0.len_qno,
1723             frame_len - FRAME_DESC_SZ, RSI_WIFI_MGMT_Q);
1724     w9116_features->desc.desc_dword0.frame_type = FEATURES_ENABLE;
1725     skb_put(skb, frame_len);
1726 
1727     return rsi_send_internal_mgmt_frame(common, skb);
1728 }
1729 
1730 /**
1731  * rsi_set_antenna() - This function send antenna configuration request
1732  *             to device
1733  *
1734  * @common: Pointer to the driver private structure.
1735  * @antenna: bitmap for tx antenna selection
1736  *
1737  * Return: 0 on Success, negative error code on failure
1738  */
1739 int rsi_set_antenna(struct rsi_common *common, u8 antenna)
1740 {
1741     struct rsi_ant_sel_frame *ant_sel_frame;
1742     struct sk_buff *skb;
1743 
1744     skb = dev_alloc_skb(FRAME_DESC_SZ);
1745     if (!skb) {
1746         rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1747             __func__);
1748         return -ENOMEM;
1749     }
1750 
1751     memset(skb->data, 0, FRAME_DESC_SZ);
1752 
1753     ant_sel_frame = (struct rsi_ant_sel_frame *)skb->data;
1754     ant_sel_frame->desc_dword0.frame_type = ANT_SEL_FRAME;
1755     ant_sel_frame->sub_frame_type = ANTENNA_SEL_TYPE;
1756     ant_sel_frame->ant_value = cpu_to_le16(antenna & ANTENNA_MASK_VALUE);
1757     rsi_set_len_qno(&ant_sel_frame->desc_dword0.len_qno,
1758             0, RSI_WIFI_MGMT_Q);
1759     skb_put(skb, FRAME_DESC_SZ);
1760 
1761     return rsi_send_internal_mgmt_frame(common, skb);
1762 }
1763 
1764 static int rsi_send_beacon(struct rsi_common *common)
1765 {
1766     struct sk_buff *skb = NULL;
1767     u8 dword_align_bytes = 0;
1768 
1769     skb = dev_alloc_skb(MAX_MGMT_PKT_SIZE);
1770     if (!skb)
1771         return -ENOMEM;
1772 
1773     memset(skb->data, 0, MAX_MGMT_PKT_SIZE);
1774 
1775     dword_align_bytes = ((unsigned long)skb->data & 0x3f);
1776     if (dword_align_bytes)
1777         skb_pull(skb, (64 - dword_align_bytes));
1778     if (rsi_prepare_beacon(common, skb)) {
1779         rsi_dbg(ERR_ZONE, "Failed to prepare beacon\n");
1780         dev_kfree_skb(skb);
1781         return -EINVAL;
1782     }
1783     skb_queue_tail(&common->tx_queue[MGMT_BEACON_Q], skb);
1784     rsi_set_event(&common->tx_thread.event);
1785     rsi_dbg(DATA_TX_ZONE, "%s: Added to beacon queue\n", __func__);
1786 
1787     return 0;
1788 }
1789 
1790 #ifdef CONFIG_PM
1791 int rsi_send_wowlan_request(struct rsi_common *common, u16 flags,
1792                 u16 sleep_status)
1793 {
1794     struct rsi_wowlan_req *cmd_frame;
1795     struct sk_buff *skb;
1796     u8 length;
1797 
1798     rsi_dbg(ERR_ZONE, "%s: Sending wowlan request frame\n", __func__);
1799 
1800     length = sizeof(*cmd_frame);
1801     skb = dev_alloc_skb(length);
1802     if (!skb)
1803         return -ENOMEM;
1804     memset(skb->data, 0, length);
1805     cmd_frame = (struct rsi_wowlan_req *)skb->data;
1806 
1807     rsi_set_len_qno(&cmd_frame->desc.desc_dword0.len_qno,
1808             (length - FRAME_DESC_SZ),
1809             RSI_WIFI_MGMT_Q);
1810     cmd_frame->desc.desc_dword0.frame_type = WOWLAN_CONFIG_PARAMS;
1811     cmd_frame->host_sleep_status = sleep_status;
1812     if (common->secinfo.gtk_cipher)
1813         flags |= RSI_WOW_GTK_REKEY;
1814     if (sleep_status)
1815         cmd_frame->wow_flags = flags;
1816     rsi_dbg(INFO_ZONE, "Host_Sleep_Status : %d Flags : %d\n",
1817         cmd_frame->host_sleep_status, cmd_frame->wow_flags);
1818 
1819     skb_put(skb, length);
1820 
1821     return rsi_send_internal_mgmt_frame(common, skb);
1822 }
1823 #endif
1824 
1825 int rsi_send_bgscan_params(struct rsi_common *common, int enable)
1826 {
1827     struct rsi_bgscan_params *params = &common->bgscan;
1828     struct cfg80211_scan_request *scan_req = common->hwscan;
1829     struct rsi_bgscan_config *bgscan;
1830     struct sk_buff *skb;
1831     u16 frame_len = sizeof(*bgscan);
1832     u8 i;
1833 
1834     rsi_dbg(MGMT_TX_ZONE, "%s: Sending bgscan params frame\n", __func__);
1835 
1836     skb = dev_alloc_skb(frame_len);
1837     if (!skb)
1838         return -ENOMEM;
1839     memset(skb->data, 0, frame_len);
1840 
1841     bgscan = (struct rsi_bgscan_config *)skb->data;
1842     rsi_set_len_qno(&bgscan->desc_dword0.len_qno,
1843             (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1844     bgscan->desc_dword0.frame_type = BG_SCAN_PARAMS;
1845     bgscan->bgscan_threshold = cpu_to_le16(params->bgscan_threshold);
1846     bgscan->roam_threshold = cpu_to_le16(params->roam_threshold);
1847     if (enable)
1848         bgscan->bgscan_periodicity =
1849             cpu_to_le16(params->bgscan_periodicity);
1850     bgscan->active_scan_duration =
1851             cpu_to_le16(params->active_scan_duration);
1852     bgscan->passive_scan_duration =
1853             cpu_to_le16(params->passive_scan_duration);
1854     bgscan->two_probe = params->two_probe;
1855 
1856     bgscan->num_bgscan_channels = scan_req->n_channels;
1857     for (i = 0; i < bgscan->num_bgscan_channels; i++)
1858         bgscan->channels2scan[i] =
1859             cpu_to_le16(scan_req->channels[i]->hw_value);
1860 
1861     skb_put(skb, frame_len);
1862 
1863     return rsi_send_internal_mgmt_frame(common, skb);
1864 }
1865 
1866 /* This function sends the probe request to be used by firmware in
1867  * background scan
1868  */
1869 int rsi_send_bgscan_probe_req(struct rsi_common *common,
1870                   struct ieee80211_vif *vif)
1871 {
1872     struct cfg80211_scan_request *scan_req = common->hwscan;
1873     struct rsi_bgscan_probe *bgscan;
1874     struct sk_buff *skb;
1875     struct sk_buff *probereq_skb;
1876     u16 frame_len = sizeof(*bgscan);
1877     size_t ssid_len = 0;
1878     u8 *ssid = NULL;
1879 
1880     rsi_dbg(MGMT_TX_ZONE,
1881         "%s: Sending bgscan probe req frame\n", __func__);
1882 
1883     if (common->priv->sc_nvifs <= 0)
1884         return -ENODEV;
1885 
1886     if (scan_req->n_ssids) {
1887         ssid = scan_req->ssids[0].ssid;
1888         ssid_len = scan_req->ssids[0].ssid_len;
1889     }
1890 
1891     skb = dev_alloc_skb(frame_len + MAX_BGSCAN_PROBE_REQ_LEN);
1892     if (!skb)
1893         return -ENOMEM;
1894     memset(skb->data, 0, frame_len + MAX_BGSCAN_PROBE_REQ_LEN);
1895 
1896     bgscan = (struct rsi_bgscan_probe *)skb->data;
1897     bgscan->desc_dword0.frame_type = BG_SCAN_PROBE_REQ;
1898     bgscan->flags = cpu_to_le16(HOST_BG_SCAN_TRIG);
1899     if (common->band == NL80211_BAND_5GHZ) {
1900         bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_6);
1901         bgscan->def_chan = cpu_to_le16(40);
1902     } else {
1903         bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_1);
1904         bgscan->def_chan = cpu_to_le16(11);
1905     }
1906     bgscan->channel_scan_time = cpu_to_le16(RSI_CHANNEL_SCAN_TIME);
1907 
1908     probereq_skb = ieee80211_probereq_get(common->priv->hw, vif->addr, ssid,
1909                           ssid_len, scan_req->ie_len);
1910     if (!probereq_skb) {
1911         dev_kfree_skb(skb);
1912         return -ENOMEM;
1913     }
1914 
1915     memcpy(&skb->data[frame_len], probereq_skb->data, probereq_skb->len);
1916 
1917     bgscan->probe_req_length = cpu_to_le16(probereq_skb->len);
1918 
1919     rsi_set_len_qno(&bgscan->desc_dword0.len_qno,
1920             (frame_len - FRAME_DESC_SZ + probereq_skb->len),
1921             RSI_WIFI_MGMT_Q);
1922 
1923     skb_put(skb, frame_len + probereq_skb->len);
1924 
1925     dev_kfree_skb(probereq_skb);
1926 
1927     return rsi_send_internal_mgmt_frame(common, skb);
1928 }
1929 
1930 /**
1931  * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1932  * @common: Pointer to the driver private structure.
1933  * @msg: Pointer to received packet.
1934  *
1935  * Return: 0 on success, -1 on failure.
1936  */
1937 static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1938                       u8 *msg)
1939 {
1940     struct rsi_hw *adapter = common->priv;
1941     u8 sub_type = (msg[15] & 0xff);
1942     u16 msg_len = ((u16 *)msg)[0] & 0xfff;
1943     u8 offset;
1944 
1945     switch (sub_type) {
1946     case BOOTUP_PARAMS_REQUEST:
1947         rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1948             __func__);
1949         if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1950             if (adapter->device_model == RSI_DEV_9116) {
1951                 common->band = NL80211_BAND_5GHZ;
1952                 common->num_supp_bands = 2;
1953 
1954                 if (rsi_send_reset_mac(common))
1955                     goto out;
1956                 else
1957                     common->fsm_state = FSM_RESET_MAC_SENT;
1958             } else {
1959                 adapter->eeprom.length =
1960                     (IEEE80211_ADDR_LEN +
1961                      WLAN_MAC_MAGIC_WORD_LEN +
1962                      WLAN_HOST_MODE_LEN);
1963                 adapter->eeprom.offset = WLAN_MAC_EEPROM_ADDR;
1964                 if (rsi_eeprom_read(common)) {
1965                     common->fsm_state = FSM_CARD_NOT_READY;
1966                     goto out;
1967                 }
1968                 common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1969             }
1970         } else {
1971             rsi_dbg(INFO_ZONE,
1972                 "%s: Received bootup params cfm in %d state\n",
1973                  __func__, common->fsm_state);
1974             return 0;
1975         }
1976         break;
1977 
1978     case EEPROM_READ:
1979         rsi_dbg(FSM_ZONE, "EEPROM READ confirm received\n");
1980         if (msg_len <= 0) {
1981             rsi_dbg(FSM_ZONE,
1982                 "%s: [EEPROM_READ] Invalid len %d\n",
1983                 __func__, msg_len);
1984             goto out;
1985         }
1986         if (msg[16] != MAGIC_WORD) {
1987             rsi_dbg(FSM_ZONE,
1988                 "%s: [EEPROM_READ] Invalid token\n", __func__);
1989             common->fsm_state = FSM_CARD_NOT_READY;
1990             goto out;
1991         }
1992         if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1993             offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN +
1994                   WLAN_MAC_MAGIC_WORD_LEN);
1995             memcpy(common->mac_addr, &msg[offset], ETH_ALEN);
1996             adapter->eeprom.length =
1997                 ((WLAN_MAC_MAGIC_WORD_LEN + 3) & (~3));
1998             adapter->eeprom.offset = WLAN_EEPROM_RFTYPE_ADDR;
1999             if (rsi_eeprom_read(common)) {
2000                 rsi_dbg(ERR_ZONE,
2001                     "%s: Failed reading RF band\n",
2002                     __func__);
2003                 common->fsm_state = FSM_CARD_NOT_READY;
2004                 goto out;
2005             }
2006             common->fsm_state = FSM_EEPROM_READ_RF_TYPE;
2007         } else if (common->fsm_state == FSM_EEPROM_READ_RF_TYPE) {
2008             if ((msg[17] & 0x3) == 0x3) {
2009                 rsi_dbg(INIT_ZONE, "Dual band supported\n");
2010                 common->band = NL80211_BAND_5GHZ;
2011                 common->num_supp_bands = 2;
2012             } else if ((msg[17] & 0x3) == 0x1) {
2013                 rsi_dbg(INIT_ZONE,
2014                     "Only 2.4Ghz band supported\n");
2015                 common->band = NL80211_BAND_2GHZ;
2016                 common->num_supp_bands = 1;
2017             }
2018             if (rsi_send_reset_mac(common))
2019                 goto out;
2020             common->fsm_state = FSM_RESET_MAC_SENT;
2021         } else {
2022             rsi_dbg(ERR_ZONE, "%s: Invalid EEPROM read type\n",
2023                 __func__);
2024             return 0;
2025         }
2026         break;
2027 
2028     case RESET_MAC_REQ:
2029         if (common->fsm_state == FSM_RESET_MAC_SENT) {
2030             rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
2031                 __func__);
2032 
2033             if (rsi_load_radio_caps(common))
2034                 goto out;
2035             else
2036                 common->fsm_state = FSM_RADIO_CAPS_SENT;
2037         } else {
2038             rsi_dbg(ERR_ZONE,
2039                 "%s: Received reset mac cfm in %d state\n",
2040                  __func__, common->fsm_state);
2041             return 0;
2042         }
2043         break;
2044 
2045     case RADIO_CAPABILITIES:
2046         if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
2047             common->rf_reset = 1;
2048             if (adapter->device_model == RSI_DEV_9116 &&
2049                 rsi_send_w9116_features(common)) {
2050                 rsi_dbg(ERR_ZONE,
2051                     "Failed to send 9116 features\n");
2052                 goto out;
2053             }
2054             if (rsi_program_bb_rf(common)) {
2055                 goto out;
2056             } else {
2057                 common->fsm_state = FSM_BB_RF_PROG_SENT;
2058                 rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
2059                     __func__);
2060             }
2061         } else {
2062             rsi_dbg(INFO_ZONE,
2063                 "%s: Received radio caps cfm in %d state\n",
2064                  __func__, common->fsm_state);
2065             return 0;
2066         }
2067         break;
2068 
2069     case BB_PROG_VALUES_REQUEST:
2070     case RF_PROG_VALUES_REQUEST:
2071     case BBP_PROG_IN_TA:
2072         rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
2073         if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
2074             common->bb_rf_prog_count--;
2075             if (!common->bb_rf_prog_count) {
2076                 common->fsm_state = FSM_MAC_INIT_DONE;
2077                 if (common->reinit_hw) {
2078                     complete(&common->wlan_init_completion);
2079                 } else {
2080                     if (common->bt_defer_attach)
2081                         rsi_attach_bt(common);
2082 
2083                     return rsi_mac80211_attach(common);
2084                 }
2085             }
2086         } else {
2087             rsi_dbg(INFO_ZONE,
2088                 "%s: Received bbb_rf cfm in %d state\n",
2089                  __func__, common->fsm_state);
2090             return 0;
2091         }
2092         break;
2093 
2094     case SCAN_REQUEST:
2095         rsi_dbg(INFO_ZONE, "Set channel confirm\n");
2096         break;
2097 
2098     case WAKEUP_SLEEP_REQUEST:
2099         rsi_dbg(INFO_ZONE, "Wakeup/Sleep confirmation.\n");
2100         return rsi_handle_ps_confirm(adapter, msg);
2101 
2102     case BG_SCAN_PROBE_REQ:
2103         rsi_dbg(INFO_ZONE, "BG scan complete event\n");
2104         if (common->bgscan_en) {
2105             struct cfg80211_scan_info info;
2106 
2107             if (!rsi_send_bgscan_params(common, RSI_STOP_BGSCAN))
2108                 common->bgscan_en = 0;
2109             info.aborted = false;
2110             ieee80211_scan_completed(adapter->hw, &info);
2111         }
2112         rsi_dbg(INFO_ZONE, "Background scan completed\n");
2113         break;
2114 
2115     default:
2116         rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
2117             __func__);
2118         break;
2119     }
2120     return 0;
2121 out:
2122     rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
2123         __func__);
2124     return -EINVAL;
2125 }
2126 
2127 int rsi_handle_card_ready(struct rsi_common *common, u8 *msg)
2128 {
2129     int status;
2130 
2131     switch (common->fsm_state) {
2132     case FSM_CARD_NOT_READY:
2133         rsi_dbg(INIT_ZONE, "Card ready indication from Common HAL\n");
2134         rsi_set_default_parameters(common);
2135         if (rsi_send_common_dev_params(common) < 0)
2136             return -EINVAL;
2137         common->fsm_state = FSM_COMMON_DEV_PARAMS_SENT;
2138         break;
2139     case FSM_COMMON_DEV_PARAMS_SENT:
2140         rsi_dbg(INIT_ZONE, "Card ready indication from WLAN HAL\n");
2141 
2142         if (common->priv->device_model == RSI_DEV_9116) {
2143             if (msg[16] != MAGIC_WORD) {
2144                 rsi_dbg(FSM_ZONE,
2145                     "%s: [EEPROM_READ] Invalid token\n",
2146                     __func__);
2147                 common->fsm_state = FSM_CARD_NOT_READY;
2148                 return -EINVAL;
2149             }
2150             memcpy(common->mac_addr, &msg[20], ETH_ALEN);
2151             rsi_dbg(INIT_ZONE, "MAC Addr %pM", common->mac_addr);
2152         }
2153         /* Get usb buffer status register address */
2154         common->priv->usb_buffer_status_reg = *(u32 *)&msg[8];
2155         rsi_dbg(INFO_ZONE, "USB buffer status register = %x\n",
2156             common->priv->usb_buffer_status_reg);
2157 
2158         if (common->priv->device_model == RSI_DEV_9116)
2159             status = rsi_load_9116_bootup_params(common);
2160         else
2161             status = rsi_load_bootup_params(common);
2162         if (status < 0) {
2163             common->fsm_state = FSM_CARD_NOT_READY;
2164             return status;
2165         }
2166         common->fsm_state = FSM_BOOT_PARAMS_SENT;
2167         break;
2168     default:
2169         rsi_dbg(ERR_ZONE,
2170             "%s: card ready indication in invalid state %d.\n",
2171             __func__, common->fsm_state);
2172         return -EINVAL;
2173     }
2174 
2175     return 0;
2176 }
2177 
2178 /**
2179  * rsi_mgmt_pkt_recv() - This function processes the management packets
2180  *           received from the hardware.
2181  * @common: Pointer to the driver private structure.
2182  * @msg: Pointer to the received packet.
2183  *
2184  * Return: 0 on success, -1 on failure.
2185  */
2186 int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
2187 {
2188     s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
2189     u16 msg_type = (msg[2]);
2190 
2191     rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
2192         __func__, msg_len, msg_type);
2193 
2194     switch (msg_type) {
2195     case TA_CONFIRM_TYPE:
2196         return rsi_handle_ta_confirm_type(common, msg);
2197     case CARD_READY_IND:
2198         common->hibernate_resume = false;
2199         rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
2200             __func__);
2201         return rsi_handle_card_ready(common, msg);
2202     case TX_STATUS_IND:
2203         switch (msg[RSI_TX_STATUS_TYPE]) {
2204         case PROBEREQ_CONFIRM:
2205             common->mgmt_q_block = false;
2206             rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
2207                 __func__);
2208             break;
2209         case EAPOL4_CONFIRM:
2210             if (msg[RSI_TX_STATUS]) {
2211                 common->eapol4_confirm = true;
2212                 if (!rsi_send_block_unblock_frame(common,
2213                                   false))
2214                     common->hw_data_qs_blocked = false;
2215             }
2216         }
2217         break;
2218     case BEACON_EVENT_IND:
2219         rsi_dbg(INFO_ZONE, "Beacon event\n");
2220         if (common->fsm_state != FSM_MAC_INIT_DONE)
2221             return -1;
2222         if (common->iface_down)
2223             return -1;
2224         if (!common->beacon_enabled)
2225             return -1;
2226         rsi_send_beacon(common);
2227         break;
2228     case WOWLAN_WAKEUP_REASON:
2229         rsi_dbg(ERR_ZONE, "\n\nWakeup Type: %x\n", msg[15]);
2230         switch (msg[15]) {
2231         case RSI_UNICAST_MAGIC_PKT:
2232             rsi_dbg(ERR_ZONE,
2233                 "*** Wakeup for Unicast magic packet ***\n");
2234             break;
2235         case RSI_BROADCAST_MAGICPKT:
2236             rsi_dbg(ERR_ZONE,
2237                 "*** Wakeup for Broadcast magic packet ***\n");
2238             break;
2239         case RSI_EAPOL_PKT:
2240             rsi_dbg(ERR_ZONE,
2241                 "*** Wakeup for GTK renewal ***\n");
2242             break;
2243         case RSI_DISCONNECT_PKT:
2244             rsi_dbg(ERR_ZONE,
2245                 "*** Wakeup for Disconnect ***\n");
2246             break;
2247         case RSI_HW_BMISS_PKT:
2248             rsi_dbg(ERR_ZONE,
2249                 "*** Wakeup for HW Beacon miss ***\n");
2250             break;
2251         default:
2252             rsi_dbg(ERR_ZONE,
2253                 "##### Un-intentional Wakeup #####\n");
2254             break;
2255     }
2256     break;
2257     case RX_DOT11_MGMT:
2258         return rsi_mgmt_pkt_to_core(common, msg, msg_len);
2259     default:
2260         rsi_dbg(INFO_ZONE, "Received packet type: 0x%x\n", msg_type);
2261     }
2262     return 0;
2263 }