Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright (c) 2008-2011 Atheros Communications Inc.
0003  *
0004  * Permission to use, copy, modify, and/or distribute this software for any
0005  * purpose with or without fee is hereby granted, provided that the above
0006  * copyright notice and this permission notice appear in all copies.
0007  *
0008  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
0009  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
0010  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
0011  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
0012  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
0013  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
0014  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
0015  */
0016 
0017 #include <linux/io.h>
0018 #include <linux/slab.h>
0019 #include <linux/module.h>
0020 #include <linux/time.h>
0021 #include <linux/bitops.h>
0022 #include <linux/etherdevice.h>
0023 #include <linux/gpio.h>
0024 #include <asm/unaligned.h>
0025 
0026 #include "hw.h"
0027 #include "hw-ops.h"
0028 #include "ar9003_mac.h"
0029 #include "ar9003_mci.h"
0030 #include "ar9003_phy.h"
0031 #include "ath9k.h"
0032 
0033 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
0034 
0035 MODULE_AUTHOR("Atheros Communications");
0036 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
0037 MODULE_LICENSE("Dual BSD/GPL");
0038 
0039 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
0040 {
0041     struct ath_common *common = ath9k_hw_common(ah);
0042     struct ath9k_channel *chan = ah->curchan;
0043     unsigned int clockrate;
0044 
0045     /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
0046     if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
0047         clockrate = 117;
0048     else if (!chan) /* should really check for CCK instead */
0049         clockrate = ATH9K_CLOCK_RATE_CCK;
0050     else if (IS_CHAN_2GHZ(chan))
0051         clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
0052     else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
0053         clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
0054     else
0055         clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
0056 
0057     if (chan) {
0058         if (IS_CHAN_HT40(chan))
0059             clockrate *= 2;
0060         if (IS_CHAN_HALF_RATE(chan))
0061             clockrate /= 2;
0062         if (IS_CHAN_QUARTER_RATE(chan))
0063             clockrate /= 4;
0064     }
0065 
0066     common->clockrate = clockrate;
0067 }
0068 
0069 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
0070 {
0071     struct ath_common *common = ath9k_hw_common(ah);
0072 
0073     return usecs * common->clockrate;
0074 }
0075 
0076 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
0077 {
0078     int i;
0079 
0080     BUG_ON(timeout < AH_TIME_QUANTUM);
0081 
0082     for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
0083         if ((REG_READ(ah, reg) & mask) == val)
0084             return true;
0085 
0086         udelay(AH_TIME_QUANTUM);
0087     }
0088 
0089     ath_dbg(ath9k_hw_common(ah), ANY,
0090         "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
0091         timeout, reg, REG_READ(ah, reg), mask, val);
0092 
0093     return false;
0094 }
0095 EXPORT_SYMBOL(ath9k_hw_wait);
0096 
0097 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
0098               int hw_delay)
0099 {
0100     hw_delay /= 10;
0101 
0102     if (IS_CHAN_HALF_RATE(chan))
0103         hw_delay *= 2;
0104     else if (IS_CHAN_QUARTER_RATE(chan))
0105         hw_delay *= 4;
0106 
0107     udelay(hw_delay + BASE_ACTIVATE_DELAY);
0108 }
0109 
0110 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
0111               int column, unsigned int *writecnt)
0112 {
0113     int r;
0114 
0115     ENABLE_REGWRITE_BUFFER(ah);
0116     for (r = 0; r < array->ia_rows; r++) {
0117         REG_WRITE(ah, INI_RA(array, r, 0),
0118               INI_RA(array, r, column));
0119         DO_DELAY(*writecnt);
0120     }
0121     REGWRITE_BUFFER_FLUSH(ah);
0122 }
0123 
0124 void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
0125 {
0126     u32 *tmp_reg_list, *tmp_data;
0127     int i;
0128 
0129     tmp_reg_list = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
0130     if (!tmp_reg_list) {
0131         dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
0132         return;
0133     }
0134 
0135     tmp_data = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
0136     if (!tmp_data) {
0137         dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
0138         goto error_tmp_data;
0139     }
0140 
0141     for (i = 0; i < size; i++)
0142         tmp_reg_list[i] = array[i][0];
0143 
0144     REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
0145 
0146     for (i = 0; i < size; i++)
0147         array[i][1] = tmp_data[i];
0148 
0149     kfree(tmp_data);
0150 error_tmp_data:
0151     kfree(tmp_reg_list);
0152 }
0153 
0154 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
0155 {
0156     u32 retval;
0157     int i;
0158 
0159     for (i = 0, retval = 0; i < n; i++) {
0160         retval = (retval << 1) | (val & 1);
0161         val >>= 1;
0162     }
0163     return retval;
0164 }
0165 
0166 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
0167                u8 phy, int kbps,
0168                u32 frameLen, u16 rateix,
0169                bool shortPreamble)
0170 {
0171     u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
0172 
0173     if (kbps == 0)
0174         return 0;
0175 
0176     switch (phy) {
0177     case WLAN_RC_PHY_CCK:
0178         phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
0179         if (shortPreamble)
0180             phyTime >>= 1;
0181         numBits = frameLen << 3;
0182         txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
0183         break;
0184     case WLAN_RC_PHY_OFDM:
0185         if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
0186             bitsPerSymbol =
0187                 ((kbps >> 2) * OFDM_SYMBOL_TIME_QUARTER) / 1000;
0188             numBits = OFDM_PLCP_BITS + (frameLen << 3);
0189             numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
0190             txTime = OFDM_SIFS_TIME_QUARTER
0191                 + OFDM_PREAMBLE_TIME_QUARTER
0192                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
0193         } else if (ah->curchan &&
0194                IS_CHAN_HALF_RATE(ah->curchan)) {
0195             bitsPerSymbol =
0196                 ((kbps >> 1) * OFDM_SYMBOL_TIME_HALF) / 1000;
0197             numBits = OFDM_PLCP_BITS + (frameLen << 3);
0198             numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
0199             txTime = OFDM_SIFS_TIME_HALF +
0200                 OFDM_PREAMBLE_TIME_HALF
0201                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
0202         } else {
0203             bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
0204             numBits = OFDM_PLCP_BITS + (frameLen << 3);
0205             numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
0206             txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
0207                 + (numSymbols * OFDM_SYMBOL_TIME);
0208         }
0209         break;
0210     default:
0211         ath_err(ath9k_hw_common(ah),
0212             "Unknown phy %u (rate ix %u)\n", phy, rateix);
0213         txTime = 0;
0214         break;
0215     }
0216 
0217     return txTime;
0218 }
0219 EXPORT_SYMBOL(ath9k_hw_computetxtime);
0220 
0221 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
0222                   struct ath9k_channel *chan,
0223                   struct chan_centers *centers)
0224 {
0225     int8_t extoff;
0226 
0227     if (!IS_CHAN_HT40(chan)) {
0228         centers->ctl_center = centers->ext_center =
0229             centers->synth_center = chan->channel;
0230         return;
0231     }
0232 
0233     if (IS_CHAN_HT40PLUS(chan)) {
0234         centers->synth_center =
0235             chan->channel + HT40_CHANNEL_CENTER_SHIFT;
0236         extoff = 1;
0237     } else {
0238         centers->synth_center =
0239             chan->channel - HT40_CHANNEL_CENTER_SHIFT;
0240         extoff = -1;
0241     }
0242 
0243     centers->ctl_center =
0244         centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
0245     /* 25 MHz spacing is supported by hw but not on upper layers */
0246     centers->ext_center =
0247         centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
0248 }
0249 
0250 /******************/
0251 /* Chip Revisions */
0252 /******************/
0253 
0254 static bool ath9k_hw_read_revisions(struct ath_hw *ah)
0255 {
0256     u32 srev;
0257     u32 val;
0258 
0259     if (ah->get_mac_revision)
0260         ah->hw_version.macRev = ah->get_mac_revision();
0261 
0262     switch (ah->hw_version.devid) {
0263     case AR5416_AR9100_DEVID:
0264         ah->hw_version.macVersion = AR_SREV_VERSION_9100;
0265         break;
0266     case AR9300_DEVID_AR9330:
0267         ah->hw_version.macVersion = AR_SREV_VERSION_9330;
0268         if (!ah->get_mac_revision) {
0269             val = REG_READ(ah, AR_SREV);
0270             ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
0271         }
0272         return true;
0273     case AR9300_DEVID_AR9340:
0274         ah->hw_version.macVersion = AR_SREV_VERSION_9340;
0275         return true;
0276     case AR9300_DEVID_QCA955X:
0277         ah->hw_version.macVersion = AR_SREV_VERSION_9550;
0278         return true;
0279     case AR9300_DEVID_AR953X:
0280         ah->hw_version.macVersion = AR_SREV_VERSION_9531;
0281         return true;
0282     case AR9300_DEVID_QCA956X:
0283         ah->hw_version.macVersion = AR_SREV_VERSION_9561;
0284         return true;
0285     }
0286 
0287     srev = REG_READ(ah, AR_SREV);
0288 
0289     if (srev == -1) {
0290         ath_err(ath9k_hw_common(ah),
0291             "Failed to read SREV register");
0292         return false;
0293     }
0294 
0295     val = srev & AR_SREV_ID;
0296 
0297     if (val == 0xFF) {
0298         val = srev;
0299         ah->hw_version.macVersion =
0300             (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
0301         ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
0302 
0303         if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
0304             ah->is_pciexpress = true;
0305         else
0306             ah->is_pciexpress = (val &
0307                          AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
0308     } else {
0309         if (!AR_SREV_9100(ah))
0310             ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
0311 
0312         ah->hw_version.macRev = val & AR_SREV_REVISION;
0313 
0314         if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
0315             ah->is_pciexpress = true;
0316     }
0317 
0318     return true;
0319 }
0320 
0321 /************************************/
0322 /* HW Attach, Detach, Init Routines */
0323 /************************************/
0324 
0325 static void ath9k_hw_disablepcie(struct ath_hw *ah)
0326 {
0327     if (!AR_SREV_5416(ah))
0328         return;
0329 
0330     REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
0331     REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
0332     REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
0333     REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
0334     REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
0335     REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
0336     REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
0337     REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
0338     REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
0339 
0340     REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
0341 }
0342 
0343 /* This should work for all families including legacy */
0344 static bool ath9k_hw_chip_test(struct ath_hw *ah)
0345 {
0346     struct ath_common *common = ath9k_hw_common(ah);
0347     u32 regAddr[2] = { AR_STA_ID0 };
0348     u32 regHold[2];
0349     static const u32 patternData[4] = {
0350         0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
0351     };
0352     int i, j, loop_max;
0353 
0354     if (!AR_SREV_9300_20_OR_LATER(ah)) {
0355         loop_max = 2;
0356         regAddr[1] = AR_PHY_BASE + (8 << 2);
0357     } else
0358         loop_max = 1;
0359 
0360     for (i = 0; i < loop_max; i++) {
0361         u32 addr = regAddr[i];
0362         u32 wrData, rdData;
0363 
0364         regHold[i] = REG_READ(ah, addr);
0365         for (j = 0; j < 0x100; j++) {
0366             wrData = (j << 16) | j;
0367             REG_WRITE(ah, addr, wrData);
0368             rdData = REG_READ(ah, addr);
0369             if (rdData != wrData) {
0370                 ath_err(common,
0371                     "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
0372                     addr, wrData, rdData);
0373                 return false;
0374             }
0375         }
0376         for (j = 0; j < 4; j++) {
0377             wrData = patternData[j];
0378             REG_WRITE(ah, addr, wrData);
0379             rdData = REG_READ(ah, addr);
0380             if (wrData != rdData) {
0381                 ath_err(common,
0382                     "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
0383                     addr, wrData, rdData);
0384                 return false;
0385             }
0386         }
0387         REG_WRITE(ah, regAddr[i], regHold[i]);
0388     }
0389     udelay(100);
0390 
0391     return true;
0392 }
0393 
0394 static void ath9k_hw_init_config(struct ath_hw *ah)
0395 {
0396     struct ath_common *common = ath9k_hw_common(ah);
0397 
0398     ah->config.dma_beacon_response_time = 1;
0399     ah->config.sw_beacon_response_time = 6;
0400     ah->config.cwm_ignore_extcca = false;
0401     ah->config.analog_shiftreg = 1;
0402 
0403     ah->config.rx_intr_mitigation = true;
0404 
0405     if (AR_SREV_9300_20_OR_LATER(ah)) {
0406         ah->config.rimt_last = 500;
0407         ah->config.rimt_first = 2000;
0408     } else {
0409         ah->config.rimt_last = 250;
0410         ah->config.rimt_first = 700;
0411     }
0412 
0413     if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
0414         ah->config.pll_pwrsave = 7;
0415 
0416     /*
0417      * We need this for PCI devices only (Cardbus, PCI, miniPCI)
0418      * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
0419      * This means we use it for all AR5416 devices, and the few
0420      * minor PCI AR9280 devices out there.
0421      *
0422      * Serialization is required because these devices do not handle
0423      * well the case of two concurrent reads/writes due to the latency
0424      * involved. During one read/write another read/write can be issued
0425      * on another CPU while the previous read/write may still be working
0426      * on our hardware, if we hit this case the hardware poops in a loop.
0427      * We prevent this by serializing reads and writes.
0428      *
0429      * This issue is not present on PCI-Express devices or pre-AR5416
0430      * devices (legacy, 802.11abg).
0431      */
0432     if (num_possible_cpus() > 1)
0433         ah->config.serialize_regmode = SER_REG_MODE_AUTO;
0434 
0435     if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
0436         if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
0437             ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
0438              !ah->is_pciexpress)) {
0439             ah->config.serialize_regmode = SER_REG_MODE_ON;
0440         } else {
0441             ah->config.serialize_regmode = SER_REG_MODE_OFF;
0442         }
0443     }
0444 
0445     ath_dbg(common, RESET, "serialize_regmode is %d\n",
0446         ah->config.serialize_regmode);
0447 
0448     if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
0449         ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
0450     else
0451         ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
0452 }
0453 
0454 static void ath9k_hw_init_defaults(struct ath_hw *ah)
0455 {
0456     struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
0457 
0458     regulatory->country_code = CTRY_DEFAULT;
0459     regulatory->power_limit = MAX_COMBINED_POWER;
0460 
0461     ah->hw_version.magic = AR5416_MAGIC;
0462     ah->hw_version.subvendorid = 0;
0463 
0464     ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
0465                    AR_STA_ID1_MCAST_KSRCH;
0466     if (AR_SREV_9100(ah))
0467         ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
0468 
0469     ah->slottime = 9;
0470     ah->globaltxtimeout = (u32) -1;
0471     ah->power_mode = ATH9K_PM_UNDEFINED;
0472     ah->htc_reset_init = true;
0473 
0474     ah->tpc_enabled = false;
0475 
0476     ah->ani_function = ATH9K_ANI_ALL;
0477     if (!AR_SREV_9300_20_OR_LATER(ah))
0478         ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
0479 
0480     if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
0481         ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
0482     else
0483         ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
0484 }
0485 
0486 static void ath9k_hw_init_macaddr(struct ath_hw *ah)
0487 {
0488     struct ath_common *common = ath9k_hw_common(ah);
0489     int i;
0490     u16 eeval;
0491     static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
0492 
0493     /* MAC address may already be loaded via ath9k_platform_data */
0494     if (is_valid_ether_addr(common->macaddr))
0495         return;
0496 
0497     for (i = 0; i < 3; i++) {
0498         eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
0499         common->macaddr[2 * i] = eeval >> 8;
0500         common->macaddr[2 * i + 1] = eeval & 0xff;
0501     }
0502 
0503     if (is_valid_ether_addr(common->macaddr))
0504         return;
0505 
0506     ath_err(common, "eeprom contains invalid mac address: %pM\n",
0507         common->macaddr);
0508 
0509     eth_random_addr(common->macaddr);
0510     ath_err(common, "random mac address will be used: %pM\n",
0511         common->macaddr);
0512 
0513     return;
0514 }
0515 
0516 static int ath9k_hw_post_init(struct ath_hw *ah)
0517 {
0518     struct ath_common *common = ath9k_hw_common(ah);
0519     int ecode;
0520 
0521     if (common->bus_ops->ath_bus_type != ATH_USB) {
0522         if (!ath9k_hw_chip_test(ah))
0523             return -ENODEV;
0524     }
0525 
0526     if (!AR_SREV_9300_20_OR_LATER(ah)) {
0527         ecode = ar9002_hw_rf_claim(ah);
0528         if (ecode != 0)
0529             return ecode;
0530     }
0531 
0532     ecode = ath9k_hw_eeprom_init(ah);
0533     if (ecode != 0)
0534         return ecode;
0535 
0536     ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
0537         ah->eep_ops->get_eeprom_ver(ah),
0538         ah->eep_ops->get_eeprom_rev(ah));
0539 
0540     ath9k_hw_ani_init(ah);
0541 
0542     /*
0543      * EEPROM needs to be initialized before we do this.
0544      * This is required for regulatory compliance.
0545      */
0546     if (AR_SREV_9300_20_OR_LATER(ah)) {
0547         u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
0548         if ((regdmn & 0xF0) == CTL_FCC) {
0549             ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
0550             ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
0551         }
0552     }
0553 
0554     return 0;
0555 }
0556 
0557 static int ath9k_hw_attach_ops(struct ath_hw *ah)
0558 {
0559     if (!AR_SREV_9300_20_OR_LATER(ah))
0560         return ar9002_hw_attach_ops(ah);
0561 
0562     ar9003_hw_attach_ops(ah);
0563     return 0;
0564 }
0565 
0566 /* Called for all hardware families */
0567 static int __ath9k_hw_init(struct ath_hw *ah)
0568 {
0569     struct ath_common *common = ath9k_hw_common(ah);
0570     int r = 0;
0571 
0572     if (!ath9k_hw_read_revisions(ah)) {
0573         ath_err(common, "Could not read hardware revisions");
0574         return -EOPNOTSUPP;
0575     }
0576 
0577     switch (ah->hw_version.macVersion) {
0578     case AR_SREV_VERSION_5416_PCI:
0579     case AR_SREV_VERSION_5416_PCIE:
0580     case AR_SREV_VERSION_9160:
0581     case AR_SREV_VERSION_9100:
0582     case AR_SREV_VERSION_9280:
0583     case AR_SREV_VERSION_9285:
0584     case AR_SREV_VERSION_9287:
0585     case AR_SREV_VERSION_9271:
0586     case AR_SREV_VERSION_9300:
0587     case AR_SREV_VERSION_9330:
0588     case AR_SREV_VERSION_9485:
0589     case AR_SREV_VERSION_9340:
0590     case AR_SREV_VERSION_9462:
0591     case AR_SREV_VERSION_9550:
0592     case AR_SREV_VERSION_9565:
0593     case AR_SREV_VERSION_9531:
0594     case AR_SREV_VERSION_9561:
0595         break;
0596     default:
0597         ath_err(common,
0598             "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
0599             ah->hw_version.macVersion, ah->hw_version.macRev);
0600         return -EOPNOTSUPP;
0601     }
0602 
0603     /*
0604      * Read back AR_WA into a permanent copy and set bits 14 and 17.
0605      * We need to do this to avoid RMW of this register. We cannot
0606      * read the reg when chip is asleep.
0607      */
0608     if (AR_SREV_9300_20_OR_LATER(ah)) {
0609         ah->WARegVal = REG_READ(ah, AR_WA);
0610         ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
0611                  AR_WA_ASPM_TIMER_BASED_DISABLE);
0612     }
0613 
0614     if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
0615         ath_err(common, "Couldn't reset chip\n");
0616         return -EIO;
0617     }
0618 
0619     if (AR_SREV_9565(ah)) {
0620         ah->WARegVal |= AR_WA_BIT22;
0621         REG_WRITE(ah, AR_WA, ah->WARegVal);
0622     }
0623 
0624     ath9k_hw_init_defaults(ah);
0625     ath9k_hw_init_config(ah);
0626 
0627     r = ath9k_hw_attach_ops(ah);
0628     if (r)
0629         return r;
0630 
0631     if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
0632         ath_err(common, "Couldn't wakeup chip\n");
0633         return -EIO;
0634     }
0635 
0636     if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
0637         AR_SREV_9330(ah) || AR_SREV_9550(ah))
0638         ah->is_pciexpress = false;
0639 
0640     ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
0641     ath9k_hw_init_cal_settings(ah);
0642 
0643     if (!ah->is_pciexpress)
0644         ath9k_hw_disablepcie(ah);
0645 
0646     r = ath9k_hw_post_init(ah);
0647     if (r)
0648         return r;
0649 
0650     ath9k_hw_init_mode_gain_regs(ah);
0651     r = ath9k_hw_fill_cap_info(ah);
0652     if (r)
0653         return r;
0654 
0655     ath9k_hw_init_macaddr(ah);
0656     ath9k_hw_init_hang_checks(ah);
0657 
0658     common->state = ATH_HW_INITIALIZED;
0659 
0660     return 0;
0661 }
0662 
0663 int ath9k_hw_init(struct ath_hw *ah)
0664 {
0665     int ret;
0666     struct ath_common *common = ath9k_hw_common(ah);
0667 
0668     /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
0669     switch (ah->hw_version.devid) {
0670     case AR5416_DEVID_PCI:
0671     case AR5416_DEVID_PCIE:
0672     case AR5416_AR9100_DEVID:
0673     case AR9160_DEVID_PCI:
0674     case AR9280_DEVID_PCI:
0675     case AR9280_DEVID_PCIE:
0676     case AR9285_DEVID_PCIE:
0677     case AR9287_DEVID_PCI:
0678     case AR9287_DEVID_PCIE:
0679     case AR2427_DEVID_PCIE:
0680     case AR9300_DEVID_PCIE:
0681     case AR9300_DEVID_AR9485_PCIE:
0682     case AR9300_DEVID_AR9330:
0683     case AR9300_DEVID_AR9340:
0684     case AR9300_DEVID_QCA955X:
0685     case AR9300_DEVID_AR9580:
0686     case AR9300_DEVID_AR9462:
0687     case AR9485_DEVID_AR1111:
0688     case AR9300_DEVID_AR9565:
0689     case AR9300_DEVID_AR953X:
0690     case AR9300_DEVID_QCA956X:
0691         break;
0692     default:
0693         if (common->bus_ops->ath_bus_type == ATH_USB)
0694             break;
0695         ath_err(common, "Hardware device ID 0x%04x not supported\n",
0696             ah->hw_version.devid);
0697         return -EOPNOTSUPP;
0698     }
0699 
0700     ret = __ath9k_hw_init(ah);
0701     if (ret) {
0702         ath_err(common,
0703             "Unable to initialize hardware; initialization status: %d\n",
0704             ret);
0705         return ret;
0706     }
0707 
0708     ath_dynack_init(ah);
0709 
0710     return 0;
0711 }
0712 EXPORT_SYMBOL(ath9k_hw_init);
0713 
0714 static void ath9k_hw_init_qos(struct ath_hw *ah)
0715 {
0716     ENABLE_REGWRITE_BUFFER(ah);
0717 
0718     REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
0719     REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
0720 
0721     REG_WRITE(ah, AR_QOS_NO_ACK,
0722           SM(2, AR_QOS_NO_ACK_TWO_BIT) |
0723           SM(5, AR_QOS_NO_ACK_BIT_OFF) |
0724           SM(0, AR_QOS_NO_ACK_BYTE_OFF));
0725 
0726     REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
0727     REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
0728     REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
0729     REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
0730     REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
0731 
0732     REGWRITE_BUFFER_FLUSH(ah);
0733 }
0734 
0735 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
0736 {
0737     struct ath_common *common = ath9k_hw_common(ah);
0738     int i = 0;
0739 
0740     REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
0741     udelay(100);
0742     REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
0743 
0744     while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
0745 
0746         udelay(100);
0747 
0748         if (WARN_ON_ONCE(i >= 100)) {
0749             ath_err(common, "PLL4 measurement not done\n");
0750             break;
0751         }
0752 
0753         i++;
0754     }
0755 
0756     return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
0757 }
0758 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
0759 
0760 static void ath9k_hw_init_pll(struct ath_hw *ah,
0761                   struct ath9k_channel *chan)
0762 {
0763     u32 pll;
0764 
0765     pll = ath9k_hw_compute_pll_control(ah, chan);
0766 
0767     if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
0768         /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
0769         REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
0770                   AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
0771         REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
0772                   AR_CH0_DPLL2_KD, 0x40);
0773         REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
0774                   AR_CH0_DPLL2_KI, 0x4);
0775 
0776         REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
0777                   AR_CH0_BB_DPLL1_REFDIV, 0x5);
0778         REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
0779                   AR_CH0_BB_DPLL1_NINI, 0x58);
0780         REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
0781                   AR_CH0_BB_DPLL1_NFRAC, 0x0);
0782 
0783         REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
0784                   AR_CH0_BB_DPLL2_OUTDIV, 0x1);
0785         REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
0786                   AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
0787         REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
0788                   AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
0789 
0790         /* program BB PLL phase_shift to 0x6 */
0791         REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
0792                   AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
0793 
0794         REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
0795                   AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
0796         udelay(1000);
0797     } else if (AR_SREV_9330(ah)) {
0798         u32 ddr_dpll2, pll_control2, kd;
0799 
0800         if (ah->is_clk_25mhz) {
0801             ddr_dpll2 = 0x18e82f01;
0802             pll_control2 = 0xe04a3d;
0803             kd = 0x1d;
0804         } else {
0805             ddr_dpll2 = 0x19e82f01;
0806             pll_control2 = 0x886666;
0807             kd = 0x3d;
0808         }
0809 
0810         /* program DDR PLL ki and kd value */
0811         REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
0812 
0813         /* program DDR PLL phase_shift */
0814         REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
0815                   AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
0816 
0817         REG_WRITE(ah, AR_RTC_PLL_CONTROL,
0818               pll | AR_RTC_9300_PLL_BYPASS);
0819         udelay(1000);
0820 
0821         /* program refdiv, nint, frac to RTC register */
0822         REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
0823 
0824         /* program BB PLL kd and ki value */
0825         REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
0826         REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
0827 
0828         /* program BB PLL phase_shift */
0829         REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
0830                   AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
0831     } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
0832            AR_SREV_9561(ah)) {
0833         u32 regval, pll2_divint, pll2_divfrac, refdiv;
0834 
0835         REG_WRITE(ah, AR_RTC_PLL_CONTROL,
0836               pll | AR_RTC_9300_SOC_PLL_BYPASS);
0837         udelay(1000);
0838 
0839         REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
0840         udelay(100);
0841 
0842         if (ah->is_clk_25mhz) {
0843             if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
0844                 pll2_divint = 0x1c;
0845                 pll2_divfrac = 0xa3d2;
0846                 refdiv = 1;
0847             } else {
0848                 pll2_divint = 0x54;
0849                 pll2_divfrac = 0x1eb85;
0850                 refdiv = 3;
0851             }
0852         } else {
0853             if (AR_SREV_9340(ah)) {
0854                 pll2_divint = 88;
0855                 pll2_divfrac = 0;
0856                 refdiv = 5;
0857             } else {
0858                 pll2_divint = 0x11;
0859                 pll2_divfrac = (AR_SREV_9531(ah) ||
0860                         AR_SREV_9561(ah)) ?
0861                         0x26665 : 0x26666;
0862                 refdiv = 1;
0863             }
0864         }
0865 
0866         regval = REG_READ(ah, AR_PHY_PLL_MODE);
0867         if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
0868             regval |= (0x1 << 22);
0869         else
0870             regval |= (0x1 << 16);
0871         REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
0872         udelay(100);
0873 
0874         REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
0875               (pll2_divint << 18) | pll2_divfrac);
0876         udelay(100);
0877 
0878         regval = REG_READ(ah, AR_PHY_PLL_MODE);
0879         if (AR_SREV_9340(ah))
0880             regval = (regval & 0x80071fff) |
0881                 (0x1 << 30) |
0882                 (0x1 << 13) |
0883                 (0x4 << 26) |
0884                 (0x18 << 19);
0885         else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
0886             regval = (regval & 0x01c00fff) |
0887                 (0x1 << 31) |
0888                 (0x2 << 29) |
0889                 (0xa << 25) |
0890                 (0x1 << 19);
0891 
0892             if (AR_SREV_9531(ah))
0893                 regval |= (0x6 << 12);
0894         } else
0895             regval = (regval & 0x80071fff) |
0896                 (0x3 << 30) |
0897                 (0x1 << 13) |
0898                 (0x4 << 26) |
0899                 (0x60 << 19);
0900         REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
0901 
0902         if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
0903             REG_WRITE(ah, AR_PHY_PLL_MODE,
0904                   REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
0905         else
0906             REG_WRITE(ah, AR_PHY_PLL_MODE,
0907                   REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
0908 
0909         udelay(1000);
0910     }
0911 
0912     if (AR_SREV_9565(ah))
0913         pll |= 0x40000;
0914     REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
0915 
0916     if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
0917         AR_SREV_9550(ah))
0918         udelay(1000);
0919 
0920     /* Switch the core clock for ar9271 to 117Mhz */
0921     if (AR_SREV_9271(ah)) {
0922         udelay(500);
0923         REG_WRITE(ah, 0x50040, 0x304);
0924     }
0925 
0926     udelay(RTC_PLL_SETTLE_DELAY);
0927 
0928     REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
0929 }
0930 
0931 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
0932                       enum nl80211_iftype opmode)
0933 {
0934     u32 sync_default = AR_INTR_SYNC_DEFAULT;
0935     u32 imr_reg = AR_IMR_TXERR |
0936         AR_IMR_TXURN |
0937         AR_IMR_RXERR |
0938         AR_IMR_RXORN |
0939         AR_IMR_BCNMISC;
0940     u32 msi_cfg = 0;
0941 
0942     if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
0943         AR_SREV_9561(ah))
0944         sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
0945 
0946     if (AR_SREV_9300_20_OR_LATER(ah)) {
0947         imr_reg |= AR_IMR_RXOK_HP;
0948         if (ah->config.rx_intr_mitigation) {
0949             imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
0950             msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
0951         } else {
0952             imr_reg |= AR_IMR_RXOK_LP;
0953             msi_cfg |= AR_INTCFG_MSI_RXOK;
0954         }
0955     } else {
0956         if (ah->config.rx_intr_mitigation) {
0957             imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
0958             msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
0959         } else {
0960             imr_reg |= AR_IMR_RXOK;
0961             msi_cfg |= AR_INTCFG_MSI_RXOK;
0962         }
0963     }
0964 
0965     if (ah->config.tx_intr_mitigation) {
0966         imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
0967         msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR;
0968     } else {
0969         imr_reg |= AR_IMR_TXOK;
0970         msi_cfg |= AR_INTCFG_MSI_TXOK;
0971     }
0972 
0973     ENABLE_REGWRITE_BUFFER(ah);
0974 
0975     REG_WRITE(ah, AR_IMR, imr_reg);
0976     ah->imrs2_reg |= AR_IMR_S2_GTT;
0977     REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
0978 
0979     if (ah->msi_enabled) {
0980         ah->msi_reg = REG_READ(ah, AR_PCIE_MSI);
0981         ah->msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN;
0982         ah->msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
0983         REG_WRITE(ah, AR_INTCFG, msi_cfg);
0984         ath_dbg(ath9k_hw_common(ah), ANY,
0985             "value of AR_INTCFG=0x%X, msi_cfg=0x%X\n",
0986             REG_READ(ah, AR_INTCFG), msi_cfg);
0987     }
0988 
0989     if (!AR_SREV_9100(ah)) {
0990         REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
0991         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
0992         REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
0993     }
0994 
0995     REGWRITE_BUFFER_FLUSH(ah);
0996 
0997     if (AR_SREV_9300_20_OR_LATER(ah)) {
0998         REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
0999         REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
1000         REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
1001         REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
1002     }
1003 }
1004 
1005 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
1006 {
1007     u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
1008     val = min(val, (u32) 0xFFFF);
1009     REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
1010 }
1011 
1012 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1013 {
1014     u32 val = ath9k_hw_mac_to_clks(ah, us);
1015     val = min(val, (u32) 0xFFFF);
1016     REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1017 }
1018 
1019 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1020 {
1021     u32 val = ath9k_hw_mac_to_clks(ah, us);
1022     val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1023     REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1024 }
1025 
1026 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1027 {
1028     u32 val = ath9k_hw_mac_to_clks(ah, us);
1029     val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1030     REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1031 }
1032 
1033 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1034 {
1035     if (tu > 0xFFFF) {
1036         ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1037             tu);
1038         ah->globaltxtimeout = (u32) -1;
1039         return false;
1040     } else {
1041         REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1042         ah->globaltxtimeout = tu;
1043         return true;
1044     }
1045 }
1046 
1047 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1048 {
1049     struct ath_common *common = ath9k_hw_common(ah);
1050     const struct ath9k_channel *chan = ah->curchan;
1051     int acktimeout, ctstimeout, ack_offset = 0;
1052     int slottime;
1053     int sifstime;
1054     int rx_lat = 0, tx_lat = 0, eifs = 0, ack_shift = 0;
1055     u32 reg;
1056 
1057     ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1058         ah->misc_mode);
1059 
1060     if (!chan)
1061         return;
1062 
1063     if (ah->misc_mode != 0)
1064         REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1065 
1066     if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1067         rx_lat = 41;
1068     else
1069         rx_lat = 37;
1070     tx_lat = 54;
1071 
1072     if (IS_CHAN_5GHZ(chan))
1073         sifstime = 16;
1074     else
1075         sifstime = 10;
1076 
1077     if (IS_CHAN_HALF_RATE(chan)) {
1078         eifs = 175;
1079         rx_lat *= 2;
1080         tx_lat *= 2;
1081         if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1082             tx_lat += 11;
1083 
1084         sifstime = 32;
1085         ack_offset = 16;
1086         ack_shift = 3;
1087         slottime = 13;
1088     } else if (IS_CHAN_QUARTER_RATE(chan)) {
1089         eifs = 340;
1090         rx_lat = (rx_lat * 4) - 1;
1091         tx_lat *= 4;
1092         if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1093             tx_lat += 22;
1094 
1095         sifstime = 64;
1096         ack_offset = 32;
1097         ack_shift = 1;
1098         slottime = 21;
1099     } else {
1100         if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1101             eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1102             reg = AR_USEC_ASYNC_FIFO;
1103         } else {
1104             eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1105                 common->clockrate;
1106             reg = REG_READ(ah, AR_USEC);
1107         }
1108         rx_lat = MS(reg, AR_USEC_RX_LAT);
1109         tx_lat = MS(reg, AR_USEC_TX_LAT);
1110 
1111         slottime = ah->slottime;
1112     }
1113 
1114     /* As defined by IEEE 802.11-2007 17.3.8.6 */
1115     slottime += 3 * ah->coverage_class;
1116     acktimeout = slottime + sifstime + ack_offset;
1117     ctstimeout = acktimeout;
1118 
1119     /*
1120      * Workaround for early ACK timeouts, add an offset to match the
1121      * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1122      * This was initially only meant to work around an issue with delayed
1123      * BA frames in some implementations, but it has been found to fix ACK
1124      * timeout issues in other cases as well.
1125      */
1126     if (IS_CHAN_2GHZ(chan) &&
1127         !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1128         acktimeout += 64 - sifstime - ah->slottime;
1129         ctstimeout += 48 - sifstime - ah->slottime;
1130     }
1131 
1132     if (ah->dynack.enabled) {
1133         acktimeout = ah->dynack.ackto;
1134         ctstimeout = acktimeout;
1135         slottime = (acktimeout - 3) / 2;
1136     } else {
1137         ah->dynack.ackto = acktimeout;
1138     }
1139 
1140     ath9k_hw_set_sifs_time(ah, sifstime);
1141     ath9k_hw_setslottime(ah, slottime);
1142     ath9k_hw_set_ack_timeout(ah, acktimeout);
1143     ath9k_hw_set_cts_timeout(ah, ctstimeout);
1144     if (ah->globaltxtimeout != (u32) -1)
1145         ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1146 
1147     REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1148     REG_RMW(ah, AR_USEC,
1149         (common->clockrate - 1) |
1150         SM(rx_lat, AR_USEC_RX_LAT) |
1151         SM(tx_lat, AR_USEC_TX_LAT),
1152         AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1153 
1154     if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
1155         REG_RMW(ah, AR_TXSIFS,
1156             sifstime | SM(ack_shift, AR_TXSIFS_ACK_SHIFT),
1157             (AR_TXSIFS_TIME | AR_TXSIFS_ACK_SHIFT));
1158 }
1159 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1160 
1161 void ath9k_hw_deinit(struct ath_hw *ah)
1162 {
1163     struct ath_common *common = ath9k_hw_common(ah);
1164 
1165     if (common->state < ATH_HW_INITIALIZED)
1166         return;
1167 
1168     ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1169 }
1170 EXPORT_SYMBOL(ath9k_hw_deinit);
1171 
1172 /*******/
1173 /* INI */
1174 /*******/
1175 
1176 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1177 {
1178     u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1179 
1180     if (IS_CHAN_2GHZ(chan))
1181         ctl |= CTL_11G;
1182     else
1183         ctl |= CTL_11A;
1184 
1185     return ctl;
1186 }
1187 
1188 /****************************************/
1189 /* Reset and Channel Switching Routines */
1190 /****************************************/
1191 
1192 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1193 {
1194     struct ath_common *common = ath9k_hw_common(ah);
1195     int txbuf_size;
1196 
1197     ENABLE_REGWRITE_BUFFER(ah);
1198 
1199     /*
1200      * set AHB_MODE not to do cacheline prefetches
1201     */
1202     if (!AR_SREV_9300_20_OR_LATER(ah))
1203         REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1204 
1205     /*
1206      * let mac dma reads be in 128 byte chunks
1207      */
1208     REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1209 
1210     REGWRITE_BUFFER_FLUSH(ah);
1211 
1212     /*
1213      * Restore TX Trigger Level to its pre-reset value.
1214      * The initial value depends on whether aggregation is enabled, and is
1215      * adjusted whenever underruns are detected.
1216      */
1217     if (!AR_SREV_9300_20_OR_LATER(ah))
1218         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1219 
1220     ENABLE_REGWRITE_BUFFER(ah);
1221 
1222     /*
1223      * let mac dma writes be in 128 byte chunks
1224      */
1225     REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1226 
1227     /*
1228      * Setup receive FIFO threshold to hold off TX activities
1229      */
1230     REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1231 
1232     if (AR_SREV_9300_20_OR_LATER(ah)) {
1233         REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1234         REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1235 
1236         ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1237             ah->caps.rx_status_len);
1238     }
1239 
1240     /*
1241      * reduce the number of usable entries in PCU TXBUF to avoid
1242      * wrap around issues.
1243      */
1244     if (AR_SREV_9285(ah)) {
1245         /* For AR9285 the number of Fifos are reduced to half.
1246          * So set the usable tx buf size also to half to
1247          * avoid data/delimiter underruns
1248          */
1249         txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1250     } else if (AR_SREV_9340_13_OR_LATER(ah)) {
1251         /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1252         txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1253     } else {
1254         txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1255     }
1256 
1257     if (!AR_SREV_9271(ah))
1258         REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1259 
1260     REGWRITE_BUFFER_FLUSH(ah);
1261 
1262     if (AR_SREV_9300_20_OR_LATER(ah))
1263         ath9k_hw_reset_txstatus_ring(ah);
1264 }
1265 
1266 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1267 {
1268     u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1269     u32 set = AR_STA_ID1_KSRCH_MODE;
1270 
1271     ENABLE_REG_RMW_BUFFER(ah);
1272     switch (opmode) {
1273     case NL80211_IFTYPE_ADHOC:
1274         if (!AR_SREV_9340_13(ah)) {
1275             set |= AR_STA_ID1_ADHOC;
1276             REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1277             break;
1278         }
1279         fallthrough;
1280     case NL80211_IFTYPE_OCB:
1281     case NL80211_IFTYPE_MESH_POINT:
1282     case NL80211_IFTYPE_AP:
1283         set |= AR_STA_ID1_STA_AP;
1284         fallthrough;
1285     case NL80211_IFTYPE_STATION:
1286         REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1287         break;
1288     default:
1289         if (!ah->is_monitoring)
1290             set = 0;
1291         break;
1292     }
1293     REG_RMW(ah, AR_STA_ID1, set, mask);
1294     REG_RMW_BUFFER_FLUSH(ah);
1295 }
1296 
1297 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1298                    u32 *coef_mantissa, u32 *coef_exponent)
1299 {
1300     u32 coef_exp, coef_man;
1301 
1302     for (coef_exp = 31; coef_exp > 0; coef_exp--)
1303         if ((coef_scaled >> coef_exp) & 0x1)
1304             break;
1305 
1306     coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1307 
1308     coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1309 
1310     *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1311     *coef_exponent = coef_exp - 16;
1312 }
1313 
1314 /* AR9330 WAR:
1315  * call external reset function to reset WMAC if:
1316  * - doing a cold reset
1317  * - we have pending frames in the TX queues.
1318  */
1319 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1320 {
1321     int i, npend = 0;
1322 
1323     for (i = 0; i < AR_NUM_QCU; i++) {
1324         npend = ath9k_hw_numtxpending(ah, i);
1325         if (npend)
1326             break;
1327     }
1328 
1329     if (ah->external_reset &&
1330         (npend || type == ATH9K_RESET_COLD)) {
1331         int reset_err = 0;
1332 
1333         ath_dbg(ath9k_hw_common(ah), RESET,
1334             "reset MAC via external reset\n");
1335 
1336         reset_err = ah->external_reset();
1337         if (reset_err) {
1338             ath_err(ath9k_hw_common(ah),
1339                 "External reset failed, err=%d\n",
1340                 reset_err);
1341             return false;
1342         }
1343 
1344         REG_WRITE(ah, AR_RTC_RESET, 1);
1345     }
1346 
1347     return true;
1348 }
1349 
1350 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1351 {
1352     u32 rst_flags;
1353     u32 tmpReg;
1354 
1355     if (AR_SREV_9100(ah)) {
1356         REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1357                   AR_RTC_DERIVED_CLK_PERIOD, 1);
1358         (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1359     }
1360 
1361     ENABLE_REGWRITE_BUFFER(ah);
1362 
1363     if (AR_SREV_9300_20_OR_LATER(ah)) {
1364         REG_WRITE(ah, AR_WA, ah->WARegVal);
1365         udelay(10);
1366     }
1367 
1368     REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1369           AR_RTC_FORCE_WAKE_ON_INT);
1370 
1371     if (AR_SREV_9100(ah)) {
1372         rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1373             AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1374     } else {
1375         tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1376         if (AR_SREV_9340(ah))
1377             tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1378         else
1379             tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1380                   AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1381 
1382         if (tmpReg) {
1383             u32 val;
1384             REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1385 
1386             val = AR_RC_HOSTIF;
1387             if (!AR_SREV_9300_20_OR_LATER(ah))
1388                 val |= AR_RC_AHB;
1389             REG_WRITE(ah, AR_RC, val);
1390 
1391         } else if (!AR_SREV_9300_20_OR_LATER(ah))
1392             REG_WRITE(ah, AR_RC, AR_RC_AHB);
1393 
1394         rst_flags = AR_RTC_RC_MAC_WARM;
1395         if (type == ATH9K_RESET_COLD)
1396             rst_flags |= AR_RTC_RC_MAC_COLD;
1397     }
1398 
1399     if (AR_SREV_9330(ah)) {
1400         if (!ath9k_hw_ar9330_reset_war(ah, type))
1401             return false;
1402     }
1403 
1404     if (ath9k_hw_mci_is_enabled(ah))
1405         ar9003_mci_check_gpm_offset(ah);
1406 
1407     /* DMA HALT added to resolve ar9300 and ar9580 bus error during
1408      * RTC_RC reg read
1409      */
1410     if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1411         REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1412         ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1413                   20 * AH_WAIT_TIMEOUT);
1414         REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1415     }
1416 
1417     REG_WRITE(ah, AR_RTC_RC, rst_flags);
1418 
1419     REGWRITE_BUFFER_FLUSH(ah);
1420 
1421     if (AR_SREV_9300_20_OR_LATER(ah))
1422         udelay(50);
1423     else if (AR_SREV_9100(ah))
1424         mdelay(10);
1425     else
1426         udelay(100);
1427 
1428     REG_WRITE(ah, AR_RTC_RC, 0);
1429     if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1430         ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1431         return false;
1432     }
1433 
1434     if (!AR_SREV_9100(ah))
1435         REG_WRITE(ah, AR_RC, 0);
1436 
1437     if (AR_SREV_9100(ah))
1438         udelay(50);
1439 
1440     return true;
1441 }
1442 
1443 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1444 {
1445     ENABLE_REGWRITE_BUFFER(ah);
1446 
1447     if (AR_SREV_9300_20_OR_LATER(ah)) {
1448         REG_WRITE(ah, AR_WA, ah->WARegVal);
1449         udelay(10);
1450     }
1451 
1452     REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1453           AR_RTC_FORCE_WAKE_ON_INT);
1454 
1455     if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1456         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1457 
1458     REG_WRITE(ah, AR_RTC_RESET, 0);
1459 
1460     REGWRITE_BUFFER_FLUSH(ah);
1461 
1462     udelay(2);
1463 
1464     if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1465         REG_WRITE(ah, AR_RC, 0);
1466 
1467     REG_WRITE(ah, AR_RTC_RESET, 1);
1468 
1469     if (!ath9k_hw_wait(ah,
1470                AR_RTC_STATUS,
1471                AR_RTC_STATUS_M,
1472                AR_RTC_STATUS_ON,
1473                AH_WAIT_TIMEOUT)) {
1474         ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1475         return false;
1476     }
1477 
1478     return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1479 }
1480 
1481 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1482 {
1483     bool ret = false;
1484 
1485     if (AR_SREV_9300_20_OR_LATER(ah)) {
1486         REG_WRITE(ah, AR_WA, ah->WARegVal);
1487         udelay(10);
1488     }
1489 
1490     REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1491           AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1492 
1493     if (!ah->reset_power_on)
1494         type = ATH9K_RESET_POWER_ON;
1495 
1496     switch (type) {
1497     case ATH9K_RESET_POWER_ON:
1498         ret = ath9k_hw_set_reset_power_on(ah);
1499         if (ret)
1500             ah->reset_power_on = true;
1501         break;
1502     case ATH9K_RESET_WARM:
1503     case ATH9K_RESET_COLD:
1504         ret = ath9k_hw_set_reset(ah, type);
1505         break;
1506     default:
1507         break;
1508     }
1509 
1510     return ret;
1511 }
1512 
1513 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1514                 struct ath9k_channel *chan)
1515 {
1516     int reset_type = ATH9K_RESET_WARM;
1517 
1518     if (AR_SREV_9280(ah)) {
1519         if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1520             reset_type = ATH9K_RESET_POWER_ON;
1521         else
1522             reset_type = ATH9K_RESET_COLD;
1523     } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1524            (REG_READ(ah, AR_CR) & AR_CR_RXE))
1525         reset_type = ATH9K_RESET_COLD;
1526 
1527     if (!ath9k_hw_set_reset_reg(ah, reset_type))
1528         return false;
1529 
1530     if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1531         return false;
1532 
1533     ah->chip_fullsleep = false;
1534 
1535     if (AR_SREV_9330(ah))
1536         ar9003_hw_internal_regulator_apply(ah);
1537     ath9k_hw_init_pll(ah, chan);
1538 
1539     return true;
1540 }
1541 
1542 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1543                     struct ath9k_channel *chan)
1544 {
1545     struct ath_common *common = ath9k_hw_common(ah);
1546     struct ath9k_hw_capabilities *pCap = &ah->caps;
1547     bool band_switch = false, mode_diff = false;
1548     u8 ini_reloaded = 0;
1549     u32 qnum;
1550     int r;
1551 
1552     if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1553         u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1554         band_switch = !!(flags_diff & CHANNEL_5GHZ);
1555         mode_diff = !!(flags_diff & ~CHANNEL_HT);
1556     }
1557 
1558     for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1559         if (ath9k_hw_numtxpending(ah, qnum)) {
1560             ath_dbg(common, QUEUE,
1561                 "Transmit frames pending on queue %d\n", qnum);
1562             return false;
1563         }
1564     }
1565 
1566     if (!ath9k_hw_rfbus_req(ah)) {
1567         ath_err(common, "Could not kill baseband RX\n");
1568         return false;
1569     }
1570 
1571     if (band_switch || mode_diff) {
1572         ath9k_hw_mark_phy_inactive(ah);
1573         udelay(5);
1574 
1575         if (band_switch)
1576             ath9k_hw_init_pll(ah, chan);
1577 
1578         if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1579             ath_err(common, "Failed to do fast channel change\n");
1580             return false;
1581         }
1582     }
1583 
1584     ath9k_hw_set_channel_regs(ah, chan);
1585 
1586     r = ath9k_hw_rf_set_freq(ah, chan);
1587     if (r) {
1588         ath_err(common, "Failed to set channel\n");
1589         return false;
1590     }
1591     ath9k_hw_set_clockrate(ah);
1592     ath9k_hw_apply_txpower(ah, chan, false);
1593 
1594     ath9k_hw_set_delta_slope(ah, chan);
1595     ath9k_hw_spur_mitigate_freq(ah, chan);
1596 
1597     if (band_switch || ini_reloaded)
1598         ah->eep_ops->set_board_values(ah, chan);
1599 
1600     ath9k_hw_init_bb(ah, chan);
1601     ath9k_hw_rfbus_done(ah);
1602 
1603     if (band_switch || ini_reloaded) {
1604         ah->ah_flags |= AH_FASTCC;
1605         ath9k_hw_init_cal(ah, chan);
1606         ah->ah_flags &= ~AH_FASTCC;
1607     }
1608 
1609     return true;
1610 }
1611 
1612 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1613 {
1614     u32 gpio_mask = ah->gpio_mask;
1615     int i;
1616 
1617     for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1618         if (!(gpio_mask & 1))
1619             continue;
1620 
1621         ath9k_hw_gpio_request_out(ah, i, NULL,
1622                       AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1623         ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1624     }
1625 }
1626 
1627 void ath9k_hw_check_nav(struct ath_hw *ah)
1628 {
1629     struct ath_common *common = ath9k_hw_common(ah);
1630     u32 val;
1631 
1632     val = REG_READ(ah, AR_NAV);
1633     if (val != 0xdeadbeef && val > 0x7fff) {
1634         ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1635         REG_WRITE(ah, AR_NAV, 0);
1636     }
1637 }
1638 EXPORT_SYMBOL(ath9k_hw_check_nav);
1639 
1640 bool ath9k_hw_check_alive(struct ath_hw *ah)
1641 {
1642     int count = 50;
1643     u32 reg, last_val;
1644 
1645     /* Check if chip failed to wake up */
1646     if (REG_READ(ah, AR_CFG) == 0xdeadbeef)
1647         return false;
1648 
1649     if (AR_SREV_9300(ah))
1650         return !ath9k_hw_detect_mac_hang(ah);
1651 
1652     if (AR_SREV_9285_12_OR_LATER(ah))
1653         return true;
1654 
1655     last_val = REG_READ(ah, AR_OBS_BUS_1);
1656     do {
1657         reg = REG_READ(ah, AR_OBS_BUS_1);
1658         if (reg != last_val)
1659             return true;
1660 
1661         udelay(1);
1662         last_val = reg;
1663         if ((reg & 0x7E7FFFEF) == 0x00702400)
1664             continue;
1665 
1666         switch (reg & 0x7E000B00) {
1667         case 0x1E000000:
1668         case 0x52000B00:
1669         case 0x18000B00:
1670             continue;
1671         default:
1672             return true;
1673         }
1674     } while (count-- > 0);
1675 
1676     return false;
1677 }
1678 EXPORT_SYMBOL(ath9k_hw_check_alive);
1679 
1680 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1681 {
1682     /* Setup MFP options for CCMP */
1683     if (AR_SREV_9280_20_OR_LATER(ah)) {
1684         /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1685          * frames when constructing CCMP AAD. */
1686         REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1687                   0xc7ff);
1688         if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1689             ah->sw_mgmt_crypto_tx = true;
1690         else
1691             ah->sw_mgmt_crypto_tx = false;
1692         ah->sw_mgmt_crypto_rx = false;
1693     } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1694         /* Disable hardware crypto for management frames */
1695         REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1696                 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1697         REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1698                 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1699         ah->sw_mgmt_crypto_tx = true;
1700         ah->sw_mgmt_crypto_rx = true;
1701     } else {
1702         ah->sw_mgmt_crypto_tx = true;
1703         ah->sw_mgmt_crypto_rx = true;
1704     }
1705 }
1706 
1707 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1708                   u32 macStaId1, u32 saveDefAntenna)
1709 {
1710     struct ath_common *common = ath9k_hw_common(ah);
1711 
1712     ENABLE_REGWRITE_BUFFER(ah);
1713 
1714     REG_RMW(ah, AR_STA_ID1, macStaId1
1715           | AR_STA_ID1_RTS_USE_DEF
1716           | ah->sta_id1_defaults,
1717           ~AR_STA_ID1_SADH_MASK);
1718     ath_hw_setbssidmask(common);
1719     REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1720     ath9k_hw_write_associd(ah);
1721     REG_WRITE(ah, AR_ISR, ~0);
1722     REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1723 
1724     REGWRITE_BUFFER_FLUSH(ah);
1725 
1726     ath9k_hw_set_operating_mode(ah, ah->opmode);
1727 }
1728 
1729 static void ath9k_hw_init_queues(struct ath_hw *ah)
1730 {
1731     int i;
1732 
1733     ENABLE_REGWRITE_BUFFER(ah);
1734 
1735     for (i = 0; i < AR_NUM_DCU; i++)
1736         REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1737 
1738     REGWRITE_BUFFER_FLUSH(ah);
1739 
1740     ah->intr_txqs = 0;
1741     for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1742         ath9k_hw_resettxqueue(ah, i);
1743 }
1744 
1745 /*
1746  * For big endian systems turn on swapping for descriptors
1747  */
1748 static void ath9k_hw_init_desc(struct ath_hw *ah)
1749 {
1750     struct ath_common *common = ath9k_hw_common(ah);
1751 
1752     if (AR_SREV_9100(ah)) {
1753         u32 mask;
1754         mask = REG_READ(ah, AR_CFG);
1755         if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1756             ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1757                 mask);
1758         } else {
1759             mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1760             REG_WRITE(ah, AR_CFG, mask);
1761             ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1762                 REG_READ(ah, AR_CFG));
1763         }
1764     } else {
1765         if (common->bus_ops->ath_bus_type == ATH_USB) {
1766             /* Configure AR9271 target WLAN */
1767             if (AR_SREV_9271(ah))
1768                 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1769             else
1770                 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1771         }
1772 #ifdef __BIG_ENDIAN
1773         else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1774              AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1775              AR_SREV_9561(ah))
1776             REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1777         else
1778             REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1779 #endif
1780     }
1781 }
1782 
1783 /*
1784  * Fast channel change:
1785  * (Change synthesizer based on channel freq without resetting chip)
1786  */
1787 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1788 {
1789     struct ath_common *common = ath9k_hw_common(ah);
1790     struct ath9k_hw_capabilities *pCap = &ah->caps;
1791     int ret;
1792 
1793     if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1794         goto fail;
1795 
1796     if (ah->chip_fullsleep)
1797         goto fail;
1798 
1799     if (!ah->curchan)
1800         goto fail;
1801 
1802     if (chan->channel == ah->curchan->channel)
1803         goto fail;
1804 
1805     if ((ah->curchan->channelFlags | chan->channelFlags) &
1806         (CHANNEL_HALF | CHANNEL_QUARTER))
1807         goto fail;
1808 
1809     /*
1810      * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1811      */
1812     if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1813         ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1814         goto fail;
1815 
1816     if (!ath9k_hw_check_alive(ah))
1817         goto fail;
1818 
1819     /*
1820      * For AR9462, make sure that calibration data for
1821      * re-using are present.
1822      */
1823     if (AR_SREV_9462(ah) && (ah->caldata &&
1824                  (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1825                   !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1826                   !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1827         goto fail;
1828 
1829     ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1830         ah->curchan->channel, chan->channel);
1831 
1832     ret = ath9k_hw_channel_change(ah, chan);
1833     if (!ret)
1834         goto fail;
1835 
1836     if (ath9k_hw_mci_is_enabled(ah))
1837         ar9003_mci_2g5g_switch(ah, false);
1838 
1839     ath9k_hw_loadnf(ah, ah->curchan);
1840     ath9k_hw_start_nfcal(ah, true);
1841 
1842     if (AR_SREV_9271(ah))
1843         ar9002_hw_load_ani_reg(ah, chan);
1844 
1845     return 0;
1846 fail:
1847     return -EINVAL;
1848 }
1849 
1850 u32 ath9k_hw_get_tsf_offset(struct timespec64 *last, struct timespec64 *cur)
1851 {
1852     struct timespec64 ts;
1853     s64 usec;
1854 
1855     if (!cur) {
1856         ktime_get_raw_ts64(&ts);
1857         cur = &ts;
1858     }
1859 
1860     usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1861     usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1862 
1863     return (u32) usec;
1864 }
1865 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1866 
1867 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1868            struct ath9k_hw_cal_data *caldata, bool fastcc)
1869 {
1870     struct ath_common *common = ath9k_hw_common(ah);
1871     u32 saveLedState;
1872     u32 saveDefAntenna;
1873     u32 macStaId1;
1874     struct timespec64 tsf_ts;
1875     u32 tsf_offset;
1876     u64 tsf = 0;
1877     int r;
1878     bool start_mci_reset = false;
1879     bool save_fullsleep = ah->chip_fullsleep;
1880 
1881     if (ath9k_hw_mci_is_enabled(ah)) {
1882         start_mci_reset = ar9003_mci_start_reset(ah, chan);
1883         if (start_mci_reset)
1884             return 0;
1885     }
1886 
1887     if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1888         return -EIO;
1889 
1890     if (ah->curchan && !ah->chip_fullsleep)
1891         ath9k_hw_getnf(ah, ah->curchan);
1892 
1893     ah->caldata = caldata;
1894     if (caldata && (chan->channel != caldata->channel ||
1895             chan->channelFlags != caldata->channelFlags)) {
1896         /* Operating channel changed, reset channel calibration data */
1897         memset(caldata, 0, sizeof(*caldata));
1898         ath9k_init_nfcal_hist_buffer(ah, chan);
1899     } else if (caldata) {
1900         clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1901     }
1902     ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1903 
1904     if (fastcc) {
1905         r = ath9k_hw_do_fastcc(ah, chan);
1906         if (!r)
1907             return r;
1908     }
1909 
1910     if (ath9k_hw_mci_is_enabled(ah))
1911         ar9003_mci_stop_bt(ah, save_fullsleep);
1912 
1913     saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1914     if (saveDefAntenna == 0)
1915         saveDefAntenna = 1;
1916 
1917     macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1918 
1919     /* Save TSF before chip reset, a cold reset clears it */
1920     ktime_get_raw_ts64(&tsf_ts);
1921     tsf = ath9k_hw_gettsf64(ah);
1922 
1923     saveLedState = REG_READ(ah, AR_CFG_LED) &
1924         (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1925          AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1926 
1927     ath9k_hw_mark_phy_inactive(ah);
1928 
1929     ah->paprd_table_write_done = false;
1930 
1931     /* Only required on the first reset */
1932     if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1933         REG_WRITE(ah,
1934               AR9271_RESET_POWER_DOWN_CONTROL,
1935               AR9271_RADIO_RF_RST);
1936         udelay(50);
1937     }
1938 
1939     if (!ath9k_hw_chip_reset(ah, chan)) {
1940         ath_err(common, "Chip reset failed\n");
1941         return -EINVAL;
1942     }
1943 
1944     /* Only required on the first reset */
1945     if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1946         ah->htc_reset_init = false;
1947         REG_WRITE(ah,
1948               AR9271_RESET_POWER_DOWN_CONTROL,
1949               AR9271_GATE_MAC_CTL);
1950         udelay(50);
1951     }
1952 
1953     /* Restore TSF */
1954     tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1955     ath9k_hw_settsf64(ah, tsf + tsf_offset);
1956 
1957     if (AR_SREV_9280_20_OR_LATER(ah))
1958         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1959 
1960     if (!AR_SREV_9300_20_OR_LATER(ah))
1961         ar9002_hw_enable_async_fifo(ah);
1962 
1963     r = ath9k_hw_process_ini(ah, chan);
1964     if (r)
1965         return r;
1966 
1967     ath9k_hw_set_rfmode(ah, chan);
1968 
1969     if (ath9k_hw_mci_is_enabled(ah))
1970         ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1971 
1972     /*
1973      * Some AR91xx SoC devices frequently fail to accept TSF writes
1974      * right after the chip reset. When that happens, write a new
1975      * value after the initvals have been applied.
1976      */
1977     if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1978         tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1979         ath9k_hw_settsf64(ah, tsf + tsf_offset);
1980     }
1981 
1982     ath9k_hw_init_mfp(ah);
1983 
1984     ath9k_hw_set_delta_slope(ah, chan);
1985     ath9k_hw_spur_mitigate_freq(ah, chan);
1986     ah->eep_ops->set_board_values(ah, chan);
1987 
1988     ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1989 
1990     r = ath9k_hw_rf_set_freq(ah, chan);
1991     if (r)
1992         return r;
1993 
1994     ath9k_hw_set_clockrate(ah);
1995 
1996     ath9k_hw_init_queues(ah);
1997     ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1998     ath9k_hw_ani_cache_ini_regs(ah);
1999     ath9k_hw_init_qos(ah);
2000 
2001     if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2002         ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill");
2003 
2004     ath9k_hw_init_global_settings(ah);
2005 
2006     if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
2007         REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2008                 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2009         REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2010                   AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2011         REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2012                 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2013     }
2014 
2015     REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2016 
2017     ath9k_hw_set_dma(ah);
2018 
2019     if (!ath9k_hw_mci_is_enabled(ah))
2020         REG_WRITE(ah, AR_OBS, 8);
2021 
2022     ENABLE_REG_RMW_BUFFER(ah);
2023     if (ah->config.rx_intr_mitigation) {
2024         REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
2025         REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
2026     }
2027 
2028     if (ah->config.tx_intr_mitigation) {
2029         REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2030         REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2031     }
2032     REG_RMW_BUFFER_FLUSH(ah);
2033 
2034     ath9k_hw_init_bb(ah, chan);
2035 
2036     if (caldata) {
2037         clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
2038         clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
2039     }
2040     if (!ath9k_hw_init_cal(ah, chan))
2041         return -EIO;
2042 
2043     if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2044         return -EIO;
2045 
2046     ENABLE_REGWRITE_BUFFER(ah);
2047 
2048     ath9k_hw_restore_chainmask(ah);
2049     REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2050 
2051     REGWRITE_BUFFER_FLUSH(ah);
2052 
2053     ath9k_hw_gen_timer_start_tsf2(ah);
2054 
2055     ath9k_hw_init_desc(ah);
2056 
2057     if (ath9k_hw_btcoex_is_enabled(ah))
2058         ath9k_hw_btcoex_enable(ah);
2059 
2060     if (ath9k_hw_mci_is_enabled(ah))
2061         ar9003_mci_check_bt(ah);
2062 
2063     if (AR_SREV_9300_20_OR_LATER(ah)) {
2064         ath9k_hw_loadnf(ah, chan);
2065         ath9k_hw_start_nfcal(ah, true);
2066     }
2067 
2068     if (AR_SREV_9300_20_OR_LATER(ah))
2069         ar9003_hw_bb_watchdog_config(ah);
2070 
2071     if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2072         ar9003_hw_disable_phy_restart(ah);
2073 
2074     ath9k_hw_apply_gpio_override(ah);
2075 
2076     if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2077         REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2078 
2079     if (ah->hw->conf.radar_enabled) {
2080         /* set HW specific DFS configuration */
2081         ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2082         ath9k_hw_set_radar_params(ah);
2083     }
2084 
2085     return 0;
2086 }
2087 EXPORT_SYMBOL(ath9k_hw_reset);
2088 
2089 /******************************/
2090 /* Power Management (Chipset) */
2091 /******************************/
2092 
2093 /*
2094  * Notify Power Mgt is disabled in self-generated frames.
2095  * If requested, force chip to sleep.
2096  */
2097 static void ath9k_set_power_sleep(struct ath_hw *ah)
2098 {
2099     REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2100 
2101     if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2102         REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2103         REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2104         REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2105         /* xxx Required for WLAN only case ? */
2106         REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2107         udelay(100);
2108     }
2109 
2110     /*
2111      * Clear the RTC force wake bit to allow the
2112      * mac to go to sleep.
2113      */
2114     REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2115 
2116     if (ath9k_hw_mci_is_enabled(ah))
2117         udelay(100);
2118 
2119     if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2120         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2121 
2122     /* Shutdown chip. Active low */
2123     if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2124         REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2125         udelay(2);
2126     }
2127 
2128     /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2129     if (AR_SREV_9300_20_OR_LATER(ah))
2130         REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2131 }
2132 
2133 /*
2134  * Notify Power Management is enabled in self-generating
2135  * frames. If request, set power mode of chip to
2136  * auto/normal.  Duration in units of 128us (1/8 TU).
2137  */
2138 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2139 {
2140     struct ath9k_hw_capabilities *pCap = &ah->caps;
2141 
2142     REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2143 
2144     if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2145         /* Set WakeOnInterrupt bit; clear ForceWake bit */
2146         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2147               AR_RTC_FORCE_WAKE_ON_INT);
2148     } else {
2149 
2150         /* When chip goes into network sleep, it could be waken
2151          * up by MCI_INT interrupt caused by BT's HW messages
2152          * (LNA_xxx, CONT_xxx) which chould be in a very fast
2153          * rate (~100us). This will cause chip to leave and
2154          * re-enter network sleep mode frequently, which in
2155          * consequence will have WLAN MCI HW to generate lots of
2156          * SYS_WAKING and SYS_SLEEPING messages which will make
2157          * BT CPU to busy to process.
2158          */
2159         if (ath9k_hw_mci_is_enabled(ah))
2160             REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2161                     AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2162         /*
2163          * Clear the RTC force wake bit to allow the
2164          * mac to go to sleep.
2165          */
2166         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2167 
2168         if (ath9k_hw_mci_is_enabled(ah))
2169             udelay(30);
2170     }
2171 
2172     /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2173     if (AR_SREV_9300_20_OR_LATER(ah))
2174         REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2175 }
2176 
2177 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2178 {
2179     u32 val;
2180     int i;
2181 
2182     /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2183     if (AR_SREV_9300_20_OR_LATER(ah)) {
2184         REG_WRITE(ah, AR_WA, ah->WARegVal);
2185         udelay(10);
2186     }
2187 
2188     if ((REG_READ(ah, AR_RTC_STATUS) &
2189          AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2190         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2191             return false;
2192         }
2193         if (!AR_SREV_9300_20_OR_LATER(ah))
2194             ath9k_hw_init_pll(ah, NULL);
2195     }
2196     if (AR_SREV_9100(ah))
2197         REG_SET_BIT(ah, AR_RTC_RESET,
2198                 AR_RTC_RESET_EN);
2199 
2200     REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2201             AR_RTC_FORCE_WAKE_EN);
2202     if (AR_SREV_9100(ah))
2203         mdelay(10);
2204     else
2205         udelay(50);
2206 
2207     for (i = POWER_UP_TIME / 50; i > 0; i--) {
2208         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2209         if (val == AR_RTC_STATUS_ON)
2210             break;
2211         udelay(50);
2212         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2213                 AR_RTC_FORCE_WAKE_EN);
2214     }
2215     if (i == 0) {
2216         ath_err(ath9k_hw_common(ah),
2217             "Failed to wakeup in %uus\n",
2218             POWER_UP_TIME / 20);
2219         return false;
2220     }
2221 
2222     if (ath9k_hw_mci_is_enabled(ah))
2223         ar9003_mci_set_power_awake(ah);
2224 
2225     REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2226 
2227     return true;
2228 }
2229 
2230 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2231 {
2232     struct ath_common *common = ath9k_hw_common(ah);
2233     int status = true;
2234     static const char *modes[] = {
2235         "AWAKE",
2236         "FULL-SLEEP",
2237         "NETWORK SLEEP",
2238         "UNDEFINED"
2239     };
2240 
2241     if (ah->power_mode == mode)
2242         return status;
2243 
2244     ath_dbg(common, RESET, "%s -> %s\n",
2245         modes[ah->power_mode], modes[mode]);
2246 
2247     switch (mode) {
2248     case ATH9K_PM_AWAKE:
2249         status = ath9k_hw_set_power_awake(ah);
2250         break;
2251     case ATH9K_PM_FULL_SLEEP:
2252         if (ath9k_hw_mci_is_enabled(ah))
2253             ar9003_mci_set_full_sleep(ah);
2254 
2255         ath9k_set_power_sleep(ah);
2256         ah->chip_fullsleep = true;
2257         break;
2258     case ATH9K_PM_NETWORK_SLEEP:
2259         ath9k_set_power_network_sleep(ah);
2260         break;
2261     default:
2262         ath_err(common, "Unknown power mode %u\n", mode);
2263         return false;
2264     }
2265     ah->power_mode = mode;
2266 
2267     /*
2268      * XXX: If this warning never comes up after a while then
2269      * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2270      * ath9k_hw_setpower() return type void.
2271      */
2272 
2273     if (!(ah->ah_flags & AH_UNPLUGGED))
2274         ATH_DBG_WARN_ON_ONCE(!status);
2275 
2276     return status;
2277 }
2278 EXPORT_SYMBOL(ath9k_hw_setpower);
2279 
2280 /*******************/
2281 /* Beacon Handling */
2282 /*******************/
2283 
2284 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2285 {
2286     int flags = 0;
2287 
2288     ENABLE_REGWRITE_BUFFER(ah);
2289 
2290     switch (ah->opmode) {
2291     case NL80211_IFTYPE_ADHOC:
2292         REG_SET_BIT(ah, AR_TXCFG,
2293                 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2294         fallthrough;
2295     case NL80211_IFTYPE_MESH_POINT:
2296     case NL80211_IFTYPE_AP:
2297         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2298         REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2299               TU_TO_USEC(ah->config.dma_beacon_response_time));
2300         REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2301               TU_TO_USEC(ah->config.sw_beacon_response_time));
2302         flags |=
2303             AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2304         break;
2305     default:
2306         ath_dbg(ath9k_hw_common(ah), BEACON,
2307             "%s: unsupported opmode: %d\n", __func__, ah->opmode);
2308         return;
2309     }
2310 
2311     REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2312     REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2313     REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2314 
2315     REGWRITE_BUFFER_FLUSH(ah);
2316 
2317     REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2318 }
2319 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2320 
2321 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2322                     const struct ath9k_beacon_state *bs)
2323 {
2324     u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2325     struct ath9k_hw_capabilities *pCap = &ah->caps;
2326     struct ath_common *common = ath9k_hw_common(ah);
2327 
2328     ENABLE_REGWRITE_BUFFER(ah);
2329 
2330     REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2331     REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2332     REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2333 
2334     REGWRITE_BUFFER_FLUSH(ah);
2335 
2336     REG_RMW_FIELD(ah, AR_RSSI_THR,
2337               AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2338 
2339     beaconintval = bs->bs_intval;
2340 
2341     if (bs->bs_sleepduration > beaconintval)
2342         beaconintval = bs->bs_sleepduration;
2343 
2344     dtimperiod = bs->bs_dtimperiod;
2345     if (bs->bs_sleepduration > dtimperiod)
2346         dtimperiod = bs->bs_sleepduration;
2347 
2348     if (beaconintval == dtimperiod)
2349         nextTbtt = bs->bs_nextdtim;
2350     else
2351         nextTbtt = bs->bs_nexttbtt;
2352 
2353     ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2354     ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2355     ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2356     ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2357 
2358     ENABLE_REGWRITE_BUFFER(ah);
2359 
2360     REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2361     REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2362 
2363     REG_WRITE(ah, AR_SLEEP1,
2364           SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2365           | AR_SLEEP1_ASSUME_DTIM);
2366 
2367     if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2368         beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2369     else
2370         beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2371 
2372     REG_WRITE(ah, AR_SLEEP2,
2373           SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2374 
2375     REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2376     REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2377 
2378     REGWRITE_BUFFER_FLUSH(ah);
2379 
2380     REG_SET_BIT(ah, AR_TIMER_MODE,
2381             AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2382             AR_DTIM_TIMER_EN);
2383 
2384     /* TSF Out of Range Threshold */
2385     REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2386 }
2387 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2388 
2389 /*******************/
2390 /* HW Capabilities */
2391 /*******************/
2392 
2393 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2394 {
2395     eeprom_chainmask &= chip_chainmask;
2396     if (eeprom_chainmask)
2397         return eeprom_chainmask;
2398     else
2399         return chip_chainmask;
2400 }
2401 
2402 /**
2403  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2404  * @ah: the atheros hardware data structure
2405  *
2406  * We enable DFS support upstream on chipsets which have passed a series
2407  * of tests. The testing requirements are going to be documented. Desired
2408  * test requirements are documented at:
2409  *
2410  * https://wireless.wiki.kernel.org/en/users/Drivers/ath9k/dfs
2411  *
2412  * Once a new chipset gets properly tested an individual commit can be used
2413  * to document the testing for DFS for that chipset.
2414  */
2415 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2416 {
2417 
2418     switch (ah->hw_version.macVersion) {
2419     /* for temporary testing DFS with 9280 */
2420     case AR_SREV_VERSION_9280:
2421     /* AR9580 will likely be our first target to get testing on */
2422     case AR_SREV_VERSION_9580:
2423         return true;
2424     default:
2425         return false;
2426     }
2427 }
2428 
2429 static void ath9k_gpio_cap_init(struct ath_hw *ah)
2430 {
2431     struct ath9k_hw_capabilities *pCap = &ah->caps;
2432 
2433     if (AR_SREV_9271(ah)) {
2434         pCap->num_gpio_pins = AR9271_NUM_GPIO;
2435         pCap->gpio_mask = AR9271_GPIO_MASK;
2436     } else if (AR_DEVID_7010(ah)) {
2437         pCap->num_gpio_pins = AR7010_NUM_GPIO;
2438         pCap->gpio_mask = AR7010_GPIO_MASK;
2439     } else if (AR_SREV_9287(ah)) {
2440         pCap->num_gpio_pins = AR9287_NUM_GPIO;
2441         pCap->gpio_mask = AR9287_GPIO_MASK;
2442     } else if (AR_SREV_9285(ah)) {
2443         pCap->num_gpio_pins = AR9285_NUM_GPIO;
2444         pCap->gpio_mask = AR9285_GPIO_MASK;
2445     } else if (AR_SREV_9280(ah)) {
2446         pCap->num_gpio_pins = AR9280_NUM_GPIO;
2447         pCap->gpio_mask = AR9280_GPIO_MASK;
2448     } else if (AR_SREV_9300(ah)) {
2449         pCap->num_gpio_pins = AR9300_NUM_GPIO;
2450         pCap->gpio_mask = AR9300_GPIO_MASK;
2451     } else if (AR_SREV_9330(ah)) {
2452         pCap->num_gpio_pins = AR9330_NUM_GPIO;
2453         pCap->gpio_mask = AR9330_GPIO_MASK;
2454     } else if (AR_SREV_9340(ah)) {
2455         pCap->num_gpio_pins = AR9340_NUM_GPIO;
2456         pCap->gpio_mask = AR9340_GPIO_MASK;
2457     } else if (AR_SREV_9462(ah)) {
2458         pCap->num_gpio_pins = AR9462_NUM_GPIO;
2459         pCap->gpio_mask = AR9462_GPIO_MASK;
2460     } else if (AR_SREV_9485(ah)) {
2461         pCap->num_gpio_pins = AR9485_NUM_GPIO;
2462         pCap->gpio_mask = AR9485_GPIO_MASK;
2463     } else if (AR_SREV_9531(ah)) {
2464         pCap->num_gpio_pins = AR9531_NUM_GPIO;
2465         pCap->gpio_mask = AR9531_GPIO_MASK;
2466     } else if (AR_SREV_9550(ah)) {
2467         pCap->num_gpio_pins = AR9550_NUM_GPIO;
2468         pCap->gpio_mask = AR9550_GPIO_MASK;
2469     } else if (AR_SREV_9561(ah)) {
2470         pCap->num_gpio_pins = AR9561_NUM_GPIO;
2471         pCap->gpio_mask = AR9561_GPIO_MASK;
2472     } else if (AR_SREV_9565(ah)) {
2473         pCap->num_gpio_pins = AR9565_NUM_GPIO;
2474         pCap->gpio_mask = AR9565_GPIO_MASK;
2475     } else if (AR_SREV_9580(ah)) {
2476         pCap->num_gpio_pins = AR9580_NUM_GPIO;
2477         pCap->gpio_mask = AR9580_GPIO_MASK;
2478     } else {
2479         pCap->num_gpio_pins = AR_NUM_GPIO;
2480         pCap->gpio_mask = AR_GPIO_MASK;
2481     }
2482 }
2483 
2484 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2485 {
2486     struct ath9k_hw_capabilities *pCap = &ah->caps;
2487     struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2488     struct ath_common *common = ath9k_hw_common(ah);
2489 
2490     u16 eeval;
2491     u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2492 
2493     eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2494     regulatory->current_rd = eeval;
2495 
2496     if (ah->opmode != NL80211_IFTYPE_AP &&
2497         ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2498         if (regulatory->current_rd == 0x64 ||
2499             regulatory->current_rd == 0x65)
2500             regulatory->current_rd += 5;
2501         else if (regulatory->current_rd == 0x41)
2502             regulatory->current_rd = 0x43;
2503         ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2504             regulatory->current_rd);
2505     }
2506 
2507     eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2508 
2509     if (eeval & AR5416_OPFLAGS_11A) {
2510         if (ah->disable_5ghz)
2511             ath_warn(common, "disabling 5GHz band\n");
2512         else
2513             pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2514     }
2515 
2516     if (eeval & AR5416_OPFLAGS_11G) {
2517         if (ah->disable_2ghz)
2518             ath_warn(common, "disabling 2GHz band\n");
2519         else
2520             pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2521     }
2522 
2523     if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2524         ath_err(common, "both bands are disabled\n");
2525         return -EINVAL;
2526     }
2527 
2528     ath9k_gpio_cap_init(ah);
2529 
2530     if (AR_SREV_9485(ah) ||
2531         AR_SREV_9285(ah) ||
2532         AR_SREV_9330(ah) ||
2533         AR_SREV_9565(ah))
2534         pCap->chip_chainmask = 1;
2535     else if (!AR_SREV_9280_20_OR_LATER(ah))
2536         pCap->chip_chainmask = 7;
2537     else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2538          AR_SREV_9340(ah) ||
2539          AR_SREV_9462(ah) ||
2540          AR_SREV_9531(ah))
2541         pCap->chip_chainmask = 3;
2542     else
2543         pCap->chip_chainmask = 7;
2544 
2545     pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2546     /*
2547      * For AR9271 we will temporarilly uses the rx chainmax as read from
2548      * the EEPROM.
2549      */
2550     if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2551         !(eeval & AR5416_OPFLAGS_11A) &&
2552         !(AR_SREV_9271(ah)))
2553         /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2554         pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2555     else if (AR_SREV_9100(ah))
2556         pCap->rx_chainmask = 0x7;
2557     else
2558         /* Use rx_chainmask from EEPROM. */
2559         pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2560 
2561     pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2562     pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2563     ah->txchainmask = pCap->tx_chainmask;
2564     ah->rxchainmask = pCap->rx_chainmask;
2565 
2566     ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2567 
2568     /* enable key search for every frame in an aggregate */
2569     if (AR_SREV_9300_20_OR_LATER(ah))
2570         ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2571 
2572     common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2573 
2574     if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2575         pCap->hw_caps |= ATH9K_HW_CAP_HT;
2576     else
2577         pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2578 
2579     if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2580         pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2581     else
2582         pCap->rts_aggr_limit = (8 * 1024);
2583 
2584 #ifdef CONFIG_ATH9K_RFKILL
2585     ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2586     if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2587         ah->rfkill_gpio =
2588             MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2589         ah->rfkill_polarity =
2590             MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2591 
2592         pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2593     }
2594 #endif
2595     if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2596         pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2597     else
2598         pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2599 
2600     if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2601         pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2602     else
2603         pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2604 
2605     if (AR_SREV_9300_20_OR_LATER(ah)) {
2606         pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2607         if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2608             !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2609             pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2610 
2611         pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2612         pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2613         pCap->rx_status_len = sizeof(struct ar9003_rxs);
2614         pCap->tx_desc_len = sizeof(struct ar9003_txc);
2615         pCap->txs_len = sizeof(struct ar9003_txs);
2616     } else {
2617         pCap->tx_desc_len = sizeof(struct ath_desc);
2618         if (AR_SREV_9280_20(ah))
2619             pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2620     }
2621 
2622     if (AR_SREV_9300_20_OR_LATER(ah))
2623         pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2624 
2625     if (AR_SREV_9561(ah))
2626         ah->ent_mode = 0x3BDA000;
2627     else if (AR_SREV_9300_20_OR_LATER(ah))
2628         ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2629 
2630     if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2631         pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2632 
2633     if (AR_SREV_9285(ah)) {
2634         if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2635             ant_div_ctl1 =
2636                 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2637             if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2638                 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2639                 ath_info(common, "Enable LNA combining\n");
2640             }
2641         }
2642     }
2643 
2644     if (AR_SREV_9300_20_OR_LATER(ah)) {
2645         if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2646             pCap->hw_caps |= ATH9K_HW_CAP_APM;
2647     }
2648 
2649     if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2650         ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2651         if ((ant_div_ctl1 >> 0x6) == 0x3) {
2652             pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2653             ath_info(common, "Enable LNA combining\n");
2654         }
2655     }
2656 
2657     if (ath9k_hw_dfs_tested(ah))
2658         pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2659 
2660     tx_chainmask = pCap->tx_chainmask;
2661     rx_chainmask = pCap->rx_chainmask;
2662     while (tx_chainmask || rx_chainmask) {
2663         if (tx_chainmask & BIT(0))
2664             pCap->max_txchains++;
2665         if (rx_chainmask & BIT(0))
2666             pCap->max_rxchains++;
2667 
2668         tx_chainmask >>= 1;
2669         rx_chainmask >>= 1;
2670     }
2671 
2672     if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2673         if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2674             pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2675 
2676         if (AR_SREV_9462_20_OR_LATER(ah))
2677             pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2678     }
2679 
2680     if (AR_SREV_9300_20_OR_LATER(ah) &&
2681         ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2682             pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2683 
2684 #ifdef CONFIG_ATH9K_WOW
2685     if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2686         ah->wow.max_patterns = MAX_NUM_PATTERN;
2687     else
2688         ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2689 #endif
2690 
2691     return 0;
2692 }
2693 
2694 /****************************/
2695 /* GPIO / RFKILL / Antennae */
2696 /****************************/
2697 
2698 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type)
2699 {
2700     int addr;
2701     u32 gpio_shift, tmp;
2702 
2703     if (gpio > 11)
2704         addr = AR_GPIO_OUTPUT_MUX3;
2705     else if (gpio > 5)
2706         addr = AR_GPIO_OUTPUT_MUX2;
2707     else
2708         addr = AR_GPIO_OUTPUT_MUX1;
2709 
2710     gpio_shift = (gpio % 6) * 5;
2711 
2712     if (AR_SREV_9280_20_OR_LATER(ah) ||
2713         (addr != AR_GPIO_OUTPUT_MUX1)) {
2714         REG_RMW(ah, addr, (type << gpio_shift),
2715             (0x1f << gpio_shift));
2716     } else {
2717         tmp = REG_READ(ah, addr);
2718         tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2719         tmp &= ~(0x1f << gpio_shift);
2720         tmp |= (type << gpio_shift);
2721         REG_WRITE(ah, addr, tmp);
2722     }
2723 }
2724 
2725 /* BSP should set the corresponding MUX register correctly.
2726  */
2727 static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out,
2728                   const char *label)
2729 {
2730     int err;
2731 
2732     if (ah->caps.gpio_requested & BIT(gpio))
2733         return;
2734 
2735     err = gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label);
2736     if (err) {
2737         ath_err(ath9k_hw_common(ah), "request GPIO%d failed:%d\n",
2738             gpio, err);
2739         return;
2740     }
2741 
2742     ah->caps.gpio_requested |= BIT(gpio);
2743 }
2744 
2745 static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out,
2746                    u32 ah_signal_type)
2747 {
2748     u32 gpio_set, gpio_shift = gpio;
2749 
2750     if (AR_DEVID_7010(ah)) {
2751         gpio_set = out ?
2752             AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT;
2753         REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift,
2754             AR7010_GPIO_OE_MASK << gpio_shift);
2755     } else if (AR_SREV_SOC(ah)) {
2756         gpio_set = out ? 1 : 0;
2757         REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2758             gpio_set << gpio_shift);
2759     } else {
2760         gpio_shift = gpio << 1;
2761         gpio_set = out ?
2762             AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO;
2763         REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2764             AR_GPIO_OE_OUT_DRV << gpio_shift);
2765 
2766         if (out)
2767             ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2768     }
2769 }
2770 
2771 static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out,
2772                   const char *label, u32 ah_signal_type)
2773 {
2774     WARN_ON(gpio >= ah->caps.num_gpio_pins);
2775 
2776     if (BIT(gpio) & ah->caps.gpio_mask)
2777         ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type);
2778     else if (AR_SREV_SOC(ah))
2779         ath9k_hw_gpio_cfg_soc(ah, gpio, out, label);
2780     else
2781         WARN_ON(1);
2782 }
2783 
2784 void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label)
2785 {
2786     ath9k_hw_gpio_request(ah, gpio, false, label, 0);
2787 }
2788 EXPORT_SYMBOL(ath9k_hw_gpio_request_in);
2789 
2790 void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label,
2791                    u32 ah_signal_type)
2792 {
2793     ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type);
2794 }
2795 EXPORT_SYMBOL(ath9k_hw_gpio_request_out);
2796 
2797 void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio)
2798 {
2799     if (!AR_SREV_SOC(ah))
2800         return;
2801 
2802     WARN_ON(gpio >= ah->caps.num_gpio_pins);
2803 
2804     if (ah->caps.gpio_requested & BIT(gpio)) {
2805         gpio_free(gpio);
2806         ah->caps.gpio_requested &= ~BIT(gpio);
2807     }
2808 }
2809 EXPORT_SYMBOL(ath9k_hw_gpio_free);
2810 
2811 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2812 {
2813     u32 val = 0xffffffff;
2814 
2815 #define MS_REG_READ(x, y) \
2816     (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y))
2817 
2818     WARN_ON(gpio >= ah->caps.num_gpio_pins);
2819 
2820     if (BIT(gpio) & ah->caps.gpio_mask) {
2821         if (AR_SREV_9271(ah))
2822             val = MS_REG_READ(AR9271, gpio);
2823         else if (AR_SREV_9287(ah))
2824             val = MS_REG_READ(AR9287, gpio);
2825         else if (AR_SREV_9285(ah))
2826             val = MS_REG_READ(AR9285, gpio);
2827         else if (AR_SREV_9280(ah))
2828             val = MS_REG_READ(AR928X, gpio);
2829         else if (AR_DEVID_7010(ah))
2830             val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio);
2831         else if (AR_SREV_9300_20_OR_LATER(ah))
2832             val = REG_READ(ah, AR_GPIO_IN) & BIT(gpio);
2833         else
2834             val = MS_REG_READ(AR, gpio);
2835     } else if (BIT(gpio) & ah->caps.gpio_requested) {
2836         val = gpio_get_value(gpio) & BIT(gpio);
2837     } else {
2838         WARN_ON(1);
2839     }
2840 
2841     return !!val;
2842 }
2843 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2844 
2845 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2846 {
2847     WARN_ON(gpio >= ah->caps.num_gpio_pins);
2848 
2849     if (AR_DEVID_7010(ah) || AR_SREV_9271(ah))
2850         val = !val;
2851     else
2852         val = !!val;
2853 
2854     if (BIT(gpio) & ah->caps.gpio_mask) {
2855         u32 out_addr = AR_DEVID_7010(ah) ?
2856             AR7010_GPIO_OUT : AR_GPIO_IN_OUT;
2857 
2858         REG_RMW(ah, out_addr, val << gpio, BIT(gpio));
2859     } else if (BIT(gpio) & ah->caps.gpio_requested) {
2860         gpio_set_value(gpio, val);
2861     } else {
2862         WARN_ON(1);
2863     }
2864 }
2865 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2866 
2867 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2868 {
2869     REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2870 }
2871 EXPORT_SYMBOL(ath9k_hw_setantenna);
2872 
2873 /*********************/
2874 /* General Operation */
2875 /*********************/
2876 
2877 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2878 {
2879     u32 bits = REG_READ(ah, AR_RX_FILTER);
2880     u32 phybits = REG_READ(ah, AR_PHY_ERR);
2881 
2882     if (phybits & AR_PHY_ERR_RADAR)
2883         bits |= ATH9K_RX_FILTER_PHYRADAR;
2884     if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2885         bits |= ATH9K_RX_FILTER_PHYERR;
2886 
2887     return bits;
2888 }
2889 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2890 
2891 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2892 {
2893     u32 phybits;
2894 
2895     ENABLE_REGWRITE_BUFFER(ah);
2896 
2897     REG_WRITE(ah, AR_RX_FILTER, bits);
2898 
2899     phybits = 0;
2900     if (bits & ATH9K_RX_FILTER_PHYRADAR)
2901         phybits |= AR_PHY_ERR_RADAR;
2902     if (bits & ATH9K_RX_FILTER_PHYERR)
2903         phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2904     REG_WRITE(ah, AR_PHY_ERR, phybits);
2905 
2906     if (phybits)
2907         REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2908     else
2909         REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2910 
2911     REGWRITE_BUFFER_FLUSH(ah);
2912 }
2913 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2914 
2915 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2916 {
2917     if (ath9k_hw_mci_is_enabled(ah))
2918         ar9003_mci_bt_gain_ctrl(ah);
2919 
2920     if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2921         return false;
2922 
2923     ath9k_hw_init_pll(ah, NULL);
2924     ah->htc_reset_init = true;
2925     return true;
2926 }
2927 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2928 
2929 bool ath9k_hw_disable(struct ath_hw *ah)
2930 {
2931     if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2932         return false;
2933 
2934     if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2935         return false;
2936 
2937     ath9k_hw_init_pll(ah, NULL);
2938     return true;
2939 }
2940 EXPORT_SYMBOL(ath9k_hw_disable);
2941 
2942 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2943 {
2944     enum eeprom_param gain_param;
2945 
2946     if (IS_CHAN_2GHZ(chan))
2947         gain_param = EEP_ANTENNA_GAIN_2G;
2948     else
2949         gain_param = EEP_ANTENNA_GAIN_5G;
2950 
2951     return ah->eep_ops->get_eeprom(ah, gain_param);
2952 }
2953 
2954 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2955                 bool test)
2956 {
2957     struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2958     struct ieee80211_channel *channel;
2959     int chan_pwr, new_pwr;
2960     u16 ctl = NO_CTL;
2961 
2962     if (!chan)
2963         return;
2964 
2965     if (!test)
2966         ctl = ath9k_regd_get_ctl(reg, chan);
2967 
2968     channel = chan->chan;
2969     chan_pwr = min_t(int, channel->max_power * 2, MAX_COMBINED_POWER);
2970     new_pwr = min_t(int, chan_pwr, reg->power_limit);
2971 
2972     ah->eep_ops->set_txpower(ah, chan, ctl,
2973                  get_antenna_gain(ah, chan), new_pwr, test);
2974 }
2975 
2976 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2977 {
2978     struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2979     struct ath9k_channel *chan = ah->curchan;
2980     struct ieee80211_channel *channel = chan->chan;
2981 
2982     reg->power_limit = min_t(u32, limit, MAX_COMBINED_POWER);
2983     if (test)
2984         channel->max_power = MAX_COMBINED_POWER / 2;
2985 
2986     ath9k_hw_apply_txpower(ah, chan, test);
2987 
2988     if (test)
2989         channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2990 }
2991 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2992 
2993 void ath9k_hw_setopmode(struct ath_hw *ah)
2994 {
2995     ath9k_hw_set_operating_mode(ah, ah->opmode);
2996 }
2997 EXPORT_SYMBOL(ath9k_hw_setopmode);
2998 
2999 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3000 {
3001     REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3002     REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3003 }
3004 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3005 
3006 void ath9k_hw_write_associd(struct ath_hw *ah)
3007 {
3008     struct ath_common *common = ath9k_hw_common(ah);
3009 
3010     REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3011     REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3012           ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3013 }
3014 EXPORT_SYMBOL(ath9k_hw_write_associd);
3015 
3016 #define ATH9K_MAX_TSF_READ 10
3017 
3018 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3019 {
3020     u32 tsf_lower, tsf_upper1, tsf_upper2;
3021     int i;
3022 
3023     tsf_upper1 = REG_READ(ah, AR_TSF_U32);
3024     for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
3025         tsf_lower = REG_READ(ah, AR_TSF_L32);
3026         tsf_upper2 = REG_READ(ah, AR_TSF_U32);
3027         if (tsf_upper2 == tsf_upper1)
3028             break;
3029         tsf_upper1 = tsf_upper2;
3030     }
3031 
3032     WARN_ON( i == ATH9K_MAX_TSF_READ );
3033 
3034     return (((u64)tsf_upper1 << 32) | tsf_lower);
3035 }
3036 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3037 
3038 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3039 {
3040     REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3041     REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3042 }
3043 EXPORT_SYMBOL(ath9k_hw_settsf64);
3044 
3045 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3046 {
3047     if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3048                AH_TSF_WRITE_TIMEOUT))
3049         ath_dbg(ath9k_hw_common(ah), RESET,
3050             "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3051 
3052     REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3053 }
3054 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3055 
3056 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
3057 {
3058     if (set)
3059         ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3060     else
3061         ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3062 }
3063 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3064 
3065 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
3066 {
3067     u32 macmode;
3068 
3069     if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
3070         macmode = AR_2040_JOINED_RX_CLEAR;
3071     else
3072         macmode = 0;
3073 
3074     REG_WRITE(ah, AR_2040_MODE, macmode);
3075 }
3076 
3077 /* HW Generic timers configuration */
3078 
3079 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3080 {
3081     {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3082     {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3083     {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3084     {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3085     {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3086     {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3087     {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3088     {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3089     {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3090     {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3091                 AR_NDP2_TIMER_MODE, 0x0002},
3092     {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3093                 AR_NDP2_TIMER_MODE, 0x0004},
3094     {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3095                 AR_NDP2_TIMER_MODE, 0x0008},
3096     {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3097                 AR_NDP2_TIMER_MODE, 0x0010},
3098     {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3099                 AR_NDP2_TIMER_MODE, 0x0020},
3100     {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3101                 AR_NDP2_TIMER_MODE, 0x0040},
3102     {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3103                 AR_NDP2_TIMER_MODE, 0x0080}
3104 };
3105 
3106 /* HW generic timer primitives */
3107 
3108 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3109 {
3110     return REG_READ(ah, AR_TSF_L32);
3111 }
3112 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3113 
3114 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
3115 {
3116     struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3117 
3118     if (timer_table->tsf2_enabled) {
3119         REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3120         REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3121     }
3122 }
3123 
3124 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3125                       void (*trigger)(void *),
3126                       void (*overflow)(void *),
3127                       void *arg,
3128                       u8 timer_index)
3129 {
3130     struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3131     struct ath_gen_timer *timer;
3132 
3133     if ((timer_index < AR_FIRST_NDP_TIMER) ||
3134         (timer_index >= ATH_MAX_GEN_TIMER))
3135         return NULL;
3136 
3137     if ((timer_index > AR_FIRST_NDP_TIMER) &&
3138         !AR_SREV_9300_20_OR_LATER(ah))
3139         return NULL;
3140 
3141     timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3142     if (timer == NULL)
3143         return NULL;
3144 
3145     /* allocate a hardware generic timer slot */
3146     timer_table->timers[timer_index] = timer;
3147     timer->index = timer_index;
3148     timer->trigger = trigger;
3149     timer->overflow = overflow;
3150     timer->arg = arg;
3151 
3152     if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3153         timer_table->tsf2_enabled = true;
3154         ath9k_hw_gen_timer_start_tsf2(ah);
3155     }
3156 
3157     return timer;
3158 }
3159 EXPORT_SYMBOL(ath_gen_timer_alloc);
3160 
3161 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3162                   struct ath_gen_timer *timer,
3163                   u32 timer_next,
3164                   u32 timer_period)
3165 {
3166     struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3167     u32 mask = 0;
3168 
3169     timer_table->timer_mask |= BIT(timer->index);
3170 
3171     /*
3172      * Program generic timer registers
3173      */
3174     REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3175          timer_next);
3176     REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3177           timer_period);
3178     REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3179             gen_tmr_configuration[timer->index].mode_mask);
3180 
3181     if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3182         /*
3183          * Starting from AR9462, each generic timer can select which tsf
3184          * to use. But we still follow the old rule, 0 - 7 use tsf and
3185          * 8 - 15  use tsf2.
3186          */
3187         if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3188             REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3189                        (1 << timer->index));
3190         else
3191             REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3192                        (1 << timer->index));
3193     }
3194 
3195     if (timer->trigger)
3196         mask |= SM(AR_GENTMR_BIT(timer->index),
3197                AR_IMR_S5_GENTIMER_TRIG);
3198     if (timer->overflow)
3199         mask |= SM(AR_GENTMR_BIT(timer->index),
3200                AR_IMR_S5_GENTIMER_THRESH);
3201 
3202     REG_SET_BIT(ah, AR_IMR_S5, mask);
3203 
3204     if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3205         ah->imask |= ATH9K_INT_GENTIMER;
3206         ath9k_hw_set_interrupts(ah);
3207     }
3208 }
3209 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3210 
3211 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3212 {
3213     struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3214 
3215     /* Clear generic timer enable bits. */
3216     REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3217             gen_tmr_configuration[timer->index].mode_mask);
3218 
3219     if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3220         /*
3221          * Need to switch back to TSF if it was using TSF2.
3222          */
3223         if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3224             REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3225                     (1 << timer->index));
3226         }
3227     }
3228 
3229     /* Disable both trigger and thresh interrupt masks */
3230     REG_CLR_BIT(ah, AR_IMR_S5,
3231         (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3232         SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3233 
3234     timer_table->timer_mask &= ~BIT(timer->index);
3235 
3236     if (timer_table->timer_mask == 0) {
3237         ah->imask &= ~ATH9K_INT_GENTIMER;
3238         ath9k_hw_set_interrupts(ah);
3239     }
3240 }
3241 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3242 
3243 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3244 {
3245     struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3246 
3247     /* free the hardware generic timer slot */
3248     timer_table->timers[timer->index] = NULL;
3249     kfree(timer);
3250 }
3251 EXPORT_SYMBOL(ath_gen_timer_free);
3252 
3253 /*
3254  * Generic Timer Interrupts handling
3255  */
3256 void ath_gen_timer_isr(struct ath_hw *ah)
3257 {
3258     struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3259     struct ath_gen_timer *timer;
3260     unsigned long trigger_mask, thresh_mask;
3261     unsigned int index;
3262 
3263     /* get hardware generic timer interrupt status */
3264     trigger_mask = ah->intr_gen_timer_trigger;
3265     thresh_mask = ah->intr_gen_timer_thresh;
3266     trigger_mask &= timer_table->timer_mask;
3267     thresh_mask &= timer_table->timer_mask;
3268 
3269     for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3270         timer = timer_table->timers[index];
3271         if (!timer)
3272             continue;
3273         if (!timer->overflow)
3274             continue;
3275 
3276         trigger_mask &= ~BIT(index);
3277         timer->overflow(timer->arg);
3278     }
3279 
3280     for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3281         timer = timer_table->timers[index];
3282         if (!timer)
3283             continue;
3284         if (!timer->trigger)
3285             continue;
3286         timer->trigger(timer->arg);
3287     }
3288 }
3289 EXPORT_SYMBOL(ath_gen_timer_isr);
3290 
3291 /********/
3292 /* HTC  */
3293 /********/
3294 
3295 static struct {
3296     u32 version;
3297     const char * name;
3298 } ath_mac_bb_names[] = {
3299     /* Devices with external radios */
3300     { AR_SREV_VERSION_5416_PCI, "5416" },
3301     { AR_SREV_VERSION_5416_PCIE,    "5418" },
3302     { AR_SREV_VERSION_9100,     "9100" },
3303     { AR_SREV_VERSION_9160,     "9160" },
3304     /* Single-chip solutions */
3305     { AR_SREV_VERSION_9280,     "9280" },
3306     { AR_SREV_VERSION_9285,     "9285" },
3307     { AR_SREV_VERSION_9287,         "9287" },
3308     { AR_SREV_VERSION_9271,         "9271" },
3309     { AR_SREV_VERSION_9300,         "9300" },
3310     { AR_SREV_VERSION_9330,         "9330" },
3311     { AR_SREV_VERSION_9340,     "9340" },
3312     { AR_SREV_VERSION_9485,         "9485" },
3313     { AR_SREV_VERSION_9462,         "9462" },
3314     { AR_SREV_VERSION_9550,         "9550" },
3315     { AR_SREV_VERSION_9565,         "9565" },
3316     { AR_SREV_VERSION_9531,         "9531" },
3317     { AR_SREV_VERSION_9561,         "9561" },
3318 };
3319 
3320 /* For devices with external radios */
3321 static struct {
3322     u16 version;
3323     const char * name;
3324 } ath_rf_names[] = {
3325     { 0,                "5133" },
3326     { AR_RAD5133_SREV_MAJOR,    "5133" },
3327     { AR_RAD5122_SREV_MAJOR,    "5122" },
3328     { AR_RAD2133_SREV_MAJOR,    "2133" },
3329     { AR_RAD2122_SREV_MAJOR,    "2122" }
3330 };
3331 
3332 /*
3333  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3334  */
3335 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3336 {
3337     int i;
3338 
3339     for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3340         if (ath_mac_bb_names[i].version == mac_bb_version) {
3341             return ath_mac_bb_names[i].name;
3342         }
3343     }
3344 
3345     return "????";
3346 }
3347 
3348 /*
3349  * Return the RF name. "????" is returned if the RF is unknown.
3350  * Used for devices with external radios.
3351  */
3352 static const char *ath9k_hw_rf_name(u16 rf_version)
3353 {
3354     int i;
3355 
3356     for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3357         if (ath_rf_names[i].version == rf_version) {
3358             return ath_rf_names[i].name;
3359         }
3360     }
3361 
3362     return "????";
3363 }
3364 
3365 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3366 {
3367     int used;
3368 
3369     /* chipsets >= AR9280 are single-chip */
3370     if (AR_SREV_9280_20_OR_LATER(ah)) {
3371         used = scnprintf(hw_name, len,
3372                  "Atheros AR%s Rev:%x",
3373                  ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3374                  ah->hw_version.macRev);
3375     }
3376     else {
3377         used = scnprintf(hw_name, len,
3378                  "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3379                  ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3380                  ah->hw_version.macRev,
3381                  ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3382                           & AR_RADIO_SREV_MAJOR)),
3383                  ah->hw_version.phyRev);
3384     }
3385 
3386     hw_name[used] = '\0';
3387 }
3388 EXPORT_SYMBOL(ath9k_hw_name);