0001
0002
0003
0004
0005
0006 #include <linux/dma-mapping.h>
0007 #include "mt76.h"
0008 #include "dma.h"
0009
0010 #if IS_ENABLED(CONFIG_NET_MEDIATEK_SOC_WED)
0011
0012 #define Q_READ(_dev, _q, _field) ({ \
0013 u32 _offset = offsetof(struct mt76_queue_regs, _field); \
0014 u32 _val; \
0015 if ((_q)->flags & MT_QFLAG_WED) \
0016 _val = mtk_wed_device_reg_read(&(_dev)->mmio.wed, \
0017 ((_q)->wed_regs + \
0018 _offset)); \
0019 else \
0020 _val = readl(&(_q)->regs->_field); \
0021 _val; \
0022 })
0023
0024 #define Q_WRITE(_dev, _q, _field, _val) do { \
0025 u32 _offset = offsetof(struct mt76_queue_regs, _field); \
0026 if ((_q)->flags & MT_QFLAG_WED) \
0027 mtk_wed_device_reg_write(&(_dev)->mmio.wed, \
0028 ((_q)->wed_regs + _offset), \
0029 _val); \
0030 else \
0031 writel(_val, &(_q)->regs->_field); \
0032 } while (0)
0033
0034 #else
0035
0036 #define Q_READ(_dev, _q, _field) readl(&(_q)->regs->_field)
0037 #define Q_WRITE(_dev, _q, _field, _val) writel(_val, &(_q)->regs->_field)
0038
0039 #endif
0040
0041 static struct mt76_txwi_cache *
0042 mt76_alloc_txwi(struct mt76_dev *dev)
0043 {
0044 struct mt76_txwi_cache *t;
0045 dma_addr_t addr;
0046 u8 *txwi;
0047 int size;
0048
0049 size = L1_CACHE_ALIGN(dev->drv->txwi_size + sizeof(*t));
0050 txwi = kzalloc(size, GFP_ATOMIC);
0051 if (!txwi)
0052 return NULL;
0053
0054 addr = dma_map_single(dev->dma_dev, txwi, dev->drv->txwi_size,
0055 DMA_TO_DEVICE);
0056 t = (struct mt76_txwi_cache *)(txwi + dev->drv->txwi_size);
0057 t->dma_addr = addr;
0058
0059 return t;
0060 }
0061
0062 static struct mt76_txwi_cache *
0063 __mt76_get_txwi(struct mt76_dev *dev)
0064 {
0065 struct mt76_txwi_cache *t = NULL;
0066
0067 spin_lock(&dev->lock);
0068 if (!list_empty(&dev->txwi_cache)) {
0069 t = list_first_entry(&dev->txwi_cache, struct mt76_txwi_cache,
0070 list);
0071 list_del(&t->list);
0072 }
0073 spin_unlock(&dev->lock);
0074
0075 return t;
0076 }
0077
0078 static struct mt76_txwi_cache *
0079 mt76_get_txwi(struct mt76_dev *dev)
0080 {
0081 struct mt76_txwi_cache *t = __mt76_get_txwi(dev);
0082
0083 if (t)
0084 return t;
0085
0086 return mt76_alloc_txwi(dev);
0087 }
0088
0089 void
0090 mt76_put_txwi(struct mt76_dev *dev, struct mt76_txwi_cache *t)
0091 {
0092 if (!t)
0093 return;
0094
0095 spin_lock(&dev->lock);
0096 list_add(&t->list, &dev->txwi_cache);
0097 spin_unlock(&dev->lock);
0098 }
0099 EXPORT_SYMBOL_GPL(mt76_put_txwi);
0100
0101 static void
0102 mt76_free_pending_txwi(struct mt76_dev *dev)
0103 {
0104 struct mt76_txwi_cache *t;
0105
0106 local_bh_disable();
0107 while ((t = __mt76_get_txwi(dev)) != NULL) {
0108 dma_unmap_single(dev->dma_dev, t->dma_addr, dev->drv->txwi_size,
0109 DMA_TO_DEVICE);
0110 kfree(mt76_get_txwi_ptr(dev, t));
0111 }
0112 local_bh_enable();
0113 }
0114
0115 static void
0116 mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
0117 {
0118 Q_WRITE(dev, q, desc_base, q->desc_dma);
0119 Q_WRITE(dev, q, ring_size, q->ndesc);
0120 q->head = Q_READ(dev, q, dma_idx);
0121 q->tail = q->head;
0122 }
0123
0124 static void
0125 mt76_dma_queue_reset(struct mt76_dev *dev, struct mt76_queue *q)
0126 {
0127 int i;
0128
0129 if (!q || !q->ndesc)
0130 return;
0131
0132
0133 for (i = 0; i < q->ndesc; i++)
0134 q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
0135
0136 Q_WRITE(dev, q, cpu_idx, 0);
0137 Q_WRITE(dev, q, dma_idx, 0);
0138 mt76_dma_sync_idx(dev, q);
0139 }
0140
0141 static int
0142 mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
0143 struct mt76_queue_buf *buf, int nbufs, u32 info,
0144 struct sk_buff *skb, void *txwi)
0145 {
0146 struct mt76_queue_entry *entry;
0147 struct mt76_desc *desc;
0148 u32 ctrl;
0149 int i, idx = -1;
0150
0151 if (txwi) {
0152 q->entry[q->head].txwi = DMA_DUMMY_DATA;
0153 q->entry[q->head].skip_buf0 = true;
0154 }
0155
0156 for (i = 0; i < nbufs; i += 2, buf += 2) {
0157 u32 buf0 = buf[0].addr, buf1 = 0;
0158
0159 idx = q->head;
0160 q->head = (q->head + 1) % q->ndesc;
0161
0162 desc = &q->desc[idx];
0163 entry = &q->entry[idx];
0164
0165 if (buf[0].skip_unmap)
0166 entry->skip_buf0 = true;
0167 entry->skip_buf1 = i == nbufs - 1;
0168
0169 entry->dma_addr[0] = buf[0].addr;
0170 entry->dma_len[0] = buf[0].len;
0171
0172 ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
0173 if (i < nbufs - 1) {
0174 entry->dma_addr[1] = buf[1].addr;
0175 entry->dma_len[1] = buf[1].len;
0176 buf1 = buf[1].addr;
0177 ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
0178 if (buf[1].skip_unmap)
0179 entry->skip_buf1 = true;
0180 }
0181
0182 if (i == nbufs - 1)
0183 ctrl |= MT_DMA_CTL_LAST_SEC0;
0184 else if (i == nbufs - 2)
0185 ctrl |= MT_DMA_CTL_LAST_SEC1;
0186
0187 WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
0188 WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
0189 WRITE_ONCE(desc->info, cpu_to_le32(info));
0190 WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));
0191
0192 q->queued++;
0193 }
0194
0195 q->entry[idx].txwi = txwi;
0196 q->entry[idx].skb = skb;
0197 q->entry[idx].wcid = 0xffff;
0198
0199 return idx;
0200 }
0201
0202 static void
0203 mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
0204 struct mt76_queue_entry *prev_e)
0205 {
0206 struct mt76_queue_entry *e = &q->entry[idx];
0207
0208 if (!e->skip_buf0)
0209 dma_unmap_single(dev->dma_dev, e->dma_addr[0], e->dma_len[0],
0210 DMA_TO_DEVICE);
0211
0212 if (!e->skip_buf1)
0213 dma_unmap_single(dev->dma_dev, e->dma_addr[1], e->dma_len[1],
0214 DMA_TO_DEVICE);
0215
0216 if (e->txwi == DMA_DUMMY_DATA)
0217 e->txwi = NULL;
0218
0219 if (e->skb == DMA_DUMMY_DATA)
0220 e->skb = NULL;
0221
0222 *prev_e = *e;
0223 memset(e, 0, sizeof(*e));
0224 }
0225
0226 static void
0227 mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
0228 {
0229 wmb();
0230 Q_WRITE(dev, q, cpu_idx, q->head);
0231 }
0232
0233 static void
0234 mt76_dma_tx_cleanup(struct mt76_dev *dev, struct mt76_queue *q, bool flush)
0235 {
0236 struct mt76_queue_entry entry;
0237 int last;
0238
0239 if (!q || !q->ndesc)
0240 return;
0241
0242 spin_lock_bh(&q->cleanup_lock);
0243 if (flush)
0244 last = -1;
0245 else
0246 last = Q_READ(dev, q, dma_idx);
0247
0248 while (q->queued > 0 && q->tail != last) {
0249 mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
0250 mt76_queue_tx_complete(dev, q, &entry);
0251
0252 if (entry.txwi) {
0253 if (!(dev->drv->drv_flags & MT_DRV_TXWI_NO_FREE))
0254 mt76_put_txwi(dev, entry.txwi);
0255 }
0256
0257 if (!flush && q->tail == last)
0258 last = Q_READ(dev, q, dma_idx);
0259 }
0260 spin_unlock_bh(&q->cleanup_lock);
0261
0262 if (flush) {
0263 spin_lock_bh(&q->lock);
0264 mt76_dma_sync_idx(dev, q);
0265 mt76_dma_kick_queue(dev, q);
0266 spin_unlock_bh(&q->lock);
0267 }
0268
0269 if (!q->queued)
0270 wake_up(&dev->tx_wait);
0271 }
0272
0273 static void *
0274 mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
0275 int *len, u32 *info, bool *more)
0276 {
0277 struct mt76_queue_entry *e = &q->entry[idx];
0278 struct mt76_desc *desc = &q->desc[idx];
0279 dma_addr_t buf_addr;
0280 void *buf = e->buf;
0281 int buf_len = SKB_WITH_OVERHEAD(q->buf_size);
0282
0283 buf_addr = e->dma_addr[0];
0284 if (len) {
0285 u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
0286 *len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
0287 *more = !(ctl & MT_DMA_CTL_LAST_SEC0);
0288 }
0289
0290 if (info)
0291 *info = le32_to_cpu(desc->info);
0292
0293 dma_unmap_single(dev->dma_dev, buf_addr, buf_len, DMA_FROM_DEVICE);
0294 e->buf = NULL;
0295
0296 return buf;
0297 }
0298
0299 static void *
0300 mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
0301 int *len, u32 *info, bool *more)
0302 {
0303 int idx = q->tail;
0304
0305 *more = false;
0306 if (!q->queued)
0307 return NULL;
0308
0309 if (flush)
0310 q->desc[idx].ctrl |= cpu_to_le32(MT_DMA_CTL_DMA_DONE);
0311 else if (!(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
0312 return NULL;
0313
0314 q->tail = (q->tail + 1) % q->ndesc;
0315 q->queued--;
0316
0317 return mt76_dma_get_buf(dev, q, idx, len, info, more);
0318 }
0319
0320 static int
0321 mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, struct mt76_queue *q,
0322 struct sk_buff *skb, u32 tx_info)
0323 {
0324 struct mt76_queue_buf buf = {};
0325 dma_addr_t addr;
0326
0327 if (q->queued + 1 >= q->ndesc - 1)
0328 goto error;
0329
0330 addr = dma_map_single(dev->dma_dev, skb->data, skb->len,
0331 DMA_TO_DEVICE);
0332 if (unlikely(dma_mapping_error(dev->dma_dev, addr)))
0333 goto error;
0334
0335 buf.addr = addr;
0336 buf.len = skb->len;
0337
0338 spin_lock_bh(&q->lock);
0339 mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
0340 mt76_dma_kick_queue(dev, q);
0341 spin_unlock_bh(&q->lock);
0342
0343 return 0;
0344
0345 error:
0346 dev_kfree_skb(skb);
0347 return -ENOMEM;
0348 }
0349
0350 static int
0351 mt76_dma_tx_queue_skb(struct mt76_dev *dev, struct mt76_queue *q,
0352 enum mt76_txq_id qid, struct sk_buff *skb,
0353 struct mt76_wcid *wcid, struct ieee80211_sta *sta)
0354 {
0355 struct ieee80211_tx_status status = {
0356 .sta = sta,
0357 };
0358 struct mt76_tx_info tx_info = {
0359 .skb = skb,
0360 };
0361 struct ieee80211_hw *hw;
0362 int len, n = 0, ret = -ENOMEM;
0363 struct mt76_txwi_cache *t;
0364 struct sk_buff *iter;
0365 dma_addr_t addr;
0366 u8 *txwi;
0367
0368 t = mt76_get_txwi(dev);
0369 if (!t)
0370 goto free_skb;
0371
0372 txwi = mt76_get_txwi_ptr(dev, t);
0373
0374 skb->prev = skb->next = NULL;
0375 if (dev->drv->drv_flags & MT_DRV_TX_ALIGNED4_SKBS)
0376 mt76_insert_hdr_pad(skb);
0377
0378 len = skb_headlen(skb);
0379 addr = dma_map_single(dev->dma_dev, skb->data, len, DMA_TO_DEVICE);
0380 if (unlikely(dma_mapping_error(dev->dma_dev, addr)))
0381 goto free;
0382
0383 tx_info.buf[n].addr = t->dma_addr;
0384 tx_info.buf[n++].len = dev->drv->txwi_size;
0385 tx_info.buf[n].addr = addr;
0386 tx_info.buf[n++].len = len;
0387
0388 skb_walk_frags(skb, iter) {
0389 if (n == ARRAY_SIZE(tx_info.buf))
0390 goto unmap;
0391
0392 addr = dma_map_single(dev->dma_dev, iter->data, iter->len,
0393 DMA_TO_DEVICE);
0394 if (unlikely(dma_mapping_error(dev->dma_dev, addr)))
0395 goto unmap;
0396
0397 tx_info.buf[n].addr = addr;
0398 tx_info.buf[n++].len = iter->len;
0399 }
0400 tx_info.nbuf = n;
0401
0402 if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
0403 ret = -ENOMEM;
0404 goto unmap;
0405 }
0406
0407 dma_sync_single_for_cpu(dev->dma_dev, t->dma_addr, dev->drv->txwi_size,
0408 DMA_TO_DEVICE);
0409 ret = dev->drv->tx_prepare_skb(dev, txwi, qid, wcid, sta, &tx_info);
0410 dma_sync_single_for_device(dev->dma_dev, t->dma_addr, dev->drv->txwi_size,
0411 DMA_TO_DEVICE);
0412 if (ret < 0)
0413 goto unmap;
0414
0415 return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
0416 tx_info.info, tx_info.skb, t);
0417
0418 unmap:
0419 for (n--; n > 0; n--)
0420 dma_unmap_single(dev->dma_dev, tx_info.buf[n].addr,
0421 tx_info.buf[n].len, DMA_TO_DEVICE);
0422
0423 free:
0424 #ifdef CONFIG_NL80211_TESTMODE
0425
0426 if (mt76_is_testmode_skb(dev, skb, &hw)) {
0427 struct mt76_phy *phy = hw->priv;
0428
0429 if (tx_info.skb == phy->test.tx_skb)
0430 phy->test.tx_done--;
0431 }
0432 #endif
0433
0434 mt76_put_txwi(dev, t);
0435
0436 free_skb:
0437 status.skb = tx_info.skb;
0438 hw = mt76_tx_status_get_hw(dev, tx_info.skb);
0439 ieee80211_tx_status_ext(hw, &status);
0440
0441 return ret;
0442 }
0443
0444 static int
0445 mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
0446 {
0447 dma_addr_t addr;
0448 void *buf;
0449 int frames = 0;
0450 int len = SKB_WITH_OVERHEAD(q->buf_size);
0451 int offset = q->buf_offset;
0452
0453 if (!q->ndesc)
0454 return 0;
0455
0456 spin_lock_bh(&q->lock);
0457
0458 while (q->queued < q->ndesc - 1) {
0459 struct mt76_queue_buf qbuf;
0460
0461 buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
0462 if (!buf)
0463 break;
0464
0465 addr = dma_map_single(dev->dma_dev, buf, len, DMA_FROM_DEVICE);
0466 if (unlikely(dma_mapping_error(dev->dma_dev, addr))) {
0467 skb_free_frag(buf);
0468 break;
0469 }
0470
0471 qbuf.addr = addr + offset;
0472 qbuf.len = len - offset;
0473 qbuf.skip_unmap = false;
0474 mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
0475 frames++;
0476 }
0477
0478 if (frames)
0479 mt76_dma_kick_queue(dev, q);
0480
0481 spin_unlock_bh(&q->lock);
0482
0483 return frames;
0484 }
0485
0486 static int
0487 mt76_dma_wed_setup(struct mt76_dev *dev, struct mt76_queue *q)
0488 {
0489 #ifdef CONFIG_NET_MEDIATEK_SOC_WED
0490 struct mtk_wed_device *wed = &dev->mmio.wed;
0491 int ret, type, ring;
0492 u8 flags = q->flags;
0493
0494 if (!mtk_wed_device_active(wed))
0495 q->flags &= ~MT_QFLAG_WED;
0496
0497 if (!(q->flags & MT_QFLAG_WED))
0498 return 0;
0499
0500 type = FIELD_GET(MT_QFLAG_WED_TYPE, q->flags);
0501 ring = FIELD_GET(MT_QFLAG_WED_RING, q->flags);
0502
0503 switch (type) {
0504 case MT76_WED_Q_TX:
0505 ret = mtk_wed_device_tx_ring_setup(wed, ring, q->regs);
0506 if (!ret)
0507 q->wed_regs = wed->tx_ring[ring].reg_base;
0508 break;
0509 case MT76_WED_Q_TXFREE:
0510
0511 q->flags = 0;
0512 mt76_dma_queue_reset(dev, q);
0513 mt76_dma_rx_fill(dev, q);
0514 q->flags = flags;
0515
0516 ret = mtk_wed_device_txfree_ring_setup(wed, q->regs);
0517 if (!ret)
0518 q->wed_regs = wed->txfree_ring.reg_base;
0519 break;
0520 default:
0521 ret = -EINVAL;
0522 }
0523
0524 return ret;
0525 #else
0526 return 0;
0527 #endif
0528 }
0529
0530 static int
0531 mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
0532 int idx, int n_desc, int bufsize,
0533 u32 ring_base)
0534 {
0535 int ret, size;
0536
0537 spin_lock_init(&q->lock);
0538 spin_lock_init(&q->cleanup_lock);
0539
0540 q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
0541 q->ndesc = n_desc;
0542 q->buf_size = bufsize;
0543 q->hw_idx = idx;
0544
0545 size = q->ndesc * sizeof(struct mt76_desc);
0546 q->desc = dmam_alloc_coherent(dev->dma_dev, size, &q->desc_dma, GFP_KERNEL);
0547 if (!q->desc)
0548 return -ENOMEM;
0549
0550 size = q->ndesc * sizeof(*q->entry);
0551 q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
0552 if (!q->entry)
0553 return -ENOMEM;
0554
0555 ret = mt76_dma_wed_setup(dev, q);
0556 if (ret)
0557 return ret;
0558
0559 if (q->flags != MT_WED_Q_TXFREE)
0560 mt76_dma_queue_reset(dev, q);
0561
0562 return 0;
0563 }
0564
0565 static void
0566 mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
0567 {
0568 struct page *page;
0569 void *buf;
0570 bool more;
0571
0572 if (!q->ndesc)
0573 return;
0574
0575 spin_lock_bh(&q->lock);
0576 do {
0577 buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
0578 if (!buf)
0579 break;
0580
0581 skb_free_frag(buf);
0582 } while (1);
0583 spin_unlock_bh(&q->lock);
0584
0585 if (!q->rx_page.va)
0586 return;
0587
0588 page = virt_to_page(q->rx_page.va);
0589 __page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
0590 memset(&q->rx_page, 0, sizeof(q->rx_page));
0591 }
0592
0593 static void
0594 mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
0595 {
0596 struct mt76_queue *q = &dev->q_rx[qid];
0597 int i;
0598
0599 if (!q->ndesc)
0600 return;
0601
0602 for (i = 0; i < q->ndesc; i++)
0603 q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
0604
0605 mt76_dma_rx_cleanup(dev, q);
0606 mt76_dma_sync_idx(dev, q);
0607 mt76_dma_rx_fill(dev, q);
0608
0609 if (!q->rx_head)
0610 return;
0611
0612 dev_kfree_skb(q->rx_head);
0613 q->rx_head = NULL;
0614 }
0615
0616 static void
0617 mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
0618 int len, bool more)
0619 {
0620 struct sk_buff *skb = q->rx_head;
0621 struct skb_shared_info *shinfo = skb_shinfo(skb);
0622 int nr_frags = shinfo->nr_frags;
0623
0624 if (nr_frags < ARRAY_SIZE(shinfo->frags)) {
0625 struct page *page = virt_to_head_page(data);
0626 int offset = data - page_address(page) + q->buf_offset;
0627
0628 skb_add_rx_frag(skb, nr_frags, page, offset, len, q->buf_size);
0629 } else {
0630 skb_free_frag(data);
0631 }
0632
0633 if (more)
0634 return;
0635
0636 q->rx_head = NULL;
0637 if (nr_frags < ARRAY_SIZE(shinfo->frags))
0638 dev->drv->rx_skb(dev, q - dev->q_rx, skb);
0639 else
0640 dev_kfree_skb(skb);
0641 }
0642
0643 static int
0644 mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
0645 {
0646 int len, data_len, done = 0, dma_idx;
0647 struct sk_buff *skb;
0648 unsigned char *data;
0649 bool check_ddone = false;
0650 bool more;
0651
0652 if (IS_ENABLED(CONFIG_NET_MEDIATEK_SOC_WED) &&
0653 q->flags == MT_WED_Q_TXFREE) {
0654 dma_idx = Q_READ(dev, q, dma_idx);
0655 check_ddone = true;
0656 }
0657
0658 while (done < budget) {
0659 u32 info;
0660
0661 if (check_ddone) {
0662 if (q->tail == dma_idx)
0663 dma_idx = Q_READ(dev, q, dma_idx);
0664
0665 if (q->tail == dma_idx)
0666 break;
0667 }
0668
0669 data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
0670 if (!data)
0671 break;
0672
0673 if (q->rx_head)
0674 data_len = q->buf_size;
0675 else
0676 data_len = SKB_WITH_OVERHEAD(q->buf_size);
0677
0678 if (data_len < len + q->buf_offset) {
0679 dev_kfree_skb(q->rx_head);
0680 q->rx_head = NULL;
0681 goto free_frag;
0682 }
0683
0684 if (q->rx_head) {
0685 mt76_add_fragment(dev, q, data, len, more);
0686 continue;
0687 }
0688
0689 if (!more && dev->drv->rx_check &&
0690 !(dev->drv->rx_check(dev, data, len)))
0691 goto free_frag;
0692
0693 skb = build_skb(data, q->buf_size);
0694 if (!skb)
0695 goto free_frag;
0696
0697 skb_reserve(skb, q->buf_offset);
0698
0699 if (q == &dev->q_rx[MT_RXQ_MCU]) {
0700 u32 *rxfce = (u32 *)skb->cb;
0701 *rxfce = info;
0702 }
0703
0704 __skb_put(skb, len);
0705 done++;
0706
0707 if (more) {
0708 q->rx_head = skb;
0709 continue;
0710 }
0711
0712 dev->drv->rx_skb(dev, q - dev->q_rx, skb);
0713 continue;
0714
0715 free_frag:
0716 skb_free_frag(data);
0717 }
0718
0719 mt76_dma_rx_fill(dev, q);
0720 return done;
0721 }
0722
0723 int mt76_dma_rx_poll(struct napi_struct *napi, int budget)
0724 {
0725 struct mt76_dev *dev;
0726 int qid, done = 0, cur;
0727
0728 dev = container_of(napi->dev, struct mt76_dev, napi_dev);
0729 qid = napi - dev->napi;
0730
0731 rcu_read_lock();
0732
0733 do {
0734 cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
0735 mt76_rx_poll_complete(dev, qid, napi);
0736 done += cur;
0737 } while (cur && done < budget);
0738
0739 rcu_read_unlock();
0740
0741 if (done < budget && napi_complete(napi))
0742 dev->drv->rx_poll_complete(dev, qid);
0743
0744 return done;
0745 }
0746 EXPORT_SYMBOL_GPL(mt76_dma_rx_poll);
0747
0748 static int
0749 mt76_dma_init(struct mt76_dev *dev,
0750 int (*poll)(struct napi_struct *napi, int budget))
0751 {
0752 int i;
0753
0754 init_dummy_netdev(&dev->napi_dev);
0755 init_dummy_netdev(&dev->tx_napi_dev);
0756 snprintf(dev->napi_dev.name, sizeof(dev->napi_dev.name), "%s",
0757 wiphy_name(dev->hw->wiphy));
0758 dev->napi_dev.threaded = 1;
0759
0760 mt76_for_each_q_rx(dev, i) {
0761 netif_napi_add(&dev->napi_dev, &dev->napi[i], poll, 64);
0762 mt76_dma_rx_fill(dev, &dev->q_rx[i]);
0763 napi_enable(&dev->napi[i]);
0764 }
0765
0766 return 0;
0767 }
0768
0769 static const struct mt76_queue_ops mt76_dma_ops = {
0770 .init = mt76_dma_init,
0771 .alloc = mt76_dma_alloc_queue,
0772 .reset_q = mt76_dma_queue_reset,
0773 .tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
0774 .tx_queue_skb = mt76_dma_tx_queue_skb,
0775 .tx_cleanup = mt76_dma_tx_cleanup,
0776 .rx_cleanup = mt76_dma_rx_cleanup,
0777 .rx_reset = mt76_dma_rx_reset,
0778 .kick = mt76_dma_kick_queue,
0779 };
0780
0781 void mt76_dma_attach(struct mt76_dev *dev)
0782 {
0783 dev->queue_ops = &mt76_dma_ops;
0784 }
0785 EXPORT_SYMBOL_GPL(mt76_dma_attach);
0786
0787 void mt76_dma_cleanup(struct mt76_dev *dev)
0788 {
0789 int i;
0790
0791 mt76_worker_disable(&dev->tx_worker);
0792 netif_napi_del(&dev->tx_napi);
0793
0794 for (i = 0; i < ARRAY_SIZE(dev->phys); i++) {
0795 struct mt76_phy *phy = dev->phys[i];
0796 int j;
0797
0798 if (!phy)
0799 continue;
0800
0801 for (j = 0; j < ARRAY_SIZE(phy->q_tx); j++)
0802 mt76_dma_tx_cleanup(dev, phy->q_tx[j], true);
0803 }
0804
0805 for (i = 0; i < ARRAY_SIZE(dev->q_mcu); i++)
0806 mt76_dma_tx_cleanup(dev, dev->q_mcu[i], true);
0807
0808 mt76_for_each_q_rx(dev, i) {
0809 netif_napi_del(&dev->napi[i]);
0810 mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
0811 }
0812
0813 mt76_free_pending_txwi(dev);
0814
0815 if (mtk_wed_device_active(&dev->mmio.wed))
0816 mtk_wed_device_detach(&dev->mmio.wed);
0817 }
0818 EXPORT_SYMBOL_GPL(mt76_dma_cleanup);