Back to home page

OSCL-LXR

 
 

    


0001 /*-
0002  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
0003  * Copyright (c) 2004-2005 Atheros Communications, Inc.
0004  * Copyright (c) 2006 Devicescape Software, Inc.
0005  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
0006  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
0007  *
0008  * All rights reserved.
0009  *
0010  * Redistribution and use in source and binary forms, with or without
0011  * modification, are permitted provided that the following conditions
0012  * are met:
0013  * 1. Redistributions of source code must retain the above copyright
0014  *    notice, this list of conditions and the following disclaimer,
0015  *    without modification.
0016  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
0017  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
0018  *    redistribution must be conditioned upon including a substantially
0019  *    similar Disclaimer requirement for further binary redistribution.
0020  * 3. Neither the names of the above-listed copyright holders nor the names
0021  *    of any contributors may be used to endorse or promote products derived
0022  *    from this software without specific prior written permission.
0023  *
0024  * Alternatively, this software may be distributed under the terms of the
0025  * GNU General Public License ("GPL") version 2 as published by the Free
0026  * Software Foundation.
0027  *
0028  * NO WARRANTY
0029  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
0030  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
0031  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
0032  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
0033  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
0034  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
0035  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
0036  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
0037  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
0038  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
0039  * THE POSSIBILITY OF SUCH DAMAGES.
0040  *
0041  */
0042 
0043 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0044 
0045 #include <linux/module.h>
0046 #include <linux/delay.h>
0047 #include <linux/dma-mapping.h>
0048 #include <linux/hardirq.h>
0049 #include <linux/if.h>
0050 #include <linux/io.h>
0051 #include <linux/netdevice.h>
0052 #include <linux/cache.h>
0053 #include <linux/ethtool.h>
0054 #include <linux/uaccess.h>
0055 #include <linux/slab.h>
0056 #include <linux/etherdevice.h>
0057 #include <linux/nl80211.h>
0058 
0059 #include <net/cfg80211.h>
0060 #include <net/ieee80211_radiotap.h>
0061 
0062 #include <asm/unaligned.h>
0063 
0064 #include <net/mac80211.h>
0065 #include "base.h"
0066 #include "reg.h"
0067 #include "debug.h"
0068 #include "ani.h"
0069 #include "ath5k.h"
0070 #include "../regd.h"
0071 
0072 #define CREATE_TRACE_POINTS
0073 #include "trace.h"
0074 
0075 bool ath5k_modparam_nohwcrypt;
0076 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, 0444);
0077 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
0078 
0079 static bool modparam_fastchanswitch;
0080 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, 0444);
0081 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
0082 
0083 static bool ath5k_modparam_no_hw_rfkill_switch;
0084 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
0085            bool, 0444);
0086 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
0087 
0088 
0089 /* Module info */
0090 MODULE_AUTHOR("Jiri Slaby");
0091 MODULE_AUTHOR("Nick Kossifidis");
0092 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
0093 MODULE_LICENSE("Dual BSD/GPL");
0094 
0095 static int ath5k_init(struct ieee80211_hw *hw);
0096 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
0097                                 bool skip_pcu);
0098 
0099 /* Known SREVs */
0100 static const struct ath5k_srev_name srev_names[] = {
0101 #ifdef CONFIG_ATH5K_AHB
0102     { "5312",   AR5K_VERSION_MAC,   AR5K_SREV_AR5312_R2 },
0103     { "5312",   AR5K_VERSION_MAC,   AR5K_SREV_AR5312_R7 },
0104     { "2313",   AR5K_VERSION_MAC,   AR5K_SREV_AR2313_R8 },
0105     { "2315",   AR5K_VERSION_MAC,   AR5K_SREV_AR2315_R6 },
0106     { "2315",   AR5K_VERSION_MAC,   AR5K_SREV_AR2315_R7 },
0107     { "2317",   AR5K_VERSION_MAC,   AR5K_SREV_AR2317_R1 },
0108     { "2317",   AR5K_VERSION_MAC,   AR5K_SREV_AR2317_R2 },
0109 #else
0110     { "5210",   AR5K_VERSION_MAC,   AR5K_SREV_AR5210 },
0111     { "5311",   AR5K_VERSION_MAC,   AR5K_SREV_AR5311 },
0112     { "5311A",  AR5K_VERSION_MAC,   AR5K_SREV_AR5311A },
0113     { "5311B",  AR5K_VERSION_MAC,   AR5K_SREV_AR5311B },
0114     { "5211",   AR5K_VERSION_MAC,   AR5K_SREV_AR5211 },
0115     { "5212",   AR5K_VERSION_MAC,   AR5K_SREV_AR5212 },
0116     { "5213",   AR5K_VERSION_MAC,   AR5K_SREV_AR5213 },
0117     { "5213A",  AR5K_VERSION_MAC,   AR5K_SREV_AR5213A },
0118     { "2413",   AR5K_VERSION_MAC,   AR5K_SREV_AR2413 },
0119     { "2414",   AR5K_VERSION_MAC,   AR5K_SREV_AR2414 },
0120     { "5424",   AR5K_VERSION_MAC,   AR5K_SREV_AR5424 },
0121     { "5413",   AR5K_VERSION_MAC,   AR5K_SREV_AR5413 },
0122     { "5414",   AR5K_VERSION_MAC,   AR5K_SREV_AR5414 },
0123     { "2415",   AR5K_VERSION_MAC,   AR5K_SREV_AR2415 },
0124     { "5416",   AR5K_VERSION_MAC,   AR5K_SREV_AR5416 },
0125     { "5418",   AR5K_VERSION_MAC,   AR5K_SREV_AR5418 },
0126     { "2425",   AR5K_VERSION_MAC,   AR5K_SREV_AR2425 },
0127     { "2417",   AR5K_VERSION_MAC,   AR5K_SREV_AR2417 },
0128 #endif
0129     { "xxxxx",  AR5K_VERSION_MAC,   AR5K_SREV_UNKNOWN },
0130     { "5110",   AR5K_VERSION_RAD,   AR5K_SREV_RAD_5110 },
0131     { "5111",   AR5K_VERSION_RAD,   AR5K_SREV_RAD_5111 },
0132     { "5111A",  AR5K_VERSION_RAD,   AR5K_SREV_RAD_5111A },
0133     { "2111",   AR5K_VERSION_RAD,   AR5K_SREV_RAD_2111 },
0134     { "5112",   AR5K_VERSION_RAD,   AR5K_SREV_RAD_5112 },
0135     { "5112A",  AR5K_VERSION_RAD,   AR5K_SREV_RAD_5112A },
0136     { "5112B",  AR5K_VERSION_RAD,   AR5K_SREV_RAD_5112B },
0137     { "2112",   AR5K_VERSION_RAD,   AR5K_SREV_RAD_2112 },
0138     { "2112A",  AR5K_VERSION_RAD,   AR5K_SREV_RAD_2112A },
0139     { "2112B",  AR5K_VERSION_RAD,   AR5K_SREV_RAD_2112B },
0140     { "2413",   AR5K_VERSION_RAD,   AR5K_SREV_RAD_2413 },
0141     { "5413",   AR5K_VERSION_RAD,   AR5K_SREV_RAD_5413 },
0142     { "5424",   AR5K_VERSION_RAD,   AR5K_SREV_RAD_5424 },
0143     { "5133",   AR5K_VERSION_RAD,   AR5K_SREV_RAD_5133 },
0144 #ifdef CONFIG_ATH5K_AHB
0145     { "2316",   AR5K_VERSION_RAD,   AR5K_SREV_RAD_2316 },
0146     { "2317",   AR5K_VERSION_RAD,   AR5K_SREV_RAD_2317 },
0147 #endif
0148     { "xxxxx",  AR5K_VERSION_RAD,   AR5K_SREV_UNKNOWN },
0149 };
0150 
0151 static const struct ieee80211_rate ath5k_rates[] = {
0152     { .bitrate = 10,
0153       .hw_value = ATH5K_RATE_CODE_1M, },
0154     { .bitrate = 20,
0155       .hw_value = ATH5K_RATE_CODE_2M,
0156       .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
0157       .flags = IEEE80211_RATE_SHORT_PREAMBLE },
0158     { .bitrate = 55,
0159       .hw_value = ATH5K_RATE_CODE_5_5M,
0160       .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
0161       .flags = IEEE80211_RATE_SHORT_PREAMBLE },
0162     { .bitrate = 110,
0163       .hw_value = ATH5K_RATE_CODE_11M,
0164       .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
0165       .flags = IEEE80211_RATE_SHORT_PREAMBLE },
0166     { .bitrate = 60,
0167       .hw_value = ATH5K_RATE_CODE_6M,
0168       .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
0169            IEEE80211_RATE_SUPPORTS_10MHZ },
0170     { .bitrate = 90,
0171       .hw_value = ATH5K_RATE_CODE_9M,
0172       .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
0173            IEEE80211_RATE_SUPPORTS_10MHZ },
0174     { .bitrate = 120,
0175       .hw_value = ATH5K_RATE_CODE_12M,
0176       .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
0177            IEEE80211_RATE_SUPPORTS_10MHZ },
0178     { .bitrate = 180,
0179       .hw_value = ATH5K_RATE_CODE_18M,
0180       .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
0181            IEEE80211_RATE_SUPPORTS_10MHZ },
0182     { .bitrate = 240,
0183       .hw_value = ATH5K_RATE_CODE_24M,
0184       .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
0185            IEEE80211_RATE_SUPPORTS_10MHZ },
0186     { .bitrate = 360,
0187       .hw_value = ATH5K_RATE_CODE_36M,
0188       .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
0189            IEEE80211_RATE_SUPPORTS_10MHZ },
0190     { .bitrate = 480,
0191       .hw_value = ATH5K_RATE_CODE_48M,
0192       .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
0193            IEEE80211_RATE_SUPPORTS_10MHZ },
0194     { .bitrate = 540,
0195       .hw_value = ATH5K_RATE_CODE_54M,
0196       .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
0197            IEEE80211_RATE_SUPPORTS_10MHZ },
0198 };
0199 
0200 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
0201 {
0202     u64 tsf = ath5k_hw_get_tsf64(ah);
0203 
0204     if ((tsf & 0x7fff) < rstamp)
0205         tsf -= 0x8000;
0206 
0207     return (tsf & ~0x7fff) | rstamp;
0208 }
0209 
0210 const char *
0211 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
0212 {
0213     const char *name = "xxxxx";
0214     unsigned int i;
0215 
0216     for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
0217         if (srev_names[i].sr_type != type)
0218             continue;
0219 
0220         if ((val & 0xf0) == srev_names[i].sr_val)
0221             name = srev_names[i].sr_name;
0222 
0223         if ((val & 0xff) == srev_names[i].sr_val) {
0224             name = srev_names[i].sr_name;
0225             break;
0226         }
0227     }
0228 
0229     return name;
0230 }
0231 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
0232 {
0233     struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
0234     return ath5k_hw_reg_read(ah, reg_offset);
0235 }
0236 
0237 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
0238 {
0239     struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
0240     ath5k_hw_reg_write(ah, val, reg_offset);
0241 }
0242 
0243 static const struct ath_ops ath5k_common_ops = {
0244     .read = ath5k_ioread32,
0245     .write = ath5k_iowrite32,
0246 };
0247 
0248 /***********************\
0249 * Driver Initialization *
0250 \***********************/
0251 
0252 static void ath5k_reg_notifier(struct wiphy *wiphy,
0253                    struct regulatory_request *request)
0254 {
0255     struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
0256     struct ath5k_hw *ah = hw->priv;
0257     struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
0258 
0259     ath_reg_notifier_apply(wiphy, request, regulatory);
0260 }
0261 
0262 /********************\
0263 * Channel/mode setup *
0264 \********************/
0265 
0266 /*
0267  * Returns true for the channel numbers used.
0268  */
0269 #ifdef CONFIG_ATH5K_TEST_CHANNELS
0270 static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
0271 {
0272     return true;
0273 }
0274 
0275 #else
0276 static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
0277 {
0278     if (band == NL80211_BAND_2GHZ && chan <= 14)
0279         return true;
0280 
0281     return  /* UNII 1,2 */
0282         (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
0283         /* midband */
0284         ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
0285         /* UNII-3 */
0286         ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
0287         /* 802.11j 5.030-5.080 GHz (20MHz) */
0288         (chan == 8 || chan == 12 || chan == 16) ||
0289         /* 802.11j 4.9GHz (20MHz) */
0290         (chan == 184 || chan == 188 || chan == 192 || chan == 196));
0291 }
0292 #endif
0293 
0294 static unsigned int
0295 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
0296         unsigned int mode, unsigned int max)
0297 {
0298     unsigned int count, size, freq, ch;
0299     enum nl80211_band band;
0300 
0301     switch (mode) {
0302     case AR5K_MODE_11A:
0303         /* 1..220, but 2GHz frequencies are filtered by check_channel */
0304         size = 220;
0305         band = NL80211_BAND_5GHZ;
0306         break;
0307     case AR5K_MODE_11B:
0308     case AR5K_MODE_11G:
0309         size = 26;
0310         band = NL80211_BAND_2GHZ;
0311         break;
0312     default:
0313         ATH5K_WARN(ah, "bad mode, not copying channels\n");
0314         return 0;
0315     }
0316 
0317     count = 0;
0318     for (ch = 1; ch <= size && count < max; ch++) {
0319         freq = ieee80211_channel_to_frequency(ch, band);
0320 
0321         if (freq == 0) /* mapping failed - not a standard channel */
0322             continue;
0323 
0324         /* Write channel info, needed for ath5k_channel_ok() */
0325         channels[count].center_freq = freq;
0326         channels[count].band = band;
0327         channels[count].hw_value = mode;
0328 
0329         /* Check if channel is supported by the chipset */
0330         if (!ath5k_channel_ok(ah, &channels[count]))
0331             continue;
0332 
0333         if (!ath5k_is_standard_channel(ch, band))
0334             continue;
0335 
0336         count++;
0337     }
0338 
0339     return count;
0340 }
0341 
0342 static void
0343 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
0344 {
0345     u8 i;
0346 
0347     for (i = 0; i < AR5K_MAX_RATES; i++)
0348         ah->rate_idx[b->band][i] = -1;
0349 
0350     for (i = 0; i < b->n_bitrates; i++) {
0351         ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
0352         if (b->bitrates[i].hw_value_short)
0353             ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
0354     }
0355 }
0356 
0357 static int
0358 ath5k_setup_bands(struct ieee80211_hw *hw)
0359 {
0360     struct ath5k_hw *ah = hw->priv;
0361     struct ieee80211_supported_band *sband;
0362     int max_c, count_c = 0;
0363     int i;
0364 
0365     BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < NUM_NL80211_BANDS);
0366     max_c = ARRAY_SIZE(ah->channels);
0367 
0368     /* 2GHz band */
0369     sband = &ah->sbands[NL80211_BAND_2GHZ];
0370     sband->band = NL80211_BAND_2GHZ;
0371     sband->bitrates = &ah->rates[NL80211_BAND_2GHZ][0];
0372 
0373     if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
0374         /* G mode */
0375         memcpy(sband->bitrates, &ath5k_rates[0],
0376                sizeof(struct ieee80211_rate) * 12);
0377         sband->n_bitrates = 12;
0378 
0379         sband->channels = ah->channels;
0380         sband->n_channels = ath5k_setup_channels(ah, sband->channels,
0381                     AR5K_MODE_11G, max_c);
0382 
0383         hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
0384         count_c = sband->n_channels;
0385         max_c -= count_c;
0386     } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
0387         /* B mode */
0388         memcpy(sband->bitrates, &ath5k_rates[0],
0389                sizeof(struct ieee80211_rate) * 4);
0390         sband->n_bitrates = 4;
0391 
0392         /* 5211 only supports B rates and uses 4bit rate codes
0393          * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
0394          * fix them up here:
0395          */
0396         if (ah->ah_version == AR5K_AR5211) {
0397             for (i = 0; i < 4; i++) {
0398                 sband->bitrates[i].hw_value =
0399                     sband->bitrates[i].hw_value & 0xF;
0400                 sband->bitrates[i].hw_value_short =
0401                     sband->bitrates[i].hw_value_short & 0xF;
0402             }
0403         }
0404 
0405         sband->channels = ah->channels;
0406         sband->n_channels = ath5k_setup_channels(ah, sband->channels,
0407                     AR5K_MODE_11B, max_c);
0408 
0409         hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
0410         count_c = sband->n_channels;
0411         max_c -= count_c;
0412     }
0413     ath5k_setup_rate_idx(ah, sband);
0414 
0415     /* 5GHz band, A mode */
0416     if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
0417         sband = &ah->sbands[NL80211_BAND_5GHZ];
0418         sband->band = NL80211_BAND_5GHZ;
0419         sband->bitrates = &ah->rates[NL80211_BAND_5GHZ][0];
0420 
0421         memcpy(sband->bitrates, &ath5k_rates[4],
0422                sizeof(struct ieee80211_rate) * 8);
0423         sband->n_bitrates = 8;
0424 
0425         sband->channels = &ah->channels[count_c];
0426         sband->n_channels = ath5k_setup_channels(ah, sband->channels,
0427                     AR5K_MODE_11A, max_c);
0428 
0429         hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
0430     }
0431     ath5k_setup_rate_idx(ah, sband);
0432 
0433     ath5k_debug_dump_bands(ah);
0434 
0435     return 0;
0436 }
0437 
0438 /*
0439  * Set/change channels. We always reset the chip.
0440  * To accomplish this we must first cleanup any pending DMA,
0441  * then restart stuff after a la  ath5k_init.
0442  *
0443  * Called with ah->lock.
0444  */
0445 int
0446 ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
0447 {
0448     ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
0449           "channel set, resetting (%u -> %u MHz)\n",
0450           ah->curchan->center_freq, chandef->chan->center_freq);
0451 
0452     switch (chandef->width) {
0453     case NL80211_CHAN_WIDTH_20:
0454     case NL80211_CHAN_WIDTH_20_NOHT:
0455         ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
0456         break;
0457     case NL80211_CHAN_WIDTH_5:
0458         ah->ah_bwmode = AR5K_BWMODE_5MHZ;
0459         break;
0460     case NL80211_CHAN_WIDTH_10:
0461         ah->ah_bwmode = AR5K_BWMODE_10MHZ;
0462         break;
0463     default:
0464         WARN_ON(1);
0465         return -EINVAL;
0466     }
0467 
0468     /*
0469      * To switch channels clear any pending DMA operations;
0470      * wait long enough for the RX fifo to drain, reset the
0471      * hardware at the new frequency, and then re-enable
0472      * the relevant bits of the h/w.
0473      */
0474     return ath5k_reset(ah, chandef->chan, true);
0475 }
0476 
0477 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
0478 {
0479     struct ath5k_vif_iter_data *iter_data = data;
0480     int i;
0481     struct ath5k_vif *avf = (void *)vif->drv_priv;
0482 
0483     if (iter_data->hw_macaddr)
0484         for (i = 0; i < ETH_ALEN; i++)
0485             iter_data->mask[i] &=
0486                 ~(iter_data->hw_macaddr[i] ^ mac[i]);
0487 
0488     if (!iter_data->found_active) {
0489         iter_data->found_active = true;
0490         memcpy(iter_data->active_mac, mac, ETH_ALEN);
0491     }
0492 
0493     if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
0494         if (ether_addr_equal(iter_data->hw_macaddr, mac))
0495             iter_data->need_set_hw_addr = false;
0496 
0497     if (!iter_data->any_assoc) {
0498         if (avf->assoc)
0499             iter_data->any_assoc = true;
0500     }
0501 
0502     /* Calculate combined mode - when APs are active, operate in AP mode.
0503      * Otherwise use the mode of the new interface. This can currently
0504      * only deal with combinations of APs and STAs. Only one ad-hoc
0505      * interfaces is allowed.
0506      */
0507     if (avf->opmode == NL80211_IFTYPE_AP)
0508         iter_data->opmode = NL80211_IFTYPE_AP;
0509     else {
0510         if (avf->opmode == NL80211_IFTYPE_STATION)
0511             iter_data->n_stas++;
0512         if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
0513             iter_data->opmode = avf->opmode;
0514     }
0515 }
0516 
0517 void
0518 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
0519                    struct ieee80211_vif *vif)
0520 {
0521     struct ath_common *common = ath5k_hw_common(ah);
0522     struct ath5k_vif_iter_data iter_data;
0523     u32 rfilt;
0524 
0525     /*
0526      * Use the hardware MAC address as reference, the hardware uses it
0527      * together with the BSSID mask when matching addresses.
0528      */
0529     iter_data.hw_macaddr = common->macaddr;
0530     eth_broadcast_addr(iter_data.mask);
0531     iter_data.found_active = false;
0532     iter_data.need_set_hw_addr = true;
0533     iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
0534     iter_data.n_stas = 0;
0535 
0536     if (vif)
0537         ath5k_vif_iter(&iter_data, vif->addr, vif);
0538 
0539     /* Get list of all active MAC addresses */
0540     ieee80211_iterate_active_interfaces_atomic(
0541         ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
0542         ath5k_vif_iter, &iter_data);
0543     memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
0544 
0545     ah->opmode = iter_data.opmode;
0546     if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
0547         /* Nothing active, default to station mode */
0548         ah->opmode = NL80211_IFTYPE_STATION;
0549 
0550     ath5k_hw_set_opmode(ah, ah->opmode);
0551     ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
0552           ah->opmode, ath_opmode_to_string(ah->opmode));
0553 
0554     if (iter_data.need_set_hw_addr && iter_data.found_active)
0555         ath5k_hw_set_lladdr(ah, iter_data.active_mac);
0556 
0557     if (ath5k_hw_hasbssidmask(ah))
0558         ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
0559 
0560     /* Set up RX Filter */
0561     if (iter_data.n_stas > 1) {
0562         /* If you have multiple STA interfaces connected to
0563          * different APs, ARPs are not received (most of the time?)
0564          * Enabling PROMISC appears to fix that problem.
0565          */
0566         ah->filter_flags |= AR5K_RX_FILTER_PROM;
0567     }
0568 
0569     rfilt = ah->filter_flags;
0570     ath5k_hw_set_rx_filter(ah, rfilt);
0571     ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
0572 }
0573 
0574 static inline int
0575 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
0576 {
0577     int rix;
0578 
0579     /* return base rate on errors */
0580     if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
0581             "hw_rix out of bounds: %x\n", hw_rix))
0582         return 0;
0583 
0584     rix = ah->rate_idx[ah->curchan->band][hw_rix];
0585     if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
0586         rix = 0;
0587 
0588     return rix;
0589 }
0590 
0591 /***************\
0592 * Buffers setup *
0593 \***************/
0594 
0595 static
0596 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
0597 {
0598     struct ath_common *common = ath5k_hw_common(ah);
0599     struct sk_buff *skb;
0600 
0601     /*
0602      * Allocate buffer with headroom_needed space for the
0603      * fake physical layer header at the start.
0604      */
0605     skb = ath_rxbuf_alloc(common,
0606                   common->rx_bufsize,
0607                   GFP_ATOMIC);
0608 
0609     if (!skb) {
0610         ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
0611                 common->rx_bufsize);
0612         return NULL;
0613     }
0614 
0615     *skb_addr = dma_map_single(ah->dev,
0616                    skb->data, common->rx_bufsize,
0617                    DMA_FROM_DEVICE);
0618 
0619     if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
0620         ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
0621         dev_kfree_skb(skb);
0622         return NULL;
0623     }
0624     return skb;
0625 }
0626 
0627 static int
0628 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
0629 {
0630     struct sk_buff *skb = bf->skb;
0631     struct ath5k_desc *ds;
0632     int ret;
0633 
0634     if (!skb) {
0635         skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
0636         if (!skb)
0637             return -ENOMEM;
0638         bf->skb = skb;
0639     }
0640 
0641     /*
0642      * Setup descriptors.  For receive we always terminate
0643      * the descriptor list with a self-linked entry so we'll
0644      * not get overrun under high load (as can happen with a
0645      * 5212 when ANI processing enables PHY error frames).
0646      *
0647      * To ensure the last descriptor is self-linked we create
0648      * each descriptor as self-linked and add it to the end.  As
0649      * each additional descriptor is added the previous self-linked
0650      * entry is "fixed" naturally.  This should be safe even
0651      * if DMA is happening.  When processing RX interrupts we
0652      * never remove/process the last, self-linked, entry on the
0653      * descriptor list.  This ensures the hardware always has
0654      * someplace to write a new frame.
0655      */
0656     ds = bf->desc;
0657     ds->ds_link = bf->daddr;    /* link to self */
0658     ds->ds_data = bf->skbaddr;
0659     ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
0660     if (ret) {
0661         ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
0662         return ret;
0663     }
0664 
0665     if (ah->rxlink != NULL)
0666         *ah->rxlink = bf->daddr;
0667     ah->rxlink = &ds->ds_link;
0668     return 0;
0669 }
0670 
0671 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
0672 {
0673     struct ieee80211_hdr *hdr;
0674     enum ath5k_pkt_type htype;
0675     __le16 fc;
0676 
0677     hdr = (struct ieee80211_hdr *)skb->data;
0678     fc = hdr->frame_control;
0679 
0680     if (ieee80211_is_beacon(fc))
0681         htype = AR5K_PKT_TYPE_BEACON;
0682     else if (ieee80211_is_probe_resp(fc))
0683         htype = AR5K_PKT_TYPE_PROBE_RESP;
0684     else if (ieee80211_is_atim(fc))
0685         htype = AR5K_PKT_TYPE_ATIM;
0686     else if (ieee80211_is_pspoll(fc))
0687         htype = AR5K_PKT_TYPE_PSPOLL;
0688     else
0689         htype = AR5K_PKT_TYPE_NORMAL;
0690 
0691     return htype;
0692 }
0693 
0694 static struct ieee80211_rate *
0695 ath5k_get_rate(const struct ieee80211_hw *hw,
0696            const struct ieee80211_tx_info *info,
0697            struct ath5k_buf *bf, int idx)
0698 {
0699     /*
0700     * convert a ieee80211_tx_rate RC-table entry to
0701     * the respective ieee80211_rate struct
0702     */
0703     if (bf->rates[idx].idx < 0) {
0704         return NULL;
0705     }
0706 
0707     return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
0708 }
0709 
0710 static u16
0711 ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
0712             const struct ieee80211_tx_info *info,
0713             struct ath5k_buf *bf, int idx)
0714 {
0715     struct ieee80211_rate *rate;
0716     u16 hw_rate;
0717     u8 rc_flags;
0718 
0719     rate = ath5k_get_rate(hw, info, bf, idx);
0720     if (!rate)
0721         return 0;
0722 
0723     rc_flags = bf->rates[idx].flags;
0724     hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
0725            rate->hw_value_short : rate->hw_value;
0726 
0727     return hw_rate;
0728 }
0729 
0730 static bool ath5k_merge_ratetbl(struct ieee80211_sta *sta,
0731                 struct ath5k_buf *bf,
0732                 struct ieee80211_tx_info *tx_info)
0733 {
0734     struct ieee80211_sta_rates *ratetbl;
0735     u8 i;
0736 
0737     if (!sta)
0738         return false;
0739 
0740     ratetbl = rcu_dereference(sta->rates);
0741     if (!ratetbl)
0742         return false;
0743 
0744     if (tx_info->control.rates[0].idx < 0 ||
0745         tx_info->control.rates[0].count == 0)
0746     {
0747         i = 0;
0748     } else {
0749         bf->rates[0] = tx_info->control.rates[0];
0750         i = 1;
0751     }
0752 
0753     for ( ; i < IEEE80211_TX_MAX_RATES; i++) {
0754         bf->rates[i].idx = ratetbl->rate[i].idx;
0755         bf->rates[i].flags = ratetbl->rate[i].flags;
0756         if (tx_info->control.use_rts)
0757             bf->rates[i].count = ratetbl->rate[i].count_rts;
0758         else if (tx_info->control.use_cts_prot)
0759             bf->rates[i].count = ratetbl->rate[i].count_cts;
0760         else
0761             bf->rates[i].count = ratetbl->rate[i].count;
0762     }
0763 
0764     return true;
0765 }
0766 
0767 static int
0768 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
0769           struct ath5k_txq *txq, int padsize,
0770           struct ieee80211_tx_control *control)
0771 {
0772     struct ath5k_desc *ds = bf->desc;
0773     struct sk_buff *skb = bf->skb;
0774     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
0775     unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
0776     struct ieee80211_rate *rate;
0777     struct ieee80211_sta *sta;
0778     unsigned int mrr_rate[3], mrr_tries[3];
0779     int i, ret;
0780     u16 hw_rate;
0781     u16 cts_rate = 0;
0782     u16 duration = 0;
0783     u8 rc_flags;
0784 
0785     flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
0786 
0787     /* XXX endianness */
0788     bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
0789             DMA_TO_DEVICE);
0790 
0791     if (dma_mapping_error(ah->dev, bf->skbaddr))
0792         return -ENOSPC;
0793 
0794     if (control)
0795         sta = control->sta;
0796     else
0797         sta = NULL;
0798 
0799     if (!ath5k_merge_ratetbl(sta, bf, info)) {
0800         ieee80211_get_tx_rates(info->control.vif,
0801                        sta, skb, bf->rates,
0802                        ARRAY_SIZE(bf->rates));
0803     }
0804 
0805     rate = ath5k_get_rate(ah->hw, info, bf, 0);
0806 
0807     if (!rate) {
0808         ret = -EINVAL;
0809         goto err_unmap;
0810     }
0811 
0812     if (info->flags & IEEE80211_TX_CTL_NO_ACK)
0813         flags |= AR5K_TXDESC_NOACK;
0814 
0815     rc_flags = bf->rates[0].flags;
0816 
0817     hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
0818 
0819     pktlen = skb->len;
0820 
0821     /* FIXME: If we are in g mode and rate is a CCK rate
0822      * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
0823      * from tx power (value is in dB units already) */
0824     if (info->control.hw_key) {
0825         keyidx = info->control.hw_key->hw_key_idx;
0826         pktlen += info->control.hw_key->icv_len;
0827     }
0828     if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
0829         flags |= AR5K_TXDESC_RTSENA;
0830         cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
0831         duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
0832             info->control.vif, pktlen, info));
0833     }
0834     if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
0835         flags |= AR5K_TXDESC_CTSENA;
0836         cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
0837         duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
0838             info->control.vif, pktlen, info));
0839     }
0840 
0841     ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
0842         ieee80211_get_hdrlen_from_skb(skb), padsize,
0843         get_hw_packet_type(skb),
0844         (ah->ah_txpower.txp_requested * 2),
0845         hw_rate,
0846         bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
0847         cts_rate, duration);
0848     if (ret)
0849         goto err_unmap;
0850 
0851     /* Set up MRR descriptor */
0852     if (ah->ah_capabilities.cap_has_mrr_support) {
0853         memset(mrr_rate, 0, sizeof(mrr_rate));
0854         memset(mrr_tries, 0, sizeof(mrr_tries));
0855 
0856         for (i = 0; i < 3; i++) {
0857 
0858             rate = ath5k_get_rate(ah->hw, info, bf, i);
0859             if (!rate)
0860                 break;
0861 
0862             mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
0863             mrr_tries[i] = bf->rates[i].count;
0864         }
0865 
0866         ath5k_hw_setup_mrr_tx_desc(ah, ds,
0867             mrr_rate[0], mrr_tries[0],
0868             mrr_rate[1], mrr_tries[1],
0869             mrr_rate[2], mrr_tries[2]);
0870     }
0871 
0872     ds->ds_link = 0;
0873     ds->ds_data = bf->skbaddr;
0874 
0875     spin_lock_bh(&txq->lock);
0876     list_add_tail(&bf->list, &txq->q);
0877     txq->txq_len++;
0878     if (txq->link == NULL) /* is this first packet? */
0879         ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
0880     else /* no, so only link it */
0881         *txq->link = bf->daddr;
0882 
0883     txq->link = &ds->ds_link;
0884     ath5k_hw_start_tx_dma(ah, txq->qnum);
0885     spin_unlock_bh(&txq->lock);
0886 
0887     return 0;
0888 err_unmap:
0889     dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
0890     return ret;
0891 }
0892 
0893 /*******************\
0894 * Descriptors setup *
0895 \*******************/
0896 
0897 static int
0898 ath5k_desc_alloc(struct ath5k_hw *ah)
0899 {
0900     struct ath5k_desc *ds;
0901     struct ath5k_buf *bf;
0902     dma_addr_t da;
0903     unsigned int i;
0904     int ret;
0905 
0906     /* allocate descriptors */
0907     ah->desc_len = sizeof(struct ath5k_desc) *
0908             (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
0909 
0910     ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
0911                 &ah->desc_daddr, GFP_KERNEL);
0912     if (ah->desc == NULL) {
0913         ATH5K_ERR(ah, "can't allocate descriptors\n");
0914         ret = -ENOMEM;
0915         goto err;
0916     }
0917     ds = ah->desc;
0918     da = ah->desc_daddr;
0919     ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
0920         ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
0921 
0922     bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
0923             sizeof(struct ath5k_buf), GFP_KERNEL);
0924     if (bf == NULL) {
0925         ATH5K_ERR(ah, "can't allocate bufptr\n");
0926         ret = -ENOMEM;
0927         goto err_free;
0928     }
0929     ah->bufptr = bf;
0930 
0931     INIT_LIST_HEAD(&ah->rxbuf);
0932     for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
0933         bf->desc = ds;
0934         bf->daddr = da;
0935         list_add_tail(&bf->list, &ah->rxbuf);
0936     }
0937 
0938     INIT_LIST_HEAD(&ah->txbuf);
0939     ah->txbuf_len = ATH_TXBUF;
0940     for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
0941         bf->desc = ds;
0942         bf->daddr = da;
0943         list_add_tail(&bf->list, &ah->txbuf);
0944     }
0945 
0946     /* beacon buffers */
0947     INIT_LIST_HEAD(&ah->bcbuf);
0948     for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
0949         bf->desc = ds;
0950         bf->daddr = da;
0951         list_add_tail(&bf->list, &ah->bcbuf);
0952     }
0953 
0954     return 0;
0955 err_free:
0956     dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
0957 err:
0958     ah->desc = NULL;
0959     return ret;
0960 }
0961 
0962 void
0963 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
0964 {
0965     BUG_ON(!bf);
0966     if (!bf->skb)
0967         return;
0968     dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
0969             DMA_TO_DEVICE);
0970     ieee80211_free_txskb(ah->hw, bf->skb);
0971     bf->skb = NULL;
0972     bf->skbaddr = 0;
0973     bf->desc->ds_data = 0;
0974 }
0975 
0976 void
0977 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
0978 {
0979     struct ath_common *common = ath5k_hw_common(ah);
0980 
0981     BUG_ON(!bf);
0982     if (!bf->skb)
0983         return;
0984     dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
0985             DMA_FROM_DEVICE);
0986     dev_kfree_skb_any(bf->skb);
0987     bf->skb = NULL;
0988     bf->skbaddr = 0;
0989     bf->desc->ds_data = 0;
0990 }
0991 
0992 static void
0993 ath5k_desc_free(struct ath5k_hw *ah)
0994 {
0995     struct ath5k_buf *bf;
0996 
0997     list_for_each_entry(bf, &ah->txbuf, list)
0998         ath5k_txbuf_free_skb(ah, bf);
0999     list_for_each_entry(bf, &ah->rxbuf, list)
1000         ath5k_rxbuf_free_skb(ah, bf);
1001     list_for_each_entry(bf, &ah->bcbuf, list)
1002         ath5k_txbuf_free_skb(ah, bf);
1003 
1004     /* Free memory associated with all descriptors */
1005     dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
1006     ah->desc = NULL;
1007     ah->desc_daddr = 0;
1008 
1009     kfree(ah->bufptr);
1010     ah->bufptr = NULL;
1011 }
1012 
1013 
1014 /**************\
1015 * Queues setup *
1016 \**************/
1017 
1018 static struct ath5k_txq *
1019 ath5k_txq_setup(struct ath5k_hw *ah,
1020         int qtype, int subtype)
1021 {
1022     struct ath5k_txq *txq;
1023     struct ath5k_txq_info qi = {
1024         .tqi_subtype = subtype,
1025         /* XXX: default values not correct for B and XR channels,
1026          * but who cares? */
1027         .tqi_aifs = AR5K_TUNE_AIFS,
1028         .tqi_cw_min = AR5K_TUNE_CWMIN,
1029         .tqi_cw_max = AR5K_TUNE_CWMAX
1030     };
1031     int qnum;
1032 
1033     /*
1034      * Enable interrupts only for EOL and DESC conditions.
1035      * We mark tx descriptors to receive a DESC interrupt
1036      * when a tx queue gets deep; otherwise we wait for the
1037      * EOL to reap descriptors.  Note that this is done to
1038      * reduce interrupt load and this only defers reaping
1039      * descriptors, never transmitting frames.  Aside from
1040      * reducing interrupts this also permits more concurrency.
1041      * The only potential downside is if the tx queue backs
1042      * up in which case the top half of the kernel may backup
1043      * due to a lack of tx descriptors.
1044      */
1045     qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1046                 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1047     qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1048     if (qnum < 0) {
1049         /*
1050          * NB: don't print a message, this happens
1051          * normally on parts with too few tx queues
1052          */
1053         return ERR_PTR(qnum);
1054     }
1055     txq = &ah->txqs[qnum];
1056     if (!txq->setup) {
1057         txq->qnum = qnum;
1058         txq->link = NULL;
1059         INIT_LIST_HEAD(&txq->q);
1060         spin_lock_init(&txq->lock);
1061         txq->setup = true;
1062         txq->txq_len = 0;
1063         txq->txq_max = ATH5K_TXQ_LEN_MAX;
1064         txq->txq_poll_mark = false;
1065         txq->txq_stuck = 0;
1066     }
1067     return &ah->txqs[qnum];
1068 }
1069 
1070 static int
1071 ath5k_beaconq_setup(struct ath5k_hw *ah)
1072 {
1073     struct ath5k_txq_info qi = {
1074         /* XXX: default values not correct for B and XR channels,
1075          * but who cares? */
1076         .tqi_aifs = AR5K_TUNE_AIFS,
1077         .tqi_cw_min = AR5K_TUNE_CWMIN,
1078         .tqi_cw_max = AR5K_TUNE_CWMAX,
1079         /* NB: for dynamic turbo, don't enable any other interrupts */
1080         .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1081     };
1082 
1083     return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1084 }
1085 
1086 static int
1087 ath5k_beaconq_config(struct ath5k_hw *ah)
1088 {
1089     struct ath5k_txq_info qi;
1090     int ret;
1091 
1092     ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1093     if (ret)
1094         goto err;
1095 
1096     if (ah->opmode == NL80211_IFTYPE_AP ||
1097         ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1098         /*
1099          * Always burst out beacon and CAB traffic
1100          * (aifs = cwmin = cwmax = 0)
1101          */
1102         qi.tqi_aifs = 0;
1103         qi.tqi_cw_min = 0;
1104         qi.tqi_cw_max = 0;
1105     } else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1106         /*
1107          * Adhoc mode; backoff between 0 and (2 * cw_min).
1108          */
1109         qi.tqi_aifs = 0;
1110         qi.tqi_cw_min = 0;
1111         qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1112     }
1113 
1114     ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1115         "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1116         qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1117 
1118     ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1119     if (ret) {
1120         ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1121             "hardware queue!\n", __func__);
1122         goto err;
1123     }
1124     ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1125     if (ret)
1126         goto err;
1127 
1128     /* reconfigure cabq with ready time to 80% of beacon_interval */
1129     ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1130     if (ret)
1131         goto err;
1132 
1133     qi.tqi_ready_time = (ah->bintval * 80) / 100;
1134     ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1135     if (ret)
1136         goto err;
1137 
1138     ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1139 err:
1140     return ret;
1141 }
1142 
1143 /**
1144  * ath5k_drain_tx_buffs - Empty tx buffers
1145  *
1146  * @ah: The &struct ath5k_hw
1147  *
1148  * Empty tx buffers from all queues in preparation
1149  * of a reset or during shutdown.
1150  *
1151  * NB:  this assumes output has been stopped and
1152  *  we do not need to block ath5k_tx_tasklet
1153  */
1154 static void
1155 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1156 {
1157     struct ath5k_txq *txq;
1158     struct ath5k_buf *bf, *bf0;
1159     int i;
1160 
1161     for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1162         if (ah->txqs[i].setup) {
1163             txq = &ah->txqs[i];
1164             spin_lock_bh(&txq->lock);
1165             list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1166                 ath5k_debug_printtxbuf(ah, bf);
1167 
1168                 ath5k_txbuf_free_skb(ah, bf);
1169 
1170                 spin_lock(&ah->txbuflock);
1171                 list_move_tail(&bf->list, &ah->txbuf);
1172                 ah->txbuf_len++;
1173                 txq->txq_len--;
1174                 spin_unlock(&ah->txbuflock);
1175             }
1176             txq->link = NULL;
1177             txq->txq_poll_mark = false;
1178             spin_unlock_bh(&txq->lock);
1179         }
1180     }
1181 }
1182 
1183 static void
1184 ath5k_txq_release(struct ath5k_hw *ah)
1185 {
1186     struct ath5k_txq *txq = ah->txqs;
1187     unsigned int i;
1188 
1189     for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1190         if (txq->setup) {
1191             ath5k_hw_release_tx_queue(ah, txq->qnum);
1192             txq->setup = false;
1193         }
1194 }
1195 
1196 
1197 /*************\
1198 * RX Handling *
1199 \*************/
1200 
1201 /*
1202  * Enable the receive h/w following a reset.
1203  */
1204 static int
1205 ath5k_rx_start(struct ath5k_hw *ah)
1206 {
1207     struct ath_common *common = ath5k_hw_common(ah);
1208     struct ath5k_buf *bf;
1209     int ret;
1210 
1211     common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1212 
1213     ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1214           common->cachelsz, common->rx_bufsize);
1215 
1216     spin_lock_bh(&ah->rxbuflock);
1217     ah->rxlink = NULL;
1218     list_for_each_entry(bf, &ah->rxbuf, list) {
1219         ret = ath5k_rxbuf_setup(ah, bf);
1220         if (ret != 0) {
1221             spin_unlock_bh(&ah->rxbuflock);
1222             goto err;
1223         }
1224     }
1225     bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1226     ath5k_hw_set_rxdp(ah, bf->daddr);
1227     spin_unlock_bh(&ah->rxbuflock);
1228 
1229     ath5k_hw_start_rx_dma(ah);  /* enable recv descriptors */
1230     ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1231     ath5k_hw_start_rx_pcu(ah);  /* re-enable PCU/DMA engine */
1232 
1233     return 0;
1234 err:
1235     return ret;
1236 }
1237 
1238 /*
1239  * Disable the receive logic on PCU (DRU)
1240  * In preparation for a shutdown.
1241  *
1242  * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1243  * does.
1244  */
1245 static void
1246 ath5k_rx_stop(struct ath5k_hw *ah)
1247 {
1248 
1249     ath5k_hw_set_rx_filter(ah, 0);  /* clear recv filter */
1250     ath5k_hw_stop_rx_pcu(ah);   /* disable PCU */
1251 
1252     ath5k_debug_printrxbuffs(ah);
1253 }
1254 
1255 static unsigned int
1256 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1257            struct ath5k_rx_status *rs)
1258 {
1259     struct ath_common *common = ath5k_hw_common(ah);
1260     struct ieee80211_hdr *hdr = (void *)skb->data;
1261     unsigned int keyix, hlen;
1262 
1263     if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1264             rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1265         return RX_FLAG_DECRYPTED;
1266 
1267     /* Apparently when a default key is used to decrypt the packet
1268        the hw does not set the index used to decrypt.  In such cases
1269        get the index from the packet. */
1270     hlen = ieee80211_hdrlen(hdr->frame_control);
1271     if (ieee80211_has_protected(hdr->frame_control) &&
1272         !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1273         skb->len >= hlen + 4) {
1274         keyix = skb->data[hlen + 3] >> 6;
1275 
1276         if (test_bit(keyix, common->keymap))
1277             return RX_FLAG_DECRYPTED;
1278     }
1279 
1280     return 0;
1281 }
1282 
1283 
1284 static void
1285 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1286              struct ieee80211_rx_status *rxs)
1287 {
1288     u64 tsf, bc_tstamp;
1289     u32 hw_tu;
1290     struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1291 
1292     if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
1293         /*
1294          * Received an IBSS beacon with the same BSSID. Hardware *must*
1295          * have updated the local TSF. We have to work around various
1296          * hardware bugs, though...
1297          */
1298         tsf = ath5k_hw_get_tsf64(ah);
1299         bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1300         hw_tu = TSF_TO_TU(tsf);
1301 
1302         ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1303             "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1304             (unsigned long long)bc_tstamp,
1305             (unsigned long long)rxs->mactime,
1306             (unsigned long long)(rxs->mactime - bc_tstamp),
1307             (unsigned long long)tsf);
1308 
1309         /*
1310          * Sometimes the HW will give us a wrong tstamp in the rx
1311          * status, causing the timestamp extension to go wrong.
1312          * (This seems to happen especially with beacon frames bigger
1313          * than 78 byte (incl. FCS))
1314          * But we know that the receive timestamp must be later than the
1315          * timestamp of the beacon since HW must have synced to that.
1316          *
1317          * NOTE: here we assume mactime to be after the frame was
1318          * received, not like mac80211 which defines it at the start.
1319          */
1320         if (bc_tstamp > rxs->mactime) {
1321             ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1322                 "fixing mactime from %llx to %llx\n",
1323                 (unsigned long long)rxs->mactime,
1324                 (unsigned long long)tsf);
1325             rxs->mactime = tsf;
1326         }
1327 
1328         /*
1329          * Local TSF might have moved higher than our beacon timers,
1330          * in that case we have to update them to continue sending
1331          * beacons. This also takes care of synchronizing beacon sending
1332          * times with other stations.
1333          */
1334         if (hw_tu >= ah->nexttbtt)
1335             ath5k_beacon_update_timers(ah, bc_tstamp);
1336 
1337         /* Check if the beacon timers are still correct, because a TSF
1338          * update might have created a window between them - for a
1339          * longer description see the comment of this function: */
1340         if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1341             ath5k_beacon_update_timers(ah, bc_tstamp);
1342             ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1343                 "fixed beacon timers after beacon receive\n");
1344         }
1345     }
1346 }
1347 
1348 /*
1349  * Compute padding position. skb must contain an IEEE 802.11 frame
1350  */
1351 static int ath5k_common_padpos(struct sk_buff *skb)
1352 {
1353     struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1354     __le16 frame_control = hdr->frame_control;
1355     int padpos = 24;
1356 
1357     if (ieee80211_has_a4(frame_control))
1358         padpos += ETH_ALEN;
1359 
1360     if (ieee80211_is_data_qos(frame_control))
1361         padpos += IEEE80211_QOS_CTL_LEN;
1362 
1363     return padpos;
1364 }
1365 
1366 /*
1367  * This function expects an 802.11 frame and returns the number of
1368  * bytes added, or -1 if we don't have enough header room.
1369  */
1370 static int ath5k_add_padding(struct sk_buff *skb)
1371 {
1372     int padpos = ath5k_common_padpos(skb);
1373     int padsize = padpos & 3;
1374 
1375     if (padsize && skb->len > padpos) {
1376 
1377         if (skb_headroom(skb) < padsize)
1378             return -1;
1379 
1380         skb_push(skb, padsize);
1381         memmove(skb->data, skb->data + padsize, padpos);
1382         return padsize;
1383     }
1384 
1385     return 0;
1386 }
1387 
1388 /*
1389  * The MAC header is padded to have 32-bit boundary if the
1390  * packet payload is non-zero. The general calculation for
1391  * padsize would take into account odd header lengths:
1392  * padsize = 4 - (hdrlen & 3); however, since only
1393  * even-length headers are used, padding can only be 0 or 2
1394  * bytes and we can optimize this a bit.  We must not try to
1395  * remove padding from short control frames that do not have a
1396  * payload.
1397  *
1398  * This function expects an 802.11 frame and returns the number of
1399  * bytes removed.
1400  */
1401 static int ath5k_remove_padding(struct sk_buff *skb)
1402 {
1403     int padpos = ath5k_common_padpos(skb);
1404     int padsize = padpos & 3;
1405 
1406     if (padsize && skb->len >= padpos + padsize) {
1407         memmove(skb->data + padsize, skb->data, padpos);
1408         skb_pull(skb, padsize);
1409         return padsize;
1410     }
1411 
1412     return 0;
1413 }
1414 
1415 static void
1416 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1417             struct ath5k_rx_status *rs)
1418 {
1419     struct ieee80211_rx_status *rxs;
1420     struct ath_common *common = ath5k_hw_common(ah);
1421 
1422     ath5k_remove_padding(skb);
1423 
1424     rxs = IEEE80211_SKB_RXCB(skb);
1425 
1426     rxs->flag = 0;
1427     if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1428         rxs->flag |= RX_FLAG_MMIC_ERROR;
1429     if (unlikely(rs->rs_status & AR5K_RXERR_CRC))
1430         rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
1431 
1432 
1433     /*
1434      * always extend the mac timestamp, since this information is
1435      * also needed for proper IBSS merging.
1436      *
1437      * XXX: it might be too late to do it here, since rs_tstamp is
1438      * 15bit only. that means TSF extension has to be done within
1439      * 32768usec (about 32ms). it might be necessary to move this to
1440      * the interrupt handler, like it is done in madwifi.
1441      */
1442     rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1443     rxs->flag |= RX_FLAG_MACTIME_END;
1444 
1445     rxs->freq = ah->curchan->center_freq;
1446     rxs->band = ah->curchan->band;
1447 
1448     rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1449 
1450     rxs->antenna = rs->rs_antenna;
1451 
1452     if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1453         ah->stats.antenna_rx[rs->rs_antenna]++;
1454     else
1455         ah->stats.antenna_rx[0]++; /* invalid */
1456 
1457     rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1458     rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1459     switch (ah->ah_bwmode) {
1460     case AR5K_BWMODE_5MHZ:
1461         rxs->bw = RATE_INFO_BW_5;
1462         break;
1463     case AR5K_BWMODE_10MHZ:
1464         rxs->bw = RATE_INFO_BW_10;
1465         break;
1466     default:
1467         break;
1468     }
1469 
1470     if (rs->rs_rate ==
1471         ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1472         rxs->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1473 
1474     trace_ath5k_rx(ah, skb);
1475 
1476     if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
1477         ewma_beacon_rssi_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
1478 
1479         /* check beacons in IBSS mode */
1480         if (ah->opmode == NL80211_IFTYPE_ADHOC)
1481             ath5k_check_ibss_tsf(ah, skb, rxs);
1482     }
1483 
1484     ieee80211_rx(ah->hw, skb);
1485 }
1486 
1487 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1488  *
1489  * Check if we want to further process this frame or not. Also update
1490  * statistics. Return true if we want this frame, false if not.
1491  */
1492 static bool
1493 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1494 {
1495     ah->stats.rx_all_count++;
1496     ah->stats.rx_bytes_count += rs->rs_datalen;
1497 
1498     if (unlikely(rs->rs_status)) {
1499         unsigned int filters;
1500 
1501         if (rs->rs_status & AR5K_RXERR_CRC)
1502             ah->stats.rxerr_crc++;
1503         if (rs->rs_status & AR5K_RXERR_FIFO)
1504             ah->stats.rxerr_fifo++;
1505         if (rs->rs_status & AR5K_RXERR_PHY) {
1506             ah->stats.rxerr_phy++;
1507             if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1508                 ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1509 
1510             /*
1511              * Treat packets that underwent a CCK or OFDM reset as having a bad CRC.
1512              * These restarts happen when the radio resynchronizes to a stronger frame
1513              * while receiving a weaker frame. Here we receive the prefix of the weak
1514              * frame. Since these are incomplete packets, mark their CRC as invalid.
1515              */
1516             if (rs->rs_phyerr == AR5K_RX_PHY_ERROR_OFDM_RESTART ||
1517                 rs->rs_phyerr == AR5K_RX_PHY_ERROR_CCK_RESTART) {
1518                 rs->rs_status |= AR5K_RXERR_CRC;
1519                 rs->rs_status &= ~AR5K_RXERR_PHY;
1520             } else {
1521                 return false;
1522             }
1523         }
1524         if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1525             /*
1526              * Decrypt error.  If the error occurred
1527              * because there was no hardware key, then
1528              * let the frame through so the upper layers
1529              * can process it.  This is necessary for 5210
1530              * parts which have no way to setup a ``clear''
1531              * key cache entry.
1532              *
1533              * XXX do key cache faulting
1534              */
1535             ah->stats.rxerr_decrypt++;
1536             if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1537                 !(rs->rs_status & AR5K_RXERR_CRC))
1538                 return true;
1539         }
1540         if (rs->rs_status & AR5K_RXERR_MIC) {
1541             ah->stats.rxerr_mic++;
1542             return true;
1543         }
1544 
1545         /*
1546          * Reject any frames with non-crypto errors, and take into account the
1547          * current FIF_* filters.
1548          */
1549         filters = AR5K_RXERR_DECRYPT;
1550         if (ah->fif_filter_flags & FIF_FCSFAIL)
1551             filters |= AR5K_RXERR_CRC;
1552 
1553         if (rs->rs_status & ~filters)
1554             return false;
1555     }
1556 
1557     if (unlikely(rs->rs_more)) {
1558         ah->stats.rxerr_jumbo++;
1559         return false;
1560     }
1561     return true;
1562 }
1563 
1564 static void
1565 ath5k_set_current_imask(struct ath5k_hw *ah)
1566 {
1567     enum ath5k_int imask;
1568     unsigned long flags;
1569 
1570     if (test_bit(ATH_STAT_RESET, ah->status))
1571         return;
1572 
1573     spin_lock_irqsave(&ah->irqlock, flags);
1574     imask = ah->imask;
1575     if (ah->rx_pending)
1576         imask &= ~AR5K_INT_RX_ALL;
1577     if (ah->tx_pending)
1578         imask &= ~AR5K_INT_TX_ALL;
1579     ath5k_hw_set_imr(ah, imask);
1580     spin_unlock_irqrestore(&ah->irqlock, flags);
1581 }
1582 
1583 static void
1584 ath5k_tasklet_rx(struct tasklet_struct *t)
1585 {
1586     struct ath5k_rx_status rs = {};
1587     struct sk_buff *skb, *next_skb;
1588     dma_addr_t next_skb_addr;
1589     struct ath5k_hw *ah = from_tasklet(ah, t, rxtq);
1590     struct ath_common *common = ath5k_hw_common(ah);
1591     struct ath5k_buf *bf;
1592     struct ath5k_desc *ds;
1593     int ret;
1594 
1595     spin_lock(&ah->rxbuflock);
1596     if (list_empty(&ah->rxbuf)) {
1597         ATH5K_WARN(ah, "empty rx buf pool\n");
1598         goto unlock;
1599     }
1600     do {
1601         bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1602         BUG_ON(bf->skb == NULL);
1603         skb = bf->skb;
1604         ds = bf->desc;
1605 
1606         /* bail if HW is still using self-linked descriptor */
1607         if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1608             break;
1609 
1610         ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1611         if (unlikely(ret == -EINPROGRESS))
1612             break;
1613         else if (unlikely(ret)) {
1614             ATH5K_ERR(ah, "error in processing rx descriptor\n");
1615             ah->stats.rxerr_proc++;
1616             break;
1617         }
1618 
1619         if (ath5k_receive_frame_ok(ah, &rs)) {
1620             next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1621 
1622             /*
1623              * If we can't replace bf->skb with a new skb under
1624              * memory pressure, just skip this packet
1625              */
1626             if (!next_skb)
1627                 goto next;
1628 
1629             dma_unmap_single(ah->dev, bf->skbaddr,
1630                      common->rx_bufsize,
1631                      DMA_FROM_DEVICE);
1632 
1633             skb_put(skb, rs.rs_datalen);
1634 
1635             ath5k_receive_frame(ah, skb, &rs);
1636 
1637             bf->skb = next_skb;
1638             bf->skbaddr = next_skb_addr;
1639         }
1640 next:
1641         list_move_tail(&bf->list, &ah->rxbuf);
1642     } while (ath5k_rxbuf_setup(ah, bf) == 0);
1643 unlock:
1644     spin_unlock(&ah->rxbuflock);
1645     ah->rx_pending = false;
1646     ath5k_set_current_imask(ah);
1647 }
1648 
1649 
1650 /*************\
1651 * TX Handling *
1652 \*************/
1653 
1654 void
1655 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1656            struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1657 {
1658     struct ath5k_hw *ah = hw->priv;
1659     struct ath5k_buf *bf;
1660     unsigned long flags;
1661     int padsize;
1662 
1663     trace_ath5k_tx(ah, skb, txq);
1664 
1665     /*
1666      * The hardware expects the header padded to 4 byte boundaries.
1667      * If this is not the case, we add the padding after the header.
1668      */
1669     padsize = ath5k_add_padding(skb);
1670     if (padsize < 0) {
1671         ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1672               " headroom to pad");
1673         goto drop_packet;
1674     }
1675 
1676     if (txq->txq_len >= txq->txq_max &&
1677         txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1678         ieee80211_stop_queue(hw, txq->qnum);
1679 
1680     spin_lock_irqsave(&ah->txbuflock, flags);
1681     if (list_empty(&ah->txbuf)) {
1682         ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1683         spin_unlock_irqrestore(&ah->txbuflock, flags);
1684         ieee80211_stop_queues(hw);
1685         goto drop_packet;
1686     }
1687     bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1688     list_del(&bf->list);
1689     ah->txbuf_len--;
1690     if (list_empty(&ah->txbuf))
1691         ieee80211_stop_queues(hw);
1692     spin_unlock_irqrestore(&ah->txbuflock, flags);
1693 
1694     bf->skb = skb;
1695 
1696     if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1697         bf->skb = NULL;
1698         spin_lock_irqsave(&ah->txbuflock, flags);
1699         list_add_tail(&bf->list, &ah->txbuf);
1700         ah->txbuf_len++;
1701         spin_unlock_irqrestore(&ah->txbuflock, flags);
1702         goto drop_packet;
1703     }
1704     return;
1705 
1706 drop_packet:
1707     ieee80211_free_txskb(hw, skb);
1708 }
1709 
1710 static void
1711 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1712              struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1713              struct ath5k_buf *bf)
1714 {
1715     struct ieee80211_tx_info *info;
1716     u8 tries[3];
1717     int i;
1718     int size = 0;
1719 
1720     ah->stats.tx_all_count++;
1721     ah->stats.tx_bytes_count += skb->len;
1722     info = IEEE80211_SKB_CB(skb);
1723 
1724     size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1725     memcpy(info->status.rates, bf->rates, size);
1726 
1727     tries[0] = info->status.rates[0].count;
1728     tries[1] = info->status.rates[1].count;
1729     tries[2] = info->status.rates[2].count;
1730 
1731     ieee80211_tx_info_clear_status(info);
1732 
1733     for (i = 0; i < ts->ts_final_idx; i++) {
1734         struct ieee80211_tx_rate *r =
1735             &info->status.rates[i];
1736 
1737         r->count = tries[i];
1738     }
1739 
1740     info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1741     info->status.rates[ts->ts_final_idx + 1].idx = -1;
1742 
1743     if (unlikely(ts->ts_status)) {
1744         ah->stats.ack_fail++;
1745         if (ts->ts_status & AR5K_TXERR_FILT) {
1746             info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1747             ah->stats.txerr_filt++;
1748         }
1749         if (ts->ts_status & AR5K_TXERR_XRETRY)
1750             ah->stats.txerr_retry++;
1751         if (ts->ts_status & AR5K_TXERR_FIFO)
1752             ah->stats.txerr_fifo++;
1753     } else {
1754         info->flags |= IEEE80211_TX_STAT_ACK;
1755         info->status.ack_signal = ts->ts_rssi;
1756 
1757         /* count the successful attempt as well */
1758         info->status.rates[ts->ts_final_idx].count++;
1759     }
1760 
1761     /*
1762     * Remove MAC header padding before giving the frame
1763     * back to mac80211.
1764     */
1765     ath5k_remove_padding(skb);
1766 
1767     if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1768         ah->stats.antenna_tx[ts->ts_antenna]++;
1769     else
1770         ah->stats.antenna_tx[0]++; /* invalid */
1771 
1772     trace_ath5k_tx_complete(ah, skb, txq, ts);
1773     ieee80211_tx_status(ah->hw, skb);
1774 }
1775 
1776 static void
1777 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1778 {
1779     struct ath5k_tx_status ts = {};
1780     struct ath5k_buf *bf, *bf0;
1781     struct ath5k_desc *ds;
1782     struct sk_buff *skb;
1783     int ret;
1784 
1785     spin_lock(&txq->lock);
1786     list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1787 
1788         txq->txq_poll_mark = false;
1789 
1790         /* skb might already have been processed last time. */
1791         if (bf->skb != NULL) {
1792             ds = bf->desc;
1793 
1794             ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1795             if (unlikely(ret == -EINPROGRESS))
1796                 break;
1797             else if (unlikely(ret)) {
1798                 ATH5K_ERR(ah,
1799                     "error %d while processing "
1800                     "queue %u\n", ret, txq->qnum);
1801                 break;
1802             }
1803 
1804             skb = bf->skb;
1805             bf->skb = NULL;
1806 
1807             dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1808                     DMA_TO_DEVICE);
1809             ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1810         }
1811 
1812         /*
1813          * It's possible that the hardware can say the buffer is
1814          * completed when it hasn't yet loaded the ds_link from
1815          * host memory and moved on.
1816          * Always keep the last descriptor to avoid HW races...
1817          */
1818         if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1819             spin_lock(&ah->txbuflock);
1820             list_move_tail(&bf->list, &ah->txbuf);
1821             ah->txbuf_len++;
1822             txq->txq_len--;
1823             spin_unlock(&ah->txbuflock);
1824         }
1825     }
1826     spin_unlock(&txq->lock);
1827     if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1828         ieee80211_wake_queue(ah->hw, txq->qnum);
1829 }
1830 
1831 static void
1832 ath5k_tasklet_tx(struct tasklet_struct *t)
1833 {
1834     int i;
1835     struct ath5k_hw *ah = from_tasklet(ah, t, txtq);
1836 
1837     for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1838         if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1839             ath5k_tx_processq(ah, &ah->txqs[i]);
1840 
1841     ah->tx_pending = false;
1842     ath5k_set_current_imask(ah);
1843 }
1844 
1845 
1846 /*****************\
1847 * Beacon handling *
1848 \*****************/
1849 
1850 /*
1851  * Setup the beacon frame for transmit.
1852  */
1853 static int
1854 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1855 {
1856     struct sk_buff *skb = bf->skb;
1857     struct  ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1858     struct ath5k_desc *ds;
1859     int ret = 0;
1860     u8 antenna;
1861     u32 flags;
1862     const int padsize = 0;
1863 
1864     bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1865             DMA_TO_DEVICE);
1866     ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1867             "skbaddr %llx\n", skb, skb->data, skb->len,
1868             (unsigned long long)bf->skbaddr);
1869 
1870     if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1871         ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1872         dev_kfree_skb_any(skb);
1873         bf->skb = NULL;
1874         return -EIO;
1875     }
1876 
1877     ds = bf->desc;
1878     antenna = ah->ah_tx_ant;
1879 
1880     flags = AR5K_TXDESC_NOACK;
1881     if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1882         ds->ds_link = bf->daddr;    /* self-linked */
1883         flags |= AR5K_TXDESC_VEOL;
1884     } else
1885         ds->ds_link = 0;
1886 
1887     /*
1888      * If we use multiple antennas on AP and use
1889      * the Sectored AP scenario, switch antenna every
1890      * 4 beacons to make sure everybody hears our AP.
1891      * When a client tries to associate, hw will keep
1892      * track of the tx antenna to be used for this client
1893      * automatically, based on ACKed packets.
1894      *
1895      * Note: AP still listens and transmits RTS on the
1896      * default antenna which is supposed to be an omni.
1897      *
1898      * Note2: On sectored scenarios it's possible to have
1899      * multiple antennas (1 omni -- the default -- and 14
1900      * sectors), so if we choose to actually support this
1901      * mode, we need to allow the user to set how many antennas
1902      * we have and tweak the code below to send beacons
1903      * on all of them.
1904      */
1905     if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1906         antenna = ah->bsent & 4 ? 2 : 1;
1907 
1908 
1909     /* FIXME: If we are in g mode and rate is a CCK rate
1910      * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1911      * from tx power (value is in dB units already) */
1912     ds->ds_data = bf->skbaddr;
1913     ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1914             ieee80211_get_hdrlen_from_skb(skb), padsize,
1915             AR5K_PKT_TYPE_BEACON,
1916             (ah->ah_txpower.txp_requested * 2),
1917             ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1918             1, AR5K_TXKEYIX_INVALID,
1919             antenna, flags, 0, 0);
1920     if (ret)
1921         goto err_unmap;
1922 
1923     return 0;
1924 err_unmap:
1925     dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1926     return ret;
1927 }
1928 
1929 /*
1930  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1931  * this is called only once at config_bss time, for AP we do it every
1932  * SWBA interrupt so that the TIM will reflect buffered frames.
1933  *
1934  * Called with the beacon lock.
1935  */
1936 int
1937 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1938 {
1939     int ret;
1940     struct ath5k_hw *ah = hw->priv;
1941     struct ath5k_vif *avf;
1942     struct sk_buff *skb;
1943 
1944     if (WARN_ON(!vif)) {
1945         ret = -EINVAL;
1946         goto out;
1947     }
1948 
1949     skb = ieee80211_beacon_get(hw, vif, 0);
1950 
1951     if (!skb) {
1952         ret = -ENOMEM;
1953         goto out;
1954     }
1955 
1956     avf = (void *)vif->drv_priv;
1957     ath5k_txbuf_free_skb(ah, avf->bbuf);
1958     avf->bbuf->skb = skb;
1959     ret = ath5k_beacon_setup(ah, avf->bbuf);
1960 out:
1961     return ret;
1962 }
1963 
1964 /*
1965  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1966  * frame contents are done as needed and the slot time is
1967  * also adjusted based on current state.
1968  *
1969  * This is called from software irq context (beacontq tasklets)
1970  * or user context from ath5k_beacon_config.
1971  */
1972 static void
1973 ath5k_beacon_send(struct ath5k_hw *ah)
1974 {
1975     struct ieee80211_vif *vif;
1976     struct ath5k_vif *avf;
1977     struct ath5k_buf *bf;
1978     struct sk_buff *skb;
1979     int err;
1980 
1981     ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1982 
1983     /*
1984      * Check if the previous beacon has gone out.  If
1985      * not, don't try to post another: skip this
1986      * period and wait for the next.  Missed beacons
1987      * indicate a problem and should not occur.  If we
1988      * miss too many consecutive beacons reset the device.
1989      */
1990     if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1991         ah->bmisscount++;
1992         ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1993             "missed %u consecutive beacons\n", ah->bmisscount);
1994         if (ah->bmisscount > 10) {  /* NB: 10 is a guess */
1995             ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1996                 "stuck beacon time (%u missed)\n",
1997                 ah->bmisscount);
1998             ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1999                   "stuck beacon, resetting\n");
2000             ieee80211_queue_work(ah->hw, &ah->reset_work);
2001         }
2002         return;
2003     }
2004     if (unlikely(ah->bmisscount != 0)) {
2005         ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2006             "resume beacon xmit after %u misses\n",
2007             ah->bmisscount);
2008         ah->bmisscount = 0;
2009     }
2010 
2011     if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
2012             ah->num_mesh_vifs > 1) ||
2013             ah->opmode == NL80211_IFTYPE_MESH_POINT) {
2014         u64 tsf = ath5k_hw_get_tsf64(ah);
2015         u32 tsftu = TSF_TO_TU(tsf);
2016         int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
2017         vif = ah->bslot[(slot + 1) % ATH_BCBUF];
2018         ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2019             "tsf %llx tsftu %x intval %u slot %u vif %p\n",
2020             (unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
2021     } else /* only one interface */
2022         vif = ah->bslot[0];
2023 
2024     if (!vif)
2025         return;
2026 
2027     avf = (void *)vif->drv_priv;
2028     bf = avf->bbuf;
2029 
2030     /*
2031      * Stop any current dma and put the new frame on the queue.
2032      * This should never fail since we check above that no frames
2033      * are still pending on the queue.
2034      */
2035     if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
2036         ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
2037         /* NB: hw still stops DMA, so proceed */
2038     }
2039 
2040     /* refresh the beacon for AP or MESH mode */
2041     if (ah->opmode == NL80211_IFTYPE_AP ||
2042         ah->opmode == NL80211_IFTYPE_MESH_POINT) {
2043         err = ath5k_beacon_update(ah->hw, vif);
2044         if (err)
2045             return;
2046     }
2047 
2048     if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
2049              ah->opmode == NL80211_IFTYPE_MONITOR)) {
2050         ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
2051         return;
2052     }
2053 
2054     trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
2055 
2056     ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
2057     ath5k_hw_start_tx_dma(ah, ah->bhalq);
2058     ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2059         ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
2060 
2061     skb = ieee80211_get_buffered_bc(ah->hw, vif);
2062     while (skb) {
2063         ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
2064 
2065         if (ah->cabq->txq_len >= ah->cabq->txq_max)
2066             break;
2067 
2068         skb = ieee80211_get_buffered_bc(ah->hw, vif);
2069     }
2070 
2071     ah->bsent++;
2072 }
2073 
2074 /**
2075  * ath5k_beacon_update_timers - update beacon timers
2076  *
2077  * @ah: struct ath5k_hw pointer we are operating on
2078  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2079  *          beacon timer update based on the current HW TSF.
2080  *
2081  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2082  * of a received beacon or the current local hardware TSF and write it to the
2083  * beacon timer registers.
2084  *
2085  * This is called in a variety of situations, e.g. when a beacon is received,
2086  * when a TSF update has been detected, but also when an new IBSS is created or
2087  * when we otherwise know we have to update the timers, but we keep it in this
2088  * function to have it all together in one place.
2089  */
2090 void
2091 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2092 {
2093     u32 nexttbtt, intval, hw_tu, bc_tu;
2094     u64 hw_tsf;
2095 
2096     intval = ah->bintval & AR5K_BEACON_PERIOD;
2097     if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2098         + ah->num_mesh_vifs > 1) {
2099         intval /= ATH_BCBUF;    /* staggered multi-bss beacons */
2100         if (intval < 15)
2101             ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2102                    intval);
2103     }
2104     if (WARN_ON(!intval))
2105         return;
2106 
2107     /* beacon TSF converted to TU */
2108     bc_tu = TSF_TO_TU(bc_tsf);
2109 
2110     /* current TSF converted to TU */
2111     hw_tsf = ath5k_hw_get_tsf64(ah);
2112     hw_tu = TSF_TO_TU(hw_tsf);
2113 
2114 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2115     /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2116      * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2117      * configuration we need to make sure it is bigger than that. */
2118 
2119     if (bc_tsf == -1) {
2120         /*
2121          * no beacons received, called internally.
2122          * just need to refresh timers based on HW TSF.
2123          */
2124         nexttbtt = roundup(hw_tu + FUDGE, intval);
2125     } else if (bc_tsf == 0) {
2126         /*
2127          * no beacon received, probably called by ath5k_reset_tsf().
2128          * reset TSF to start with 0.
2129          */
2130         nexttbtt = intval;
2131         intval |= AR5K_BEACON_RESET_TSF;
2132     } else if (bc_tsf > hw_tsf) {
2133         /*
2134          * beacon received, SW merge happened but HW TSF not yet updated.
2135          * not possible to reconfigure timers yet, but next time we
2136          * receive a beacon with the same BSSID, the hardware will
2137          * automatically update the TSF and then we need to reconfigure
2138          * the timers.
2139          */
2140         ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2141             "need to wait for HW TSF sync\n");
2142         return;
2143     } else {
2144         /*
2145          * most important case for beacon synchronization between STA.
2146          *
2147          * beacon received and HW TSF has been already updated by HW.
2148          * update next TBTT based on the TSF of the beacon, but make
2149          * sure it is ahead of our local TSF timer.
2150          */
2151         nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2152     }
2153 #undef FUDGE
2154 
2155     ah->nexttbtt = nexttbtt;
2156 
2157     intval |= AR5K_BEACON_ENA;
2158     ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2159 
2160     /*
2161      * debugging output last in order to preserve the time critical aspect
2162      * of this function
2163      */
2164     if (bc_tsf == -1)
2165         ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2166             "reconfigured timers based on HW TSF\n");
2167     else if (bc_tsf == 0)
2168         ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2169             "reset HW TSF and timers\n");
2170     else
2171         ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2172             "updated timers based on beacon TSF\n");
2173 
2174     ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2175               "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2176               (unsigned long long) bc_tsf,
2177               (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2178     ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2179         intval & AR5K_BEACON_PERIOD,
2180         intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2181         intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2182 }
2183 
2184 /**
2185  * ath5k_beacon_config - Configure the beacon queues and interrupts
2186  *
2187  * @ah: struct ath5k_hw pointer we are operating on
2188  *
2189  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2190  * interrupts to detect TSF updates only.
2191  */
2192 void
2193 ath5k_beacon_config(struct ath5k_hw *ah)
2194 {
2195     spin_lock_bh(&ah->block);
2196     ah->bmisscount = 0;
2197     ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2198 
2199     if (ah->enable_beacon) {
2200         /*
2201          * In IBSS mode we use a self-linked tx descriptor and let the
2202          * hardware send the beacons automatically. We have to load it
2203          * only once here.
2204          * We use the SWBA interrupt only to keep track of the beacon
2205          * timers in order to detect automatic TSF updates.
2206          */
2207         ath5k_beaconq_config(ah);
2208 
2209         ah->imask |= AR5K_INT_SWBA;
2210 
2211         if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2212             if (ath5k_hw_hasveol(ah))
2213                 ath5k_beacon_send(ah);
2214         } else
2215             ath5k_beacon_update_timers(ah, -1);
2216     } else {
2217         ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2218     }
2219 
2220     ath5k_hw_set_imr(ah, ah->imask);
2221     spin_unlock_bh(&ah->block);
2222 }
2223 
2224 static void ath5k_tasklet_beacon(struct tasklet_struct *t)
2225 {
2226     struct ath5k_hw *ah = from_tasklet(ah, t, beacontq);
2227 
2228     /*
2229      * Software beacon alert--time to send a beacon.
2230      *
2231      * In IBSS mode we use this interrupt just to
2232      * keep track of the next TBTT (target beacon
2233      * transmission time) in order to detect whether
2234      * automatic TSF updates happened.
2235      */
2236     if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2237         /* XXX: only if VEOL supported */
2238         u64 tsf = ath5k_hw_get_tsf64(ah);
2239         ah->nexttbtt += ah->bintval;
2240         ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2241                 "SWBA nexttbtt: %x hw_tu: %x "
2242                 "TSF: %llx\n",
2243                 ah->nexttbtt,
2244                 TSF_TO_TU(tsf),
2245                 (unsigned long long) tsf);
2246     } else {
2247         spin_lock(&ah->block);
2248         ath5k_beacon_send(ah);
2249         spin_unlock(&ah->block);
2250     }
2251 }
2252 
2253 
2254 /********************\
2255 * Interrupt handling *
2256 \********************/
2257 
2258 static void
2259 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2260 {
2261     if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2262        !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2263        !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2264 
2265         /* Run ANI only when calibration is not active */
2266 
2267         ah->ah_cal_next_ani = jiffies +
2268             msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2269         tasklet_schedule(&ah->ani_tasklet);
2270 
2271     } else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2272         !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2273         !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2274 
2275         /* Run calibration only when another calibration
2276          * is not running.
2277          *
2278          * Note: This is for both full/short calibration,
2279          * if it's time for a full one, ath5k_calibrate_work will deal
2280          * with it. */
2281 
2282         ah->ah_cal_next_short = jiffies +
2283             msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2284         ieee80211_queue_work(ah->hw, &ah->calib_work);
2285     }
2286     /* we could use SWI to generate enough interrupts to meet our
2287      * calibration interval requirements, if necessary:
2288      * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2289 }
2290 
2291 static void
2292 ath5k_schedule_rx(struct ath5k_hw *ah)
2293 {
2294     ah->rx_pending = true;
2295     tasklet_schedule(&ah->rxtq);
2296 }
2297 
2298 static void
2299 ath5k_schedule_tx(struct ath5k_hw *ah)
2300 {
2301     ah->tx_pending = true;
2302     tasklet_schedule(&ah->txtq);
2303 }
2304 
2305 static irqreturn_t
2306 ath5k_intr(int irq, void *dev_id)
2307 {
2308     struct ath5k_hw *ah = dev_id;
2309     enum ath5k_int status;
2310     unsigned int counter = 1000;
2311 
2312 
2313     /*
2314      * If hw is not ready (or detached) and we get an
2315      * interrupt, or if we have no interrupts pending
2316      * (that means it's not for us) skip it.
2317      *
2318      * NOTE: Group 0/1 PCI interface registers are not
2319      * supported on WiSOCs, so we can't check for pending
2320      * interrupts (ISR belongs to another register group
2321      * so we are ok).
2322      */
2323     if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2324             ((ath5k_get_bus_type(ah) != ATH_AHB) &&
2325             !ath5k_hw_is_intr_pending(ah))))
2326         return IRQ_NONE;
2327 
2328     /** Main loop **/
2329     do {
2330         ath5k_hw_get_isr(ah, &status);  /* NB: clears IRQ too */
2331 
2332         ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2333                 status, ah->imask);
2334 
2335         /*
2336          * Fatal hw error -> Log and reset
2337          *
2338          * Fatal errors are unrecoverable so we have to
2339          * reset the card. These errors include bus and
2340          * dma errors.
2341          */
2342         if (unlikely(status & AR5K_INT_FATAL)) {
2343 
2344             ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2345                   "fatal int, resetting\n");
2346             ieee80211_queue_work(ah->hw, &ah->reset_work);
2347 
2348         /*
2349          * RX Overrun -> Count and reset if needed
2350          *
2351          * Receive buffers are full. Either the bus is busy or
2352          * the CPU is not fast enough to process all received
2353          * frames.
2354          */
2355         } else if (unlikely(status & AR5K_INT_RXORN)) {
2356 
2357             /*
2358              * Older chipsets need a reset to come out of this
2359              * condition, but we treat it as RX for newer chips.
2360              * We don't know exactly which versions need a reset
2361              * this guess is copied from the HAL.
2362              */
2363             ah->stats.rxorn_intr++;
2364 
2365             if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2366                 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2367                       "rx overrun, resetting\n");
2368                 ieee80211_queue_work(ah->hw, &ah->reset_work);
2369             } else
2370                 ath5k_schedule_rx(ah);
2371 
2372         } else {
2373 
2374             /* Software Beacon Alert -> Schedule beacon tasklet */
2375             if (status & AR5K_INT_SWBA)
2376                 tasklet_hi_schedule(&ah->beacontq);
2377 
2378             /*
2379              * No more RX descriptors -> Just count
2380              *
2381              * NB: the hardware should re-read the link when
2382              *     RXE bit is written, but it doesn't work at
2383              *     least on older hardware revs.
2384              */
2385             if (status & AR5K_INT_RXEOL)
2386                 ah->stats.rxeol_intr++;
2387 
2388 
2389             /* TX Underrun -> Bump tx trigger level */
2390             if (status & AR5K_INT_TXURN)
2391                 ath5k_hw_update_tx_triglevel(ah, true);
2392 
2393             /* RX -> Schedule rx tasklet */
2394             if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2395                 ath5k_schedule_rx(ah);
2396 
2397             /* TX -> Schedule tx tasklet */
2398             if (status & (AR5K_INT_TXOK
2399                     | AR5K_INT_TXDESC
2400                     | AR5K_INT_TXERR
2401                     | AR5K_INT_TXEOL))
2402                 ath5k_schedule_tx(ah);
2403 
2404             /* Missed beacon -> TODO
2405             if (status & AR5K_INT_BMISS)
2406             */
2407 
2408             /* MIB event -> Update counters and notify ANI */
2409             if (status & AR5K_INT_MIB) {
2410                 ah->stats.mib_intr++;
2411                 ath5k_hw_update_mib_counters(ah);
2412                 ath5k_ani_mib_intr(ah);
2413             }
2414 
2415             /* GPIO -> Notify RFKill layer */
2416             if (status & AR5K_INT_GPIO)
2417                 tasklet_schedule(&ah->rf_kill.toggleq);
2418 
2419         }
2420 
2421         if (ath5k_get_bus_type(ah) == ATH_AHB)
2422             break;
2423 
2424     } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2425 
2426     /*
2427      * Until we handle rx/tx interrupts mask them on IMR
2428      *
2429      * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2430      * and unset after we 've handled the interrupts.
2431      */
2432     if (ah->rx_pending || ah->tx_pending)
2433         ath5k_set_current_imask(ah);
2434 
2435     if (unlikely(!counter))
2436         ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2437 
2438     /* Fire up calibration poll */
2439     ath5k_intr_calibration_poll(ah);
2440 
2441     return IRQ_HANDLED;
2442 }
2443 
2444 /*
2445  * Periodically recalibrate the PHY to account
2446  * for temperature/environment changes.
2447  */
2448 static void
2449 ath5k_calibrate_work(struct work_struct *work)
2450 {
2451     struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2452         calib_work);
2453 
2454     /* Should we run a full calibration ? */
2455     if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2456 
2457         ah->ah_cal_next_full = jiffies +
2458             msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2459         ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2460 
2461         ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2462                 "running full calibration\n");
2463 
2464         if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2465             /*
2466              * Rfgain is out of bounds, reset the chip
2467              * to load new gain values.
2468              */
2469             ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2470                     "got new rfgain, resetting\n");
2471             ieee80211_queue_work(ah->hw, &ah->reset_work);
2472         }
2473     } else
2474         ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2475 
2476 
2477     ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2478         ieee80211_frequency_to_channel(ah->curchan->center_freq),
2479         ah->curchan->hw_value);
2480 
2481     if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2482         ATH5K_ERR(ah, "calibration of channel %u failed\n",
2483             ieee80211_frequency_to_channel(
2484                 ah->curchan->center_freq));
2485 
2486     /* Clear calibration flags */
2487     if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2488         ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2489     else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2490         ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2491 }
2492 
2493 
2494 static void
2495 ath5k_tasklet_ani(struct tasklet_struct *t)
2496 {
2497     struct ath5k_hw *ah = from_tasklet(ah, t, ani_tasklet);
2498 
2499     ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2500     ath5k_ani_calibration(ah);
2501     ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2502 }
2503 
2504 
2505 static void
2506 ath5k_tx_complete_poll_work(struct work_struct *work)
2507 {
2508     struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2509             tx_complete_work.work);
2510     struct ath5k_txq *txq;
2511     int i;
2512     bool needreset = false;
2513 
2514     if (!test_bit(ATH_STAT_STARTED, ah->status))
2515         return;
2516 
2517     mutex_lock(&ah->lock);
2518 
2519     for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2520         if (ah->txqs[i].setup) {
2521             txq = &ah->txqs[i];
2522             spin_lock_bh(&txq->lock);
2523             if (txq->txq_len > 1) {
2524                 if (txq->txq_poll_mark) {
2525                     ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2526                           "TX queue stuck %d\n",
2527                           txq->qnum);
2528                     needreset = true;
2529                     txq->txq_stuck++;
2530                     spin_unlock_bh(&txq->lock);
2531                     break;
2532                 } else {
2533                     txq->txq_poll_mark = true;
2534                 }
2535             }
2536             spin_unlock_bh(&txq->lock);
2537         }
2538     }
2539 
2540     if (needreset) {
2541         ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2542               "TX queues stuck, resetting\n");
2543         ath5k_reset(ah, NULL, true);
2544     }
2545 
2546     mutex_unlock(&ah->lock);
2547 
2548     ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2549         msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2550 }
2551 
2552 
2553 /*************************\
2554 * Initialization routines *
2555 \*************************/
2556 
2557 static const struct ieee80211_iface_limit if_limits[] = {
2558     { .max = 2048,  .types = BIT(NL80211_IFTYPE_STATION) },
2559     { .max = 4, .types =
2560 #ifdef CONFIG_MAC80211_MESH
2561                  BIT(NL80211_IFTYPE_MESH_POINT) |
2562 #endif
2563                  BIT(NL80211_IFTYPE_AP) },
2564 };
2565 
2566 static const struct ieee80211_iface_combination if_comb = {
2567     .limits = if_limits,
2568     .n_limits = ARRAY_SIZE(if_limits),
2569     .max_interfaces = 2048,
2570     .num_different_channels = 1,
2571 };
2572 
2573 int
2574 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2575 {
2576     struct ieee80211_hw *hw = ah->hw;
2577     struct ath_common *common;
2578     int ret;
2579     int csz;
2580 
2581     /* Initialize driver private data */
2582     SET_IEEE80211_DEV(hw, ah->dev);
2583     ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
2584     ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2585     ieee80211_hw_set(hw, MFP_CAPABLE);
2586     ieee80211_hw_set(hw, SIGNAL_DBM);
2587     ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2588     ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
2589 
2590     hw->wiphy->interface_modes =
2591         BIT(NL80211_IFTYPE_AP) |
2592         BIT(NL80211_IFTYPE_STATION) |
2593         BIT(NL80211_IFTYPE_ADHOC) |
2594         BIT(NL80211_IFTYPE_MESH_POINT);
2595 
2596     hw->wiphy->iface_combinations = &if_comb;
2597     hw->wiphy->n_iface_combinations = 1;
2598 
2599     /* SW support for IBSS_RSN is provided by mac80211 */
2600     hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2601 
2602     hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2603 
2604     /* both antennas can be configured as RX or TX */
2605     hw->wiphy->available_antennas_tx = 0x3;
2606     hw->wiphy->available_antennas_rx = 0x3;
2607 
2608     hw->extra_tx_headroom = 2;
2609 
2610     wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2611 
2612     /*
2613      * Mark the device as detached to avoid processing
2614      * interrupts until setup is complete.
2615      */
2616     __set_bit(ATH_STAT_INVALID, ah->status);
2617 
2618     ah->opmode = NL80211_IFTYPE_STATION;
2619     ah->bintval = 1000;
2620     mutex_init(&ah->lock);
2621     spin_lock_init(&ah->rxbuflock);
2622     spin_lock_init(&ah->txbuflock);
2623     spin_lock_init(&ah->block);
2624     spin_lock_init(&ah->irqlock);
2625 
2626     /* Setup interrupt handler */
2627     ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2628     if (ret) {
2629         ATH5K_ERR(ah, "request_irq failed\n");
2630         goto err;
2631     }
2632 
2633     common = ath5k_hw_common(ah);
2634     common->ops = &ath5k_common_ops;
2635     common->bus_ops = bus_ops;
2636     common->ah = ah;
2637     common->hw = hw;
2638     common->priv = ah;
2639     common->clockrate = 40;
2640 
2641     /*
2642      * Cache line size is used to size and align various
2643      * structures used to communicate with the hardware.
2644      */
2645     ath5k_read_cachesize(common, &csz);
2646     common->cachelsz = csz << 2; /* convert to bytes */
2647 
2648     spin_lock_init(&common->cc_lock);
2649 
2650     /* Initialize device */
2651     ret = ath5k_hw_init(ah);
2652     if (ret)
2653         goto err_irq;
2654 
2655     /* Set up multi-rate retry capabilities */
2656     if (ah->ah_capabilities.cap_has_mrr_support) {
2657         hw->max_rates = 4;
2658         hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2659                      AR5K_INIT_RETRY_LONG);
2660     }
2661 
2662     hw->vif_data_size = sizeof(struct ath5k_vif);
2663 
2664     /* Finish private driver data initialization */
2665     ret = ath5k_init(hw);
2666     if (ret)
2667         goto err_ah;
2668 
2669     ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2670             ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2671                     ah->ah_mac_srev,
2672                     ah->ah_phy_revision);
2673 
2674     if (!ah->ah_single_chip) {
2675         /* Single chip radio (!RF5111) */
2676         if (ah->ah_radio_5ghz_revision &&
2677             !ah->ah_radio_2ghz_revision) {
2678             /* No 5GHz support -> report 2GHz radio */
2679             if (!test_bit(AR5K_MODE_11A,
2680                 ah->ah_capabilities.cap_mode)) {
2681                 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2682                     ath5k_chip_name(AR5K_VERSION_RAD,
2683                         ah->ah_radio_5ghz_revision),
2684                         ah->ah_radio_5ghz_revision);
2685             /* No 2GHz support (5110 and some
2686              * 5GHz only cards) -> report 5GHz radio */
2687             } else if (!test_bit(AR5K_MODE_11B,
2688                 ah->ah_capabilities.cap_mode)) {
2689                 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2690                     ath5k_chip_name(AR5K_VERSION_RAD,
2691                         ah->ah_radio_5ghz_revision),
2692                         ah->ah_radio_5ghz_revision);
2693             /* Multiband radio */
2694             } else {
2695                 ATH5K_INFO(ah, "RF%s multiband radio found"
2696                     " (0x%x)\n",
2697                     ath5k_chip_name(AR5K_VERSION_RAD,
2698                         ah->ah_radio_5ghz_revision),
2699                         ah->ah_radio_5ghz_revision);
2700             }
2701         }
2702         /* Multi chip radio (RF5111 - RF2111) ->
2703          * report both 2GHz/5GHz radios */
2704         else if (ah->ah_radio_5ghz_revision &&
2705                 ah->ah_radio_2ghz_revision) {
2706             ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2707                 ath5k_chip_name(AR5K_VERSION_RAD,
2708                     ah->ah_radio_5ghz_revision),
2709                     ah->ah_radio_5ghz_revision);
2710             ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2711                 ath5k_chip_name(AR5K_VERSION_RAD,
2712                     ah->ah_radio_2ghz_revision),
2713                     ah->ah_radio_2ghz_revision);
2714         }
2715     }
2716 
2717     ath5k_debug_init_device(ah);
2718 
2719     /* ready to process interrupts */
2720     __clear_bit(ATH_STAT_INVALID, ah->status);
2721 
2722     return 0;
2723 err_ah:
2724     ath5k_hw_deinit(ah);
2725 err_irq:
2726     free_irq(ah->irq, ah);
2727 err:
2728     return ret;
2729 }
2730 
2731 static int
2732 ath5k_stop_locked(struct ath5k_hw *ah)
2733 {
2734 
2735     ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2736             test_bit(ATH_STAT_INVALID, ah->status));
2737 
2738     /*
2739      * Shutdown the hardware and driver:
2740      *    stop output from above
2741      *    disable interrupts
2742      *    turn off timers
2743      *    turn off the radio
2744      *    clear transmit machinery
2745      *    clear receive machinery
2746      *    drain and release tx queues
2747      *    reclaim beacon resources
2748      *    power down hardware
2749      *
2750      * Note that some of this work is not possible if the
2751      * hardware is gone (invalid).
2752      */
2753     ieee80211_stop_queues(ah->hw);
2754 
2755     if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2756         ath5k_led_off(ah);
2757         ath5k_hw_set_imr(ah, 0);
2758         synchronize_irq(ah->irq);
2759         ath5k_rx_stop(ah);
2760         ath5k_hw_dma_stop(ah);
2761         ath5k_drain_tx_buffs(ah);
2762         ath5k_hw_phy_disable(ah);
2763     }
2764 
2765     return 0;
2766 }
2767 
2768 int ath5k_start(struct ieee80211_hw *hw)
2769 {
2770     struct ath5k_hw *ah = hw->priv;
2771     struct ath_common *common = ath5k_hw_common(ah);
2772     int ret, i;
2773 
2774     mutex_lock(&ah->lock);
2775 
2776     ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2777 
2778     /*
2779      * Stop anything previously setup.  This is safe
2780      * no matter this is the first time through or not.
2781      */
2782     ath5k_stop_locked(ah);
2783 
2784     /*
2785      * The basic interface to setting the hardware in a good
2786      * state is ``reset''.  On return the hardware is known to
2787      * be powered up and with interrupts disabled.  This must
2788      * be followed by initialization of the appropriate bits
2789      * and then setup of the interrupt mask.
2790      */
2791     ah->curchan = ah->hw->conf.chandef.chan;
2792     ah->imask = AR5K_INT_RXOK
2793         | AR5K_INT_RXERR
2794         | AR5K_INT_RXEOL
2795         | AR5K_INT_RXORN
2796         | AR5K_INT_TXDESC
2797         | AR5K_INT_TXEOL
2798         | AR5K_INT_FATAL
2799         | AR5K_INT_GLOBAL
2800         | AR5K_INT_MIB;
2801 
2802     ret = ath5k_reset(ah, NULL, false);
2803     if (ret)
2804         goto done;
2805 
2806     if (!ath5k_modparam_no_hw_rfkill_switch)
2807         ath5k_rfkill_hw_start(ah);
2808 
2809     /*
2810      * Reset the key cache since some parts do not reset the
2811      * contents on initial power up or resume from suspend.
2812      */
2813     for (i = 0; i < common->keymax; i++)
2814         ath_hw_keyreset(common, (u16) i);
2815 
2816     /* Use higher rates for acks instead of base
2817      * rate */
2818     ah->ah_ack_bitrate_high = true;
2819 
2820     for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2821         ah->bslot[i] = NULL;
2822 
2823     ret = 0;
2824 done:
2825     mutex_unlock(&ah->lock);
2826 
2827     set_bit(ATH_STAT_STARTED, ah->status);
2828     ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2829             msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2830 
2831     return ret;
2832 }
2833 
2834 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2835 {
2836     ah->rx_pending = false;
2837     ah->tx_pending = false;
2838     tasklet_kill(&ah->rxtq);
2839     tasklet_kill(&ah->txtq);
2840     tasklet_kill(&ah->beacontq);
2841     tasklet_kill(&ah->ani_tasklet);
2842 }
2843 
2844 /*
2845  * Stop the device, grabbing the top-level lock to protect
2846  * against concurrent entry through ath5k_init (which can happen
2847  * if another thread does a system call and the thread doing the
2848  * stop is preempted).
2849  */
2850 void ath5k_stop(struct ieee80211_hw *hw)
2851 {
2852     struct ath5k_hw *ah = hw->priv;
2853     int ret;
2854 
2855     mutex_lock(&ah->lock);
2856     ret = ath5k_stop_locked(ah);
2857     if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2858         /*
2859          * Don't set the card in full sleep mode!
2860          *
2861          * a) When the device is in this state it must be carefully
2862          * woken up or references to registers in the PCI clock
2863          * domain may freeze the bus (and system).  This varies
2864          * by chip and is mostly an issue with newer parts
2865          * (madwifi sources mentioned srev >= 0x78) that go to
2866          * sleep more quickly.
2867          *
2868          * b) On older chips full sleep results a weird behaviour
2869          * during wakeup. I tested various cards with srev < 0x78
2870          * and they don't wake up after module reload, a second
2871          * module reload is needed to bring the card up again.
2872          *
2873          * Until we figure out what's going on don't enable
2874          * full chip reset on any chip (this is what Legacy HAL
2875          * and Sam's HAL do anyway). Instead Perform a full reset
2876          * on the device (same as initial state after attach) and
2877          * leave it idle (keep MAC/BB on warm reset) */
2878         ret = ath5k_hw_on_hold(ah);
2879 
2880         ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2881                 "putting device to sleep\n");
2882     }
2883 
2884     mutex_unlock(&ah->lock);
2885 
2886     ath5k_stop_tasklets(ah);
2887 
2888     clear_bit(ATH_STAT_STARTED, ah->status);
2889     cancel_delayed_work_sync(&ah->tx_complete_work);
2890 
2891     if (!ath5k_modparam_no_hw_rfkill_switch)
2892         ath5k_rfkill_hw_stop(ah);
2893 }
2894 
2895 /*
2896  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2897  * and change to the given channel.
2898  *
2899  * This should be called with ah->lock.
2900  */
2901 static int
2902 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2903                             bool skip_pcu)
2904 {
2905     struct ath_common *common = ath5k_hw_common(ah);
2906     int ret, ani_mode;
2907     bool fast = chan && modparam_fastchanswitch ? 1 : 0;
2908 
2909     ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2910 
2911     __set_bit(ATH_STAT_RESET, ah->status);
2912 
2913     ath5k_hw_set_imr(ah, 0);
2914     synchronize_irq(ah->irq);
2915     ath5k_stop_tasklets(ah);
2916 
2917     /* Save ani mode and disable ANI during
2918      * reset. If we don't we might get false
2919      * PHY error interrupts. */
2920     ani_mode = ah->ani_state.ani_mode;
2921     ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2922 
2923     /* We are going to empty hw queues
2924      * so we should also free any remaining
2925      * tx buffers */
2926     ath5k_drain_tx_buffs(ah);
2927 
2928     /* Stop PCU */
2929     ath5k_hw_stop_rx_pcu(ah);
2930 
2931     /* Stop DMA
2932      *
2933      * Note: If DMA didn't stop continue
2934      * since only a reset will fix it.
2935      */
2936     ret = ath5k_hw_dma_stop(ah);
2937 
2938     /* RF Bus grant won't work if we have pending
2939      * frames
2940      */
2941     if (ret && fast) {
2942         ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2943               "DMA didn't stop, falling back to normal reset\n");
2944         fast = false;
2945     }
2946 
2947     if (chan)
2948         ah->curchan = chan;
2949 
2950     ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2951     if (ret) {
2952         ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2953         goto err;
2954     }
2955 
2956     ret = ath5k_rx_start(ah);
2957     if (ret) {
2958         ATH5K_ERR(ah, "can't start recv logic\n");
2959         goto err;
2960     }
2961 
2962     ath5k_ani_init(ah, ani_mode);
2963 
2964     /*
2965      * Set calibration intervals
2966      *
2967      * Note: We don't need to run calibration imediately
2968      * since some initial calibration is done on reset
2969      * even for fast channel switching. Also on scanning
2970      * this will get set again and again and it won't get
2971      * executed unless we connect somewhere and spend some
2972      * time on the channel (that's what calibration needs
2973      * anyway to be accurate).
2974      */
2975     ah->ah_cal_next_full = jiffies +
2976         msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2977     ah->ah_cal_next_ani = jiffies +
2978         msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2979     ah->ah_cal_next_short = jiffies +
2980         msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2981 
2982     ewma_beacon_rssi_init(&ah->ah_beacon_rssi_avg);
2983 
2984     /* clear survey data and cycle counters */
2985     memset(&ah->survey, 0, sizeof(ah->survey));
2986     spin_lock_bh(&common->cc_lock);
2987     ath_hw_cycle_counters_update(common);
2988     memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2989     memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2990     spin_unlock_bh(&common->cc_lock);
2991 
2992     /*
2993      * Change channels and update the h/w rate map if we're switching;
2994      * e.g. 11a to 11b/g.
2995      *
2996      * We may be doing a reset in response to an ioctl that changes the
2997      * channel so update any state that might change as a result.
2998      *
2999      * XXX needed?
3000      */
3001 /*  ath5k_chan_change(ah, c); */
3002 
3003     __clear_bit(ATH_STAT_RESET, ah->status);
3004 
3005     ath5k_beacon_config(ah);
3006     /* intrs are enabled by ath5k_beacon_config */
3007 
3008     ieee80211_wake_queues(ah->hw);
3009 
3010     return 0;
3011 err:
3012     return ret;
3013 }
3014 
3015 static void ath5k_reset_work(struct work_struct *work)
3016 {
3017     struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
3018         reset_work);
3019 
3020     mutex_lock(&ah->lock);
3021     ath5k_reset(ah, NULL, true);
3022     mutex_unlock(&ah->lock);
3023 }
3024 
3025 static int
3026 ath5k_init(struct ieee80211_hw *hw)
3027 {
3028 
3029     struct ath5k_hw *ah = hw->priv;
3030     struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
3031     struct ath5k_txq *txq;
3032     u8 mac[ETH_ALEN] = {};
3033     int ret;
3034 
3035 
3036     /*
3037      * Collect the channel list.  The 802.11 layer
3038      * is responsible for filtering this list based
3039      * on settings like the phy mode and regulatory
3040      * domain restrictions.
3041      */
3042     ret = ath5k_setup_bands(hw);
3043     if (ret) {
3044         ATH5K_ERR(ah, "can't get channels\n");
3045         goto err;
3046     }
3047 
3048     /*
3049      * Allocate tx+rx descriptors and populate the lists.
3050      */
3051     ret = ath5k_desc_alloc(ah);
3052     if (ret) {
3053         ATH5K_ERR(ah, "can't allocate descriptors\n");
3054         goto err;
3055     }
3056 
3057     /*
3058      * Allocate hardware transmit queues: one queue for
3059      * beacon frames and one data queue for each QoS
3060      * priority.  Note that hw functions handle resetting
3061      * these queues at the needed time.
3062      */
3063     ret = ath5k_beaconq_setup(ah);
3064     if (ret < 0) {
3065         ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
3066         goto err_desc;
3067     }
3068     ah->bhalq = ret;
3069     ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
3070     if (IS_ERR(ah->cabq)) {
3071         ATH5K_ERR(ah, "can't setup cab queue\n");
3072         ret = PTR_ERR(ah->cabq);
3073         goto err_bhal;
3074     }
3075 
3076     /* 5211 and 5212 usually support 10 queues but we better rely on the
3077      * capability information */
3078     if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
3079         /* This order matches mac80211's queue priority, so we can
3080         * directly use the mac80211 queue number without any mapping */
3081         txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
3082         if (IS_ERR(txq)) {
3083             ATH5K_ERR(ah, "can't setup xmit queue\n");
3084             ret = PTR_ERR(txq);
3085             goto err_queues;
3086         }
3087         txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
3088         if (IS_ERR(txq)) {
3089             ATH5K_ERR(ah, "can't setup xmit queue\n");
3090             ret = PTR_ERR(txq);
3091             goto err_queues;
3092         }
3093         txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3094         if (IS_ERR(txq)) {
3095             ATH5K_ERR(ah, "can't setup xmit queue\n");
3096             ret = PTR_ERR(txq);
3097             goto err_queues;
3098         }
3099         txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3100         if (IS_ERR(txq)) {
3101             ATH5K_ERR(ah, "can't setup xmit queue\n");
3102             ret = PTR_ERR(txq);
3103             goto err_queues;
3104         }
3105         hw->queues = 4;
3106     } else {
3107         /* older hardware (5210) can only support one data queue */
3108         txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3109         if (IS_ERR(txq)) {
3110             ATH5K_ERR(ah, "can't setup xmit queue\n");
3111             ret = PTR_ERR(txq);
3112             goto err_queues;
3113         }
3114         hw->queues = 1;
3115     }
3116 
3117     tasklet_setup(&ah->rxtq, ath5k_tasklet_rx);
3118     tasklet_setup(&ah->txtq, ath5k_tasklet_tx);
3119     tasklet_setup(&ah->beacontq, ath5k_tasklet_beacon);
3120     tasklet_setup(&ah->ani_tasklet, ath5k_tasklet_ani);
3121 
3122     INIT_WORK(&ah->reset_work, ath5k_reset_work);
3123     INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3124     INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3125 
3126     ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3127     if (ret) {
3128         ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3129         goto err_queues;
3130     }
3131 
3132     SET_IEEE80211_PERM_ADDR(hw, mac);
3133     /* All MAC address bits matter for ACKs */
3134     ath5k_update_bssid_mask_and_opmode(ah, NULL);
3135 
3136     regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3137     ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3138     if (ret) {
3139         ATH5K_ERR(ah, "can't initialize regulatory system\n");
3140         goto err_queues;
3141     }
3142 
3143     ret = ieee80211_register_hw(hw);
3144     if (ret) {
3145         ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3146         goto err_queues;
3147     }
3148 
3149     if (!ath_is_world_regd(regulatory))
3150         regulatory_hint(hw->wiphy, regulatory->alpha2);
3151 
3152     ath5k_init_leds(ah);
3153 
3154     ath5k_sysfs_register(ah);
3155 
3156     return 0;
3157 err_queues:
3158     ath5k_txq_release(ah);
3159 err_bhal:
3160     ath5k_hw_release_tx_queue(ah, ah->bhalq);
3161 err_desc:
3162     ath5k_desc_free(ah);
3163 err:
3164     return ret;
3165 }
3166 
3167 void
3168 ath5k_deinit_ah(struct ath5k_hw *ah)
3169 {
3170     struct ieee80211_hw *hw = ah->hw;
3171 
3172     /*
3173      * NB: the order of these is important:
3174      * o call the 802.11 layer before detaching ath5k_hw to
3175      *   ensure callbacks into the driver to delete global
3176      *   key cache entries can be handled
3177      * o reclaim the tx queue data structures after calling
3178      *   the 802.11 layer as we'll get called back to reclaim
3179      *   node state and potentially want to use them
3180      * o to cleanup the tx queues the hal is called, so detach
3181      *   it last
3182      * XXX: ??? detach ath5k_hw ???
3183      * Other than that, it's straightforward...
3184      */
3185     ieee80211_unregister_hw(hw);
3186     ath5k_desc_free(ah);
3187     ath5k_txq_release(ah);
3188     ath5k_hw_release_tx_queue(ah, ah->bhalq);
3189     ath5k_unregister_leds(ah);
3190 
3191     ath5k_sysfs_unregister(ah);
3192     /*
3193      * NB: can't reclaim these until after ieee80211_ifdetach
3194      * returns because we'll get called back to reclaim node
3195      * state and potentially want to use them.
3196      */
3197     ath5k_hw_deinit(ah);
3198     free_irq(ah->irq, ah);
3199 }
3200 
3201 bool
3202 ath5k_any_vif_assoc(struct ath5k_hw *ah)
3203 {
3204     struct ath5k_vif_iter_data iter_data;
3205     iter_data.hw_macaddr = NULL;
3206     iter_data.any_assoc = false;
3207     iter_data.need_set_hw_addr = false;
3208     iter_data.found_active = true;
3209 
3210     ieee80211_iterate_active_interfaces_atomic(
3211         ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3212         ath5k_vif_iter, &iter_data);
3213     return iter_data.any_assoc;
3214 }
3215 
3216 void
3217 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3218 {
3219     struct ath5k_hw *ah = hw->priv;
3220     u32 rfilt;
3221     rfilt = ath5k_hw_get_rx_filter(ah);
3222     if (enable)
3223         rfilt |= AR5K_RX_FILTER_BEACON;
3224     else
3225         rfilt &= ~AR5K_RX_FILTER_BEACON;
3226     ath5k_hw_set_rx_filter(ah, rfilt);
3227     ah->filter_flags = rfilt;
3228 }
3229 
3230 void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3231            const char *fmt, ...)
3232 {
3233     struct va_format vaf;
3234     va_list args;
3235 
3236     va_start(args, fmt);
3237 
3238     vaf.fmt = fmt;
3239     vaf.va = &args;
3240 
3241     if (ah && ah->hw)
3242         printk("%s" pr_fmt("%s: %pV"),
3243                level, wiphy_name(ah->hw->wiphy), &vaf);
3244     else
3245         printk("%s" pr_fmt("%pV"), level, &vaf);
3246 
3247     va_end(args);
3248 }