0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/module.h>
0009 #include <linux/of.h>
0010 #include <linux/mtd/mtd.h>
0011 #include <linux/mtd/partitions.h>
0012 #include <linux/etherdevice.h>
0013 #include <asm/unaligned.h>
0014 #include "mt76x0.h"
0015 #include "eeprom.h"
0016 #include "../mt76x02_phy.h"
0017
0018 #define MT_MAP_READS DIV_ROUND_UP(MT_EFUSE_USAGE_MAP_SIZE, 16)
0019 static int
0020 mt76x0_efuse_physical_size_check(struct mt76x02_dev *dev)
0021 {
0022 u8 data[MT_MAP_READS * 16];
0023 int ret, i;
0024 u32 start = 0, end = 0, cnt_free;
0025
0026 ret = mt76x02_get_efuse_data(dev, MT_EE_USAGE_MAP_START, data,
0027 sizeof(data), MT_EE_PHYSICAL_READ);
0028 if (ret)
0029 return ret;
0030
0031 for (i = 0; i < MT_EFUSE_USAGE_MAP_SIZE; i++)
0032 if (!data[i]) {
0033 if (!start)
0034 start = MT_EE_USAGE_MAP_START + i;
0035 end = MT_EE_USAGE_MAP_START + i;
0036 }
0037 cnt_free = end - start + 1;
0038
0039 if (MT_EFUSE_USAGE_MAP_SIZE - cnt_free < 5) {
0040 dev_err(dev->mt76.dev,
0041 "driver does not support default EEPROM\n");
0042 return -EINVAL;
0043 }
0044
0045 return 0;
0046 }
0047
0048 static void mt76x0_set_chip_cap(struct mt76x02_dev *dev)
0049 {
0050 u16 nic_conf0 = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_0);
0051 u16 nic_conf1 = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_1);
0052
0053 mt76x02_eeprom_parse_hw_cap(dev);
0054 dev_dbg(dev->mt76.dev, "2GHz %d 5GHz %d\n",
0055 dev->mphy.cap.has_2ghz, dev->mphy.cap.has_5ghz);
0056
0057 if (dev->no_2ghz) {
0058 dev->mphy.cap.has_2ghz = false;
0059 dev_dbg(dev->mt76.dev, "mask out 2GHz support\n");
0060 }
0061
0062 if (is_mt7630(dev)) {
0063 dev->mphy.cap.has_5ghz = false;
0064 dev_dbg(dev->mt76.dev, "mask out 5GHz support\n");
0065 }
0066
0067 if (!mt76x02_field_valid(nic_conf1 & 0xff))
0068 nic_conf1 &= 0xff00;
0069
0070 if (nic_conf1 & MT_EE_NIC_CONF_1_HW_RF_CTRL)
0071 dev_dbg(dev->mt76.dev,
0072 "driver does not support HW RF ctrl\n");
0073
0074 if (!mt76x02_field_valid(nic_conf0 >> 8))
0075 return;
0076
0077 if (FIELD_GET(MT_EE_NIC_CONF_0_RX_PATH, nic_conf0) > 1 ||
0078 FIELD_GET(MT_EE_NIC_CONF_0_TX_PATH, nic_conf0) > 1)
0079 dev_err(dev->mt76.dev, "invalid tx-rx stream\n");
0080 }
0081
0082 static void mt76x0_set_temp_offset(struct mt76x02_dev *dev)
0083 {
0084 u8 val;
0085
0086 val = mt76x02_eeprom_get(dev, MT_EE_2G_TARGET_POWER) >> 8;
0087 if (mt76x02_field_valid(val))
0088 dev->cal.rx.temp_offset = mt76x02_sign_extend(val, 8);
0089 else
0090 dev->cal.rx.temp_offset = -10;
0091 }
0092
0093 static void mt76x0_set_freq_offset(struct mt76x02_dev *dev)
0094 {
0095 struct mt76x02_rx_freq_cal *caldata = &dev->cal.rx;
0096 u8 val;
0097
0098 val = mt76x02_eeprom_get(dev, MT_EE_FREQ_OFFSET);
0099 if (!mt76x02_field_valid(val))
0100 val = 0;
0101 caldata->freq_offset = val;
0102
0103 val = mt76x02_eeprom_get(dev, MT_EE_TSSI_BOUND4) >> 8;
0104 if (!mt76x02_field_valid(val))
0105 val = 0;
0106
0107 caldata->freq_offset -= mt76x02_sign_extend(val, 8);
0108 }
0109
0110 void mt76x0_read_rx_gain(struct mt76x02_dev *dev)
0111 {
0112 struct ieee80211_channel *chan = dev->mphy.chandef.chan;
0113 struct mt76x02_rx_freq_cal *caldata = &dev->cal.rx;
0114 s8 val, lna_5g[3], lna_2g;
0115 u16 rssi_offset;
0116 int i;
0117
0118 mt76x02_get_rx_gain(dev, chan->band, &rssi_offset, &lna_2g, lna_5g);
0119 caldata->lna_gain = mt76x02_get_lna_gain(dev, &lna_2g, lna_5g, chan);
0120
0121 for (i = 0; i < ARRAY_SIZE(caldata->rssi_offset); i++) {
0122 val = rssi_offset >> (8 * i);
0123 if (val < -10 || val > 10)
0124 val = 0;
0125
0126 caldata->rssi_offset[i] = val;
0127 }
0128 }
0129
0130 static s8 mt76x0_get_delta(struct mt76x02_dev *dev)
0131 {
0132 struct cfg80211_chan_def *chandef = &dev->mphy.chandef;
0133 u8 val;
0134
0135 if (chandef->width == NL80211_CHAN_WIDTH_80) {
0136 val = mt76x02_eeprom_get(dev, MT_EE_5G_TARGET_POWER) >> 8;
0137 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
0138 u16 data;
0139
0140 data = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_DELTA_BW40);
0141 if (chandef->chan->band == NL80211_BAND_5GHZ)
0142 val = data >> 8;
0143 else
0144 val = data;
0145 } else {
0146 return 0;
0147 }
0148
0149 return mt76x02_rate_power_val(val);
0150 }
0151
0152 void mt76x0_get_tx_power_per_rate(struct mt76x02_dev *dev,
0153 struct ieee80211_channel *chan,
0154 struct mt76_rate_power *t)
0155 {
0156 bool is_2ghz = chan->band == NL80211_BAND_2GHZ;
0157 u16 val, addr;
0158 s8 delta;
0159
0160 memset(t, 0, sizeof(*t));
0161
0162
0163 val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_BYRATE_BASE);
0164 t->cck[0] = t->cck[1] = s6_to_s8(val);
0165 t->cck[2] = t->cck[3] = s6_to_s8(val >> 8);
0166
0167
0168 addr = is_2ghz ? MT_EE_TX_POWER_BYRATE_BASE + 2 : 0x120;
0169 val = mt76x02_eeprom_get(dev, addr);
0170 t->ofdm[0] = t->ofdm[1] = s6_to_s8(val);
0171 t->ofdm[2] = t->ofdm[3] = s6_to_s8(val >> 8);
0172
0173
0174 addr = is_2ghz ? MT_EE_TX_POWER_BYRATE_BASE + 4 : 0x122;
0175 val = mt76x02_eeprom_get(dev, addr);
0176 t->ofdm[4] = t->ofdm[5] = s6_to_s8(val);
0177 t->ofdm[6] = t->ofdm[7] = s6_to_s8(val >> 8);
0178
0179
0180 addr = is_2ghz ? MT_EE_TX_POWER_BYRATE_BASE + 6 : 0x124;
0181 val = mt76x02_eeprom_get(dev, addr);
0182 t->ht[0] = t->ht[1] = t->vht[0] = t->vht[1] = s6_to_s8(val);
0183 t->ht[2] = t->ht[3] = t->vht[2] = t->vht[3] = s6_to_s8(val >> 8);
0184
0185
0186 addr = is_2ghz ? MT_EE_TX_POWER_BYRATE_BASE + 8 : 0x126;
0187 val = mt76x02_eeprom_get(dev, addr);
0188 t->ht[4] = t->ht[5] = t->vht[4] = t->vht[5] = s6_to_s8(val);
0189 t->ht[6] = t->ht[7] = t->vht[6] = t->vht[7] = s6_to_s8(val >> 8);
0190
0191
0192 addr = is_2ghz ? MT_EE_TX_POWER_BYRATE_BASE + 14 : 0xec;
0193 val = mt76x02_eeprom_get(dev, addr);
0194 t->stbc[0] = t->stbc[1] = s6_to_s8(val);
0195 t->stbc[2] = t->stbc[3] = s6_to_s8(val >> 8);
0196
0197
0198 addr = is_2ghz ? MT_EE_TX_POWER_BYRATE_BASE + 16 : 0xee;
0199 val = mt76x02_eeprom_get(dev, addr);
0200 t->stbc[4] = t->stbc[5] = s6_to_s8(val);
0201 t->stbc[6] = t->stbc[7] = s6_to_s8(val >> 8);
0202
0203
0204 val = mt76x02_eeprom_get(dev, 0x12c);
0205 t->vht[8] = s6_to_s8(val);
0206 t->vht[9] = s6_to_s8(val >> 8);
0207
0208 delta = mt76x0_tssi_enabled(dev) ? 0 : mt76x0_get_delta(dev);
0209 mt76x02_add_rate_power_offset(t, delta);
0210 }
0211
0212 void mt76x0_get_power_info(struct mt76x02_dev *dev,
0213 struct ieee80211_channel *chan, s8 *tp)
0214 {
0215 static const struct mt76x0_chan_map {
0216 u8 chan;
0217 u8 offset;
0218 } chan_map[] = {
0219 { 2, 0 }, { 4, 2 }, { 6, 4 }, { 8, 6 },
0220 { 10, 8 }, { 12, 10 }, { 14, 12 }, { 38, 0 },
0221 { 44, 2 }, { 48, 4 }, { 54, 6 }, { 60, 8 },
0222 { 64, 10 }, { 102, 12 }, { 108, 14 }, { 112, 16 },
0223 { 118, 18 }, { 124, 20 }, { 128, 22 }, { 134, 24 },
0224 { 140, 26 }, { 151, 28 }, { 157, 30 }, { 161, 32 },
0225 { 167, 34 }, { 171, 36 }, { 175, 38 },
0226 };
0227 u8 offset, addr;
0228 int i, idx = 0;
0229 u16 data;
0230
0231 if (mt76x0_tssi_enabled(dev)) {
0232 s8 target_power;
0233
0234 if (chan->band == NL80211_BAND_5GHZ)
0235 data = mt76x02_eeprom_get(dev, MT_EE_5G_TARGET_POWER);
0236 else
0237 data = mt76x02_eeprom_get(dev, MT_EE_2G_TARGET_POWER);
0238 target_power = (data & 0xff) - dev->mt76.rate_power.ofdm[7];
0239 *tp = target_power + mt76x0_get_delta(dev);
0240
0241 return;
0242 }
0243
0244 for (i = 0; i < ARRAY_SIZE(chan_map); i++) {
0245 if (chan->hw_value <= chan_map[i].chan) {
0246 idx = (chan->hw_value == chan_map[i].chan);
0247 offset = chan_map[i].offset;
0248 break;
0249 }
0250 }
0251 if (i == ARRAY_SIZE(chan_map))
0252 offset = chan_map[0].offset;
0253
0254 if (chan->band == NL80211_BAND_2GHZ) {
0255 addr = MT_EE_TX_POWER_DELTA_BW80 + offset;
0256 } else {
0257 switch (chan->hw_value) {
0258 case 42:
0259 offset = 2;
0260 break;
0261 case 58:
0262 offset = 8;
0263 break;
0264 case 106:
0265 offset = 14;
0266 break;
0267 case 122:
0268 offset = 20;
0269 break;
0270 case 155:
0271 offset = 30;
0272 break;
0273 default:
0274 break;
0275 }
0276 addr = MT_EE_TX_POWER_0_GRP4_TSSI_SLOPE + 2 + offset;
0277 }
0278
0279 data = mt76x02_eeprom_get(dev, addr);
0280 *tp = data >> (8 * idx);
0281 if (*tp < 0 || *tp > 0x3f)
0282 *tp = 5;
0283 }
0284
0285 static int mt76x0_check_eeprom(struct mt76x02_dev *dev)
0286 {
0287 u16 val;
0288
0289 val = get_unaligned_le16(dev->mt76.eeprom.data);
0290 if (!val)
0291 val = get_unaligned_le16(dev->mt76.eeprom.data +
0292 MT_EE_PCI_ID);
0293
0294 switch (val) {
0295 case 0x7650:
0296 case 0x7610:
0297 return 0;
0298 default:
0299 dev_err(dev->mt76.dev, "EEPROM data check failed: %04x\n",
0300 val);
0301 return -EINVAL;
0302 }
0303 }
0304
0305 static int mt76x0_load_eeprom(struct mt76x02_dev *dev)
0306 {
0307 int found;
0308
0309 found = mt76_eeprom_init(&dev->mt76, MT76X0_EEPROM_SIZE);
0310 if (found < 0)
0311 return found;
0312
0313 if (found && !mt76x0_check_eeprom(dev))
0314 return 0;
0315
0316 found = mt76x0_efuse_physical_size_check(dev);
0317 if (found < 0)
0318 return found;
0319
0320 return mt76x02_get_efuse_data(dev, 0, dev->mt76.eeprom.data,
0321 MT76X0_EEPROM_SIZE, MT_EE_READ);
0322 }
0323
0324 int mt76x0_eeprom_init(struct mt76x02_dev *dev)
0325 {
0326 u8 version, fae;
0327 u16 data;
0328 int err;
0329
0330 err = mt76x0_load_eeprom(dev);
0331 if (err < 0)
0332 return err;
0333
0334 data = mt76x02_eeprom_get(dev, MT_EE_VERSION);
0335 version = data >> 8;
0336 fae = data;
0337
0338 if (version > MT76X0U_EE_MAX_VER)
0339 dev_warn(dev->mt76.dev,
0340 "Warning: unsupported EEPROM version %02hhx\n",
0341 version);
0342 dev_info(dev->mt76.dev, "EEPROM ver:%02hhx fae:%02hhx\n",
0343 version, fae);
0344
0345 memcpy(dev->mphy.macaddr, (u8 *)dev->mt76.eeprom.data + MT_EE_MAC_ADDR,
0346 ETH_ALEN);
0347 mt76_eeprom_override(&dev->mphy);
0348 mt76x02_mac_setaddr(dev, dev->mphy.macaddr);
0349
0350 mt76x0_set_chip_cap(dev);
0351 mt76x0_set_freq_offset(dev);
0352 mt76x0_set_temp_offset(dev);
0353
0354 return 0;
0355 }
0356
0357 MODULE_LICENSE("Dual BSD/GPL");