Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright (c) 2008-2011 Atheros Communications Inc.
0003  *
0004  * Permission to use, copy, modify, and/or distribute this software for any
0005  * purpose with or without fee is hereby granted, provided that the above
0006  * copyright notice and this permission notice appear in all copies.
0007  *
0008  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
0009  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
0010  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
0011  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
0012  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
0013  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
0014  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
0015  */
0016 
0017 #include <linux/dma-mapping.h>
0018 #include "ath9k.h"
0019 #include "ar9003_mac.h"
0020 
0021 #define SKB_CB_ATHBUF(__skb)    (*((struct ath_rxbuf **)__skb->cb))
0022 
0023 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
0024 {
0025     return sc->ps_enabled &&
0026            (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
0027 }
0028 
0029 /*
0030  * Setup and link descriptors.
0031  *
0032  * 11N: we can no longer afford to self link the last descriptor.
0033  * MAC acknowledges BA status as long as it copies frames to host
0034  * buffer (or rx fifo). This can incorrectly acknowledge packets
0035  * to a sender if last desc is self-linked.
0036  */
0037 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf,
0038                 bool flush)
0039 {
0040     struct ath_hw *ah = sc->sc_ah;
0041     struct ath_common *common = ath9k_hw_common(ah);
0042     struct ath_desc *ds;
0043     struct sk_buff *skb;
0044 
0045     ds = bf->bf_desc;
0046     ds->ds_link = 0; /* link to null */
0047     ds->ds_data = bf->bf_buf_addr;
0048 
0049     /* virtual addr of the beginning of the buffer. */
0050     skb = bf->bf_mpdu;
0051     BUG_ON(skb == NULL);
0052     ds->ds_vdata = skb->data;
0053 
0054     /*
0055      * setup rx descriptors. The rx_bufsize here tells the hardware
0056      * how much data it can DMA to us and that we are prepared
0057      * to process
0058      */
0059     ath9k_hw_setuprxdesc(ah, ds,
0060                  common->rx_bufsize,
0061                  0);
0062 
0063     if (sc->rx.rxlink)
0064         *sc->rx.rxlink = bf->bf_daddr;
0065     else if (!flush)
0066         ath9k_hw_putrxbuf(ah, bf->bf_daddr);
0067 
0068     sc->rx.rxlink = &ds->ds_link;
0069 }
0070 
0071 static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf,
0072                   bool flush)
0073 {
0074     if (sc->rx.buf_hold)
0075         ath_rx_buf_link(sc, sc->rx.buf_hold, flush);
0076 
0077     sc->rx.buf_hold = bf;
0078 }
0079 
0080 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
0081 {
0082     /* XXX block beacon interrupts */
0083     ath9k_hw_setantenna(sc->sc_ah, antenna);
0084     sc->rx.defant = antenna;
0085     sc->rx.rxotherant = 0;
0086 }
0087 
0088 static void ath_opmode_init(struct ath_softc *sc)
0089 {
0090     struct ath_hw *ah = sc->sc_ah;
0091     struct ath_common *common = ath9k_hw_common(ah);
0092 
0093     u32 rfilt, mfilt[2];
0094 
0095     /* configure rx filter */
0096     rfilt = ath_calcrxfilter(sc);
0097     ath9k_hw_setrxfilter(ah, rfilt);
0098 
0099     /* configure bssid mask */
0100     ath_hw_setbssidmask(common);
0101 
0102     /* configure operational mode */
0103     ath9k_hw_setopmode(ah);
0104 
0105     /* calculate and install multicast filter */
0106     mfilt[0] = mfilt[1] = ~0;
0107     ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
0108 }
0109 
0110 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
0111                  enum ath9k_rx_qtype qtype)
0112 {
0113     struct ath_hw *ah = sc->sc_ah;
0114     struct ath_rx_edma *rx_edma;
0115     struct sk_buff *skb;
0116     struct ath_rxbuf *bf;
0117 
0118     rx_edma = &sc->rx.rx_edma[qtype];
0119     if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
0120         return false;
0121 
0122     bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
0123     list_del_init(&bf->list);
0124 
0125     skb = bf->bf_mpdu;
0126 
0127     memset(skb->data, 0, ah->caps.rx_status_len);
0128     dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
0129                 ah->caps.rx_status_len, DMA_TO_DEVICE);
0130 
0131     SKB_CB_ATHBUF(skb) = bf;
0132     ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
0133     __skb_queue_tail(&rx_edma->rx_fifo, skb);
0134 
0135     return true;
0136 }
0137 
0138 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
0139                   enum ath9k_rx_qtype qtype)
0140 {
0141     struct ath_common *common = ath9k_hw_common(sc->sc_ah);
0142     struct ath_rxbuf *bf, *tbf;
0143 
0144     if (list_empty(&sc->rx.rxbuf)) {
0145         ath_dbg(common, QUEUE, "No free rx buf available\n");
0146         return;
0147     }
0148 
0149     list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
0150         if (!ath_rx_edma_buf_link(sc, qtype))
0151             break;
0152 
0153 }
0154 
0155 static void ath_rx_remove_buffer(struct ath_softc *sc,
0156                  enum ath9k_rx_qtype qtype)
0157 {
0158     struct ath_rxbuf *bf;
0159     struct ath_rx_edma *rx_edma;
0160     struct sk_buff *skb;
0161 
0162     rx_edma = &sc->rx.rx_edma[qtype];
0163 
0164     while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
0165         bf = SKB_CB_ATHBUF(skb);
0166         BUG_ON(!bf);
0167         list_add_tail(&bf->list, &sc->rx.rxbuf);
0168     }
0169 }
0170 
0171 static void ath_rx_edma_cleanup(struct ath_softc *sc)
0172 {
0173     struct ath_hw *ah = sc->sc_ah;
0174     struct ath_common *common = ath9k_hw_common(ah);
0175     struct ath_rxbuf *bf;
0176 
0177     ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
0178     ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
0179 
0180     list_for_each_entry(bf, &sc->rx.rxbuf, list) {
0181         if (bf->bf_mpdu) {
0182             dma_unmap_single(sc->dev, bf->bf_buf_addr,
0183                     common->rx_bufsize,
0184                     DMA_BIDIRECTIONAL);
0185             dev_kfree_skb_any(bf->bf_mpdu);
0186             bf->bf_buf_addr = 0;
0187             bf->bf_mpdu = NULL;
0188         }
0189     }
0190 }
0191 
0192 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
0193 {
0194     __skb_queue_head_init(&rx_edma->rx_fifo);
0195     rx_edma->rx_fifo_hwsize = size;
0196 }
0197 
0198 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
0199 {
0200     struct ath_common *common = ath9k_hw_common(sc->sc_ah);
0201     struct ath_hw *ah = sc->sc_ah;
0202     struct sk_buff *skb;
0203     struct ath_rxbuf *bf;
0204     int error = 0, i;
0205     u32 size;
0206 
0207     ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
0208                     ah->caps.rx_status_len);
0209 
0210     ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
0211                    ah->caps.rx_lp_qdepth);
0212     ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
0213                    ah->caps.rx_hp_qdepth);
0214 
0215     size = sizeof(struct ath_rxbuf) * nbufs;
0216     bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
0217     if (!bf)
0218         return -ENOMEM;
0219 
0220     INIT_LIST_HEAD(&sc->rx.rxbuf);
0221 
0222     for (i = 0; i < nbufs; i++, bf++) {
0223         skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
0224         if (!skb) {
0225             error = -ENOMEM;
0226             goto rx_init_fail;
0227         }
0228 
0229         memset(skb->data, 0, common->rx_bufsize);
0230         bf->bf_mpdu = skb;
0231 
0232         bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
0233                          common->rx_bufsize,
0234                          DMA_BIDIRECTIONAL);
0235         if (unlikely(dma_mapping_error(sc->dev,
0236                         bf->bf_buf_addr))) {
0237                 dev_kfree_skb_any(skb);
0238                 bf->bf_mpdu = NULL;
0239                 bf->bf_buf_addr = 0;
0240                 ath_err(common,
0241                     "dma_mapping_error() on RX init\n");
0242                 error = -ENOMEM;
0243                 goto rx_init_fail;
0244         }
0245 
0246         list_add_tail(&bf->list, &sc->rx.rxbuf);
0247     }
0248 
0249     return 0;
0250 
0251 rx_init_fail:
0252     ath_rx_edma_cleanup(sc);
0253     return error;
0254 }
0255 
0256 static void ath_edma_start_recv(struct ath_softc *sc)
0257 {
0258     ath9k_hw_rxena(sc->sc_ah);
0259     ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP);
0260     ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP);
0261     ath_opmode_init(sc);
0262     ath9k_hw_startpcureceive(sc->sc_ah, sc->cur_chan->offchannel);
0263 }
0264 
0265 static void ath_edma_stop_recv(struct ath_softc *sc)
0266 {
0267     ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
0268     ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
0269 }
0270 
0271 int ath_rx_init(struct ath_softc *sc, int nbufs)
0272 {
0273     struct ath_common *common = ath9k_hw_common(sc->sc_ah);
0274     struct sk_buff *skb;
0275     struct ath_rxbuf *bf;
0276     int error = 0;
0277 
0278     spin_lock_init(&sc->sc_pcu_lock);
0279 
0280     common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
0281                  sc->sc_ah->caps.rx_status_len;
0282 
0283     if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
0284         return ath_rx_edma_init(sc, nbufs);
0285 
0286     ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
0287         common->cachelsz, common->rx_bufsize);
0288 
0289     /* Initialize rx descriptors */
0290 
0291     error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
0292                   "rx", nbufs, 1, 0);
0293     if (error != 0) {
0294         ath_err(common,
0295             "failed to allocate rx descriptors: %d\n",
0296             error);
0297         goto err;
0298     }
0299 
0300     list_for_each_entry(bf, &sc->rx.rxbuf, list) {
0301         skb = ath_rxbuf_alloc(common, common->rx_bufsize,
0302                       GFP_KERNEL);
0303         if (skb == NULL) {
0304             error = -ENOMEM;
0305             goto err;
0306         }
0307 
0308         bf->bf_mpdu = skb;
0309         bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
0310                          common->rx_bufsize,
0311                          DMA_FROM_DEVICE);
0312         if (unlikely(dma_mapping_error(sc->dev,
0313                            bf->bf_buf_addr))) {
0314             dev_kfree_skb_any(skb);
0315             bf->bf_mpdu = NULL;
0316             bf->bf_buf_addr = 0;
0317             ath_err(common,
0318                 "dma_mapping_error() on RX init\n");
0319             error = -ENOMEM;
0320             goto err;
0321         }
0322     }
0323     sc->rx.rxlink = NULL;
0324 err:
0325     if (error)
0326         ath_rx_cleanup(sc);
0327 
0328     return error;
0329 }
0330 
0331 void ath_rx_cleanup(struct ath_softc *sc)
0332 {
0333     struct ath_hw *ah = sc->sc_ah;
0334     struct ath_common *common = ath9k_hw_common(ah);
0335     struct sk_buff *skb;
0336     struct ath_rxbuf *bf;
0337 
0338     if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
0339         ath_rx_edma_cleanup(sc);
0340         return;
0341     }
0342 
0343     list_for_each_entry(bf, &sc->rx.rxbuf, list) {
0344         skb = bf->bf_mpdu;
0345         if (skb) {
0346             dma_unmap_single(sc->dev, bf->bf_buf_addr,
0347                      common->rx_bufsize,
0348                      DMA_FROM_DEVICE);
0349             dev_kfree_skb(skb);
0350             bf->bf_buf_addr = 0;
0351             bf->bf_mpdu = NULL;
0352         }
0353     }
0354 }
0355 
0356 /*
0357  * Calculate the receive filter according to the
0358  * operating mode and state:
0359  *
0360  * o always accept unicast, broadcast, and multicast traffic
0361  * o maintain current state of phy error reception (the hal
0362  *   may enable phy error frames for noise immunity work)
0363  * o probe request frames are accepted only when operating in
0364  *   hostap, adhoc, or monitor modes
0365  * o enable promiscuous mode according to the interface state
0366  * o accept beacons:
0367  *   - when operating in adhoc mode so the 802.11 layer creates
0368  *     node table entries for peers,
0369  *   - when operating in station mode for collecting rssi data when
0370  *     the station is otherwise quiet, or
0371  *   - when operating as a repeater so we see repeater-sta beacons
0372  *   - when scanning
0373  */
0374 
0375 u32 ath_calcrxfilter(struct ath_softc *sc)
0376 {
0377     struct ath_common *common = ath9k_hw_common(sc->sc_ah);
0378     u32 rfilt;
0379 
0380     if (IS_ENABLED(CONFIG_ATH9K_TX99))
0381         return 0;
0382 
0383     rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
0384         | ATH9K_RX_FILTER_MCAST;
0385 
0386     /* if operating on a DFS channel, enable radar pulse detection */
0387     if (sc->hw->conf.radar_enabled)
0388         rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR;
0389 
0390     spin_lock_bh(&sc->chan_lock);
0391 
0392     if (sc->cur_chan->rxfilter & FIF_PROBE_REQ)
0393         rfilt |= ATH9K_RX_FILTER_PROBEREQ;
0394 
0395     if (sc->sc_ah->is_monitoring)
0396         rfilt |= ATH9K_RX_FILTER_PROM;
0397 
0398     if ((sc->cur_chan->rxfilter & FIF_CONTROL) ||
0399         sc->sc_ah->dynack.enabled)
0400         rfilt |= ATH9K_RX_FILTER_CONTROL;
0401 
0402     if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
0403         (sc->cur_chan->nvifs <= 1) &&
0404         !(sc->cur_chan->rxfilter & FIF_BCN_PRBRESP_PROMISC))
0405         rfilt |= ATH9K_RX_FILTER_MYBEACON;
0406     else if (sc->sc_ah->opmode != NL80211_IFTYPE_OCB)
0407         rfilt |= ATH9K_RX_FILTER_BEACON;
0408 
0409     if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
0410         (sc->cur_chan->rxfilter & FIF_PSPOLL))
0411         rfilt |= ATH9K_RX_FILTER_PSPOLL;
0412 
0413     if (sc->cur_chandef.width != NL80211_CHAN_WIDTH_20_NOHT)
0414         rfilt |= ATH9K_RX_FILTER_COMP_BAR;
0415 
0416     if (sc->cur_chan->nvifs > 1 ||
0417         (sc->cur_chan->rxfilter & (FIF_OTHER_BSS | FIF_MCAST_ACTION))) {
0418         /* This is needed for older chips */
0419         if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
0420             rfilt |= ATH9K_RX_FILTER_PROM;
0421         rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
0422     }
0423 
0424     if (AR_SREV_9550(sc->sc_ah) || AR_SREV_9531(sc->sc_ah) ||
0425         AR_SREV_9561(sc->sc_ah))
0426         rfilt |= ATH9K_RX_FILTER_4ADDRESS;
0427 
0428     if (AR_SREV_9462(sc->sc_ah) || AR_SREV_9565(sc->sc_ah))
0429         rfilt |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
0430 
0431     if (ath9k_is_chanctx_enabled() &&
0432         test_bit(ATH_OP_SCANNING, &common->op_flags))
0433         rfilt |= ATH9K_RX_FILTER_BEACON;
0434 
0435     spin_unlock_bh(&sc->chan_lock);
0436 
0437     return rfilt;
0438 
0439 }
0440 
0441 void ath_startrecv(struct ath_softc *sc)
0442 {
0443     struct ath_hw *ah = sc->sc_ah;
0444     struct ath_rxbuf *bf, *tbf;
0445 
0446     if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
0447         ath_edma_start_recv(sc);
0448         return;
0449     }
0450 
0451     if (list_empty(&sc->rx.rxbuf))
0452         goto start_recv;
0453 
0454     sc->rx.buf_hold = NULL;
0455     sc->rx.rxlink = NULL;
0456     list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
0457         ath_rx_buf_link(sc, bf, false);
0458     }
0459 
0460     /* We could have deleted elements so the list may be empty now */
0461     if (list_empty(&sc->rx.rxbuf))
0462         goto start_recv;
0463 
0464     bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
0465     ath9k_hw_putrxbuf(ah, bf->bf_daddr);
0466     ath9k_hw_rxena(ah);
0467 
0468 start_recv:
0469     ath_opmode_init(sc);
0470     ath9k_hw_startpcureceive(ah, sc->cur_chan->offchannel);
0471 }
0472 
0473 static void ath_flushrecv(struct ath_softc *sc)
0474 {
0475     if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
0476         ath_rx_tasklet(sc, 1, true);
0477     ath_rx_tasklet(sc, 1, false);
0478 }
0479 
0480 bool ath_stoprecv(struct ath_softc *sc)
0481 {
0482     struct ath_hw *ah = sc->sc_ah;
0483     bool stopped, reset = false;
0484 
0485     ath9k_hw_abortpcurecv(ah);
0486     ath9k_hw_setrxfilter(ah, 0);
0487     stopped = ath9k_hw_stopdmarecv(ah, &reset);
0488 
0489     ath_flushrecv(sc);
0490 
0491     if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
0492         ath_edma_stop_recv(sc);
0493     else
0494         sc->rx.rxlink = NULL;
0495 
0496     if (!(ah->ah_flags & AH_UNPLUGGED) &&
0497         unlikely(!stopped)) {
0498         ath_dbg(ath9k_hw_common(sc->sc_ah), RESET,
0499             "Failed to stop Rx DMA\n");
0500         RESET_STAT_INC(sc, RESET_RX_DMA_ERROR);
0501     }
0502     return stopped && !reset;
0503 }
0504 
0505 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
0506 {
0507     /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
0508     struct ieee80211_mgmt *mgmt;
0509     u8 *pos, *end, id, elen;
0510     struct ieee80211_tim_ie *tim;
0511 
0512     mgmt = (struct ieee80211_mgmt *)skb->data;
0513     pos = mgmt->u.beacon.variable;
0514     end = skb->data + skb->len;
0515 
0516     while (pos + 2 < end) {
0517         id = *pos++;
0518         elen = *pos++;
0519         if (pos + elen > end)
0520             break;
0521 
0522         if (id == WLAN_EID_TIM) {
0523             if (elen < sizeof(*tim))
0524                 break;
0525             tim = (struct ieee80211_tim_ie *) pos;
0526             if (tim->dtim_count != 0)
0527                 break;
0528             return tim->bitmap_ctrl & 0x01;
0529         }
0530 
0531         pos += elen;
0532     }
0533 
0534     return false;
0535 }
0536 
0537 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
0538 {
0539     struct ath_common *common = ath9k_hw_common(sc->sc_ah);
0540     bool skip_beacon = false;
0541 
0542     if (skb->len < 24 + 8 + 2 + 2)
0543         return;
0544 
0545     sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
0546 
0547     if (sc->ps_flags & PS_BEACON_SYNC) {
0548         sc->ps_flags &= ~PS_BEACON_SYNC;
0549         ath_dbg(common, PS,
0550             "Reconfigure beacon timers based on synchronized timestamp\n");
0551 
0552 #ifdef CONFIG_ATH9K_CHANNEL_CONTEXT
0553         if (ath9k_is_chanctx_enabled()) {
0554             if (sc->cur_chan == &sc->offchannel.chan)
0555                 skip_beacon = true;
0556         }
0557 #endif
0558 
0559         if (!skip_beacon &&
0560             !(WARN_ON_ONCE(sc->cur_chan->beacon.beacon_interval == 0)))
0561             ath9k_set_beacon(sc);
0562 
0563         ath9k_p2p_beacon_sync(sc);
0564     }
0565 
0566     if (ath_beacon_dtim_pending_cab(skb)) {
0567         /*
0568          * Remain awake waiting for buffered broadcast/multicast
0569          * frames. If the last broadcast/multicast frame is not
0570          * received properly, the next beacon frame will work as
0571          * a backup trigger for returning into NETWORK SLEEP state,
0572          * so we are waiting for it as well.
0573          */
0574         ath_dbg(common, PS,
0575             "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
0576         sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
0577         return;
0578     }
0579 
0580     if (sc->ps_flags & PS_WAIT_FOR_CAB) {
0581         /*
0582          * This can happen if a broadcast frame is dropped or the AP
0583          * fails to send a frame indicating that all CAB frames have
0584          * been delivered.
0585          */
0586         sc->ps_flags &= ~PS_WAIT_FOR_CAB;
0587         ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
0588     }
0589 }
0590 
0591 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
0592 {
0593     struct ieee80211_hdr *hdr;
0594     struct ath_common *common = ath9k_hw_common(sc->sc_ah);
0595 
0596     hdr = (struct ieee80211_hdr *)skb->data;
0597 
0598     /* Process Beacon and CAB receive in PS state */
0599     if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
0600         && mybeacon) {
0601         ath_rx_ps_beacon(sc, skb);
0602     } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
0603            (ieee80211_is_data(hdr->frame_control) ||
0604             ieee80211_is_action(hdr->frame_control)) &&
0605            is_multicast_ether_addr(hdr->addr1) &&
0606            !ieee80211_has_moredata(hdr->frame_control)) {
0607         /*
0608          * No more broadcast/multicast frames to be received at this
0609          * point.
0610          */
0611         sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
0612         ath_dbg(common, PS,
0613             "All PS CAB frames received, back to sleep\n");
0614     } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
0615            !is_multicast_ether_addr(hdr->addr1) &&
0616            !ieee80211_has_morefrags(hdr->frame_control)) {
0617         sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
0618         ath_dbg(common, PS,
0619             "Going back to sleep after having received PS-Poll data (0x%lx)\n",
0620             sc->ps_flags & (PS_WAIT_FOR_BEACON |
0621                     PS_WAIT_FOR_CAB |
0622                     PS_WAIT_FOR_PSPOLL_DATA |
0623                     PS_WAIT_FOR_TX_ACK));
0624     }
0625 }
0626 
0627 static bool ath_edma_get_buffers(struct ath_softc *sc,
0628                  enum ath9k_rx_qtype qtype,
0629                  struct ath_rx_status *rs,
0630                  struct ath_rxbuf **dest)
0631 {
0632     struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
0633     struct ath_hw *ah = sc->sc_ah;
0634     struct ath_common *common = ath9k_hw_common(ah);
0635     struct sk_buff *skb;
0636     struct ath_rxbuf *bf;
0637     int ret;
0638 
0639     skb = skb_peek(&rx_edma->rx_fifo);
0640     if (!skb)
0641         return false;
0642 
0643     bf = SKB_CB_ATHBUF(skb);
0644     BUG_ON(!bf);
0645 
0646     dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
0647                 common->rx_bufsize, DMA_FROM_DEVICE);
0648 
0649     ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
0650     if (ret == -EINPROGRESS) {
0651         /*let device gain the buffer again*/
0652         dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
0653                 common->rx_bufsize, DMA_FROM_DEVICE);
0654         return false;
0655     }
0656 
0657     __skb_unlink(skb, &rx_edma->rx_fifo);
0658     if (ret == -EINVAL) {
0659         /* corrupt descriptor, skip this one and the following one */
0660         list_add_tail(&bf->list, &sc->rx.rxbuf);
0661         ath_rx_edma_buf_link(sc, qtype);
0662 
0663         skb = skb_peek(&rx_edma->rx_fifo);
0664         if (skb) {
0665             bf = SKB_CB_ATHBUF(skb);
0666             BUG_ON(!bf);
0667 
0668             __skb_unlink(skb, &rx_edma->rx_fifo);
0669             list_add_tail(&bf->list, &sc->rx.rxbuf);
0670             ath_rx_edma_buf_link(sc, qtype);
0671         }
0672 
0673         bf = NULL;
0674     }
0675 
0676     *dest = bf;
0677     return true;
0678 }
0679 
0680 static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
0681                         struct ath_rx_status *rs,
0682                         enum ath9k_rx_qtype qtype)
0683 {
0684     struct ath_rxbuf *bf = NULL;
0685 
0686     while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
0687         if (!bf)
0688             continue;
0689 
0690         return bf;
0691     }
0692     return NULL;
0693 }
0694 
0695 static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc,
0696                        struct ath_rx_status *rs)
0697 {
0698     struct ath_hw *ah = sc->sc_ah;
0699     struct ath_common *common = ath9k_hw_common(ah);
0700     struct ath_desc *ds;
0701     struct ath_rxbuf *bf;
0702     int ret;
0703 
0704     if (list_empty(&sc->rx.rxbuf)) {
0705         sc->rx.rxlink = NULL;
0706         return NULL;
0707     }
0708 
0709     bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
0710     if (bf == sc->rx.buf_hold)
0711         return NULL;
0712 
0713     ds = bf->bf_desc;
0714 
0715     /*
0716      * Must provide the virtual address of the current
0717      * descriptor, the physical address, and the virtual
0718      * address of the next descriptor in the h/w chain.
0719      * This allows the HAL to look ahead to see if the
0720      * hardware is done with a descriptor by checking the
0721      * done bit in the following descriptor and the address
0722      * of the current descriptor the DMA engine is working
0723      * on.  All this is necessary because of our use of
0724      * a self-linked list to avoid rx overruns.
0725      */
0726     ret = ath9k_hw_rxprocdesc(ah, ds, rs);
0727     if (ret == -EINPROGRESS) {
0728         struct ath_rx_status trs;
0729         struct ath_rxbuf *tbf;
0730         struct ath_desc *tds;
0731 
0732         memset(&trs, 0, sizeof(trs));
0733         if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
0734             sc->rx.rxlink = NULL;
0735             return NULL;
0736         }
0737 
0738         tbf = list_entry(bf->list.next, struct ath_rxbuf, list);
0739 
0740         /*
0741          * On some hardware the descriptor status words could
0742          * get corrupted, including the done bit. Because of
0743          * this, check if the next descriptor's done bit is
0744          * set or not.
0745          *
0746          * If the next descriptor's done bit is set, the current
0747          * descriptor has been corrupted. Force s/w to discard
0748          * this descriptor and continue...
0749          */
0750 
0751         tds = tbf->bf_desc;
0752         ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
0753         if (ret == -EINPROGRESS)
0754             return NULL;
0755 
0756         /*
0757          * Re-check previous descriptor, in case it has been filled
0758          * in the mean time.
0759          */
0760         ret = ath9k_hw_rxprocdesc(ah, ds, rs);
0761         if (ret == -EINPROGRESS) {
0762             /*
0763              * mark descriptor as zero-length and set the 'more'
0764              * flag to ensure that both buffers get discarded
0765              */
0766             rs->rs_datalen = 0;
0767             rs->rs_more = true;
0768         }
0769     }
0770 
0771     list_del(&bf->list);
0772     if (!bf->bf_mpdu)
0773         return bf;
0774 
0775     /*
0776      * Synchronize the DMA transfer with CPU before
0777      * 1. accessing the frame
0778      * 2. requeueing the same buffer to h/w
0779      */
0780     dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
0781             common->rx_bufsize,
0782             DMA_FROM_DEVICE);
0783 
0784     return bf;
0785 }
0786 
0787 static void ath9k_process_tsf(struct ath_rx_status *rs,
0788                   struct ieee80211_rx_status *rxs,
0789                   u64 tsf)
0790 {
0791     u32 tsf_lower = tsf & 0xffffffff;
0792 
0793     rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp;
0794     if (rs->rs_tstamp > tsf_lower &&
0795         unlikely(rs->rs_tstamp - tsf_lower > 0x10000000))
0796         rxs->mactime -= 0x100000000ULL;
0797 
0798     if (rs->rs_tstamp < tsf_lower &&
0799         unlikely(tsf_lower - rs->rs_tstamp > 0x10000000))
0800         rxs->mactime += 0x100000000ULL;
0801 }
0802 
0803 /*
0804  * For Decrypt or Demic errors, we only mark packet status here and always push
0805  * up the frame up to let mac80211 handle the actual error case, be it no
0806  * decryption key or real decryption error. This let us keep statistics there.
0807  */
0808 static int ath9k_rx_skb_preprocess(struct ath_softc *sc,
0809                    struct sk_buff *skb,
0810                    struct ath_rx_status *rx_stats,
0811                    struct ieee80211_rx_status *rx_status,
0812                    bool *decrypt_error, u64 tsf)
0813 {
0814     struct ieee80211_hw *hw = sc->hw;
0815     struct ath_hw *ah = sc->sc_ah;
0816     struct ath_common *common = ath9k_hw_common(ah);
0817     struct ieee80211_hdr *hdr;
0818     bool discard_current = sc->rx.discard_next;
0819     bool is_phyerr;
0820 
0821     /*
0822      * Discard corrupt descriptors which are marked in
0823      * ath_get_next_rx_buf().
0824      */
0825     if (discard_current)
0826         goto corrupt;
0827 
0828     sc->rx.discard_next = false;
0829 
0830     /*
0831      * Discard zero-length packets and packets smaller than an ACK
0832      * which are not PHY_ERROR (short radar pulses have a length of 3)
0833      */
0834     is_phyerr = rx_stats->rs_status & ATH9K_RXERR_PHY;
0835     if (!rx_stats->rs_datalen ||
0836         (rx_stats->rs_datalen < 10 && !is_phyerr)) {
0837         RX_STAT_INC(sc, rx_len_err);
0838         goto corrupt;
0839     }
0840 
0841     /*
0842      * rs_status follows rs_datalen so if rs_datalen is too large
0843      * we can take a hint that hardware corrupted it, so ignore
0844      * those frames.
0845      */
0846     if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) {
0847         RX_STAT_INC(sc, rx_len_err);
0848         goto corrupt;
0849     }
0850 
0851     /* Only use status info from the last fragment */
0852     if (rx_stats->rs_more)
0853         return 0;
0854 
0855     /*
0856      * Return immediately if the RX descriptor has been marked
0857      * as corrupt based on the various error bits.
0858      *
0859      * This is different from the other corrupt descriptor
0860      * condition handled above.
0861      */
0862     if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC)
0863         goto corrupt;
0864 
0865     hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len);
0866 
0867     ath9k_process_tsf(rx_stats, rx_status, tsf);
0868     ath_debug_stat_rx(sc, rx_stats);
0869 
0870     /*
0871      * Process PHY errors and return so that the packet
0872      * can be dropped.
0873      */
0874     if (rx_stats->rs_status & ATH9K_RXERR_PHY) {
0875         /*
0876          * DFS and spectral are mutually exclusive
0877          *
0878          * Since some chips use PHYERR_RADAR as indication for both, we
0879          * need to double check which feature is enabled to prevent
0880          * feeding spectral or dfs-detector with wrong frames.
0881          */
0882         if (hw->conf.radar_enabled) {
0883             ath9k_dfs_process_phyerr(sc, hdr, rx_stats,
0884                          rx_status->mactime);
0885         } else if (sc->spec_priv.spectral_mode != SPECTRAL_DISABLED &&
0886                ath_cmn_process_fft(&sc->spec_priv, hdr, rx_stats,
0887                            rx_status->mactime)) {
0888             RX_STAT_INC(sc, rx_spectral);
0889         }
0890         return -EINVAL;
0891     }
0892 
0893     /*
0894      * everything but the rate is checked here, the rate check is done
0895      * separately to avoid doing two lookups for a rate for each frame.
0896      */
0897     spin_lock_bh(&sc->chan_lock);
0898     if (!ath9k_cmn_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error,
0899                  sc->cur_chan->rxfilter)) {
0900         spin_unlock_bh(&sc->chan_lock);
0901         return -EINVAL;
0902     }
0903     spin_unlock_bh(&sc->chan_lock);
0904 
0905     if (ath_is_mybeacon(common, hdr)) {
0906         RX_STAT_INC(sc, rx_beacons);
0907         rx_stats->is_mybeacon = true;
0908     }
0909 
0910     /*
0911      * This shouldn't happen, but have a safety check anyway.
0912      */
0913     if (WARN_ON(!ah->curchan))
0914         return -EINVAL;
0915 
0916     if (ath9k_cmn_process_rate(common, hw, rx_stats, rx_status)) {
0917         /*
0918          * No valid hardware bitrate found -- we should not get here
0919          * because hardware has already validated this frame as OK.
0920          */
0921         ath_dbg(common, ANY, "unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
0922             rx_stats->rs_rate);
0923         RX_STAT_INC(sc, rx_rate_err);
0924         return -EINVAL;
0925     }
0926 
0927     if (ath9k_is_chanctx_enabled()) {
0928         if (rx_stats->is_mybeacon)
0929             ath_chanctx_beacon_recv_ev(sc,
0930                        ATH_CHANCTX_EVENT_BEACON_RECEIVED);
0931     }
0932 
0933     ath9k_cmn_process_rssi(common, hw, rx_stats, rx_status);
0934 
0935     rx_status->band = ah->curchan->chan->band;
0936     rx_status->freq = ah->curchan->chan->center_freq;
0937     rx_status->antenna = rx_stats->rs_antenna;
0938     rx_status->flag |= RX_FLAG_MACTIME_END;
0939 
0940 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
0941     if (ieee80211_is_data_present(hdr->frame_control) &&
0942         !ieee80211_is_qos_nullfunc(hdr->frame_control))
0943         sc->rx.num_pkts++;
0944 #endif
0945 
0946     return 0;
0947 
0948 corrupt:
0949     sc->rx.discard_next = rx_stats->rs_more;
0950     return -EINVAL;
0951 }
0952 
0953 /*
0954  * Run the LNA combining algorithm only in these cases:
0955  *
0956  * Standalone WLAN cards with both LNA/Antenna diversity
0957  * enabled in the EEPROM.
0958  *
0959  * WLAN+BT cards which are in the supported card list
0960  * in ath_pci_id_table and the user has loaded the
0961  * driver with "bt_ant_diversity" set to true.
0962  */
0963 static void ath9k_antenna_check(struct ath_softc *sc,
0964                 struct ath_rx_status *rs)
0965 {
0966     struct ath_hw *ah = sc->sc_ah;
0967     struct ath9k_hw_capabilities *pCap = &ah->caps;
0968     struct ath_common *common = ath9k_hw_common(ah);
0969 
0970     if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB))
0971         return;
0972 
0973     /*
0974      * Change the default rx antenna if rx diversity
0975      * chooses the other antenna 3 times in a row.
0976      */
0977     if (sc->rx.defant != rs->rs_antenna) {
0978         if (++sc->rx.rxotherant >= 3)
0979             ath_setdefantenna(sc, rs->rs_antenna);
0980     } else {
0981         sc->rx.rxotherant = 0;
0982     }
0983 
0984     if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) {
0985         if (common->bt_ant_diversity)
0986             ath_ant_comb_scan(sc, rs);
0987     } else {
0988         ath_ant_comb_scan(sc, rs);
0989     }
0990 }
0991 
0992 static void ath9k_apply_ampdu_details(struct ath_softc *sc,
0993     struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
0994 {
0995     if (rs->rs_isaggr) {
0996         rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
0997 
0998         rxs->ampdu_reference = sc->rx.ampdu_ref;
0999 
1000         if (!rs->rs_moreaggr) {
1001             rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
1002             sc->rx.ampdu_ref++;
1003         }
1004 
1005         if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
1006             rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
1007     }
1008 }
1009 
1010 static void ath_rx_count_airtime(struct ath_softc *sc,
1011                  struct ath_rx_status *rs,
1012                  struct sk_buff *skb)
1013 {
1014     struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1015     struct ath_hw *ah = sc->sc_ah;
1016     struct ath_common *common = ath9k_hw_common(ah);
1017     struct ieee80211_sta *sta;
1018     struct ieee80211_rx_status *rxs;
1019     const struct ieee80211_rate *rate;
1020     bool is_sgi, is_40, is_sp;
1021     int phy;
1022     u16 len = rs->rs_datalen;
1023     u32 airtime = 0;
1024     u8 tidno;
1025 
1026     if (!ieee80211_is_data(hdr->frame_control))
1027         return;
1028 
1029     rcu_read_lock();
1030 
1031     sta = ieee80211_find_sta_by_ifaddr(sc->hw, hdr->addr2, NULL);
1032     if (!sta)
1033         goto exit;
1034     tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
1035 
1036     rxs = IEEE80211_SKB_RXCB(skb);
1037 
1038     is_sgi = !!(rxs->enc_flags & RX_ENC_FLAG_SHORT_GI);
1039     is_40 = !!(rxs->bw == RATE_INFO_BW_40);
1040     is_sp = !!(rxs->enc_flags & RX_ENC_FLAG_SHORTPRE);
1041 
1042     if (!!(rxs->encoding == RX_ENC_HT)) {
1043         /* MCS rates */
1044 
1045         airtime += ath_pkt_duration(sc, rxs->rate_idx, len,
1046                     is_40, is_sgi, is_sp);
1047     } else {
1048 
1049         phy = IS_CCK_RATE(rs->rs_rate) ? WLAN_RC_PHY_CCK : WLAN_RC_PHY_OFDM;
1050         rate = &common->sbands[rxs->band].bitrates[rxs->rate_idx];
1051         airtime += ath9k_hw_computetxtime(ah, phy, rate->bitrate * 100,
1052                         len, rxs->rate_idx, is_sp);
1053     }
1054 
1055     ieee80211_sta_register_airtime(sta, tidno, 0, airtime);
1056 exit:
1057     rcu_read_unlock();
1058 }
1059 
1060 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
1061 {
1062     struct ath_rxbuf *bf;
1063     struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
1064     struct ieee80211_rx_status *rxs;
1065     struct ath_hw *ah = sc->sc_ah;
1066     struct ath_common *common = ath9k_hw_common(ah);
1067     struct ieee80211_hw *hw = sc->hw;
1068     int retval;
1069     struct ath_rx_status rs;
1070     enum ath9k_rx_qtype qtype;
1071     bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1072     int dma_type;
1073     u64 tsf = 0;
1074     unsigned long flags;
1075     dma_addr_t new_buf_addr;
1076     unsigned int budget = 512;
1077     struct ieee80211_hdr *hdr;
1078 
1079     if (edma)
1080         dma_type = DMA_BIDIRECTIONAL;
1081     else
1082         dma_type = DMA_FROM_DEVICE;
1083 
1084     qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1085 
1086     tsf = ath9k_hw_gettsf64(ah);
1087 
1088     do {
1089         bool decrypt_error = false;
1090 
1091         memset(&rs, 0, sizeof(rs));
1092         if (edma)
1093             bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1094         else
1095             bf = ath_get_next_rx_buf(sc, &rs);
1096 
1097         if (!bf)
1098             break;
1099 
1100         skb = bf->bf_mpdu;
1101         if (!skb)
1102             continue;
1103 
1104         /*
1105          * Take frame header from the first fragment and RX status from
1106          * the last one.
1107          */
1108         if (sc->rx.frag)
1109             hdr_skb = sc->rx.frag;
1110         else
1111             hdr_skb = skb;
1112 
1113         rxs = IEEE80211_SKB_RXCB(hdr_skb);
1114         memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1115 
1116         retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs,
1117                          &decrypt_error, tsf);
1118         if (retval)
1119             goto requeue_drop_frag;
1120 
1121         /* Ensure we always have an skb to requeue once we are done
1122          * processing the current buffer's skb */
1123         requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1124 
1125         /* If there is no memory we ignore the current RX'd frame,
1126          * tell hardware it can give us a new frame using the old
1127          * skb and put it at the tail of the sc->rx.rxbuf list for
1128          * processing. */
1129         if (!requeue_skb) {
1130             RX_STAT_INC(sc, rx_oom_err);
1131             goto requeue_drop_frag;
1132         }
1133 
1134         /* We will now give hardware our shiny new allocated skb */
1135         new_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1136                           common->rx_bufsize, dma_type);
1137         if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) {
1138             dev_kfree_skb_any(requeue_skb);
1139             goto requeue_drop_frag;
1140         }
1141 
1142         /* Unmap the frame */
1143         dma_unmap_single(sc->dev, bf->bf_buf_addr,
1144                  common->rx_bufsize, dma_type);
1145 
1146         bf->bf_mpdu = requeue_skb;
1147         bf->bf_buf_addr = new_buf_addr;
1148 
1149         skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1150         if (ah->caps.rx_status_len)
1151             skb_pull(skb, ah->caps.rx_status_len);
1152 
1153         if (!rs.rs_more)
1154             ath9k_cmn_rx_skb_postprocess(common, hdr_skb, &rs,
1155                              rxs, decrypt_error);
1156 
1157         if (rs.rs_more) {
1158             RX_STAT_INC(sc, rx_frags);
1159             /*
1160              * rs_more indicates chained descriptors which can be
1161              * used to link buffers together for a sort of
1162              * scatter-gather operation.
1163              */
1164             if (sc->rx.frag) {
1165                 /* too many fragments - cannot handle frame */
1166                 dev_kfree_skb_any(sc->rx.frag);
1167                 dev_kfree_skb_any(skb);
1168                 RX_STAT_INC(sc, rx_too_many_frags_err);
1169                 skb = NULL;
1170             }
1171             sc->rx.frag = skb;
1172             goto requeue;
1173         }
1174 
1175         if (sc->rx.frag) {
1176             int space = skb->len - skb_tailroom(hdr_skb);
1177 
1178             if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1179                 dev_kfree_skb(skb);
1180                 RX_STAT_INC(sc, rx_oom_err);
1181                 goto requeue_drop_frag;
1182             }
1183 
1184             sc->rx.frag = NULL;
1185 
1186             skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1187                           skb->len);
1188             dev_kfree_skb_any(skb);
1189             skb = hdr_skb;
1190         }
1191 
1192         if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1193             skb_trim(skb, skb->len - 8);
1194 
1195         spin_lock_irqsave(&sc->sc_pm_lock, flags);
1196         if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1197                      PS_WAIT_FOR_CAB |
1198                      PS_WAIT_FOR_PSPOLL_DATA)) ||
1199             ath9k_check_auto_sleep(sc))
1200             ath_rx_ps(sc, skb, rs.is_mybeacon);
1201         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1202 
1203         ath9k_antenna_check(sc, &rs);
1204         ath9k_apply_ampdu_details(sc, &rs, rxs);
1205         ath_debug_rate_stats(sc, &rs, skb);
1206         ath_rx_count_airtime(sc, &rs, skb);
1207 
1208         hdr = (struct ieee80211_hdr *)skb->data;
1209         if (ieee80211_is_ack(hdr->frame_control))
1210             ath_dynack_sample_ack_ts(sc->sc_ah, skb, rs.rs_tstamp);
1211 
1212         ieee80211_rx(hw, skb);
1213 
1214 requeue_drop_frag:
1215         if (sc->rx.frag) {
1216             dev_kfree_skb_any(sc->rx.frag);
1217             sc->rx.frag = NULL;
1218         }
1219 requeue:
1220         list_add_tail(&bf->list, &sc->rx.rxbuf);
1221 
1222         if (!edma) {
1223             ath_rx_buf_relink(sc, bf, flush);
1224             if (!flush)
1225                 ath9k_hw_rxena(ah);
1226         } else if (!flush) {
1227             ath_rx_edma_buf_link(sc, qtype);
1228         }
1229 
1230         if (!budget--)
1231             break;
1232     } while (1);
1233 
1234     if (!(ah->imask & ATH9K_INT_RXEOL)) {
1235         ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1236         ath9k_hw_set_interrupts(ah);
1237     }
1238 
1239     return 0;
1240 }