Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
0003  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
0004  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
0005  *
0006  * Permission to use, copy, modify, and distribute this software for any
0007  * purpose with or without fee is hereby granted, provided that the above
0008  * copyright notice and this permission notice appear in all copies.
0009  *
0010  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
0011  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
0012  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
0013  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
0014  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
0015  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
0016  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
0017  *
0018  */
0019 
0020 /*************************************\
0021 * EEPROM access functions and helpers *
0022 \*************************************/
0023 
0024 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0025 
0026 #include <linux/slab.h>
0027 
0028 #include "ath5k.h"
0029 #include "reg.h"
0030 #include "debug.h"
0031 
0032 
0033 /******************\
0034 * Helper functions *
0035 \******************/
0036 
0037 /*
0038  * Translate binary channel representation in EEPROM to frequency
0039  */
0040 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
0041                             unsigned int mode)
0042 {
0043     u16 val;
0044 
0045     if (bin == AR5K_EEPROM_CHANNEL_DIS)
0046         return bin;
0047 
0048     if (mode == AR5K_EEPROM_MODE_11A) {
0049         if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
0050             val = (5 * bin) + 4800;
0051         else
0052             val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
0053                 (bin * 10) + 5100;
0054     } else {
0055         if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
0056             val = bin + 2300;
0057         else
0058             val = bin + 2400;
0059     }
0060 
0061     return val;
0062 }
0063 
0064 
0065 /*********\
0066 * Parsers *
0067 \*********/
0068 
0069 /*
0070  * Initialize eeprom & capabilities structs
0071  */
0072 static int
0073 ath5k_eeprom_init_header(struct ath5k_hw *ah)
0074 {
0075     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
0076     u16 val;
0077     u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
0078 
0079     /*
0080      * Read values from EEPROM and store them in the capability structure
0081      */
0082     AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
0083     AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
0084     AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
0085     AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
0086     AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
0087 
0088     /* Return if we have an old EEPROM */
0089     if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
0090         return 0;
0091 
0092     /*
0093      * Validate the checksum of the EEPROM date. There are some
0094      * devices with invalid EEPROMs.
0095      */
0096     AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
0097     if (val) {
0098         eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
0099                AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
0100         AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
0101         eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
0102 
0103         /*
0104          * Fail safe check to prevent stupid loops due
0105          * to busted EEPROMs. XXX: This value is likely too
0106          * big still, waiting on a better value.
0107          */
0108         if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
0109             ATH5K_ERR(ah, "Invalid max custom EEPROM size: "
0110                   "%d (0x%04x) max expected: %d (0x%04x)\n",
0111                   eep_max, eep_max,
0112                   3 * AR5K_EEPROM_INFO_MAX,
0113                   3 * AR5K_EEPROM_INFO_MAX);
0114             return -EIO;
0115         }
0116     }
0117 
0118     for (cksum = 0, offset = 0; offset < eep_max; offset++) {
0119         AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
0120         cksum ^= val;
0121     }
0122     if (cksum != AR5K_EEPROM_INFO_CKSUM) {
0123         ATH5K_ERR(ah, "Invalid EEPROM "
0124               "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
0125               cksum, eep_max,
0126               eep_max == AR5K_EEPROM_INFO_MAX ?
0127                 "default size" : "custom size");
0128         return -EIO;
0129     }
0130 
0131     AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
0132         ee_ant_gain);
0133 
0134     if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
0135         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
0136         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
0137 
0138         /* XXX: Don't know which versions include these two */
0139         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
0140 
0141         if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
0142             AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
0143 
0144         if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
0145             AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
0146             AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
0147             AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
0148         }
0149     }
0150 
0151     if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
0152         AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
0153         ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
0154         ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
0155 
0156         AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
0157         ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
0158         ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
0159     }
0160 
0161     AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
0162 
0163     if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
0164         ee->ee_is_hb63 = true;
0165     else
0166         ee->ee_is_hb63 = false;
0167 
0168     AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
0169     ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
0170     ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
0171 
0172     /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
0173      * and enable serdes programming if needed.
0174      *
0175      * XXX: Serdes values seem to be fixed so
0176      * no need to read them here, we write them
0177      * during ath5k_hw_init */
0178     AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
0179     ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
0180                             true : false;
0181 
0182     return 0;
0183 }
0184 
0185 
0186 /*
0187  * Read antenna infos from eeprom
0188  */
0189 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
0190         unsigned int mode)
0191 {
0192     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
0193     u32 o = *offset;
0194     u16 val;
0195     int i = 0;
0196 
0197     AR5K_EEPROM_READ(o++, val);
0198     ee->ee_switch_settling[mode]    = (val >> 8) & 0x7f;
0199     ee->ee_atn_tx_rx[mode]      = (val >> 2) & 0x3f;
0200     ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
0201 
0202     AR5K_EEPROM_READ(o++, val);
0203     ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
0204     ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
0205     ee->ee_ant_control[mode][i++]   = val & 0x3f;
0206 
0207     AR5K_EEPROM_READ(o++, val);
0208     ee->ee_ant_control[mode][i++]   = (val >> 10) & 0x3f;
0209     ee->ee_ant_control[mode][i++]   = (val >> 4) & 0x3f;
0210     ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
0211 
0212     AR5K_EEPROM_READ(o++, val);
0213     ee->ee_ant_control[mode][i++]   |= (val >> 14) & 0x3;
0214     ee->ee_ant_control[mode][i++]   = (val >> 8) & 0x3f;
0215     ee->ee_ant_control[mode][i++]   = (val >> 2) & 0x3f;
0216     ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
0217 
0218     AR5K_EEPROM_READ(o++, val);
0219     ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
0220     ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
0221     ee->ee_ant_control[mode][i++]   = val & 0x3f;
0222 
0223     /* Get antenna switch tables */
0224     ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
0225         (ee->ee_ant_control[mode][0] << 4);
0226     ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
0227          ee->ee_ant_control[mode][1]    |
0228         (ee->ee_ant_control[mode][2] << 6)  |
0229         (ee->ee_ant_control[mode][3] << 12) |
0230         (ee->ee_ant_control[mode][4] << 18) |
0231         (ee->ee_ant_control[mode][5] << 24);
0232     ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
0233          ee->ee_ant_control[mode][6]    |
0234         (ee->ee_ant_control[mode][7] << 6)  |
0235         (ee->ee_ant_control[mode][8] << 12) |
0236         (ee->ee_ant_control[mode][9] << 18) |
0237         (ee->ee_ant_control[mode][10] << 24);
0238 
0239     /* return new offset */
0240     *offset = o;
0241 
0242     return 0;
0243 }
0244 
0245 /*
0246  * Read supported modes and some mode-specific calibration data
0247  * from eeprom
0248  */
0249 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
0250         unsigned int mode)
0251 {
0252     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
0253     u32 o = *offset;
0254     u16 val;
0255 
0256     ee->ee_n_piers[mode] = 0;
0257     AR5K_EEPROM_READ(o++, val);
0258     ee->ee_adc_desired_size[mode]   = (s8)((val >> 8) & 0xff);
0259     switch (mode) {
0260     case AR5K_EEPROM_MODE_11A:
0261         ee->ee_ob[mode][3]  = (val >> 5) & 0x7;
0262         ee->ee_db[mode][3]  = (val >> 2) & 0x7;
0263         ee->ee_ob[mode][2]  = (val << 1) & 0x7;
0264 
0265         AR5K_EEPROM_READ(o++, val);
0266         ee->ee_ob[mode][2]  |= (val >> 15) & 0x1;
0267         ee->ee_db[mode][2]  = (val >> 12) & 0x7;
0268         ee->ee_ob[mode][1]  = (val >> 9) & 0x7;
0269         ee->ee_db[mode][1]  = (val >> 6) & 0x7;
0270         ee->ee_ob[mode][0]  = (val >> 3) & 0x7;
0271         ee->ee_db[mode][0]  = val & 0x7;
0272         break;
0273     case AR5K_EEPROM_MODE_11G:
0274     case AR5K_EEPROM_MODE_11B:
0275         ee->ee_ob[mode][1]  = (val >> 4) & 0x7;
0276         ee->ee_db[mode][1]  = val & 0x7;
0277         break;
0278     }
0279 
0280     AR5K_EEPROM_READ(o++, val);
0281     ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
0282     ee->ee_thr_62[mode]     = val & 0xff;
0283 
0284     if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
0285         ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
0286 
0287     AR5K_EEPROM_READ(o++, val);
0288     ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
0289     ee->ee_tx_frm2xpa_enable[mode]  = val & 0xff;
0290 
0291     AR5K_EEPROM_READ(o++, val);
0292     ee->ee_pga_desired_size[mode]   = (val >> 8) & 0xff;
0293 
0294     if ((val & 0xff) & 0x80)
0295         ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
0296     else
0297         ee->ee_noise_floor_thr[mode] = val & 0xff;
0298 
0299     if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
0300         ee->ee_noise_floor_thr[mode] =
0301             mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
0302 
0303     AR5K_EEPROM_READ(o++, val);
0304     ee->ee_xlna_gain[mode]      = (val >> 5) & 0xff;
0305     ee->ee_x_gain[mode]     = (val >> 1) & 0xf;
0306     ee->ee_xpd[mode]        = val & 0x1;
0307 
0308     if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
0309         mode != AR5K_EEPROM_MODE_11B)
0310         ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
0311 
0312     if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
0313         AR5K_EEPROM_READ(o++, val);
0314         ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
0315 
0316         if (mode == AR5K_EEPROM_MODE_11A)
0317             ee->ee_xr_power[mode] = val & 0x3f;
0318         else {
0319             /* b_DB_11[bg] and b_OB_11[bg] */
0320             ee->ee_ob[mode][0] = val & 0x7;
0321             ee->ee_db[mode][0] = (val >> 3) & 0x7;
0322         }
0323     }
0324 
0325     if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
0326         ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
0327         ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
0328     } else {
0329         ee->ee_i_gain[mode] = (val >> 13) & 0x7;
0330 
0331         AR5K_EEPROM_READ(o++, val);
0332         ee->ee_i_gain[mode] |= (val << 3) & 0x38;
0333 
0334         if (mode == AR5K_EEPROM_MODE_11G) {
0335             ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
0336             if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
0337                 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
0338         }
0339     }
0340 
0341     if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
0342             mode == AR5K_EEPROM_MODE_11A) {
0343         ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
0344         ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
0345     }
0346 
0347     if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
0348         goto done;
0349 
0350     /* Note: >= v5 have bg freq piers on another location
0351      * so these freq piers are ignored for >= v5 (should be 0xff
0352      * anyway) */
0353     switch (mode) {
0354     case AR5K_EEPROM_MODE_11A:
0355         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
0356             break;
0357 
0358         AR5K_EEPROM_READ(o++, val);
0359         ee->ee_margin_tx_rx[mode] = val & 0x3f;
0360         break;
0361     case AR5K_EEPROM_MODE_11B:
0362         AR5K_EEPROM_READ(o++, val);
0363 
0364         ee->ee_pwr_cal_b[0].freq =
0365             ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
0366         if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
0367             ee->ee_n_piers[mode]++;
0368 
0369         ee->ee_pwr_cal_b[1].freq =
0370             ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
0371         if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
0372             ee->ee_n_piers[mode]++;
0373 
0374         AR5K_EEPROM_READ(o++, val);
0375         ee->ee_pwr_cal_b[2].freq =
0376             ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
0377         if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
0378             ee->ee_n_piers[mode]++;
0379 
0380         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
0381             ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
0382         break;
0383     case AR5K_EEPROM_MODE_11G:
0384         AR5K_EEPROM_READ(o++, val);
0385 
0386         ee->ee_pwr_cal_g[0].freq =
0387             ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
0388         if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
0389             ee->ee_n_piers[mode]++;
0390 
0391         ee->ee_pwr_cal_g[1].freq =
0392             ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
0393         if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
0394             ee->ee_n_piers[mode]++;
0395 
0396         AR5K_EEPROM_READ(o++, val);
0397         ee->ee_turbo_max_power[mode] = val & 0x7f;
0398         ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
0399 
0400         AR5K_EEPROM_READ(o++, val);
0401         ee->ee_pwr_cal_g[2].freq =
0402             ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
0403         if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
0404             ee->ee_n_piers[mode]++;
0405 
0406         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
0407             ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
0408 
0409         AR5K_EEPROM_READ(o++, val);
0410         ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
0411         ee->ee_q_cal[mode] = val & 0x1f;
0412 
0413         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
0414             AR5K_EEPROM_READ(o++, val);
0415             ee->ee_cck_ofdm_gain_delta = val & 0xff;
0416         }
0417         break;
0418     }
0419 
0420     /*
0421      * Read turbo mode information on newer EEPROM versions
0422      */
0423     if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
0424         goto done;
0425 
0426     switch (mode) {
0427     case AR5K_EEPROM_MODE_11A:
0428         ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
0429 
0430         ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
0431         AR5K_EEPROM_READ(o++, val);
0432         ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
0433         ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
0434 
0435         ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
0436         AR5K_EEPROM_READ(o++, val);
0437         ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
0438         ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
0439 
0440         if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >= 2)
0441             ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
0442         break;
0443     case AR5K_EEPROM_MODE_11G:
0444         ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
0445 
0446         ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
0447         AR5K_EEPROM_READ(o++, val);
0448         ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
0449         ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
0450 
0451         ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
0452         AR5K_EEPROM_READ(o++, val);
0453         ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
0454         ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
0455         break;
0456     }
0457 
0458 done:
0459     /* return new offset */
0460     *offset = o;
0461 
0462     return 0;
0463 }
0464 
0465 /* Read mode-specific data (except power calibration data) */
0466 static int
0467 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
0468 {
0469     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
0470     u32 mode_offset[3];
0471     unsigned int mode;
0472     u32 offset;
0473     int ret;
0474 
0475     /*
0476      * Get values for all modes
0477      */
0478     mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
0479     mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
0480     mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
0481 
0482     ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
0483         AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
0484 
0485     for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
0486         offset = mode_offset[mode];
0487 
0488         ret = ath5k_eeprom_read_ants(ah, &offset, mode);
0489         if (ret)
0490             return ret;
0491 
0492         ret = ath5k_eeprom_read_modes(ah, &offset, mode);
0493         if (ret)
0494             return ret;
0495     }
0496 
0497     /* override for older eeprom versions for better performance */
0498     if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
0499         ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
0500         ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
0501         ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
0502     }
0503 
0504     return 0;
0505 }
0506 
0507 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
0508  * frequency mask) */
0509 static inline int
0510 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
0511             struct ath5k_chan_pcal_info *pc, unsigned int mode)
0512 {
0513     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
0514     int o = *offset;
0515     int i = 0;
0516     u8 freq1, freq2;
0517     u16 val;
0518 
0519     ee->ee_n_piers[mode] = 0;
0520     while (i < max) {
0521         AR5K_EEPROM_READ(o++, val);
0522 
0523         freq1 = val & 0xff;
0524         if (!freq1)
0525             break;
0526 
0527         pc[i++].freq = ath5k_eeprom_bin2freq(ee,
0528                 freq1, mode);
0529         ee->ee_n_piers[mode]++;
0530 
0531         freq2 = (val >> 8) & 0xff;
0532         if (!freq2)
0533             break;
0534 
0535         pc[i++].freq = ath5k_eeprom_bin2freq(ee,
0536                 freq2, mode);
0537         ee->ee_n_piers[mode]++;
0538     }
0539 
0540     /* return new offset */
0541     *offset = o;
0542 
0543     return 0;
0544 }
0545 
0546 /* Read frequency piers for 802.11a */
0547 static int
0548 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
0549 {
0550     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
0551     struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
0552     int i;
0553     u16 val;
0554     u8 mask;
0555 
0556     if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
0557         ath5k_eeprom_read_freq_list(ah, &offset,
0558             AR5K_EEPROM_N_5GHZ_CHAN, pcal,
0559             AR5K_EEPROM_MODE_11A);
0560     } else {
0561         mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
0562 
0563         AR5K_EEPROM_READ(offset++, val);
0564         pcal[0].freq  = (val >> 9) & mask;
0565         pcal[1].freq  = (val >> 2) & mask;
0566         pcal[2].freq  = (val << 5) & mask;
0567 
0568         AR5K_EEPROM_READ(offset++, val);
0569         pcal[2].freq |= (val >> 11) & 0x1f;
0570         pcal[3].freq  = (val >> 4) & mask;
0571         pcal[4].freq  = (val << 3) & mask;
0572 
0573         AR5K_EEPROM_READ(offset++, val);
0574         pcal[4].freq |= (val >> 13) & 0x7;
0575         pcal[5].freq  = (val >> 6) & mask;
0576         pcal[6].freq  = (val << 1) & mask;
0577 
0578         AR5K_EEPROM_READ(offset++, val);
0579         pcal[6].freq |= (val >> 15) & 0x1;
0580         pcal[7].freq  = (val >> 8) & mask;
0581         pcal[8].freq  = (val >> 1) & mask;
0582         pcal[9].freq  = (val << 6) & mask;
0583 
0584         AR5K_EEPROM_READ(offset++, val);
0585         pcal[9].freq |= (val >> 10) & 0x3f;
0586 
0587         /* Fixed number of piers */
0588         ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
0589 
0590         for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
0591             pcal[i].freq = ath5k_eeprom_bin2freq(ee,
0592                 pcal[i].freq, AR5K_EEPROM_MODE_11A);
0593         }
0594     }
0595 
0596     return 0;
0597 }
0598 
0599 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
0600 static inline int
0601 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
0602 {
0603     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
0604     struct ath5k_chan_pcal_info *pcal;
0605 
0606     switch (mode) {
0607     case AR5K_EEPROM_MODE_11B:
0608         pcal = ee->ee_pwr_cal_b;
0609         break;
0610     case AR5K_EEPROM_MODE_11G:
0611         pcal = ee->ee_pwr_cal_g;
0612         break;
0613     default:
0614         return -EINVAL;
0615     }
0616 
0617     ath5k_eeprom_read_freq_list(ah, &offset,
0618         AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
0619         mode);
0620 
0621     return 0;
0622 }
0623 
0624 
0625 /*
0626  * Read power calibration for RF5111 chips
0627  *
0628  * For RF5111 we have an XPD -eXternal Power Detector- curve
0629  * for each calibrated channel. Each curve has 0,5dB Power steps
0630  * on x axis and PCDAC steps (offsets) on y axis and looks like an
0631  * exponential function. To recreate the curve we read 11 points
0632  * here and interpolate later.
0633  */
0634 
0635 /* Used to match PCDAC steps with power values on RF5111 chips
0636  * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
0637  * steps that match with the power values we read from eeprom. On
0638  * older eeprom versions (< 3.2) these steps are equally spaced at
0639  * 10% of the pcdac curve -until the curve reaches its maximum-
0640  * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
0641  * these 11 steps are spaced in a different way. This function returns
0642  * the pcdac steps based on eeprom version and curve min/max so that we
0643  * can have pcdac/pwr points.
0644  */
0645 static inline void
0646 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
0647 {
0648     static const u16 intercepts3[] = {
0649         0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100
0650     };
0651     static const u16 intercepts3_2[] = {
0652         0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
0653     };
0654     const u16 *ip;
0655     int i;
0656 
0657     if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
0658         ip = intercepts3_2;
0659     else
0660         ip = intercepts3;
0661 
0662     for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
0663         vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
0664 }
0665 
0666 static int
0667 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
0668 {
0669     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
0670     struct ath5k_chan_pcal_info *chinfo;
0671     u8 pier, pdg;
0672 
0673     switch (mode) {
0674     case AR5K_EEPROM_MODE_11A:
0675         if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
0676             return 0;
0677         chinfo = ee->ee_pwr_cal_a;
0678         break;
0679     case AR5K_EEPROM_MODE_11B:
0680         if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
0681             return 0;
0682         chinfo = ee->ee_pwr_cal_b;
0683         break;
0684     case AR5K_EEPROM_MODE_11G:
0685         if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
0686             return 0;
0687         chinfo = ee->ee_pwr_cal_g;
0688         break;
0689     default:
0690         return -EINVAL;
0691     }
0692 
0693     for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
0694         if (!chinfo[pier].pd_curves)
0695             continue;
0696 
0697         for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) {
0698             struct ath5k_pdgain_info *pd =
0699                     &chinfo[pier].pd_curves[pdg];
0700 
0701             kfree(pd->pd_step);
0702             kfree(pd->pd_pwr);
0703         }
0704 
0705         kfree(chinfo[pier].pd_curves);
0706     }
0707 
0708     return 0;
0709 }
0710 
0711 /* Convert RF5111 specific data to generic raw data
0712  * used by interpolation code */
0713 static int
0714 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
0715                 struct ath5k_chan_pcal_info *chinfo)
0716 {
0717     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
0718     struct ath5k_chan_pcal_info_rf5111 *pcinfo;
0719     struct ath5k_pdgain_info *pd;
0720     u8 pier, point, idx;
0721     u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
0722 
0723     /* Fill raw data for each calibration pier */
0724     for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
0725 
0726         pcinfo = &chinfo[pier].rf5111_info;
0727 
0728         /* Allocate pd_curves for this cal pier */
0729         chinfo[pier].pd_curves =
0730             kcalloc(AR5K_EEPROM_N_PD_CURVES,
0731                 sizeof(struct ath5k_pdgain_info),
0732                 GFP_KERNEL);
0733 
0734         if (!chinfo[pier].pd_curves)
0735             goto err_out;
0736 
0737         /* Only one curve for RF5111
0738          * find out which one and place
0739          * in pd_curves.
0740          * Note: ee_x_gain is reversed here */
0741         for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
0742 
0743             if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
0744                 pdgain_idx[0] = idx;
0745                 break;
0746             }
0747         }
0748 
0749         if (idx == AR5K_EEPROM_N_PD_CURVES)
0750             goto err_out;
0751 
0752         ee->ee_pd_gains[mode] = 1;
0753 
0754         pd = &chinfo[pier].pd_curves[idx];
0755 
0756         pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
0757 
0758         /* Allocate pd points for this curve */
0759         pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
0760                     sizeof(u8), GFP_KERNEL);
0761         if (!pd->pd_step)
0762             goto err_out;
0763 
0764         pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
0765                     sizeof(s16), GFP_KERNEL);
0766         if (!pd->pd_pwr)
0767             goto err_out;
0768 
0769         /* Fill raw dataset
0770          * (convert power to 0.25dB units
0771          * for RF5112 compatibility) */
0772         for (point = 0; point < pd->pd_points; point++) {
0773 
0774             /* Absolute values */
0775             pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
0776 
0777             /* Already sorted */
0778             pd->pd_step[point] = pcinfo->pcdac[point];
0779         }
0780 
0781         /* Set min/max pwr */
0782         chinfo[pier].min_pwr = pd->pd_pwr[0];
0783         chinfo[pier].max_pwr = pd->pd_pwr[10];
0784 
0785     }
0786 
0787     return 0;
0788 
0789 err_out:
0790     ath5k_eeprom_free_pcal_info(ah, mode);
0791     return -ENOMEM;
0792 }
0793 
0794 /* Parse EEPROM data */
0795 static int
0796 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
0797 {
0798     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
0799     struct ath5k_chan_pcal_info *pcal;
0800     int offset, ret;
0801     int i;
0802     u16 val;
0803 
0804     offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
0805     switch (mode) {
0806     case AR5K_EEPROM_MODE_11A:
0807         if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
0808             return 0;
0809 
0810         ret = ath5k_eeprom_init_11a_pcal_freq(ah,
0811             offset + AR5K_EEPROM_GROUP1_OFFSET);
0812         if (ret < 0)
0813             return ret;
0814 
0815         offset += AR5K_EEPROM_GROUP2_OFFSET;
0816         pcal = ee->ee_pwr_cal_a;
0817         break;
0818     case AR5K_EEPROM_MODE_11B:
0819         if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
0820             !AR5K_EEPROM_HDR_11G(ee->ee_header))
0821             return 0;
0822 
0823         pcal = ee->ee_pwr_cal_b;
0824         offset += AR5K_EEPROM_GROUP3_OFFSET;
0825 
0826         /* fixed piers */
0827         pcal[0].freq = 2412;
0828         pcal[1].freq = 2447;
0829         pcal[2].freq = 2484;
0830         ee->ee_n_piers[mode] = 3;
0831         break;
0832     case AR5K_EEPROM_MODE_11G:
0833         if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
0834             return 0;
0835 
0836         pcal = ee->ee_pwr_cal_g;
0837         offset += AR5K_EEPROM_GROUP4_OFFSET;
0838 
0839         /* fixed piers */
0840         pcal[0].freq = 2312;
0841         pcal[1].freq = 2412;
0842         pcal[2].freq = 2484;
0843         ee->ee_n_piers[mode] = 3;
0844         break;
0845     default:
0846         return -EINVAL;
0847     }
0848 
0849     for (i = 0; i < ee->ee_n_piers[mode]; i++) {
0850         struct ath5k_chan_pcal_info_rf5111 *cdata =
0851             &pcal[i].rf5111_info;
0852 
0853         AR5K_EEPROM_READ(offset++, val);
0854         cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
0855         cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
0856         cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
0857 
0858         AR5K_EEPROM_READ(offset++, val);
0859         cdata->pwr[0] |= ((val >> 14) & 0x3);
0860         cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
0861         cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
0862         cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
0863 
0864         AR5K_EEPROM_READ(offset++, val);
0865         cdata->pwr[3] |= ((val >> 12) & 0xf);
0866         cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
0867         cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
0868 
0869         AR5K_EEPROM_READ(offset++, val);
0870         cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
0871         cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
0872         cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
0873 
0874         AR5K_EEPROM_READ(offset++, val);
0875         cdata->pwr[8] |= ((val >> 14) & 0x3);
0876         cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
0877         cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
0878 
0879         ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
0880             cdata->pcdac_max, cdata->pcdac);
0881     }
0882 
0883     return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
0884 }
0885 
0886 
0887 /*
0888  * Read power calibration for RF5112 chips
0889  *
0890  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
0891  * for each calibrated channel on 0, -6, -12 and -18dBm but we only
0892  * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
0893  * power steps on x axis and PCDAC steps on y axis and looks like a
0894  * linear function. To recreate the curve and pass the power values
0895  * on hw, we read 4 points for xpd 0 (lower gain -> max power)
0896  * and 3 points for xpd 3 (higher gain -> lower power) here and
0897  * interpolate later.
0898  *
0899  * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
0900  */
0901 
0902 /* Convert RF5112 specific data to generic raw data
0903  * used by interpolation code */
0904 static int
0905 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
0906                 struct ath5k_chan_pcal_info *chinfo)
0907 {
0908     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
0909     struct ath5k_chan_pcal_info_rf5112 *pcinfo;
0910     u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
0911     unsigned int pier, pdg, point;
0912 
0913     /* Fill raw data for each calibration pier */
0914     for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
0915 
0916         pcinfo = &chinfo[pier].rf5112_info;
0917 
0918         /* Allocate pd_curves for this cal pier */
0919         chinfo[pier].pd_curves =
0920                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
0921                     sizeof(struct ath5k_pdgain_info),
0922                     GFP_KERNEL);
0923 
0924         if (!chinfo[pier].pd_curves)
0925             goto err_out;
0926 
0927         /* Fill pd_curves */
0928         for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
0929 
0930             u8 idx = pdgain_idx[pdg];
0931             struct ath5k_pdgain_info *pd =
0932                     &chinfo[pier].pd_curves[idx];
0933 
0934             /* Lowest gain curve (max power) */
0935             if (pdg == 0) {
0936                 /* One more point for better accuracy */
0937                 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
0938 
0939                 /* Allocate pd points for this curve */
0940                 pd->pd_step = kcalloc(pd->pd_points,
0941                         sizeof(u8), GFP_KERNEL);
0942 
0943                 if (!pd->pd_step)
0944                     goto err_out;
0945 
0946                 pd->pd_pwr = kcalloc(pd->pd_points,
0947                         sizeof(s16), GFP_KERNEL);
0948 
0949                 if (!pd->pd_pwr)
0950                     goto err_out;
0951 
0952                 /* Fill raw dataset
0953                  * (all power levels are in 0.25dB units) */
0954                 pd->pd_step[0] = pcinfo->pcdac_x0[0];
0955                 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
0956 
0957                 for (point = 1; point < pd->pd_points;
0958                 point++) {
0959                     /* Absolute values */
0960                     pd->pd_pwr[point] =
0961                         pcinfo->pwr_x0[point];
0962 
0963                     /* Deltas */
0964                     pd->pd_step[point] =
0965                         pd->pd_step[point - 1] +
0966                         pcinfo->pcdac_x0[point];
0967                 }
0968 
0969                 /* Set min power for this frequency */
0970                 chinfo[pier].min_pwr = pd->pd_pwr[0];
0971 
0972             /* Highest gain curve (min power) */
0973             } else if (pdg == 1) {
0974 
0975                 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
0976 
0977                 /* Allocate pd points for this curve */
0978                 pd->pd_step = kcalloc(pd->pd_points,
0979                         sizeof(u8), GFP_KERNEL);
0980 
0981                 if (!pd->pd_step)
0982                     goto err_out;
0983 
0984                 pd->pd_pwr = kcalloc(pd->pd_points,
0985                         sizeof(s16), GFP_KERNEL);
0986 
0987                 if (!pd->pd_pwr)
0988                     goto err_out;
0989 
0990                 /* Fill raw dataset
0991                  * (all power levels are in 0.25dB units) */
0992                 for (point = 0; point < pd->pd_points;
0993                 point++) {
0994                     /* Absolute values */
0995                     pd->pd_pwr[point] =
0996                         pcinfo->pwr_x3[point];
0997 
0998                     /* Fixed points */
0999                     pd->pd_step[point] =
1000                         pcinfo->pcdac_x3[point];
1001                 }
1002 
1003                 /* Since we have a higher gain curve
1004                  * override min power */
1005                 chinfo[pier].min_pwr = pd->pd_pwr[0];
1006             }
1007         }
1008     }
1009 
1010     return 0;
1011 
1012 err_out:
1013     ath5k_eeprom_free_pcal_info(ah, mode);
1014     return -ENOMEM;
1015 }
1016 
1017 /* Parse EEPROM data */
1018 static int
1019 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
1020 {
1021     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1022     struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
1023     struct ath5k_chan_pcal_info *gen_chan_info;
1024     u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1025     u32 offset;
1026     u8 i, c;
1027     u16 val;
1028     u8 pd_gains = 0;
1029 
1030     /* Count how many curves we have and
1031      * identify them (which one of the 4
1032      * available curves we have on each count).
1033      * Curves are stored from lower (x0) to
1034      * higher (x3) gain */
1035     for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1036         /* ee_x_gain[mode] is x gain mask */
1037         if ((ee->ee_x_gain[mode] >> i) & 0x1)
1038             pdgain_idx[pd_gains++] = i;
1039     }
1040     ee->ee_pd_gains[mode] = pd_gains;
1041 
1042     if (pd_gains == 0 || pd_gains > 2)
1043         return -EINVAL;
1044 
1045     switch (mode) {
1046     case AR5K_EEPROM_MODE_11A:
1047         /*
1048          * Read 5GHz EEPROM channels
1049          */
1050         offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1051         ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1052 
1053         offset += AR5K_EEPROM_GROUP2_OFFSET;
1054         gen_chan_info = ee->ee_pwr_cal_a;
1055         break;
1056     case AR5K_EEPROM_MODE_11B:
1057         offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1058         if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1059             offset += AR5K_EEPROM_GROUP3_OFFSET;
1060 
1061         /* NB: frequency piers parsed during mode init */
1062         gen_chan_info = ee->ee_pwr_cal_b;
1063         break;
1064     case AR5K_EEPROM_MODE_11G:
1065         offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1066         if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1067             offset += AR5K_EEPROM_GROUP4_OFFSET;
1068         else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1069             offset += AR5K_EEPROM_GROUP2_OFFSET;
1070 
1071         /* NB: frequency piers parsed during mode init */
1072         gen_chan_info = ee->ee_pwr_cal_g;
1073         break;
1074     default:
1075         return -EINVAL;
1076     }
1077 
1078     for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1079         chan_pcal_info = &gen_chan_info[i].rf5112_info;
1080 
1081         /* Power values in quarter dB
1082          * for the lower xpd gain curve
1083          * (0 dBm -> higher output power) */
1084         for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1085             AR5K_EEPROM_READ(offset++, val);
1086             chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1087             chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1088         }
1089 
1090         /* PCDAC steps
1091          * corresponding to the above power
1092          * measurements */
1093         AR5K_EEPROM_READ(offset++, val);
1094         chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1095         chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1096         chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1097 
1098         /* Power values in quarter dB
1099          * for the higher xpd gain curve
1100          * (18 dBm -> lower output power) */
1101         AR5K_EEPROM_READ(offset++, val);
1102         chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1103         chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1104 
1105         AR5K_EEPROM_READ(offset++, val);
1106         chan_pcal_info->pwr_x3[2] = (val & 0xff);
1107 
1108         /* PCDAC steps
1109          * corresponding to the above power
1110          * measurements (fixed) */
1111         chan_pcal_info->pcdac_x3[0] = 20;
1112         chan_pcal_info->pcdac_x3[1] = 35;
1113         chan_pcal_info->pcdac_x3[2] = 63;
1114 
1115         if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1116             chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1117 
1118             /* Last xpd0 power level is also channel maximum */
1119             gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1120         } else {
1121             chan_pcal_info->pcdac_x0[0] = 1;
1122             gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1123         }
1124 
1125     }
1126 
1127     return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1128 }
1129 
1130 
1131 /*
1132  * Read power calibration for RF2413 chips
1133  *
1134  * For RF2413 we have a Power to PDDAC table (Power Detector)
1135  * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1136  * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1137  * axis and looks like an exponential function like the RF5111 curve.
1138  *
1139  * To recreate the curves we read here the points and interpolate
1140  * later. Note that in most cases only 2 (higher and lower) curves are
1141  * used (like RF5112) but vendors have the opportunity to include all
1142  * 4 curves on eeprom. The final curve (higher power) has an extra
1143  * point for better accuracy like RF5112.
1144  */
1145 
1146 /* For RF2413 power calibration data doesn't start on a fixed location and
1147  * if a mode is not supported, its section is missing -not zeroed-.
1148  * So we need to calculate the starting offset for each section by using
1149  * these two functions */
1150 
1151 /* Return the size of each section based on the mode and the number of pd
1152  * gains available (maximum 4). */
1153 static inline unsigned int
1154 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1155 {
1156     static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1157     unsigned int sz;
1158 
1159     sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1160     sz *= ee->ee_n_piers[mode];
1161 
1162     return sz;
1163 }
1164 
1165 /* Return the starting offset for a section based on the modes supported
1166  * and each section's size. */
1167 static unsigned int
1168 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1169 {
1170     u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1171 
1172     switch (mode) {
1173     case AR5K_EEPROM_MODE_11G:
1174         if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1175             offset += ath5k_pdgains_size_2413(ee,
1176                     AR5K_EEPROM_MODE_11B) +
1177                     AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1178         fallthrough;
1179     case AR5K_EEPROM_MODE_11B:
1180         if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1181             offset += ath5k_pdgains_size_2413(ee,
1182                     AR5K_EEPROM_MODE_11A) +
1183                     AR5K_EEPROM_N_5GHZ_CHAN / 2;
1184         fallthrough;
1185     case AR5K_EEPROM_MODE_11A:
1186         break;
1187     default:
1188         break;
1189     }
1190 
1191     return offset;
1192 }
1193 
1194 /* Convert RF2413 specific data to generic raw data
1195  * used by interpolation code */
1196 static int
1197 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1198                 struct ath5k_chan_pcal_info *chinfo)
1199 {
1200     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1201     struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1202     u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1203     unsigned int pier, pdg, point;
1204 
1205     /* Fill raw data for each calibration pier */
1206     for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1207 
1208         pcinfo = &chinfo[pier].rf2413_info;
1209 
1210         /* Allocate pd_curves for this cal pier */
1211         chinfo[pier].pd_curves =
1212                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1213                     sizeof(struct ath5k_pdgain_info),
1214                     GFP_KERNEL);
1215 
1216         if (!chinfo[pier].pd_curves)
1217             goto err_out;
1218 
1219         /* Fill pd_curves */
1220         for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1221 
1222             u8 idx = pdgain_idx[pdg];
1223             struct ath5k_pdgain_info *pd =
1224                     &chinfo[pier].pd_curves[idx];
1225 
1226             /* One more point for the highest power
1227              * curve (lowest gain) */
1228             if (pdg == ee->ee_pd_gains[mode] - 1)
1229                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1230             else
1231                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1232 
1233             /* Allocate pd points for this curve */
1234             pd->pd_step = kcalloc(pd->pd_points,
1235                     sizeof(u8), GFP_KERNEL);
1236 
1237             if (!pd->pd_step)
1238                 goto err_out;
1239 
1240             pd->pd_pwr = kcalloc(pd->pd_points,
1241                     sizeof(s16), GFP_KERNEL);
1242 
1243             if (!pd->pd_pwr)
1244                 goto err_out;
1245 
1246             /* Fill raw dataset
1247              * convert all pwr levels to
1248              * quarter dB for RF5112 compatibility */
1249             pd->pd_step[0] = pcinfo->pddac_i[pdg];
1250             pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1251 
1252             for (point = 1; point < pd->pd_points; point++) {
1253 
1254                 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1255                     2 * pcinfo->pwr[pdg][point - 1];
1256 
1257                 pd->pd_step[point] = pd->pd_step[point - 1] +
1258                         pcinfo->pddac[pdg][point - 1];
1259 
1260             }
1261 
1262             /* Highest gain curve -> min power */
1263             if (pdg == 0)
1264                 chinfo[pier].min_pwr = pd->pd_pwr[0];
1265 
1266             /* Lowest gain curve -> max power */
1267             if (pdg == ee->ee_pd_gains[mode] - 1)
1268                 chinfo[pier].max_pwr =
1269                     pd->pd_pwr[pd->pd_points - 1];
1270         }
1271     }
1272 
1273     return 0;
1274 
1275 err_out:
1276     ath5k_eeprom_free_pcal_info(ah, mode);
1277     return -ENOMEM;
1278 }
1279 
1280 /* Parse EEPROM data */
1281 static int
1282 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1283 {
1284     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1285     struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1286     struct ath5k_chan_pcal_info *chinfo;
1287     u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1288     u32 offset;
1289     int idx, i;
1290     u16 val;
1291     u8 pd_gains = 0;
1292 
1293     /* Count how many curves we have and
1294      * identify them (which one of the 4
1295      * available curves we have on each count).
1296      * Curves are stored from higher to
1297      * lower gain so we go backwards */
1298     for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1299         /* ee_x_gain[mode] is x gain mask */
1300         if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1301             pdgain_idx[pd_gains++] = idx;
1302 
1303     }
1304     ee->ee_pd_gains[mode] = pd_gains;
1305 
1306     if (pd_gains == 0)
1307         return -EINVAL;
1308 
1309     offset = ath5k_cal_data_offset_2413(ee, mode);
1310     switch (mode) {
1311     case AR5K_EEPROM_MODE_11A:
1312         if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1313             return 0;
1314 
1315         ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1316         offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1317         chinfo = ee->ee_pwr_cal_a;
1318         break;
1319     case AR5K_EEPROM_MODE_11B:
1320         if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1321             return 0;
1322 
1323         ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1324         offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1325         chinfo = ee->ee_pwr_cal_b;
1326         break;
1327     case AR5K_EEPROM_MODE_11G:
1328         if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1329             return 0;
1330 
1331         ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1332         offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1333         chinfo = ee->ee_pwr_cal_g;
1334         break;
1335     default:
1336         return -EINVAL;
1337     }
1338 
1339     for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1340         pcinfo = &chinfo[i].rf2413_info;
1341 
1342         /*
1343          * Read pwr_i, pddac_i and the first
1344          * 2 pd points (pwr, pddac)
1345          */
1346         AR5K_EEPROM_READ(offset++, val);
1347         pcinfo->pwr_i[0] = val & 0x1f;
1348         pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1349         pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1350 
1351         AR5K_EEPROM_READ(offset++, val);
1352         pcinfo->pddac[0][0] = val & 0x3f;
1353         pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1354         pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1355 
1356         AR5K_EEPROM_READ(offset++, val);
1357         pcinfo->pwr[0][2] = val & 0xf;
1358         pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1359 
1360         pcinfo->pwr[0][3] = 0;
1361         pcinfo->pddac[0][3] = 0;
1362 
1363         if (pd_gains > 1) {
1364             /*
1365              * Pd gain 0 is not the last pd gain
1366              * so it only has 2 pd points.
1367              * Continue with pd gain 1.
1368              */
1369             pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1370 
1371             pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1372             AR5K_EEPROM_READ(offset++, val);
1373             pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1374 
1375             pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1376             pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1377 
1378             AR5K_EEPROM_READ(offset++, val);
1379             pcinfo->pwr[1][1] = val & 0xf;
1380             pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1381             pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1382 
1383             pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1384             AR5K_EEPROM_READ(offset++, val);
1385             pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1386 
1387             pcinfo->pwr[1][3] = 0;
1388             pcinfo->pddac[1][3] = 0;
1389         } else if (pd_gains == 1) {
1390             /*
1391              * Pd gain 0 is the last one so
1392              * read the extra point.
1393              */
1394             pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1395 
1396             pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1397             AR5K_EEPROM_READ(offset++, val);
1398             pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1399         }
1400 
1401         /*
1402          * Proceed with the other pd_gains
1403          * as above.
1404          */
1405         if (pd_gains > 2) {
1406             pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1407             pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1408 
1409             AR5K_EEPROM_READ(offset++, val);
1410             pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1411             pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1412             pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1413 
1414             pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1415             AR5K_EEPROM_READ(offset++, val);
1416             pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1417 
1418             pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1419             pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1420 
1421             pcinfo->pwr[2][3] = 0;
1422             pcinfo->pddac[2][3] = 0;
1423         } else if (pd_gains == 2) {
1424             pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1425             pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1426         }
1427 
1428         if (pd_gains > 3) {
1429             pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1430             AR5K_EEPROM_READ(offset++, val);
1431             pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1432 
1433             pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1434             pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1435             pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1436 
1437             AR5K_EEPROM_READ(offset++, val);
1438             pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1439             pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1440             pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1441 
1442             pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1443             AR5K_EEPROM_READ(offset++, val);
1444             pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1445 
1446             pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1447             pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1448 
1449             pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1450             AR5K_EEPROM_READ(offset++, val);
1451             pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1452         } else if (pd_gains == 3) {
1453             pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1454             AR5K_EEPROM_READ(offset++, val);
1455             pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1456 
1457             pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1458         }
1459     }
1460 
1461     return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1462 }
1463 
1464 
1465 /*
1466  * Read per rate target power (this is the maximum tx power
1467  * supported by the card). This info is used when setting
1468  * tx power, no matter the channel.
1469  *
1470  * This also works for v5 EEPROMs.
1471  */
1472 static int
1473 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1474 {
1475     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1476     struct ath5k_rate_pcal_info *rate_pcal_info;
1477     u8 *rate_target_pwr_num;
1478     u32 offset;
1479     u16 val;
1480     int i;
1481 
1482     offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1483     rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1484     switch (mode) {
1485     case AR5K_EEPROM_MODE_11A:
1486         offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1487         rate_pcal_info = ee->ee_rate_tpwr_a;
1488         ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_RATE_CHAN;
1489         break;
1490     case AR5K_EEPROM_MODE_11B:
1491         offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1492         rate_pcal_info = ee->ee_rate_tpwr_b;
1493         ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1494         break;
1495     case AR5K_EEPROM_MODE_11G:
1496         offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1497         rate_pcal_info = ee->ee_rate_tpwr_g;
1498         ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1499         break;
1500     default:
1501         return -EINVAL;
1502     }
1503 
1504     /* Different freq mask for older eeproms (<= v3.2) */
1505     if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1506         for (i = 0; i < (*rate_target_pwr_num); i++) {
1507             AR5K_EEPROM_READ(offset++, val);
1508             rate_pcal_info[i].freq =
1509                 ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1510 
1511             rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1512             rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1513 
1514             AR5K_EEPROM_READ(offset++, val);
1515 
1516             if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1517                 val == 0) {
1518                 (*rate_target_pwr_num) = i;
1519                 break;
1520             }
1521 
1522             rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1523             rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1524             rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1525         }
1526     } else {
1527         for (i = 0; i < (*rate_target_pwr_num); i++) {
1528             AR5K_EEPROM_READ(offset++, val);
1529             rate_pcal_info[i].freq =
1530                 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1531 
1532             rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1533             rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1534 
1535             AR5K_EEPROM_READ(offset++, val);
1536 
1537             if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1538                 val == 0) {
1539                 (*rate_target_pwr_num) = i;
1540                 break;
1541             }
1542 
1543             rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1544             rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1545             rate_pcal_info[i].target_power_54 = (val & 0x3f);
1546         }
1547     }
1548 
1549     return 0;
1550 }
1551 
1552 
1553 /*
1554  * Read per channel calibration info from EEPROM
1555  *
1556  * This info is used to calibrate the baseband power table. Imagine
1557  * that for each channel there is a power curve that's hw specific
1558  * (depends on amplifier etc) and we try to "correct" this curve using
1559  * offsets we pass on to phy chip (baseband -> before amplifier) so that
1560  * it can use accurate power values when setting tx power (takes amplifier's
1561  * performance on each channel into account).
1562  *
1563  * EEPROM provides us with the offsets for some pre-calibrated channels
1564  * and we have to interpolate to create the full table for these channels and
1565  * also the table for any channel.
1566  */
1567 static int
1568 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1569 {
1570     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1571     int (*read_pcal)(struct ath5k_hw *hw, int mode);
1572     int mode;
1573     int err;
1574 
1575     if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1576             (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1577         read_pcal = ath5k_eeprom_read_pcal_info_5112;
1578     else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1579             (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1580         read_pcal = ath5k_eeprom_read_pcal_info_2413;
1581     else
1582         read_pcal = ath5k_eeprom_read_pcal_info_5111;
1583 
1584 
1585     for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1586     mode++) {
1587         err = read_pcal(ah, mode);
1588         if (err)
1589             return err;
1590 
1591         err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1592         if (err < 0)
1593             return err;
1594     }
1595 
1596     return 0;
1597 }
1598 
1599 /* Read conformance test limits used for regulatory control */
1600 static int
1601 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1602 {
1603     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1604     struct ath5k_edge_power *rep;
1605     unsigned int fmask, pmask;
1606     unsigned int ctl_mode;
1607     int i, j;
1608     u32 offset;
1609     u16 val;
1610 
1611     pmask = AR5K_EEPROM_POWER_M;
1612     fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1613     offset = AR5K_EEPROM_CTL(ee->ee_version);
1614     ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1615     for (i = 0; i < ee->ee_ctls; i += 2) {
1616         AR5K_EEPROM_READ(offset++, val);
1617         ee->ee_ctl[i] = (val >> 8) & 0xff;
1618         ee->ee_ctl[i + 1] = val & 0xff;
1619     }
1620 
1621     offset = AR5K_EEPROM_GROUP8_OFFSET;
1622     if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1623         offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1624             AR5K_EEPROM_GROUP5_OFFSET;
1625     else
1626         offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1627 
1628     rep = ee->ee_ctl_pwr;
1629     for (i = 0; i < ee->ee_ctls; i++) {
1630         switch (ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1631         case AR5K_CTL_11A:
1632         case AR5K_CTL_TURBO:
1633             ctl_mode = AR5K_EEPROM_MODE_11A;
1634             break;
1635         default:
1636             ctl_mode = AR5K_EEPROM_MODE_11G;
1637             break;
1638         }
1639         if (ee->ee_ctl[i] == 0) {
1640             if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1641                 offset += 8;
1642             else
1643                 offset += 7;
1644             rep += AR5K_EEPROM_N_EDGES;
1645             continue;
1646         }
1647         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1648             for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1649                 AR5K_EEPROM_READ(offset++, val);
1650                 rep[j].freq = (val >> 8) & fmask;
1651                 rep[j + 1].freq = val & fmask;
1652             }
1653             for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1654                 AR5K_EEPROM_READ(offset++, val);
1655                 rep[j].edge = (val >> 8) & pmask;
1656                 rep[j].flag = (val >> 14) & 1;
1657                 rep[j + 1].edge = val & pmask;
1658                 rep[j + 1].flag = (val >> 6) & 1;
1659             }
1660         } else {
1661             AR5K_EEPROM_READ(offset++, val);
1662             rep[0].freq = (val >> 9) & fmask;
1663             rep[1].freq = (val >> 2) & fmask;
1664             rep[2].freq = (val << 5) & fmask;
1665 
1666             AR5K_EEPROM_READ(offset++, val);
1667             rep[2].freq |= (val >> 11) & 0x1f;
1668             rep[3].freq = (val >> 4) & fmask;
1669             rep[4].freq = (val << 3) & fmask;
1670 
1671             AR5K_EEPROM_READ(offset++, val);
1672             rep[4].freq |= (val >> 13) & 0x7;
1673             rep[5].freq = (val >> 6) & fmask;
1674             rep[6].freq = (val << 1) & fmask;
1675 
1676             AR5K_EEPROM_READ(offset++, val);
1677             rep[6].freq |= (val >> 15) & 0x1;
1678             rep[7].freq = (val >> 8) & fmask;
1679 
1680             rep[0].edge = (val >> 2) & pmask;
1681             rep[1].edge = (val << 4) & pmask;
1682 
1683             AR5K_EEPROM_READ(offset++, val);
1684             rep[1].edge |= (val >> 12) & 0xf;
1685             rep[2].edge = (val >> 6) & pmask;
1686             rep[3].edge = val & pmask;
1687 
1688             AR5K_EEPROM_READ(offset++, val);
1689             rep[4].edge = (val >> 10) & pmask;
1690             rep[5].edge = (val >> 4) & pmask;
1691             rep[6].edge = (val << 2) & pmask;
1692 
1693             AR5K_EEPROM_READ(offset++, val);
1694             rep[6].edge |= (val >> 14) & 0x3;
1695             rep[7].edge = (val >> 8) & pmask;
1696         }
1697         for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1698             rep[j].freq = ath5k_eeprom_bin2freq(ee,
1699                 rep[j].freq, ctl_mode);
1700         }
1701         rep += AR5K_EEPROM_N_EDGES;
1702     }
1703 
1704     return 0;
1705 }
1706 
1707 static int
1708 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1709 {
1710     struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1711     u32 offset;
1712     u16 val;
1713     int  i;
1714 
1715     offset = AR5K_EEPROM_CTL(ee->ee_version) +
1716                 AR5K_EEPROM_N_CTLS(ee->ee_version);
1717 
1718     if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1719         /* No spur info for 5GHz */
1720         ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1721         /* 2 channels for 2GHz (2464/2420) */
1722         ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1723         ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1724         ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1725     } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1726         for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1727             AR5K_EEPROM_READ(offset, val);
1728             ee->ee_spur_chans[i][0] = val;
1729             AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1730                                     val);
1731             ee->ee_spur_chans[i][1] = val;
1732             offset++;
1733         }
1734     }
1735 
1736     return 0;
1737 }
1738 
1739 
1740 /***********************\
1741 * Init/Detach functions *
1742 \***********************/
1743 
1744 /*
1745  * Initialize eeprom data structure
1746  */
1747 int
1748 ath5k_eeprom_init(struct ath5k_hw *ah)
1749 {
1750     int err;
1751 
1752     err = ath5k_eeprom_init_header(ah);
1753     if (err < 0)
1754         return err;
1755 
1756     err = ath5k_eeprom_init_modes(ah);
1757     if (err < 0)
1758         return err;
1759 
1760     err = ath5k_eeprom_read_pcal_info(ah);
1761     if (err < 0)
1762         return err;
1763 
1764     err = ath5k_eeprom_read_ctl_info(ah);
1765     if (err < 0)
1766         return err;
1767 
1768     err = ath5k_eeprom_read_spur_chans(ah);
1769     if (err < 0)
1770         return err;
1771 
1772     return 0;
1773 }
1774 
1775 void
1776 ath5k_eeprom_detach(struct ath5k_hw *ah)
1777 {
1778     u8 mode;
1779 
1780     for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1781         ath5k_eeprom_free_pcal_info(ah, mode);
1782 }
1783 
1784 int
1785 ath5k_eeprom_mode_from_channel(struct ath5k_hw *ah,
1786         struct ieee80211_channel *channel)
1787 {
1788     switch (channel->hw_value) {
1789     case AR5K_MODE_11A:
1790         return AR5K_EEPROM_MODE_11A;
1791     case AR5K_MODE_11G:
1792         return AR5K_EEPROM_MODE_11G;
1793     case AR5K_MODE_11B:
1794         return AR5K_EEPROM_MODE_11B;
1795     default:
1796         ATH5K_WARN(ah, "channel is not A/B/G!");
1797         return AR5K_EEPROM_MODE_11A;
1798     }
1799 }