0001
0002
0003
0004 #include "wifi.h"
0005 #include "efuse.h"
0006 #include "pci.h"
0007 #include <linux/export.h>
0008
0009 static const u8 PGPKT_DATA_SIZE = 8;
0010 static const int EFUSE_MAX_SIZE = 512;
0011
0012 #define START_ADDRESS 0x1000
0013 #define REG_MCUFWDL 0x0080
0014
0015 static const struct rtl_efuse_ops efuse_ops = {
0016 .efuse_onebyte_read = efuse_one_byte_read,
0017 .efuse_logical_map_read = efuse_shadow_read,
0018 };
0019
0020 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
0021 u8 *value);
0022 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
0023 u16 *value);
0024 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
0025 u32 *value);
0026 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
0027 u8 value);
0028 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
0029 u16 value);
0030 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
0031 u32 value);
0032 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
0033 u8 data);
0034 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
0035 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
0036 u8 *data);
0037 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
0038 u8 word_en, u8 *data);
0039 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
0040 u8 *targetdata);
0041 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
0042 u16 efuse_addr, u8 word_en, u8 *data);
0043 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
0044 static u8 efuse_calculate_word_cnts(u8 word_en);
0045
0046 void efuse_initialize(struct ieee80211_hw *hw)
0047 {
0048 struct rtl_priv *rtlpriv = rtl_priv(hw);
0049 u8 bytetemp;
0050 u8 temp;
0051
0052 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
0053 temp = bytetemp | 0x20;
0054 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
0055
0056 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
0057 temp = bytetemp & 0xFE;
0058 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
0059
0060 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
0061 temp = bytetemp | 0x80;
0062 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
0063
0064 rtl_write_byte(rtlpriv, 0x2F8, 0x3);
0065
0066 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
0067
0068 }
0069
0070 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
0071 {
0072 struct rtl_priv *rtlpriv = rtl_priv(hw);
0073 u8 data;
0074 u8 bytetemp;
0075 u8 temp;
0076 u32 k = 0;
0077 const u32 efuse_len =
0078 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
0079
0080 if (address < efuse_len) {
0081 temp = address & 0xFF;
0082 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
0083 temp);
0084 bytetemp = rtl_read_byte(rtlpriv,
0085 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
0086 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
0087 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
0088 temp);
0089
0090 bytetemp = rtl_read_byte(rtlpriv,
0091 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
0092 temp = bytetemp & 0x7F;
0093 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
0094 temp);
0095
0096 bytetemp = rtl_read_byte(rtlpriv,
0097 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
0098 while (!(bytetemp & 0x80)) {
0099 bytetemp = rtl_read_byte(rtlpriv,
0100 rtlpriv->cfg->
0101 maps[EFUSE_CTRL] + 3);
0102 k++;
0103 if (k == 1000)
0104 break;
0105 }
0106 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
0107 return data;
0108 } else
0109 return 0xFF;
0110
0111 }
0112 EXPORT_SYMBOL(efuse_read_1byte);
0113
0114 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
0115 {
0116 struct rtl_priv *rtlpriv = rtl_priv(hw);
0117 u8 bytetemp;
0118 u8 temp;
0119 u32 k = 0;
0120 const u32 efuse_len =
0121 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
0122
0123 rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
0124 address, value);
0125
0126 if (address < efuse_len) {
0127 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
0128
0129 temp = address & 0xFF;
0130 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
0131 temp);
0132 bytetemp = rtl_read_byte(rtlpriv,
0133 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
0134
0135 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
0136 rtl_write_byte(rtlpriv,
0137 rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
0138
0139 bytetemp = rtl_read_byte(rtlpriv,
0140 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
0141 temp = bytetemp | 0x80;
0142 rtl_write_byte(rtlpriv,
0143 rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
0144
0145 bytetemp = rtl_read_byte(rtlpriv,
0146 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
0147
0148 while (bytetemp & 0x80) {
0149 bytetemp = rtl_read_byte(rtlpriv,
0150 rtlpriv->cfg->
0151 maps[EFUSE_CTRL] + 3);
0152 k++;
0153 if (k == 100) {
0154 k = 0;
0155 break;
0156 }
0157 }
0158 }
0159
0160 }
0161
0162 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
0163 {
0164 struct rtl_priv *rtlpriv = rtl_priv(hw);
0165 u32 value32;
0166 u8 readbyte;
0167 u16 retry;
0168
0169 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
0170 (_offset & 0xff));
0171 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
0172 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
0173 ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
0174
0175 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
0176 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
0177 (readbyte & 0x7f));
0178
0179 retry = 0;
0180 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
0181 while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
0182 value32 = rtl_read_dword(rtlpriv,
0183 rtlpriv->cfg->maps[EFUSE_CTRL]);
0184 retry++;
0185 }
0186
0187 udelay(50);
0188 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
0189
0190 *pbuf = (u8) (value32 & 0xff);
0191 }
0192 EXPORT_SYMBOL_GPL(read_efuse_byte);
0193
0194 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
0195 {
0196 struct rtl_priv *rtlpriv = rtl_priv(hw);
0197 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
0198 u8 *efuse_tbl;
0199 u8 rtemp8[1];
0200 u16 efuse_addr = 0;
0201 u8 offset, wren;
0202 u8 u1temp = 0;
0203 u16 i;
0204 u16 j;
0205 const u16 efuse_max_section =
0206 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
0207 const u32 efuse_len =
0208 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
0209 u16 **efuse_word;
0210 u16 efuse_utilized = 0;
0211 u8 efuse_usage;
0212
0213 if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
0214 rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD,
0215 "%s: Invalid offset(%#x) with read bytes(%#x)!!\n",
0216 __func__, _offset, _size_byte);
0217 return;
0218 }
0219
0220
0221 efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE],
0222 GFP_ATOMIC);
0223 if (!efuse_tbl)
0224 return;
0225 efuse_word = kcalloc(EFUSE_MAX_WORD_UNIT, sizeof(u16 *), GFP_ATOMIC);
0226 if (!efuse_word)
0227 goto out;
0228 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
0229 efuse_word[i] = kcalloc(efuse_max_section, sizeof(u16),
0230 GFP_ATOMIC);
0231 if (!efuse_word[i])
0232 goto done;
0233 }
0234
0235 for (i = 0; i < efuse_max_section; i++)
0236 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
0237 efuse_word[j][i] = 0xFFFF;
0238
0239 read_efuse_byte(hw, efuse_addr, rtemp8);
0240 if (*rtemp8 != 0xFF) {
0241 efuse_utilized++;
0242 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
0243 "Addr=%d\n", efuse_addr);
0244 efuse_addr++;
0245 }
0246
0247 while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
0248
0249 if ((*rtemp8 & 0x1F) == 0x0F) {
0250 u1temp = ((*rtemp8 & 0xE0) >> 5);
0251 read_efuse_byte(hw, efuse_addr, rtemp8);
0252
0253 if ((*rtemp8 & 0x0F) == 0x0F) {
0254 efuse_addr++;
0255 read_efuse_byte(hw, efuse_addr, rtemp8);
0256
0257 if (*rtemp8 != 0xFF &&
0258 (efuse_addr < efuse_len)) {
0259 efuse_addr++;
0260 }
0261 continue;
0262 } else {
0263 offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
0264 wren = (*rtemp8 & 0x0F);
0265 efuse_addr++;
0266 }
0267 } else {
0268 offset = ((*rtemp8 >> 4) & 0x0f);
0269 wren = (*rtemp8 & 0x0f);
0270 }
0271
0272 if (offset < efuse_max_section) {
0273 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
0274 "offset-%d Worden=%x\n", offset, wren);
0275
0276 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
0277 if (!(wren & 0x01)) {
0278 RTPRINT(rtlpriv, FEEPROM,
0279 EFUSE_READ_ALL,
0280 "Addr=%d\n", efuse_addr);
0281
0282 read_efuse_byte(hw, efuse_addr, rtemp8);
0283 efuse_addr++;
0284 efuse_utilized++;
0285 efuse_word[i][offset] =
0286 (*rtemp8 & 0xff);
0287
0288 if (efuse_addr >= efuse_len)
0289 break;
0290
0291 RTPRINT(rtlpriv, FEEPROM,
0292 EFUSE_READ_ALL,
0293 "Addr=%d\n", efuse_addr);
0294
0295 read_efuse_byte(hw, efuse_addr, rtemp8);
0296 efuse_addr++;
0297 efuse_utilized++;
0298 efuse_word[i][offset] |=
0299 (((u16)*rtemp8 << 8) & 0xff00);
0300
0301 if (efuse_addr >= efuse_len)
0302 break;
0303 }
0304
0305 wren >>= 1;
0306 }
0307 }
0308
0309 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
0310 "Addr=%d\n", efuse_addr);
0311 read_efuse_byte(hw, efuse_addr, rtemp8);
0312 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
0313 efuse_utilized++;
0314 efuse_addr++;
0315 }
0316 }
0317
0318 for (i = 0; i < efuse_max_section; i++) {
0319 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
0320 efuse_tbl[(i * 8) + (j * 2)] =
0321 (efuse_word[j][i] & 0xff);
0322 efuse_tbl[(i * 8) + ((j * 2) + 1)] =
0323 ((efuse_word[j][i] >> 8) & 0xff);
0324 }
0325 }
0326
0327 for (i = 0; i < _size_byte; i++)
0328 pbuf[i] = efuse_tbl[_offset + i];
0329
0330 rtlefuse->efuse_usedbytes = efuse_utilized;
0331 efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
0332 rtlefuse->efuse_usedpercentage = efuse_usage;
0333 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
0334 (u8 *)&efuse_utilized);
0335 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
0336 &efuse_usage);
0337 done:
0338 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
0339 kfree(efuse_word[i]);
0340 kfree(efuse_word);
0341 out:
0342 kfree(efuse_tbl);
0343 }
0344
0345 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
0346 {
0347 struct rtl_priv *rtlpriv = rtl_priv(hw);
0348 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
0349 u8 section_idx, i, base;
0350 u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
0351 bool wordchanged, result = true;
0352
0353 for (section_idx = 0; section_idx < 16; section_idx++) {
0354 base = section_idx * 8;
0355 wordchanged = false;
0356
0357 for (i = 0; i < 8; i = i + 2) {
0358 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
0359 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i] ||
0360 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i + 1] !=
0361 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i +
0362 1]) {
0363 words_need++;
0364 wordchanged = true;
0365 }
0366 }
0367
0368 if (wordchanged)
0369 hdr_num++;
0370 }
0371
0372 totalbytes = hdr_num + words_need * 2;
0373 efuse_used = rtlefuse->efuse_usedbytes;
0374
0375 if ((totalbytes + efuse_used) >=
0376 (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
0377 result = false;
0378
0379 rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD,
0380 "%s: totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
0381 __func__, totalbytes, hdr_num, words_need, efuse_used);
0382
0383 return result;
0384 }
0385
0386 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
0387 u16 offset, u32 *value)
0388 {
0389 if (type == 1)
0390 efuse_shadow_read_1byte(hw, offset, (u8 *)value);
0391 else if (type == 2)
0392 efuse_shadow_read_2byte(hw, offset, (u16 *)value);
0393 else if (type == 4)
0394 efuse_shadow_read_4byte(hw, offset, value);
0395
0396 }
0397 EXPORT_SYMBOL(efuse_shadow_read);
0398
0399 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
0400 u32 value)
0401 {
0402 if (type == 1)
0403 efuse_shadow_write_1byte(hw, offset, (u8) value);
0404 else if (type == 2)
0405 efuse_shadow_write_2byte(hw, offset, (u16) value);
0406 else if (type == 4)
0407 efuse_shadow_write_4byte(hw, offset, value);
0408
0409 }
0410
0411 bool efuse_shadow_update(struct ieee80211_hw *hw)
0412 {
0413 struct rtl_priv *rtlpriv = rtl_priv(hw);
0414 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
0415 u16 i, offset, base;
0416 u8 word_en = 0x0F;
0417 u8 first_pg = false;
0418
0419 rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
0420
0421 if (!efuse_shadow_update_chk(hw)) {
0422 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
0423 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
0424 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
0425 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
0426
0427 rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD,
0428 "efuse out of capacity!!\n");
0429 return false;
0430 }
0431 efuse_power_switch(hw, true, true);
0432
0433 for (offset = 0; offset < 16; offset++) {
0434
0435 word_en = 0x0F;
0436 base = offset * 8;
0437
0438 for (i = 0; i < 8; i++) {
0439 if (first_pg) {
0440 word_en &= ~(BIT(i / 2));
0441
0442 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
0443 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
0444 } else {
0445
0446 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
0447 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
0448 word_en &= ~(BIT(i / 2));
0449
0450 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
0451 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
0452 }
0453 }
0454 }
0455
0456 if (word_en != 0x0F) {
0457 u8 tmpdata[8];
0458
0459 memcpy(tmpdata,
0460 &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
0461 8);
0462 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
0463 "U-efuse\n", tmpdata, 8);
0464
0465 if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
0466 tmpdata)) {
0467 rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
0468 "PG section(%#x) fail!!\n", offset);
0469 break;
0470 }
0471 }
0472 }
0473
0474 efuse_power_switch(hw, true, false);
0475 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
0476
0477 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
0478 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
0479 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
0480
0481 rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
0482 return true;
0483 }
0484
0485 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
0486 {
0487 struct rtl_priv *rtlpriv = rtl_priv(hw);
0488 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
0489
0490 if (rtlefuse->autoload_failflag)
0491 memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]),
0492 0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
0493 else
0494 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
0495
0496 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
0497 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
0498 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
0499
0500 }
0501 EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
0502
0503 void efuse_force_write_vendor_id(struct ieee80211_hw *hw)
0504 {
0505 u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
0506
0507 efuse_power_switch(hw, true, true);
0508
0509 efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
0510
0511 efuse_power_switch(hw, true, false);
0512
0513 }
0514
0515 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
0516 {
0517 }
0518
0519 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
0520 u16 offset, u8 *value)
0521 {
0522 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
0523 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
0524 }
0525
0526 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
0527 u16 offset, u16 *value)
0528 {
0529 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
0530
0531 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
0532 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
0533
0534 }
0535
0536 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
0537 u16 offset, u32 *value)
0538 {
0539 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
0540
0541 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
0542 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
0543 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
0544 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
0545 }
0546
0547 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
0548 u16 offset, u8 value)
0549 {
0550 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
0551
0552 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
0553 }
0554
0555 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
0556 u16 offset, u16 value)
0557 {
0558 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
0559
0560 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
0561 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
0562
0563 }
0564
0565 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
0566 u16 offset, u32 value)
0567 {
0568 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
0569
0570 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
0571 (u8) (value & 0x000000FF);
0572 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
0573 (u8) ((value >> 8) & 0x0000FF);
0574 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
0575 (u8) ((value >> 16) & 0x00FF);
0576 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
0577 (u8) ((value >> 24) & 0xFF);
0578
0579 }
0580
0581 int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
0582 {
0583 struct rtl_priv *rtlpriv = rtl_priv(hw);
0584 u8 tmpidx = 0;
0585 int result;
0586
0587 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
0588 (u8) (addr & 0xff));
0589 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
0590 ((u8) ((addr >> 8) & 0x03)) |
0591 (rtl_read_byte(rtlpriv,
0592 rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
0593 0xFC));
0594
0595 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
0596
0597 while (!(0x80 & rtl_read_byte(rtlpriv,
0598 rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
0599 && (tmpidx < 100)) {
0600 tmpidx++;
0601 }
0602
0603 if (tmpidx < 100) {
0604 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
0605 result = true;
0606 } else {
0607 *data = 0xff;
0608 result = false;
0609 }
0610 return result;
0611 }
0612 EXPORT_SYMBOL(efuse_one_byte_read);
0613
0614 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
0615 {
0616 struct rtl_priv *rtlpriv = rtl_priv(hw);
0617 u8 tmpidx = 0;
0618
0619 rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD,
0620 "Addr = %x Data=%x\n", addr, data);
0621
0622 rtl_write_byte(rtlpriv,
0623 rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
0624 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
0625 (rtl_read_byte(rtlpriv,
0626 rtlpriv->cfg->maps[EFUSE_CTRL] +
0627 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
0628
0629 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
0630 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
0631
0632 while ((0x80 & rtl_read_byte(rtlpriv,
0633 rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
0634 && (tmpidx < 100)) {
0635 tmpidx++;
0636 }
0637
0638 if (tmpidx < 100)
0639 return true;
0640 return false;
0641 }
0642
0643 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
0644 {
0645 struct rtl_priv *rtlpriv = rtl_priv(hw);
0646
0647 efuse_power_switch(hw, false, true);
0648 read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
0649 efuse_power_switch(hw, false, false);
0650 }
0651
0652 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
0653 u8 efuse_data, u8 offset, u8 *tmpdata,
0654 u8 *readstate)
0655 {
0656 bool dataempty = true;
0657 u8 hoffset;
0658 u8 tmpidx;
0659 u8 hworden;
0660 u8 word_cnts;
0661
0662 hoffset = (efuse_data >> 4) & 0x0F;
0663 hworden = efuse_data & 0x0F;
0664 word_cnts = efuse_calculate_word_cnts(hworden);
0665
0666 if (hoffset == offset) {
0667 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
0668 if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
0669 &efuse_data)) {
0670 tmpdata[tmpidx] = efuse_data;
0671 if (efuse_data != 0xff)
0672 dataempty = false;
0673 }
0674 }
0675
0676 if (!dataempty) {
0677 *readstate = PG_STATE_DATA;
0678 } else {
0679 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
0680 *readstate = PG_STATE_HEADER;
0681 }
0682
0683 } else {
0684 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
0685 *readstate = PG_STATE_HEADER;
0686 }
0687 }
0688
0689 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
0690 {
0691 u8 readstate = PG_STATE_HEADER;
0692
0693 bool continual = true;
0694
0695 u8 efuse_data, word_cnts = 0;
0696 u16 efuse_addr = 0;
0697 u8 tmpdata[8];
0698
0699 if (data == NULL)
0700 return false;
0701 if (offset > 15)
0702 return false;
0703
0704 memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
0705 memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
0706
0707 while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
0708 if (readstate & PG_STATE_HEADER) {
0709 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
0710 && (efuse_data != 0xFF))
0711 efuse_read_data_case1(hw, &efuse_addr,
0712 efuse_data, offset,
0713 tmpdata, &readstate);
0714 else
0715 continual = false;
0716 } else if (readstate & PG_STATE_DATA) {
0717 efuse_word_enable_data_read(0, tmpdata, data);
0718 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
0719 readstate = PG_STATE_HEADER;
0720 }
0721
0722 }
0723
0724 if ((data[0] == 0xff) && (data[1] == 0xff) &&
0725 (data[2] == 0xff) && (data[3] == 0xff) &&
0726 (data[4] == 0xff) && (data[5] == 0xff) &&
0727 (data[6] == 0xff) && (data[7] == 0xff))
0728 return false;
0729 else
0730 return true;
0731
0732 }
0733
0734 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
0735 u8 efuse_data, u8 offset,
0736 int *continual, u8 *write_state,
0737 struct pgpkt_struct *target_pkt,
0738 int *repeat_times, int *result, u8 word_en)
0739 {
0740 struct rtl_priv *rtlpriv = rtl_priv(hw);
0741 struct pgpkt_struct tmp_pkt;
0742 int dataempty = true;
0743 u8 originaldata[8 * sizeof(u8)];
0744 u8 badworden = 0x0F;
0745 u8 match_word_en, tmp_word_en;
0746 u8 tmpindex;
0747 u8 tmp_header = efuse_data;
0748 u8 tmp_word_cnts;
0749
0750 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
0751 tmp_pkt.word_en = tmp_header & 0x0F;
0752 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
0753
0754 if (tmp_pkt.offset != target_pkt->offset) {
0755 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
0756 *write_state = PG_STATE_HEADER;
0757 } else {
0758 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
0759 if (efuse_one_byte_read(hw,
0760 (*efuse_addr + 1 + tmpindex),
0761 &efuse_data) &&
0762 (efuse_data != 0xFF))
0763 dataempty = false;
0764 }
0765
0766 if (!dataempty) {
0767 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
0768 *write_state = PG_STATE_HEADER;
0769 } else {
0770 match_word_en = 0x0F;
0771 if (!((target_pkt->word_en & BIT(0)) |
0772 (tmp_pkt.word_en & BIT(0))))
0773 match_word_en &= (~BIT(0));
0774
0775 if (!((target_pkt->word_en & BIT(1)) |
0776 (tmp_pkt.word_en & BIT(1))))
0777 match_word_en &= (~BIT(1));
0778
0779 if (!((target_pkt->word_en & BIT(2)) |
0780 (tmp_pkt.word_en & BIT(2))))
0781 match_word_en &= (~BIT(2));
0782
0783 if (!((target_pkt->word_en & BIT(3)) |
0784 (tmp_pkt.word_en & BIT(3))))
0785 match_word_en &= (~BIT(3));
0786
0787 if ((match_word_en & 0x0F) != 0x0F) {
0788 badworden =
0789 enable_efuse_data_write(hw,
0790 *efuse_addr + 1,
0791 tmp_pkt.word_en,
0792 target_pkt->data);
0793
0794 if (0x0F != (badworden & 0x0F)) {
0795 u8 reorg_offset = offset;
0796 u8 reorg_worden = badworden;
0797
0798 efuse_pg_packet_write(hw, reorg_offset,
0799 reorg_worden,
0800 originaldata);
0801 }
0802
0803 tmp_word_en = 0x0F;
0804 if ((target_pkt->word_en & BIT(0)) ^
0805 (match_word_en & BIT(0)))
0806 tmp_word_en &= (~BIT(0));
0807
0808 if ((target_pkt->word_en & BIT(1)) ^
0809 (match_word_en & BIT(1)))
0810 tmp_word_en &= (~BIT(1));
0811
0812 if ((target_pkt->word_en & BIT(2)) ^
0813 (match_word_en & BIT(2)))
0814 tmp_word_en &= (~BIT(2));
0815
0816 if ((target_pkt->word_en & BIT(3)) ^
0817 (match_word_en & BIT(3)))
0818 tmp_word_en &= (~BIT(3));
0819
0820 if ((tmp_word_en & 0x0F) != 0x0F) {
0821 *efuse_addr = efuse_get_current_size(hw);
0822 target_pkt->offset = offset;
0823 target_pkt->word_en = tmp_word_en;
0824 } else {
0825 *continual = false;
0826 }
0827 *write_state = PG_STATE_HEADER;
0828 *repeat_times += 1;
0829 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
0830 *continual = false;
0831 *result = false;
0832 }
0833 } else {
0834 *efuse_addr += (2 * tmp_word_cnts) + 1;
0835 target_pkt->offset = offset;
0836 target_pkt->word_en = word_en;
0837 *write_state = PG_STATE_HEADER;
0838 }
0839 }
0840 }
0841 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
0842 }
0843
0844 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
0845 int *continual, u8 *write_state,
0846 struct pgpkt_struct target_pkt,
0847 int *repeat_times, int *result)
0848 {
0849 struct rtl_priv *rtlpriv = rtl_priv(hw);
0850 struct pgpkt_struct tmp_pkt;
0851 u8 pg_header;
0852 u8 tmp_header;
0853 u8 originaldata[8 * sizeof(u8)];
0854 u8 tmp_word_cnts;
0855 u8 badworden = 0x0F;
0856
0857 pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
0858 efuse_one_byte_write(hw, *efuse_addr, pg_header);
0859 efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
0860
0861 if (tmp_header == pg_header) {
0862 *write_state = PG_STATE_DATA;
0863 } else if (tmp_header == 0xFF) {
0864 *write_state = PG_STATE_HEADER;
0865 *repeat_times += 1;
0866 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
0867 *continual = false;
0868 *result = false;
0869 }
0870 } else {
0871 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
0872 tmp_pkt.word_en = tmp_header & 0x0F;
0873
0874 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
0875
0876 memset(originaldata, 0xff, 8 * sizeof(u8));
0877
0878 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
0879 badworden = enable_efuse_data_write(hw,
0880 *efuse_addr + 1,
0881 tmp_pkt.word_en,
0882 originaldata);
0883
0884 if (0x0F != (badworden & 0x0F)) {
0885 u8 reorg_offset = tmp_pkt.offset;
0886 u8 reorg_worden = badworden;
0887
0888 efuse_pg_packet_write(hw, reorg_offset,
0889 reorg_worden,
0890 originaldata);
0891 *efuse_addr = efuse_get_current_size(hw);
0892 } else {
0893 *efuse_addr = *efuse_addr +
0894 (tmp_word_cnts * 2) + 1;
0895 }
0896 } else {
0897 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
0898 }
0899
0900 *write_state = PG_STATE_HEADER;
0901 *repeat_times += 1;
0902 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
0903 *continual = false;
0904 *result = false;
0905 }
0906
0907 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
0908 "efuse PG_STATE_HEADER-2\n");
0909 }
0910 }
0911
0912 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
0913 u8 offset, u8 word_en, u8 *data)
0914 {
0915 struct rtl_priv *rtlpriv = rtl_priv(hw);
0916 struct pgpkt_struct target_pkt;
0917 u8 write_state = PG_STATE_HEADER;
0918 int continual = true, result = true;
0919 u16 efuse_addr = 0;
0920 u8 efuse_data;
0921 u8 target_word_cnts = 0;
0922 u8 badworden = 0x0F;
0923 static int repeat_times;
0924
0925 if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
0926 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
0927 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
0928 "efuse_pg_packet_write error\n");
0929 return false;
0930 }
0931
0932 target_pkt.offset = offset;
0933 target_pkt.word_en = word_en;
0934
0935 memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
0936
0937 efuse_word_enable_data_read(word_en, data, target_pkt.data);
0938 target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
0939
0940 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
0941
0942 while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
0943 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
0944 if (write_state == PG_STATE_HEADER) {
0945 badworden = 0x0F;
0946 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
0947 "efuse PG_STATE_HEADER\n");
0948
0949 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
0950 (efuse_data != 0xFF))
0951 efuse_write_data_case1(hw, &efuse_addr,
0952 efuse_data, offset,
0953 &continual,
0954 &write_state,
0955 &target_pkt,
0956 &repeat_times, &result,
0957 word_en);
0958 else
0959 efuse_write_data_case2(hw, &efuse_addr,
0960 &continual,
0961 &write_state,
0962 target_pkt,
0963 &repeat_times,
0964 &result);
0965
0966 } else if (write_state == PG_STATE_DATA) {
0967 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
0968 "efuse PG_STATE_DATA\n");
0969 badworden =
0970 enable_efuse_data_write(hw, efuse_addr + 1,
0971 target_pkt.word_en,
0972 target_pkt.data);
0973
0974 if ((badworden & 0x0F) == 0x0F) {
0975 continual = false;
0976 } else {
0977 efuse_addr =
0978 efuse_addr + (2 * target_word_cnts) + 1;
0979
0980 target_pkt.offset = offset;
0981 target_pkt.word_en = badworden;
0982 target_word_cnts =
0983 efuse_calculate_word_cnts(target_pkt.
0984 word_en);
0985 write_state = PG_STATE_HEADER;
0986 repeat_times++;
0987 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
0988 continual = false;
0989 result = false;
0990 }
0991 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
0992 "efuse PG_STATE_HEADER-3\n");
0993 }
0994 }
0995 }
0996
0997 if (efuse_addr >= (EFUSE_MAX_SIZE -
0998 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
0999 rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD,
1000 "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1001 }
1002
1003 return true;
1004 }
1005
1006 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
1007 u8 *targetdata)
1008 {
1009 if (!(word_en & BIT(0))) {
1010 targetdata[0] = sourdata[0];
1011 targetdata[1] = sourdata[1];
1012 }
1013
1014 if (!(word_en & BIT(1))) {
1015 targetdata[2] = sourdata[2];
1016 targetdata[3] = sourdata[3];
1017 }
1018
1019 if (!(word_en & BIT(2))) {
1020 targetdata[4] = sourdata[4];
1021 targetdata[5] = sourdata[5];
1022 }
1023
1024 if (!(word_en & BIT(3))) {
1025 targetdata[6] = sourdata[6];
1026 targetdata[7] = sourdata[7];
1027 }
1028 }
1029
1030 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
1031 u16 efuse_addr, u8 word_en, u8 *data)
1032 {
1033 struct rtl_priv *rtlpriv = rtl_priv(hw);
1034 u16 tmpaddr;
1035 u16 start_addr = efuse_addr;
1036 u8 badworden = 0x0F;
1037 u8 tmpdata[8];
1038
1039 memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1040 rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD,
1041 "word_en = %x efuse_addr=%x\n", word_en, efuse_addr);
1042
1043 if (!(word_en & BIT(0))) {
1044 tmpaddr = start_addr;
1045 efuse_one_byte_write(hw, start_addr++, data[0]);
1046 efuse_one_byte_write(hw, start_addr++, data[1]);
1047
1048 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1049 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1050 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1051 badworden &= (~BIT(0));
1052 }
1053
1054 if (!(word_en & BIT(1))) {
1055 tmpaddr = start_addr;
1056 efuse_one_byte_write(hw, start_addr++, data[2]);
1057 efuse_one_byte_write(hw, start_addr++, data[3]);
1058
1059 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1060 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1061 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1062 badworden &= (~BIT(1));
1063 }
1064
1065 if (!(word_en & BIT(2))) {
1066 tmpaddr = start_addr;
1067 efuse_one_byte_write(hw, start_addr++, data[4]);
1068 efuse_one_byte_write(hw, start_addr++, data[5]);
1069
1070 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1071 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1072 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1073 badworden &= (~BIT(2));
1074 }
1075
1076 if (!(word_en & BIT(3))) {
1077 tmpaddr = start_addr;
1078 efuse_one_byte_write(hw, start_addr++, data[6]);
1079 efuse_one_byte_write(hw, start_addr++, data[7]);
1080
1081 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1082 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1083 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1084 badworden &= (~BIT(3));
1085 }
1086
1087 return badworden;
1088 }
1089
1090 void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1091 {
1092 struct rtl_priv *rtlpriv = rtl_priv(hw);
1093 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1094 u8 tempval;
1095 u16 tmpv16;
1096
1097 if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1098 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1099 rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
1100 rtl_write_byte(rtlpriv,
1101 rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
1102 } else {
1103 tmpv16 =
1104 rtl_read_word(rtlpriv,
1105 rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1106 if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1107 tmpv16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1108 rtl_write_word(rtlpriv,
1109 rtlpriv->cfg->maps[SYS_ISO_CTRL],
1110 tmpv16);
1111 }
1112 }
1113 tmpv16 = rtl_read_word(rtlpriv,
1114 rtlpriv->cfg->maps[SYS_FUNC_EN]);
1115 if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1116 tmpv16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1117 rtl_write_word(rtlpriv,
1118 rtlpriv->cfg->maps[SYS_FUNC_EN], tmpv16);
1119 }
1120
1121 tmpv16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1122 if ((!(tmpv16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1123 (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1124 tmpv16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1125 rtlpriv->cfg->maps[EFUSE_ANA8M]);
1126 rtl_write_word(rtlpriv,
1127 rtlpriv->cfg->maps[SYS_CLK], tmpv16);
1128 }
1129 }
1130
1131 if (pwrstate) {
1132 if (write) {
1133 tempval = rtl_read_byte(rtlpriv,
1134 rtlpriv->cfg->maps[EFUSE_TEST] +
1135 3);
1136
1137 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
1138 tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
1139 tempval |= (VOLTAGE_V25 << 3);
1140 } else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1141 tempval &= 0x0F;
1142 tempval |= (VOLTAGE_V25 << 4);
1143 }
1144
1145 rtl_write_byte(rtlpriv,
1146 rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1147 (tempval | 0x80));
1148 }
1149
1150 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1151 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1152 0x03);
1153 }
1154 } else {
1155 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1156 rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
1157 rtl_write_byte(rtlpriv,
1158 rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1159
1160 if (write) {
1161 tempval = rtl_read_byte(rtlpriv,
1162 rtlpriv->cfg->maps[EFUSE_TEST] +
1163 3);
1164 rtl_write_byte(rtlpriv,
1165 rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1166 (tempval & 0x7F));
1167 }
1168
1169 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1170 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1171 0x02);
1172 }
1173 }
1174 }
1175 EXPORT_SYMBOL(efuse_power_switch);
1176
1177 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1178 {
1179 int continual = true;
1180 u16 efuse_addr = 0;
1181 u8 hworden;
1182 u8 efuse_data, word_cnts;
1183
1184 while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
1185 (efuse_addr < EFUSE_MAX_SIZE)) {
1186 if (efuse_data != 0xFF) {
1187 hworden = efuse_data & 0x0F;
1188 word_cnts = efuse_calculate_word_cnts(hworden);
1189 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1190 } else {
1191 continual = false;
1192 }
1193 }
1194
1195 return efuse_addr;
1196 }
1197
1198 static u8 efuse_calculate_word_cnts(u8 word_en)
1199 {
1200 u8 word_cnts = 0;
1201
1202 if (!(word_en & BIT(0)))
1203 word_cnts++;
1204 if (!(word_en & BIT(1)))
1205 word_cnts++;
1206 if (!(word_en & BIT(2)))
1207 word_cnts++;
1208 if (!(word_en & BIT(3)))
1209 word_cnts++;
1210 return word_cnts;
1211 }
1212
1213 int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv,
1214 int max_size, u8 *hwinfo, int *params)
1215 {
1216 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1217 struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
1218 struct device *dev = &rtlpcipriv->dev.pdev->dev;
1219 u16 eeprom_id;
1220 u16 i, usvalue;
1221
1222 switch (rtlefuse->epromtype) {
1223 case EEPROM_BOOT_EFUSE:
1224 rtl_efuse_shadow_map_update(hw);
1225 break;
1226
1227 case EEPROM_93C46:
1228 pr_err("RTL8XXX did not boot from eeprom, check it !!\n");
1229 return 1;
1230
1231 default:
1232 dev_warn(dev, "no efuse data\n");
1233 return 1;
1234 }
1235
1236 memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size);
1237
1238 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1239 hwinfo, max_size);
1240
1241 eeprom_id = *((u16 *)&hwinfo[0]);
1242 if (eeprom_id != params[0]) {
1243 rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
1244 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1245 rtlefuse->autoload_failflag = true;
1246 } else {
1247 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1248 rtlefuse->autoload_failflag = false;
1249 }
1250
1251 if (rtlefuse->autoload_failflag)
1252 return 1;
1253
1254 rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]];
1255 rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]];
1256 rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]];
1257 rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]];
1258 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1259 "EEPROMId = 0x%4x\n", eeprom_id);
1260 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1261 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1262 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1263 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1264 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1265 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1266 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1267 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1268
1269 for (i = 0; i < 6; i += 2) {
1270 usvalue = *(u16 *)&hwinfo[params[5] + i];
1271 *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
1272 }
1273 rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1274
1275 rtlefuse->eeprom_channelplan = *&hwinfo[params[6]];
1276 rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]];
1277 rtlefuse->txpwr_fromeprom = true;
1278 rtlefuse->eeprom_oemid = *&hwinfo[params[8]];
1279
1280 rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1281 "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
1282
1283
1284 rtlefuse->channel_plan = params[9];
1285
1286 return 0;
1287 }
1288 EXPORT_SYMBOL_GPL(rtl_get_hwinfo);
1289
1290 void rtl_fw_block_write(struct ieee80211_hw *hw, const u8 *buffer, u32 size)
1291 {
1292 struct rtl_priv *rtlpriv = rtl_priv(hw);
1293 u8 *pu4byteptr = (u8 *)buffer;
1294 u32 i;
1295
1296 for (i = 0; i < size; i++)
1297 rtl_write_byte(rtlpriv, (START_ADDRESS + i), *(pu4byteptr + i));
1298 }
1299 EXPORT_SYMBOL_GPL(rtl_fw_block_write);
1300
1301 void rtl_fw_page_write(struct ieee80211_hw *hw, u32 page, const u8 *buffer,
1302 u32 size)
1303 {
1304 struct rtl_priv *rtlpriv = rtl_priv(hw);
1305 u8 value8;
1306 u8 u8page = (u8)(page & 0x07);
1307
1308 value8 = (rtl_read_byte(rtlpriv, REG_MCUFWDL + 2) & 0xF8) | u8page;
1309
1310 rtl_write_byte(rtlpriv, (REG_MCUFWDL + 2), value8);
1311 rtl_fw_block_write(hw, buffer, size);
1312 }
1313 EXPORT_SYMBOL_GPL(rtl_fw_page_write);
1314
1315 void rtl_fill_dummy(u8 *pfwbuf, u32 *pfwlen)
1316 {
1317 u32 fwlen = *pfwlen;
1318 u8 remain = (u8)(fwlen % 4);
1319
1320 remain = (remain == 0) ? 0 : (4 - remain);
1321
1322 while (remain > 0) {
1323 pfwbuf[fwlen] = 0;
1324 fwlen++;
1325 remain--;
1326 }
1327
1328 *pfwlen = fwlen;
1329 }
1330 EXPORT_SYMBOL_GPL(rtl_fill_dummy);
1331
1332 void rtl_efuse_ops_init(struct ieee80211_hw *hw)
1333 {
1334 struct rtl_priv *rtlpriv = rtl_priv(hw);
1335
1336 rtlpriv->efuse.efuse_ops = &efuse_ops;
1337 }
1338 EXPORT_SYMBOL_GPL(rtl_efuse_ops_init);