Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
0003  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
0004  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
0005  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
0006  *
0007  * Permission to use, copy, modify, and distribute this software for any
0008  * purpose with or without fee is hereby granted, provided that the above
0009  * copyright notice and this permission notice appear in all copies.
0010  *
0011  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
0012  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
0013  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
0014  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
0015  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
0016  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
0017  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
0018  *
0019  */
0020 
0021 /***********************\
0022 * PHY related functions *
0023 \***********************/
0024 
0025 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0026 
0027 #include <linux/delay.h>
0028 #include <linux/slab.h>
0029 #include <asm/unaligned.h>
0030 
0031 #include "ath5k.h"
0032 #include "reg.h"
0033 #include "rfbuffer.h"
0034 #include "rfgain.h"
0035 #include "../regd.h"
0036 
0037 
0038 /**
0039  * DOC: PHY related functions
0040  *
0041  * Here we handle the low-level functions related to baseband
0042  * and analog frontend (RF) parts. This is by far the most complex
0043  * part of the hw code so make sure you know what you are doing.
0044  *
0045  * Here is a list of what this is all about:
0046  *
0047  * - Channel setting/switching
0048  *
0049  * - Automatic Gain Control (AGC) calibration
0050  *
0051  * - Noise Floor calibration
0052  *
0053  * - I/Q imbalance calibration (QAM correction)
0054  *
0055  * - Calibration due to thermal changes (gain_F)
0056  *
0057  * - Spur noise mitigation
0058  *
0059  * - RF/PHY initialization for the various operating modes and bwmodes
0060  *
0061  * - Antenna control
0062  *
0063  * - TX power control per channel/rate/packet type
0064  *
0065  * Also have in mind we never got documentation for most of these
0066  * functions, what we have comes mostly from Atheros's code, reverse
0067  * engineering and patent docs/presentations etc.
0068  */
0069 
0070 
0071 /******************\
0072 * Helper functions *
0073 \******************/
0074 
0075 /**
0076  * ath5k_hw_radio_revision() - Get the PHY Chip revision
0077  * @ah: The &struct ath5k_hw
0078  * @band: One of enum nl80211_band
0079  *
0080  * Returns the revision number of a 2GHz, 5GHz or single chip
0081  * radio.
0082  */
0083 u16
0084 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum nl80211_band band)
0085 {
0086     unsigned int i;
0087     u32 srev;
0088     u16 ret;
0089 
0090     /*
0091      * Set the radio chip access register
0092      */
0093     switch (band) {
0094     case NL80211_BAND_2GHZ:
0095         ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
0096         break;
0097     case NL80211_BAND_5GHZ:
0098         ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
0099         break;
0100     default:
0101         return 0;
0102     }
0103 
0104     usleep_range(2000, 2500);
0105 
0106     /* ...wait until PHY is ready and read the selected radio revision */
0107     ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
0108 
0109     for (i = 0; i < 8; i++)
0110         ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
0111 
0112     if (ah->ah_version == AR5K_AR5210) {
0113         srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
0114         ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
0115     } else {
0116         srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
0117         ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
0118                 ((srev & 0x0f) << 4), 8);
0119     }
0120 
0121     /* Reset to the 5GHz mode */
0122     ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
0123 
0124     return ret;
0125 }
0126 
0127 /**
0128  * ath5k_channel_ok() - Check if a channel is supported by the hw
0129  * @ah: The &struct ath5k_hw
0130  * @channel: The &struct ieee80211_channel
0131  *
0132  * Note: We don't do any regulatory domain checks here, it's just
0133  * a sanity check.
0134  */
0135 bool
0136 ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
0137 {
0138     u16 freq = channel->center_freq;
0139 
0140     /* Check if the channel is in our supported range */
0141     if (channel->band == NL80211_BAND_2GHZ) {
0142         if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
0143             (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
0144             return true;
0145     } else if (channel->band == NL80211_BAND_5GHZ)
0146         if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
0147             (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
0148             return true;
0149 
0150     return false;
0151 }
0152 
0153 /**
0154  * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
0155  * @ah: The &struct ath5k_hw
0156  * @channel: The &struct ieee80211_channel
0157  */
0158 bool
0159 ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
0160                 struct ieee80211_channel *channel)
0161 {
0162     u8 refclk_freq;
0163 
0164     if ((ah->ah_radio == AR5K_RF5112) ||
0165     (ah->ah_radio == AR5K_RF5413) ||
0166     (ah->ah_radio == AR5K_RF2413) ||
0167     (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
0168         refclk_freq = 40;
0169     else
0170         refclk_freq = 32;
0171 
0172     if ((channel->center_freq % refclk_freq != 0) &&
0173     ((channel->center_freq % refclk_freq < 10) ||
0174     (channel->center_freq % refclk_freq > 22)))
0175         return true;
0176     else
0177         return false;
0178 }
0179 
0180 /**
0181  * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
0182  * @ah: The &struct ath5k_hw
0183  * @rf_regs: The struct ath5k_rf_reg
0184  * @val: New value
0185  * @reg_id: RF register ID
0186  * @set: Indicate we need to swap data
0187  *
0188  * This is an internal function used to modify RF Banks before
0189  * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
0190  * infos.
0191  */
0192 static unsigned int
0193 ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
0194                     u32 val, u8 reg_id, bool set)
0195 {
0196     const struct ath5k_rf_reg *rfreg = NULL;
0197     u8 offset, bank, num_bits, col, position;
0198     u16 entry;
0199     u32 mask, data, last_bit, bits_shifted, first_bit;
0200     u32 *rfb;
0201     s32 bits_left;
0202     int i;
0203 
0204     data = 0;
0205     rfb = ah->ah_rf_banks;
0206 
0207     for (i = 0; i < ah->ah_rf_regs_count; i++) {
0208         if (rf_regs[i].index == reg_id) {
0209             rfreg = &rf_regs[i];
0210             break;
0211         }
0212     }
0213 
0214     if (rfb == NULL || rfreg == NULL) {
0215         ATH5K_PRINTF("Rf register not found!\n");
0216         /* should not happen */
0217         return 0;
0218     }
0219 
0220     bank = rfreg->bank;
0221     num_bits = rfreg->field.len;
0222     first_bit = rfreg->field.pos;
0223     col = rfreg->field.col;
0224 
0225     /* first_bit is an offset from bank's
0226      * start. Since we have all banks on
0227      * the same array, we use this offset
0228      * to mark each bank's start */
0229     offset = ah->ah_offset[bank];
0230 
0231     /* Boundary check */
0232     if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
0233         ATH5K_PRINTF("invalid values at offset %u\n", offset);
0234         return 0;
0235     }
0236 
0237     entry = ((first_bit - 1) / 8) + offset;
0238     position = (first_bit - 1) % 8;
0239 
0240     if (set)
0241         data = ath5k_hw_bitswap(val, num_bits);
0242 
0243     for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
0244          position = 0, entry++) {
0245 
0246         last_bit = (position + bits_left > 8) ? 8 :
0247                     position + bits_left;
0248 
0249         mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
0250                                 (col * 8);
0251 
0252         if (set) {
0253             rfb[entry] &= ~mask;
0254             rfb[entry] |= ((data << position) << (col * 8)) & mask;
0255             data >>= (8 - position);
0256         } else {
0257             data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
0258                 << bits_shifted;
0259             bits_shifted += last_bit - position;
0260         }
0261 
0262         bits_left -= 8 - position;
0263     }
0264 
0265     data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
0266 
0267     return data;
0268 }
0269 
0270 /**
0271  * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
0272  * @ah: the &struct ath5k_hw
0273  * @channel: the currently set channel upon reset
0274  *
0275  * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
0276  * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
0277  *
0278  * Since delta slope is floating point we split it on its exponent and
0279  * mantissa and provide these values on hw.
0280  *
0281  * For more infos i think this patent is related
0282  * "http://www.freepatentsonline.com/7184495.html"
0283  */
0284 static inline int
0285 ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
0286                 struct ieee80211_channel *channel)
0287 {
0288     /* Get exponent and mantissa and set it */
0289     u32 coef_scaled, coef_exp, coef_man,
0290         ds_coef_exp, ds_coef_man, clock;
0291 
0292     BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
0293         (channel->hw_value == AR5K_MODE_11B));
0294 
0295     /* Get coefficient
0296      * ALGO: coef = (5 * clock / carrier_freq) / 2
0297      * we scale coef by shifting clock value by 24 for
0298      * better precision since we use integers */
0299     switch (ah->ah_bwmode) {
0300     case AR5K_BWMODE_40MHZ:
0301         clock = 40 * 2;
0302         break;
0303     case AR5K_BWMODE_10MHZ:
0304         clock = 40 / 2;
0305         break;
0306     case AR5K_BWMODE_5MHZ:
0307         clock = 40 / 4;
0308         break;
0309     default:
0310         clock = 40;
0311         break;
0312     }
0313     coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
0314 
0315     /* Get exponent
0316      * ALGO: coef_exp = 14 - highest set bit position */
0317     coef_exp = ilog2(coef_scaled);
0318 
0319     /* Doesn't make sense if it's zero*/
0320     if (!coef_scaled || !coef_exp)
0321         return -EINVAL;
0322 
0323     /* Note: we've shifted coef_scaled by 24 */
0324     coef_exp = 14 - (coef_exp - 24);
0325 
0326 
0327     /* Get mantissa (significant digits)
0328      * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
0329     coef_man = coef_scaled +
0330         (1 << (24 - coef_exp - 1));
0331 
0332     /* Calculate delta slope coefficient exponent
0333      * and mantissa (remove scaling) and set them on hw */
0334     ds_coef_man = coef_man >> (24 - coef_exp);
0335     ds_coef_exp = coef_exp - 16;
0336 
0337     AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
0338         AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
0339     AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
0340         AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
0341 
0342     return 0;
0343 }
0344 
0345 /**
0346  * ath5k_hw_phy_disable() - Disable PHY
0347  * @ah: The &struct ath5k_hw
0348  */
0349 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
0350 {
0351     /*Just a try M.F.*/
0352     ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
0353 
0354     return 0;
0355 }
0356 
0357 /**
0358  * ath5k_hw_wait_for_synth() - Wait for synth to settle
0359  * @ah: The &struct ath5k_hw
0360  * @channel: The &struct ieee80211_channel
0361  */
0362 static void
0363 ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
0364             struct ieee80211_channel *channel)
0365 {
0366     /*
0367      * On 5211+ read activation -> rx delay
0368      * and use it (100ns steps).
0369      */
0370     if (ah->ah_version != AR5K_AR5210) {
0371         u32 delay;
0372         delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
0373             AR5K_PHY_RX_DELAY_M;
0374         delay = (channel->hw_value == AR5K_MODE_11B) ?
0375             ((delay << 2) / 22) : (delay / 10);
0376         if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
0377             delay = delay << 1;
0378         if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
0379             delay = delay << 2;
0380         /* XXX: /2 on turbo ? Let's be safe
0381          * for now */
0382         usleep_range(100 + delay, 100 + (2 * delay));
0383     } else {
0384         usleep_range(1000, 1500);
0385     }
0386 }
0387 
0388 
0389 /**********************\
0390 * RF Gain optimization *
0391 \**********************/
0392 
0393 /**
0394  * DOC: RF Gain optimization
0395  *
0396  * This code is used to optimize RF gain on different environments
0397  * (temperature mostly) based on feedback from a power detector.
0398  *
0399  * It's only used on RF5111 and RF5112, later RF chips seem to have
0400  * auto adjustment on hw -notice they have a much smaller BANK 7 and
0401  * no gain optimization ladder-.
0402  *
0403  * For more infos check out this patent doc
0404  * "http://www.freepatentsonline.com/7400691.html"
0405  *
0406  * This paper describes power drops as seen on the receiver due to
0407  * probe packets
0408  * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
0409  * %20of%20Power%20Control.pdf"
0410  *
0411  * And this is the MadWiFi bug entry related to the above
0412  * "http://madwifi-project.org/ticket/1659"
0413  * with various measurements and diagrams
0414  */
0415 
0416 /**
0417  * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
0418  * @ah: The &struct ath5k_hw
0419  */
0420 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
0421 {
0422     /* Initialize the gain optimization values */
0423     switch (ah->ah_radio) {
0424     case AR5K_RF5111:
0425         ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
0426         ah->ah_gain.g_low = 20;
0427         ah->ah_gain.g_high = 35;
0428         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
0429         break;
0430     case AR5K_RF5112:
0431         ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
0432         ah->ah_gain.g_low = 20;
0433         ah->ah_gain.g_high = 85;
0434         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
0435         break;
0436     default:
0437         return -EINVAL;
0438     }
0439 
0440     return 0;
0441 }
0442 
0443 /**
0444  * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
0445  * @ah: The &struct ath5k_hw
0446  *
0447  * Schedules a gain probe check on the next transmitted packet.
0448  * That means our next packet is going to be sent with lower
0449  * tx power and a Peak to Average Power Detector (PAPD) will try
0450  * to measure the gain.
0451  *
0452  * TODO: Force a tx packet (bypassing PCU arbitrator etc)
0453  * just after we enable the probe so that we don't mess with
0454  * standard traffic.
0455  */
0456 static void
0457 ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
0458 {
0459 
0460     /* Skip if gain calibration is inactive or
0461      * we already handle a probe request */
0462     if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
0463         return;
0464 
0465     /* Send the packet with 2dB below max power as
0466      * patent doc suggest */
0467     ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
0468             AR5K_PHY_PAPD_PROBE_TXPOWER) |
0469             AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
0470 
0471     ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
0472 
0473 }
0474 
0475 /**
0476  * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
0477  * @ah: The &struct ath5k_hw
0478  *
0479  * Calculate Gain_F measurement correction
0480  * based on the current step for RF5112 rev. 2
0481  */
0482 static u32
0483 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
0484 {
0485     u32 mix, step;
0486     const struct ath5k_gain_opt *go;
0487     const struct ath5k_gain_opt_step *g_step;
0488     const struct ath5k_rf_reg *rf_regs;
0489 
0490     /* Only RF5112 Rev. 2 supports it */
0491     if ((ah->ah_radio != AR5K_RF5112) ||
0492     (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
0493         return 0;
0494 
0495     go = &rfgain_opt_5112;
0496     rf_regs = rf_regs_5112a;
0497     ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
0498 
0499     g_step = &go->go_step[ah->ah_gain.g_step_idx];
0500 
0501     if (ah->ah_rf_banks == NULL)
0502         return 0;
0503 
0504     ah->ah_gain.g_f_corr = 0;
0505 
0506     /* No VGA (Variable Gain Amplifier) override, skip */
0507     if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
0508         return 0;
0509 
0510     /* Mix gain stepping */
0511     step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
0512 
0513     /* Mix gain override */
0514     mix = g_step->gos_param[0];
0515 
0516     switch (mix) {
0517     case 3:
0518         ah->ah_gain.g_f_corr = step * 2;
0519         break;
0520     case 2:
0521         ah->ah_gain.g_f_corr = (step - 5) * 2;
0522         break;
0523     case 1:
0524         ah->ah_gain.g_f_corr = step;
0525         break;
0526     default:
0527         ah->ah_gain.g_f_corr = 0;
0528         break;
0529     }
0530 
0531     return ah->ah_gain.g_f_corr;
0532 }
0533 
0534 /**
0535  * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
0536  * @ah: The &struct ath5k_hw
0537  *
0538  * Check if current gain_F measurement is in the range of our
0539  * power detector windows. If we get a measurement outside range
0540  * we know it's not accurate (detectors can't measure anything outside
0541  * their detection window) so we must ignore it.
0542  *
0543  * Returns true if readback was O.K. or false on failure
0544  */
0545 static bool
0546 ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
0547 {
0548     const struct ath5k_rf_reg *rf_regs;
0549     u32 step, mix_ovr, level[4];
0550 
0551     if (ah->ah_rf_banks == NULL)
0552         return false;
0553 
0554     if (ah->ah_radio == AR5K_RF5111) {
0555 
0556         rf_regs = rf_regs_5111;
0557         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
0558 
0559         step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
0560             false);
0561 
0562         level[0] = 0;
0563         level[1] = (step == 63) ? 50 : step + 4;
0564         level[2] = (step != 63) ? 64 : level[0];
0565         level[3] = level[2] + 50;
0566 
0567         ah->ah_gain.g_high = level[3] -
0568             (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
0569         ah->ah_gain.g_low = level[0] +
0570             (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
0571     } else {
0572 
0573         rf_regs = rf_regs_5112;
0574         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
0575 
0576         mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
0577             false);
0578 
0579         level[0] = level[2] = 0;
0580 
0581         if (mix_ovr == 1) {
0582             level[1] = level[3] = 83;
0583         } else {
0584             level[1] = level[3] = 107;
0585             ah->ah_gain.g_high = 55;
0586         }
0587     }
0588 
0589     return (ah->ah_gain.g_current >= level[0] &&
0590             ah->ah_gain.g_current <= level[1]) ||
0591         (ah->ah_gain.g_current >= level[2] &&
0592             ah->ah_gain.g_current <= level[3]);
0593 }
0594 
0595 /**
0596  * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
0597  * @ah: The &struct ath5k_hw
0598  *
0599  * Choose the right target gain based on current gain
0600  * and RF gain optimization ladder
0601  */
0602 static s8
0603 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
0604 {
0605     const struct ath5k_gain_opt *go;
0606     const struct ath5k_gain_opt_step *g_step;
0607     int ret = 0;
0608 
0609     switch (ah->ah_radio) {
0610     case AR5K_RF5111:
0611         go = &rfgain_opt_5111;
0612         break;
0613     case AR5K_RF5112:
0614         go = &rfgain_opt_5112;
0615         break;
0616     default:
0617         return 0;
0618     }
0619 
0620     g_step = &go->go_step[ah->ah_gain.g_step_idx];
0621 
0622     if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
0623 
0624         /* Reached maximum */
0625         if (ah->ah_gain.g_step_idx == 0)
0626             return -1;
0627 
0628         for (ah->ah_gain.g_target = ah->ah_gain.g_current;
0629                 ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
0630                 ah->ah_gain.g_step_idx > 0;
0631                 g_step = &go->go_step[ah->ah_gain.g_step_idx])
0632             ah->ah_gain.g_target -= 2 *
0633                 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
0634                 g_step->gos_gain);
0635 
0636         ret = 1;
0637         goto done;
0638     }
0639 
0640     if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
0641 
0642         /* Reached minimum */
0643         if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
0644             return -2;
0645 
0646         for (ah->ah_gain.g_target = ah->ah_gain.g_current;
0647                 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
0648                 ah->ah_gain.g_step_idx < go->go_steps_count - 1;
0649                 g_step = &go->go_step[ah->ah_gain.g_step_idx])
0650             ah->ah_gain.g_target -= 2 *
0651                 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
0652                 g_step->gos_gain);
0653 
0654         ret = 2;
0655         goto done;
0656     }
0657 
0658 done:
0659     ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
0660         "ret %d, gain step %u, current gain %u, target gain %u\n",
0661         ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
0662         ah->ah_gain.g_target);
0663 
0664     return ret;
0665 }
0666 
0667 /**
0668  * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
0669  * @ah: The &struct ath5k_hw
0670  *
0671  * Main callback for thermal RF gain calibration engine
0672  * Check for a new gain reading and schedule an adjustment
0673  * if needed.
0674  *
0675  * Returns one of enum ath5k_rfgain codes
0676  */
0677 enum ath5k_rfgain
0678 ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
0679 {
0680     u32 data, type;
0681     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
0682 
0683     if (ah->ah_rf_banks == NULL ||
0684     ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
0685         return AR5K_RFGAIN_INACTIVE;
0686 
0687     /* No check requested, either engine is inactive
0688      * or an adjustment is already requested */
0689     if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
0690         goto done;
0691 
0692     /* Read the PAPD (Peak to Average Power Detector)
0693      * register */
0694     data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
0695 
0696     /* No probe is scheduled, read gain_F measurement */
0697     if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
0698         ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
0699         type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
0700 
0701         /* If tx packet is CCK correct the gain_F measurement
0702          * by cck ofdm gain delta */
0703         if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
0704             if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
0705                 ah->ah_gain.g_current +=
0706                     ee->ee_cck_ofdm_gain_delta;
0707             else
0708                 ah->ah_gain.g_current +=
0709                     AR5K_GAIN_CCK_PROBE_CORR;
0710         }
0711 
0712         /* Further correct gain_F measurement for
0713          * RF5112A radios */
0714         if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
0715             ath5k_hw_rf_gainf_corr(ah);
0716             ah->ah_gain.g_current =
0717                 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
0718                 (ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
0719                 0;
0720         }
0721 
0722         /* Check if measurement is ok and if we need
0723          * to adjust gain, schedule a gain adjustment,
0724          * else switch back to the active state */
0725         if (ath5k_hw_rf_check_gainf_readback(ah) &&
0726         AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
0727         ath5k_hw_rf_gainf_adjust(ah)) {
0728             ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
0729         } else {
0730             ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
0731         }
0732     }
0733 
0734 done:
0735     return ah->ah_gain.g_state;
0736 }
0737 
0738 /**
0739  * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
0740  * @ah: The &struct ath5k_hw
0741  * @band: One of enum nl80211_band
0742  *
0743  * Write initial RF gain table to set the RF sensitivity.
0744  *
0745  * NOTE: This one works on all RF chips and has nothing to do
0746  * with Gain_F calibration
0747  */
0748 static int
0749 ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum nl80211_band band)
0750 {
0751     const struct ath5k_ini_rfgain *ath5k_rfg;
0752     unsigned int i, size, index;
0753 
0754     switch (ah->ah_radio) {
0755     case AR5K_RF5111:
0756         ath5k_rfg = rfgain_5111;
0757         size = ARRAY_SIZE(rfgain_5111);
0758         break;
0759     case AR5K_RF5112:
0760         ath5k_rfg = rfgain_5112;
0761         size = ARRAY_SIZE(rfgain_5112);
0762         break;
0763     case AR5K_RF2413:
0764         ath5k_rfg = rfgain_2413;
0765         size = ARRAY_SIZE(rfgain_2413);
0766         break;
0767     case AR5K_RF2316:
0768         ath5k_rfg = rfgain_2316;
0769         size = ARRAY_SIZE(rfgain_2316);
0770         break;
0771     case AR5K_RF5413:
0772         ath5k_rfg = rfgain_5413;
0773         size = ARRAY_SIZE(rfgain_5413);
0774         break;
0775     case AR5K_RF2317:
0776     case AR5K_RF2425:
0777         ath5k_rfg = rfgain_2425;
0778         size = ARRAY_SIZE(rfgain_2425);
0779         break;
0780     default:
0781         return -EINVAL;
0782     }
0783 
0784     index = (band == NL80211_BAND_2GHZ) ? 1 : 0;
0785 
0786     for (i = 0; i < size; i++) {
0787         AR5K_REG_WAIT(i);
0788         ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
0789             (u32)ath5k_rfg[i].rfg_register);
0790     }
0791 
0792     return 0;
0793 }
0794 
0795 
0796 /********************\
0797 * RF Registers setup *
0798 \********************/
0799 
0800 /**
0801  * ath5k_hw_rfregs_init() - Initialize RF register settings
0802  * @ah: The &struct ath5k_hw
0803  * @channel: The &struct ieee80211_channel
0804  * @mode: One of enum ath5k_driver_mode
0805  *
0806  * Setup RF registers by writing RF buffer on hw. For
0807  * more infos on this, check out rfbuffer.h
0808  */
0809 static int
0810 ath5k_hw_rfregs_init(struct ath5k_hw *ah,
0811             struct ieee80211_channel *channel,
0812             unsigned int mode)
0813 {
0814     const struct ath5k_rf_reg *rf_regs;
0815     const struct ath5k_ini_rfbuffer *ini_rfb;
0816     const struct ath5k_gain_opt *go = NULL;
0817     const struct ath5k_gain_opt_step *g_step;
0818     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
0819     u8 ee_mode = 0;
0820     u32 *rfb;
0821     int i, obdb = -1, bank = -1;
0822 
0823     switch (ah->ah_radio) {
0824     case AR5K_RF5111:
0825         rf_regs = rf_regs_5111;
0826         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
0827         ini_rfb = rfb_5111;
0828         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
0829         go = &rfgain_opt_5111;
0830         break;
0831     case AR5K_RF5112:
0832         if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
0833             rf_regs = rf_regs_5112a;
0834             ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
0835             ini_rfb = rfb_5112a;
0836             ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
0837         } else {
0838             rf_regs = rf_regs_5112;
0839             ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
0840             ini_rfb = rfb_5112;
0841             ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
0842         }
0843         go = &rfgain_opt_5112;
0844         break;
0845     case AR5K_RF2413:
0846         rf_regs = rf_regs_2413;
0847         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
0848         ini_rfb = rfb_2413;
0849         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
0850         break;
0851     case AR5K_RF2316:
0852         rf_regs = rf_regs_2316;
0853         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
0854         ini_rfb = rfb_2316;
0855         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
0856         break;
0857     case AR5K_RF5413:
0858         rf_regs = rf_regs_5413;
0859         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
0860         ini_rfb = rfb_5413;
0861         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
0862         break;
0863     case AR5K_RF2317:
0864         rf_regs = rf_regs_2425;
0865         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
0866         ini_rfb = rfb_2317;
0867         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
0868         break;
0869     case AR5K_RF2425:
0870         rf_regs = rf_regs_2425;
0871         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
0872         if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
0873             ini_rfb = rfb_2425;
0874             ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
0875         } else {
0876             ini_rfb = rfb_2417;
0877             ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
0878         }
0879         break;
0880     default:
0881         return -EINVAL;
0882     }
0883 
0884     /* If it's the first time we set RF buffer, allocate
0885      * ah->ah_rf_banks based on ah->ah_rf_banks_size
0886      * we set above */
0887     if (ah->ah_rf_banks == NULL) {
0888         ah->ah_rf_banks = kmalloc_array(ah->ah_rf_banks_size,
0889                                 sizeof(u32),
0890                                 GFP_KERNEL);
0891         if (ah->ah_rf_banks == NULL) {
0892             ATH5K_ERR(ah, "out of memory\n");
0893             return -ENOMEM;
0894         }
0895     }
0896 
0897     /* Copy values to modify them */
0898     rfb = ah->ah_rf_banks;
0899 
0900     for (i = 0; i < ah->ah_rf_banks_size; i++) {
0901         if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
0902             ATH5K_ERR(ah, "invalid bank\n");
0903             return -EINVAL;
0904         }
0905 
0906         /* Bank changed, write down the offset */
0907         if (bank != ini_rfb[i].rfb_bank) {
0908             bank = ini_rfb[i].rfb_bank;
0909             ah->ah_offset[bank] = i;
0910         }
0911 
0912         rfb[i] = ini_rfb[i].rfb_mode_data[mode];
0913     }
0914 
0915     /* Set Output and Driver bias current (OB/DB) */
0916     if (channel->band == NL80211_BAND_2GHZ) {
0917 
0918         if (channel->hw_value == AR5K_MODE_11B)
0919             ee_mode = AR5K_EEPROM_MODE_11B;
0920         else
0921             ee_mode = AR5K_EEPROM_MODE_11G;
0922 
0923         /* For RF511X/RF211X combination we
0924          * use b_OB and b_DB parameters stored
0925          * in eeprom on ee->ee_ob[ee_mode][0]
0926          *
0927          * For all other chips we use OB/DB for 2GHz
0928          * stored in the b/g modal section just like
0929          * 802.11a on ee->ee_ob[ee_mode][1] */
0930         if ((ah->ah_radio == AR5K_RF5111) ||
0931         (ah->ah_radio == AR5K_RF5112))
0932             obdb = 0;
0933         else
0934             obdb = 1;
0935 
0936         ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
0937                         AR5K_RF_OB_2GHZ, true);
0938 
0939         ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
0940                         AR5K_RF_DB_2GHZ, true);
0941 
0942     /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
0943     } else if ((channel->band == NL80211_BAND_5GHZ) ||
0944             (ah->ah_radio == AR5K_RF5111)) {
0945 
0946         /* For 11a, Turbo and XR we need to choose
0947          * OB/DB based on frequency range */
0948         ee_mode = AR5K_EEPROM_MODE_11A;
0949         obdb =   channel->center_freq >= 5725 ? 3 :
0950             (channel->center_freq >= 5500 ? 2 :
0951             (channel->center_freq >= 5260 ? 1 :
0952              (channel->center_freq > 4000 ? 0 : -1)));
0953 
0954         if (obdb < 0)
0955             return -EINVAL;
0956 
0957         ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
0958                         AR5K_RF_OB_5GHZ, true);
0959 
0960         ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
0961                         AR5K_RF_DB_5GHZ, true);
0962     }
0963 
0964     g_step = &go->go_step[ah->ah_gain.g_step_idx];
0965 
0966     /* Set turbo mode (N/A on RF5413) */
0967     if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
0968     (ah->ah_radio != AR5K_RF5413))
0969         ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
0970 
0971     /* Bank Modifications (chip-specific) */
0972     if (ah->ah_radio == AR5K_RF5111) {
0973 
0974         /* Set gain_F settings according to current step */
0975         if (channel->hw_value != AR5K_MODE_11B) {
0976 
0977             AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
0978                     AR5K_PHY_FRAME_CTL_TX_CLIP,
0979                     g_step->gos_param[0]);
0980 
0981             ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
0982                             AR5K_RF_PWD_90, true);
0983 
0984             ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
0985                             AR5K_RF_PWD_84, true);
0986 
0987             ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
0988                         AR5K_RF_RFGAIN_SEL, true);
0989 
0990             /* We programmed gain_F parameters, switch back
0991              * to active state */
0992             ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
0993 
0994         }
0995 
0996         /* Bank 6/7 setup */
0997 
0998         ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
0999                         AR5K_RF_PWD_XPD, true);
1000 
1001         ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1002                         AR5K_RF_XPD_GAIN, true);
1003 
1004         ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1005                         AR5K_RF_GAIN_I, true);
1006 
1007         ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1008                         AR5K_RF_PLO_SEL, true);
1009 
1010         /* Tweak power detectors for half/quarter rate support */
1011         if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1012         ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1013             u8 wait_i;
1014 
1015             ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1016                         AR5K_RF_WAIT_S, true);
1017 
1018             wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1019                             0x1f : 0x10;
1020 
1021             ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1022                         AR5K_RF_WAIT_I, true);
1023             ath5k_hw_rfb_op(ah, rf_regs, 3,
1024                         AR5K_RF_MAX_TIME, true);
1025 
1026         }
1027     }
1028 
1029     if (ah->ah_radio == AR5K_RF5112) {
1030 
1031         /* Set gain_F settings according to current step */
1032         if (channel->hw_value != AR5K_MODE_11B) {
1033 
1034             ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1035                         AR5K_RF_MIXGAIN_OVR, true);
1036 
1037             ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1038                         AR5K_RF_PWD_138, true);
1039 
1040             ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1041                         AR5K_RF_PWD_137, true);
1042 
1043             ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1044                         AR5K_RF_PWD_136, true);
1045 
1046             ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1047                         AR5K_RF_PWD_132, true);
1048 
1049             ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1050                         AR5K_RF_PWD_131, true);
1051 
1052             ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1053                         AR5K_RF_PWD_130, true);
1054 
1055             /* We programmed gain_F parameters, switch back
1056              * to active state */
1057             ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1058         }
1059 
1060         /* Bank 6/7 setup */
1061 
1062         ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1063                         AR5K_RF_XPD_SEL, true);
1064 
1065         if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1066             /* Rev. 1 supports only one xpd */
1067             ath5k_hw_rfb_op(ah, rf_regs,
1068                         ee->ee_x_gain[ee_mode],
1069                         AR5K_RF_XPD_GAIN, true);
1070 
1071         } else {
1072             u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1073             if (ee->ee_pd_gains[ee_mode] > 1) {
1074                 ath5k_hw_rfb_op(ah, rf_regs,
1075                         pdg_curve_to_idx[0],
1076                         AR5K_RF_PD_GAIN_LO, true);
1077                 ath5k_hw_rfb_op(ah, rf_regs,
1078                         pdg_curve_to_idx[1],
1079                         AR5K_RF_PD_GAIN_HI, true);
1080             } else {
1081                 ath5k_hw_rfb_op(ah, rf_regs,
1082                         pdg_curve_to_idx[0],
1083                         AR5K_RF_PD_GAIN_LO, true);
1084                 ath5k_hw_rfb_op(ah, rf_regs,
1085                         pdg_curve_to_idx[0],
1086                         AR5K_RF_PD_GAIN_HI, true);
1087             }
1088 
1089             /* Lower synth voltage on Rev 2 */
1090             if (ah->ah_radio == AR5K_RF5112 &&
1091                 (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1092                 ath5k_hw_rfb_op(ah, rf_regs, 2,
1093                         AR5K_RF_HIGH_VC_CP, true);
1094 
1095                 ath5k_hw_rfb_op(ah, rf_regs, 2,
1096                         AR5K_RF_MID_VC_CP, true);
1097 
1098                 ath5k_hw_rfb_op(ah, rf_regs, 2,
1099                         AR5K_RF_LOW_VC_CP, true);
1100 
1101                 ath5k_hw_rfb_op(ah, rf_regs, 2,
1102                         AR5K_RF_PUSH_UP, true);
1103             }
1104 
1105             /* Decrease power consumption on 5213+ BaseBand */
1106             if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1107                 ath5k_hw_rfb_op(ah, rf_regs, 1,
1108                         AR5K_RF_PAD2GND, true);
1109 
1110                 ath5k_hw_rfb_op(ah, rf_regs, 1,
1111                         AR5K_RF_XB2_LVL, true);
1112 
1113                 ath5k_hw_rfb_op(ah, rf_regs, 1,
1114                         AR5K_RF_XB5_LVL, true);
1115 
1116                 ath5k_hw_rfb_op(ah, rf_regs, 1,
1117                         AR5K_RF_PWD_167, true);
1118 
1119                 ath5k_hw_rfb_op(ah, rf_regs, 1,
1120                         AR5K_RF_PWD_166, true);
1121             }
1122         }
1123 
1124         ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1125                         AR5K_RF_GAIN_I, true);
1126 
1127         /* Tweak power detector for half/quarter rates */
1128         if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1129         ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1130             u8 pd_delay;
1131 
1132             pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1133                             0xf : 0x8;
1134 
1135             ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1136                         AR5K_RF_PD_PERIOD_A, true);
1137             ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1138                         AR5K_RF_PD_DELAY_A, true);
1139 
1140         }
1141     }
1142 
1143     if (ah->ah_radio == AR5K_RF5413 &&
1144     channel->band == NL80211_BAND_2GHZ) {
1145 
1146         ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1147                                     true);
1148 
1149         /* Set optimum value for early revisions (on pci-e chips) */
1150         if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1151         ah->ah_mac_srev < AR5K_SREV_AR5413)
1152             ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1153                         AR5K_RF_PWD_ICLOBUF_2G, true);
1154 
1155     }
1156 
1157     /* Write RF banks on hw */
1158     for (i = 0; i < ah->ah_rf_banks_size; i++) {
1159         AR5K_REG_WAIT(i);
1160         ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1161     }
1162 
1163     return 0;
1164 }
1165 
1166 
1167 /**************************\
1168   PHY/RF channel functions
1169 \**************************/
1170 
1171 /**
1172  * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1173  * @channel: The &struct ieee80211_channel
1174  *
1175  * Map channel frequency to IEEE channel number and convert it
1176  * to an internal channel value used by the RF5110 chipset.
1177  */
1178 static u32
1179 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1180 {
1181     u32 athchan;
1182 
1183     athchan = (ath5k_hw_bitswap(
1184             (ieee80211_frequency_to_channel(
1185                 channel->center_freq) - 24) / 2, 5)
1186                 << 1) | (1 << 6) | 0x1;
1187     return athchan;
1188 }
1189 
1190 /**
1191  * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1192  * @ah: The &struct ath5k_hw
1193  * @channel: The &struct ieee80211_channel
1194  */
1195 static int
1196 ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1197         struct ieee80211_channel *channel)
1198 {
1199     u32 data;
1200 
1201     /*
1202      * Set the channel and wait
1203      */
1204     data = ath5k_hw_rf5110_chan2athchan(channel);
1205     ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1206     ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1207     usleep_range(1000, 1500);
1208 
1209     return 0;
1210 }
1211 
1212 /**
1213  * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1214  * @ieee: IEEE channel number
1215  * @athchan: The &struct ath5k_athchan_2ghz
1216  *
1217  * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1218  * we need to add some offsets and extra flags to the data values we pass
1219  * on to the PHY. So for every 2GHz channel this function gets called
1220  * to do the conversion.
1221  */
1222 static int
1223 ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1224         struct ath5k_athchan_2ghz *athchan)
1225 {
1226     int channel;
1227 
1228     /* Cast this value to catch negative channel numbers (>= -19) */
1229     channel = (int)ieee;
1230 
1231     /*
1232      * Map 2GHz IEEE channel to 5GHz Atheros channel
1233      */
1234     if (channel <= 13) {
1235         athchan->a2_athchan = 115 + channel;
1236         athchan->a2_flags = 0x46;
1237     } else if (channel == 14) {
1238         athchan->a2_athchan = 124;
1239         athchan->a2_flags = 0x44;
1240     } else if (channel >= 15 && channel <= 26) {
1241         athchan->a2_athchan = ((channel - 14) * 4) + 132;
1242         athchan->a2_flags = 0x46;
1243     } else
1244         return -EINVAL;
1245 
1246     return 0;
1247 }
1248 
1249 /**
1250  * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1251  * @ah: The &struct ath5k_hw
1252  * @channel: The &struct ieee80211_channel
1253  */
1254 static int
1255 ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1256         struct ieee80211_channel *channel)
1257 {
1258     struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1259     unsigned int ath5k_channel =
1260         ieee80211_frequency_to_channel(channel->center_freq);
1261     u32 data0, data1, clock;
1262     int ret;
1263 
1264     /*
1265      * Set the channel on the RF5111 radio
1266      */
1267     data0 = data1 = 0;
1268 
1269     if (channel->band == NL80211_BAND_2GHZ) {
1270         /* Map 2GHz channel to 5GHz Atheros channel ID */
1271         ret = ath5k_hw_rf5111_chan2athchan(
1272             ieee80211_frequency_to_channel(channel->center_freq),
1273             &ath5k_channel_2ghz);
1274         if (ret)
1275             return ret;
1276 
1277         ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1278         data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1279             << 5) | (1 << 4);
1280     }
1281 
1282     if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1283         clock = 1;
1284         data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1285             (clock << 1) | (1 << 10) | 1;
1286     } else {
1287         clock = 0;
1288         data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1289             << 2) | (clock << 1) | (1 << 10) | 1;
1290     }
1291 
1292     ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1293             AR5K_RF_BUFFER);
1294     ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1295             AR5K_RF_BUFFER_CONTROL_3);
1296 
1297     return 0;
1298 }
1299 
1300 /**
1301  * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1302  * @ah: The &struct ath5k_hw
1303  * @channel: The &struct ieee80211_channel
1304  *
1305  * On RF5112/2112 and newer we don't need to do any conversion.
1306  * We pass the frequency value after a few modifications to the
1307  * chip directly.
1308  *
1309  * NOTE: Make sure channel frequency given is within our range or else
1310  * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1311  */
1312 static int
1313 ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1314         struct ieee80211_channel *channel)
1315 {
1316     u32 data, data0, data1, data2;
1317     u16 c;
1318 
1319     data = data0 = data1 = data2 = 0;
1320     c = channel->center_freq;
1321 
1322     /* My guess based on code:
1323      * 2GHz RF has 2 synth modes, one with a Local Oscillator
1324      * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1325      * (3040/2). data0 is used to set the PLL divider and data1
1326      * selects synth mode. */
1327     if (c < 4800) {
1328         /* Channel 14 and all frequencies with 2Hz spacing
1329          * below/above (non-standard channels) */
1330         if (!((c - 2224) % 5)) {
1331             /* Same as (c - 2224) / 5 */
1332             data0 = ((2 * (c - 704)) - 3040) / 10;
1333             data1 = 1;
1334         /* Channel 1 and all frequencies with 5Hz spacing
1335          * below/above (standard channels without channel 14) */
1336         } else if (!((c - 2192) % 5)) {
1337             /* Same as (c - 2192) / 5 */
1338             data0 = ((2 * (c - 672)) - 3040) / 10;
1339             data1 = 0;
1340         } else
1341             return -EINVAL;
1342 
1343         data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1344     /* This is more complex, we have a single synthesizer with
1345      * 4 reference clock settings (?) based on frequency spacing
1346      * and set using data2. LO is at 4800Hz and data0 is again used
1347      * to set some divider.
1348      *
1349      * NOTE: There is an old atheros presentation at Stanford
1350      * that mentions a method called dual direct conversion
1351      * with 1GHz sliding IF for RF5110. Maybe that's what we
1352      * have here, or an updated version. */
1353     } else if ((c % 5) != 2 || c > 5435) {
1354         if (!(c % 20) && c >= 5120) {
1355             data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1356             data2 = ath5k_hw_bitswap(3, 2);
1357         } else if (!(c % 10)) {
1358             data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1359             data2 = ath5k_hw_bitswap(2, 2);
1360         } else if (!(c % 5)) {
1361             data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1362             data2 = ath5k_hw_bitswap(1, 2);
1363         } else
1364             return -EINVAL;
1365     } else {
1366         data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1367         data2 = ath5k_hw_bitswap(0, 2);
1368     }
1369 
1370     data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1371 
1372     ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1373     ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1374 
1375     return 0;
1376 }
1377 
1378 /**
1379  * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1380  * @ah: The &struct ath5k_hw
1381  * @channel: The &struct ieee80211_channel
1382  *
1383  * AR2425/2417 have a different 2GHz RF so code changes
1384  * a little bit from RF5112.
1385  */
1386 static int
1387 ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1388         struct ieee80211_channel *channel)
1389 {
1390     u32 data, data0, data2;
1391     u16 c;
1392 
1393     data = data0 = data2 = 0;
1394     c = channel->center_freq;
1395 
1396     if (c < 4800) {
1397         data0 = ath5k_hw_bitswap((c - 2272), 8);
1398         data2 = 0;
1399     /* ? 5GHz ? */
1400     } else if ((c % 5) != 2 || c > 5435) {
1401         if (!(c % 20) && c < 5120)
1402             data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1403         else if (!(c % 10))
1404             data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1405         else if (!(c % 5))
1406             data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1407         else
1408             return -EINVAL;
1409         data2 = ath5k_hw_bitswap(1, 2);
1410     } else {
1411         data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1412         data2 = ath5k_hw_bitswap(0, 2);
1413     }
1414 
1415     data = (data0 << 4) | data2 << 2 | 0x1001;
1416 
1417     ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1418     ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1419 
1420     return 0;
1421 }
1422 
1423 /**
1424  * ath5k_hw_channel() - Set a channel on the radio chip
1425  * @ah: The &struct ath5k_hw
1426  * @channel: The &struct ieee80211_channel
1427  *
1428  * This is the main function called to set a channel on the
1429  * radio chip based on the radio chip version.
1430  */
1431 static int
1432 ath5k_hw_channel(struct ath5k_hw *ah,
1433         struct ieee80211_channel *channel)
1434 {
1435     int ret;
1436     /*
1437      * Check bounds supported by the PHY (we don't care about regulatory
1438      * restrictions at this point).
1439      */
1440     if (!ath5k_channel_ok(ah, channel)) {
1441         ATH5K_ERR(ah,
1442             "channel frequency (%u MHz) out of supported "
1443             "band range\n",
1444             channel->center_freq);
1445         return -EINVAL;
1446     }
1447 
1448     /*
1449      * Set the channel and wait
1450      */
1451     switch (ah->ah_radio) {
1452     case AR5K_RF5110:
1453         ret = ath5k_hw_rf5110_channel(ah, channel);
1454         break;
1455     case AR5K_RF5111:
1456         ret = ath5k_hw_rf5111_channel(ah, channel);
1457         break;
1458     case AR5K_RF2317:
1459     case AR5K_RF2425:
1460         ret = ath5k_hw_rf2425_channel(ah, channel);
1461         break;
1462     default:
1463         ret = ath5k_hw_rf5112_channel(ah, channel);
1464         break;
1465     }
1466 
1467     if (ret)
1468         return ret;
1469 
1470     /* Set JAPAN setting for channel 14 */
1471     if (channel->center_freq == 2484) {
1472         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1473                 AR5K_PHY_CCKTXCTL_JAPAN);
1474     } else {
1475         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1476                 AR5K_PHY_CCKTXCTL_WORLD);
1477     }
1478 
1479     ah->ah_current_channel = channel;
1480 
1481     return 0;
1482 }
1483 
1484 
1485 /*****************\
1486   PHY calibration
1487 \*****************/
1488 
1489 /**
1490  * DOC: PHY Calibration routines
1491  *
1492  * Noise floor calibration: When we tell the hardware to
1493  * perform a noise floor calibration by setting the
1494  * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1495  * sample-and-hold the minimum noise level seen at the antennas.
1496  * This value is then stored in a ring buffer of recently measured
1497  * noise floor values so we have a moving window of the last few
1498  * samples. The median of the values in the history is then loaded
1499  * into the hardware for its own use for RSSI and CCA measurements.
1500  * This type of calibration doesn't interfere with traffic.
1501  *
1502  * AGC calibration: When we tell the hardware to perform
1503  * an AGC (Automatic Gain Control) calibration by setting the
1504  * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1505  * a calibration on the DC offsets of ADCs. During this period
1506  * rx/tx gets disabled so we have to deal with it on the driver
1507  * part.
1508  *
1509  * I/Q calibration: When we tell the hardware to perform
1510  * an I/Q calibration, it tries to correct I/Q imbalance and
1511  * fix QAM constellation by sampling data from rxed frames.
1512  * It doesn't interfere with traffic.
1513  *
1514  * For more infos on AGC and I/Q calibration check out patent doc
1515  * #03/094463.
1516  */
1517 
1518 /**
1519  * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1520  * @ah: The &struct ath5k_hw
1521  */
1522 static s32
1523 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1524 {
1525     s32 val;
1526 
1527     val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1528     return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1529 }
1530 
1531 /**
1532  * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1533  * @ah: The &struct ath5k_hw
1534  */
1535 void
1536 ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1537 {
1538     int i;
1539 
1540     ah->ah_nfcal_hist.index = 0;
1541     for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1542         ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1543 }
1544 
1545 /**
1546  * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1547  * @ah: The &struct ath5k_hw
1548  * @noise_floor: The NF we got from hw
1549  */
1550 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1551 {
1552     struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1553     hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1554     hist->nfval[hist->index] = noise_floor;
1555 }
1556 
1557 /**
1558  * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1559  * @ah: The &struct ath5k_hw
1560  */
1561 static s16
1562 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1563 {
1564     s16 sort[ATH5K_NF_CAL_HIST_MAX];
1565     s16 tmp;
1566     int i, j;
1567 
1568     memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1569     for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1570         for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1571             if (sort[j] > sort[j - 1]) {
1572                 tmp = sort[j];
1573                 sort[j] = sort[j - 1];
1574                 sort[j - 1] = tmp;
1575             }
1576         }
1577     }
1578     for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1579         ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1580             "cal %d:%d\n", i, sort[i]);
1581     }
1582     return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1583 }
1584 
1585 /**
1586  * ath5k_hw_update_noise_floor() - Update NF on hardware
1587  * @ah: The &struct ath5k_hw
1588  *
1589  * This is the main function we call to perform a NF calibration,
1590  * it reads NF from hardware, calculates the median and updates
1591  * NF on hw.
1592  */
1593 void
1594 ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1595 {
1596     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1597     u32 val;
1598     s16 nf, threshold;
1599     u8 ee_mode;
1600 
1601     /* keep last value if calibration hasn't completed */
1602     if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1603         ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1604             "NF did not complete in calibration window\n");
1605 
1606         return;
1607     }
1608 
1609     ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1610 
1611     ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);
1612 
1613     /* completed NF calibration, test threshold */
1614     nf = ath5k_hw_read_measured_noise_floor(ah);
1615     threshold = ee->ee_noise_floor_thr[ee_mode];
1616 
1617     if (nf > threshold) {
1618         ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1619             "noise floor failure detected; "
1620             "read %d, threshold %d\n",
1621             nf, threshold);
1622 
1623         nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1624     }
1625 
1626     ath5k_hw_update_nfcal_hist(ah, nf);
1627     nf = ath5k_hw_get_median_noise_floor(ah);
1628 
1629     /* load noise floor (in .5 dBm) so the hardware will use it */
1630     val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1631     val |= (nf * 2) & AR5K_PHY_NF_M;
1632     ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1633 
1634     AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1635         ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1636 
1637     ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1638         0, false);
1639 
1640     /*
1641      * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1642      * so that we're not capped by the median we just loaded.
1643      * This will be used as the initial value for the next noise
1644      * floor calibration.
1645      */
1646     val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1647     ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1648     AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1649         AR5K_PHY_AGCCTL_NF_EN |
1650         AR5K_PHY_AGCCTL_NF_NOUPDATE |
1651         AR5K_PHY_AGCCTL_NF);
1652 
1653     ah->ah_noise_floor = nf;
1654 
1655     ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1656 
1657     ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1658         "noise floor calibrated: %d\n", nf);
1659 }
1660 
1661 /**
1662  * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1663  * @ah: The &struct ath5k_hw
1664  * @channel: The &struct ieee80211_channel
1665  *
1666  * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1667  */
1668 static int
1669 ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1670         struct ieee80211_channel *channel)
1671 {
1672     u32 phy_sig, phy_agc, phy_sat, beacon;
1673     int ret;
1674 
1675     if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1676         return 0;
1677 
1678     /*
1679      * Disable beacons and RX/TX queues, wait
1680      */
1681     AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1682         AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1683     beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1684     ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1685 
1686     usleep_range(2000, 2500);
1687 
1688     /*
1689      * Set the channel (with AGC turned off)
1690      */
1691     AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1692     udelay(10);
1693     ret = ath5k_hw_channel(ah, channel);
1694 
1695     /*
1696      * Activate PHY and wait
1697      */
1698     ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1699     usleep_range(1000, 1500);
1700 
1701     AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1702 
1703     if (ret)
1704         return ret;
1705 
1706     /*
1707      * Calibrate the radio chip
1708      */
1709 
1710     /* Remember normal state */
1711     phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1712     phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1713     phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1714 
1715     /* Update radio registers */
1716     ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1717         AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1718 
1719     ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1720             AR5K_PHY_AGCCOARSE_LO)) |
1721         AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1722         AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1723 
1724     ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1725             AR5K_PHY_ADCSAT_THR)) |
1726         AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1727         AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1728 
1729     udelay(20);
1730 
1731     AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1732     udelay(10);
1733     ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1734     AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1735 
1736     usleep_range(1000, 1500);
1737 
1738     /*
1739      * Enable calibration and wait until completion
1740      */
1741     AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1742 
1743     ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1744             AR5K_PHY_AGCCTL_CAL, 0, false);
1745 
1746     /* Reset to normal state */
1747     ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1748     ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1749     ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1750 
1751     if (ret) {
1752         ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1753                 channel->center_freq);
1754         return ret;
1755     }
1756 
1757     /*
1758      * Re-enable RX/TX and beacons
1759      */
1760     AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1761         AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1762     ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1763 
1764     return 0;
1765 }
1766 
1767 /**
1768  * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1769  * @ah: The &struct ath5k_hw
1770  */
1771 static int
1772 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1773 {
1774     u32 i_pwr, q_pwr;
1775     s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1776     int i;
1777 
1778     /* Skip if I/Q calibration is not needed or if it's still running */
1779     if (!ah->ah_iq_cal_needed)
1780         return -EINVAL;
1781     else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1782         ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1783                 "I/Q calibration still running");
1784         return -EBUSY;
1785     }
1786 
1787     /* Calibration has finished, get the results and re-run */
1788 
1789     /* Work around for empty results which can apparently happen on 5212:
1790      * Read registers up to 10 times until we get both i_pr and q_pwr */
1791     for (i = 0; i <= 10; i++) {
1792         iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1793         i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1794         q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1795         ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1796             "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1797         if (i_pwr && q_pwr)
1798             break;
1799     }
1800 
1801     i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1802 
1803     if (ah->ah_version == AR5K_AR5211)
1804         q_coffd = q_pwr >> 6;
1805     else
1806         q_coffd = q_pwr >> 7;
1807 
1808     /* In case i_coffd became zero, cancel calibration
1809      * not only it's too small, it'll also result a divide
1810      * by zero later on. */
1811     if (i_coffd == 0 || q_coffd < 2)
1812         return -ECANCELED;
1813 
1814     /* Protect against loss of sign bits */
1815 
1816     i_coff = (-iq_corr) / i_coffd;
1817     i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1818 
1819     if (ah->ah_version == AR5K_AR5211)
1820         q_coff = (i_pwr / q_coffd) - 64;
1821     else
1822         q_coff = (i_pwr / q_coffd) - 128;
1823     q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1824 
1825     ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1826             "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1827             i_coff, q_coff, i_coffd, q_coffd);
1828 
1829     /* Commit new I/Q values (set enable bit last to match HAL sources) */
1830     AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1831     AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1832     AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1833 
1834     /* Re-enable calibration -if we don't we'll commit
1835      * the same values again and again */
1836     AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1837             AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1838     AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1839 
1840     return 0;
1841 }
1842 
1843 /**
1844  * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1845  * @ah: The &struct ath5k_hw
1846  * @channel: The &struct ieee80211_channel
1847  *
1848  * The main function we call from above to perform
1849  * a short or full PHY calibration based on RF chip
1850  * and current channel
1851  */
1852 int
1853 ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1854         struct ieee80211_channel *channel)
1855 {
1856     int ret;
1857 
1858     if (ah->ah_radio == AR5K_RF5110)
1859         return ath5k_hw_rf5110_calibrate(ah, channel);
1860 
1861     ret = ath5k_hw_rf511x_iq_calibrate(ah);
1862     if (ret) {
1863         ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1864             "No I/Q correction performed (%uMHz)\n",
1865             channel->center_freq);
1866 
1867         /* Happens all the time if there is not much
1868          * traffic, consider it normal behaviour. */
1869         ret = 0;
1870     }
1871 
1872     /* On full calibration request a PAPD probe for
1873      * gainf calibration if needed */
1874     if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1875         (ah->ah_radio == AR5K_RF5111 ||
1876          ah->ah_radio == AR5K_RF5112) &&
1877         channel->hw_value != AR5K_MODE_11B)
1878         ath5k_hw_request_rfgain_probe(ah);
1879 
1880     /* Update noise floor */
1881     if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1882         ath5k_hw_update_noise_floor(ah);
1883 
1884     return ret;
1885 }
1886 
1887 
1888 /***************************\
1889 * Spur mitigation functions *
1890 \***************************/
1891 
1892 /**
1893  * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1894  * @ah: The &struct ath5k_hw
1895  * @channel: The &struct ieee80211_channel
1896  *
1897  * This function gets called during PHY initialization to
1898  * configure the spur filter for the given channel. Spur is noise
1899  * generated due to "reflection" effects, for more information on this
1900  * method check out patent US7643810
1901  */
1902 static void
1903 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1904                 struct ieee80211_channel *channel)
1905 {
1906     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1907     u32 mag_mask[4] = {0, 0, 0, 0};
1908     u32 pilot_mask[2] = {0, 0};
1909     /* Note: fbin values are scaled up by 2 */
1910     u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1911     s32 spur_delta_phase, spur_freq_sigma_delta;
1912     s32 spur_offset, num_symbols_x16;
1913     u8 num_symbol_offsets, i, freq_band;
1914 
1915     /* Convert current frequency to fbin value (the same way channels
1916      * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1917      * up by 2 so we can compare it later */
1918     if (channel->band == NL80211_BAND_2GHZ) {
1919         chan_fbin = (channel->center_freq - 2300) * 10;
1920         freq_band = AR5K_EEPROM_BAND_2GHZ;
1921     } else {
1922         chan_fbin = (channel->center_freq - 4900) * 10;
1923         freq_band = AR5K_EEPROM_BAND_5GHZ;
1924     }
1925 
1926     /* Check if any spur_chan_fbin from EEPROM is
1927      * within our current channel's spur detection range */
1928     spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1929     spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1930     /* XXX: Half/Quarter channels ?*/
1931     if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1932         spur_detection_window *= 2;
1933 
1934     for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1935         spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1936 
1937         /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1938          * so it's zero if we got nothing from EEPROM */
1939         if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1940             spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1941             break;
1942         }
1943 
1944         if ((chan_fbin - spur_detection_window <=
1945         (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1946         (chan_fbin + spur_detection_window >=
1947         (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1948             spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1949             break;
1950         }
1951     }
1952 
1953     /* We need to enable spur filter for this channel */
1954     if (spur_chan_fbin) {
1955         spur_offset = spur_chan_fbin - chan_fbin;
1956         /*
1957          * Calculate deltas:
1958          * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1959          * spur_delta_phase -> spur_offset / chip_freq << 11
1960          * Note: Both values have 100Hz resolution
1961          */
1962         switch (ah->ah_bwmode) {
1963         case AR5K_BWMODE_40MHZ:
1964             /* Both sample_freq and chip_freq are 80MHz */
1965             spur_delta_phase = (spur_offset << 16) / 25;
1966             spur_freq_sigma_delta = (spur_delta_phase >> 10);
1967             symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1968             break;
1969         case AR5K_BWMODE_10MHZ:
1970             /* Both sample_freq and chip_freq are 20MHz (?) */
1971             spur_delta_phase = (spur_offset << 18) / 25;
1972             spur_freq_sigma_delta = (spur_delta_phase >> 10);
1973             symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1974             break;
1975         case AR5K_BWMODE_5MHZ:
1976             /* Both sample_freq and chip_freq are 10MHz (?) */
1977             spur_delta_phase = (spur_offset << 19) / 25;
1978             spur_freq_sigma_delta = (spur_delta_phase >> 10);
1979             symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1980             break;
1981         default:
1982             if (channel->band == NL80211_BAND_5GHZ) {
1983                 /* Both sample_freq and chip_freq are 40MHz */
1984                 spur_delta_phase = (spur_offset << 17) / 25;
1985                 spur_freq_sigma_delta =
1986                         (spur_delta_phase >> 10);
1987                 symbol_width =
1988                     AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1989             } else {
1990                 /* sample_freq -> 40MHz chip_freq -> 44MHz
1991                  * (for b compatibility) */
1992                 spur_delta_phase = (spur_offset << 17) / 25;
1993                 spur_freq_sigma_delta =
1994                         (spur_offset << 8) / 55;
1995                 symbol_width =
1996                     AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1997             }
1998             break;
1999         }
2000 
2001         /* Calculate pilot and magnitude masks */
2002 
2003         /* Scale up spur_offset by 1000 to switch to 100HZ resolution
2004          * and divide by symbol_width to find how many symbols we have
2005          * Note: number of symbols is scaled up by 16 */
2006         num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2007 
2008         /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2009         if (!(num_symbols_x16 & 0xF))
2010             /* _X_ */
2011             num_symbol_offsets = 3;
2012         else
2013             /* _xx_ */
2014             num_symbol_offsets = 4;
2015 
2016         for (i = 0; i < num_symbol_offsets; i++) {
2017 
2018             /* Calculate pilot mask */
2019             s32 curr_sym_off =
2020                 (num_symbols_x16 / 16) + i + 25;
2021 
2022             /* Pilot magnitude mask seems to be a way to
2023              * declare the boundaries for our detection
2024              * window or something, it's 2 for the middle
2025              * value(s) where the symbol is expected to be
2026              * and 1 on the boundary values */
2027             u8 plt_mag_map =
2028                 (i == 0 || i == (num_symbol_offsets - 1))
2029                                 ? 1 : 2;
2030 
2031             if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2032                 if (curr_sym_off <= 25)
2033                     pilot_mask[0] |= 1 << curr_sym_off;
2034                 else if (curr_sym_off >= 27)
2035                     pilot_mask[0] |= 1 << (curr_sym_off - 1);
2036             } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2037                 pilot_mask[1] |= 1 << (curr_sym_off - 33);
2038 
2039             /* Calculate magnitude mask (for viterbi decoder) */
2040             if (curr_sym_off >= -1 && curr_sym_off <= 14)
2041                 mag_mask[0] |=
2042                     plt_mag_map << (curr_sym_off + 1) * 2;
2043             else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2044                 mag_mask[1] |=
2045                     plt_mag_map << (curr_sym_off - 15) * 2;
2046             else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2047                 mag_mask[2] |=
2048                     plt_mag_map << (curr_sym_off - 31) * 2;
2049             else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2050                 mag_mask[3] |=
2051                     plt_mag_map << (curr_sym_off - 47) * 2;
2052 
2053         }
2054 
2055         /* Write settings on hw to enable spur filter */
2056         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2057                     AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2058         /* XXX: Self correlator also ? */
2059         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2060                     AR5K_PHY_IQ_PILOT_MASK_EN |
2061                     AR5K_PHY_IQ_CHAN_MASK_EN |
2062                     AR5K_PHY_IQ_SPUR_FILT_EN);
2063 
2064         /* Set delta phase and freq sigma delta */
2065         ath5k_hw_reg_write(ah,
2066                 AR5K_REG_SM(spur_delta_phase,
2067                     AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2068                 AR5K_REG_SM(spur_freq_sigma_delta,
2069                 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2070                 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2071                 AR5K_PHY_TIMING_11);
2072 
2073         /* Write pilot masks */
2074         ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2075         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2076                     AR5K_PHY_TIMING_8_PILOT_MASK_2,
2077                     pilot_mask[1]);
2078 
2079         ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2080         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2081                     AR5K_PHY_TIMING_10_PILOT_MASK_2,
2082                     pilot_mask[1]);
2083 
2084         /* Write magnitude masks */
2085         ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2086         ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2087         ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2088         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2089                     AR5K_PHY_BIN_MASK_CTL_MASK_4,
2090                     mag_mask[3]);
2091 
2092         ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2093         ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2094         ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2095         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2096                     AR5K_PHY_BIN_MASK2_4_MASK_4,
2097                     mag_mask[3]);
2098 
2099     } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2100     AR5K_PHY_IQ_SPUR_FILT_EN) {
2101         /* Clean up spur mitigation settings and disable filter */
2102         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2103                     AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2104         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2105                     AR5K_PHY_IQ_PILOT_MASK_EN |
2106                     AR5K_PHY_IQ_CHAN_MASK_EN |
2107                     AR5K_PHY_IQ_SPUR_FILT_EN);
2108         ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2109 
2110         /* Clear pilot masks */
2111         ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2112         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2113                     AR5K_PHY_TIMING_8_PILOT_MASK_2,
2114                     0);
2115 
2116         ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2117         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2118                     AR5K_PHY_TIMING_10_PILOT_MASK_2,
2119                     0);
2120 
2121         /* Clear magnitude masks */
2122         ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2123         ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2124         ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2125         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2126                     AR5K_PHY_BIN_MASK_CTL_MASK_4,
2127                     0);
2128 
2129         ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2130         ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2131         ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2132         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2133                     AR5K_PHY_BIN_MASK2_4_MASK_4,
2134                     0);
2135     }
2136 }
2137 
2138 
2139 /*****************\
2140 * Antenna control *
2141 \*****************/
2142 
2143 /**
2144  * DOC: Antenna control
2145  *
2146  * Hw supports up to 14 antennas ! I haven't found any card that implements
2147  * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2148  * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2149  * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2150  *
2151  * We can have a single antenna for RX and multiple antennas for TX.
2152  * RX antenna is our "default" antenna (usually antenna 1) set on
2153  * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2154  * (0 for automatic selection, 1 - 14 antenna number).
2155  *
2156  * We can let hw do all the work doing fast antenna diversity for both
2157  * tx and rx or we can do things manually. Here are the options we have
2158  * (all are bits of STA_ID1 register):
2159  *
2160  * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2161  * control descriptor, use the default antenna to transmit or else use the last
2162  * antenna on which we received an ACK.
2163  *
2164  * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2165  * the antenna on which we got the ACK for that frame.
2166  *
2167  * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2168  * one on the TX descriptor.
2169  *
2170  * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2171  * (ACKs etc), or else use current antenna (the one we just used for TX).
2172  *
2173  * Using the above we support the following scenarios:
2174  *
2175  * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2176  *
2177  * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present
2178  *
2179  * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present
2180  *
2181  * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2182  *
2183  * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2184  *
2185  * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2186  *
2187  * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2188  *
2189  * Also note that when setting antenna to F on tx descriptor card inverts
2190  * current tx antenna.
2191  */
2192 
2193 /**
2194  * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2195  * @ah: The &struct ath5k_hw
2196  * @ant: Antenna number
2197  */
2198 static void
2199 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2200 {
2201     if (ah->ah_version != AR5K_AR5210)
2202         ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2203 }
2204 
2205 /**
2206  * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
2207  * @ah: The &struct ath5k_hw
2208  * @ee_mode: One of enum ath5k_driver_mode
2209  * @enable: True to enable, false to disable
2210  */
2211 static void
2212 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2213 {
2214     switch (ee_mode) {
2215     case AR5K_EEPROM_MODE_11G:
2216         /* XXX: This is set to
2217          * disabled on initvals !!! */
2218     case AR5K_EEPROM_MODE_11A:
2219         if (enable)
2220             AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2221                     AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2222         else
2223             AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2224                     AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2225         break;
2226     case AR5K_EEPROM_MODE_11B:
2227         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2228                     AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2229         break;
2230     default:
2231         return;
2232     }
2233 
2234     if (enable) {
2235         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2236                 AR5K_PHY_RESTART_DIV_GC, 4);
2237 
2238         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2239                     AR5K_PHY_FAST_ANT_DIV_EN);
2240     } else {
2241         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2242                 AR5K_PHY_RESTART_DIV_GC, 0);
2243 
2244         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2245                     AR5K_PHY_FAST_ANT_DIV_EN);
2246     }
2247 }
2248 
2249 /**
2250  * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2251  * @ah: The &struct ath5k_hw
2252  * @ee_mode: One of enum ath5k_driver_mode
2253  *
2254  * Switch table comes from EEPROM and includes information on controlling
2255  * the 2 antenna RX attenuators
2256  */
2257 void
2258 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2259 {
2260     u8 ant0, ant1;
2261 
2262     /*
2263      * In case a fixed antenna was set as default
2264      * use the same switch table twice.
2265      */
2266     if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2267         ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2268     else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2269         ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2270     else {
2271         ant0 = AR5K_ANT_SWTABLE_A;
2272         ant1 = AR5K_ANT_SWTABLE_B;
2273     }
2274 
2275     /* Set antenna idle switch table */
2276     AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2277             AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2278             (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2279             AR5K_PHY_ANT_CTL_TXRX_EN));
2280 
2281     /* Set antenna switch tables */
2282     ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2283         AR5K_PHY_ANT_SWITCH_TABLE_0);
2284     ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2285         AR5K_PHY_ANT_SWITCH_TABLE_1);
2286 }
2287 
2288 /**
2289  * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
2290  * @ah: The &struct ath5k_hw
2291  * @ant_mode: One of enum ath5k_ant_mode
2292  */
2293 void
2294 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2295 {
2296     struct ieee80211_channel *channel = ah->ah_current_channel;
2297     bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2298     bool use_def_for_sg;
2299     int ee_mode;
2300     u8 def_ant, tx_ant;
2301     u32 sta_id1 = 0;
2302 
2303     /* if channel is not initialized yet we can't set the antennas
2304      * so just store the mode. it will be set on the next reset */
2305     if (channel == NULL) {
2306         ah->ah_ant_mode = ant_mode;
2307         return;
2308     }
2309 
2310     def_ant = ah->ah_def_ant;
2311 
2312     ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
2313 
2314     switch (ant_mode) {
2315     case AR5K_ANTMODE_DEFAULT:
2316         tx_ant = 0;
2317         use_def_for_tx = false;
2318         update_def_on_tx = false;
2319         use_def_for_rts = false;
2320         use_def_for_sg = false;
2321         fast_div = true;
2322         break;
2323     case AR5K_ANTMODE_FIXED_A:
2324         def_ant = 1;
2325         tx_ant = 1;
2326         use_def_for_tx = true;
2327         update_def_on_tx = false;
2328         use_def_for_rts = true;
2329         use_def_for_sg = true;
2330         fast_div = false;
2331         break;
2332     case AR5K_ANTMODE_FIXED_B:
2333         def_ant = 2;
2334         tx_ant = 2;
2335         use_def_for_tx = true;
2336         update_def_on_tx = false;
2337         use_def_for_rts = true;
2338         use_def_for_sg = true;
2339         fast_div = false;
2340         break;
2341     case AR5K_ANTMODE_SINGLE_AP:
2342         def_ant = 1;    /* updated on tx */
2343         tx_ant = 0;
2344         use_def_for_tx = true;
2345         update_def_on_tx = true;
2346         use_def_for_rts = true;
2347         use_def_for_sg = true;
2348         fast_div = true;
2349         break;
2350     case AR5K_ANTMODE_SECTOR_AP:
2351         tx_ant = 1; /* variable */
2352         use_def_for_tx = false;
2353         update_def_on_tx = false;
2354         use_def_for_rts = true;
2355         use_def_for_sg = false;
2356         fast_div = false;
2357         break;
2358     case AR5K_ANTMODE_SECTOR_STA:
2359         tx_ant = 1; /* variable */
2360         use_def_for_tx = true;
2361         update_def_on_tx = false;
2362         use_def_for_rts = true;
2363         use_def_for_sg = false;
2364         fast_div = true;
2365         break;
2366     case AR5K_ANTMODE_DEBUG:
2367         def_ant = 1;
2368         tx_ant = 2;
2369         use_def_for_tx = false;
2370         update_def_on_tx = false;
2371         use_def_for_rts = false;
2372         use_def_for_sg = false;
2373         fast_div = false;
2374         break;
2375     default:
2376         return;
2377     }
2378 
2379     ah->ah_tx_ant = tx_ant;
2380     ah->ah_ant_mode = ant_mode;
2381     ah->ah_def_ant = def_ant;
2382 
2383     sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2384     sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2385     sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2386     sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2387 
2388     AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2389 
2390     if (sta_id1)
2391         AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2392 
2393     ath5k_hw_set_antenna_switch(ah, ee_mode);
2394     /* Note: set diversity before default antenna
2395      * because it won't work correctly */
2396     ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2397     ath5k_hw_set_def_antenna(ah, def_ant);
2398 }
2399 
2400 
2401 /****************\
2402 * TX power setup *
2403 \****************/
2404 
2405 /*
2406  * Helper functions
2407  */
2408 
2409 /**
2410  * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2411  * @target: X value of the middle point
2412  * @x_left: X value of the left point
2413  * @x_right: X value of the right point
2414  * @y_left: Y value of the left point
2415  * @y_right: Y value of the right point
2416  */
2417 static s16
2418 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2419                     s16 y_left, s16 y_right)
2420 {
2421     s16 ratio, result;
2422 
2423     /* Avoid divide by zero and skip interpolation
2424      * if we have the same point */
2425     if ((x_left == x_right) || (y_left == y_right))
2426         return y_left;
2427 
2428     /*
2429      * Since we use ints and not fps, we need to scale up in
2430      * order to get a sane ratio value (or else we 'll eg. get
2431      * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2432      * to have some accuracy both for 0.5 and 0.25 steps.
2433      */
2434     ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2435 
2436     /* Now scale down to be in range */
2437     result = y_left + (ratio * (target - x_left) / 100);
2438 
2439     return result;
2440 }
2441 
2442 /**
2443  * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2444  * linear PCDAC curve
2445  * @stepL: Left array with y values (pcdac steps)
2446  * @stepR: Right array with y values (pcdac steps)
2447  * @pwrL: Left array with x values (power steps)
2448  * @pwrR: Right array with x values (power steps)
2449  *
2450  * Since we have the top of the curve and we draw the line below
2451  * until we reach 1 (1 pcdac step) we need to know which point
2452  * (x value) that is so that we don't go below x axis and have negative
2453  * pcdac values when creating the curve, or fill the table with zeros.
2454  */
2455 static s16
2456 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2457                 const s16 *pwrL, const s16 *pwrR)
2458 {
2459     s8 tmp;
2460     s16 min_pwrL, min_pwrR;
2461     s16 pwr_i;
2462 
2463     /* Some vendors write the same pcdac value twice !!! */
2464     if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2465         return max(pwrL[0], pwrR[0]);
2466 
2467     if (pwrL[0] == pwrL[1])
2468         min_pwrL = pwrL[0];
2469     else {
2470         pwr_i = pwrL[0];
2471         do {
2472             pwr_i--;
2473             tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2474                             pwrL[0], pwrL[1],
2475                             stepL[0], stepL[1]);
2476         } while (tmp > 1);
2477 
2478         min_pwrL = pwr_i;
2479     }
2480 
2481     if (pwrR[0] == pwrR[1])
2482         min_pwrR = pwrR[0];
2483     else {
2484         pwr_i = pwrR[0];
2485         do {
2486             pwr_i--;
2487             tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2488                             pwrR[0], pwrR[1],
2489                             stepR[0], stepR[1]);
2490         } while (tmp > 1);
2491 
2492         min_pwrR = pwr_i;
2493     }
2494 
2495     /* Keep the right boundary so that it works for both curves */
2496     return max(min_pwrL, min_pwrR);
2497 }
2498 
2499 /**
2500  * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2501  * @pmin: Minimum power value (xmin)
2502  * @pmax: Maximum power value (xmax)
2503  * @pwr: Array of power steps (x values)
2504  * @vpd: Array of matching PCDAC/PDADC steps (y values)
2505  * @num_points: Number of provided points
2506  * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2507  * @type: One of enum ath5k_powertable_type (eeprom.h)
2508  *
2509  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2510  * Power to PCDAC curve.
2511  *
2512  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2513  * steps (offsets) on y axis. Power can go up to 31.5dB and max
2514  * PCDAC/PDADC step for each curve is 64 but we can write more than
2515  * one curves on hw so we can go up to 128 (which is the max step we
2516  * can write on the final table).
2517  *
2518  * We write y values (PCDAC/PDADC steps) on hw.
2519  */
2520 static void
2521 ath5k_create_power_curve(s16 pmin, s16 pmax,
2522             const s16 *pwr, const u8 *vpd,
2523             u8 num_points,
2524             u8 *vpd_table, u8 type)
2525 {
2526     u8 idx[2] = { 0, 1 };
2527     s16 pwr_i = 2 * pmin;
2528     int i;
2529 
2530     if (num_points < 2)
2531         return;
2532 
2533     /* We want the whole line, so adjust boundaries
2534      * to cover the entire power range. Note that
2535      * power values are already 0.25dB so no need
2536      * to multiply pwr_i by 2 */
2537     if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2538         pwr_i = pmin;
2539         pmin = 0;
2540         pmax = 63;
2541     }
2542 
2543     /* Find surrounding turning points (TPs)
2544      * and interpolate between them */
2545     for (i = 0; (i <= (u16) (pmax - pmin)) &&
2546     (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2547 
2548         /* We passed the right TP, move to the next set of TPs
2549          * if we pass the last TP, extrapolate above using the last
2550          * two TPs for ratio */
2551         if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2552             idx[0]++;
2553             idx[1]++;
2554         }
2555 
2556         vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2557                         pwr[idx[0]], pwr[idx[1]],
2558                         vpd[idx[0]], vpd[idx[1]]);
2559 
2560         /* Increase by 0.5dB
2561          * (0.25 dB units) */
2562         pwr_i += 2;
2563     }
2564 }
2565 
2566 /**
2567  * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2568  * for a given channel.
2569  * @ah: The &struct ath5k_hw
2570  * @channel: The &struct ieee80211_channel
2571  * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2572  * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2573  *
2574  * Get the surrounding per-channel power calibration piers
2575  * for a given frequency so that we can interpolate between
2576  * them and come up with an appropriate dataset for our current
2577  * channel.
2578  */
2579 static void
2580 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2581             struct ieee80211_channel *channel,
2582             struct ath5k_chan_pcal_info **pcinfo_l,
2583             struct ath5k_chan_pcal_info **pcinfo_r)
2584 {
2585     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2586     struct ath5k_chan_pcal_info *pcinfo;
2587     u8 idx_l, idx_r;
2588     u8 mode, max, i;
2589     u32 target = channel->center_freq;
2590 
2591     idx_l = 0;
2592     idx_r = 0;
2593 
2594     switch (channel->hw_value) {
2595     case AR5K_EEPROM_MODE_11A:
2596         pcinfo = ee->ee_pwr_cal_a;
2597         mode = AR5K_EEPROM_MODE_11A;
2598         break;
2599     case AR5K_EEPROM_MODE_11B:
2600         pcinfo = ee->ee_pwr_cal_b;
2601         mode = AR5K_EEPROM_MODE_11B;
2602         break;
2603     case AR5K_EEPROM_MODE_11G:
2604     default:
2605         pcinfo = ee->ee_pwr_cal_g;
2606         mode = AR5K_EEPROM_MODE_11G;
2607         break;
2608     }
2609     max = ee->ee_n_piers[mode] - 1;
2610 
2611     /* Frequency is below our calibrated
2612      * range. Use the lowest power curve
2613      * we have */
2614     if (target < pcinfo[0].freq) {
2615         idx_l = idx_r = 0;
2616         goto done;
2617     }
2618 
2619     /* Frequency is above our calibrated
2620      * range. Use the highest power curve
2621      * we have */
2622     if (target > pcinfo[max].freq) {
2623         idx_l = idx_r = max;
2624         goto done;
2625     }
2626 
2627     /* Frequency is inside our calibrated
2628      * channel range. Pick the surrounding
2629      * calibration piers so that we can
2630      * interpolate */
2631     for (i = 0; i <= max; i++) {
2632 
2633         /* Frequency matches one of our calibration
2634          * piers, no need to interpolate, just use
2635          * that calibration pier */
2636         if (pcinfo[i].freq == target) {
2637             idx_l = idx_r = i;
2638             goto done;
2639         }
2640 
2641         /* We found a calibration pier that's above
2642          * frequency, use this pier and the previous
2643          * one to interpolate */
2644         if (target < pcinfo[i].freq) {
2645             idx_r = i;
2646             idx_l = idx_r - 1;
2647             goto done;
2648         }
2649     }
2650 
2651 done:
2652     *pcinfo_l = &pcinfo[idx_l];
2653     *pcinfo_r = &pcinfo[idx_r];
2654 }
2655 
2656 /**
2657  * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2658  * calibration data
2659  * @ah: The &struct ath5k_hw *ah,
2660  * @channel: The &struct ieee80211_channel
2661  * @rates: The &struct ath5k_rate_pcal_info to fill
2662  *
2663  * Get the surrounding per-rate power calibration data
2664  * for a given frequency and interpolate between power
2665  * values to set max target power supported by hw for
2666  * each rate on this frequency.
2667  */
2668 static void
2669 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2670             struct ieee80211_channel *channel,
2671             struct ath5k_rate_pcal_info *rates)
2672 {
2673     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2674     struct ath5k_rate_pcal_info *rpinfo;
2675     u8 idx_l, idx_r;
2676     u8 mode, max, i;
2677     u32 target = channel->center_freq;
2678 
2679     idx_l = 0;
2680     idx_r = 0;
2681 
2682     switch (channel->hw_value) {
2683     case AR5K_MODE_11A:
2684         rpinfo = ee->ee_rate_tpwr_a;
2685         mode = AR5K_EEPROM_MODE_11A;
2686         break;
2687     case AR5K_MODE_11B:
2688         rpinfo = ee->ee_rate_tpwr_b;
2689         mode = AR5K_EEPROM_MODE_11B;
2690         break;
2691     case AR5K_MODE_11G:
2692     default:
2693         rpinfo = ee->ee_rate_tpwr_g;
2694         mode = AR5K_EEPROM_MODE_11G;
2695         break;
2696     }
2697     max = ee->ee_rate_target_pwr_num[mode] - 1;
2698 
2699     /* Get the surrounding calibration
2700      * piers - same as above */
2701     if (target < rpinfo[0].freq) {
2702         idx_l = idx_r = 0;
2703         goto done;
2704     }
2705 
2706     if (target > rpinfo[max].freq) {
2707         idx_l = idx_r = max;
2708         goto done;
2709     }
2710 
2711     for (i = 0; i <= max; i++) {
2712 
2713         if (rpinfo[i].freq == target) {
2714             idx_l = idx_r = i;
2715             goto done;
2716         }
2717 
2718         if (target < rpinfo[i].freq) {
2719             idx_r = i;
2720             idx_l = idx_r - 1;
2721             goto done;
2722         }
2723     }
2724 
2725 done:
2726     /* Now interpolate power value, based on the frequency */
2727     rates->freq = target;
2728 
2729     rates->target_power_6to24 =
2730         ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2731                     rpinfo[idx_r].freq,
2732                     rpinfo[idx_l].target_power_6to24,
2733                     rpinfo[idx_r].target_power_6to24);
2734 
2735     rates->target_power_36 =
2736         ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2737                     rpinfo[idx_r].freq,
2738                     rpinfo[idx_l].target_power_36,
2739                     rpinfo[idx_r].target_power_36);
2740 
2741     rates->target_power_48 =
2742         ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2743                     rpinfo[idx_r].freq,
2744                     rpinfo[idx_l].target_power_48,
2745                     rpinfo[idx_r].target_power_48);
2746 
2747     rates->target_power_54 =
2748         ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2749                     rpinfo[idx_r].freq,
2750                     rpinfo[idx_l].target_power_54,
2751                     rpinfo[idx_r].target_power_54);
2752 }
2753 
2754 /**
2755  * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2756  * @ah: the &struct ath5k_hw
2757  * @channel: The &struct ieee80211_channel
2758  *
2759  * Get the max edge power for this channel if
2760  * we have such data from EEPROM's Conformance Test
2761  * Limits (CTL), and limit max power if needed.
2762  */
2763 static void
2764 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2765             struct ieee80211_channel *channel)
2766 {
2767     struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2768     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2769     struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2770     u8 *ctl_val = ee->ee_ctl;
2771     s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2772     s16 edge_pwr = 0;
2773     u8 rep_idx;
2774     u8 i, ctl_mode;
2775     u8 ctl_idx = 0xFF;
2776     u32 target = channel->center_freq;
2777 
2778     ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2779 
2780     switch (channel->hw_value) {
2781     case AR5K_MODE_11A:
2782         if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2783             ctl_mode |= AR5K_CTL_TURBO;
2784         else
2785             ctl_mode |= AR5K_CTL_11A;
2786         break;
2787     case AR5K_MODE_11G:
2788         if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2789             ctl_mode |= AR5K_CTL_TURBOG;
2790         else
2791             ctl_mode |= AR5K_CTL_11G;
2792         break;
2793     case AR5K_MODE_11B:
2794         ctl_mode |= AR5K_CTL_11B;
2795         break;
2796     default:
2797         return;
2798     }
2799 
2800     for (i = 0; i < ee->ee_ctls; i++) {
2801         if (ctl_val[i] == ctl_mode) {
2802             ctl_idx = i;
2803             break;
2804         }
2805     }
2806 
2807     /* If we have a CTL dataset available grab it and find the
2808      * edge power for our frequency */
2809     if (ctl_idx == 0xFF)
2810         return;
2811 
2812     /* Edge powers are sorted by frequency from lower
2813      * to higher. Each CTL corresponds to 8 edge power
2814      * measurements. */
2815     rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2816 
2817     /* Don't do boundaries check because we
2818      * might have more that one bands defined
2819      * for this mode */
2820 
2821     /* Get the edge power that's closer to our
2822      * frequency */
2823     for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2824         rep_idx += i;
2825         if (target <= rep[rep_idx].freq)
2826             edge_pwr = (s16) rep[rep_idx].edge;
2827     }
2828 
2829     if (edge_pwr)
2830         ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2831 }
2832 
2833 
2834 /*
2835  * Power to PCDAC table functions
2836  */
2837 
2838 /**
2839  * DOC: Power to PCDAC table functions
2840  *
2841  * For RF5111 we have an XPD -eXternal Power Detector- curve
2842  * for each calibrated channel. Each curve has 0,5dB Power steps
2843  * on x axis and PCDAC steps (offsets) on y axis and looks like an
2844  * exponential function. To recreate the curve we read 11 points
2845  * from eeprom (eeprom.c) and interpolate here.
2846  *
2847  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2848  * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2849  * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2850  * power steps on x axis and PCDAC steps on y axis and looks like a
2851  * linear function. To recreate the curve and pass the power values
2852  * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2853  * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2854  * and interpolate here.
2855  *
2856  * For a given channel we get the calibrated points (piers) for it or
2857  * -if we don't have calibration data for this specific channel- from the
2858  * available surrounding channels we have calibration data for, after we do a
2859  * linear interpolation between them. Then since we have our calibrated points
2860  * for this channel, we do again a linear interpolation between them to get the
2861  * whole curve.
2862  *
2863  * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2864  */
2865 
2866 /**
2867  * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2868  * @ah: The &struct ath5k_hw
2869  * @table_min: Minimum power (x min)
2870  * @table_max: Maximum power (x max)
2871  *
2872  * No further processing is needed for RF5111, the only thing we have to
2873  * do is fill the values below and above calibration range since eeprom data
2874  * may not cover the entire PCDAC table.
2875  */
2876 static void
2877 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2878                             s16 *table_max)
2879 {
2880     u8  *pcdac_out = ah->ah_txpower.txp_pd_table;
2881     u8  *pcdac_tmp = ah->ah_txpower.tmpL[0];
2882     u8  pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2883     s16 min_pwr, max_pwr;
2884 
2885     /* Get table boundaries */
2886     min_pwr = table_min[0];
2887     pcdac_0 = pcdac_tmp[0];
2888 
2889     max_pwr = table_max[0];
2890     pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2891 
2892     /* Extrapolate below minimum using pcdac_0 */
2893     pcdac_i = 0;
2894     for (i = 0; i < min_pwr; i++)
2895         pcdac_out[pcdac_i++] = pcdac_0;
2896 
2897     /* Copy values from pcdac_tmp */
2898     pwr_idx = min_pwr;
2899     for (i = 0; pwr_idx <= max_pwr &&
2900             pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2901         pcdac_out[pcdac_i++] = pcdac_tmp[i];
2902         pwr_idx++;
2903     }
2904 
2905     /* Extrapolate above maximum */
2906     while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2907         pcdac_out[pcdac_i++] = pcdac_n;
2908 
2909 }
2910 
2911 /**
2912  * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2913  * @ah: The &struct ath5k_hw
2914  * @table_min: Minimum power (x min)
2915  * @table_max: Maximum power (x max)
2916  * @pdcurves: Number of pd curves
2917  *
2918  * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2919  * RFX112 can have up to 2 curves (one for low txpower range and one for
2920  * higher txpower range). We need to put them both on pcdac_out and place
2921  * them in the correct location. In case we only have one curve available
2922  * just fit it on pcdac_out (it's supposed to cover the entire range of
2923  * available pwr levels since it's always the higher power curve). Extrapolate
2924  * below and above final table if needed.
2925  */
2926 static void
2927 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2928                         s16 *table_max, u8 pdcurves)
2929 {
2930     u8  *pcdac_out = ah->ah_txpower.txp_pd_table;
2931     u8  *pcdac_low_pwr;
2932     u8  *pcdac_high_pwr;
2933     u8  *pcdac_tmp;
2934     u8  pwr;
2935     s16 max_pwr_idx;
2936     s16 min_pwr_idx;
2937     s16 mid_pwr_idx = 0;
2938     /* Edge flag turns on the 7nth bit on the PCDAC
2939      * to declare the higher power curve (force values
2940      * to be greater than 64). If we only have one curve
2941      * we don't need to set this, if we have 2 curves and
2942      * fill the table backwards this can also be used to
2943      * switch from higher power curve to lower power curve */
2944     u8  edge_flag;
2945     int i;
2946 
2947     /* When we have only one curve available
2948      * that's the higher power curve. If we have
2949      * two curves the first is the high power curve
2950      * and the next is the low power curve. */
2951     if (pdcurves > 1) {
2952         pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2953         pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2954         mid_pwr_idx = table_max[1] - table_min[1] - 1;
2955         max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2956 
2957         /* If table size goes beyond 31.5dB, keep the
2958          * upper 31.5dB range when setting tx power.
2959          * Note: 126 = 31.5 dB in quarter dB steps */
2960         if (table_max[0] - table_min[1] > 126)
2961             min_pwr_idx = table_max[0] - 126;
2962         else
2963             min_pwr_idx = table_min[1];
2964 
2965         /* Since we fill table backwards
2966          * start from high power curve */
2967         pcdac_tmp = pcdac_high_pwr;
2968 
2969         edge_flag = 0x40;
2970     } else {
2971         pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2972         pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2973         min_pwr_idx = table_min[0];
2974         max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2975         pcdac_tmp = pcdac_high_pwr;
2976         edge_flag = 0;
2977     }
2978 
2979     /* This is used when setting tx power*/
2980     ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2981 
2982     /* Fill Power to PCDAC table backwards */
2983     pwr = max_pwr_idx;
2984     for (i = 63; i >= 0; i--) {
2985         /* Entering lower power range, reset
2986          * edge flag and set pcdac_tmp to lower
2987          * power curve.*/
2988         if (edge_flag == 0x40 &&
2989         (2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2990             edge_flag = 0x00;
2991             pcdac_tmp = pcdac_low_pwr;
2992             pwr = mid_pwr_idx / 2;
2993         }
2994 
2995         /* Don't go below 1, extrapolate below if we have
2996          * already switched to the lower power curve -or
2997          * we only have one curve and edge_flag is zero
2998          * anyway */
2999         if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
3000             while (i >= 0) {
3001                 pcdac_out[i] = pcdac_out[i + 1];
3002                 i--;
3003             }
3004             break;
3005         }
3006 
3007         pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3008 
3009         /* Extrapolate above if pcdac is greater than
3010          * 126 -this can happen because we OR pcdac_out
3011          * value with edge_flag on high power curve */
3012         if (pcdac_out[i] > 126)
3013             pcdac_out[i] = 126;
3014 
3015         /* Decrease by a 0.5dB step */
3016         pwr--;
3017     }
3018 }
3019 
3020 /**
3021  * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3022  * @ah: The &struct ath5k_hw
3023  */
3024 static void
3025 ath5k_write_pcdac_table(struct ath5k_hw *ah)
3026 {
3027     u8  *pcdac_out = ah->ah_txpower.txp_pd_table;
3028     int i;
3029 
3030     /*
3031      * Write TX power values
3032      */
3033     for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3034         ath5k_hw_reg_write(ah,
3035             (((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3036             (((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3037             AR5K_PHY_PCDAC_TXPOWER(i));
3038     }
3039 }
3040 
3041 
3042 /*
3043  * Power to PDADC table functions
3044  */
3045 
3046 /**
3047  * DOC: Power to PDADC table functions
3048  *
3049  * For RF2413 and later we have a Power to PDADC table (Power Detector)
3050  * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3051  * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3052  * PDADC steps on y axis and looks like an exponential function like the
3053  * RF5111 curve.
3054  *
3055  * To recreate the curves we read the points from eeprom (eeprom.c)
3056  * and interpolate here. Note that in most cases only 2 (higher and lower)
3057  * curves are used (like RF5112) but vendors have the opportunity to include
3058  * all 4 curves on eeprom. The final curve (higher power) has an extra
3059  * point for better accuracy like RF5112.
3060  *
3061  * The process is similar to what we do above for RF5111/5112
3062  */
3063 
3064 /**
3065  * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3066  * @ah: The &struct ath5k_hw
3067  * @pwr_min: Minimum power (x min)
3068  * @pwr_max: Maximum power (x max)
3069  * @pdcurves: Number of available curves
3070  *
3071  * Combine the various pd curves and create the final Power to PDADC table
3072  * We can have up to 4 pd curves, we need to do a similar process
3073  * as we do for RF5112. This time we don't have an edge_flag but we
3074  * set the gain boundaries on a separate register.
3075  */
3076 static void
3077 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3078             s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3079 {
3080     u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3081     u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3082     u8 *pdadc_tmp;
3083     s16 pdadc_0;
3084     u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3085     u8 pd_gain_overlap;
3086 
3087     /* Note: Register value is initialized on initvals
3088      * there is no feedback from hw.
3089      * XXX: What about pd_gain_overlap from EEPROM ? */
3090     pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3091         AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3092 
3093     /* Create final PDADC table */
3094     for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3095         pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3096 
3097         if (pdg == pdcurves - 1)
3098             /* 2 dB boundary stretch for last
3099              * (higher power) curve */
3100             gain_boundaries[pdg] = pwr_max[pdg] + 4;
3101         else
3102             /* Set gain boundary in the middle
3103              * between this curve and the next one */
3104             gain_boundaries[pdg] =
3105                 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3106 
3107         /* Sanity check in case our 2 db stretch got out of
3108          * range. */
3109         if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3110             gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3111 
3112         /* For the first curve (lower power)
3113          * start from 0 dB */
3114         if (pdg == 0)
3115             pdadc_0 = 0;
3116         else
3117             /* For the other curves use the gain overlap */
3118             pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3119                             pd_gain_overlap;
3120 
3121         /* Force each power step to be at least 0.5 dB */
3122         if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3123             pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3124         else
3125             pwr_step = 1;
3126 
3127         /* If pdadc_0 is negative, we need to extrapolate
3128          * below this pdgain by a number of pwr_steps */
3129         while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3130             s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3131             pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3132             pdadc_0++;
3133         }
3134 
3135         /* Set last pwr level, using gain boundaries */
3136         pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3137         /* Limit it to be inside pwr range */
3138         table_size = pwr_max[pdg] - pwr_min[pdg];
3139         max_idx = min(pdadc_n, table_size);
3140 
3141         /* Fill pdadc_out table */
3142         while (pdadc_0 < max_idx && pdadc_i < 128)
3143             pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3144 
3145         /* Need to extrapolate above this pdgain? */
3146         if (pdadc_n <= max_idx)
3147             continue;
3148 
3149         /* Force each power step to be at least 0.5 dB */
3150         if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3151             pwr_step = pdadc_tmp[table_size - 1] -
3152                         pdadc_tmp[table_size - 2];
3153         else
3154             pwr_step = 1;
3155 
3156         /* Extrapolate above */
3157         while ((pdadc_0 < (s16) pdadc_n) &&
3158         (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3159             s16 tmp = pdadc_tmp[table_size - 1] +
3160                     (pdadc_0 - max_idx) * pwr_step;
3161             pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3162             pdadc_0++;
3163         }
3164     }
3165 
3166     while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3167         gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3168         pdg++;
3169     }
3170 
3171     while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3172         pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3173         pdadc_i++;
3174     }
3175 
3176     /* Set gain boundaries */
3177     ath5k_hw_reg_write(ah,
3178         AR5K_REG_SM(pd_gain_overlap,
3179             AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3180         AR5K_REG_SM(gain_boundaries[0],
3181             AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3182         AR5K_REG_SM(gain_boundaries[1],
3183             AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3184         AR5K_REG_SM(gain_boundaries[2],
3185             AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3186         AR5K_REG_SM(gain_boundaries[3],
3187             AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3188         AR5K_PHY_TPC_RG5);
3189 
3190     /* Used for setting rate power table */
3191     ah->ah_txpower.txp_min_idx = pwr_min[0];
3192 
3193 }
3194 
3195 /**
3196  * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3197  * @ah: The &struct ath5k_hw
3198  * @ee_mode: One of enum ath5k_driver_mode
3199  */
3200 static void
3201 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3202 {
3203     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3204     u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3205     u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3206     u8 pdcurves = ee->ee_pd_gains[ee_mode];
3207     u32 reg;
3208     u8 i;
3209 
3210     /* Select the right pdgain curves */
3211 
3212     /* Clear current settings */
3213     reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3214     reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3215         AR5K_PHY_TPC_RG1_PDGAIN_2 |
3216         AR5K_PHY_TPC_RG1_PDGAIN_3 |
3217         AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3218 
3219     /*
3220      * Use pd_gains curve from eeprom
3221      *
3222      * This overrides the default setting from initvals
3223      * in case some vendors (e.g. Zcomax) don't use the default
3224      * curves. If we don't honor their settings we 'll get a
3225      * 5dB (1 * gain overlap ?) drop.
3226      */
3227     reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3228 
3229     switch (pdcurves) {
3230     case 3:
3231         reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3232         fallthrough;
3233     case 2:
3234         reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3235         fallthrough;
3236     case 1:
3237         reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3238         break;
3239     }
3240     ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3241 
3242     /*
3243      * Write TX power values
3244      */
3245     for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3246         u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3247         ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3248     }
3249 }
3250 
3251 
3252 /*
3253  * Common code for PCDAC/PDADC tables
3254  */
3255 
3256 /**
3257  * ath5k_setup_channel_powertable() - Set up power table for this channel
3258  * @ah: The &struct ath5k_hw
3259  * @channel: The &struct ieee80211_channel
3260  * @ee_mode: One of enum ath5k_driver_mode
3261  * @type: One of enum ath5k_powertable_type (eeprom.h)
3262  *
3263  * This is the main function that uses all of the above
3264  * to set PCDAC/PDADC table on hw for the current channel.
3265  * This table is used for tx power calibration on the baseband,
3266  * without it we get weird tx power levels and in some cases
3267  * distorted spectral mask
3268  */
3269 static int
3270 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3271             struct ieee80211_channel *channel,
3272             u8 ee_mode, u8 type)
3273 {
3274     struct ath5k_pdgain_info *pdg_L, *pdg_R;
3275     struct ath5k_chan_pcal_info *pcinfo_L;
3276     struct ath5k_chan_pcal_info *pcinfo_R;
3277     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3278     u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3279     s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3280     s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3281     u8 *tmpL;
3282     u8 *tmpR;
3283     u32 target = channel->center_freq;
3284     int pdg, i;
3285 
3286     /* Get surrounding freq piers for this channel */
3287     ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3288                         &pcinfo_L,
3289                         &pcinfo_R);
3290 
3291     /* Loop over pd gain curves on
3292      * surrounding freq piers by index */
3293     for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3294 
3295         /* Fill curves in reverse order
3296          * from lower power (max gain)
3297          * to higher power. Use curve -> idx
3298          * backmapping we did on eeprom init */
3299         u8 idx = pdg_curve_to_idx[pdg];
3300 
3301         /* Grab the needed curves by index */
3302         pdg_L = &pcinfo_L->pd_curves[idx];
3303         pdg_R = &pcinfo_R->pd_curves[idx];
3304 
3305         /* Initialize the temp tables */
3306         tmpL = ah->ah_txpower.tmpL[pdg];
3307         tmpR = ah->ah_txpower.tmpR[pdg];
3308 
3309         /* Set curve's x boundaries and create
3310          * curves so that they cover the same
3311          * range (if we don't do that one table
3312          * will have values on some range and the
3313          * other one won't have any so interpolation
3314          * will fail) */
3315         table_min[pdg] = min(pdg_L->pd_pwr[0],
3316                     pdg_R->pd_pwr[0]) / 2;
3317 
3318         table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3319                 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3320 
3321         /* Now create the curves on surrounding channels
3322          * and interpolate if needed to get the final
3323          * curve for this gain on this channel */
3324         switch (type) {
3325         case AR5K_PWRTABLE_LINEAR_PCDAC:
3326             /* Override min/max so that we don't loose
3327              * accuracy (don't divide by 2) */
3328             table_min[pdg] = min(pdg_L->pd_pwr[0],
3329                         pdg_R->pd_pwr[0]);
3330 
3331             table_max[pdg] =
3332                 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3333                     pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3334 
3335             /* Override minimum so that we don't get
3336              * out of bounds while extrapolating
3337              * below. Don't do this when we have 2
3338              * curves and we are on the high power curve
3339              * because table_min is ok in this case */
3340             if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3341 
3342                 table_min[pdg] =
3343                     ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3344                                 pdg_R->pd_step,
3345                                 pdg_L->pd_pwr,
3346                                 pdg_R->pd_pwr);
3347 
3348                 /* Don't go too low because we will
3349                  * miss the upper part of the curve.
3350                  * Note: 126 = 31.5dB (max power supported)
3351                  * in 0.25dB units */
3352                 if (table_max[pdg] - table_min[pdg] > 126)
3353                     table_min[pdg] = table_max[pdg] - 126;
3354             }
3355 
3356             fallthrough;
3357         case AR5K_PWRTABLE_PWR_TO_PCDAC:
3358         case AR5K_PWRTABLE_PWR_TO_PDADC:
3359 
3360             ath5k_create_power_curve(table_min[pdg],
3361                         table_max[pdg],
3362                         pdg_L->pd_pwr,
3363                         pdg_L->pd_step,
3364                         pdg_L->pd_points, tmpL, type);
3365 
3366             /* We are in a calibration
3367              * pier, no need to interpolate
3368              * between freq piers */
3369             if (pcinfo_L == pcinfo_R)
3370                 continue;
3371 
3372             ath5k_create_power_curve(table_min[pdg],
3373                         table_max[pdg],
3374                         pdg_R->pd_pwr,
3375                         pdg_R->pd_step,
3376                         pdg_R->pd_points, tmpR, type);
3377             break;
3378         default:
3379             return -EINVAL;
3380         }
3381 
3382         /* Interpolate between curves
3383          * of surrounding freq piers to
3384          * get the final curve for this
3385          * pd gain. Re-use tmpL for interpolation
3386          * output */
3387         for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3388         (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3389             tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3390                             (s16) pcinfo_L->freq,
3391                             (s16) pcinfo_R->freq,
3392                             (s16) tmpL[i],
3393                             (s16) tmpR[i]);
3394         }
3395     }
3396 
3397     /* Now we have a set of curves for this
3398      * channel on tmpL (x range is table_max - table_min
3399      * and y values are tmpL[pdg][]) sorted in the same
3400      * order as EEPROM (because we've used the backmapping).
3401      * So for RF5112 it's from higher power to lower power
3402      * and for RF2413 it's from lower power to higher power.
3403      * For RF5111 we only have one curve. */
3404 
3405     /* Fill min and max power levels for this
3406      * channel by interpolating the values on
3407      * surrounding channels to complete the dataset */
3408     ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3409                     (s16) pcinfo_L->freq,
3410                     (s16) pcinfo_R->freq,
3411                     pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3412 
3413     ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3414                     (s16) pcinfo_L->freq,
3415                     (s16) pcinfo_R->freq,
3416                     pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3417 
3418     /* Fill PCDAC/PDADC table */
3419     switch (type) {
3420     case AR5K_PWRTABLE_LINEAR_PCDAC:
3421         /* For RF5112 we can have one or two curves
3422          * and each curve covers a certain power lvl
3423          * range so we need to do some more processing */
3424         ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3425                         ee->ee_pd_gains[ee_mode]);
3426 
3427         /* Set txp.offset so that we can
3428          * match max power value with max
3429          * table index */
3430         ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3431         break;
3432     case AR5K_PWRTABLE_PWR_TO_PCDAC:
3433         /* We are done for RF5111 since it has only
3434          * one curve, just fit the curve on the table */
3435         ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3436 
3437         /* No rate powertable adjustment for RF5111 */
3438         ah->ah_txpower.txp_min_idx = 0;
3439         ah->ah_txpower.txp_offset = 0;
3440         break;
3441     case AR5K_PWRTABLE_PWR_TO_PDADC:
3442         /* Set PDADC boundaries and fill
3443          * final PDADC table */
3444         ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3445                         ee->ee_pd_gains[ee_mode]);
3446 
3447         /* Set txp.offset, note that table_min
3448          * can be negative */
3449         ah->ah_txpower.txp_offset = table_min[0];
3450         break;
3451     default:
3452         return -EINVAL;
3453     }
3454 
3455     ah->ah_txpower.txp_setup = true;
3456 
3457     return 0;
3458 }
3459 
3460 /**
3461  * ath5k_write_channel_powertable() - Set power table for current channel on hw
3462  * @ah: The &struct ath5k_hw
3463  * @ee_mode: One of enum ath5k_driver_mode
3464  * @type: One of enum ath5k_powertable_type (eeprom.h)
3465  */
3466 static void
3467 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3468 {
3469     if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3470         ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3471     else
3472         ath5k_write_pcdac_table(ah);
3473 }
3474 
3475 
3476 /**
3477  * DOC: Per-rate tx power setting
3478  *
3479  * This is the code that sets the desired tx power limit (below
3480  * maximum) on hw for each rate (we also have TPC that sets
3481  * power per packet type). We do that by providing an index on the
3482  * PCDAC/PDADC table we set up above, for each rate.
3483  *
3484  * For now we only limit txpower based on maximum tx power
3485  * supported by hw (what's inside rate_info) + conformance test
3486  * limits. We need to limit this even more, based on regulatory domain
3487  * etc to be safe. Normally this is done from above so we don't care
3488  * here, all we care is that the tx power we set will be O.K.
3489  * for the hw (e.g. won't create noise on PA etc).
3490  *
3491  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3492  * x values) and is indexed as follows:
3493  * rates[0] - rates[7] -> OFDM rates
3494  * rates[8] - rates[14] -> CCK rates
3495  * rates[15] -> XR rates (they all have the same power)
3496  */
3497 
3498 /**
3499  * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3500  * @ah: The &struct ath5k_hw
3501  * @max_pwr: The maximum tx power requested in 0.5dB steps
3502  * @rate_info: The &struct ath5k_rate_pcal_info to fill
3503  * @ee_mode: One of enum ath5k_driver_mode
3504  */
3505 static void
3506 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3507             struct ath5k_rate_pcal_info *rate_info,
3508             u8 ee_mode)
3509 {
3510     unsigned int i;
3511     u16 *rates;
3512     s16 rate_idx_scaled = 0;
3513 
3514     /* max_pwr is power level we got from driver/user in 0.5dB
3515      * units, switch to 0.25dB units so we can compare */
3516     max_pwr *= 2;
3517     max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3518 
3519     /* apply rate limits */
3520     rates = ah->ah_txpower.txp_rates_power_table;
3521 
3522     /* OFDM rates 6 to 24Mb/s */
3523     for (i = 0; i < 5; i++)
3524         rates[i] = min(max_pwr, rate_info->target_power_6to24);
3525 
3526     /* Rest OFDM rates */
3527     rates[5] = min(rates[0], rate_info->target_power_36);
3528     rates[6] = min(rates[0], rate_info->target_power_48);
3529     rates[7] = min(rates[0], rate_info->target_power_54);
3530 
3531     /* CCK rates */
3532     /* 1L */
3533     rates[8] = min(rates[0], rate_info->target_power_6to24);
3534     /* 2L */
3535     rates[9] = min(rates[0], rate_info->target_power_36);
3536     /* 2S */
3537     rates[10] = min(rates[0], rate_info->target_power_36);
3538     /* 5L */
3539     rates[11] = min(rates[0], rate_info->target_power_48);
3540     /* 5S */
3541     rates[12] = min(rates[0], rate_info->target_power_48);
3542     /* 11L */
3543     rates[13] = min(rates[0], rate_info->target_power_54);
3544     /* 11S */
3545     rates[14] = min(rates[0], rate_info->target_power_54);
3546 
3547     /* XR rates */
3548     rates[15] = min(rates[0], rate_info->target_power_6to24);
3549 
3550     /* CCK rates have different peak to average ratio
3551      * so we have to tweak their power so that gainf
3552      * correction works ok. For this we use OFDM to
3553      * CCK delta from eeprom */
3554     if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3555     (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3556         for (i = 8; i <= 15; i++)
3557             rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3558 
3559     /* Save min/max and current tx power for this channel
3560      * in 0.25dB units.
3561      *
3562      * Note: We use rates[0] for current tx power because
3563      * it covers most of the rates, in most cases. It's our
3564      * tx power limit and what the user expects to see. */
3565     ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3566     ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3567 
3568     /* Set max txpower for correct OFDM operation on all rates
3569      * -that is the txpower for 54Mbit-, it's used for the PAPD
3570      * gain probe and it's in 0.5dB units */
3571     ah->ah_txpower.txp_ofdm = rates[7];
3572 
3573     /* Now that we have all rates setup use table offset to
3574      * match the power range set by user with the power indices
3575      * on PCDAC/PDADC table */
3576     for (i = 0; i < 16; i++) {
3577         rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
3578         /* Don't get out of bounds */
3579         if (rate_idx_scaled > 63)
3580             rate_idx_scaled = 63;
3581         if (rate_idx_scaled < 0)
3582             rate_idx_scaled = 0;
3583         rates[i] = rate_idx_scaled;
3584     }
3585 }
3586 
3587 
3588 /**
3589  * ath5k_hw_txpower() - Set transmission power limit for a given channel
3590  * @ah: The &struct ath5k_hw
3591  * @channel: The &struct ieee80211_channel
3592  * @txpower: Requested tx power in 0.5dB steps
3593  *
3594  * Combines all of the above to set the requested tx power limit
3595  * on hw.
3596  */
3597 static int
3598 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3599          u8 txpower)
3600 {
3601     struct ath5k_rate_pcal_info rate_info;
3602     struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3603     int ee_mode;
3604     u8 type;
3605     int ret;
3606 
3607     if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3608         ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3609         return -EINVAL;
3610     }
3611 
3612     ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
3613 
3614     /* Initialize TX power table */
3615     switch (ah->ah_radio) {
3616     case AR5K_RF5110:
3617         /* TODO */
3618         return 0;
3619     case AR5K_RF5111:
3620         type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3621         break;
3622     case AR5K_RF5112:
3623         type = AR5K_PWRTABLE_LINEAR_PCDAC;
3624         break;
3625     case AR5K_RF2413:
3626     case AR5K_RF5413:
3627     case AR5K_RF2316:
3628     case AR5K_RF2317:
3629     case AR5K_RF2425:
3630         type = AR5K_PWRTABLE_PWR_TO_PDADC;
3631         break;
3632     default:
3633         return -EINVAL;
3634     }
3635 
3636     /*
3637      * If we don't change channel/mode skip tx powertable calculation
3638      * and use the cached one.
3639      */
3640     if (!ah->ah_txpower.txp_setup ||
3641         (channel->hw_value != curr_channel->hw_value) ||
3642         (channel->center_freq != curr_channel->center_freq)) {
3643         /* Reset TX power values but preserve requested
3644          * tx power from above */
3645         int requested_txpower = ah->ah_txpower.txp_requested;
3646 
3647         memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3648 
3649         /* Restore TPC setting and requested tx power */
3650         ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3651 
3652         ah->ah_txpower.txp_requested = requested_txpower;
3653 
3654         /* Calculate the powertable */
3655         ret = ath5k_setup_channel_powertable(ah, channel,
3656                             ee_mode, type);
3657         if (ret)
3658             return ret;
3659     }
3660 
3661     /* Write table on hw */
3662     ath5k_write_channel_powertable(ah, ee_mode, type);
3663 
3664     /* Limit max power if we have a CTL available */
3665     ath5k_get_max_ctl_power(ah, channel);
3666 
3667     /* FIXME: Antenna reduction stuff */
3668 
3669     /* FIXME: Limit power on turbo modes */
3670 
3671     /* FIXME: TPC scale reduction */
3672 
3673     /* Get surrounding channels for per-rate power table
3674      * calibration */
3675     ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3676 
3677     /* Setup rate power table */
3678     ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3679 
3680     /* Write rate power table on hw */
3681     ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3682         AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3683         AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3684 
3685     ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3686         AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3687         AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3688 
3689     ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3690         AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3691         AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3692 
3693     ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3694         AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3695         AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3696 
3697     /* FIXME: TPC support */
3698     if (ah->ah_txpower.txp_tpc) {
3699         ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3700             AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3701 
3702         ath5k_hw_reg_write(ah,
3703             AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3704             AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3705             AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3706             AR5K_TPC);
3707     } else {
3708         ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER,
3709             AR5K_PHY_TXPOWER_RATE_MAX);
3710     }
3711 
3712     return 0;
3713 }
3714 
3715 /**
3716  * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3717  * @ah: The &struct ath5k_hw
3718  * @txpower: The requested tx power limit in 0.5dB steps
3719  *
3720  * This function provides access to ath5k_hw_txpower to the driver in
3721  * case user or an application changes it while PHY is running.
3722  */
3723 int
3724 ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3725 {
3726     ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3727         "changing txpower to %d\n", txpower);
3728 
3729     return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3730 }
3731 
3732 
3733 /*************\
3734  Init function
3735 \*************/
3736 
3737 /**
3738  * ath5k_hw_phy_init() - Initialize PHY
3739  * @ah: The &struct ath5k_hw
3740  * @channel: The @struct ieee80211_channel
3741  * @mode: One of enum ath5k_driver_mode
3742  * @fast: Try a fast channel switch instead
3743  *
3744  * This is the main function used during reset to initialize PHY
3745  * or do a fast channel change if possible.
3746  *
3747  * NOTE: Do not call this one from the driver, it assumes PHY is in a
3748  * warm reset state !
3749  */
3750 int
3751 ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3752               u8 mode, bool fast)
3753 {
3754     struct ieee80211_channel *curr_channel;
3755     int ret, i;
3756     u32 phy_tst1;
3757     ret = 0;
3758 
3759     /*
3760      * Sanity check for fast flag
3761      * Don't try fast channel change when changing modulation
3762      * mode/band. We check for chip compatibility on
3763      * ath5k_hw_reset.
3764      */
3765     curr_channel = ah->ah_current_channel;
3766     if (fast && (channel->hw_value != curr_channel->hw_value))
3767         return -EINVAL;
3768 
3769     /*
3770      * On fast channel change we only set the synth parameters
3771      * while PHY is running, enable calibration and skip the rest.
3772      */
3773     if (fast) {
3774         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3775                     AR5K_PHY_RFBUS_REQ_REQUEST);
3776         for (i = 0; i < 100; i++) {
3777             if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3778                 break;
3779             udelay(5);
3780         }
3781         /* Failed */
3782         if (i >= 100)
3783             return -EIO;
3784 
3785         /* Set channel and wait for synth */
3786         ret = ath5k_hw_channel(ah, channel);
3787         if (ret)
3788             return ret;
3789 
3790         ath5k_hw_wait_for_synth(ah, channel);
3791     }
3792 
3793     /*
3794      * Set TX power
3795      *
3796      * Note: We need to do that before we set
3797      * RF buffer settings on 5211/5212+ so that we
3798      * properly set curve indices.
3799      */
3800     ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
3801                     ah->ah_txpower.txp_requested * 2 :
3802                     AR5K_TUNE_MAX_TXPOWER);
3803     if (ret)
3804         return ret;
3805 
3806     /* Write OFDM timings on 5212*/
3807     if (ah->ah_version == AR5K_AR5212 &&
3808         channel->hw_value != AR5K_MODE_11B) {
3809 
3810         ret = ath5k_hw_write_ofdm_timings(ah, channel);
3811         if (ret)
3812             return ret;
3813 
3814         /* Spur info is available only from EEPROM versions
3815          * greater than 5.3, but the EEPROM routines will use
3816          * static values for older versions */
3817         if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3818             ath5k_hw_set_spur_mitigation_filter(ah,
3819                                 channel);
3820     }
3821 
3822     /* If we used fast channel switching
3823      * we are done, release RF bus and
3824      * fire up NF calibration.
3825      *
3826      * Note: Only NF calibration due to
3827      * channel change, not AGC calibration
3828      * since AGC is still running !
3829      */
3830     if (fast) {
3831         /*
3832          * Release RF Bus grant
3833          */
3834         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3835                     AR5K_PHY_RFBUS_REQ_REQUEST);
3836 
3837         /*
3838          * Start NF calibration
3839          */
3840         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3841                     AR5K_PHY_AGCCTL_NF);
3842 
3843         return ret;
3844     }
3845 
3846     /*
3847      * For 5210 we do all initialization using
3848      * initvals, so we don't have to modify
3849      * any settings (5210 also only supports
3850      * a/aturbo modes)
3851      */
3852     if (ah->ah_version != AR5K_AR5210) {
3853 
3854         /*
3855          * Write initial RF gain settings
3856          * This should work for both 5111/5112
3857          */
3858         ret = ath5k_hw_rfgain_init(ah, channel->band);
3859         if (ret)
3860             return ret;
3861 
3862         usleep_range(1000, 1500);
3863 
3864         /*
3865          * Write RF buffer
3866          */
3867         ret = ath5k_hw_rfregs_init(ah, channel, mode);
3868         if (ret)
3869             return ret;
3870 
3871         /*Enable/disable 802.11b mode on 5111
3872         (enable 2111 frequency converter + CCK)*/
3873         if (ah->ah_radio == AR5K_RF5111) {
3874             if (mode == AR5K_MODE_11B)
3875                 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3876                     AR5K_TXCFG_B_MODE);
3877             else
3878                 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3879                     AR5K_TXCFG_B_MODE);
3880         }
3881 
3882     } else if (ah->ah_version == AR5K_AR5210) {
3883         usleep_range(1000, 1500);
3884         /* Disable phy and wait */
3885         ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3886         usleep_range(1000, 1500);
3887     }
3888 
3889     /* Set channel on PHY */
3890     ret = ath5k_hw_channel(ah, channel);
3891     if (ret)
3892         return ret;
3893 
3894     /*
3895      * Enable the PHY and wait until completion
3896      * This includes BaseBand and Synthesizer
3897      * activation.
3898      */
3899     ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3900 
3901     ath5k_hw_wait_for_synth(ah, channel);
3902 
3903     /*
3904      * Perform ADC test to see if baseband is ready
3905      * Set tx hold and check adc test register
3906      */
3907     phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3908     ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3909     for (i = 0; i <= 20; i++) {
3910         if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3911             break;
3912         usleep_range(200, 250);
3913     }
3914     ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3915 
3916     /*
3917      * Start automatic gain control calibration
3918      *
3919      * During AGC calibration RX path is re-routed to
3920      * a power detector so we don't receive anything.
3921      *
3922      * This method is used to calibrate some static offsets
3923      * used together with on-the fly I/Q calibration (the
3924      * one performed via ath5k_hw_phy_calibrate), which doesn't
3925      * interrupt rx path.
3926      *
3927      * While rx path is re-routed to the power detector we also
3928      * start a noise floor calibration to measure the
3929      * card's noise floor (the noise we measure when we are not
3930      * transmitting or receiving anything).
3931      *
3932      * If we are in a noisy environment, AGC calibration may time
3933      * out and/or noise floor calibration might timeout.
3934      */
3935     AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3936                 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3937 
3938     /* At the same time start I/Q calibration for QAM constellation
3939      * -no need for CCK- */
3940     ah->ah_iq_cal_needed = false;
3941     if (!(mode == AR5K_MODE_11B)) {
3942         ah->ah_iq_cal_needed = true;
3943         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3944                 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3945         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3946                 AR5K_PHY_IQ_RUN);
3947     }
3948 
3949     /* Wait for gain calibration to finish (we check for I/Q calibration
3950      * during ath5k_phy_calibrate) */
3951     if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3952             AR5K_PHY_AGCCTL_CAL, 0, false)) {
3953         ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3954             channel->center_freq);
3955     }
3956 
3957     /* Restore antenna mode */
3958     ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3959 
3960     return ret;
3961 }