0001
0002
0003
0004
0005 #include <linux/devcoredump.h>
0006
0007 #include "main.h"
0008 #include "regd.h"
0009 #include "fw.h"
0010 #include "ps.h"
0011 #include "sec.h"
0012 #include "mac.h"
0013 #include "coex.h"
0014 #include "phy.h"
0015 #include "reg.h"
0016 #include "efuse.h"
0017 #include "tx.h"
0018 #include "debug.h"
0019 #include "bf.h"
0020 #include "sar.h"
0021
0022 bool rtw_disable_lps_deep_mode;
0023 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
0024 bool rtw_bf_support = true;
0025 unsigned int rtw_debug_mask;
0026 EXPORT_SYMBOL(rtw_debug_mask);
0027
0028
0029
0030
0031
0032
0033
0034 bool rtw_edcca_enabled = true;
0035
0036 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
0037 module_param_named(support_bf, rtw_bf_support, bool, 0644);
0038 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
0039
0040 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
0041 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
0042 MODULE_PARM_DESC(debug_mask, "Debugging mask");
0043
0044 static struct ieee80211_channel rtw_channeltable_2g[] = {
0045 {.center_freq = 2412, .hw_value = 1,},
0046 {.center_freq = 2417, .hw_value = 2,},
0047 {.center_freq = 2422, .hw_value = 3,},
0048 {.center_freq = 2427, .hw_value = 4,},
0049 {.center_freq = 2432, .hw_value = 5,},
0050 {.center_freq = 2437, .hw_value = 6,},
0051 {.center_freq = 2442, .hw_value = 7,},
0052 {.center_freq = 2447, .hw_value = 8,},
0053 {.center_freq = 2452, .hw_value = 9,},
0054 {.center_freq = 2457, .hw_value = 10,},
0055 {.center_freq = 2462, .hw_value = 11,},
0056 {.center_freq = 2467, .hw_value = 12,},
0057 {.center_freq = 2472, .hw_value = 13,},
0058 {.center_freq = 2484, .hw_value = 14,},
0059 };
0060
0061 static struct ieee80211_channel rtw_channeltable_5g[] = {
0062 {.center_freq = 5180, .hw_value = 36,},
0063 {.center_freq = 5200, .hw_value = 40,},
0064 {.center_freq = 5220, .hw_value = 44,},
0065 {.center_freq = 5240, .hw_value = 48,},
0066 {.center_freq = 5260, .hw_value = 52,},
0067 {.center_freq = 5280, .hw_value = 56,},
0068 {.center_freq = 5300, .hw_value = 60,},
0069 {.center_freq = 5320, .hw_value = 64,},
0070 {.center_freq = 5500, .hw_value = 100,},
0071 {.center_freq = 5520, .hw_value = 104,},
0072 {.center_freq = 5540, .hw_value = 108,},
0073 {.center_freq = 5560, .hw_value = 112,},
0074 {.center_freq = 5580, .hw_value = 116,},
0075 {.center_freq = 5600, .hw_value = 120,},
0076 {.center_freq = 5620, .hw_value = 124,},
0077 {.center_freq = 5640, .hw_value = 128,},
0078 {.center_freq = 5660, .hw_value = 132,},
0079 {.center_freq = 5680, .hw_value = 136,},
0080 {.center_freq = 5700, .hw_value = 140,},
0081 {.center_freq = 5720, .hw_value = 144,},
0082 {.center_freq = 5745, .hw_value = 149,},
0083 {.center_freq = 5765, .hw_value = 153,},
0084 {.center_freq = 5785, .hw_value = 157,},
0085 {.center_freq = 5805, .hw_value = 161,},
0086 {.center_freq = 5825, .hw_value = 165,
0087 .flags = IEEE80211_CHAN_NO_HT40MINUS},
0088 };
0089
0090 static struct ieee80211_rate rtw_ratetable[] = {
0091 {.bitrate = 10, .hw_value = 0x00,},
0092 {.bitrate = 20, .hw_value = 0x01,},
0093 {.bitrate = 55, .hw_value = 0x02,},
0094 {.bitrate = 110, .hw_value = 0x03,},
0095 {.bitrate = 60, .hw_value = 0x04,},
0096 {.bitrate = 90, .hw_value = 0x05,},
0097 {.bitrate = 120, .hw_value = 0x06,},
0098 {.bitrate = 180, .hw_value = 0x07,},
0099 {.bitrate = 240, .hw_value = 0x08,},
0100 {.bitrate = 360, .hw_value = 0x09,},
0101 {.bitrate = 480, .hw_value = 0x0a,},
0102 {.bitrate = 540, .hw_value = 0x0b,},
0103 };
0104
0105 u16 rtw_desc_to_bitrate(u8 desc_rate)
0106 {
0107 struct ieee80211_rate rate;
0108
0109 if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
0110 return 0;
0111
0112 rate = rtw_ratetable[desc_rate];
0113
0114 return rate.bitrate;
0115 }
0116
0117 static struct ieee80211_supported_band rtw_band_2ghz = {
0118 .band = NL80211_BAND_2GHZ,
0119
0120 .channels = rtw_channeltable_2g,
0121 .n_channels = ARRAY_SIZE(rtw_channeltable_2g),
0122
0123 .bitrates = rtw_ratetable,
0124 .n_bitrates = ARRAY_SIZE(rtw_ratetable),
0125
0126 .ht_cap = {0},
0127 .vht_cap = {0},
0128 };
0129
0130 static struct ieee80211_supported_band rtw_band_5ghz = {
0131 .band = NL80211_BAND_5GHZ,
0132
0133 .channels = rtw_channeltable_5g,
0134 .n_channels = ARRAY_SIZE(rtw_channeltable_5g),
0135
0136
0137 .bitrates = rtw_ratetable + 4,
0138 .n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
0139
0140 .ht_cap = {0},
0141 .vht_cap = {0},
0142 };
0143
0144 struct rtw_watch_dog_iter_data {
0145 struct rtw_dev *rtwdev;
0146 struct rtw_vif *rtwvif;
0147 };
0148
0149 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
0150 {
0151 struct rtw_bf_info *bf_info = &rtwdev->bf_info;
0152 u8 fix_rate_enable = 0;
0153 u8 new_csi_rate_idx;
0154
0155 if (rtwvif->bfee.role != RTW_BFEE_SU &&
0156 rtwvif->bfee.role != RTW_BFEE_MU)
0157 return;
0158
0159 rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
0160 bf_info->cur_csi_rpt_rate,
0161 fix_rate_enable, &new_csi_rate_idx);
0162
0163 if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
0164 bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
0165 }
0166
0167 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
0168 struct ieee80211_vif *vif)
0169 {
0170 struct rtw_watch_dog_iter_data *iter_data = data;
0171 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
0172
0173 if (vif->type == NL80211_IFTYPE_STATION)
0174 if (vif->cfg.assoc)
0175 iter_data->rtwvif = rtwvif;
0176
0177 rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
0178
0179 rtwvif->stats.tx_unicast = 0;
0180 rtwvif->stats.rx_unicast = 0;
0181 rtwvif->stats.tx_cnt = 0;
0182 rtwvif->stats.rx_cnt = 0;
0183 }
0184
0185
0186
0187
0188 static void rtw_watch_dog_work(struct work_struct *work)
0189 {
0190 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
0191 watch_dog_work.work);
0192 struct rtw_traffic_stats *stats = &rtwdev->stats;
0193 struct rtw_watch_dog_iter_data data = {};
0194 bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
0195 bool ps_active;
0196
0197 mutex_lock(&rtwdev->mutex);
0198
0199 if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
0200 goto unlock;
0201
0202 ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
0203 RTW_WATCH_DOG_DELAY_TIME);
0204
0205 if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
0206 set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
0207 else
0208 clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
0209
0210 rtw_coex_wl_status_check(rtwdev);
0211 rtw_coex_query_bt_hid_list(rtwdev);
0212
0213 if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
0214 rtw_coex_wl_status_change_notify(rtwdev, 0);
0215
0216 if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
0217 stats->rx_cnt > RTW_LPS_THRESHOLD)
0218 ps_active = true;
0219 else
0220 ps_active = false;
0221
0222 ewma_tp_add(&stats->tx_ewma_tp,
0223 (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
0224 ewma_tp_add(&stats->rx_ewma_tp,
0225 (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
0226 stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
0227 stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
0228
0229
0230 stats->tx_unicast = 0;
0231 stats->rx_unicast = 0;
0232 stats->tx_cnt = 0;
0233 stats->rx_cnt = 0;
0234
0235 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
0236 goto unlock;
0237
0238
0239 rtw_leave_lps(rtwdev);
0240
0241 rtw_phy_dynamic_mechanism(rtwdev);
0242
0243 data.rtwdev = rtwdev;
0244
0245 rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data);
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256 if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
0257 !rtwdev->beacon_loss)
0258 rtw_enter_lps(rtwdev, data.rtwvif->port);
0259
0260 rtwdev->watch_dog_cnt++;
0261
0262 unlock:
0263 mutex_unlock(&rtwdev->mutex);
0264 }
0265
0266 static void rtw_c2h_work(struct work_struct *work)
0267 {
0268 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
0269 struct sk_buff *skb, *tmp;
0270
0271 skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
0272 skb_unlink(skb, &rtwdev->c2h_queue);
0273 rtw_fw_c2h_cmd_handle(rtwdev, skb);
0274 dev_kfree_skb_any(skb);
0275 }
0276 }
0277
0278 static void rtw_ips_work(struct work_struct *work)
0279 {
0280 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
0281
0282 mutex_lock(&rtwdev->mutex);
0283 if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
0284 rtw_enter_ips(rtwdev);
0285 mutex_unlock(&rtwdev->mutex);
0286 }
0287
0288 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
0289 {
0290 unsigned long mac_id;
0291
0292 mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
0293 if (mac_id < RTW_MAX_MAC_ID_NUM)
0294 set_bit(mac_id, rtwdev->mac_id_map);
0295
0296 return mac_id;
0297 }
0298
0299 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
0300 struct ieee80211_vif *vif)
0301 {
0302 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
0303 int i;
0304
0305 si->mac_id = rtw_acquire_macid(rtwdev);
0306 if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
0307 return -ENOSPC;
0308
0309 si->sta = sta;
0310 si->vif = vif;
0311 si->init_ra_lv = 1;
0312 ewma_rssi_init(&si->avg_rssi);
0313 for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
0314 rtw_txq_init(rtwdev, sta->txq[i]);
0315
0316 rtw_update_sta_info(rtwdev, si, true);
0317 rtw_fw_media_status_report(rtwdev, si->mac_id, true);
0318
0319 rtwdev->sta_cnt++;
0320 rtwdev->beacon_loss = false;
0321 rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
0322 sta->addr, si->mac_id);
0323
0324 return 0;
0325 }
0326
0327 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
0328 bool fw_exist)
0329 {
0330 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
0331 int i;
0332
0333 rtw_release_macid(rtwdev, si->mac_id);
0334 if (fw_exist)
0335 rtw_fw_media_status_report(rtwdev, si->mac_id, false);
0336
0337 for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
0338 rtw_txq_cleanup(rtwdev, sta->txq[i]);
0339
0340 kfree(si->mask);
0341
0342 rtwdev->sta_cnt--;
0343 rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
0344 sta->addr, si->mac_id);
0345 }
0346
0347 struct rtw_fwcd_hdr {
0348 u32 item;
0349 u32 size;
0350 u32 padding1;
0351 u32 padding2;
0352 } __packed;
0353
0354 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
0355 {
0356 struct rtw_chip_info *chip = rtwdev->chip;
0357 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
0358 const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
0359 u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
0360 u8 i;
0361
0362 if (segs) {
0363 prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
0364
0365 for (i = 0; i < segs->num; i++)
0366 prep_size += segs->segs[i];
0367 }
0368
0369 desc->data = vmalloc(prep_size);
0370 if (!desc->data)
0371 return -ENOMEM;
0372
0373 desc->size = prep_size;
0374 desc->next = desc->data;
0375
0376 return 0;
0377 }
0378
0379 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
0380 {
0381 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
0382 struct rtw_fwcd_hdr *hdr;
0383 u8 *next;
0384
0385 if (!desc->data) {
0386 rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
0387 return NULL;
0388 }
0389
0390 next = desc->next + sizeof(struct rtw_fwcd_hdr);
0391 if (next - desc->data + size > desc->size) {
0392 rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
0393 return NULL;
0394 }
0395
0396 hdr = (struct rtw_fwcd_hdr *)(desc->next);
0397 hdr->item = item;
0398 hdr->size = size;
0399 hdr->padding1 = 0x01234567;
0400 hdr->padding2 = 0x89abcdef;
0401 desc->next = next + size;
0402
0403 return next;
0404 }
0405
0406 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
0407 {
0408 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
0409
0410 rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
0411
0412
0413
0414
0415
0416
0417 dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
0418 }
0419
0420 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
0421 {
0422 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
0423
0424 if (free_self) {
0425 rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
0426 vfree(desc->data);
0427 }
0428
0429 desc->data = NULL;
0430 desc->next = NULL;
0431 }
0432
0433 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
0434 {
0435 u32 size = rtwdev->chip->fw_rxff_size;
0436 u32 *buf;
0437 u8 seq;
0438
0439 buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
0440 if (!buf)
0441 return -ENOMEM;
0442
0443 if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
0444 rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
0445 return -EINVAL;
0446 }
0447
0448 if (GET_FW_DUMP_LEN(buf) == 0) {
0449 rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
0450 return -EINVAL;
0451 }
0452
0453 seq = GET_FW_DUMP_SEQ(buf);
0454 if (seq > 0) {
0455 rtw_dbg(rtwdev, RTW_DBG_FW,
0456 "fw crash dump's seq is wrong: %d\n", seq);
0457 return -EINVAL;
0458 }
0459
0460 return 0;
0461 }
0462
0463 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
0464 u32 fwcd_item)
0465 {
0466 u32 rxff = rtwdev->chip->fw_rxff_size;
0467 u32 dump_size, done_size = 0;
0468 u8 *buf;
0469 int ret;
0470
0471 buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
0472 if (!buf)
0473 return -ENOMEM;
0474
0475 while (size) {
0476 dump_size = size > rxff ? rxff : size;
0477
0478 ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
0479 dump_size);
0480 if (ret) {
0481 rtw_err(rtwdev,
0482 "ddma fw 0x%x [+0x%x] to fw fifo fail\n",
0483 ocp_src, done_size);
0484 return ret;
0485 }
0486
0487 ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
0488 dump_size, (u32 *)(buf + done_size));
0489 if (ret) {
0490 rtw_err(rtwdev,
0491 "dump fw 0x%x [+0x%x] from fw fifo fail\n",
0492 ocp_src, done_size);
0493 return ret;
0494 }
0495
0496 size -= dump_size;
0497 done_size += dump_size;
0498 }
0499
0500 return 0;
0501 }
0502 EXPORT_SYMBOL(rtw_dump_fw);
0503
0504 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
0505 {
0506 u8 *buf;
0507 u32 i;
0508
0509 if (addr & 0x3) {
0510 WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
0511 return -EINVAL;
0512 }
0513
0514 buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
0515 if (!buf)
0516 return -ENOMEM;
0517
0518 for (i = 0; i < size; i += 4)
0519 *(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
0520
0521 return 0;
0522 }
0523 EXPORT_SYMBOL(rtw_dump_reg);
0524
0525 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
0526 struct ieee80211_bss_conf *conf)
0527 {
0528 struct ieee80211_vif *vif = NULL;
0529
0530 if (conf)
0531 vif = container_of(conf, struct ieee80211_vif, bss_conf);
0532
0533 if (conf && vif->cfg.assoc) {
0534 rtwvif->aid = vif->cfg.aid;
0535 rtwvif->net_type = RTW_NET_MGD_LINKED;
0536 } else {
0537 rtwvif->aid = 0;
0538 rtwvif->net_type = RTW_NET_NO_LINK;
0539 }
0540 }
0541
0542 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
0543 struct ieee80211_vif *vif,
0544 struct ieee80211_sta *sta,
0545 struct ieee80211_key_conf *key,
0546 void *data)
0547 {
0548 struct rtw_dev *rtwdev = (struct rtw_dev *)data;
0549 struct rtw_sec_desc *sec = &rtwdev->sec;
0550
0551 rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
0552 }
0553
0554 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
0555 {
0556 struct rtw_dev *rtwdev = (struct rtw_dev *)data;
0557
0558 if (rtwdev->sta_cnt == 0) {
0559 rtw_warn(rtwdev, "sta count before reset should not be 0\n");
0560 return;
0561 }
0562 rtw_sta_remove(rtwdev, sta, false);
0563 }
0564
0565 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
0566 {
0567 struct rtw_dev *rtwdev = (struct rtw_dev *)data;
0568 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
0569
0570 rtw_bf_disassoc(rtwdev, vif, NULL);
0571 rtw_vif_assoc_changed(rtwvif, NULL);
0572 rtw_txq_cleanup(rtwdev, vif->txq);
0573 }
0574
0575 void rtw_fw_recovery(struct rtw_dev *rtwdev)
0576 {
0577 if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
0578 ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
0579 }
0580
0581 static void __fw_recovery_work(struct rtw_dev *rtwdev)
0582 {
0583 int ret = 0;
0584
0585 set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
0586 clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
0587
0588 ret = rtw_fwcd_prep(rtwdev);
0589 if (ret)
0590 goto free;
0591 ret = rtw_fw_dump_crash_log(rtwdev);
0592 if (ret)
0593 goto free;
0594 ret = rtw_chip_dump_fw_crash(rtwdev);
0595 if (ret)
0596 goto free;
0597
0598 rtw_fwcd_dump(rtwdev);
0599 free:
0600 rtw_fwcd_free(rtwdev, !!ret);
0601 rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
0602
0603 WARN(1, "firmware crash, start reset and recover\n");
0604
0605 rcu_read_lock();
0606 rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
0607 rcu_read_unlock();
0608 rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
0609 rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
0610 rtw_enter_ips(rtwdev);
0611 }
0612
0613 static void rtw_fw_recovery_work(struct work_struct *work)
0614 {
0615 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
0616 fw_recovery_work);
0617
0618 mutex_lock(&rtwdev->mutex);
0619 __fw_recovery_work(rtwdev);
0620 mutex_unlock(&rtwdev->mutex);
0621
0622 ieee80211_restart_hw(rtwdev->hw);
0623 }
0624
0625 struct rtw_txq_ba_iter_data {
0626 };
0627
0628 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
0629 {
0630 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
0631 int ret;
0632 u8 tid;
0633
0634 tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
0635 while (tid != IEEE80211_NUM_TIDS) {
0636 clear_bit(tid, si->tid_ba);
0637 ret = ieee80211_start_tx_ba_session(sta, tid, 0);
0638 if (ret == -EINVAL) {
0639 struct ieee80211_txq *txq;
0640 struct rtw_txq *rtwtxq;
0641
0642 txq = sta->txq[tid];
0643 rtwtxq = (struct rtw_txq *)txq->drv_priv;
0644 set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
0645 }
0646
0647 tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
0648 }
0649 }
0650
0651 static void rtw_txq_ba_work(struct work_struct *work)
0652 {
0653 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
0654 struct rtw_txq_ba_iter_data data;
0655
0656 rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
0657 }
0658
0659 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
0660 {
0661 if (IS_CH_2G_BAND(channel))
0662 pkt_stat->band = NL80211_BAND_2GHZ;
0663 else if (IS_CH_5G_BAND(channel))
0664 pkt_stat->band = NL80211_BAND_5GHZ;
0665 else
0666 return;
0667
0668 pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
0669 }
0670 EXPORT_SYMBOL(rtw_set_rx_freq_band);
0671
0672 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
0673 {
0674 rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
0675 rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
0676 }
0677
0678 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
0679 struct rtw_channel_params *chan_params)
0680 {
0681 struct ieee80211_channel *channel = chandef->chan;
0682 enum nl80211_chan_width width = chandef->width;
0683 u8 *cch_by_bw = chan_params->cch_by_bw;
0684 u32 primary_freq, center_freq;
0685 u8 center_chan;
0686 u8 bandwidth = RTW_CHANNEL_WIDTH_20;
0687 u8 primary_chan_idx = 0;
0688 u8 i;
0689
0690 center_chan = channel->hw_value;
0691 primary_freq = channel->center_freq;
0692 center_freq = chandef->center_freq1;
0693
0694
0695 cch_by_bw[RTW_CHANNEL_WIDTH_20] = channel->hw_value;
0696
0697 switch (width) {
0698 case NL80211_CHAN_WIDTH_20_NOHT:
0699 case NL80211_CHAN_WIDTH_20:
0700 bandwidth = RTW_CHANNEL_WIDTH_20;
0701 primary_chan_idx = RTW_SC_DONT_CARE;
0702 break;
0703 case NL80211_CHAN_WIDTH_40:
0704 bandwidth = RTW_CHANNEL_WIDTH_40;
0705 if (primary_freq > center_freq) {
0706 primary_chan_idx = RTW_SC_20_UPPER;
0707 center_chan -= 2;
0708 } else {
0709 primary_chan_idx = RTW_SC_20_LOWER;
0710 center_chan += 2;
0711 }
0712 break;
0713 case NL80211_CHAN_WIDTH_80:
0714 bandwidth = RTW_CHANNEL_WIDTH_80;
0715 if (primary_freq > center_freq) {
0716 if (primary_freq - center_freq == 10) {
0717 primary_chan_idx = RTW_SC_20_UPPER;
0718 center_chan -= 2;
0719 } else {
0720 primary_chan_idx = RTW_SC_20_UPMOST;
0721 center_chan -= 6;
0722 }
0723
0724
0725
0726 cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan + 4;
0727 } else {
0728 if (center_freq - primary_freq == 10) {
0729 primary_chan_idx = RTW_SC_20_LOWER;
0730 center_chan += 2;
0731 } else {
0732 primary_chan_idx = RTW_SC_20_LOWEST;
0733 center_chan += 6;
0734 }
0735
0736
0737
0738 cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan - 4;
0739 }
0740 break;
0741 default:
0742 center_chan = 0;
0743 break;
0744 }
0745
0746 chan_params->center_chan = center_chan;
0747 chan_params->bandwidth = bandwidth;
0748 chan_params->primary_chan_idx = primary_chan_idx;
0749
0750
0751 cch_by_bw[bandwidth] = center_chan;
0752
0753 for (i = bandwidth + 1; i <= RTW_MAX_CHANNEL_WIDTH; i++)
0754 cch_by_bw[i] = 0;
0755 }
0756
0757 void rtw_set_channel(struct rtw_dev *rtwdev)
0758 {
0759 struct ieee80211_hw *hw = rtwdev->hw;
0760 struct rtw_hal *hal = &rtwdev->hal;
0761 struct rtw_chip_info *chip = rtwdev->chip;
0762 struct rtw_channel_params ch_param;
0763 u8 center_chan, bandwidth, primary_chan_idx;
0764 u8 i;
0765
0766 rtw_get_channel_params(&hw->conf.chandef, &ch_param);
0767 if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
0768 return;
0769
0770 center_chan = ch_param.center_chan;
0771 bandwidth = ch_param.bandwidth;
0772 primary_chan_idx = ch_param.primary_chan_idx;
0773
0774 hal->current_band_width = bandwidth;
0775 hal->current_channel = center_chan;
0776 hal->current_primary_channel_index = primary_chan_idx;
0777 hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
0778
0779 switch (center_chan) {
0780 case 1 ... 14:
0781 hal->sar_band = RTW_SAR_BAND_0;
0782 break;
0783 case 36 ... 64:
0784 hal->sar_band = RTW_SAR_BAND_1;
0785 break;
0786 case 100 ... 144:
0787 hal->sar_band = RTW_SAR_BAND_3;
0788 break;
0789 case 149 ... 177:
0790 hal->sar_band = RTW_SAR_BAND_4;
0791 break;
0792 default:
0793 WARN(1, "unknown ch(%u) to SAR band\n", center_chan);
0794 hal->sar_band = RTW_SAR_BAND_0;
0795 break;
0796 }
0797
0798 for (i = RTW_CHANNEL_WIDTH_20; i <= RTW_MAX_CHANNEL_WIDTH; i++)
0799 hal->cch_by_bw[i] = ch_param.cch_by_bw[i];
0800
0801 chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx);
0802
0803 if (hal->current_band_type == RTW_BAND_5G) {
0804 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
0805 } else {
0806 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
0807 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
0808 else
0809 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
0810 }
0811
0812 rtw_phy_set_tx_power_level(rtwdev, center_chan);
0813
0814
0815
0816
0817
0818 if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
0819 rtwdev->need_rfk = true;
0820 }
0821
0822 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
0823 {
0824 struct rtw_chip_info *chip = rtwdev->chip;
0825
0826 if (rtwdev->need_rfk) {
0827 rtwdev->need_rfk = false;
0828 chip->ops->phy_calibration(rtwdev);
0829 }
0830 }
0831
0832 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
0833 {
0834 int i;
0835
0836 for (i = 0; i < ETH_ALEN; i++)
0837 rtw_write8(rtwdev, start + i, addr[i]);
0838 }
0839
0840 void rtw_vif_port_config(struct rtw_dev *rtwdev,
0841 struct rtw_vif *rtwvif,
0842 u32 config)
0843 {
0844 u32 addr, mask;
0845
0846 if (config & PORT_SET_MAC_ADDR) {
0847 addr = rtwvif->conf->mac_addr.addr;
0848 rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
0849 }
0850 if (config & PORT_SET_BSSID) {
0851 addr = rtwvif->conf->bssid.addr;
0852 rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
0853 }
0854 if (config & PORT_SET_NET_TYPE) {
0855 addr = rtwvif->conf->net_type.addr;
0856 mask = rtwvif->conf->net_type.mask;
0857 rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
0858 }
0859 if (config & PORT_SET_AID) {
0860 addr = rtwvif->conf->aid.addr;
0861 mask = rtwvif->conf->aid.mask;
0862 rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
0863 }
0864 if (config & PORT_SET_BCN_CTRL) {
0865 addr = rtwvif->conf->bcn_ctrl.addr;
0866 mask = rtwvif->conf->bcn_ctrl.mask;
0867 rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
0868 }
0869 }
0870
0871 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
0872 {
0873 u8 bw = 0;
0874
0875 switch (bw_cap) {
0876 case EFUSE_HW_CAP_IGNORE:
0877 case EFUSE_HW_CAP_SUPP_BW80:
0878 bw |= BIT(RTW_CHANNEL_WIDTH_80);
0879 fallthrough;
0880 case EFUSE_HW_CAP_SUPP_BW40:
0881 bw |= BIT(RTW_CHANNEL_WIDTH_40);
0882 fallthrough;
0883 default:
0884 bw |= BIT(RTW_CHANNEL_WIDTH_20);
0885 break;
0886 }
0887
0888 return bw;
0889 }
0890
0891 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
0892 {
0893 struct rtw_hal *hal = &rtwdev->hal;
0894 struct rtw_chip_info *chip = rtwdev->chip;
0895
0896 if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
0897 hw_ant_num >= hal->rf_path_num)
0898 return;
0899
0900 switch (hw_ant_num) {
0901 case 1:
0902 hal->rf_type = RF_1T1R;
0903 hal->rf_path_num = 1;
0904 if (!chip->fix_rf_phy_num)
0905 hal->rf_phy_num = hal->rf_path_num;
0906 hal->antenna_tx = BB_PATH_A;
0907 hal->antenna_rx = BB_PATH_A;
0908 break;
0909 default:
0910 WARN(1, "invalid hw configuration from efuse\n");
0911 break;
0912 }
0913 }
0914
0915 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
0916 {
0917 u64 ra_mask = 0;
0918 u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
0919 u8 vht_mcs_cap;
0920 int i, nss;
0921
0922
0923 for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
0924 vht_mcs_cap = mcs_map & 0x3;
0925 switch (vht_mcs_cap) {
0926 case 2:
0927 ra_mask |= 0x3ffULL << nss;
0928 break;
0929 case 1:
0930 ra_mask |= 0x1ffULL << nss;
0931 break;
0932 case 0:
0933 ra_mask |= 0x0ffULL << nss;
0934 break;
0935 default:
0936 break;
0937 }
0938 }
0939
0940 return ra_mask;
0941 }
0942
0943 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
0944 {
0945 u8 rate_id = 0;
0946
0947 switch (wireless_set) {
0948 case WIRELESS_CCK:
0949 rate_id = RTW_RATEID_B_20M;
0950 break;
0951 case WIRELESS_OFDM:
0952 rate_id = RTW_RATEID_G;
0953 break;
0954 case WIRELESS_CCK | WIRELESS_OFDM:
0955 rate_id = RTW_RATEID_BG;
0956 break;
0957 case WIRELESS_OFDM | WIRELESS_HT:
0958 if (tx_num == 1)
0959 rate_id = RTW_RATEID_GN_N1SS;
0960 else if (tx_num == 2)
0961 rate_id = RTW_RATEID_GN_N2SS;
0962 else if (tx_num == 3)
0963 rate_id = RTW_RATEID_ARFR5_N_3SS;
0964 break;
0965 case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
0966 if (bw_mode == RTW_CHANNEL_WIDTH_40) {
0967 if (tx_num == 1)
0968 rate_id = RTW_RATEID_BGN_40M_1SS;
0969 else if (tx_num == 2)
0970 rate_id = RTW_RATEID_BGN_40M_2SS;
0971 else if (tx_num == 3)
0972 rate_id = RTW_RATEID_ARFR5_N_3SS;
0973 else if (tx_num == 4)
0974 rate_id = RTW_RATEID_ARFR7_N_4SS;
0975 } else {
0976 if (tx_num == 1)
0977 rate_id = RTW_RATEID_BGN_20M_1SS;
0978 else if (tx_num == 2)
0979 rate_id = RTW_RATEID_BGN_20M_2SS;
0980 else if (tx_num == 3)
0981 rate_id = RTW_RATEID_ARFR5_N_3SS;
0982 else if (tx_num == 4)
0983 rate_id = RTW_RATEID_ARFR7_N_4SS;
0984 }
0985 break;
0986 case WIRELESS_OFDM | WIRELESS_VHT:
0987 if (tx_num == 1)
0988 rate_id = RTW_RATEID_ARFR1_AC_1SS;
0989 else if (tx_num == 2)
0990 rate_id = RTW_RATEID_ARFR0_AC_2SS;
0991 else if (tx_num == 3)
0992 rate_id = RTW_RATEID_ARFR4_AC_3SS;
0993 else if (tx_num == 4)
0994 rate_id = RTW_RATEID_ARFR6_AC_4SS;
0995 break;
0996 case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
0997 if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
0998 if (tx_num == 1)
0999 rate_id = RTW_RATEID_ARFR1_AC_1SS;
1000 else if (tx_num == 2)
1001 rate_id = RTW_RATEID_ARFR0_AC_2SS;
1002 else if (tx_num == 3)
1003 rate_id = RTW_RATEID_ARFR4_AC_3SS;
1004 else if (tx_num == 4)
1005 rate_id = RTW_RATEID_ARFR6_AC_4SS;
1006 } else {
1007 if (tx_num == 1)
1008 rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1009 else if (tx_num == 2)
1010 rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1011 else if (tx_num == 3)
1012 rate_id = RTW_RATEID_ARFR4_AC_3SS;
1013 else if (tx_num == 4)
1014 rate_id = RTW_RATEID_ARFR6_AC_4SS;
1015 }
1016 break;
1017 default:
1018 break;
1019 }
1020
1021 return rate_id;
1022 }
1023
1024 #define RA_MASK_CCK_RATES 0x0000f
1025 #define RA_MASK_OFDM_RATES 0x00ff0
1026 #define RA_MASK_HT_RATES_1SS (0xff000ULL << 0)
1027 #define RA_MASK_HT_RATES_2SS (0xff000ULL << 8)
1028 #define RA_MASK_HT_RATES_3SS (0xff000ULL << 16)
1029 #define RA_MASK_HT_RATES (RA_MASK_HT_RATES_1SS | \
1030 RA_MASK_HT_RATES_2SS | \
1031 RA_MASK_HT_RATES_3SS)
1032 #define RA_MASK_VHT_RATES_1SS (0x3ff000ULL << 0)
1033 #define RA_MASK_VHT_RATES_2SS (0x3ff000ULL << 10)
1034 #define RA_MASK_VHT_RATES_3SS (0x3ff000ULL << 20)
1035 #define RA_MASK_VHT_RATES (RA_MASK_VHT_RATES_1SS | \
1036 RA_MASK_VHT_RATES_2SS | \
1037 RA_MASK_VHT_RATES_3SS)
1038 #define RA_MASK_CCK_IN_BG 0x00005
1039 #define RA_MASK_CCK_IN_HT 0x00005
1040 #define RA_MASK_CCK_IN_VHT 0x00005
1041 #define RA_MASK_OFDM_IN_VHT 0x00010
1042 #define RA_MASK_OFDM_IN_HT_2G 0x00010
1043 #define RA_MASK_OFDM_IN_HT_5G 0x00030
1044
1045 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1046 {
1047 u8 rssi_level = si->rssi_level;
1048
1049 if (wireless_set == WIRELESS_CCK)
1050 return 0xffffffffffffffffULL;
1051
1052 if (rssi_level == 0)
1053 return 0xffffffffffffffffULL;
1054 else if (rssi_level == 1)
1055 return 0xfffffffffffffff0ULL;
1056 else if (rssi_level == 2)
1057 return 0xffffffffffffefe0ULL;
1058 else if (rssi_level == 3)
1059 return 0xffffffffffffcfc0ULL;
1060 else if (rssi_level == 4)
1061 return 0xffffffffffff8f80ULL;
1062 else
1063 return 0xffffffffffff0f00ULL;
1064 }
1065
1066 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1067 {
1068 if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1069 ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1070
1071 if (ra_mask == 0)
1072 ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1073
1074 return ra_mask;
1075 }
1076
1077 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1078 u64 ra_mask, bool is_vht_enable)
1079 {
1080 struct rtw_hal *hal = &rtwdev->hal;
1081 const struct cfg80211_bitrate_mask *mask = si->mask;
1082 u64 cfg_mask = GENMASK_ULL(63, 0);
1083 u8 band;
1084
1085 if (!si->use_cfg_mask)
1086 return ra_mask;
1087
1088 band = hal->current_band_type;
1089 if (band == RTW_BAND_2G) {
1090 band = NL80211_BAND_2GHZ;
1091 cfg_mask = mask->control[band].legacy;
1092 } else if (band == RTW_BAND_5G) {
1093 band = NL80211_BAND_5GHZ;
1094 cfg_mask = u64_encode_bits(mask->control[band].legacy,
1095 RA_MASK_OFDM_RATES);
1096 }
1097
1098 if (!is_vht_enable) {
1099 if (ra_mask & RA_MASK_HT_RATES_1SS)
1100 cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1101 RA_MASK_HT_RATES_1SS);
1102 if (ra_mask & RA_MASK_HT_RATES_2SS)
1103 cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1104 RA_MASK_HT_RATES_2SS);
1105 } else {
1106 if (ra_mask & RA_MASK_VHT_RATES_1SS)
1107 cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1108 RA_MASK_VHT_RATES_1SS);
1109 if (ra_mask & RA_MASK_VHT_RATES_2SS)
1110 cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1111 RA_MASK_VHT_RATES_2SS);
1112 }
1113
1114 ra_mask &= cfg_mask;
1115
1116 return ra_mask;
1117 }
1118
1119 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1120 bool reset_ra_mask)
1121 {
1122 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1123 struct ieee80211_sta *sta = si->sta;
1124 struct rtw_efuse *efuse = &rtwdev->efuse;
1125 struct rtw_hal *hal = &rtwdev->hal;
1126 u8 wireless_set;
1127 u8 bw_mode;
1128 u8 rate_id;
1129 u8 rf_type = RF_1T1R;
1130 u8 stbc_en = 0;
1131 u8 ldpc_en = 0;
1132 u8 tx_num = 1;
1133 u64 ra_mask = 0;
1134 u64 ra_mask_bak = 0;
1135 bool is_vht_enable = false;
1136 bool is_support_sgi = false;
1137
1138 if (sta->deflink.vht_cap.vht_supported) {
1139 is_vht_enable = true;
1140 ra_mask |= get_vht_ra_mask(sta);
1141 if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1142 stbc_en = VHT_STBC_EN;
1143 if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1144 ldpc_en = VHT_LDPC_EN;
1145 } else if (sta->deflink.ht_cap.ht_supported) {
1146 ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1147 (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1148 if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1149 stbc_en = HT_STBC_EN;
1150 if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1151 ldpc_en = HT_LDPC_EN;
1152 }
1153
1154 if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1155 ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1156
1157 if (hal->current_band_type == RTW_BAND_5G) {
1158 ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1159 ra_mask_bak = ra_mask;
1160 if (sta->deflink.vht_cap.vht_supported) {
1161 ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1162 wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1163 } else if (sta->deflink.ht_cap.ht_supported) {
1164 ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1165 wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1166 } else {
1167 wireless_set = WIRELESS_OFDM;
1168 }
1169 dm_info->rrsr_val_init = RRSR_INIT_5G;
1170 } else if (hal->current_band_type == RTW_BAND_2G) {
1171 ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1172 ra_mask_bak = ra_mask;
1173 if (sta->deflink.vht_cap.vht_supported) {
1174 ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1175 RA_MASK_OFDM_IN_VHT;
1176 wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1177 WIRELESS_HT | WIRELESS_VHT;
1178 } else if (sta->deflink.ht_cap.ht_supported) {
1179 ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1180 RA_MASK_OFDM_IN_HT_2G;
1181 wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1182 WIRELESS_HT;
1183 } else if (sta->deflink.supp_rates[0] <= 0xf) {
1184 wireless_set = WIRELESS_CCK;
1185 } else {
1186 ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1187 wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1188 }
1189 dm_info->rrsr_val_init = RRSR_INIT_2G;
1190 } else {
1191 rtw_err(rtwdev, "Unknown band type\n");
1192 ra_mask_bak = ra_mask;
1193 wireless_set = 0;
1194 }
1195
1196 switch (sta->deflink.bandwidth) {
1197 case IEEE80211_STA_RX_BW_80:
1198 bw_mode = RTW_CHANNEL_WIDTH_80;
1199 is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1200 (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1201 break;
1202 case IEEE80211_STA_RX_BW_40:
1203 bw_mode = RTW_CHANNEL_WIDTH_40;
1204 is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1205 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1206 break;
1207 default:
1208 bw_mode = RTW_CHANNEL_WIDTH_20;
1209 is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1210 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1211 break;
1212 }
1213
1214 if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000) {
1215 tx_num = 2;
1216 rf_type = RF_2T2R;
1217 } else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000) {
1218 tx_num = 2;
1219 rf_type = RF_2T2R;
1220 }
1221
1222 rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1223
1224 ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1225 ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1226 ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1227
1228 si->bw_mode = bw_mode;
1229 si->stbc_en = stbc_en;
1230 si->ldpc_en = ldpc_en;
1231 si->rf_type = rf_type;
1232 si->wireless_set = wireless_set;
1233 si->sgi_enable = is_support_sgi;
1234 si->vht_enable = is_vht_enable;
1235 si->ra_mask = ra_mask;
1236 si->rate_id = rate_id;
1237
1238 rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1239 }
1240
1241 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1242 {
1243 struct rtw_chip_info *chip = rtwdev->chip;
1244 struct rtw_fw_state *fw;
1245
1246 fw = &rtwdev->fw;
1247 wait_for_completion(&fw->completion);
1248 if (!fw->firmware)
1249 return -EINVAL;
1250
1251 if (chip->wow_fw_name) {
1252 fw = &rtwdev->wow_fw;
1253 wait_for_completion(&fw->completion);
1254 if (!fw->firmware)
1255 return -EINVAL;
1256 }
1257
1258 return 0;
1259 }
1260
1261 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1262 struct rtw_fw_state *fw)
1263 {
1264 struct rtw_chip_info *chip = rtwdev->chip;
1265
1266 if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1267 !fw->feature)
1268 return LPS_DEEP_MODE_NONE;
1269
1270 if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1271 rtw_fw_feature_check(fw, FW_FEATURE_PG))
1272 return LPS_DEEP_MODE_PG;
1273
1274 if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1275 rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1276 return LPS_DEEP_MODE_LCLK;
1277
1278 return LPS_DEEP_MODE_NONE;
1279 }
1280
1281 static int rtw_power_on(struct rtw_dev *rtwdev)
1282 {
1283 struct rtw_chip_info *chip = rtwdev->chip;
1284 struct rtw_fw_state *fw = &rtwdev->fw;
1285 bool wifi_only;
1286 int ret;
1287
1288 ret = rtw_hci_setup(rtwdev);
1289 if (ret) {
1290 rtw_err(rtwdev, "failed to setup hci\n");
1291 goto err;
1292 }
1293
1294
1295 ret = rtw_mac_power_on(rtwdev);
1296 if (ret) {
1297 rtw_err(rtwdev, "failed to power on mac\n");
1298 goto err;
1299 }
1300
1301 ret = rtw_wait_firmware_completion(rtwdev);
1302 if (ret) {
1303 rtw_err(rtwdev, "failed to wait firmware completion\n");
1304 goto err_off;
1305 }
1306
1307 ret = rtw_download_firmware(rtwdev, fw);
1308 if (ret) {
1309 rtw_err(rtwdev, "failed to download firmware\n");
1310 goto err_off;
1311 }
1312
1313
1314 ret = rtw_mac_init(rtwdev);
1315 if (ret) {
1316 rtw_err(rtwdev, "failed to configure mac\n");
1317 goto err_off;
1318 }
1319
1320 chip->ops->phy_set_param(rtwdev);
1321
1322 ret = rtw_hci_start(rtwdev);
1323 if (ret) {
1324 rtw_err(rtwdev, "failed to start hci\n");
1325 goto err_off;
1326 }
1327
1328
1329 rtw_fw_send_general_info(rtwdev);
1330 rtw_fw_send_phydm_info(rtwdev);
1331
1332 wifi_only = !rtwdev->efuse.btcoex;
1333 rtw_coex_power_on_setting(rtwdev);
1334 rtw_coex_init_hw_config(rtwdev, wifi_only);
1335
1336 return 0;
1337
1338 err_off:
1339 rtw_mac_power_off(rtwdev);
1340
1341 err:
1342 return ret;
1343 }
1344
1345 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1346 {
1347 if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1348 return;
1349
1350 if (start) {
1351 rtw_fw_scan_notify(rtwdev, true);
1352 } else {
1353 reinit_completion(&rtwdev->fw_scan_density);
1354 rtw_fw_scan_notify(rtwdev, false);
1355 if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1356 SCAN_NOTIFY_TIMEOUT))
1357 rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1358 }
1359 }
1360
1361 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1362 const u8 *mac_addr, bool hw_scan)
1363 {
1364 u32 config = 0;
1365 int ret = 0;
1366
1367 rtw_leave_lps(rtwdev);
1368
1369 if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1370 ret = rtw_leave_ips(rtwdev);
1371 if (ret) {
1372 rtw_err(rtwdev, "failed to leave idle state\n");
1373 return;
1374 }
1375 }
1376
1377 ether_addr_copy(rtwvif->mac_addr, mac_addr);
1378 config |= PORT_SET_MAC_ADDR;
1379 rtw_vif_port_config(rtwdev, rtwvif, config);
1380
1381 rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1382 rtw_core_fw_scan_notify(rtwdev, true);
1383
1384 set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1385 set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1386 }
1387
1388 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1389 bool hw_scan)
1390 {
1391 struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
1392 u32 config = 0;
1393
1394 if (!rtwvif)
1395 return;
1396
1397 clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1398 clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1399
1400 rtw_core_fw_scan_notify(rtwdev, false);
1401
1402 ether_addr_copy(rtwvif->mac_addr, vif->addr);
1403 config |= PORT_SET_MAC_ADDR;
1404 rtw_vif_port_config(rtwdev, rtwvif, config);
1405
1406 rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1407
1408 if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1409 ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1410 }
1411
1412 int rtw_core_start(struct rtw_dev *rtwdev)
1413 {
1414 int ret;
1415
1416 ret = rtw_power_on(rtwdev);
1417 if (ret)
1418 return ret;
1419
1420 rtw_sec_enable_sec_engine(rtwdev);
1421
1422 rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1423 rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1424
1425
1426 rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1427
1428 ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1429 RTW_WATCH_DOG_DELAY_TIME);
1430
1431 set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1432
1433 return 0;
1434 }
1435
1436 static void rtw_power_off(struct rtw_dev *rtwdev)
1437 {
1438 rtw_hci_stop(rtwdev);
1439 rtw_coex_power_off_setting(rtwdev);
1440 rtw_mac_power_off(rtwdev);
1441 }
1442
1443 void rtw_core_stop(struct rtw_dev *rtwdev)
1444 {
1445 struct rtw_coex *coex = &rtwdev->coex;
1446
1447 clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1448 clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1449
1450 mutex_unlock(&rtwdev->mutex);
1451
1452 cancel_work_sync(&rtwdev->c2h_work);
1453 cancel_work_sync(&rtwdev->update_beacon_work);
1454 cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1455 cancel_delayed_work_sync(&coex->bt_relink_work);
1456 cancel_delayed_work_sync(&coex->bt_reenable_work);
1457 cancel_delayed_work_sync(&coex->defreeze_work);
1458 cancel_delayed_work_sync(&coex->wl_remain_work);
1459 cancel_delayed_work_sync(&coex->bt_remain_work);
1460 cancel_delayed_work_sync(&coex->wl_connecting_work);
1461 cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1462 cancel_delayed_work_sync(&coex->wl_ccklock_work);
1463
1464 mutex_lock(&rtwdev->mutex);
1465
1466 rtw_power_off(rtwdev);
1467 }
1468
1469 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1470 struct ieee80211_sta_ht_cap *ht_cap)
1471 {
1472 struct rtw_efuse *efuse = &rtwdev->efuse;
1473 struct rtw_chip_info *chip = rtwdev->chip;
1474
1475 ht_cap->ht_supported = true;
1476 ht_cap->cap = 0;
1477 ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1478 IEEE80211_HT_CAP_MAX_AMSDU |
1479 (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1480
1481 if (rtw_chip_has_rx_ldpc(rtwdev))
1482 ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1483 if (rtw_chip_has_tx_stbc(rtwdev))
1484 ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1485
1486 if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1487 ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1488 IEEE80211_HT_CAP_DSSSCCK40 |
1489 IEEE80211_HT_CAP_SGI_40;
1490 ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1491 ht_cap->ampdu_density = chip->ampdu_density;
1492 ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1493 if (efuse->hw_cap.nss > 1) {
1494 ht_cap->mcs.rx_mask[0] = 0xFF;
1495 ht_cap->mcs.rx_mask[1] = 0xFF;
1496 ht_cap->mcs.rx_mask[4] = 0x01;
1497 ht_cap->mcs.rx_highest = cpu_to_le16(300);
1498 } else {
1499 ht_cap->mcs.rx_mask[0] = 0xFF;
1500 ht_cap->mcs.rx_mask[1] = 0x00;
1501 ht_cap->mcs.rx_mask[4] = 0x01;
1502 ht_cap->mcs.rx_highest = cpu_to_le16(150);
1503 }
1504 }
1505
1506 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1507 struct ieee80211_sta_vht_cap *vht_cap)
1508 {
1509 struct rtw_efuse *efuse = &rtwdev->efuse;
1510 u16 mcs_map;
1511 __le16 highest;
1512
1513 if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1514 efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1515 return;
1516
1517 vht_cap->vht_supported = true;
1518 vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1519 IEEE80211_VHT_CAP_SHORT_GI_80 |
1520 IEEE80211_VHT_CAP_RXSTBC_1 |
1521 IEEE80211_VHT_CAP_HTC_VHT |
1522 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1523 0;
1524 if (rtwdev->hal.rf_path_num > 1)
1525 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1526 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1527 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1528 vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1529 IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1530
1531 if (rtw_chip_has_rx_ldpc(rtwdev))
1532 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1533
1534 mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1535 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1536 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1537 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1538 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1539 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1540 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1541 if (efuse->hw_cap.nss > 1) {
1542 highest = cpu_to_le16(780);
1543 mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1544 } else {
1545 highest = cpu_to_le16(390);
1546 mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1547 }
1548
1549 vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1550 vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1551 vht_cap->vht_mcs.rx_highest = highest;
1552 vht_cap->vht_mcs.tx_highest = highest;
1553 }
1554
1555 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1556 struct rtw_chip_info *chip)
1557 {
1558 struct rtw_dev *rtwdev = hw->priv;
1559 struct ieee80211_supported_band *sband;
1560
1561 if (chip->band & RTW_BAND_2G) {
1562 sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1563 if (!sband)
1564 goto err_out;
1565 if (chip->ht_supported)
1566 rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1567 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1568 }
1569
1570 if (chip->band & RTW_BAND_5G) {
1571 sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1572 if (!sband)
1573 goto err_out;
1574 if (chip->ht_supported)
1575 rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1576 if (chip->vht_supported)
1577 rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1578 hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1579 }
1580
1581 return;
1582
1583 err_out:
1584 rtw_err(rtwdev, "failed to set supported band\n");
1585 }
1586
1587 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1588 struct rtw_chip_info *chip)
1589 {
1590 kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1591 kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1592 }
1593
1594 static void rtw_vif_smps_iter(void *data, u8 *mac,
1595 struct ieee80211_vif *vif)
1596 {
1597 struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1598
1599 if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
1600 return;
1601
1602 if (rtwdev->hal.txrx_1ss)
1603 ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC);
1604 else
1605 ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF);
1606 }
1607
1608 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1609 {
1610 struct rtw_chip_info *chip = rtwdev->chip;
1611 struct rtw_hal *hal = &rtwdev->hal;
1612
1613 if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1614 return;
1615
1616 rtwdev->hal.txrx_1ss = txrx_1ss;
1617 if (txrx_1ss)
1618 chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1619 else
1620 chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1621 hal->antenna_rx, false);
1622 rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1623 }
1624
1625 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1626 struct rtw_fw_state *fw)
1627 {
1628 u32 feature;
1629 const struct rtw_fw_hdr *fw_hdr =
1630 (const struct rtw_fw_hdr *)fw->firmware->data;
1631
1632 feature = le32_to_cpu(fw_hdr->feature);
1633 fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1634 }
1635
1636 static void __update_firmware_info(struct rtw_dev *rtwdev,
1637 struct rtw_fw_state *fw)
1638 {
1639 const struct rtw_fw_hdr *fw_hdr =
1640 (const struct rtw_fw_hdr *)fw->firmware->data;
1641
1642 fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1643 fw->version = le16_to_cpu(fw_hdr->version);
1644 fw->sub_version = fw_hdr->subversion;
1645 fw->sub_index = fw_hdr->subindex;
1646
1647 __update_firmware_feature(rtwdev, fw);
1648 }
1649
1650 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1651 struct rtw_fw_state *fw)
1652 {
1653 struct rtw_fw_hdr_legacy *legacy =
1654 (struct rtw_fw_hdr_legacy *)fw->firmware->data;
1655
1656 fw->h2c_version = 0;
1657 fw->version = le16_to_cpu(legacy->version);
1658 fw->sub_version = legacy->subversion1;
1659 fw->sub_index = legacy->subversion2;
1660 }
1661
1662 static void update_firmware_info(struct rtw_dev *rtwdev,
1663 struct rtw_fw_state *fw)
1664 {
1665 if (rtw_chip_wcpu_11n(rtwdev))
1666 __update_firmware_info_legacy(rtwdev, fw);
1667 else
1668 __update_firmware_info(rtwdev, fw);
1669 }
1670
1671 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1672 {
1673 struct rtw_fw_state *fw = context;
1674 struct rtw_dev *rtwdev = fw->rtwdev;
1675
1676 if (!firmware || !firmware->data) {
1677 rtw_err(rtwdev, "failed to request firmware\n");
1678 complete_all(&fw->completion);
1679 return;
1680 }
1681
1682 fw->firmware = firmware;
1683 update_firmware_info(rtwdev, fw);
1684 complete_all(&fw->completion);
1685
1686 rtw_info(rtwdev, "Firmware version %u.%u.%u, H2C version %u\n",
1687 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1688 }
1689
1690 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1691 {
1692 const char *fw_name;
1693 struct rtw_fw_state *fw;
1694 int ret;
1695
1696 switch (type) {
1697 case RTW_WOWLAN_FW:
1698 fw = &rtwdev->wow_fw;
1699 fw_name = rtwdev->chip->wow_fw_name;
1700 break;
1701
1702 case RTW_NORMAL_FW:
1703 fw = &rtwdev->fw;
1704 fw_name = rtwdev->chip->fw_name;
1705 break;
1706
1707 default:
1708 rtw_warn(rtwdev, "unsupported firmware type\n");
1709 return -ENOENT;
1710 }
1711
1712 fw->rtwdev = rtwdev;
1713 init_completion(&fw->completion);
1714
1715 ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1716 GFP_KERNEL, fw, rtw_load_firmware_cb);
1717 if (ret) {
1718 rtw_err(rtwdev, "failed to async firmware request\n");
1719 return ret;
1720 }
1721
1722 return 0;
1723 }
1724
1725 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1726 {
1727 struct rtw_chip_info *chip = rtwdev->chip;
1728 struct rtw_hal *hal = &rtwdev->hal;
1729 struct rtw_efuse *efuse = &rtwdev->efuse;
1730
1731 switch (rtw_hci_type(rtwdev)) {
1732 case RTW_HCI_TYPE_PCIE:
1733 rtwdev->hci.rpwm_addr = 0x03d9;
1734 rtwdev->hci.cpwm_addr = 0x03da;
1735 break;
1736 default:
1737 rtw_err(rtwdev, "unsupported hci type\n");
1738 return -EINVAL;
1739 }
1740
1741 hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1742 hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1743 hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1744 if (hal->chip_version & BIT_RF_TYPE_ID) {
1745 hal->rf_type = RF_2T2R;
1746 hal->rf_path_num = 2;
1747 hal->antenna_tx = BB_PATH_AB;
1748 hal->antenna_rx = BB_PATH_AB;
1749 } else {
1750 hal->rf_type = RF_1T1R;
1751 hal->rf_path_num = 1;
1752 hal->antenna_tx = BB_PATH_A;
1753 hal->antenna_rx = BB_PATH_A;
1754 }
1755 hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1756 hal->rf_path_num;
1757
1758 efuse->physical_size = chip->phy_efuse_size;
1759 efuse->logical_size = chip->log_efuse_size;
1760 efuse->protect_size = chip->ptct_efuse_size;
1761
1762
1763 rtwdev->hal.rcr |= BIT_VHT_DACK;
1764
1765 hal->bfee_sts_cap = 3;
1766
1767 return 0;
1768 }
1769
1770 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1771 {
1772 struct rtw_fw_state *fw = &rtwdev->fw;
1773 int ret;
1774
1775 ret = rtw_hci_setup(rtwdev);
1776 if (ret) {
1777 rtw_err(rtwdev, "failed to setup hci\n");
1778 goto err;
1779 }
1780
1781 ret = rtw_mac_power_on(rtwdev);
1782 if (ret) {
1783 rtw_err(rtwdev, "failed to power on mac\n");
1784 goto err;
1785 }
1786
1787 rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1788
1789 wait_for_completion(&fw->completion);
1790 if (!fw->firmware) {
1791 ret = -EINVAL;
1792 rtw_err(rtwdev, "failed to load firmware\n");
1793 goto err;
1794 }
1795
1796 ret = rtw_download_firmware(rtwdev, fw);
1797 if (ret) {
1798 rtw_err(rtwdev, "failed to download firmware\n");
1799 goto err_off;
1800 }
1801
1802 return 0;
1803
1804 err_off:
1805 rtw_mac_power_off(rtwdev);
1806
1807 err:
1808 return ret;
1809 }
1810
1811 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1812 {
1813 struct rtw_efuse *efuse = &rtwdev->efuse;
1814 u8 hw_feature[HW_FEATURE_LEN];
1815 u8 id;
1816 u8 bw;
1817 int i;
1818
1819 id = rtw_read8(rtwdev, REG_C2HEVT);
1820 if (id != C2H_HW_FEATURE_REPORT) {
1821 rtw_err(rtwdev, "failed to read hw feature report\n");
1822 return -EBUSY;
1823 }
1824
1825 for (i = 0; i < HW_FEATURE_LEN; i++)
1826 hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1827
1828 rtw_write8(rtwdev, REG_C2HEVT, 0);
1829
1830 bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1831 efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1832 efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1833 efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1834 efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1835 efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1836
1837 rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1838
1839 if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1840 efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1841 efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1842
1843 rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1844 "hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1845 efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1846 efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1847
1848 return 0;
1849 }
1850
1851 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1852 {
1853 rtw_hci_stop(rtwdev);
1854 rtw_mac_power_off(rtwdev);
1855 }
1856
1857 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1858 {
1859 struct rtw_efuse *efuse = &rtwdev->efuse;
1860 int ret;
1861
1862 mutex_lock(&rtwdev->mutex);
1863
1864
1865 ret = rtw_chip_efuse_enable(rtwdev);
1866 if (ret)
1867 goto out_unlock;
1868
1869 ret = rtw_parse_efuse_map(rtwdev);
1870 if (ret)
1871 goto out_disable;
1872
1873 ret = rtw_dump_hw_feature(rtwdev);
1874 if (ret)
1875 goto out_disable;
1876
1877 ret = rtw_check_supported_rfe(rtwdev);
1878 if (ret)
1879 goto out_disable;
1880
1881 if (efuse->crystal_cap == 0xff)
1882 efuse->crystal_cap = 0;
1883 if (efuse->pa_type_2g == 0xff)
1884 efuse->pa_type_2g = 0;
1885 if (efuse->pa_type_5g == 0xff)
1886 efuse->pa_type_5g = 0;
1887 if (efuse->lna_type_2g == 0xff)
1888 efuse->lna_type_2g = 0;
1889 if (efuse->lna_type_5g == 0xff)
1890 efuse->lna_type_5g = 0;
1891 if (efuse->channel_plan == 0xff)
1892 efuse->channel_plan = 0x7f;
1893 if (efuse->rf_board_option == 0xff)
1894 efuse->rf_board_option = 0;
1895 if (efuse->bt_setting & BIT(0))
1896 efuse->share_ant = true;
1897 if (efuse->regd == 0xff)
1898 efuse->regd = 0;
1899 if (efuse->tx_bb_swing_setting_2g == 0xff)
1900 efuse->tx_bb_swing_setting_2g = 0;
1901 if (efuse->tx_bb_swing_setting_5g == 0xff)
1902 efuse->tx_bb_swing_setting_5g = 0;
1903
1904 efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
1905 efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
1906 efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
1907 efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
1908 efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
1909
1910 out_disable:
1911 rtw_chip_efuse_disable(rtwdev);
1912
1913 out_unlock:
1914 mutex_unlock(&rtwdev->mutex);
1915 return ret;
1916 }
1917
1918 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
1919 {
1920 struct rtw_hal *hal = &rtwdev->hal;
1921 const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1922
1923 if (!rfe_def)
1924 return -ENODEV;
1925
1926 rtw_phy_setup_phy_cond(rtwdev, 0);
1927
1928 rtw_phy_init_tx_power(rtwdev);
1929 if (rfe_def->agc_btg_tbl)
1930 rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
1931 rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
1932 rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
1933 rtw_phy_tx_power_by_rate_config(hal);
1934 rtw_phy_tx_power_limit_config(hal);
1935
1936 return 0;
1937 }
1938
1939 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
1940 {
1941 int ret;
1942
1943 ret = rtw_chip_parameter_setup(rtwdev);
1944 if (ret) {
1945 rtw_err(rtwdev, "failed to setup chip parameters\n");
1946 goto err_out;
1947 }
1948
1949 ret = rtw_chip_efuse_info_setup(rtwdev);
1950 if (ret) {
1951 rtw_err(rtwdev, "failed to setup chip efuse info\n");
1952 goto err_out;
1953 }
1954
1955 ret = rtw_chip_board_info_setup(rtwdev);
1956 if (ret) {
1957 rtw_err(rtwdev, "failed to setup chip board info\n");
1958 goto err_out;
1959 }
1960
1961 return 0;
1962
1963 err_out:
1964 return ret;
1965 }
1966 EXPORT_SYMBOL(rtw_chip_info_setup);
1967
1968 static void rtw_stats_init(struct rtw_dev *rtwdev)
1969 {
1970 struct rtw_traffic_stats *stats = &rtwdev->stats;
1971 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1972 int i;
1973
1974 ewma_tp_init(&stats->tx_ewma_tp);
1975 ewma_tp_init(&stats->rx_ewma_tp);
1976
1977 for (i = 0; i < RTW_EVM_NUM; i++)
1978 ewma_evm_init(&dm_info->ewma_evm[i]);
1979 for (i = 0; i < RTW_SNR_NUM; i++)
1980 ewma_snr_init(&dm_info->ewma_snr[i]);
1981 }
1982
1983 int rtw_core_init(struct rtw_dev *rtwdev)
1984 {
1985 struct rtw_chip_info *chip = rtwdev->chip;
1986 struct rtw_coex *coex = &rtwdev->coex;
1987 int ret;
1988
1989 INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
1990 INIT_LIST_HEAD(&rtwdev->txqs);
1991
1992 timer_setup(&rtwdev->tx_report.purge_timer,
1993 rtw_tx_report_purge_timer, 0);
1994 rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
1995 if (!rtwdev->tx_wq) {
1996 rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
1997 return -ENOMEM;
1998 }
1999
2000 INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
2001 INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
2002 INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
2003 INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
2004 INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
2005 INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
2006 INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
2007 INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
2008 rtw_coex_bt_multi_link_remain_work);
2009 INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
2010 INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
2011 INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2012 INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2013 INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2014 INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2015 INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2016 skb_queue_head_init(&rtwdev->c2h_queue);
2017 skb_queue_head_init(&rtwdev->coex.queue);
2018 skb_queue_head_init(&rtwdev->tx_report.queue);
2019
2020 spin_lock_init(&rtwdev->rf_lock);
2021 spin_lock_init(&rtwdev->h2c.lock);
2022 spin_lock_init(&rtwdev->txq_lock);
2023 spin_lock_init(&rtwdev->tx_report.q_lock);
2024
2025 mutex_init(&rtwdev->mutex);
2026 mutex_init(&rtwdev->coex.mutex);
2027 mutex_init(&rtwdev->hal.tx_power_mutex);
2028
2029 init_waitqueue_head(&rtwdev->coex.wait);
2030 init_completion(&rtwdev->lps_leave_check);
2031 init_completion(&rtwdev->fw_scan_density);
2032
2033 rtwdev->sec.total_cam_num = 32;
2034 rtwdev->hal.current_channel = 1;
2035 rtwdev->dm_info.fix_rate = U8_MAX;
2036 set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
2037
2038 rtw_stats_init(rtwdev);
2039
2040
2041 rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2042 BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2043 BIT_AB | BIT_AM | BIT_APM;
2044
2045 ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2046 if (ret) {
2047 rtw_warn(rtwdev, "no firmware loaded\n");
2048 return ret;
2049 }
2050
2051 if (chip->wow_fw_name) {
2052 ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2053 if (ret) {
2054 rtw_warn(rtwdev, "no wow firmware loaded\n");
2055 wait_for_completion(&rtwdev->fw.completion);
2056 if (rtwdev->fw.firmware)
2057 release_firmware(rtwdev->fw.firmware);
2058 return ret;
2059 }
2060 }
2061
2062 return 0;
2063 }
2064 EXPORT_SYMBOL(rtw_core_init);
2065
2066 void rtw_core_deinit(struct rtw_dev *rtwdev)
2067 {
2068 struct rtw_fw_state *fw = &rtwdev->fw;
2069 struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2070 struct rtw_rsvd_page *rsvd_pkt, *tmp;
2071 unsigned long flags;
2072
2073 rtw_wait_firmware_completion(rtwdev);
2074
2075 if (fw->firmware)
2076 release_firmware(fw->firmware);
2077
2078 if (wow_fw->firmware)
2079 release_firmware(wow_fw->firmware);
2080
2081 destroy_workqueue(rtwdev->tx_wq);
2082 spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2083 skb_queue_purge(&rtwdev->tx_report.queue);
2084 skb_queue_purge(&rtwdev->coex.queue);
2085 spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2086
2087 list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2088 build_list) {
2089 list_del(&rsvd_pkt->build_list);
2090 kfree(rsvd_pkt);
2091 }
2092
2093 mutex_destroy(&rtwdev->mutex);
2094 mutex_destroy(&rtwdev->coex.mutex);
2095 mutex_destroy(&rtwdev->hal.tx_power_mutex);
2096 }
2097 EXPORT_SYMBOL(rtw_core_deinit);
2098
2099 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2100 {
2101 struct rtw_hal *hal = &rtwdev->hal;
2102 int max_tx_headroom = 0;
2103 int ret;
2104
2105
2106 max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2107
2108 hw->extra_tx_headroom = max_tx_headroom;
2109 hw->queues = IEEE80211_NUM_ACS;
2110 hw->txq_data_size = sizeof(struct rtw_txq);
2111 hw->sta_data_size = sizeof(struct rtw_sta_info);
2112 hw->vif_data_size = sizeof(struct rtw_vif);
2113
2114 ieee80211_hw_set(hw, SIGNAL_DBM);
2115 ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2116 ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2117 ieee80211_hw_set(hw, MFP_CAPABLE);
2118 ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2119 ieee80211_hw_set(hw, SUPPORTS_PS);
2120 ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2121 ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2122 ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2123 ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2124 ieee80211_hw_set(hw, TX_AMSDU);
2125 ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2126
2127 hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2128 BIT(NL80211_IFTYPE_AP) |
2129 BIT(NL80211_IFTYPE_ADHOC) |
2130 BIT(NL80211_IFTYPE_MESH_POINT);
2131 hw->wiphy->available_antennas_tx = hal->antenna_tx;
2132 hw->wiphy->available_antennas_rx = hal->antenna_rx;
2133
2134 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2135 WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2136
2137 hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2138 hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2139 hw->wiphy->max_scan_ie_len = RTW_SCAN_MAX_IE_LEN;
2140
2141 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2142 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2143 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2144
2145 #ifdef CONFIG_PM
2146 hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2147 hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2148 #endif
2149 rtw_set_supported_band(hw, rtwdev->chip);
2150 SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2151
2152 hw->wiphy->sar_capa = &rtw_sar_capa;
2153
2154 ret = rtw_regd_init(rtwdev);
2155 if (ret) {
2156 rtw_err(rtwdev, "failed to init regd\n");
2157 return ret;
2158 }
2159
2160 ret = ieee80211_register_hw(hw);
2161 if (ret) {
2162 rtw_err(rtwdev, "failed to register hw\n");
2163 return ret;
2164 }
2165
2166 ret = rtw_regd_hint(rtwdev);
2167 if (ret) {
2168 rtw_err(rtwdev, "failed to hint regd\n");
2169 return ret;
2170 }
2171
2172 rtw_debugfs_init(rtwdev);
2173
2174 rtwdev->bf_info.bfer_mu_cnt = 0;
2175 rtwdev->bf_info.bfer_su_cnt = 0;
2176
2177 return 0;
2178 }
2179 EXPORT_SYMBOL(rtw_register_hw);
2180
2181 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2182 {
2183 struct rtw_chip_info *chip = rtwdev->chip;
2184
2185 ieee80211_unregister_hw(hw);
2186 rtw_unset_supported_band(hw, chip);
2187 }
2188 EXPORT_SYMBOL(rtw_unregister_hw);
2189
2190 MODULE_AUTHOR("Realtek Corporation");
2191 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2192 MODULE_LICENSE("Dual BSD/GPL");