0001
0002
0003
0004
0005
0006
0007 #include <linux/delay.h>
0008 #include <linux/dma-mapping.h>
0009 #include <linux/hdlc.h>
0010 #include <linux/init.h>
0011 #include <linux/interrupt.h>
0012 #include <linux/io.h>
0013 #include <linux/irq.h>
0014 #include <linux/kernel.h>
0015 #include <linux/module.h>
0016 #include <linux/netdevice.h>
0017 #include <linux/of_address.h>
0018 #include <linux/of_irq.h>
0019 #include <linux/of_platform.h>
0020 #include <linux/platform_device.h>
0021 #include <linux/sched.h>
0022 #include <linux/skbuff.h>
0023 #include <linux/slab.h>
0024 #include <linux/spinlock.h>
0025 #include <linux/stddef.h>
0026 #include <soc/fsl/qe/qe_tdm.h>
0027 #include <uapi/linux/if_arp.h>
0028
0029 #include "fsl_ucc_hdlc.h"
0030
0031 #define DRV_DESC "Freescale QE UCC HDLC Driver"
0032 #define DRV_NAME "ucc_hdlc"
0033
0034 #define TDM_PPPOHT_SLIC_MAXIN
0035 #define RX_BD_ERRORS (R_CD_S | R_OV_S | R_CR_S | R_AB_S | R_NO_S | R_LG_S)
0036
0037 static struct ucc_tdm_info utdm_primary_info = {
0038 .uf_info = {
0039 .tsa = 0,
0040 .cdp = 0,
0041 .cds = 1,
0042 .ctsp = 1,
0043 .ctss = 1,
0044 .revd = 0,
0045 .urfs = 256,
0046 .utfs = 256,
0047 .urfet = 128,
0048 .urfset = 192,
0049 .utfet = 128,
0050 .utftt = 0x40,
0051 .ufpt = 256,
0052 .mode = UCC_FAST_PROTOCOL_MODE_HDLC,
0053 .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
0054 .tenc = UCC_FAST_TX_ENCODING_NRZ,
0055 .renc = UCC_FAST_RX_ENCODING_NRZ,
0056 .tcrc = UCC_FAST_16_BIT_CRC,
0057 .synl = UCC_FAST_SYNC_LEN_NOT_USED,
0058 },
0059
0060 .si_info = {
0061 #ifdef TDM_PPPOHT_SLIC_MAXIN
0062 .simr_rfsd = 1,
0063 .simr_tfsd = 2,
0064 #else
0065 .simr_rfsd = 0,
0066 .simr_tfsd = 0,
0067 #endif
0068 .simr_crt = 0,
0069 .simr_sl = 0,
0070 .simr_ce = 1,
0071 .simr_fe = 1,
0072 .simr_gm = 0,
0073 },
0074 };
0075
0076 static struct ucc_tdm_info utdm_info[UCC_MAX_NUM];
0077
0078 static int uhdlc_init(struct ucc_hdlc_private *priv)
0079 {
0080 struct ucc_tdm_info *ut_info;
0081 struct ucc_fast_info *uf_info;
0082 u32 cecr_subblock;
0083 u16 bd_status;
0084 int ret, i;
0085 void *bd_buffer;
0086 dma_addr_t bd_dma_addr;
0087 s32 riptr;
0088 s32 tiptr;
0089 u32 gumr;
0090
0091 ut_info = priv->ut_info;
0092 uf_info = &ut_info->uf_info;
0093
0094 if (priv->tsa) {
0095 uf_info->tsa = 1;
0096 uf_info->ctsp = 1;
0097 uf_info->cds = 1;
0098 uf_info->ctss = 1;
0099 } else {
0100 uf_info->cds = 0;
0101 uf_info->ctsp = 0;
0102 uf_info->ctss = 0;
0103 }
0104
0105
0106
0107
0108 if (priv->hdlc_bus)
0109 uf_info->brkpt_support = 1;
0110
0111 uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF |
0112 UCC_HDLC_UCCE_TXB) << 16);
0113
0114 ret = ucc_fast_init(uf_info, &priv->uccf);
0115 if (ret) {
0116 dev_err(priv->dev, "Failed to init uccf.");
0117 return ret;
0118 }
0119
0120 priv->uf_regs = priv->uccf->uf_regs;
0121 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
0122
0123
0124 if (priv->loopback) {
0125 dev_info(priv->dev, "Loopback Mode\n");
0126
0127 qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1);
0128
0129 gumr = ioread32be(&priv->uf_regs->gumr);
0130 gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS |
0131 UCC_FAST_GUMR_TCI);
0132 gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN);
0133 iowrite32be(gumr, &priv->uf_regs->gumr);
0134 }
0135
0136
0137 if (priv->tsa)
0138 ucc_tdm_init(priv->utdm, priv->ut_info);
0139
0140
0141 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
0142 ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
0143 QE_CR_PROTOCOL_UNSPECIFIED, 0);
0144
0145
0146 iowrite32be(0, &priv->uf_regs->upsmr);
0147
0148
0149 if (priv->hdlc_bus) {
0150 u32 upsmr;
0151
0152 dev_info(priv->dev, "HDLC bus Mode\n");
0153 upsmr = ioread32be(&priv->uf_regs->upsmr);
0154
0155
0156
0157
0158 upsmr |= UCC_HDLC_UPSMR_RTE | UCC_HDLC_UPSMR_BUS |
0159 UCC_HDLC_UPSMR_CW8;
0160 iowrite32be(upsmr, &priv->uf_regs->upsmr);
0161
0162
0163 gumr = ioread32be(&priv->uf_regs->gumr);
0164 gumr &= ~(UCC_FAST_GUMR_CDS | UCC_FAST_GUMR_CTSP);
0165
0166 gumr |= UCC_FAST_GUMR_SYNL_AUTO;
0167 iowrite32be(gumr, &priv->uf_regs->gumr);
0168 }
0169
0170 priv->rx_ring_size = RX_BD_RING_LEN;
0171 priv->tx_ring_size = TX_BD_RING_LEN;
0172
0173 priv->rx_bd_base = dma_alloc_coherent(priv->dev,
0174 RX_BD_RING_LEN * sizeof(struct qe_bd),
0175 &priv->dma_rx_bd, GFP_KERNEL);
0176
0177 if (!priv->rx_bd_base) {
0178 dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n");
0179 ret = -ENOMEM;
0180 goto free_uccf;
0181 }
0182
0183
0184 priv->tx_bd_base = dma_alloc_coherent(priv->dev,
0185 TX_BD_RING_LEN * sizeof(struct qe_bd),
0186 &priv->dma_tx_bd, GFP_KERNEL);
0187
0188 if (!priv->tx_bd_base) {
0189 dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n");
0190 ret = -ENOMEM;
0191 goto free_rx_bd;
0192 }
0193
0194
0195 priv->ucc_pram_offset = qe_muram_alloc(sizeof(struct ucc_hdlc_param),
0196 ALIGNMENT_OF_UCC_HDLC_PRAM);
0197
0198 if (priv->ucc_pram_offset < 0) {
0199 dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n");
0200 ret = -ENOMEM;
0201 goto free_tx_bd;
0202 }
0203
0204 priv->rx_skbuff = kcalloc(priv->rx_ring_size,
0205 sizeof(*priv->rx_skbuff),
0206 GFP_KERNEL);
0207 if (!priv->rx_skbuff) {
0208 ret = -ENOMEM;
0209 goto free_ucc_pram;
0210 }
0211
0212 priv->tx_skbuff = kcalloc(priv->tx_ring_size,
0213 sizeof(*priv->tx_skbuff),
0214 GFP_KERNEL);
0215 if (!priv->tx_skbuff) {
0216 ret = -ENOMEM;
0217 goto free_rx_skbuff;
0218 }
0219
0220 priv->skb_curtx = 0;
0221 priv->skb_dirtytx = 0;
0222 priv->curtx_bd = priv->tx_bd_base;
0223 priv->dirty_tx = priv->tx_bd_base;
0224 priv->currx_bd = priv->rx_bd_base;
0225 priv->currx_bdnum = 0;
0226
0227
0228 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
0229 ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
0230 QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
0231
0232 priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
0233 qe_muram_addr(priv->ucc_pram_offset);
0234
0235
0236 memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param));
0237
0238
0239 riptr = qe_muram_alloc(32, 32);
0240 if (riptr < 0) {
0241 dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
0242 ret = -ENOMEM;
0243 goto free_tx_skbuff;
0244 }
0245
0246 tiptr = qe_muram_alloc(32, 32);
0247 if (tiptr < 0) {
0248 dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
0249 ret = -ENOMEM;
0250 goto free_riptr;
0251 }
0252 if (riptr != (u16)riptr || tiptr != (u16)tiptr) {
0253 dev_err(priv->dev, "MURAM allocation out of addressable range\n");
0254 ret = -ENOMEM;
0255 goto free_tiptr;
0256 }
0257
0258
0259 iowrite16be(riptr, &priv->ucc_pram->riptr);
0260 iowrite16be(tiptr, &priv->ucc_pram->tiptr);
0261
0262
0263 iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr);
0264
0265
0266 iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase);
0267 iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase);
0268
0269
0270 iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate);
0271 iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate);
0272
0273
0274 iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask);
0275 iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres);
0276
0277 iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr);
0278 iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr);
0279 iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt);
0280 iowrite16be(priv->hmask, &priv->ucc_pram->hmask);
0281 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1);
0282 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2);
0283 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3);
0284 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4);
0285
0286
0287 bd_buffer = dma_alloc_coherent(priv->dev,
0288 (RX_BD_RING_LEN + TX_BD_RING_LEN) * MAX_RX_BUF_LENGTH,
0289 &bd_dma_addr, GFP_KERNEL);
0290
0291 if (!bd_buffer) {
0292 dev_err(priv->dev, "Could not allocate buffer descriptors\n");
0293 ret = -ENOMEM;
0294 goto free_tiptr;
0295 }
0296
0297 priv->rx_buffer = bd_buffer;
0298 priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
0299
0300 priv->dma_rx_addr = bd_dma_addr;
0301 priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
0302
0303 for (i = 0; i < RX_BD_RING_LEN; i++) {
0304 if (i < (RX_BD_RING_LEN - 1))
0305 bd_status = R_E_S | R_I_S;
0306 else
0307 bd_status = R_E_S | R_I_S | R_W_S;
0308
0309 priv->rx_bd_base[i].status = cpu_to_be16(bd_status);
0310 priv->rx_bd_base[i].buf = cpu_to_be32(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH);
0311 }
0312
0313 for (i = 0; i < TX_BD_RING_LEN; i++) {
0314 if (i < (TX_BD_RING_LEN - 1))
0315 bd_status = T_I_S | T_TC_S;
0316 else
0317 bd_status = T_I_S | T_TC_S | T_W_S;
0318
0319 priv->tx_bd_base[i].status = cpu_to_be16(bd_status);
0320 priv->tx_bd_base[i].buf = cpu_to_be32(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH);
0321 }
0322 dma_wmb();
0323
0324 return 0;
0325
0326 free_tiptr:
0327 qe_muram_free(tiptr);
0328 free_riptr:
0329 qe_muram_free(riptr);
0330 free_tx_skbuff:
0331 kfree(priv->tx_skbuff);
0332 free_rx_skbuff:
0333 kfree(priv->rx_skbuff);
0334 free_ucc_pram:
0335 qe_muram_free(priv->ucc_pram_offset);
0336 free_tx_bd:
0337 dma_free_coherent(priv->dev,
0338 TX_BD_RING_LEN * sizeof(struct qe_bd),
0339 priv->tx_bd_base, priv->dma_tx_bd);
0340 free_rx_bd:
0341 dma_free_coherent(priv->dev,
0342 RX_BD_RING_LEN * sizeof(struct qe_bd),
0343 priv->rx_bd_base, priv->dma_rx_bd);
0344 free_uccf:
0345 ucc_fast_free(priv->uccf);
0346
0347 return ret;
0348 }
0349
0350 static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev)
0351 {
0352 hdlc_device *hdlc = dev_to_hdlc(dev);
0353 struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv;
0354 struct qe_bd *bd;
0355 u16 bd_status;
0356 unsigned long flags;
0357 __be16 *proto_head;
0358
0359 switch (dev->type) {
0360 case ARPHRD_RAWHDLC:
0361 if (skb_headroom(skb) < HDLC_HEAD_LEN) {
0362 dev->stats.tx_dropped++;
0363 dev_kfree_skb(skb);
0364 netdev_err(dev, "No enough space for hdlc head\n");
0365 return -ENOMEM;
0366 }
0367
0368 skb_push(skb, HDLC_HEAD_LEN);
0369
0370 proto_head = (__be16 *)skb->data;
0371 *proto_head = htons(DEFAULT_HDLC_HEAD);
0372
0373 dev->stats.tx_bytes += skb->len;
0374 break;
0375
0376 case ARPHRD_PPP:
0377 proto_head = (__be16 *)skb->data;
0378 if (*proto_head != htons(DEFAULT_PPP_HEAD)) {
0379 dev->stats.tx_dropped++;
0380 dev_kfree_skb(skb);
0381 netdev_err(dev, "Wrong ppp header\n");
0382 return -ENOMEM;
0383 }
0384
0385 dev->stats.tx_bytes += skb->len;
0386 break;
0387
0388 case ARPHRD_ETHER:
0389 dev->stats.tx_bytes += skb->len;
0390 break;
0391
0392 default:
0393 dev->stats.tx_dropped++;
0394 dev_kfree_skb(skb);
0395 return -ENOMEM;
0396 }
0397 netdev_sent_queue(dev, skb->len);
0398 spin_lock_irqsave(&priv->lock, flags);
0399
0400 dma_rmb();
0401
0402 bd = priv->curtx_bd;
0403 bd_status = be16_to_cpu(bd->status);
0404
0405 priv->tx_skbuff[priv->skb_curtx] = skb;
0406
0407
0408 priv->skb_curtx =
0409 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
0410
0411
0412 memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
0413 skb->data, skb->len);
0414
0415
0416 bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S;
0417
0418 bd->length = cpu_to_be16(skb->len);
0419 bd->status = cpu_to_be16(bd_status);
0420
0421
0422 if (!(bd_status & T_W_S))
0423 bd += 1;
0424 else
0425 bd = priv->tx_bd_base;
0426
0427 if (bd == priv->dirty_tx) {
0428 if (!netif_queue_stopped(dev))
0429 netif_stop_queue(dev);
0430 }
0431
0432 priv->curtx_bd = bd;
0433
0434 spin_unlock_irqrestore(&priv->lock, flags);
0435
0436 return NETDEV_TX_OK;
0437 }
0438
0439 static int hdlc_tx_restart(struct ucc_hdlc_private *priv)
0440 {
0441 u32 cecr_subblock;
0442
0443 cecr_subblock =
0444 ucc_fast_get_qe_cr_subblock(priv->ut_info->uf_info.ucc_num);
0445
0446 qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
0447 QE_CR_PROTOCOL_UNSPECIFIED, 0);
0448 return 0;
0449 }
0450
0451 static int hdlc_tx_done(struct ucc_hdlc_private *priv)
0452 {
0453
0454 struct net_device *dev = priv->ndev;
0455 unsigned int bytes_sent = 0;
0456 int howmany = 0;
0457 struct qe_bd *bd;
0458 u16 bd_status;
0459 int tx_restart = 0;
0460
0461 dma_rmb();
0462 bd = priv->dirty_tx;
0463 bd_status = be16_to_cpu(bd->status);
0464
0465
0466 while ((bd_status & T_R_S) == 0) {
0467 struct sk_buff *skb;
0468
0469 if (bd_status & T_UN_S) {
0470 dev->stats.tx_fifo_errors++;
0471 tx_restart = 1;
0472 }
0473 if (bd_status & T_CT_S) {
0474 dev->stats.tx_carrier_errors++;
0475 tx_restart = 1;
0476 }
0477
0478
0479
0480
0481
0482 skb = priv->tx_skbuff[priv->skb_dirtytx];
0483 if (!skb)
0484 break;
0485 howmany++;
0486 bytes_sent += skb->len;
0487 dev->stats.tx_packets++;
0488 memset(priv->tx_buffer +
0489 (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
0490 0, skb->len);
0491 dev_consume_skb_irq(skb);
0492
0493 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
0494 priv->skb_dirtytx =
0495 (priv->skb_dirtytx +
0496 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
0497
0498
0499 if (netif_queue_stopped(dev))
0500 netif_wake_queue(dev);
0501
0502
0503 if (!(bd_status & T_W_S))
0504 bd += 1;
0505 else
0506 bd = priv->tx_bd_base;
0507 bd_status = be16_to_cpu(bd->status);
0508 }
0509 priv->dirty_tx = bd;
0510
0511 if (tx_restart)
0512 hdlc_tx_restart(priv);
0513
0514 netdev_completed_queue(dev, howmany, bytes_sent);
0515 return 0;
0516 }
0517
0518 static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit)
0519 {
0520 struct net_device *dev = priv->ndev;
0521 struct sk_buff *skb = NULL;
0522 hdlc_device *hdlc = dev_to_hdlc(dev);
0523 struct qe_bd *bd;
0524 u16 bd_status;
0525 u16 length, howmany = 0;
0526 u8 *bdbuffer;
0527
0528 dma_rmb();
0529 bd = priv->currx_bd;
0530 bd_status = be16_to_cpu(bd->status);
0531
0532
0533 while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) {
0534 if (bd_status & (RX_BD_ERRORS)) {
0535 dev->stats.rx_errors++;
0536
0537 if (bd_status & R_CD_S)
0538 dev->stats.collisions++;
0539 if (bd_status & R_OV_S)
0540 dev->stats.rx_fifo_errors++;
0541 if (bd_status & R_CR_S)
0542 dev->stats.rx_crc_errors++;
0543 if (bd_status & R_AB_S)
0544 dev->stats.rx_over_errors++;
0545 if (bd_status & R_NO_S)
0546 dev->stats.rx_frame_errors++;
0547 if (bd_status & R_LG_S)
0548 dev->stats.rx_length_errors++;
0549
0550 goto recycle;
0551 }
0552 bdbuffer = priv->rx_buffer +
0553 (priv->currx_bdnum * MAX_RX_BUF_LENGTH);
0554 length = be16_to_cpu(bd->length);
0555
0556 switch (dev->type) {
0557 case ARPHRD_RAWHDLC:
0558 bdbuffer += HDLC_HEAD_LEN;
0559 length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE);
0560
0561 skb = dev_alloc_skb(length);
0562 if (!skb) {
0563 dev->stats.rx_dropped++;
0564 return -ENOMEM;
0565 }
0566
0567 skb_put(skb, length);
0568 skb->len = length;
0569 skb->dev = dev;
0570 memcpy(skb->data, bdbuffer, length);
0571 break;
0572
0573 case ARPHRD_PPP:
0574 case ARPHRD_ETHER:
0575 length -= HDLC_CRC_SIZE;
0576
0577 skb = dev_alloc_skb(length);
0578 if (!skb) {
0579 dev->stats.rx_dropped++;
0580 return -ENOMEM;
0581 }
0582
0583 skb_put(skb, length);
0584 skb->len = length;
0585 skb->dev = dev;
0586 memcpy(skb->data, bdbuffer, length);
0587 break;
0588 }
0589
0590 dev->stats.rx_packets++;
0591 dev->stats.rx_bytes += skb->len;
0592 howmany++;
0593 if (hdlc->proto)
0594 skb->protocol = hdlc_type_trans(skb, dev);
0595 netif_receive_skb(skb);
0596
0597 recycle:
0598 bd->status = cpu_to_be16((bd_status & R_W_S) | R_E_S | R_I_S);
0599
0600
0601 if (bd_status & R_W_S) {
0602 priv->currx_bdnum = 0;
0603 bd = priv->rx_bd_base;
0604 } else {
0605 if (priv->currx_bdnum < (RX_BD_RING_LEN - 1))
0606 priv->currx_bdnum += 1;
0607 else
0608 priv->currx_bdnum = RX_BD_RING_LEN - 1;
0609
0610 bd += 1;
0611 }
0612
0613 bd_status = be16_to_cpu(bd->status);
0614 }
0615 dma_rmb();
0616
0617 priv->currx_bd = bd;
0618 return howmany;
0619 }
0620
0621 static int ucc_hdlc_poll(struct napi_struct *napi, int budget)
0622 {
0623 struct ucc_hdlc_private *priv = container_of(napi,
0624 struct ucc_hdlc_private,
0625 napi);
0626 int howmany;
0627
0628
0629 spin_lock(&priv->lock);
0630 hdlc_tx_done(priv);
0631 spin_unlock(&priv->lock);
0632
0633 howmany = 0;
0634 howmany += hdlc_rx_done(priv, budget - howmany);
0635
0636 if (howmany < budget) {
0637 napi_complete_done(napi, howmany);
0638 qe_setbits_be32(priv->uccf->p_uccm,
0639 (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16);
0640 }
0641
0642 return howmany;
0643 }
0644
0645 static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id)
0646 {
0647 struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id;
0648 struct net_device *dev = priv->ndev;
0649 struct ucc_fast_private *uccf;
0650 u32 ucce;
0651 u32 uccm;
0652
0653 uccf = priv->uccf;
0654
0655 ucce = ioread32be(uccf->p_ucce);
0656 uccm = ioread32be(uccf->p_uccm);
0657 ucce &= uccm;
0658 iowrite32be(ucce, uccf->p_ucce);
0659 if (!ucce)
0660 return IRQ_NONE;
0661
0662 if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) {
0663 if (napi_schedule_prep(&priv->napi)) {
0664 uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)
0665 << 16);
0666 iowrite32be(uccm, uccf->p_uccm);
0667 __napi_schedule(&priv->napi);
0668 }
0669 }
0670
0671
0672 if (ucce >> 16 & UCC_HDLC_UCCE_BSY)
0673 dev->stats.rx_missed_errors++;
0674 if (ucce >> 16 & UCC_HDLC_UCCE_TXE)
0675 dev->stats.tx_errors++;
0676
0677 return IRQ_HANDLED;
0678 }
0679
0680 static int uhdlc_ioctl(struct net_device *dev, struct if_settings *ifs)
0681 {
0682 const size_t size = sizeof(te1_settings);
0683 te1_settings line;
0684 struct ucc_hdlc_private *priv = netdev_priv(dev);
0685
0686 switch (ifs->type) {
0687 case IF_GET_IFACE:
0688 ifs->type = IF_IFACE_E1;
0689 if (ifs->size < size) {
0690 ifs->size = size;
0691 return -ENOBUFS;
0692 }
0693 memset(&line, 0, sizeof(line));
0694 line.clock_type = priv->clocking;
0695
0696 if (copy_to_user(ifs->ifs_ifsu.sync, &line, size))
0697 return -EFAULT;
0698 return 0;
0699
0700 default:
0701 return hdlc_ioctl(dev, ifs);
0702 }
0703 }
0704
0705 static int uhdlc_open(struct net_device *dev)
0706 {
0707 u32 cecr_subblock;
0708 hdlc_device *hdlc = dev_to_hdlc(dev);
0709 struct ucc_hdlc_private *priv = hdlc->priv;
0710 struct ucc_tdm *utdm = priv->utdm;
0711
0712 if (priv->hdlc_busy != 1) {
0713 if (request_irq(priv->ut_info->uf_info.irq,
0714 ucc_hdlc_irq_handler, 0, "hdlc", priv))
0715 return -ENODEV;
0716
0717 cecr_subblock = ucc_fast_get_qe_cr_subblock(
0718 priv->ut_info->uf_info.ucc_num);
0719
0720 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
0721 QE_CR_PROTOCOL_UNSPECIFIED, 0);
0722
0723 ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
0724
0725
0726 if (priv->tsa)
0727 qe_setbits_8(&utdm->si_regs->siglmr1_h, 0x1 << utdm->tdm_port);
0728
0729 priv->hdlc_busy = 1;
0730 netif_device_attach(priv->ndev);
0731 napi_enable(&priv->napi);
0732 netdev_reset_queue(dev);
0733 netif_start_queue(dev);
0734 hdlc_open(dev);
0735 }
0736
0737 return 0;
0738 }
0739
0740 static void uhdlc_memclean(struct ucc_hdlc_private *priv)
0741 {
0742 qe_muram_free(ioread16be(&priv->ucc_pram->riptr));
0743 qe_muram_free(ioread16be(&priv->ucc_pram->tiptr));
0744
0745 if (priv->rx_bd_base) {
0746 dma_free_coherent(priv->dev,
0747 RX_BD_RING_LEN * sizeof(struct qe_bd),
0748 priv->rx_bd_base, priv->dma_rx_bd);
0749
0750 priv->rx_bd_base = NULL;
0751 priv->dma_rx_bd = 0;
0752 }
0753
0754 if (priv->tx_bd_base) {
0755 dma_free_coherent(priv->dev,
0756 TX_BD_RING_LEN * sizeof(struct qe_bd),
0757 priv->tx_bd_base, priv->dma_tx_bd);
0758
0759 priv->tx_bd_base = NULL;
0760 priv->dma_tx_bd = 0;
0761 }
0762
0763 if (priv->ucc_pram) {
0764 qe_muram_free(priv->ucc_pram_offset);
0765 priv->ucc_pram = NULL;
0766 priv->ucc_pram_offset = 0;
0767 }
0768
0769 kfree(priv->rx_skbuff);
0770 priv->rx_skbuff = NULL;
0771
0772 kfree(priv->tx_skbuff);
0773 priv->tx_skbuff = NULL;
0774
0775 if (priv->uf_regs) {
0776 iounmap(priv->uf_regs);
0777 priv->uf_regs = NULL;
0778 }
0779
0780 if (priv->uccf) {
0781 ucc_fast_free(priv->uccf);
0782 priv->uccf = NULL;
0783 }
0784
0785 if (priv->rx_buffer) {
0786 dma_free_coherent(priv->dev,
0787 RX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
0788 priv->rx_buffer, priv->dma_rx_addr);
0789 priv->rx_buffer = NULL;
0790 priv->dma_rx_addr = 0;
0791 }
0792
0793 if (priv->tx_buffer) {
0794 dma_free_coherent(priv->dev,
0795 TX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
0796 priv->tx_buffer, priv->dma_tx_addr);
0797 priv->tx_buffer = NULL;
0798 priv->dma_tx_addr = 0;
0799 }
0800 }
0801
0802 static int uhdlc_close(struct net_device *dev)
0803 {
0804 struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
0805 struct ucc_tdm *utdm = priv->utdm;
0806 u32 cecr_subblock;
0807
0808 napi_disable(&priv->napi);
0809 cecr_subblock = ucc_fast_get_qe_cr_subblock(
0810 priv->ut_info->uf_info.ucc_num);
0811
0812 qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
0813 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
0814 qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock,
0815 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
0816
0817 if (priv->tsa)
0818 qe_clrbits_8(&utdm->si_regs->siglmr1_h, 0x1 << utdm->tdm_port);
0819
0820 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
0821
0822 free_irq(priv->ut_info->uf_info.irq, priv);
0823 netif_stop_queue(dev);
0824 netdev_reset_queue(dev);
0825 priv->hdlc_busy = 0;
0826
0827 return 0;
0828 }
0829
0830 static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding,
0831 unsigned short parity)
0832 {
0833 struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
0834
0835 if (encoding != ENCODING_NRZ &&
0836 encoding != ENCODING_NRZI)
0837 return -EINVAL;
0838
0839 if (parity != PARITY_NONE &&
0840 parity != PARITY_CRC32_PR1_CCITT &&
0841 parity != PARITY_CRC16_PR0_CCITT &&
0842 parity != PARITY_CRC16_PR1_CCITT)
0843 return -EINVAL;
0844
0845 priv->encoding = encoding;
0846 priv->parity = parity;
0847
0848 return 0;
0849 }
0850
0851 #ifdef CONFIG_PM
0852 static void store_clk_config(struct ucc_hdlc_private *priv)
0853 {
0854 struct qe_mux __iomem *qe_mux_reg = &qe_immr->qmx;
0855
0856
0857 priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h);
0858 priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l);
0859
0860
0861 priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr);
0862
0863
0864 memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32));
0865 }
0866
0867 static void resume_clk_config(struct ucc_hdlc_private *priv)
0868 {
0869 struct qe_mux __iomem *qe_mux_reg = &qe_immr->qmx;
0870
0871 memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32));
0872
0873 iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h);
0874 iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l);
0875
0876 iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr);
0877 }
0878
0879 static int uhdlc_suspend(struct device *dev)
0880 {
0881 struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
0882 struct ucc_fast __iomem *uf_regs;
0883
0884 if (!priv)
0885 return -EINVAL;
0886
0887 if (!netif_running(priv->ndev))
0888 return 0;
0889
0890 netif_device_detach(priv->ndev);
0891 napi_disable(&priv->napi);
0892
0893 uf_regs = priv->uf_regs;
0894
0895
0896 priv->gumr = ioread32be(&uf_regs->gumr);
0897 priv->guemr = ioread8(&uf_regs->guemr);
0898
0899 priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak),
0900 GFP_KERNEL);
0901 if (!priv->ucc_pram_bak)
0902 return -ENOMEM;
0903
0904
0905 memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram,
0906 sizeof(struct ucc_hdlc_param));
0907
0908
0909 store_clk_config(priv);
0910
0911
0912 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
0913
0914 return 0;
0915 }
0916
0917 static int uhdlc_resume(struct device *dev)
0918 {
0919 struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
0920 struct ucc_tdm *utdm;
0921 struct ucc_tdm_info *ut_info;
0922 struct ucc_fast __iomem *uf_regs;
0923 struct ucc_fast_private *uccf;
0924 struct ucc_fast_info *uf_info;
0925 int i;
0926 u32 cecr_subblock;
0927 u16 bd_status;
0928
0929 if (!priv)
0930 return -EINVAL;
0931
0932 if (!netif_running(priv->ndev))
0933 return 0;
0934
0935 utdm = priv->utdm;
0936 ut_info = priv->ut_info;
0937 uf_info = &ut_info->uf_info;
0938 uf_regs = priv->uf_regs;
0939 uccf = priv->uccf;
0940
0941
0942 iowrite8(priv->guemr, &uf_regs->guemr);
0943 iowrite32be(priv->gumr, &uf_regs->gumr);
0944
0945
0946 iowrite16be(uf_info->urfs, &uf_regs->urfs);
0947 iowrite16be(uf_info->urfet, &uf_regs->urfet);
0948 iowrite16be(uf_info->urfset, &uf_regs->urfset);
0949 iowrite16be(uf_info->utfs, &uf_regs->utfs);
0950 iowrite16be(uf_info->utfet, &uf_regs->utfet);
0951 iowrite16be(uf_info->utftt, &uf_regs->utftt);
0952
0953 iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb);
0954 iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb);
0955
0956
0957 resume_clk_config(priv);
0958
0959 iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
0960 iowrite32be(0xffffffff, &uf_regs->ucce);
0961
0962 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
0963
0964
0965 if (priv->tsa)
0966 ucc_tdm_init(priv->utdm, priv->ut_info);
0967
0968
0969 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
0970 qe_issue_cmd(QE_STOP_TX, cecr_subblock,
0971 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
0972
0973
0974 iowrite32be(0, &uf_regs->upsmr);
0975
0976
0977 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
0978 qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
0979 QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
0980
0981 priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
0982 qe_muram_addr(priv->ucc_pram_offset);
0983
0984
0985 memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak,
0986 sizeof(struct ucc_hdlc_param));
0987 kfree(priv->ucc_pram_bak);
0988
0989
0990 for (i = 0; i < RX_BD_RING_LEN; i++) {
0991 if (i < (RX_BD_RING_LEN - 1))
0992 bd_status = R_E_S | R_I_S;
0993 else
0994 bd_status = R_E_S | R_I_S | R_W_S;
0995
0996 priv->rx_bd_base[i].status = cpu_to_be16(bd_status);
0997 priv->rx_bd_base[i].buf = cpu_to_be32(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH);
0998 }
0999
1000 for (i = 0; i < TX_BD_RING_LEN; i++) {
1001 if (i < (TX_BD_RING_LEN - 1))
1002 bd_status = T_I_S | T_TC_S;
1003 else
1004 bd_status = T_I_S | T_TC_S | T_W_S;
1005
1006 priv->tx_bd_base[i].status = cpu_to_be16(bd_status);
1007 priv->tx_bd_base[i].buf = cpu_to_be32(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH);
1008 }
1009 dma_wmb();
1010
1011
1012 if (priv->hdlc_busy == 1) {
1013 cecr_subblock = ucc_fast_get_qe_cr_subblock(
1014 priv->ut_info->uf_info.ucc_num);
1015
1016 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
1017 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
1018
1019 ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
1020
1021
1022 if (priv->tsa)
1023 qe_setbits_8(&utdm->si_regs->siglmr1_h, 0x1 << utdm->tdm_port);
1024 }
1025
1026 napi_enable(&priv->napi);
1027 netif_device_attach(priv->ndev);
1028
1029 return 0;
1030 }
1031
1032 static const struct dev_pm_ops uhdlc_pm_ops = {
1033 .suspend = uhdlc_suspend,
1034 .resume = uhdlc_resume,
1035 .freeze = uhdlc_suspend,
1036 .thaw = uhdlc_resume,
1037 };
1038
1039 #define HDLC_PM_OPS (&uhdlc_pm_ops)
1040
1041 #else
1042
1043 #define HDLC_PM_OPS NULL
1044
1045 #endif
1046 static void uhdlc_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1047 {
1048 netdev_err(ndev, "%s\n", __func__);
1049 }
1050
1051 static const struct net_device_ops uhdlc_ops = {
1052 .ndo_open = uhdlc_open,
1053 .ndo_stop = uhdlc_close,
1054 .ndo_start_xmit = hdlc_start_xmit,
1055 .ndo_siocwandev = uhdlc_ioctl,
1056 .ndo_tx_timeout = uhdlc_tx_timeout,
1057 };
1058
1059 static int hdlc_map_iomem(char *name, int init_flag, void __iomem **ptr)
1060 {
1061 struct device_node *np;
1062 struct platform_device *pdev;
1063 struct resource *res;
1064 static int siram_init_flag;
1065 int ret = 0;
1066
1067 np = of_find_compatible_node(NULL, NULL, name);
1068 if (!np)
1069 return -EINVAL;
1070
1071 pdev = of_find_device_by_node(np);
1072 if (!pdev) {
1073 pr_err("%pOFn: failed to lookup pdev\n", np);
1074 of_node_put(np);
1075 return -EINVAL;
1076 }
1077
1078 of_node_put(np);
1079 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1080 if (!res) {
1081 ret = -EINVAL;
1082 goto error_put_device;
1083 }
1084 *ptr = ioremap(res->start, resource_size(res));
1085 if (!*ptr) {
1086 ret = -ENOMEM;
1087 goto error_put_device;
1088 }
1089
1090
1091
1092
1093 put_device(&pdev->dev);
1094
1095 if (init_flag && siram_init_flag == 0) {
1096 memset_io(*ptr, 0, resource_size(res));
1097 siram_init_flag = 1;
1098 }
1099 return 0;
1100
1101 error_put_device:
1102 put_device(&pdev->dev);
1103
1104 return ret;
1105 }
1106
1107 static int ucc_hdlc_probe(struct platform_device *pdev)
1108 {
1109 struct device_node *np = pdev->dev.of_node;
1110 struct ucc_hdlc_private *uhdlc_priv = NULL;
1111 struct ucc_tdm_info *ut_info;
1112 struct ucc_tdm *utdm = NULL;
1113 struct resource res;
1114 struct net_device *dev;
1115 hdlc_device *hdlc;
1116 int ucc_num;
1117 const char *sprop;
1118 int ret;
1119 u32 val;
1120
1121 ret = of_property_read_u32_index(np, "cell-index", 0, &val);
1122 if (ret) {
1123 dev_err(&pdev->dev, "Invalid ucc property\n");
1124 return -ENODEV;
1125 }
1126
1127 ucc_num = val - 1;
1128 if (ucc_num > (UCC_MAX_NUM - 1) || ucc_num < 0) {
1129 dev_err(&pdev->dev, ": Invalid UCC num\n");
1130 return -EINVAL;
1131 }
1132
1133 memcpy(&utdm_info[ucc_num], &utdm_primary_info,
1134 sizeof(utdm_primary_info));
1135
1136 ut_info = &utdm_info[ucc_num];
1137 ut_info->uf_info.ucc_num = ucc_num;
1138
1139 sprop = of_get_property(np, "rx-clock-name", NULL);
1140 if (sprop) {
1141 ut_info->uf_info.rx_clock = qe_clock_source(sprop);
1142 if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) ||
1143 (ut_info->uf_info.rx_clock > QE_CLK24)) {
1144 dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1145 return -EINVAL;
1146 }
1147 } else {
1148 dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1149 return -EINVAL;
1150 }
1151
1152 sprop = of_get_property(np, "tx-clock-name", NULL);
1153 if (sprop) {
1154 ut_info->uf_info.tx_clock = qe_clock_source(sprop);
1155 if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) ||
1156 (ut_info->uf_info.tx_clock > QE_CLK24)) {
1157 dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1158 return -EINVAL;
1159 }
1160 } else {
1161 dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1162 return -EINVAL;
1163 }
1164
1165 ret = of_address_to_resource(np, 0, &res);
1166 if (ret)
1167 return -EINVAL;
1168
1169 ut_info->uf_info.regs = res.start;
1170 ut_info->uf_info.irq = irq_of_parse_and_map(np, 0);
1171
1172 uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL);
1173 if (!uhdlc_priv)
1174 return -ENOMEM;
1175
1176 dev_set_drvdata(&pdev->dev, uhdlc_priv);
1177 uhdlc_priv->dev = &pdev->dev;
1178 uhdlc_priv->ut_info = ut_info;
1179
1180 if (of_get_property(np, "fsl,tdm-interface", NULL))
1181 uhdlc_priv->tsa = 1;
1182
1183 if (of_get_property(np, "fsl,ucc-internal-loopback", NULL))
1184 uhdlc_priv->loopback = 1;
1185
1186 if (of_get_property(np, "fsl,hdlc-bus", NULL))
1187 uhdlc_priv->hdlc_bus = 1;
1188
1189 if (uhdlc_priv->tsa == 1) {
1190 utdm = kzalloc(sizeof(*utdm), GFP_KERNEL);
1191 if (!utdm) {
1192 ret = -ENOMEM;
1193 dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n");
1194 goto free_uhdlc_priv;
1195 }
1196 uhdlc_priv->utdm = utdm;
1197 ret = ucc_of_parse_tdm(np, utdm, ut_info);
1198 if (ret)
1199 goto free_utdm;
1200
1201 ret = hdlc_map_iomem("fsl,t1040-qe-si", 0,
1202 (void __iomem **)&utdm->si_regs);
1203 if (ret)
1204 goto free_utdm;
1205 ret = hdlc_map_iomem("fsl,t1040-qe-siram", 1,
1206 (void __iomem **)&utdm->siram);
1207 if (ret)
1208 goto unmap_si_regs;
1209 }
1210
1211 if (of_property_read_u16(np, "fsl,hmask", &uhdlc_priv->hmask))
1212 uhdlc_priv->hmask = DEFAULT_ADDR_MASK;
1213
1214 ret = uhdlc_init(uhdlc_priv);
1215 if (ret) {
1216 dev_err(&pdev->dev, "Failed to init uhdlc\n");
1217 goto undo_uhdlc_init;
1218 }
1219
1220 dev = alloc_hdlcdev(uhdlc_priv);
1221 if (!dev) {
1222 ret = -ENOMEM;
1223 pr_err("ucc_hdlc: unable to allocate memory\n");
1224 goto undo_uhdlc_init;
1225 }
1226
1227 uhdlc_priv->ndev = dev;
1228 hdlc = dev_to_hdlc(dev);
1229 dev->tx_queue_len = 16;
1230 dev->netdev_ops = &uhdlc_ops;
1231 dev->watchdog_timeo = 2 * HZ;
1232 hdlc->attach = ucc_hdlc_attach;
1233 hdlc->xmit = ucc_hdlc_tx;
1234 netif_napi_add_weight(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32);
1235 if (register_hdlc_device(dev)) {
1236 ret = -ENOBUFS;
1237 pr_err("ucc_hdlc: unable to register hdlc device\n");
1238 goto free_dev;
1239 }
1240
1241 return 0;
1242
1243 free_dev:
1244 free_netdev(dev);
1245 undo_uhdlc_init:
1246 iounmap(utdm->siram);
1247 unmap_si_regs:
1248 iounmap(utdm->si_regs);
1249 free_utdm:
1250 if (uhdlc_priv->tsa)
1251 kfree(utdm);
1252 free_uhdlc_priv:
1253 kfree(uhdlc_priv);
1254 return ret;
1255 }
1256
1257 static int ucc_hdlc_remove(struct platform_device *pdev)
1258 {
1259 struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev);
1260
1261 uhdlc_memclean(priv);
1262
1263 if (priv->utdm->si_regs) {
1264 iounmap(priv->utdm->si_regs);
1265 priv->utdm->si_regs = NULL;
1266 }
1267
1268 if (priv->utdm->siram) {
1269 iounmap(priv->utdm->siram);
1270 priv->utdm->siram = NULL;
1271 }
1272 kfree(priv);
1273
1274 dev_info(&pdev->dev, "UCC based hdlc module removed\n");
1275
1276 return 0;
1277 }
1278
1279 static const struct of_device_id fsl_ucc_hdlc_of_match[] = {
1280 {
1281 .compatible = "fsl,ucc-hdlc",
1282 },
1283 {},
1284 };
1285
1286 MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match);
1287
1288 static struct platform_driver ucc_hdlc_driver = {
1289 .probe = ucc_hdlc_probe,
1290 .remove = ucc_hdlc_remove,
1291 .driver = {
1292 .name = DRV_NAME,
1293 .pm = HDLC_PM_OPS,
1294 .of_match_table = fsl_ucc_hdlc_of_match,
1295 },
1296 };
1297
1298 module_platform_driver(ucc_hdlc_driver);
1299 MODULE_LICENSE("GPL");
1300 MODULE_DESCRIPTION(DRV_DESC);