Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003     Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
0004     <http://rt2x00.serialmonkey.com>
0005 
0006  */
0007 
0008 /*
0009     Module: rt61pci
0010     Abstract: rt61pci device specific routines.
0011     Supported chipsets: RT2561, RT2561s, RT2661.
0012  */
0013 
0014 #include <linux/crc-itu-t.h>
0015 #include <linux/delay.h>
0016 #include <linux/etherdevice.h>
0017 #include <linux/kernel.h>
0018 #include <linux/module.h>
0019 #include <linux/slab.h>
0020 #include <linux/pci.h>
0021 #include <linux/eeprom_93cx6.h>
0022 
0023 #include "rt2x00.h"
0024 #include "rt2x00mmio.h"
0025 #include "rt2x00pci.h"
0026 #include "rt61pci.h"
0027 
0028 /*
0029  * Allow hardware encryption to be disabled.
0030  */
0031 static bool modparam_nohwcrypt = false;
0032 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
0033 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
0034 
0035 /*
0036  * Register access.
0037  * BBP and RF register require indirect register access,
0038  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
0039  * These indirect registers work with busy bits,
0040  * and we will try maximal REGISTER_BUSY_COUNT times to access
0041  * the register while taking a REGISTER_BUSY_DELAY us delay
0042  * between each attempt. When the busy bit is still set at that time,
0043  * the access attempt is considered to have failed,
0044  * and we will print an error.
0045  */
0046 #define WAIT_FOR_BBP(__dev, __reg) \
0047     rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
0048 #define WAIT_FOR_RF(__dev, __reg) \
0049     rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
0050 #define WAIT_FOR_MCU(__dev, __reg) \
0051     rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
0052                 H2M_MAILBOX_CSR_OWNER, (__reg))
0053 
0054 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
0055                   const unsigned int word, const u8 value)
0056 {
0057     u32 reg;
0058 
0059     mutex_lock(&rt2x00dev->csr_mutex);
0060 
0061     /*
0062      * Wait until the BBP becomes available, afterwards we
0063      * can safely write the new data into the register.
0064      */
0065     if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
0066         reg = 0;
0067         rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
0068         rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
0069         rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
0070         rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
0071 
0072         rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
0073     }
0074 
0075     mutex_unlock(&rt2x00dev->csr_mutex);
0076 }
0077 
0078 static u8 rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
0079                const unsigned int word)
0080 {
0081     u32 reg;
0082     u8 value;
0083 
0084     mutex_lock(&rt2x00dev->csr_mutex);
0085 
0086     /*
0087      * Wait until the BBP becomes available, afterwards we
0088      * can safely write the read request into the register.
0089      * After the data has been written, we wait until hardware
0090      * returns the correct value, if at any time the register
0091      * doesn't become available in time, reg will be 0xffffffff
0092      * which means we return 0xff to the caller.
0093      */
0094     if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
0095         reg = 0;
0096         rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
0097         rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
0098         rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
0099 
0100         rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
0101 
0102         WAIT_FOR_BBP(rt2x00dev, &reg);
0103     }
0104 
0105     value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
0106 
0107     mutex_unlock(&rt2x00dev->csr_mutex);
0108 
0109     return value;
0110 }
0111 
0112 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
0113                  const unsigned int word, const u32 value)
0114 {
0115     u32 reg;
0116 
0117     mutex_lock(&rt2x00dev->csr_mutex);
0118 
0119     /*
0120      * Wait until the RF becomes available, afterwards we
0121      * can safely write the new data into the register.
0122      */
0123     if (WAIT_FOR_RF(rt2x00dev, &reg)) {
0124         reg = 0;
0125         rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
0126         rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
0127         rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
0128         rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
0129 
0130         rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
0131         rt2x00_rf_write(rt2x00dev, word, value);
0132     }
0133 
0134     mutex_unlock(&rt2x00dev->csr_mutex);
0135 }
0136 
0137 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
0138                 const u8 command, const u8 token,
0139                 const u8 arg0, const u8 arg1)
0140 {
0141     u32 reg;
0142 
0143     mutex_lock(&rt2x00dev->csr_mutex);
0144 
0145     /*
0146      * Wait until the MCU becomes available, afterwards we
0147      * can safely write the new data into the register.
0148      */
0149     if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
0150         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
0151         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
0152         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
0153         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
0154         rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
0155 
0156         reg = rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR);
0157         rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
0158         rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
0159         rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
0160     }
0161 
0162     mutex_unlock(&rt2x00dev->csr_mutex);
0163 
0164 }
0165 
0166 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
0167 {
0168     struct rt2x00_dev *rt2x00dev = eeprom->data;
0169     u32 reg;
0170 
0171     reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
0172 
0173     eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
0174     eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
0175     eeprom->reg_data_clock =
0176         !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
0177     eeprom->reg_chip_select =
0178         !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
0179 }
0180 
0181 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
0182 {
0183     struct rt2x00_dev *rt2x00dev = eeprom->data;
0184     u32 reg = 0;
0185 
0186     rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
0187     rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
0188     rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
0189                !!eeprom->reg_data_clock);
0190     rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
0191                !!eeprom->reg_chip_select);
0192 
0193     rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
0194 }
0195 
0196 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
0197 static const struct rt2x00debug rt61pci_rt2x00debug = {
0198     .owner  = THIS_MODULE,
0199     .csr    = {
0200         .read       = rt2x00mmio_register_read,
0201         .write      = rt2x00mmio_register_write,
0202         .flags      = RT2X00DEBUGFS_OFFSET,
0203         .word_base  = CSR_REG_BASE,
0204         .word_size  = sizeof(u32),
0205         .word_count = CSR_REG_SIZE / sizeof(u32),
0206     },
0207     .eeprom = {
0208         .read       = rt2x00_eeprom_read,
0209         .write      = rt2x00_eeprom_write,
0210         .word_base  = EEPROM_BASE,
0211         .word_size  = sizeof(u16),
0212         .word_count = EEPROM_SIZE / sizeof(u16),
0213     },
0214     .bbp    = {
0215         .read       = rt61pci_bbp_read,
0216         .write      = rt61pci_bbp_write,
0217         .word_base  = BBP_BASE,
0218         .word_size  = sizeof(u8),
0219         .word_count = BBP_SIZE / sizeof(u8),
0220     },
0221     .rf = {
0222         .read       = rt2x00_rf_read,
0223         .write      = rt61pci_rf_write,
0224         .word_base  = RF_BASE,
0225         .word_size  = sizeof(u32),
0226         .word_count = RF_SIZE / sizeof(u32),
0227     },
0228 };
0229 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
0230 
0231 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
0232 {
0233     u32 reg;
0234 
0235     reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
0236     return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
0237 }
0238 
0239 #ifdef CONFIG_RT2X00_LIB_LEDS
0240 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
0241                    enum led_brightness brightness)
0242 {
0243     struct rt2x00_led *led =
0244         container_of(led_cdev, struct rt2x00_led, led_dev);
0245     unsigned int enabled = brightness != LED_OFF;
0246     unsigned int a_mode =
0247         (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ);
0248     unsigned int bg_mode =
0249         (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ);
0250 
0251     if (led->type == LED_TYPE_RADIO) {
0252         rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
0253                    MCU_LEDCS_RADIO_STATUS, enabled);
0254 
0255         rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
0256                     (led->rt2x00dev->led_mcu_reg & 0xff),
0257                     ((led->rt2x00dev->led_mcu_reg >> 8)));
0258     } else if (led->type == LED_TYPE_ASSOC) {
0259         rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
0260                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
0261         rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
0262                    MCU_LEDCS_LINK_A_STATUS, a_mode);
0263 
0264         rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
0265                     (led->rt2x00dev->led_mcu_reg & 0xff),
0266                     ((led->rt2x00dev->led_mcu_reg >> 8)));
0267     } else if (led->type == LED_TYPE_QUALITY) {
0268         /*
0269          * The brightness is divided into 6 levels (0 - 5),
0270          * this means we need to convert the brightness
0271          * argument into the matching level within that range.
0272          */
0273         rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
0274                     brightness / (LED_FULL / 6), 0);
0275     }
0276 }
0277 
0278 static int rt61pci_blink_set(struct led_classdev *led_cdev,
0279                  unsigned long *delay_on,
0280                  unsigned long *delay_off)
0281 {
0282     struct rt2x00_led *led =
0283         container_of(led_cdev, struct rt2x00_led, led_dev);
0284     u32 reg;
0285 
0286     reg = rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14);
0287     rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
0288     rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
0289     rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);
0290 
0291     return 0;
0292 }
0293 
0294 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
0295                  struct rt2x00_led *led,
0296                  enum led_type type)
0297 {
0298     led->rt2x00dev = rt2x00dev;
0299     led->type = type;
0300     led->led_dev.brightness_set = rt61pci_brightness_set;
0301     led->led_dev.blink_set = rt61pci_blink_set;
0302     led->flags = LED_INITIALIZED;
0303 }
0304 #endif /* CONFIG_RT2X00_LIB_LEDS */
0305 
0306 /*
0307  * Configuration handlers.
0308  */
0309 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
0310                      struct rt2x00lib_crypto *crypto,
0311                      struct ieee80211_key_conf *key)
0312 {
0313     /*
0314      * Let the software handle the shared keys,
0315      * since the hardware decryption does not work reliably,
0316      * because the firmware does not know the key's keyidx.
0317      */
0318     return -EOPNOTSUPP;
0319 }
0320 
0321 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
0322                        struct rt2x00lib_crypto *crypto,
0323                        struct ieee80211_key_conf *key)
0324 {
0325     struct hw_pairwise_ta_entry addr_entry;
0326     struct hw_key_entry key_entry;
0327     u32 mask;
0328     u32 reg;
0329 
0330     if (crypto->cmd == SET_KEY) {
0331         /*
0332          * rt2x00lib can't determine the correct free
0333          * key_idx for pairwise keys. We have 2 registers
0334          * with key valid bits. The goal is simple: read
0335          * the first register. If that is full, move to
0336          * the next register.
0337          * When both registers are full, we drop the key.
0338          * Otherwise, we use the first invalid entry.
0339          */
0340         reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
0341         if (reg && reg == ~0) {
0342             key->hw_key_idx = 32;
0343             reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
0344             if (reg && reg == ~0)
0345                 return -ENOSPC;
0346         }
0347 
0348         key->hw_key_idx += reg ? ffz(reg) : 0;
0349 
0350         /*
0351          * Upload key to hardware
0352          */
0353         memcpy(key_entry.key, crypto->key,
0354                sizeof(key_entry.key));
0355         memcpy(key_entry.tx_mic, crypto->tx_mic,
0356                sizeof(key_entry.tx_mic));
0357         memcpy(key_entry.rx_mic, crypto->rx_mic,
0358                sizeof(key_entry.rx_mic));
0359 
0360         memset(&addr_entry, 0, sizeof(addr_entry));
0361         memcpy(&addr_entry, crypto->address, ETH_ALEN);
0362         addr_entry.cipher = crypto->cipher;
0363 
0364         reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
0365         rt2x00mmio_register_multiwrite(rt2x00dev, reg,
0366                            &key_entry, sizeof(key_entry));
0367 
0368         reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
0369         rt2x00mmio_register_multiwrite(rt2x00dev, reg,
0370                            &addr_entry, sizeof(addr_entry));
0371 
0372         /*
0373          * Enable pairwise lookup table for given BSS idx.
0374          * Without this, received frames will not be decrypted
0375          * by the hardware.
0376          */
0377         reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR4);
0378         reg |= (1 << crypto->bssidx);
0379         rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);
0380 
0381         /*
0382          * The driver does not support the IV/EIV generation
0383          * in hardware. However it doesn't support the IV/EIV
0384          * inside the ieee80211 frame either, but requires it
0385          * to be provided separately for the descriptor.
0386          * rt2x00lib will cut the IV/EIV data out of all frames
0387          * given to us by mac80211, but we must tell mac80211
0388          * to generate the IV/EIV data.
0389          */
0390         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
0391     }
0392 
0393     /*
0394      * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
0395      * a particular key is valid. Because using the FIELD32()
0396      * defines directly will cause a lot of overhead, we use
0397      * a calculation to determine the correct bit directly.
0398      */
0399     if (key->hw_key_idx < 32) {
0400         mask = 1 << key->hw_key_idx;
0401 
0402         reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
0403         if (crypto->cmd == SET_KEY)
0404             reg |= mask;
0405         else if (crypto->cmd == DISABLE_KEY)
0406             reg &= ~mask;
0407         rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
0408     } else {
0409         mask = 1 << (key->hw_key_idx - 32);
0410 
0411         reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
0412         if (crypto->cmd == SET_KEY)
0413             reg |= mask;
0414         else if (crypto->cmd == DISABLE_KEY)
0415             reg &= ~mask;
0416         rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
0417     }
0418 
0419     return 0;
0420 }
0421 
0422 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
0423                   const unsigned int filter_flags)
0424 {
0425     u32 reg;
0426 
0427     /*
0428      * Start configuration steps.
0429      * Note that the version error will always be dropped
0430      * and broadcast frames will always be accepted since
0431      * there is no filter for it at this time.
0432      */
0433     reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
0434     rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
0435                !(filter_flags & FIF_FCSFAIL));
0436     rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
0437                !(filter_flags & FIF_PLCPFAIL));
0438     rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
0439                !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
0440     rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
0441                !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
0442     rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
0443                !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
0444                !rt2x00dev->intf_ap_count);
0445     rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
0446     rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
0447                !(filter_flags & FIF_ALLMULTI));
0448     rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
0449     rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
0450                !(filter_flags & FIF_CONTROL));
0451     rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
0452 }
0453 
0454 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
0455                 struct rt2x00_intf *intf,
0456                 struct rt2x00intf_conf *conf,
0457                 const unsigned int flags)
0458 {
0459     u32 reg;
0460 
0461     if (flags & CONFIG_UPDATE_TYPE) {
0462         /*
0463          * Enable synchronisation.
0464          */
0465         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
0466         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
0467         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
0468     }
0469 
0470     if (flags & CONFIG_UPDATE_MAC) {
0471         reg = le32_to_cpu(conf->mac[1]);
0472         rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
0473         conf->mac[1] = cpu_to_le32(reg);
0474 
0475         rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
0476                            conf->mac, sizeof(conf->mac));
0477     }
0478 
0479     if (flags & CONFIG_UPDATE_BSSID) {
0480         reg = le32_to_cpu(conf->bssid[1]);
0481         rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
0482         conf->bssid[1] = cpu_to_le32(reg);
0483 
0484         rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
0485                            conf->bssid,
0486                            sizeof(conf->bssid));
0487     }
0488 }
0489 
0490 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
0491                    struct rt2x00lib_erp *erp,
0492                    u32 changed)
0493 {
0494     u32 reg;
0495 
0496     reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
0497     rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
0498     rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
0499     rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
0500 
0501     if (changed & BSS_CHANGED_ERP_PREAMBLE) {
0502         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
0503         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
0504         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
0505                    !!erp->short_preamble);
0506         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
0507     }
0508 
0509     if (changed & BSS_CHANGED_BASIC_RATES)
0510         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
0511                       erp->basic_rates);
0512 
0513     if (changed & BSS_CHANGED_BEACON_INT) {
0514         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
0515         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
0516                    erp->beacon_int * 16);
0517         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
0518     }
0519 
0520     if (changed & BSS_CHANGED_ERP_SLOT) {
0521         reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
0522         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
0523         rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
0524 
0525         reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR8);
0526         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
0527         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
0528         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
0529         rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
0530     }
0531 }
0532 
0533 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
0534                       struct antenna_setup *ant)
0535 {
0536     u8 r3;
0537     u8 r4;
0538     u8 r77;
0539 
0540     r3 = rt61pci_bbp_read(rt2x00dev, 3);
0541     r4 = rt61pci_bbp_read(rt2x00dev, 4);
0542     r77 = rt61pci_bbp_read(rt2x00dev, 77);
0543 
0544     rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
0545 
0546     /*
0547      * Configure the RX antenna.
0548      */
0549     switch (ant->rx) {
0550     case ANTENNA_HW_DIVERSITY:
0551         rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
0552         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
0553                   (rt2x00dev->curr_band != NL80211_BAND_5GHZ));
0554         break;
0555     case ANTENNA_A:
0556         rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
0557         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
0558         if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
0559             rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
0560         else
0561             rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
0562         break;
0563     case ANTENNA_B:
0564     default:
0565         rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
0566         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
0567         if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
0568             rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
0569         else
0570             rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
0571         break;
0572     }
0573 
0574     rt61pci_bbp_write(rt2x00dev, 77, r77);
0575     rt61pci_bbp_write(rt2x00dev, 3, r3);
0576     rt61pci_bbp_write(rt2x00dev, 4, r4);
0577 }
0578 
0579 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
0580                       struct antenna_setup *ant)
0581 {
0582     u8 r3;
0583     u8 r4;
0584     u8 r77;
0585 
0586     r3 = rt61pci_bbp_read(rt2x00dev, 3);
0587     r4 = rt61pci_bbp_read(rt2x00dev, 4);
0588     r77 = rt61pci_bbp_read(rt2x00dev, 77);
0589 
0590     rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
0591     rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
0592               !rt2x00_has_cap_frame_type(rt2x00dev));
0593 
0594     /*
0595      * Configure the RX antenna.
0596      */
0597     switch (ant->rx) {
0598     case ANTENNA_HW_DIVERSITY:
0599         rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
0600         break;
0601     case ANTENNA_A:
0602         rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
0603         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
0604         break;
0605     case ANTENNA_B:
0606     default:
0607         rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
0608         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
0609         break;
0610     }
0611 
0612     rt61pci_bbp_write(rt2x00dev, 77, r77);
0613     rt61pci_bbp_write(rt2x00dev, 3, r3);
0614     rt61pci_bbp_write(rt2x00dev, 4, r4);
0615 }
0616 
0617 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
0618                        const int p1, const int p2)
0619 {
0620     u32 reg;
0621 
0622     reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
0623 
0624     rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
0625     rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
0626 
0627     rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
0628     rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
0629 
0630     rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
0631 }
0632 
0633 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
0634                     struct antenna_setup *ant)
0635 {
0636     u8 r3;
0637     u8 r4;
0638     u8 r77;
0639 
0640     r3 = rt61pci_bbp_read(rt2x00dev, 3);
0641     r4 = rt61pci_bbp_read(rt2x00dev, 4);
0642     r77 = rt61pci_bbp_read(rt2x00dev, 77);
0643 
0644     /*
0645      * Configure the RX antenna.
0646      */
0647     switch (ant->rx) {
0648     case ANTENNA_A:
0649         rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
0650         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
0651         rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
0652         break;
0653     case ANTENNA_HW_DIVERSITY:
0654         /*
0655          * FIXME: Antenna selection for the rf 2529 is very confusing
0656          * in the legacy driver. Just default to antenna B until the
0657          * legacy code can be properly translated into rt2x00 code.
0658          */
0659     case ANTENNA_B:
0660     default:
0661         rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
0662         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
0663         rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
0664         break;
0665     }
0666 
0667     rt61pci_bbp_write(rt2x00dev, 77, r77);
0668     rt61pci_bbp_write(rt2x00dev, 3, r3);
0669     rt61pci_bbp_write(rt2x00dev, 4, r4);
0670 }
0671 
0672 struct antenna_sel {
0673     u8 word;
0674     /*
0675      * value[0] -> non-LNA
0676      * value[1] -> LNA
0677      */
0678     u8 value[2];
0679 };
0680 
0681 static const struct antenna_sel antenna_sel_a[] = {
0682     { 96,  { 0x58, 0x78 } },
0683     { 104, { 0x38, 0x48 } },
0684     { 75,  { 0xfe, 0x80 } },
0685     { 86,  { 0xfe, 0x80 } },
0686     { 88,  { 0xfe, 0x80 } },
0687     { 35,  { 0x60, 0x60 } },
0688     { 97,  { 0x58, 0x58 } },
0689     { 98,  { 0x58, 0x58 } },
0690 };
0691 
0692 static const struct antenna_sel antenna_sel_bg[] = {
0693     { 96,  { 0x48, 0x68 } },
0694     { 104, { 0x2c, 0x3c } },
0695     { 75,  { 0xfe, 0x80 } },
0696     { 86,  { 0xfe, 0x80 } },
0697     { 88,  { 0xfe, 0x80 } },
0698     { 35,  { 0x50, 0x50 } },
0699     { 97,  { 0x48, 0x48 } },
0700     { 98,  { 0x48, 0x48 } },
0701 };
0702 
0703 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
0704                    struct antenna_setup *ant)
0705 {
0706     const struct antenna_sel *sel;
0707     unsigned int lna;
0708     unsigned int i;
0709     u32 reg;
0710 
0711     /*
0712      * We should never come here because rt2x00lib is supposed
0713      * to catch this and send us the correct antenna explicitely.
0714      */
0715     BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
0716            ant->tx == ANTENNA_SW_DIVERSITY);
0717 
0718     if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
0719         sel = antenna_sel_a;
0720         lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
0721     } else {
0722         sel = antenna_sel_bg;
0723         lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
0724     }
0725 
0726     for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
0727         rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
0728 
0729     reg = rt2x00mmio_register_read(rt2x00dev, PHY_CSR0);
0730 
0731     rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
0732                rt2x00dev->curr_band == NL80211_BAND_2GHZ);
0733     rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
0734                rt2x00dev->curr_band == NL80211_BAND_5GHZ);
0735 
0736     rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);
0737 
0738     if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
0739         rt61pci_config_antenna_5x(rt2x00dev, ant);
0740     else if (rt2x00_rf(rt2x00dev, RF2527))
0741         rt61pci_config_antenna_2x(rt2x00dev, ant);
0742     else if (rt2x00_rf(rt2x00dev, RF2529)) {
0743         if (rt2x00_has_cap_double_antenna(rt2x00dev))
0744             rt61pci_config_antenna_2x(rt2x00dev, ant);
0745         else
0746             rt61pci_config_antenna_2529(rt2x00dev, ant);
0747     }
0748 }
0749 
0750 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
0751                     struct rt2x00lib_conf *libconf)
0752 {
0753     u16 eeprom;
0754     short lna_gain = 0;
0755 
0756     if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) {
0757         if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
0758             lna_gain += 14;
0759 
0760         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
0761         lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
0762     } else {
0763         if (rt2x00_has_cap_external_lna_a(rt2x00dev))
0764             lna_gain += 14;
0765 
0766         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
0767         lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
0768     }
0769 
0770     rt2x00dev->lna_gain = lna_gain;
0771 }
0772 
0773 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
0774                    struct rf_channel *rf, const int txpower)
0775 {
0776     u8 r3;
0777     u8 r94;
0778     u8 smart;
0779 
0780     rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
0781     rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
0782 
0783     smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
0784 
0785     r3 = rt61pci_bbp_read(rt2x00dev, 3);
0786     rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
0787     rt61pci_bbp_write(rt2x00dev, 3, r3);
0788 
0789     r94 = 6;
0790     if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
0791         r94 += txpower - MAX_TXPOWER;
0792     else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
0793         r94 += txpower;
0794     rt61pci_bbp_write(rt2x00dev, 94, r94);
0795 
0796     rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
0797     rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
0798     rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
0799     rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
0800 
0801     udelay(200);
0802 
0803     rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
0804     rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
0805     rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
0806     rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
0807 
0808     udelay(200);
0809 
0810     rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
0811     rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
0812     rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
0813     rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
0814 
0815     msleep(1);
0816 }
0817 
0818 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
0819                    const int txpower)
0820 {
0821     struct rf_channel rf;
0822 
0823     rf.rf1 = rt2x00_rf_read(rt2x00dev, 1);
0824     rf.rf2 = rt2x00_rf_read(rt2x00dev, 2);
0825     rf.rf3 = rt2x00_rf_read(rt2x00dev, 3);
0826     rf.rf4 = rt2x00_rf_read(rt2x00dev, 4);
0827 
0828     rt61pci_config_channel(rt2x00dev, &rf, txpower);
0829 }
0830 
0831 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
0832                     struct rt2x00lib_conf *libconf)
0833 {
0834     u32 reg;
0835 
0836     reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
0837     rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
0838     rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
0839     rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
0840     rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
0841                libconf->conf->long_frame_max_tx_count);
0842     rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
0843                libconf->conf->short_frame_max_tx_count);
0844     rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
0845 }
0846 
0847 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
0848                 struct rt2x00lib_conf *libconf)
0849 {
0850     enum dev_state state =
0851         (libconf->conf->flags & IEEE80211_CONF_PS) ?
0852         STATE_SLEEP : STATE_AWAKE;
0853     u32 reg;
0854 
0855     if (state == STATE_SLEEP) {
0856         reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
0857         rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
0858                    rt2x00dev->beacon_int - 10);
0859         rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
0860                    libconf->conf->listen_interval - 1);
0861         rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
0862 
0863         /* We must first disable autowake before it can be enabled */
0864         rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
0865         rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
0866 
0867         rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
0868         rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
0869 
0870         rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
0871                       0x00000005);
0872         rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
0873         rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
0874 
0875         rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
0876     } else {
0877         reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
0878         rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
0879         rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
0880         rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
0881         rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
0882         rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
0883 
0884         rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
0885                       0x00000007);
0886         rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
0887         rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
0888 
0889         rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
0890     }
0891 }
0892 
0893 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
0894                struct rt2x00lib_conf *libconf,
0895                const unsigned int flags)
0896 {
0897     /* Always recalculate LNA gain before changing configuration */
0898     rt61pci_config_lna_gain(rt2x00dev, libconf);
0899 
0900     if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
0901         rt61pci_config_channel(rt2x00dev, &libconf->rf,
0902                        libconf->conf->power_level);
0903     if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
0904         !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
0905         rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
0906     if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
0907         rt61pci_config_retry_limit(rt2x00dev, libconf);
0908     if (flags & IEEE80211_CONF_CHANGE_PS)
0909         rt61pci_config_ps(rt2x00dev, libconf);
0910 }
0911 
0912 /*
0913  * Link tuning
0914  */
0915 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
0916                    struct link_qual *qual)
0917 {
0918     u32 reg;
0919 
0920     /*
0921      * Update FCS error count from register.
0922      */
0923     reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
0924     qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
0925 
0926     /*
0927      * Update False CCA count from register.
0928      */
0929     reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
0930     qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
0931 }
0932 
0933 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
0934                    struct link_qual *qual, u8 vgc_level)
0935 {
0936     if (qual->vgc_level != vgc_level) {
0937         rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
0938         qual->vgc_level = vgc_level;
0939         qual->vgc_level_reg = vgc_level;
0940     }
0941 }
0942 
0943 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
0944                 struct link_qual *qual)
0945 {
0946     rt61pci_set_vgc(rt2x00dev, qual, 0x20);
0947 }
0948 
0949 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
0950                    struct link_qual *qual, const u32 count)
0951 {
0952     u8 up_bound;
0953     u8 low_bound;
0954 
0955     /*
0956      * Determine r17 bounds.
0957      */
0958     if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
0959         low_bound = 0x28;
0960         up_bound = 0x48;
0961         if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
0962             low_bound += 0x10;
0963             up_bound += 0x10;
0964         }
0965     } else {
0966         low_bound = 0x20;
0967         up_bound = 0x40;
0968         if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
0969             low_bound += 0x10;
0970             up_bound += 0x10;
0971         }
0972     }
0973 
0974     /*
0975      * If we are not associated, we should go straight to the
0976      * dynamic CCA tuning.
0977      */
0978     if (!rt2x00dev->intf_associated)
0979         goto dynamic_cca_tune;
0980 
0981     /*
0982      * Special big-R17 for very short distance
0983      */
0984     if (qual->rssi >= -35) {
0985         rt61pci_set_vgc(rt2x00dev, qual, 0x60);
0986         return;
0987     }
0988 
0989     /*
0990      * Special big-R17 for short distance
0991      */
0992     if (qual->rssi >= -58) {
0993         rt61pci_set_vgc(rt2x00dev, qual, up_bound);
0994         return;
0995     }
0996 
0997     /*
0998      * Special big-R17 for middle-short distance
0999      */
1000     if (qual->rssi >= -66) {
1001         rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1002         return;
1003     }
1004 
1005     /*
1006      * Special mid-R17 for middle distance
1007      */
1008     if (qual->rssi >= -74) {
1009         rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1010         return;
1011     }
1012 
1013     /*
1014      * Special case: Change up_bound based on the rssi.
1015      * Lower up_bound when rssi is weaker then -74 dBm.
1016      */
1017     up_bound -= 2 * (-74 - qual->rssi);
1018     if (low_bound > up_bound)
1019         up_bound = low_bound;
1020 
1021     if (qual->vgc_level > up_bound) {
1022         rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1023         return;
1024     }
1025 
1026 dynamic_cca_tune:
1027 
1028     /*
1029      * r17 does not yet exceed upper limit, continue and base
1030      * the r17 tuning on the false CCA count.
1031      */
1032     if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1033         rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1034     else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1035         rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1036 }
1037 
1038 /*
1039  * Queue handlers.
1040  */
1041 static void rt61pci_start_queue(struct data_queue *queue)
1042 {
1043     struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1044     u32 reg;
1045 
1046     switch (queue->qid) {
1047     case QID_RX:
1048         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1049         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1050         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1051         break;
1052     case QID_BEACON:
1053         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1054         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1055         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1056         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1057         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1058         break;
1059     default:
1060         break;
1061     }
1062 }
1063 
1064 static void rt61pci_kick_queue(struct data_queue *queue)
1065 {
1066     struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1067     u32 reg;
1068 
1069     switch (queue->qid) {
1070     case QID_AC_VO:
1071         reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1072         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1073         rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1074         break;
1075     case QID_AC_VI:
1076         reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1077         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1078         rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1079         break;
1080     case QID_AC_BE:
1081         reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1082         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1083         rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1084         break;
1085     case QID_AC_BK:
1086         reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1087         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1088         rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1089         break;
1090     default:
1091         break;
1092     }
1093 }
1094 
1095 static void rt61pci_stop_queue(struct data_queue *queue)
1096 {
1097     struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1098     u32 reg;
1099 
1100     switch (queue->qid) {
1101     case QID_AC_VO:
1102         reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1103         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1104         rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1105         break;
1106     case QID_AC_VI:
1107         reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1108         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1109         rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1110         break;
1111     case QID_AC_BE:
1112         reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1113         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1114         rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1115         break;
1116     case QID_AC_BK:
1117         reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1118         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1119         rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1120         break;
1121     case QID_RX:
1122         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1123         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1124         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1125         break;
1126     case QID_BEACON:
1127         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1128         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1129         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1130         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1131         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1132 
1133         /*
1134          * Wait for possibly running tbtt tasklets.
1135          */
1136         tasklet_kill(&rt2x00dev->tbtt_tasklet);
1137         break;
1138     default:
1139         break;
1140     }
1141 }
1142 
1143 /*
1144  * Firmware functions
1145  */
1146 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1147 {
1148     u16 chip;
1149     char *fw_name;
1150 
1151     pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1152     switch (chip) {
1153     case RT2561_PCI_ID:
1154         fw_name = FIRMWARE_RT2561;
1155         break;
1156     case RT2561s_PCI_ID:
1157         fw_name = FIRMWARE_RT2561s;
1158         break;
1159     case RT2661_PCI_ID:
1160         fw_name = FIRMWARE_RT2661;
1161         break;
1162     default:
1163         fw_name = NULL;
1164         break;
1165     }
1166 
1167     return fw_name;
1168 }
1169 
1170 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1171                   const u8 *data, const size_t len)
1172 {
1173     u16 fw_crc;
1174     u16 crc;
1175 
1176     /*
1177      * Only support 8kb firmware files.
1178      */
1179     if (len != 8192)
1180         return FW_BAD_LENGTH;
1181 
1182     /*
1183      * The last 2 bytes in the firmware array are the crc checksum itself.
1184      * This means that we should never pass those 2 bytes to the crc
1185      * algorithm.
1186      */
1187     fw_crc = (data[len - 2] << 8 | data[len - 1]);
1188 
1189     /*
1190      * Use the crc itu-t algorithm.
1191      */
1192     crc = crc_itu_t(0, data, len - 2);
1193     crc = crc_itu_t_byte(crc, 0);
1194     crc = crc_itu_t_byte(crc, 0);
1195 
1196     return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1197 }
1198 
1199 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1200                  const u8 *data, const size_t len)
1201 {
1202     int i;
1203     u32 reg;
1204 
1205     /*
1206      * Wait for stable hardware.
1207      */
1208     for (i = 0; i < 100; i++) {
1209         reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
1210         if (reg)
1211             break;
1212         msleep(1);
1213     }
1214 
1215     if (!reg) {
1216         rt2x00_err(rt2x00dev, "Unstable hardware\n");
1217         return -EBUSY;
1218     }
1219 
1220     /*
1221      * Prepare MCU and mailbox for firmware loading.
1222      */
1223     reg = 0;
1224     rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1225     rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1226     rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1227     rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1228     rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1229 
1230     /*
1231      * Write firmware to device.
1232      */
1233     reg = 0;
1234     rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1235     rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1236     rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1237 
1238     rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1239                        data, len);
1240 
1241     rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1242     rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1243 
1244     rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1245     rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1246 
1247     for (i = 0; i < 100; i++) {
1248         reg = rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR);
1249         if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1250             break;
1251         msleep(1);
1252     }
1253 
1254     if (i == 100) {
1255         rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
1256         return -EBUSY;
1257     }
1258 
1259     /*
1260      * Hardware needs another millisecond before it is ready.
1261      */
1262     msleep(1);
1263 
1264     /*
1265      * Reset MAC and BBP registers.
1266      */
1267     reg = 0;
1268     rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1269     rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1270     rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1271 
1272     reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1273     rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1274     rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1275     rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1276 
1277     reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1278     rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1279     rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1280 
1281     return 0;
1282 }
1283 
1284 /*
1285  * Initialization functions.
1286  */
1287 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1288 {
1289     struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1290     u32 word;
1291 
1292     if (entry->queue->qid == QID_RX) {
1293         word = rt2x00_desc_read(entry_priv->desc, 0);
1294 
1295         return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1296     } else {
1297         word = rt2x00_desc_read(entry_priv->desc, 0);
1298 
1299         return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1300                 rt2x00_get_field32(word, TXD_W0_VALID));
1301     }
1302 }
1303 
1304 static void rt61pci_clear_entry(struct queue_entry *entry)
1305 {
1306     struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1307     struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1308     u32 word;
1309 
1310     if (entry->queue->qid == QID_RX) {
1311         word = rt2x00_desc_read(entry_priv->desc, 5);
1312         rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1313                    skbdesc->skb_dma);
1314         rt2x00_desc_write(entry_priv->desc, 5, word);
1315 
1316         word = rt2x00_desc_read(entry_priv->desc, 0);
1317         rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1318         rt2x00_desc_write(entry_priv->desc, 0, word);
1319     } else {
1320         word = rt2x00_desc_read(entry_priv->desc, 0);
1321         rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1322         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1323         rt2x00_desc_write(entry_priv->desc, 0, word);
1324     }
1325 }
1326 
1327 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1328 {
1329     struct queue_entry_priv_mmio *entry_priv;
1330     u32 reg;
1331 
1332     /*
1333      * Initialize registers.
1334      */
1335     reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0);
1336     rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1337                rt2x00dev->tx[0].limit);
1338     rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1339                rt2x00dev->tx[1].limit);
1340     rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1341                rt2x00dev->tx[2].limit);
1342     rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1343                rt2x00dev->tx[3].limit);
1344     rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);
1345 
1346     reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1);
1347     rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1348                rt2x00dev->tx[0].desc_size / 4);
1349     rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);
1350 
1351     entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1352     reg = rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR);
1353     rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1354                entry_priv->desc_dma);
1355     rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1356 
1357     entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1358     reg = rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR);
1359     rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1360                entry_priv->desc_dma);
1361     rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1362 
1363     entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1364     reg = rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR);
1365     rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1366                entry_priv->desc_dma);
1367     rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1368 
1369     entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1370     reg = rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR);
1371     rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1372                entry_priv->desc_dma);
1373     rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1374 
1375     reg = rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR);
1376     rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1377     rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1378                rt2x00dev->rx->desc_size / 4);
1379     rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1380     rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);
1381 
1382     entry_priv = rt2x00dev->rx->entries[0].priv_data;
1383     reg = rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR);
1384     rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1385                entry_priv->desc_dma);
1386     rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);
1387 
1388     reg = rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR);
1389     rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1390     rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1391     rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1392     rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1393     rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1394 
1395     reg = rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR);
1396     rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1397     rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1398     rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1399     rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1400     rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1401 
1402     reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
1403     rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1404     rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1405 
1406     return 0;
1407 }
1408 
1409 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1410 {
1411     u32 reg;
1412 
1413     reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1414     rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1415     rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1416     rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1417     rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1418 
1419     reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1);
1420     rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1421     rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1422     rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1423     rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1424     rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1425     rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1426     rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1427     rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1428     rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);
1429 
1430     /*
1431      * CCK TXD BBP registers
1432      */
1433     reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2);
1434     rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1435     rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1436     rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1437     rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1438     rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1439     rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1440     rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1441     rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1442     rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);
1443 
1444     /*
1445      * OFDM TXD BBP registers
1446      */
1447     reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3);
1448     rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1449     rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1450     rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1451     rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1452     rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1453     rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1454     rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);
1455 
1456     reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7);
1457     rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1458     rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1459     rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1460     rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1461     rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);
1462 
1463     reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8);
1464     rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1465     rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1466     rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1467     rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1468     rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);
1469 
1470     reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1471     rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1472     rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1473     rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1474     rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1475     rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1476     rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1477     rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1478 
1479     rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1480 
1481     rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1482 
1483     reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
1484     rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1485     rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
1486 
1487     rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1488 
1489     if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1490         return -EBUSY;
1491 
1492     rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1493 
1494     /*
1495      * Invalidate all Shared Keys (SEC_CSR0),
1496      * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1497      */
1498     rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1499     rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1500     rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1501 
1502     rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1503     rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1504     rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1505     rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1506 
1507     rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1508 
1509     rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1510 
1511     rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1512 
1513     /*
1514      * Clear all beacons
1515      * For the Beacon base registers we only need to clear
1516      * the first byte since that byte contains the VALID and OWNER
1517      * bits which (when set to 0) will invalidate the entire beacon.
1518      */
1519     rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1520     rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1521     rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1522     rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1523 
1524     /*
1525      * We must clear the error counters.
1526      * These registers are cleared on read,
1527      * so we may pass a useless variable to store the value.
1528      */
1529     reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
1530     reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
1531     reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR2);
1532 
1533     /*
1534      * Reset MAC and BBP registers.
1535      */
1536     reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1537     rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1538     rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1539     rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1540 
1541     reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1542     rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1543     rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1544     rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1545 
1546     reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1547     rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1548     rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1549 
1550     return 0;
1551 }
1552 
1553 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1554 {
1555     unsigned int i;
1556     u8 value;
1557 
1558     for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1559         value = rt61pci_bbp_read(rt2x00dev, 0);
1560         if ((value != 0xff) && (value != 0x00))
1561             return 0;
1562         udelay(REGISTER_BUSY_DELAY);
1563     }
1564 
1565     rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1566     return -EACCES;
1567 }
1568 
1569 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1570 {
1571     unsigned int i;
1572     u16 eeprom;
1573     u8 reg_id;
1574     u8 value;
1575 
1576     if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1577         return -EACCES;
1578 
1579     rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1580     rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1581     rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1582     rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1583     rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1584     rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1585     rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1586     rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1587     rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1588     rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1589     rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1590     rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1591     rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1592     rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1593     rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1594     rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1595     rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1596     rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1597     rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1598     rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1599     rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1600     rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1601     rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1602     rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1603 
1604     for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1605         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
1606 
1607         if (eeprom != 0xffff && eeprom != 0x0000) {
1608             reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1609             value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1610             rt61pci_bbp_write(rt2x00dev, reg_id, value);
1611         }
1612     }
1613 
1614     return 0;
1615 }
1616 
1617 /*
1618  * Device state switch handlers.
1619  */
1620 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1621                    enum dev_state state)
1622 {
1623     int mask = (state == STATE_RADIO_IRQ_OFF);
1624     u32 reg;
1625     unsigned long flags;
1626 
1627     /*
1628      * When interrupts are being enabled, the interrupt registers
1629      * should clear the register to assure a clean state.
1630      */
1631     if (state == STATE_RADIO_IRQ_ON) {
1632         reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
1633         rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1634 
1635         reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
1636         rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1637     }
1638 
1639     /*
1640      * Only toggle the interrupts bits we are going to use.
1641      * Non-checked interrupt bits are disabled by default.
1642      */
1643     spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1644 
1645     reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
1646     rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1647     rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1648     rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1649     rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1650     rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1651     rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
1652 
1653     reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
1654     rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1655     rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1656     rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1657     rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1658     rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1659     rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1660     rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1661     rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1662     rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1663     rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1664 
1665     spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1666 
1667     if (state == STATE_RADIO_IRQ_OFF) {
1668         /*
1669          * Ensure that all tasklets are finished.
1670          */
1671         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1672         tasklet_kill(&rt2x00dev->rxdone_tasklet);
1673         tasklet_kill(&rt2x00dev->autowake_tasklet);
1674         tasklet_kill(&rt2x00dev->tbtt_tasklet);
1675     }
1676 }
1677 
1678 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1679 {
1680     u32 reg;
1681 
1682     /*
1683      * Initialize all registers.
1684      */
1685     if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1686              rt61pci_init_registers(rt2x00dev) ||
1687              rt61pci_init_bbp(rt2x00dev)))
1688         return -EIO;
1689 
1690     /*
1691      * Enable RX.
1692      */
1693     reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
1694     rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1695     rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1696 
1697     return 0;
1698 }
1699 
1700 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1701 {
1702     /*
1703      * Disable power
1704      */
1705     rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1706 }
1707 
1708 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1709 {
1710     u32 reg, reg2;
1711     unsigned int i;
1712     char put_to_sleep;
1713 
1714     put_to_sleep = (state != STATE_AWAKE);
1715 
1716     reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
1717     rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1718     rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1719     rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1720 
1721     /*
1722      * Device is not guaranteed to be in the requested state yet.
1723      * We must wait until the register indicates that the
1724      * device has entered the correct state.
1725      */
1726     for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1727         reg2 = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
1728         state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1729         if (state == !put_to_sleep)
1730             return 0;
1731         rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1732         msleep(10);
1733     }
1734 
1735     return -EBUSY;
1736 }
1737 
1738 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1739                     enum dev_state state)
1740 {
1741     int retval = 0;
1742 
1743     switch (state) {
1744     case STATE_RADIO_ON:
1745         retval = rt61pci_enable_radio(rt2x00dev);
1746         break;
1747     case STATE_RADIO_OFF:
1748         rt61pci_disable_radio(rt2x00dev);
1749         break;
1750     case STATE_RADIO_IRQ_ON:
1751     case STATE_RADIO_IRQ_OFF:
1752         rt61pci_toggle_irq(rt2x00dev, state);
1753         break;
1754     case STATE_DEEP_SLEEP:
1755     case STATE_SLEEP:
1756     case STATE_STANDBY:
1757     case STATE_AWAKE:
1758         retval = rt61pci_set_state(rt2x00dev, state);
1759         break;
1760     default:
1761         retval = -ENOTSUPP;
1762         break;
1763     }
1764 
1765     if (unlikely(retval))
1766         rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1767                state, retval);
1768 
1769     return retval;
1770 }
1771 
1772 /*
1773  * TX descriptor initialization
1774  */
1775 static void rt61pci_write_tx_desc(struct queue_entry *entry,
1776                   struct txentry_desc *txdesc)
1777 {
1778     struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1779     struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1780     __le32 *txd = entry_priv->desc;
1781     u32 word;
1782 
1783     /*
1784      * Start writing the descriptor words.
1785      */
1786     word = rt2x00_desc_read(txd, 1);
1787     rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1788     rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1789     rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1790     rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1791     rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1792     rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1793                test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1794     rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1795     rt2x00_desc_write(txd, 1, word);
1796 
1797     word = rt2x00_desc_read(txd, 2);
1798     rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1799     rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1800     rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1801                txdesc->u.plcp.length_low);
1802     rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1803                txdesc->u.plcp.length_high);
1804     rt2x00_desc_write(txd, 2, word);
1805 
1806     if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1807         _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1808         _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1809     }
1810 
1811     word = rt2x00_desc_read(txd, 5);
1812     rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1813     rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, entry->entry_idx);
1814     rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1815                TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1816     rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1817     rt2x00_desc_write(txd, 5, word);
1818 
1819     if (entry->queue->qid != QID_BEACON) {
1820         word = rt2x00_desc_read(txd, 6);
1821         rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1822                    skbdesc->skb_dma);
1823         rt2x00_desc_write(txd, 6, word);
1824 
1825         word = rt2x00_desc_read(txd, 11);
1826         rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1827                    txdesc->length);
1828         rt2x00_desc_write(txd, 11, word);
1829     }
1830 
1831     /*
1832      * Writing TXD word 0 must the last to prevent a race condition with
1833      * the device, whereby the device may take hold of the TXD before we
1834      * finished updating it.
1835      */
1836     word = rt2x00_desc_read(txd, 0);
1837     rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1838     rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1839     rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1840                test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1841     rt2x00_set_field32(&word, TXD_W0_ACK,
1842                test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1843     rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1844                test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1845     rt2x00_set_field32(&word, TXD_W0_OFDM,
1846                (txdesc->rate_mode == RATE_MODE_OFDM));
1847     rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1848     rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1849                test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1850     rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1851                test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1852     rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1853                test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1854     rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1855     rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1856     rt2x00_set_field32(&word, TXD_W0_BURST,
1857                test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1858     rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1859     rt2x00_desc_write(txd, 0, word);
1860 
1861     /*
1862      * Register descriptor details in skb frame descriptor.
1863      */
1864     skbdesc->desc = txd;
1865     skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1866                 TXD_DESC_SIZE;
1867 }
1868 
1869 /*
1870  * TX data initialization
1871  */
1872 static void rt61pci_write_beacon(struct queue_entry *entry,
1873                  struct txentry_desc *txdesc)
1874 {
1875     struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1876     struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1877     unsigned int beacon_base;
1878     unsigned int padding_len;
1879     u32 orig_reg, reg;
1880 
1881     /*
1882      * Disable beaconing while we are reloading the beacon data,
1883      * otherwise we might be sending out invalid data.
1884      */
1885     reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1886     orig_reg = reg;
1887     rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1888     rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1889 
1890     /*
1891      * Write the TX descriptor for the beacon.
1892      */
1893     rt61pci_write_tx_desc(entry, txdesc);
1894 
1895     /*
1896      * Dump beacon to userspace through debugfs.
1897      */
1898     rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1899 
1900     /*
1901      * Write entire beacon with descriptor and padding to register.
1902      */
1903     padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1904     if (padding_len && skb_pad(entry->skb, padding_len)) {
1905         rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
1906         /* skb freed by skb_pad() on failure */
1907         entry->skb = NULL;
1908         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1909         return;
1910     }
1911 
1912     beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1913     rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
1914                        entry_priv->desc, TXINFO_SIZE);
1915     rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
1916                        entry->skb->data,
1917                        entry->skb->len + padding_len);
1918 
1919     /*
1920      * Enable beaconing again.
1921      *
1922      * For Wi-Fi faily generated beacons between participating
1923      * stations. Set TBTT phase adaptive adjustment step to 8us.
1924      */
1925     rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1926 
1927     rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1928     rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1929 
1930     /*
1931      * Clean up beacon skb.
1932      */
1933     dev_kfree_skb_any(entry->skb);
1934     entry->skb = NULL;
1935 }
1936 
1937 static void rt61pci_clear_beacon(struct queue_entry *entry)
1938 {
1939     struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1940     u32 orig_reg, reg;
1941 
1942     /*
1943      * Disable beaconing while we are reloading the beacon data,
1944      * otherwise we might be sending out invalid data.
1945      */
1946     orig_reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1947     reg = orig_reg;
1948     rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1949     rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1950 
1951     /*
1952      * Clear beacon.
1953      */
1954     rt2x00mmio_register_write(rt2x00dev,
1955                   HW_BEACON_OFFSET(entry->entry_idx), 0);
1956 
1957     /*
1958      * Restore global beaconing state.
1959      */
1960     rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1961 }
1962 
1963 /*
1964  * RX control handlers
1965  */
1966 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1967 {
1968     u8 offset = rt2x00dev->lna_gain;
1969     u8 lna;
1970 
1971     lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1972     switch (lna) {
1973     case 3:
1974         offset += 90;
1975         break;
1976     case 2:
1977         offset += 74;
1978         break;
1979     case 1:
1980         offset += 64;
1981         break;
1982     default:
1983         return 0;
1984     }
1985 
1986     if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
1987         if (lna == 3 || lna == 2)
1988             offset += 10;
1989     }
1990 
1991     return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1992 }
1993 
1994 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1995                 struct rxdone_entry_desc *rxdesc)
1996 {
1997     struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1998     struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1999     u32 word0;
2000     u32 word1;
2001 
2002     word0 = rt2x00_desc_read(entry_priv->desc, 0);
2003     word1 = rt2x00_desc_read(entry_priv->desc, 1);
2004 
2005     if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2006         rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2007 
2008     rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2009     rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2010 
2011     if (rxdesc->cipher != CIPHER_NONE) {
2012         rxdesc->iv[0] = _rt2x00_desc_read(entry_priv->desc, 2);
2013         rxdesc->iv[1] = _rt2x00_desc_read(entry_priv->desc, 3);
2014         rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2015 
2016         rxdesc->icv = _rt2x00_desc_read(entry_priv->desc, 4);
2017         rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2018 
2019         /*
2020          * Hardware has stripped IV/EIV data from 802.11 frame during
2021          * decryption. It has provided the data separately but rt2x00lib
2022          * should decide if it should be reinserted.
2023          */
2024         rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2025 
2026         /*
2027          * The hardware has already checked the Michael Mic and has
2028          * stripped it from the frame. Signal this to mac80211.
2029          */
2030         rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2031 
2032         if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2033             rxdesc->flags |= RX_FLAG_DECRYPTED;
2034         else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2035             rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2036     }
2037 
2038     /*
2039      * Obtain the status about this packet.
2040      * When frame was received with an OFDM bitrate,
2041      * the signal is the PLCP value. If it was received with
2042      * a CCK bitrate the signal is the rate in 100kbit/s.
2043      */
2044     rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2045     rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2046     rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2047 
2048     if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2049         rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2050     else
2051         rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2052     if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2053         rxdesc->dev_flags |= RXDONE_MY_BSS;
2054 }
2055 
2056 /*
2057  * Interrupt functions.
2058  */
2059 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2060 {
2061     struct data_queue *queue;
2062     struct queue_entry *entry;
2063     struct queue_entry *entry_done;
2064     struct queue_entry_priv_mmio *entry_priv;
2065     struct txdone_entry_desc txdesc;
2066     u32 word;
2067     u32 reg;
2068     int type;
2069     int index;
2070     int i;
2071 
2072     /*
2073      * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2074      * at most X times and also stop processing once the TX_STA_FIFO_VALID
2075      * flag is not set anymore.
2076      *
2077      * The legacy drivers use X=TX_RING_SIZE but state in a comment
2078      * that the TX_STA_FIFO stack has a size of 16. We stick to our
2079      * tx ring size for now.
2080      */
2081     for (i = 0; i < rt2x00dev->tx->limit; i++) {
2082         reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR4);
2083         if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2084             break;
2085 
2086         /*
2087          * Skip this entry when it contains an invalid
2088          * queue identication number.
2089          */
2090         type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2091         queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2092         if (unlikely(!queue))
2093             continue;
2094 
2095         /*
2096          * Skip this entry when it contains an invalid
2097          * index number.
2098          */
2099         index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2100         if (unlikely(index >= queue->limit))
2101             continue;
2102 
2103         entry = &queue->entries[index];
2104         entry_priv = entry->priv_data;
2105         word = rt2x00_desc_read(entry_priv->desc, 0);
2106 
2107         if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2108             !rt2x00_get_field32(word, TXD_W0_VALID))
2109             return;
2110 
2111         entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2112         while (entry != entry_done) {
2113             /* Catch up.
2114              * Just report any entries we missed as failed.
2115              */
2116             rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
2117                     entry_done->entry_idx);
2118 
2119             rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2120             entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2121         }
2122 
2123         /*
2124          * Obtain the status about this packet.
2125          */
2126         txdesc.flags = 0;
2127         switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2128         case 0: /* Success, maybe with retry */
2129             __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2130             break;
2131         case 6: /* Failure, excessive retries */
2132             __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2133             fallthrough;    /* this is a failed frame! */
2134         default: /* Failure */
2135             __set_bit(TXDONE_FAILURE, &txdesc.flags);
2136         }
2137         txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2138 
2139         /*
2140          * the frame was retried at least once
2141          * -> hw used fallback rates
2142          */
2143         if (txdesc.retry)
2144             __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2145 
2146         rt2x00lib_txdone(entry, &txdesc);
2147     }
2148 }
2149 
2150 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2151 {
2152     struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
2153 
2154     rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2155 }
2156 
2157 static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2158                         struct rt2x00_field32 irq_field)
2159 {
2160     u32 reg;
2161 
2162     /*
2163      * Enable a single interrupt. The interrupt mask register
2164      * access needs locking.
2165      */
2166     spin_lock_irq(&rt2x00dev->irqmask_lock);
2167 
2168     reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
2169     rt2x00_set_field32(&reg, irq_field, 0);
2170     rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2171 
2172     spin_unlock_irq(&rt2x00dev->irqmask_lock);
2173 }
2174 
2175 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2176                      struct rt2x00_field32 irq_field)
2177 {
2178     u32 reg;
2179 
2180     /*
2181      * Enable a single MCU interrupt. The interrupt mask register
2182      * access needs locking.
2183      */
2184     spin_lock_irq(&rt2x00dev->irqmask_lock);
2185 
2186     reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
2187     rt2x00_set_field32(&reg, irq_field, 0);
2188     rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2189 
2190     spin_unlock_irq(&rt2x00dev->irqmask_lock);
2191 }
2192 
2193 static void rt61pci_txstatus_tasklet(struct tasklet_struct *t)
2194 {
2195     struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
2196                             txstatus_tasklet);
2197 
2198     rt61pci_txdone(rt2x00dev);
2199     if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2200         rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2201 }
2202 
2203 static void rt61pci_tbtt_tasklet(struct tasklet_struct *t)
2204 {
2205     struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
2206     rt2x00lib_beacondone(rt2x00dev);
2207     if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2208         rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2209 }
2210 
2211 static void rt61pci_rxdone_tasklet(struct tasklet_struct *t)
2212 {
2213     struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
2214                             rxdone_tasklet);
2215     if (rt2x00mmio_rxdone(rt2x00dev))
2216         tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2217     else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2218         rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2219 }
2220 
2221 static void rt61pci_autowake_tasklet(struct tasklet_struct *t)
2222 {
2223     struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
2224                             autowake_tasklet);
2225     rt61pci_wakeup(rt2x00dev);
2226     rt2x00mmio_register_write(rt2x00dev,
2227                   M2H_CMD_DONE_CSR, 0xffffffff);
2228     if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2229         rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2230 }
2231 
2232 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2233 {
2234     struct rt2x00_dev *rt2x00dev = dev_instance;
2235     u32 reg_mcu, mask_mcu;
2236     u32 reg, mask;
2237 
2238     /*
2239      * Get the interrupt sources & saved to local variable.
2240      * Write register value back to clear pending interrupts.
2241      */
2242     reg_mcu = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
2243     rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2244 
2245     reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
2246     rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2247 
2248     if (!reg && !reg_mcu)
2249         return IRQ_NONE;
2250 
2251     if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2252         return IRQ_HANDLED;
2253 
2254     /*
2255      * Schedule tasklets for interrupt handling.
2256      */
2257     if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2258         tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2259 
2260     if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2261         tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2262 
2263     if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2264         tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2265 
2266     if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2267         tasklet_schedule(&rt2x00dev->autowake_tasklet);
2268 
2269     /*
2270      * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2271      * for interrupts and interrupt masks we can just use the value of
2272      * INT_SOURCE_CSR to create the interrupt mask.
2273      */
2274     mask = reg;
2275     mask_mcu = reg_mcu;
2276 
2277     /*
2278      * Disable all interrupts for which a tasklet was scheduled right now,
2279      * the tasklet will reenable the appropriate interrupts.
2280      */
2281     spin_lock(&rt2x00dev->irqmask_lock);
2282 
2283     reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
2284     reg |= mask;
2285     rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2286 
2287     reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
2288     reg |= mask_mcu;
2289     rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2290 
2291     spin_unlock(&rt2x00dev->irqmask_lock);
2292 
2293     return IRQ_HANDLED;
2294 }
2295 
2296 /*
2297  * Device probe functions.
2298  */
2299 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2300 {
2301     struct eeprom_93cx6 eeprom;
2302     u32 reg;
2303     u16 word;
2304     u8 *mac;
2305     s8 value;
2306 
2307     reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
2308 
2309     eeprom.data = rt2x00dev;
2310     eeprom.register_read = rt61pci_eepromregister_read;
2311     eeprom.register_write = rt61pci_eepromregister_write;
2312     eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2313         PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2314     eeprom.reg_data_in = 0;
2315     eeprom.reg_data_out = 0;
2316     eeprom.reg_data_clock = 0;
2317     eeprom.reg_chip_select = 0;
2318 
2319     eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2320                    EEPROM_SIZE / sizeof(u16));
2321 
2322     /*
2323      * Start validation of the data that has been read.
2324      */
2325     mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2326     rt2x00lib_set_mac_address(rt2x00dev, mac);
2327 
2328     word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
2329     if (word == 0xffff) {
2330         rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2331         rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2332                    ANTENNA_B);
2333         rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2334                    ANTENNA_B);
2335         rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2336         rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2337         rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2338         rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2339         rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2340         rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
2341     }
2342 
2343     word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
2344     if (word == 0xffff) {
2345         rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2346         rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2347         rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2348         rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2349         rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2350         rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2351         rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2352         rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2353         rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
2354     }
2355 
2356     word = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
2357     if (word == 0xffff) {
2358         rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2359                    LED_MODE_DEFAULT);
2360         rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2361         rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
2362     }
2363 
2364     word = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
2365     if (word == 0xffff) {
2366         rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2367         rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2368         rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2369         rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
2370     }
2371 
2372     word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
2373     if (word == 0xffff) {
2374         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2375         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2376         rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2377         rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2378     } else {
2379         value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2380         if (value < -10 || value > 10)
2381             rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2382         value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2383         if (value < -10 || value > 10)
2384             rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2385         rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2386     }
2387 
2388     word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
2389     if (word == 0xffff) {
2390         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2391         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2392         rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2393         rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2394     } else {
2395         value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2396         if (value < -10 || value > 10)
2397             rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2398         value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2399         if (value < -10 || value > 10)
2400             rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2401         rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2402     }
2403 
2404     return 0;
2405 }
2406 
2407 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2408 {
2409     u32 reg;
2410     u16 value;
2411     u16 eeprom;
2412 
2413     /*
2414      * Read EEPROM word for configuration.
2415      */
2416     eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
2417 
2418     /*
2419      * Identify RF chipset.
2420      */
2421     value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2422     reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
2423     rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2424             value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2425 
2426     if (!rt2x00_rf(rt2x00dev, RF5225) &&
2427         !rt2x00_rf(rt2x00dev, RF5325) &&
2428         !rt2x00_rf(rt2x00dev, RF2527) &&
2429         !rt2x00_rf(rt2x00dev, RF2529)) {
2430         rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
2431         return -ENODEV;
2432     }
2433 
2434     /*
2435      * Determine number of antennas.
2436      */
2437     if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2438         __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2439 
2440     /*
2441      * Identify default antenna configuration.
2442      */
2443     rt2x00dev->default_ant.tx =
2444         rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2445     rt2x00dev->default_ant.rx =
2446         rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2447 
2448     /*
2449      * Read the Frame type.
2450      */
2451     if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2452         __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2453 
2454     /*
2455      * Detect if this device has a hardware controlled radio.
2456      */
2457     if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2458         __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2459 
2460     /*
2461      * Read frequency offset and RF programming sequence.
2462      */
2463     eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
2464     if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2465         __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2466 
2467     rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2468 
2469     /*
2470      * Read external LNA informations.
2471      */
2472     eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
2473 
2474     if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2475         __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2476     if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2477         __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2478 
2479     /*
2480      * When working with a RF2529 chip without double antenna,
2481      * the antenna settings should be gathered from the NIC
2482      * eeprom word.
2483      */
2484     if (rt2x00_rf(rt2x00dev, RF2529) &&
2485         !rt2x00_has_cap_double_antenna(rt2x00dev)) {
2486         rt2x00dev->default_ant.rx =
2487             ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2488         rt2x00dev->default_ant.tx =
2489             ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2490 
2491         if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2492             rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2493         if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2494             rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2495     }
2496 
2497     /*
2498      * Store led settings, for correct led behaviour.
2499      * If the eeprom value is invalid,
2500      * switch to default led mode.
2501      */
2502 #ifdef CONFIG_RT2X00_LIB_LEDS
2503     eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
2504     value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2505 
2506     rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2507     rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2508     if (value == LED_MODE_SIGNAL_STRENGTH)
2509         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2510                  LED_TYPE_QUALITY);
2511 
2512     rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2513     rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2514                rt2x00_get_field16(eeprom,
2515                           EEPROM_LED_POLARITY_GPIO_0));
2516     rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2517                rt2x00_get_field16(eeprom,
2518                           EEPROM_LED_POLARITY_GPIO_1));
2519     rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2520                rt2x00_get_field16(eeprom,
2521                           EEPROM_LED_POLARITY_GPIO_2));
2522     rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2523                rt2x00_get_field16(eeprom,
2524                           EEPROM_LED_POLARITY_GPIO_3));
2525     rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2526                rt2x00_get_field16(eeprom,
2527                           EEPROM_LED_POLARITY_GPIO_4));
2528     rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2529                rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2530     rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2531                rt2x00_get_field16(eeprom,
2532                           EEPROM_LED_POLARITY_RDY_G));
2533     rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2534                rt2x00_get_field16(eeprom,
2535                           EEPROM_LED_POLARITY_RDY_A));
2536 #endif /* CONFIG_RT2X00_LIB_LEDS */
2537 
2538     return 0;
2539 }
2540 
2541 /*
2542  * RF value list for RF5225 & RF5325
2543  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2544  */
2545 static const struct rf_channel rf_vals_noseq[] = {
2546     { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2547     { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2548     { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2549     { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2550     { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2551     { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2552     { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2553     { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2554     { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2555     { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2556     { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2557     { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2558     { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2559     { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2560 
2561     /* 802.11 UNI / HyperLan 2 */
2562     { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2563     { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2564     { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2565     { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2566     { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2567     { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2568     { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2569     { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2570 
2571     /* 802.11 HyperLan 2 */
2572     { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2573     { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2574     { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2575     { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2576     { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2577     { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2578     { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2579     { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2580     { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2581     { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2582 
2583     /* 802.11 UNII */
2584     { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2585     { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2586     { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2587     { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2588     { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2589     { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2590 
2591     /* MMAC(Japan)J52 ch 34,38,42,46 */
2592     { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2593     { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2594     { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2595     { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2596 };
2597 
2598 /*
2599  * RF value list for RF5225 & RF5325
2600  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2601  */
2602 static const struct rf_channel rf_vals_seq[] = {
2603     { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2604     { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2605     { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2606     { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2607     { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2608     { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2609     { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2610     { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2611     { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2612     { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2613     { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2614     { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2615     { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2616     { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2617 
2618     /* 802.11 UNI / HyperLan 2 */
2619     { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2620     { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2621     { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2622     { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2623     { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2624     { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2625     { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2626     { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2627 
2628     /* 802.11 HyperLan 2 */
2629     { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2630     { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2631     { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2632     { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2633     { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2634     { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2635     { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2636     { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2637     { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2638     { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2639 
2640     /* 802.11 UNII */
2641     { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2642     { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2643     { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2644     { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2645     { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2646     { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2647 
2648     /* MMAC(Japan)J52 ch 34,38,42,46 */
2649     { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2650     { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2651     { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2652     { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2653 };
2654 
2655 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2656 {
2657     struct hw_mode_spec *spec = &rt2x00dev->spec;
2658     struct channel_info *info;
2659     char *tx_power;
2660     unsigned int i;
2661 
2662     /*
2663      * Disable powersaving as default.
2664      */
2665     rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2666 
2667     /*
2668      * Initialize all hw fields.
2669      */
2670     ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
2671     ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
2672     ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
2673     ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
2674 
2675     SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2676     SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2677                 rt2x00_eeprom_addr(rt2x00dev,
2678                            EEPROM_MAC_ADDR_0));
2679 
2680     /*
2681      * As rt61 has a global fallback table we cannot specify
2682      * more then one tx rate per frame but since the hw will
2683      * try several rates (based on the fallback table) we should
2684      * initialize max_report_rates to the maximum number of rates
2685      * we are going to try. Otherwise mac80211 will truncate our
2686      * reported tx rates and the rc algortihm will end up with
2687      * incorrect data.
2688      */
2689     rt2x00dev->hw->max_rates = 1;
2690     rt2x00dev->hw->max_report_rates = 7;
2691     rt2x00dev->hw->max_rate_tries = 1;
2692 
2693     /*
2694      * Initialize hw_mode information.
2695      */
2696     spec->supported_bands = SUPPORT_BAND_2GHZ;
2697     spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2698 
2699     if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) {
2700         spec->num_channels = 14;
2701         spec->channels = rf_vals_noseq;
2702     } else {
2703         spec->num_channels = 14;
2704         spec->channels = rf_vals_seq;
2705     }
2706 
2707     if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2708         spec->supported_bands |= SUPPORT_BAND_5GHZ;
2709         spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2710     }
2711 
2712     /*
2713      * Create channel information array
2714      */
2715     info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2716     if (!info)
2717         return -ENOMEM;
2718 
2719     spec->channels_info = info;
2720 
2721     tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2722     for (i = 0; i < 14; i++) {
2723         info[i].max_power = MAX_TXPOWER;
2724         info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2725     }
2726 
2727     if (spec->num_channels > 14) {
2728         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2729         for (i = 14; i < spec->num_channels; i++) {
2730             info[i].max_power = MAX_TXPOWER;
2731             info[i].default_power1 =
2732                     TXPOWER_FROM_DEV(tx_power[i - 14]);
2733         }
2734     }
2735 
2736     return 0;
2737 }
2738 
2739 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2740 {
2741     int retval;
2742     u32 reg;
2743 
2744     /*
2745      * Disable power saving.
2746      */
2747     rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2748 
2749     /*
2750      * Allocate eeprom data.
2751      */
2752     retval = rt61pci_validate_eeprom(rt2x00dev);
2753     if (retval)
2754         return retval;
2755 
2756     retval = rt61pci_init_eeprom(rt2x00dev);
2757     if (retval)
2758         return retval;
2759 
2760     /*
2761      * Enable rfkill polling by setting GPIO direction of the
2762      * rfkill switch GPIO pin correctly.
2763      */
2764     reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
2765     rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
2766     rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
2767 
2768     /*
2769      * Initialize hw specifications.
2770      */
2771     retval = rt61pci_probe_hw_mode(rt2x00dev);
2772     if (retval)
2773         return retval;
2774 
2775     /*
2776      * This device has multiple filters for control frames,
2777      * but has no a separate filter for PS Poll frames.
2778      */
2779     __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2780 
2781     /*
2782      * This device requires firmware and DMA mapped skbs.
2783      */
2784     __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2785     __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2786     if (!modparam_nohwcrypt)
2787         __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2788     __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2789 
2790     /*
2791      * Set the rssi offset.
2792      */
2793     rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2794 
2795     return 0;
2796 }
2797 
2798 /*
2799  * IEEE80211 stack callback functions.
2800  */
2801 static int rt61pci_conf_tx(struct ieee80211_hw *hw,
2802                struct ieee80211_vif *vif,
2803                unsigned int link_id, u16 queue_idx,
2804                const struct ieee80211_tx_queue_params *params)
2805 {
2806     struct rt2x00_dev *rt2x00dev = hw->priv;
2807     struct data_queue *queue;
2808     struct rt2x00_field32 field;
2809     int retval;
2810     u32 reg;
2811     u32 offset;
2812 
2813     /*
2814      * First pass the configuration through rt2x00lib, that will
2815      * update the queue settings and validate the input. After that
2816      * we are free to update the registers based on the value
2817      * in the queue parameter.
2818      */
2819     retval = rt2x00mac_conf_tx(hw, vif, link_id, queue_idx, params);
2820     if (retval)
2821         return retval;
2822 
2823     /*
2824      * We only need to perform additional register initialization
2825      * for WMM queues.
2826      */
2827     if (queue_idx >= 4)
2828         return 0;
2829 
2830     queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2831 
2832     /* Update WMM TXOP register */
2833     offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2834     field.bit_offset = (queue_idx & 1) * 16;
2835     field.bit_mask = 0xffff << field.bit_offset;
2836 
2837     reg = rt2x00mmio_register_read(rt2x00dev, offset);
2838     rt2x00_set_field32(&reg, field, queue->txop);
2839     rt2x00mmio_register_write(rt2x00dev, offset, reg);
2840 
2841     /* Update WMM registers */
2842     field.bit_offset = queue_idx * 4;
2843     field.bit_mask = 0xf << field.bit_offset;
2844 
2845     reg = rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR);
2846     rt2x00_set_field32(&reg, field, queue->aifs);
2847     rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);
2848 
2849     reg = rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR);
2850     rt2x00_set_field32(&reg, field, queue->cw_min);
2851     rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);
2852 
2853     reg = rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR);
2854     rt2x00_set_field32(&reg, field, queue->cw_max);
2855     rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);
2856 
2857     return 0;
2858 }
2859 
2860 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2861 {
2862     struct rt2x00_dev *rt2x00dev = hw->priv;
2863     u64 tsf;
2864     u32 reg;
2865 
2866     reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13);
2867     tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2868     reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12);
2869     tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2870 
2871     return tsf;
2872 }
2873 
2874 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2875     .tx         = rt2x00mac_tx,
2876     .start          = rt2x00mac_start,
2877     .stop           = rt2x00mac_stop,
2878     .add_interface      = rt2x00mac_add_interface,
2879     .remove_interface   = rt2x00mac_remove_interface,
2880     .config         = rt2x00mac_config,
2881     .configure_filter   = rt2x00mac_configure_filter,
2882     .set_key        = rt2x00mac_set_key,
2883     .sw_scan_start      = rt2x00mac_sw_scan_start,
2884     .sw_scan_complete   = rt2x00mac_sw_scan_complete,
2885     .get_stats      = rt2x00mac_get_stats,
2886     .bss_info_changed   = rt2x00mac_bss_info_changed,
2887     .conf_tx        = rt61pci_conf_tx,
2888     .get_tsf        = rt61pci_get_tsf,
2889     .rfkill_poll        = rt2x00mac_rfkill_poll,
2890     .flush          = rt2x00mac_flush,
2891     .set_antenna        = rt2x00mac_set_antenna,
2892     .get_antenna        = rt2x00mac_get_antenna,
2893     .get_ringparam      = rt2x00mac_get_ringparam,
2894     .tx_frames_pending  = rt2x00mac_tx_frames_pending,
2895 };
2896 
2897 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2898     .irq_handler        = rt61pci_interrupt,
2899     .txstatus_tasklet   = rt61pci_txstatus_tasklet,
2900     .tbtt_tasklet       = rt61pci_tbtt_tasklet,
2901     .rxdone_tasklet     = rt61pci_rxdone_tasklet,
2902     .autowake_tasklet   = rt61pci_autowake_tasklet,
2903     .probe_hw       = rt61pci_probe_hw,
2904     .get_firmware_name  = rt61pci_get_firmware_name,
2905     .check_firmware     = rt61pci_check_firmware,
2906     .load_firmware      = rt61pci_load_firmware,
2907     .initialize     = rt2x00mmio_initialize,
2908     .uninitialize       = rt2x00mmio_uninitialize,
2909     .get_entry_state    = rt61pci_get_entry_state,
2910     .clear_entry        = rt61pci_clear_entry,
2911     .set_device_state   = rt61pci_set_device_state,
2912     .rfkill_poll        = rt61pci_rfkill_poll,
2913     .link_stats     = rt61pci_link_stats,
2914     .reset_tuner        = rt61pci_reset_tuner,
2915     .link_tuner     = rt61pci_link_tuner,
2916     .start_queue        = rt61pci_start_queue,
2917     .kick_queue     = rt61pci_kick_queue,
2918     .stop_queue     = rt61pci_stop_queue,
2919     .flush_queue        = rt2x00mmio_flush_queue,
2920     .write_tx_desc      = rt61pci_write_tx_desc,
2921     .write_beacon       = rt61pci_write_beacon,
2922     .clear_beacon       = rt61pci_clear_beacon,
2923     .fill_rxdone        = rt61pci_fill_rxdone,
2924     .config_shared_key  = rt61pci_config_shared_key,
2925     .config_pairwise_key    = rt61pci_config_pairwise_key,
2926     .config_filter      = rt61pci_config_filter,
2927     .config_intf        = rt61pci_config_intf,
2928     .config_erp     = rt61pci_config_erp,
2929     .config_ant     = rt61pci_config_ant,
2930     .config         = rt61pci_config,
2931 };
2932 
2933 static void rt61pci_queue_init(struct data_queue *queue)
2934 {
2935     switch (queue->qid) {
2936     case QID_RX:
2937         queue->limit = 32;
2938         queue->data_size = DATA_FRAME_SIZE;
2939         queue->desc_size = RXD_DESC_SIZE;
2940         queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2941         break;
2942 
2943     case QID_AC_VO:
2944     case QID_AC_VI:
2945     case QID_AC_BE:
2946     case QID_AC_BK:
2947         queue->limit = 32;
2948         queue->data_size = DATA_FRAME_SIZE;
2949         queue->desc_size = TXD_DESC_SIZE;
2950         queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2951         break;
2952 
2953     case QID_BEACON:
2954         queue->limit = 4;
2955         queue->data_size = 0; /* No DMA required for beacons */
2956         queue->desc_size = TXINFO_SIZE;
2957         queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2958         break;
2959 
2960     case QID_ATIM:
2961     default:
2962         BUG();
2963         break;
2964     }
2965 }
2966 
2967 static const struct rt2x00_ops rt61pci_ops = {
2968     .name           = KBUILD_MODNAME,
2969     .max_ap_intf        = 4,
2970     .eeprom_size        = EEPROM_SIZE,
2971     .rf_size        = RF_SIZE,
2972     .tx_queues      = NUM_TX_QUEUES,
2973     .queue_init     = rt61pci_queue_init,
2974     .lib            = &rt61pci_rt2x00_ops,
2975     .hw         = &rt61pci_mac80211_ops,
2976 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2977     .debugfs        = &rt61pci_rt2x00debug,
2978 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2979 };
2980 
2981 /*
2982  * RT61pci module information.
2983  */
2984 static const struct pci_device_id rt61pci_device_table[] = {
2985     /* RT2561s */
2986     { PCI_DEVICE(0x1814, 0x0301) },
2987     /* RT2561 v2 */
2988     { PCI_DEVICE(0x1814, 0x0302) },
2989     /* RT2661 */
2990     { PCI_DEVICE(0x1814, 0x0401) },
2991     { 0, }
2992 };
2993 
2994 MODULE_AUTHOR(DRV_PROJECT);
2995 MODULE_VERSION(DRV_VERSION);
2996 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2997 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2998 MODULE_FIRMWARE(FIRMWARE_RT2561);
2999 MODULE_FIRMWARE(FIRMWARE_RT2561s);
3000 MODULE_FIRMWARE(FIRMWARE_RT2661);
3001 MODULE_LICENSE("GPL");
3002 
3003 static int rt61pci_probe(struct pci_dev *pci_dev,
3004              const struct pci_device_id *id)
3005 {
3006     return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3007 }
3008 
3009 static struct pci_driver rt61pci_driver = {
3010     .name       = KBUILD_MODNAME,
3011     .id_table   = rt61pci_device_table,
3012     .probe      = rt61pci_probe,
3013     .remove     = rt2x00pci_remove,
3014     .driver.pm  = &rt2x00pci_pm_ops,
3015 };
3016 
3017 module_pci_driver(rt61pci_driver);